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Exporting Databases in XML

A Conceptual and Generic Approach

Ph. Thiran1, F. Estiévenart2, J-L. Hainaut3, and G-J. Houben1

1 Technische Universiteit Eindhoven, The Netherlands
2 CETIC Research Center, Gosselies, Belgium

3 Université de Namur, Belgium

Abstract. This paper describes a generic conceptual framework in which
semantics-based XML DTD can be derived from existing, and more gen-
erally legacy, databases. It consists in first recovering the conceptual
schema of the database through reverse engineering techniques, then in
converting this schema, or part of it, into XML-compliant data struc-
tures. Both steps heavily rely on generic schema transformation tech-
niques, while all the schemas involved in the whole process are expressed
in a unique model, named GER. This approach is supported by a CASE
environment.

1 Introduction

The quantity of information available on the World Wide Web continuously
increases. Most of this information is provided by Web information systems
that combine traditional storage mechanisms, e.g. relational databases, with the
easy access mechanism that gave the Web its popularity. The term deep Web is
sometimes used to distinguish the wealth of information stored in these Web-
accessible information systems from the surface Web of explicitly linked HTML
pages. However, the information on the (deep) Web is placed there independently
by different organizations. As a consequence, data sources containing related
information can appear at different Websites and systems, in different formats,
and for different purposes. Moreover, the current Web information systems are
lacking particularly in the area of semantics, for example in terms of relationships
within the data.

Currently, XML is becoming the de facto standard for publishing and ex-
changing data over the Web. The use of XML as the common format for rep-
resenting, exchanging, storing, and accessing data poses new challenges to data
systems. Since the majority of everyday data is still stored and maintained in
standard database systems, we expect that the needs to export stored data in
XML format will grow substantially. To this end, several projects recently in-
vestigated the issues of converting database schema in XML ([1], [2], [3], [4],
[5]).

In this paper, we focus on exporting database schemas into XML DTD [6].
As mentioned, some research projects have already investigated issues related to
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schema conversions between XML and database models. Unlike their approaches,
we investigate the problem from a generic and conceptual perspective:

– Generic perspective. Current approaches for exporting databases into XML
rely on couples of models, such as those intended to produce XML views
of relational schemas. In this work, we use a high-level formalism - named
Generic Entity Relationship (GER) - able to express schemas whatever their
underlying data model and their abstraction level. Such a formalism defines
a reference model on which transformational operators are built. That allows
the description of arbitrary models (including DTD) and the use of schema
conversions between two not necessarily equivalent models (*-to-DTD). As
a result, our approach is not limited to any specific structured data model.

– Conceptual perspective. Most current transformation strategies consist in
translating each construct of the source database into the closest constructs
of XML without attempting any semantic interpretation. They capture the
structure of the original schema and largely ignore the interconnection among
data and the hidden semantic constraints. Our strategy consists in recovering
the precise semantic description (i.e., its conceptual schema where multiple
entities are interconnected) of the source database first, through reverse engi-
neering techniques, then in developing the DTD from this schema through a
semi-automated model translation (i.e., converting multiple inter-connected
entities into a coherent and hierarchical parent-child structure).

To focus the presentation on the translation problem, the paper has been written
for a scenario in which the whole database is to be translated into XML struc-
tures. In actual situations, only selected parts have to be exported or trans-
formed. Various practical scenarios can easily be derived from the proposed
framework.

This paper is organized as follows. In section 2, we present our previous
work to show how a DTD can be represented in a generic entity-relationship
model, the GER. This leads to the first technical contribution of the paper
– providing a high-level reference model for database and XML models, and
hence, the possibility of transforming data instances between them. In Section 3,
we develop our conceptual approach for converting databases into XML DTD.
The approach is illustrated by a case study that points at different benefits
of conversion. This leads to the second technical contribution of the paper –
providing a method for extracting the DTD of databases which captures their
hidden semantic structures. Section 4 presents an operational CASE tool – DB-
MAIN – that supports our approach. Finally, Section 5 concludes this paper.

2 Representing XML DTD in the GER

In [7], we showed how a wide spectrum entity-relationship model, the GER can
express data structure schemas whatever their underlying data model and their
abstraction level. Moreover, we also showed that it is possible to transform the
constructs from one data model into those of another model. In this section, we
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extend our work and specify how XML DTD can be represented in the GER. As
such, we are adding XML DTD to the set of operational models whose schemas
can be transformed into each other using our generic framework. For reasons of
space, we refer the reader to our earlier work [7] for a full definition of the GER
and the schema transformations.

2.1 DTD expressed in terms of GER

Expressing XML data in terms of a reference model has already received much
attention and the common approach is to use some variant of entity-relationship
model, such as UML structure diagrams, for representing XML or other kinds of
semi-structured data ([8] and [9]). However, due to the differences between ER
(or UML) and XML models, this approach cannot address all the DTD notions
(e.g., data order or ID/IDREF attribute). We use a high-level data model (GER)
to represent XML DTD. The GER model supports, in an abstract form, such
notions as IDREF attributes, ordering information or alternate structures found
in XML documents.

Different frameworks for describing XML documents have been proposed.
The first and most widely used method in real-world documents is the Document
Type Definition (DTD), thus we have based our approach on DTD. The most
prominent alternative description mechanisms is XML Schema. The latter is a
more powerful model that can capture advanced constructs as different types of
relationships, precise cardinalities, inheritance and attribute type. Though the
GER can describe the concepts of XML Schema as well, we have chosen to limit
the representation to DTD, both for scope limit and due to its wider popularity
so far.

For the needs of this paper, the GER can be perceived as an enriched vari-
ant of the standard entity-relationship model. It includes the concepts of entity
type, attribute, value domain and relationship type. Attributes can be atomic
or compound, mandatory or optional, single-valued ou multivalued. The roles
of a relationship type can be labelled; it has a cardinality constraint (a pair of
integers stating the range of the number of relationships in which any entity can
appear). An attribute has a cardinality constraint too, that states how many
values can be associated with each parent instance (default is 1-1 and does not
appear in graphical schemas). In general, several properties hold, and must be
declared, among the components of an entity type: uniqueness, referential and
existence constraints are just some of them. Due the wide variety of such proper-
ties, the GER include the generic concept of property group, or group for short.
A group is any subset of components (attributes and/or roles) of an entity type
on which one or several properties are defined. The label(s) of the group speci-
fies its properties (id for identifier, ref for referential, excl for exclusive, and so
on). For example, a group of attributes of entity type E can be declared identifier
and referential. This group models such relational pattern as a primary key that
simultaneously is a foreign key. In DTD representation, property groups will be
used to model ID, IDREF, sequence, choice. However, they can also model con-
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straints that cannot be explicitly expressed in DTD, and that will be translated
in another way (though filters or procedural components for example).

In this section, we describe how any DTD document (DTDd) can be expressed
as an equivalent GER schema (DTDs). We successively explain how the GER
model can represent the concepts of (1) element types, (2) content types and (3)
attribute types. Table 1 summarizes the correspondences between the main DTD
concepts and their GER interpretation. Our development is illustrated through
a concise DTDd describing Orders and their related Products. Figure 1 shows
the DTDd and the resulting equivalent DTDs expressed in terms of GER.

Table 1. DTD concepts expressed in terms of GER.

DTD concept GER construct

Element type Entity type

Content type PCDATA/ANY Attribute #pcdata/#any

Content type ELEMENT Relationship type

Occurence operators Role cardinalities

Sequence/Choice organisation seq/choice group

Attribute type Attribute

Attibute modifiers Attribute cardinalities

ID/IDREF attribute gid/idref group

Element Type Definition Each element type declared in DTDd (including the
root element) is expressed by an entity type in DTDs, the name of which is that
of the element.

Content Type Definition. According to the DTD conventions, a content type
is either PCDATA, ANY, EMPTY or ELEMENT. In DTDs, the content type directly
determines the properties (attributes, roles...) of an entity type.

Content types for leaf elements. Content type PCDATA is associated to leaf el-
ements that are expected to only contain simple-text values. In DTDs, such el-
ements are represented by an entity type having as unique attribute #pcdata.
The content type ANY is similarly modelled by a simple atomic attribute named
#any (by convention). Contrary to the content types PCDATA and ANY, no spe-
cial attribute is needed to represent an EMPTY element. The absence of specific
attributes (#pcdata or #any) is simply used to represent the content type EMPTY.

Example. In Figure 1, the entity types Date, Total, Quantity and Amount rep-
resent leaf elements with content type PCDATA. By analogy, both the entity types
Customer and Supplier express elements with content type ANY.
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DTDd DTDs

Fig. 1. The DTDd and DTDs of Catalog.

Content types for non-leaf elements. An element type that is not a leaf element
is inevitably composed of one or more subelements. The hierarchical relation-
ship between two elements is materialized, in DTDs, by a one-to-many binary
relationship type (called hierarchical relationship type) binding the father to the
child entity types. The role played by the father entity type is called father role
(in opposition with child role) and is named f (for father).

It is important to notice that, due to the hierarchical organization of XML
elements, the structure formed by the entity types and the relationship types
has to respect three basic properties:

– Uniqueness of the root. A DTDs always possesses one (and only one) particular
entity type that has no father; it is called the root entity type.

– Uniqueness of fathers. Any entity type must play one, and only one, child
role in DTDs4.

– Absence of cycles. In an oriented graph, a cycle occurs when a node belongs
to the list of its own descendants. In a schema made of entity types (nodes)
and directed hierarchical relationship types (arcs), cycles are prohibited in
order to reflect a hierarchical structure.

The DTD conventions allow the definition of occurrence operators on subele-
ments. ?, * and + stand respectively for 0-1, 0-N, 1-N cardinalities. The absence
of such operator is equivalent to cardinality 1-1. In DTDs, the minimum and
maximum cardinalities of a father role are used to express that kind of informa-
tion.

If an element is composed of several subelements, the latter can be organized
in a sequence structure. In this specific case, the father element must hold a

4 Except for the root entity type that only plays father role(s). In addition, the fact
that an element appears in more than one father element cannot be represented by
more than one relationship type for reasons that are beyond the scope of this paper.
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group named seq. That group contains the child roles played by all the subele-
ments. Note that the order of the components within a seq is meaningful as it
specifies the order of the elements in the sequence.

Example. In Figure 1, the entity type Order is composed of a sequence of four
children (respectively entity types Customer, Date, Total and Detail). The
father roles played by the entity type Order are named f and have corresponding
cardinalities (respectively 1-1, 1-1, 0-1 and 1-N).

Attribute Type Definition. An attribute type declared within an element
type appears in a DTDs in the form of an attribute in the corresponding entity
type.

Attribute modifiers. In DTDs, the default cardinality for an attribute is 1-1,
meaning that the attribute is single-valued and mandatory (keyword #REQUIRED
in the DTD conventions). Declaring an optional attribute (keyword #IMPLIED)
simply consists in setting its minimal cardinality to 0. The only way to express
multiple values for a same information is to represent this one by an element
and an occurence operator such as * or +. Multivalued attributes are therefore
not allowed in DTDs.

ID attributes. Contrary to a common identifier5 whose scope is restricted to the
entity type in which it is declared, an ID attribute in XML has a general scope
extended to the entire document. However, as they define similar constraints of
uniqueness, XML ID attributes have been assigned a notation close to the one
used for common identifiers (though things have improved in XML Schemas).
Indeed, they must belong to a group labelled, by convention, gid (standing for
global identifier). Besides their difference of scope, id and gid groups present
another noticeable difference: an id group is allowed to include several attributes
or roles while a gid group comprises one attribute only.

IDREF attributes. IDREF attributes implement a referential mechanism that we
could compare to traditional foreign keys with a general scope. The conventions
used to represent foreign keys and IDREF attributes are analogous. An IDREF
attribute is component of a group idref.

Example. In the entity type Product (Figure 1), UnitPrice is a simple mono-
valued and mandatory attribute while Label is optional (cardinalities 0-1).
Reference is an attribute contained in a gid group to reflect its XML ID type.

2.2 Transforming XML DTD in GER

In [7], we define a set of transformations for transforming a GER schema. These
transformations can be applied by a user to map between schemas expressed in
5 group labelled id in the GER.
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the same or different data modelling languages. The use of GER as the unify-
ing data model allows constructs from different data modelling languages to be
mixed in the same intermediate schema.

A transformation consists in deriving a target schema S’ from a source
schema S by replacing construct C (possibly empty) in S with a new construct
C’ (possibly empty). More formally, a transformation Σ can be completely de-
fined by a pair of mappings <T,t>: C’ = T(C) and c’ = t(c). T is the structural
mapping, that explains how to replace construct C with construct C’ while t, the
instance mapping, states how to compute instance c’ of C’ from any instance c
of C.

Any transformation Σ can be given an inverse transformation Σi, such that
Ti(T(C)) = C. If, in addition, we also have: ti(t(c)) = c, then Σ is declared
semantics-preserving.

A transformation sequence is a sequence of n ≥ 1 primitive transformations:
Tp = <T1 T2 ... Tn>. For instance, Tp = <T1 T2> is obtained by applying T2
on the schema that results from the application of T1.

Transformations are operators that manipulate GER constructs. We propose
in Figure 2 two sets of the transformational operators used in this paper (Section
3). The first one is made up of three standard transformations used in trans-
lation of relational schemas into conceptual schemas (named hereafter standard
transformations). The second comprises additional techniques suited to derive
a DTD from a structured data schema (named hereafter DTD-specific transfor-
mations). These transformation operators are formally described in [10] and in
[11].

3 Database Exportation in XML

This section describes a conceptual approach for converting databases into DTD.
Normally, a precise and detailed documentation should be associated with any
database, in such a way that the DTD expression should be straightforward.
However, the actual state of most databases can be described, at best, as un-
documented. Hence the need to rebuild the conceptual schema of the source
database when it is no longer available. This process is commonly called reverse
engineering.

Our strategy consists in recovering the precise semantic description of the
source database before converting it into DTD. It follows a semi-automated
four-step method (Figure 3):

– Schema extraction: The physical schema (PS) of the database is expressed
in GER.

– Schema conceptualization: The conceptual schema (CS) is recovered from the
physical schema (PS).

– Model translation: The GER DTD schema (DTDs) is semi-automatically gen-
erated from the conceptual schema (CS) by means of schema transformations.

– Schema exportation: The DTD schema (DTDs) is expressed as a DTD docu-
ment (DTDd).
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Fig. 2. Standard transformations and DTD-specific transformations with their inverse.
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The goal of the first two steps is to recover a conceptual view of the legacy
database [12] where the entities are interconnected with each other through
relationships, while the last two steps belong to the standard forward engi-
neering stream, applied to the XML DTD data model (i.e., converting multiple
inter-connected entities into a coherent and hierarchical parent-child structure).
All the schema mappings are expressed by means of schema transformation se-
quences (PS-to-CS and CS-to-DTDs).

PS

CS

DTDs

Schema Extraction

Schema Conceptual.

Model Translation
CS-to-DTDs

PS-to- CS

Processes

System

Schemas and 
Mappings in GER

Ontology

DDL

DTDd

Schema Exportation Automated

Semi-Automated

Automated

Semi-automated

Fig. 3. Database exportation to XML DTD: processes, schemas and transformation
sequences.

In the following sections, we describe the first three steps6 and illustrate
them by a small example. We consider an existing database describing aspects
of orders. From a technical point of view, the data is managed by an old version
of Oracle (Oracle V5), which ignored the concepts of primary and foreign keys.

3.1 Schema Extraction

This phase consists in recovering the (existing) physical schema (PS) made up of
all the structures and constraints explicitly declared. This process is often easy
to automate since it can be carried out by a simple parser which analyses the
DDL texts, extracts the data structures and expresses them as the PS.
Example. By analyzing the SQL-DDL script of the Oracle database, we obtain the
physical schema of Figure 4.
6 We omit the schema exportation process because of its simplicity.
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3.2 Schema Conceptualization

Data models of legacy databases cannot express all the semantics of the real
world. Limitations of the modelling concepts and information hiding program-
ming practices lead to the incompleteness of the physical schema that only con-
tains the structures explicitly expressed in the DDL code, while the other con-
structs are implicitly implemented in the program codes. For example, foreign
keys can be explicitly declared in modern relational schemas, but they are im-
plicit (hidden) in obsolete relational schemas (like Oracle V5). This leads to the
need to augment the knowledge about the semantics of data, through a database
reverse engineering (DBRE), one of the goals of which is to elicit hidden struc-
tures and constraints.

To accomplish this, we build on a proven approach, namely the DB-MAIN
DBRE methodology [12]. The key feature of this approach is threefold. Firstly,
all the schemas, whatever their DBMS and their abstraction level, are expressed
in the GER. Secondly, it uses the same transformational approach than that of
this paper. Thirdly, this approach is supported by an operational CASE tool
(Section 4).
Example. The PS of Figure 4 is refined through DBRE in order to recover and in-
terpret the hidden structures and constraints such as foreign keys (interpreted as
relationship types), unique keys or enumerated value domains that are unknown
in the Oracle V5 model and multivalued attributes that cannot be expressed
in the relational model. We thus obtain the conceptual schema (CS) of Figure
4 and the schema transformation sequence (PS-to-CS) that models the DBRE
process.
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Fig. 4. Example of database exportation: physical, conceptual and DTDs schemas and
the transformation sequences between them.
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3.3 Model Translation

In this section, we describe a specific case of model translation that is to trans-
form a conceptual schema (CS) into a XML DTD (DTDs). Model translation is
expressed by means of schema transformations and consists, in that case, in
applying relevant transformations on the constructs of the CS that are not com-
pliant with the XML DTD model. Its execution produces two result types: (1)
a target schema expressed in DTDs; and (2) a schema transformation sequence
CS-to-DTDs that is made of all the transformations applied on the source schema
to get the target one. This includes standard as well as DTD-specific transfor-
mations.

The six steps composing the transformation process are:

1. Schema preparation. Invalid complex constructs are automatically cleaned
from the source schema.

2. Hierarchical structure creation. The user builds a hierarchical organization
between entity types by choosing the main concepts and the most natural
relations between them according to the modeled application domain.

3. Role cardinalities extension. Some father role cardinalities are modified to
be valid against the allowed DTD cardinalities.

4. gid and idref groups creation. Identifiers and foreign keys are transformed
into gid and idref groups.

5. Attributes representation. Attributes become either XML attributes or XML
elements according to the status chosen by the user.

6. Ordering definition. Each entity type is given a position relative to its re-
spective parent.

In our approach, model translation is not fully automated and can be con-
sidered as a non-deterministic process. Indeed, some steps are completely auto-
mated while others require some design choices. These user-inputs might have
consequences on the properties and the semantic of the resulting schema.

The transformations used in model translation are not necessary semantics-
preserving because of the weak expressiveness of DTD XML, notably with regard
to the global identifiers or the cardinality constraints.

In the following, we give more details on each step of the transformation
process and illustrate them by using the conceptual schema CS of Figure 4.

Schema preparation. Schema preparation uses standard schema transforma-
tions (Figure 2, first table) to remove invalid constructs such as IS-A relations,
n-ary (n>3) and many-to-many relationship types, multivalued and compound
attributes.

Example. In Figure 4 (CS), the many-to-many relationship type Detail is trans-
formed into an entity type (RT-ET) and the multivalued attribute Supplier of
Product becomes an entity type (ATT-ET/instance).



12

Hierarchical structure creation. In that step, the structure formed by the
entity types and the relationship types is transformed into a tree by choosing the
natural root entity type(s), solving the father conflict(s), breaking the cycle(s)
and, eventually, adding an unique root. Those four subtasks mainly use two
transformations : RT-to-FK (a standard transformation) and DTD-RT-to-HIER.

DTD-RT-to-HIER (Figure 2) is a DTD-specific transformation that is applied
on a binary relationship type in order to make it hierarchical. That transforma-
tion introduces an explicit notion of superiority (resp. inferiority) between the
two concerned entity types according to their role cardinalities. The weak entity
type is the one who plays the 1-1 role.

Natural root(s) election. Each entity type representing a significant concept
within the modelled domain must be assigned an important status in the schema
i.e. an high level in the hierarchy. These meaningful entity types are chosen by
the user and are called natural roots.
The DTD-specific transformation DTD-ET-to-ROOT gives the status of natural
root to any entity type in the schema. Let us remark that an entity type that do
not play any 1-1 role can not be tied to a father and is consequently a (manda-
tory) natural root.
For example, in Figure 2 (DTD-ET-to-ROOT), the entity type A is a mandatory
root because it plays no 1-1 role. The entity type B is considered important
by the user and is therefore subject to the DTD-ET-to-ROOT transformation to
become a natural root in the target schema.

Father conflicts resolution. A father conflict occurs as soon as an entity type has
several potential fathers. All father conflicts have to be resolved to get a hier-
archical structure. The father conflict resolution consists in choosing one entity
type among the potential fathers of the problematic entity type. In practice, the
relationship type between the entity type and the elected father is made hier-
archical (DTD-RT-to-HIER) and all other concerned relationship types become
foreign keys (RT-to-FK).

Cycles breaking. A cycle is broken by transformation of one of its arcs into a
generic foreign key. Breaking a cycle can also be done indirectly by choosing a
root entity type among the nodes that compose the cycle.

Unique root addition. If the current schema contains more than one natural root,
a new entity type (called technical root) is added to compose the unique root of
the schema. The DTD-specific transformation Create-UNIQUE-ROOT adds that
technical root that becomes the father of all the natural roots previously de-
clared or deduced.

Example. The entity types Order and Product are two mandatory natural roots;
no other natural root is elected. The relationship type between Detail and
Product is choosen to become a generic foreign key in order to solve the father
conflict that occurs for entity type Detail. Finally, an unique technical root
(entity type Catalog) is added to the schema to get the desired tree organization.
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Role cardinalities extension. In DTDs, the allowed cardinalities for father
roles are 0-N, 1-N, 1-1 or 0-1. In order to respect these limitations, the scope
of invalid role cardinalities is extended by applying these two simple principles :

– if min card > 1 then min card = 1
– if max card > 1 then max card = N

That step illustrates the loss of semantics that may occur when a source schema
is translated towards a poorer data model.

Example. The father role played by Product has cardinalities 1-5; they are
changed into 1-N.

gid and idref groups creation. Despite their indisputable dissimilarities, id
groups composed of one attribute are transformed into gid groups. Other id
groups cannot be translated in DTDs and are simply discarded from the schema.
In the same way, ref groups made up of one attribute only are transformed
into (global) idref groups even if the scope of the referential constraint is made
wider by the transformation.

Example. The id groups of entity types Order and Product are made of a unique
attribute; they are transformed into gid groups. The ref group of entity type
Detail is renamed idref for similar reasons. All other id groups are removed
from the schema.

Attributes representation. Attributes that do not belong to a gid or idref
group can be handled in three different ways. They can either keep their status
of attribute or be promoted into an entity type with simple (PCDATA) or tagged
(ANY) content.

In the first case, the attribute type is simply changed into cdata (transfor-
mation DTD-Att-to-CDATA of Figure 2). In the two latter cases, the attribute
is transformed into an entity type (according to an instance representation), a
hierarchical relationship type binds both related entity types and the attribute
in the leaf entity type is renamed into #pcdata or #any (DTD-Att-to-PCDATA
and DTD-Att-to-ANY transformations of Figure 2).

Example. All attributes concerned by that transformation become a PCDATA or
ANY entity type except for the attributes Product.Label and Product.UnitPrice
that keep their status. That decision is simply a design choice.

Ordering definition. In the final step, a seq group is added to all entity
types having more than one children. The current DTD-specific transformation
Create-SEQ-Group arbitrarily determines the order between the children of a
common entity type. This transformation is non-semantic preserving because it
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adds an explicit notion of order between the different children of an entity type.

Example. seq groups have to be added in entity types Order, Detail and
Reference.

4 CASE Support

DB-MAIN is a graphical, general-purpose, programmable, CASE environment
dedicated to Database Application Engineering. Besides standard functions such
as specification entry, examination and management, it includes advanced pro-
cessors such as transformation toolboxes, reverse engineering processors and
schema analysis tools. In particular, DB-MAIN offers a rich set of transforma-
tional operators that allow developers to carry out the database exportation in
XML DTD in a systematic way. Another interesting feature of DB-MAIN is the
Meta-CASE layer, which allows method engineers to customize the tool and to
add new concepts, functions, models and even new methods. In particular, DB-
MAIN offers a complete development language, Voyager 2 [13], through which
new functions and processors can be developed and seamlessly integrated into
the tool. Further details on DB-MAIN can be found in [14].

In the limited scope of this paper, we describe some of the DB-MAIN assis-
tants dedicated to database exportation in XML DTD only.

4.1 Extraction and Exportation Facilities

Database schemas can be extracted by a series of processors. These processors
identify and parse the declaration part of the source texts, or analyze catalog
tables, and create corresponding abstractions in the repository. Extractors have
been developed for SQL, COBOL, CODASYL, IMS, RPG and XML DTD data
structures. Additional extractors can be developed easily thanks to the Voyager
2 environment.

As part of the Data Migration Project [15], an XML DTD generator that
automatically generates the DTDd from a DTDs expressed within the GER has
been developed. This Voyager 2 program is based on the specialization rules
presented in Section 2.

4.2 Conceptualization and Model Translation

These processes heavily rely on transformation techniques. For some fine-grained
reasonings, precise chirurgical transformations have to be carried out on individ-
ual constructs. This is a typical way of working in conceptualization activities.
In other cases, all the constructs that meet a definite precondition have to be
transformed (e.g., all the complex relationship types are transformed in entity
types). Finally, some heuristics can be identified and materialized into a trans-
formation plan (high level semi-procedural script that describes how to apply a
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set of transformations in order to fulfill a particular task or to meet a goal). DB-
MAIN offers a dozen predefined model-based transformations including DTD
(Section 3.3) translation and untranslation.

5 Conclusions

Recent expansion of the WWW has boosted the emergence of a new generation
of applications, combining data and functionalities from various data sources
and publishing them coherently in the Web. These applications generally rely
on exchanging strongly structured data extracted from databases. Converting
from a database model to a semi-structured format often implies a semantic
loss, particularly when the meaning of the source data is not well understood,
as is usual in legacy databases. Hence the importance of a rich and expressive
model to translate the semantics of both database and XML models. As observed
in several sections, the translation cannot be lossless due to the weakness of the
XML model. Relying on XML Schema instead partially solves the semantic gap.
However, a complete translation could only be performed with more powerful
XML models that include constraint expression facilities or active components.
The approach presented in this paper has put in light the non-deterministic as-
pect of the model translation process. The same conceptual schema can lead
to a large set of equivalent XML structures. Hence the need for more complex
methods that take into account other, non functional, criteria for target schema
generation. The paper also leaves aside the problem of data generation, that is,
the automatic production of XML documents that comply with the DTD that
has been computed. This process has been developed and is now supported by
the DB-MAIN CASE tool, thanks to the analysis of the history of the transfor-
mations used to convert the database schema in XML DTD.

As explained in the introduction, the material developed in this paper is in-
tentionally generic. Considering an ideal scenario according to which the whole
contents of an existing (possibly legacy) database is migrated to XML docu-
ments, it addresses some of the most critical issues of database-to-XML con-
version. More specific, and therefore practical, scenarios, can be derived easily.
Database-to-datawarehouse transfer, B2B messages generation, database migra-
tion or database-to-Web publishing are some processes that requires strong the-
oretical bases of similar nature. This paper is a contribution to the development
of such bases.
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