
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Numerical experiments with the LANCELOT package (Release A) for large-scale
nonlinear optimization
Conn, A.R.; Gould, N.; Toint, Ph.L.

Published in:
Mathematical Programming Series B

Publication date:
1996

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Conn, AR, Gould, N & Toint, PL 1996, 'Numerical experiments with the LANCELOT package (Release A) for
large-scale nonlinear optimization', Mathematical Programming Series B, vol. 73, no. 1, pp. 73-110.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Nov. 2019

https://researchportal.unamur.be/en/publications/numerical-experiments-with-the-lancelot-package-release-a-for-largescale-nonlinear-optimization(84fd4268-31fc-4c04-a100-f7399d964ee4).html

Numerical experiments withthe LANCELOT package (Release A)for large-scale nonlinear optimizationby A.R. Conn1, Nick Gould2, and Ph.L. Toint3Report 92/16 (3rd revision) September 5, 19951 IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598, USAEmail : arconn@watson.ibm.com2 Computing and Information Systems Department, Rutherford Appleton Laboratory,Chilton, England, ECEmail : nimg@letterbox.rl.ac.ukCurrent reports available by anonymous ftp from the directory\pub/reports" on camelot.cc.rl.ac.uk (internet 130.246.8.61)3 Department of Mathematics, Facult�es Universitaires ND de la Paix, 61, rue de Bruxelles,B-5000 Namur, Belgium, ECEmail : pht@math.fundp.ac.beCurrent reports available by anonymous ftp from the directory\pub/reports" on thales.math.fundp.ac.be (internet 138.48.4.14)Keywords : Large-scale problems, nonlinear optimization, numerical algorithms.

Numerical experiments with the LANCELOT package (Release A)for large-scale nonlinear optimizationA.R. Conn Nick Gould Ph.L. TointSeptember 5, 1995AbstractIn this paper, we describe the algorithmic options of Release A of LANCELOT, a For-tran package for large-scale nonlinear optimization. We then present the results of intensivenumerical tests and discuss the relative merits of the options. The experiments describedinvolve both academic and applied problems. Finally, we propose conclusions, both speci�cto LANCELOT and of more general scope.1 IntroductionResearch in large-scale optimization has been, in recent years, a major subject of interest withinthe mathematical programming community, as is clear from the programs of the main conferencesand symposia on optimization techniques during this period. One such project was initiated bythe authors of this paper [12] and has resulted in both theoretical contributions and software forlarge nonlinear optimization problems. A detailed description of the algorithms developed andimplemented in LANCELOT, the resulting Fortran package, is presented in [15]. The purpose ofthe present paper is to report on the numerical experiments performed with this software on asizeable collection of test problems, and to draw some �rst conclusions on the respective meritsof the algorithmic options available in the package. A comparison of LANCELOT and MINOS[45] is currently being conducted on a large set of test problems. However, due to the diversityof algorithmic options and complexity of these two packages, a fair and informative comparisonis, in itself, a major research e�ort. It will be reported on separately.The paper is organized as follows. Section 2 briey presents the main features and structureof LANCELOT. Section 3 contains a general description of SBMIN, the kernel algorithm for thesoftware that handles simple bounds. AUGLG, the component that handles the extension togeneral constraints, is then outlined in Section 4. Section 5 discusses the various algorithmicoptions that are available within the package. Section 6 presents the testing framework and the0This research was supported in part by the Advanced Research Projects Agency of the Department of Defenseand was monitored by the Air Force O�ce of Scienti�c Research under Contract No F49620-91-C-0079. The UnitedStates Government is authorized to reproduce and distribute reprints for governmental purposes notwithstandingany copyright notation hereon. 1

strategy used to analyze the results. These results are then discussed in more detail in Section 7,where the e�ciency and robustness of various algorithmic options are compared. Finally, someconclusions and perspectives are drawn in Section 8.2 General features and structure of the LANCELOT package2.1 Package presentationThe purpose of the LANCELOT package is to solve the general nonlinear programming problemminx2<n f(x) (2:1)subject to the constraints c(x) = 0; (2:2)and to the simple bounds li � xi � ui; (i = 1; : : : ; n); (2:3)where f and c are assumed to be smooth functions from <n into < and from <n into <m, re-spectively. The package is specially intended for problems where n and/or m are large. Indeed, itexploits the (group) partially separable structure (see [12]) of most large-scale optimization prob-lems. However, the package can also be applied successfully to small problems. The algorithmsare designed to provide convergence of the generated iterates to local minimizers from all startingpoints.There is no loss in assuming that all the general constraints are equality constraints, asinequality constraints may easily be transformed to equations by the addition of extra slackor surplus variables (see, for example, [31, Section 5.6]). Indeed, LANCELOT automaticallytransforms inequality constraints to equations. This technique is extensively used in simplex-likemethods for large-scale linear and nonlinear programs.General features include facilities to compute numerical derivatives, an analytical derivativechecker and an automated restart. The software also uses a full reverse communication interfacefor greater exibility and adaptability.The package is written in standard ANSI Fortran77. It has already been ported to CRAY andIBM mainframes, to Digital VAX minicomputers, and to Digital, Hewlett-Packard, IBM, SiliconGraphics and Sun workstations, as well as to DOS-based personal computers. A fully automatedinstallation procedure is supported for all these machines/systems. Single and double precisionversions are available. The program's dimensions are also adaptable to �t within machines withdi�erent memory sizes.Full information on the package is available in [15]. Interested parties should contact one ofthe authors.2.2 The algorithmic structure of the packageBecause the purpose of this paper is to discuss the relative merits of several algorithmic optionswithin the package, it is necessary to provide �rst a general description of the numerical methods2

used. The structure of the LANCELOT algorithms is summarized in Figure 1.Users and problems? 6?Standard Input Format (SIF) interpreter?LANCELOT interface
� �
� �6? 6

?
6?AUGLG6? SBMIN6? 6?Directlinearsolvers -� Iterative linear solvers6?PreconditionersFigure 1: Structure of the LANCELOT packageThe package (whose algorithmic components appear in the rounded box) reads the problemas a set of data and Fortran subroutines (for computing function and derivatives values, as wellas other problem related tasks). The way in which these subroutines and the associated data�leare produced is not the subject of this paper. It su�ces to say that they can be written directlyby the user, or obtained as the result of the automated interpretation of the problem expressed ina more friendly Standard Input Format. These techniques are described in detail in [15] and willnot be discussed further here. We will rather concentrate on the algorithms used by LANCELOTto solve the problem, once properly speci�ed. As suggested by the picture, LANCELOT eitheruses an augmented Lagrangian approach (if constraints of the type (2.2) are present), or directlyattempts to solve problems whose only constraints are simple bounds, (2.3).The augmented Lagrangian algorithm AUGLG is outlined in Section 4. Its convergence theoryhas been analyzed in [13] and [16]. This theory guarantees that, under standard assumptions, thesequence of iterates calculated by the algorithm converges to a local minimizer of the problem.This augmented Lagrangian method proceeds by solving a sequence of suitably de�ned nonlin-ear optimization problems with simple bound constraints. We will call these iterations of theaugmented Lagrangian algorithm major iterations.3

If the problem under consideration possesses only simple bounds, a specialized algorithm,SBMIN, can be applied. This algorithm is of trust region type and is presented in Section 3. Itsstrong convergence properties have been analyzed in [10], [38] and [51]. At the heart of SBMIN,quadratic problems with bound constraints (BQP) are solved repeatedly. In fact, a BQP isapproximately solved at every SBMIN iteration. We call these minor iterations.The process of (approximately) solving the BQP involves the (approximate) solution of alinear system of equations. This can be achieved by applying either direct or iterative linearsolvers. The latter typically require preconditioning, which in turn might call specialized versionsof the direct solvers, as is shown in the �gure above. The iterative technique used with the packageis preconditioned conjugate gradients. Iterations at this level are simply called cg-iterations. Notethat some form of preconditioning might require a very problem speci�c technique; hence thereis the possibility to return to the user level for such a calculation.The three nested iteration levels (major iterations at the augmented Lagrangian level, minoriterations at the SBMIN level, and cg-iterations at the BQP level) are illustrated in Figure 2,where the dashed boxes indicate iteration levels that need not be present for all problems and allchoices of algorithmic options.AUGLG: major iterationsSBMIN: minor iterationsBQP: cg-iterationsFigure 2: The nested iteration levels within LANCELOTAs the bulk of the computational work is performed in the minor and cg-iterations, we nowsummarize these parts of the algorithm. The reader is urged to consult Chapter 3 of [15] forfurther details.3 An outline of SBMINSBMIN is a method for solving the bound-constrained minimization problem de�ned by (2.1) andthe simple bound constraints (2.3). Here, f is assumed to be twice-continuously di�erentiable andany of the bounds in (2.3) may be in�nite. We will denote the vector of �rst partial derivatives,rxf(x), by g(x) and the Hessian matrix, rxxf(x), will be denoted by H(x). We shall refer tothe set of points which satisfy (2.3) as the feasible box and any point lying in the feasible box issaid to be feasible.SBMIN is an iterative method. At the end of the k-th iteration, an estimate of the solution,x(k), satisfying the simple bounds (2.3), is given. The purpose of the (k + 1)-st iteration is to�nd a feasible iterate x(k+1) which is a signi�cant improvement on x(k).4

In the (k + 1)-st iteration, we build a quadratic model of our (possibly) nonlinear objectivefunction, f(x). This model takes the formm(k)(x) = f(x(k)) + g(x(k))T (x� x(k)) + 12(x� x(k))TB(k)(x� x(k)); (3:1)where B(k) is a symmetric approximation to the Hessian matrix H(x(k)). We also de�ne a scalar�(k), the trust-region radius, which de�nes the trust region,kx� x(k)k � �(k); (3:2)within which we trust that the values of m(k)(x) and f(x) will generally agree su�ciently. Anappropriate range of values for the trust-region radius is accumulated as the minimization pro-ceeds.The (k+1)-st iteration proceeds in a number of stages. These may be summarized, in order,as:1. Test for convergence. The calculation is stopped when the projected gradient is smallenough, that is when kx(k) � P (x(k) � g(x(k)); l; u)k1 � �g (3:3)holds for some appropriate small convergence tolerance �g, whereP (x; l; u)i = min(max(li; xi); ui): (3:4)2. Find the generalized Cauchy point of the quadratic model (see Section 3.1).3. Obtain a new point which further reduces the quadratic model within the intersection ofthe feasible box and the trust region (see Section 3.2).4. Test whether there is a general agreement between the values of the model and true objectivefunction at the new point. If so, accept the new point as the next iterate (the iteration isthen said to be successful). Otherwise, retain the existing iterate as the next iterate (theiteration is unsuccessful). In either case, adjust the trust region radius as appropriate (seeSection 3.2.4 of [15]).3.1 The generalized Cauchy pointThe approximate minimization of the quadratic model (3.1) within the intersection of the feasiblebox and the trust region at the (k + 1)-st iteration is accomplished in two stages. In the �rst,we obtain the so called generalized Cauchy point (GCP), which is the result of this minimizationcarried out only on the path de�ned by the projection of the model's negative gradient onto thisintersection. This point is important mostly because convergence of the algorithm to a point atwhich the projected gradient is zero can be guaranteed provided the value of the quadratic modelat the end of each minor iteration is no larger than that at the generalized Cauchy point (see[10]). 5

An e�cient algorithm for this calculation, when the trust region is de�ned in the in�nity-norm (the LANCELOT default), is given in [11]. However, it is not necessary that the generalizedCauchy point be calculated exactly. Indeed, a number of authors have considered approximationswhich are su�cient to guarantee convergence (see [6], [7], [8], [40], [51]). Consequently we providethe option of using the approximation suggested by Mor�e in [40]. Since in our experience thisoption has proved to be less reliable and less e�cient than the exact calculation, we will notdiscuss it further. Interested readers are referred to [15].3.2 Beyond the generalized Cauchy pointWe have ensured that SBMIN will converge by determining the generalized Cauchy point. Con-vergence at a reasonable rate is achieved by, if necessary, further reducing the quadratic model.Those variables which lie on their bounds at the generalized Cauchy point are �xed. Attemptsare then made to reduce the quadratic model by changing the values of the remaining freevariables. Let x(k;1) be the obtained generalized Cauchy point and let x(k;j); j = 2; 3; : : : bedistinct points such that:� x(k;j) lies within the intersection of the feasible box and the trust region;� those variables which lie on a bound at x(k;1) lie on the same bound at x(k;j);� x(k;j+1) is constructed from x(k;j) by1. determining a nonzero search direction p(k;j) for whichrxm(k)(x(k;j))T p(k;j) < 0; (3:5)2. �nding a steplength �(k;j) > 0 which minimizes m(k)(x(k;j)+ �p(k;j)) within the inter-section of the feasible box and the trust region; and3. setting x(k;j+1) = x(k;j) + �(k;j)p(k;j): (3:6)This process is stopped when the norm of the free gradient of the model at x(k;j) is su�cientlysmall. The free gradient of the model isQ(rxm(k)(x(k;j)); x(k;j); l; u); (3:7)where the operator Q(y; x; l; u)i = (yi if li < xi < ui;0 otherwise, (3:8)zeros components of the gradient corresponding to variables which lie on their bounds. In LAN-CELOT, we stop whenkQ(rxm(k)(x(k;j)); x(k;j); l; u)k � kQ(rxm(k)(x(k)); x(k;1); l; u)k1:5; (3:9)6

which is known (see [38]) to guarantee that the convergence rate of the method is asymptoticallysuperlinear.There is much exibility in obtaining a search direction which satis�es (3.5). We determinesuch a direction by �nding an approximation to the minimizer of the quadratic subproblem (3.1),where certain of the variables are �xed on their bounds but the constraints on the remainingvariables are ignored. Speci�cally, let I(k;j) be a set of indices of the variables which are to be�xed, let ei be the i-th column of the n by n identity matrix I and let �I(k;j) be the matrix madeup of columns ei, i =2 I(k;j). Now de�ne�g(k;j) � �I(k;j)Tg(k;j) and �B(k;j) � �I(k;j)TB(k;j) �I(k;j): (3:10)Then the quadratic model (3.1) at x(k;j) + p, considered as a function of the free variables�p � �I(k;j)Tp, is �m(k;j)(�p) = m(k)(x(k;j)) + �g(k;j)T �p+ 12 �pT �B(k;j) �p: (3:11)We may attempt to minimize (3.11) using either a direct or iterative method.In a direct minimization of (3.11), one factorizes the coe�cient matrix �B(k;j). If the factorsindicate that the matrix is positive de�nite, the Newton equations�B(k;j)�p(k;j) = ��g(k;j) (3:12)may be solved and the required search direction p(k;j) = �I(k;j)�p(k;j) recovered. If, on the otherhand, the matrix is merely positive semi-de�nite, a direction of linear in�nite descent or a weaksolution to the Newton equations can be determined. Finally, if the matrix is truly inde�nite, adirection of negative curvature may be obtained.In an iterative minimization of (3.11), the index set I(k;j) may stay constant over a numberof iterations, while at each iteration the search direction may be calculated from the currentmodel gradient and Hessian �B(k;j) and previous search directions. The iterative method used inLANCELOT is the method of conjugate gradients. The convergence of such a method may beaccelerated by preconditioning (see below) . In fact the boundary between a good preconditionediterative method and a direct method is quite blurred.4 An outline of AUGLGAUGLG is a method for solving the generally-constrained minimization problem de�ned by (2.1){(2.3). As above, f and the cj are all assumed to be twice-continuously di�erentiable and any ofthe bounds in (2.3) may be in�nite.The objective function and general constraints are combined into the augmented Lagrangian�(x; �; S; �) = f(x) + mXi=1 �ici(x) + 12� mXi=1 siici(x)2; (4:1)where the components �i of the vector � are known as Lagrange multiplier estimates, the entriessii of the diagonal matrix S are positive scaling factors, and � is known as the penalty parameter.7

The constrained minimization problem (2.1){(2.3) is now solved by �nding approximate min-imizers of � subject to the simple bounds (2.3), for a carefully constructed sequence of Lagrangemultiplier estimates, constraint scaling factors and penalty parameters.The (k+1)-st major iteration of AUGLG is made up of three steps. At the start of the iteration,Lagrange multiplier estimates, �(k), constraint scaling factors, S(k), and a penalty parameter �(k)are given. The steps performed may be summarized, in order, as follows:1. Test for convergence. The calculation is stopped when the projected Lagrangian gradientand the constraint violation are both small enough, that is whenkx(k) � P (x(k) �rxL(x(k); �(k)); l; u)k1 � �l and kc(x(k))k1 � �c; (4:2)hold for some appropriate small convergence tolerances �l and �c.2. Use SBMIN to �nd an approximate minimizer, x(k+1), of the augmented Lagrangian function�(x; �(k); S(k); �(k)) in the feasible box, (2.3). This approximate minimization is terminatedwhen kx(k+1) � P (x(k+1) � rx�(x(k+1); �(k); S(k); �(k)); l; u)k � !(k) (4:3)is satis�ed for some tolerance !(k).3. Update the Lagrange multiplier estimates or the penalty parameter, depending on the valueof kc(x(k+1))k, in addition to convergence and feasibility tolerances and constraint scalingfactors (see Section 3.4.3 of [15]).5 Algorithmic options within LANCELOTWe now discuss the most successful algorithmic options available in LANCELOT. We refer thereader to [15] for a comprehensive description of all options, and to [18] for exhaustive numericalresults.5.1 Constraint and variable scalingLANCELOT allows the user to specify variable and constraint scalings as input parameters andthe scalings are then used implicitly by the algorithms. It is also possible to construct automaticscalings independent of the minimization routines bt applying the matrix equilibration algorithmof Curtis and Reid [20] to the matrix formed by augmeting the constraint Jacobian with theobjective function gradient. The resulting scale factors may then be used as scalings for thenonlinear problem (see Section 3.5 of [15]). Speci�cally, LANCELOT uses the implementationgiven by MC29 in the Harwell Subroutine Library. This automatic scaling procedure is availableas an option within LANCELOT and will be referred to as the \scaling" option. Note that thestopping criteria (3.3) and (4.2) are suitably adapted to reect scaling when this option is invoked.8

5.2 Linear solversMost of the LANCELOT algorithmic options are related to the way in which an (approximate)minimizer of (3.11) is computed. This is hardly surprising since one expects the burden of thenumerical calculation to be at this level.5.2.1 Direct methodsOnce the set I(k;j) is determined, the nature of the quadratic model restricted to the subset offree variables is characterized by the inertia of the matrix �B(k;j). If all the eigenvalues of �B(k;j) arestrictly positive, the unique minimizer of (3.11) is given as the solution to the Newton equations(3.12). In all other cases, the model (3.11) is either singular or unbounded below.The use of a sparse multifrontal direct method to solve large-scale optimization problemshas been advocated in [9]. Briey, the matrix �B(k;j) is factorized using the Harwell SubroutineLibrary code MA27 [26], [27] as�B(k;j) = ��(k;j) �L(k;j) �D(k;j) �L(k;j)T ��(k;j)T ; (5:1)where ��(k;j) is a permutation matrix, �L(k;j) is unit lower triangular and �D(k;j) is block diagonalwith 1 by 1 and 2 by 2 diagonal blocks. The inertia of �B(k;j) and �D(k;j) are identical.An option within LANCELOT, denoted by the \semltf" symbol, has the key property thatthe Newton direction is always chosen if �B(k;j) is positive de�nite and is based on the modi�edCholesky methods of Schnabel and Eskow [49]. Here, we form a factorization�B(k;j) + �E(k;j) = �L(k;j) �D(k;j) �L(k;j)T ; (5:2)where �L(k;j) is unit lower triangular, �D(k;j) is positive de�nite and diagonal, and �E(k;j) is positivesemi-de�nite, diagonal and nonzero only when �B(k;j) is not (su�ciently) positive de�nite. It isstraightforward to modify the Harwell subroutine MA27 to achieve this factorization. Now, themodi�ed Newton equations (�B(k;j) + �E(k;j))�p(k;j) = ��g(k;j) (5:3)are solved to obtain a suitable search direction. More than one cycle of improvement beyond theCauchy point is allowed with this option.We stress that an advantage of this technique is that B(k) will typically not be modi�ed as weapproach the solution to the problem. Moreover, provided the trust-region radius is su�cientlylarge that the Newton step (3.12) may be taken, we would also expect to take very few inner-iterations (indeed, in the nondegenerate case, one) before (3.9) is satis�ed.Another option of the package, based on factorizing �B(k;j) instead of �B(k;j)+ �E(k;j), is discussedin [9]. Its performance is generally inferior to that of semltf.5.2.2 Iterative methodsIn LANCELOT, the iterative method of choice is the method of conjugate gradients (see, forexample, [31, Section 4.8.3], or [32, Sections 10.2 and 10.3]). Such a method attempts to �nd a9

stationary point of a quadratic function, in our case (3.11), by generating a sequence of (conjugate)search directions, �p(k;j). If �B(k;j) is not positive de�nite, the sequence of conjugate gradients mayterminate with a direction along which the model (3.11) is either constant or unbounded below.The convergence of the conjugate gradient method may be enhanced by preconditioning thecoe�cient matrix �B(k;j). A preconditioner is a symmetric, positive de�nite matrix �P (k;j) which ischosen to make the eigenvalues of the product �P (k;j)�1 �B(k;j) cluster around as few distinct valuesas possible. We have tried to supply a representative cross-section of widely used preconditioners.We recognize that users may have a better idea of a good preconditioner for their problem byallowing them to provide their own.Band Preconditioners Many application areas give rise to problems whose Hessian matricesare banded. A band matrix is a matrix B for which bij = 0 for all ji � jj > mb. The smallestinteger mb for which this is so is known as the semi-bandwidth of the matrix. The signi�cantproperty as far as we are concerned is that, if B is positive de�nite, the Cholesky factors �t withinthe band. Moreover, clever storage schemes have been constructed to make the factorization andsubsequent solutions extremely e�cient (see, for example, [25, Section 10.2]) and [29, Chapter 4]).We o�er a band preconditioner within LANCELOT. This works in two stages. The desired semi-bandwidth, mb, is assumed to have been speci�ed. The band matrix �M (k;j), with semi-bandwidthmb, is chosen so that �M (k;j)il = �B(k;j)il for all ji� lj � mb: (5:4)Then, we obtain a modi�ed Cholesky factorization of �M (k;j)il , as described in Section 5.2.1.When �B(k;j) is positive de�nite and mb is chosen large enough, the preconditioned conjugategradient method will converge in a single iteration. The e�ect of the preconditioner in other caseshas not been formally analyzed. Band preconditioners are denoted below by \band(mb)".Incomplete Factorization Preconditioners It is sometimes possible to construct good pre-conditioners for specially structured problems by either rejecting all �ll-in during the factorizationor by tolerating a modest amount. Such incomplete factorization preconditioners are very popu-lar with researchers in partial di�erential equations and it is possible to get o�-the-shelf softwareto form them. We include in LANCELOT the example MA31, due to Munksgaard [44], from theHarwell Subroutine Library. We denote this option by \munksg".Full-Matrix Preconditioners Finally, as we alluded to in Section 5.2.2, if space permits and�B(k;j) is positive de�nite, one can always use a complete factorization of �B(k;j) as a preconditioner.However, if �B(k;j) is not positive de�nite, it is possible to use the modi�cation (5.2) suggested inSection 5.2.1 to determine a preconditioner.We consider two possible ways to obtain the perturbation matrix �E(k;j) in (5.2). The �rst is,as above, the modi�ed factorization algorithm proposed by Schnabel and Eskow in [49]. We willuse \seprc" to denote this strategy.It is worthwhile noting the parallel between seprc and semltf. They both use the directmodi�ed factorization of �B(k;j) to compute the Newton direction in the subspace of free variables.10

They di�er in that this process is stopped in seprc as soon as the only bounds encountered aretrust region bounds, while the minimization may be pursued, in semltf, along the trust regionboundaries.The second is another modi�cation of MA27 advocated by Gill, Murray, Poncel�eon and Saun-ders in [30]. Here, the factorization (5.1) is not modi�ed as it is formed, but it is instead computedand then modi�ed. The resulting algorithmic option is denoted below by \gmpsprc".Expanding Band Preconditioners One further possibility is to use an expanding bandpreconditioner. Consider the band matrix �M (k;j) given by (5.4), where the semi-bandwidth mbis given by m(k)b = 8>><>>: n if kx(k) � P (x(k) � g(x(k)); l; u)k � 10�2;n=2 if 10�2 < kx(k) � P (x(k) � g(x(k)); l; u)k � 10�1;n=5 otherwise. : (5:5)The idea is to select the semi-bandwidth m(k)b at each iteration to reect the speed and accuracywhich one wants from the preconditioned conjugate gradient method. In particular, if low accu-racy is required, a preconditioner with a small semi-bandwidth (such as a diagonal preconditioner)is often very e�ective. But if high accuracy is desired, it may be better to pick a preconditionerwhich is a better approximation to �B(k;j).Having obtained the preconditioner, we obtain a modi�ed Cholesky factorization of �M (k;j)il , asdescribed in Section 5.2.1. However, unlike the band preconditioners described above, the matrixand its factorization are stored as a general sparse, rather than band, matrix.We realize that further sophistication may be desirable but have found that this simple schemeis e�ective in practice. This preconditioning option will be denoted by \expband".5.3 Derivative approximationsFurther algorithmic options in LANCELOT are related to the various ways in which derivatives ortheir approximations are computed. However, the structure of these derivatives crucially dependson the structure of the nonlinear functions themselves. In order to derive an e�cient algorithmfor large-scale calculations, we �rst need to know a way to handle the structure typically inherentin functions of many variables.A function f(x) is said to be group partially separable if:1. the function can be expressed in the formf(x) = ngXi=1 gi(�i(x)) where �i(x) = Xj2Jiwi;jfj(x[j]) + aTi x� bi (5:6)(�i(x) is known as the i-th group);2. each of the group functions gi(�) is a twice continuously di�erentiable function of the singlevariable �; 11

3. each of the index sets Ji is a subset of f1; : : : ; neg, where ne is the number of nonlinearelement functions;4. each of the nonlinear element functions fj is a twice continuously di�erentiable function ofa subset x[j] of the variables x. Each function is assumed to have a large invariant subspace.Usually, this is manifested by x[j] comprising a small fraction of the variables x.This structure is extremely general. Indeed, any function with a continuous, sparse Hessianmatrix may be written in this form (see [34]). A more thorough introduction to group partialseparability is given in [12]. LANCELOT assumes that the objective function f(x) is of this form.When equality constraints are present, they are handled via the augmented Lagrangian and thusbecome part of the objective function for the subproblem given to SBMIN. Each such constraintthen gives rise to the group function �2=2�, which imposes the restriction that each equalityconstraint has only a single group.One of the main advantages of the group partially separable structure is that it considerablysimpli�es the calculation of derivatives of f(x). If we consider (5.6), we see that we merely needto supply derivatives of the nonlinear element and group functions. LANCELOT then assemblesthe required gradient and, possibly, Hessian matrix of f from this information.The gradient of (5.6) is given byrxf(x) = ngXi=1 g0i(�i(x))rx�i(x); where rx�i(x) = Xj2Ji wi;jrxfj(x[j]) + ai: (5:7)Similarly, the Hessian matrix of the same function is given byrxxf(x) = ngXi=1 g00i (�i(x))rx�i(x)(rx�i(x))T + ngXi=1 g0i(�i(x))rxx�i(x); (5:8)where the Hessian matrix of the i-th group isrxx�i(x) = Xj2Ji wi;jrxxfj(x[j]): (5:9)Notice that the Hessian matrix is the sum of two di�erent types of terms. The �rst is a sumof rank-one terms involving only �rst derivatives of the nonlinear element functions. The secondinvolves second derivatives of the nonlinear elements. LANCELOT assumes that the �rst andsecond derivatives of the group functions are available. This is frequently the case in practice.The quadratic model (3.1) uses the gradient of f by default. However, LANCELOT provides anoption (which we will denote by \fdg") with which this gradient is evaluated by �nite di�erences(see Section 3.3.2.3 of [15]). LANCELOT also o�ers two choices for the Hessian matrix of (3.1).� We can calculate the true �rst and second derivatives of each nonlinear element and groupfunction and use the exact Hessian B(k) = rxxf(x(k)).� We can calculate the true �rst and second derivatives of each group function, calculate the�rst derivatives of the nonlinear elements but use approximations, B[j](k)i , to their second12

derivatives. We then use the approximationB(k) = ngXi=1 g00i (�i(x(k)))rx�i(x(k))(rx�i(x(k)))T + ngXi=1 g0i(�i(x(k)))B(k)i ; (5:10)where B(k)i satis�es B(k)i = Xj2Ji wi;jB[j](k) (5:11)for some suitable matrices B[j](k).We strongly recommend the use of exact second derivatives whenever they are available.LANCELOT fully exploits this information. In our experience, because of the advantages of usingpartial separability, exact second derivatives are often available by direct calculation. Alterna-tively, one may use automatic di�erentiation tools (see [24] and [33], for instance). Using exactsecond derivatives is therefore the default option in the package.However, it may sometimes be useful to approximate the matrices (5.11). LANCELOT presentlyuses the same type of derivative approximation for all elements. The symmetric-rank-one (SR1),Broyden-Fletcher-Goldfarb-Shanno (BFGS), Powell-symmetric-Broyden (PSB) and Davidon--Fletcher-Powell (DFP) updates are provided. We present here the results of the �rst two choices,which are referred to as the \sr1" and \bfgs" options respectively, since overall they were themost satisfactory. See [23], [28] and [31] for further details on these updating formulae, andSection 3.3.2.3 of [15] for a more detailed discussion of how these updates are implemented.5.4 Accurate solution of the BQPFinally, the last option considered in this paper allows the user to specify that the minimizationof the objective function model has to be accurate within the intersection of the feasible regionfor the bound constraints and the trust region. In Section 3.2, we gave a general frameworkfor obtaining a new iterate that is \better" than the generalized Cauchy point. At each stage,an approximation to the minimizer of the model is sought while some of the variables are held�xed at bounds. This set of �xed variables, I(k;j), always includes those which were �xed at thegeneralized Cauchy point. In SBMIN, we also include by default all variables which encounterbounds at x(k;j), for j > 0 until the test (3.9) is satis�ed. Then, optionally, we may free allvariables except those which were �xed at the generalized Cauchy point and perform one ormore further cycles. This optional process, denoted by \accbqp", is terminated when releasingvariables does not improve the model value. This is detected when (3.9) andQ(rxm(k)(x(k;j)); x(k;j); l; u) = Q(rxm(k)(x(k;j)); x(k;1); l; u) (5:12)are satis�ed. At the start of each cycle, we also compute a new generalized Cauchy point for themodel �xing the variables which were on a bound at the original Cauchy point. This recursiveuse of SBMIN is guaranteed to satisfy (3.9) if a su�cient number of cycles is performed.13

6 The numerical tests: framework and procedure6.1 Basic approachThere are many ways to test a complicated, general purpose code like LANCELOT, and even moreways to present the results of these tests. We now briey discuss the fundamental choices wemade when designing our tests and which inuence our treatment of the results in this paper.Our �rst decision was to test and report on a large number of test cases. In our experience,this is essential for a true assessment of reliability and performance, as smaller test sets are morelikely to introduce unwanted bias.Our second choice was to limit the comparison to reliability and e�ciency aspects. Otherpotential criteria, such as ease of use, accuracy of solutions and availability, did not seem to beas signi�cant when testing a single package.Our �nal decision was to present both aggregate and relatively disaggregate performancemeasures. Speci�cally, we chose the average performance as our aggregate measure but alsoreport on the ranking of the algorithmic variants in �ve performance classes (excellent, good,satisfactory, fair and poor). The performance was averaged across many problems which di�er,sometimes substantially, in size, nonlinearity or type of constraints.Although the choice of the average sometimes obscures the performance of algorithmic variantson the easier problems in comparison with the harder ones, it nevertheless seems to correspondto our intuitive appraisal of the variants after our experience of running extensive tests. Thisis especially true when one also considers the associated rankings, as we hope is apparent laterin this section. Furthermore, there is little agreement within the optimization community onalternative aggregate measures.The authors of course realize that this scheme is not the only one that can be defended. It ishowever hoped that it provides a su�cient basis to make the testing discussed in this section ofinterest.6.2 The test problemsThe numerical tests with LANCELOT that we are about to describe were conducted using theConstrained and Unconstrained Testing Environment (CUTE) collection of nonlinear test prob-lems (see [4]). This collection contains a large number of nonlinear optimization problems ofvarious sizes and di�culty, representing both academic and real world applications. As the titleof the collection implies, constrained and unconstrained examples are included. For our tests, wehave used 624 instances of unconstrained (or bound constrained) problems and 319 instances ofconstrained problems. These 943 instances are derived from 398 di�erent problems, the additionalexamples being determined by varying the dimension. It is of course undesirable to describe allthese examples in the present paper. It will su�ce to say that our test set covers, amongst others,� the \Argonne test set" [42], the Testpack report [5], the Hock and Schittkowski collection[36], the Dembo network problems (see [21]), the Mor�e-Toraldo quadratic problems [43],the Toint-Tuyttens network model problems [52],14

� most problems from the PSPMIN collection [50]1,� problems inspired by the orthogonal regression report by Gulliksson [35],� some problems from the Minpack-2 test problem collection2 [2], [3] and from the secondSchittkowski collection [47],� a number of original problems from various application areas.We present some of the problems characteristics in Figures 3 and 4 and in Table 1.� Figure 3 shows the distribution of the problems' dimensions.� Figure 4 illustrates the distribution of the ratio m=n, where m is the total number ofgeneral equality and inequality constraints. The higher this ratio, the more constrained theproblem. Only constrained problems (m > 0) are considered in this statistic.� Table 1 reports the number of problems for which a given characteristic lies in one of �vepossible intervals [0; 0:2], (0:2; 0:4], (0:4; 0:6], (0:6; 0:8] and (0:8; 0:1]. Four characteristicsare examined. These are{ the relative nonlinearity of the objective function, that is the ratio�obj def= number of nonlinear groups in the objectivenumber of groups in the objective ; (6:1)where the groups are de�ned in (5.6) and where a group is declared nonlinear if itcontains at least one nontrivial nonlinear element function or if its associated groupfunction is nonlinear;{ the relative nonlinearity of the constraints, i.e.�cons def= number of nonlinear constraintsnumber of constraints ; (6:2)where the bounds have been excluded from the denominator;{ the proportion nb=n of variables subject to bound constraints;{ the proportion of equality constraints, that is of the ratio def= number of equality constraintsm : (6:3)1Some trivial problems were skipped and also problems for which di�erent local minima were known.2The problems that we could reconstruct from the data given in the report.15

[0; 15] (15 ; 25] (25 ; 35] (35 ; 45] (45 ; 1]�obj 48 0 13 2 880�cons 139 5 20 8 193nb=n 573 25 38 14 293 99 5 7 13 241Table 1: Further problems characteristics
>10000 (1.9%)

[1,50] (48.7%)

(50,100] (11.9%)

(100,500] (11.3%)

(500,1000] (10.4%)

(1000,5000] (9.4%)

(5000,10000] (6.4%)

Figure 3: Distribution of problem dimensions16

0

20

40

60

80

100

120

140

nu
m

be
r

of
 p

ro
bl

em
s

0-0.2
0.2-0.4

0.4-0.6
0.6-0.8

0.8-1.0
1.0-5.0

5.0-10.0
>10.0

relative number of constraintsFigure 4: Distribution of the relative number of constraints m=n
17

We note the following points.� The majority of the problems are not very large. However, we recall that testing LANCELOTon small problems is meaningful because the package is also intended to solve small-scaleproblems. Furthermore, the classes of larger problems are far from empty, and we note thepresence of examples with more than 15000 variables.� Most large problems tend to have a somewhat regular structure. As a result, most groupsin these problems tend to be structurally similar. This is noticeable in the distribution ofthe relative nonlinearity of the objective function and constraints, where either most or veryfew, if any, groups are nonlinear. The same phenomenon is also observed for the proportionof bounded variables which tends to be either very low or close to one.� There are very few problems involving considerably more general constraints than variables.Many of the problems arise as nonlinear systems of equations, while a fair proportion haveapproximately half as many constraints as variables. We nevertheless note the presence ofproblems where the number of constraints is substantially greater than n.Bearing in mind that one of the LANCELOT's features is its ability to handle large problems,we also selected, amongst the 943 tests problems, all problems in more than 500 variables. Thissubset contains 268 problems, that is 28.1% of the complete set. The algorithmic conclusionscorresponding to the complete problem set and the subset are interesting to compare becauseonly the latter depends more obviously on the way in which the problem structure is handled.6.3 The testing procedureBefore detailing the testing procedure, we recall the default algorithmic choice for LANCELOT:� no variable/constraint scaling,� a conjugate gradient linear solver is used with a banded preconditioner of semi-bandwidth5 (band(5)),� analytical second derivatives are used, as well as analytical gradients,� an exact Cauchy point calculation is used,� the `1-norm is used for de�ning the trust region.For our tests we also set the maximum number of iterations to 1000, the maximum cpu-timeto 18000 seconds, the initial trust region radius to 1.0 and disabled all printing. The accuracyrequirements were set to the LANCELOT defaults, that is �l = �c = 10�5. We also turned thederivative checker on but chose to ignore its warning messages. Of course, all derivatives werechecked before the actual tests. For the sake of completeness, the default LANCELOT speci�cation�le is given in Figure 5.We next considered basic variants of this default choice, that is a choice of algorithmic optionsthat di�ers in just one instance from the default. The basic variants are18

BEGINcheck-derivativesignore-derivative-bugsexact-second-derivatives-usedbandsolver-preconditioned-cg-solver-used 5exact-cauchy-point-requiredtrust-region-radius 1.0D+0maximum-number-of-iterations 1000print-level -1start-printing-at-iteration 0stop-printing-at-iteration 1000ENDFigure 5: The LANCELOT default speci�cation �lenoprc: no preconditioner is used within the conjugate gradient solver, i.e., �P (k;j) = I (see Sec-tion 5.2.2),band(0): a diagonal preconditioner is used for the conjugate gradient solver (see Section 5.2.2),band(1): a tridiagonal preconditioner is used for the conjugate gradient solver (see Section 5.2.2),band(10): a 21-diagonals preconditioner is used for the conjugate gradient solver (see Sec-tion 5.2.2),expband: an expanding band preconditioner is used for the conjugate gradient solver (see Sec-tion 5.2.2),munksg: an incomplete factorization preconditioner is used for the conjugate gradient solver (seeSection 5.2.2),seprc: a full matrix preconditioner using the Schnabel-Eskow modi�ed factorization is used forthe conjugate gradient solver (see Section 5.2.2),gmpsprc: a full matrix preconditioner using the Gill-Murray-Poncel�eon-Saunders modi�ed fac-torization is used for the conjugate gradient solver (see Section 5.2.2),semltf: a modi�ed multifrontal direct linear solver is used (see Section 5.2.1),sr1: the symmetric-rank-one quasi-Newton formula is used to approximate second derivatives(see Section 5.3),bfgs: the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton formula is used to approximate sec-ond derivatives (see Section 5.3), 19

scaling: automatic variable/constraint scaling is used, with scalings computed at the startingpoint (see Section 5.1),accbqp: an accurate solution to the BQP is sought (see Section 5.4).To this list we added the fdg variant which uses �nite di�erence approximation to gradientsand the symmetric-rank-one quasi-Newton formula for approximating second derivatives (seeSection 5.3). These variants and the default gives a list of 15 di�erent algorithmic choices.Note that the variants scaling, semltf, expband, seprc, gmpsprc and munksg depend on codefrom the Harwell Subroutine Library. Their use is therefore only possible for users with a suitablelicence. As a consequence, they could not be selected as defaults for the package.We then tested all of these 15 choices on the complete problem set, which amounted torunning 15� 943 = 14145 test cases. A total of 5658 additional cases were also run to evaluatethe less successful options not discussed in this paper. These tests were performed on two DigitalDECstations 5000/200 with 48 MBytes of memory, using the Ultrix f77 compiler (version 3.0-2)without optimization3. The cpu-times on both machines were checked for consistency.7 The numerical tests: results and discussionIt is of course impossible to detail the complete set of results obtained on nearly �fteen thousandtest cases in a journal article. We will therefore present and discuss summaries and averagesextracted from these results. A technical report containing the complete results is howeveravailable [18].7.1 Reliability7.1.1 General assessmentWe �rst present results on the reliability and failures on the 15 algorithmic variants. Results aregiven in Table 2, where the occurrences of the LANCELOT exit conditions are reported for all15 variants in the case of the complete test set and the selected subset. The column headingscorrespond to the following possible situations.succ: The minimization was successfully terminated.stall: The minimization could not progress further, the stepsize being smaller than relativemachine precision. Not all runs terminated in this way are unsuccessful from the user'spoint of view, as it happens in several cases that the algorithm is \stalled" very near thesolution.infs: The package could not �nd a feasible point for the considered problem.mem: The workspace required for handling the considered problem is larger than three milliondouble precision and/or three million integer numbers.3An error in the Fortran optimizer of this version prevented its use with the package.20

iters: The run was terminated after 1000 iterations without convergence.cpu: The run was terminated after 18000 cpu seconds (5 hours) without convergence.error: An arithmetic error occurred in the subprograms evaluating the problem dependentfunctions and/or derivatives. This typically occurs when the iterates produced by thealgorithm \wander o�" the part of the feasible region where the values of the objective andconstraints are of manageable size.Note that the algorithmic variants have been ordered, in this table and subsequent �gures,to allow for an easy comparison of all preconditioned iterative techniques (themselves ordered byincreasing semi-bandwidth, from noprc to gmpsprc) and of these techniques with a direct method(semltf). The default variant has been isolated for easier reference. The two quasi-Newton variants(sr1 and bfgs) are then presented next to each other, followed by the more disparate options(scaling, accbqp and fdg).Complete set (943 problems) Selected subset (265 problems)Variant succ stall infs mem iters cpu error succ stall infs mem iters cpu errordefault 865 11 7 0 31 26 3 231 3 0 0 9 22 0noprc 850 6 13 0 35 36 3 221 1 1 0 14 28 0band(0) 844 21 12 0 30 33 3 220 4 0 0 12 29 0band(1) 862 14 9 0 30 26 2 232 1 0 0 10 22 0band(10) 864 13 10 0 27 26 3 228 5 0 0 10 22 0expband 866 7 8 3 25 25 9 225 1 2 2 7 24 4munksg 851 7 13 2 28 39 3 221 0 1 1 5 37 0seprc 878 11 7 2 22 21 2 239 1 1 1 3 20 0gmpsprc 861 9 7 9 26 21 10 222 2 1 8 5 21 6semltf 812 5 11 2 65 43 5 197 0 4 1 20 42 1sr1 865 17 9 0 25 24 3 231 5 0 0 8 21 0bfgs 796 15 12 0 87 23 10 207 5 1 0 25 21 6scaling 806 46 21 0 29 27 14 206 12 9 0 11 24 3accbqp 858 14 7 0 15 49 0 221 1 0 0 3 40 0fdg 787 19 11 0 91 28 7 203 6 0 0 28 25 3Table 2: Successes and failures per variantFrom this table, we can draw the following conclusions.1. The reliability of the default algorithmic choice is good (91.7% on the complete problem set),nearly identical to that of the expanding band preconditioner variant expband (91.8% on thecomplete set), and only marginally surpassed by that of the Schnabel-Eskow preconditionerused in conjunction with conjugate gradients (93.1% on the complete set).21

The default choice of a semi-bandwidth of 5 also seems to provide excellent reliabilityamongst the banded preconditioners, both for the complete problem set and the subset.2. The robustness of the best partitioned quasi-Newton scheme (SR1) appears to be excel-lent compared with the use of exact second derivatives, even for large problems. Thisapproach therefore con�rms its potential amongst quasi-Newton techniques for large-scaleapplications, at least from the reliability point of view.3. The scaling variant does not show a globally improved robustness compared with the default.It is the variant most often stalled. This illustrates the di�culty of designing good automaticscaling procedures. It is however worthwhile to note that the scaling variant did solve badlyscaled problems where other variants failed. Keeping such an option available thereforeseems to be of some value, but it should not be used as a default.4. It is somewhat surprising that the gmpsprc variant has a signi�cantly lower reliability thanthe other full matrix preconditioner seprc on the selected test set (and hence also on thecomplete set).One of the reasons is that the Gill-Murray-Poncel�eon-Saunders technique seems to generatemore arithmetic errors and to run out of memory more often than the Schnabel-Eskowmethod. On closer analysis, the occurrence of overow with the Gill-Murray-Poncel�eon-Saunders modi�ed factorization seems to be due to numerical di�culties for some singularor nearly singular matrices. The observed problems are probably caused by the low value ofthe threshold under which eigenvalues are perturbed to ensure positive de�niteness of thepreconditioning matrix. According to [30], this threshold is set to the machine precision. Aposteriori experiments with the threshold raised to (machine precision)3=4 (as is used in theSchnabel-Eskow modi�cation) indicate that the overow problems can be avoided. Theseobservations are consistent with the conclusions of Schlick in [48], where she observes thatenforcing a small modi�cation �E(k;j) in (5.3) might not be bene�cial for fast convergence.A second reason that gmpsprc more often fails because of excessive memory requirements.This di�erence between gmpsprc and seprc is due to a possibly larger �ll-in in the Gill-Murray-Poncel�eon-Saunders technique caused by changes in the pivoting order to preservestability. As the Schnabel-Eskow modi�ed factorization maintains positive de�niteness ofthe matrix during the factorization, no such changes are necessary.5. We also note the substantial gain in robustness obtained by using a full matrix factorizationas preconditioner. The variant seprc is indeed signi�cantly more reliable than its directcounterpart semltf.6. The accbqp variant, being more computationally intensive, runs out of time most often. Ifwe assume that some of the truncated computations would e�ectively terminate successfully,given additional time, this variant probably ranks as the most reliable, but at the expenseof substantial additional e�ort. 22

7. There does not seem to be a real robustness advantage in using an incomplete factorizationpreconditioner (munksg) over a banded one for the problems of our test set. One must how-ever notice that discretized continuous problems do not constitute a majority of the testedcases. As incomplete factorizations have earned their good reputation on such problems,one could probably expect a better performance of the munksg variant if the proportion ofdiscretized problems increased.8. Using �nite di�erence approximations for the �rst derivatives of the problem's functionsomewhat reduces the reliability of the package, but fdg still managed to solve 83% of theproblems, a quite acceptable score.We conclude our general reliability analysis by noting that 919 of the 943 problems were solvedby at least one variant, while 617 were solved by all of them. This indicates an excellent reliabilityof the complete package (97.5%) on our large test problem collection, but also the relative lack ofrobustness for certain algorithmic variants. Amongst the 265 problems of the subset, 254 (95.8%)were solved by at least one variant and 139 (52.5%) by all variants, indicating that the overallgood performance does not deteriorate much when only the larger problems are considered.7.1.2 Further discussion of the unsolved problemsWe now comment on the 24 problems in the complete test set that were not solved, within thegiven iterations and time limits, by any variant. These problems are listed in Table 3, where wealso indicate some of their characteristics. These characteristics may provide some insight intowhy LANCELOT found them di�cult.We �rst note that 15 of these problems could be solved by the package, but their solutionrequired a number of iterations exceeding 1000 and/or a total cputime over 5 hours. It was alsosometimes necessary to reduce the initial value of the penalty parameter below its default valueor to combine the features of two of the variants. A further �ve problems could be \nearly solved"in the sense that a point was found which didn't satisfy the criticality conditions (4.2) withinthe required tolerance of 0.00001, but was essentially the problem's solution. Amongst theselatter problems, one �nds constrained cases (HS84, HS99, HS116) where the penalty parameterwas reduced by LANCELOT to very small values (below 10�7), which caused subproblem ill-conditioning and slow overall progress. More details are available in Appendix A on the speci�coptions used and timings for the solution of these 20 problems.Four problems remain that could not be solved by LANCELOT. These are HS99EXP, NGONEand LUBRIF (in 149 and 749 variables). HS99EXP is a variant on the 99th problem in the Hockand Schittkowski collection [36]. NGONE is a two-dimensional geometry problem involving a verylarge number of inequality constraints. Finally, LUBRIF is the elasto-hydrodynamic lubri�cationnonlinear complementarity problem described in [37] and [41], which is notoriously di�cult tosolve by pure nonlinear optimization techniques. It is interesting to note that the di�culty ofsolving these problems seems to arise not from their size, but rather from their nonlinearityand/or degeneracy. 23

Problem n m very degenerate badly solved byname nonlinear conditioned LANCELOTAGG 163 488 p nearlyCHEMRCTA 5000 5000 p p yesCORKSCRW 4497 3500 p p yesCORKSCRW 8997 7000 p p yesERRINBAR 18 9 p yesHS84 5 3 p nearlyHS93 6 2 p yesHS99 7 2 p p nearlyHS103 7 6 p nearlyHS116 13 15 p nearlyHS99EXP 31 21 p p noLEWISPOL 6 9 p yesLUBRIF 149 100 p noLUBRIF 749 500 p noMARATOSB 2 0 p yesNGONE 497 31373 p p noNOMSQRT 529 0 p yesNOMSQRT 1024 0 p yesOBSTCLAE 15625 0 yesOPTMASS 606 505 p p yesOPTMASS 1206 1005 p p yesOPTMASS 3006 2505 p p yesSVANBERG 5000 5000 yesTENBARS4 18 9 p yesTable 3: 24 di�cult problems for LANCELOT
24

7.1.3 Convergence to di�erent critical pointsIf we now wish to compare the relative e�ciency of these variants, the only runs that can really becompared for each variant are those that successfully produce a well speci�ed critical point. Wetherefore remove from our comparison all runs for which the variant under consideration convergedto a critical point whose associated objective function value does not correspond (within 0.001%)to the lowest critical value found for the problem. In total, 617 problems from the complete setand 139 from the subset were successfully solved (according to this criterion) by all variants. Inwhat follows we con�ne our attention to these problems. Figure 6 indicates how many problemsper variant gave rise to di�erent local optima.
0

10

20

30

40

default noprc
band(0)

band(1)
band(10)

expband
munksg

seprc
gmpsprc

semltf sr1
bfgs scaling

accbqp
fdgFigure 6: Number of sucessful runs to alternative critical points per variant7.2 Number of minor iterationsWe now start comparing the algorithmic variants for relative e�ciency, and �rst turn our attentionto the number of minor iterations required by the variants to �nd the solution. We recall thatthe problem's objective function and constraints (if any) are evaluated exactly once per suchiteration for all variants except fdg, where additional evaluations are required to estimate the�rst derivatives. We also note that LANCELOT only recomputes the value of the objectivefunction's and constraints' elements whose variables have been modi�ed since the last evaluation:this sometimes implies a substantial reduction in the computational e�ort required for such anevaluation. 25

Figure 7 shows the average number of iterations required for solution (on the problems thatwere successfully solved by all variants). Figure 8 presents an overall view of the relative rankingof the variants based on the number of iterations. All 15 variants were ranked (where best meansranked �rst and failed means not ranked at all) for each of these 617 problems. We then countedthe number of times that a given variant had a given rank. We �nally clustered the obtainedrankings in classes4 (excellent: ranks 1 to 3, good: 4 to 6, satisfactory: 7 to 9, fair: 10 to 12,poor: 13 to 15) which are then displayed in a bar chart. For instance, the darker area in the barcorresponding to the seprc variant indicates that this variant is excellent (that is, amongst thethree best) for 454 problems, an impressive performance.Figures 9 and 10 present the corresponding averages and rankings for the 139 successfullysolved problems of subset.We now draw some conclusions from these �gures.1. We immediately note the good results obtained by the semltf variant for the completeproblem set. Although less reliable than its preconditioning counterpart seprc, it seemsto require fewer iterations to converge when it does so, but the di�erence is admittedlymarginal.2. The accbqp variant requires amongst the least number of minor iterations. This is not asurprise, since this variant puts more work in an iteration and one therefore expects thatless of these more costly iterations are needed.3. The seprc variant also seems to require fewer iterations on average than the other fullfactorization preconditioner variant gmpsprc.4. The default variant appears to be reasonably e�cient in terms of minor iterations amongstthe tested variants, although not amongst the best. It is however remarkable that it is thevariant whose behaviour is least often in the worst ranking variants, as is shown by the sizeof the \poor" class (in Figure 8). This last characteristic is also displayed by the seprc andaccbqp variants on the subset (see Figure 10).5. Amongst the quasi-Newton variants, the sr1 variant appears to require substantially feweriterations and function evaluations than its bfgs counterpart.6. The need to estimate gradients by �nite di�erences also causes the number of iterations toincrease, as can be deduced by comparing the performance of the fdg and sr1 variants.4Of course, these classess should be understood as an indication of performance only relative to that of otherLANCELOT variants. 26

0 5 10 15 20 25 30 35

fdg
accbqp
scaling

bfgs

sr1

semltf
gmpsprc

seprc
munksg

expband
band(10)

band(1)
band(0)

noprc

default

Figure 7: Average number of iterations for 617 problems solved by all variants
0

100

200

300

400

500

600

700

default noprc
band(0)

band(1)
band(10)

expband
munksg

seprc
gmpsprc

semltf sr1
bfgs scaling

accbqp
fdg

Poor

Fair

Satisfactory

Good

Excellent

Figure 8: Ranking by iterations for 617 problems solved by all variants27

0 10 20 30 40 50

fdg
accbqp
scaling

bfgs

sr1

semltf
gmpsprc

seprc
munksg

expband
band(10)

band(1)
band(0)

noprc

default

Figure 9: Average number of iterations for 139 problems of the subset solved by all variants
0

20

40

60

80

100

120

140

default noprc
band(0)

band(1)
band(10)

expband
munksg

seprc
gmpsprc

semltf sr1
bfgs scaling

accbqp
fdg

Poor

Fair

Satisfactory

Good

Excellent

Figure 10: Ranking by iterations for 139 problems of the subset solved by all variants28

7.3 Number of cg-iterationsWe now examine the total number of conjugate gradient iterations per minor iteration required tosolve the test problems by each variant using an iterative linear solver. What is really compared inthis section is the overall e�ect of the various preconditioners and, to some extent, the conditioningof the Hessian matrices generated by the di�erent variants.Figure 11 shows the average \fraction of cg-iterations" per minor iteration and per problemvariable, the average being taken on the 617 problems in the complete set. This fraction indicateshowmany cg-iterations were performed on average, compared to the problem size. Since conjugategradients are expected to terminate in at most n cg-iterations on a linear system of size n, thereported measures are all between zero and one. We note that the measure is approximate fortwo reasons. Firstly, the number of free variables at any given iterations can be lower thanthe number of problem variables. Secondly, the conjugate gradient iterations may have to berestarted when bounds are encountered. We nevertheless believe that the comparison amongstvariants is instructive. Figure 12 presents the same measure taken on the 139 problems of thesubset.1. As anticipated, the full-matrix preconditioners are the clear winners in terms of numberof cg-iterations. This behaviour is even more marked on the problem subset. Note thatexpband can be considered to a full-matrix preconditioner in a vicinity of the problem'ssolution, because of (5.5).2. Another expected conclusion is that the quality of the preconditioner seems to increasewith the semibandwidth, when a band preconditioner is used. This is clearly apparentwhen examining the results for noprc, band(0), band(1), default (which is equivalent toband(5)) and band(10). Why the expband variant does not really �t in this framework forthe complete problem set is not clear, but may be because of the non-asymptotic behaviour.3. The incomplete factorization preconditioner munksg shows excellent behaviour. Indeedits performance is nearly comparable to that of the full-matrix variants on the completeproblem set.4. Solving the BQP accurately of course requires more cg-iterations, and we observe this e�ectwhen comparing default and accbqp. This is especially noticeable on the problems of thesubset, because they are larger.5. The scaled variant scaling is somewhat less e�cient than the default unscaled variant onthe complete problem set, which is again an indication that scaling should not be appliedblindly to every problem. Its performance is however improved on the larger problems ofthe subset.6. The quasi-Newton approximations to the second derivatives do not seem to generate ma-trices that are, on average, worse conditioned than their analytic counterparts, as is shownby the comparable values for the default, bfgs and sr1 variants. The fact that gradients are29

estimated by di�erences in fdg does not seem to considerably impact the conditioning ofthe Hessian either, as can be seen by comparing this variant with sr1.7. The reported measures are typically smaller for the subset than for the complete problemset. This is anticipated as conjugate gradient solvers often require a number of iterationsthat is more dependent on conditioning and eigenvalue distribution than on system size.Increasing size therefore produce lower measures if one assume that the larger problemshave an eigenvalue structure that is, on average, not worse than that of smaller ones.
0 0.2 0.4

fdg

accbqp

scaling

bfgs

sr1

gmpsprc

seprc

munksg

expband

band(10)

band(1)

band(0)

noprc

default

Figure 11: Average fraction of cg-iterations per minor iteration for 617 problems solved by allvariants
30

0 0.02 0.04 0.06

fdg

accbqp

scaling

bfgs

sr1

gmpsprc

seprc

munksg

expband

band(10)

band(1)

band(0)

noprc

default

Figure 12: Average fraction of cg-iterations per minor iteration for 139 problems of the subsetsolved by all variants
31

7.4 Computational e�ortWe next compare our 15 algorithmic variants on the basis of their requirements in cpu-time.Figure 13 shows the average cpu-time (in seconds) required for solution, the average being takenon the 617 problems in the complete set that were successfully solved by all methods. Figure 14presents a overall view of the relative ranking of the variants based on cpu-time. This �gure wasconstructed in the same way as Figure 8. Figure 15 and 16 present the corresponding averageand ranking results for the selected subset of test problems.Some interesting conclusions can be drawn from these �gures.1. The results obtained by the semltf variant are noteworthy. Although its ranking comparedwith the other variants is amongst the best, its average performance is the poorest. This iscaused by the poor behaviour of the variant on a few large unconstrained problems wherethe Hessian matrix is inde�nite in the early iterations. In these cases, the strategy to movealong a direction of negative curvature, as in the iterative variants, seems more appropriatethan repeatedly calculating a modi�ed Newton direction in smaller and smaller subspaces(corresponding to faces of the trust region), each time recomputing a suitably modi�edfactorization. It should however be noted that, despite its strong e�ect on average scores,this behaviour occurs rarely, as can be seen from the comparative ranking of the variant.2. The default and band(1) variants appear to be the fastest on average. Their ranking con�rmsthis excellent behaviour, both for the complete problem set and the subset.3. The full-matrix preconditioned variant seprc appears to be quite e�cient on average, com-pared to other preconditioners.4. The scaling variant seems to be somewhat handicapped by the additional work required tocompute and handle the variable and constraints \typical" values. Its average performanceis indeed somewhat worse than that of the default variant. Its ranking is comparable thatthat of default on the complete set, but worse on the subset.5. The relatively acceptable performance of the noprc variant seems to indicate that most ofthe test problems are reasonably well scaled.6. The behaviour of banded preconditioners with varying semi-bandwidth is worth a comment.We already noted the good performance of the tridiagonal preconditioner (band(1)) andthe default (band(5)), both on the complete problem set and on the subset. The band(10)variant uses more cpu-time as the advantage of improved preconditioning is o�set by thehigher price of the preconditioner. The good performance of the expanding band variantexpband, compared with band(10), seems to be due to the general sparse storage schemeused, which is preferable to the band storage for matrices with higher bandwidth.7. The more costly iterations of accbqp clearly cause the relatively large average cpu-time ofthis variant on the complete problem set. However, as the expense of cpu-time is mostly32

con�ned to large problems, and as there are comparatively few such problems in the com-plete test set, the method ranks reasonably highly. This observation is strengthened by therelatively poor ranking of this variant for the large problems of the subset.8. Amongst the quasi-Newton variants, sr1 appears to be the most e�cient. Its ranking is alsoconsistently better than that of bfgs.9. The work involved in approximating the gradients by di�erences causes fdg to be slower thansr1 on average. This e�ect is enough to cause the relative ranking of fdg to fall substantiallybehind that of sr1.

33

0 50 100 150 200 250 300

fdg
accbqp
scaling

bfgs

sr1

semltf
gmpsprc

seprc
munksg

expband
band(10)

band(1)
band(0)

noprc

default

Figure 13: Average cpu-time for 617 problems solved by all variants
0

100

200

300

400

500

600

700

default noprc
band(0)

band(1)
band(10)

expband
munksg

seprc
gmpsprc

semltf sr1
bfgs scaling

accbqp
fdg

Poor

Fair

Satisfactory

Good

Excellent

Figure 14: Ranking by cpu-time for 617 problems solved by all variants34

0 200 400 600 800 1000 1200

fdg
accbqp
scaling

bfgs

sr1

semltf
gmpsprc

seprc
munksg

expband
band(10)

band(1)
band(0)

noprc

default

Figure 15: Average cpu-time for 139 problems of the subset solved by all variants
0

20

40

60

80

100

120

140

default noprc
band(0)

band(1)
band(10)

expband
munksg

seprc
gmpsprc

semltf sr1
bfgs scaling

accbqp
fdg

Poor

Fair

Satisfactory

Good

Excellent

Figure 16: Ranking by cpu-time for 139 problems of the subset solved by all variants35

7.5 Additional commentsWe did not discuss above the relative number of unsuccessful iterations for each variant. Thisnumber is on average below one per problem for each variant. It seems to indicate that thetrust region management used in LANCELOT is adequate for handling a large class of nonlinearproblems.Besides its algorithmic choices, LANCELOT allows the user to select a number of non-algo-rithmic options, such as element and group derivative checking, level of printout and frequencyat which intermediate data is saved for a possible subsequent restart. None of these options hasa signi�cant impact on the overall execution time of the package. The only observable increasein cpu-time occurs when a very detailed printout is required at every iteration of a large scaleproblem. As one would expect, this e�ect is slightly more marked for constrained cases, wherethe details of the major iterations have to be printed as well.We �nally indicate some weak points of LANCELOT (Release A) that we have observed inexamining the detailed runs, but that cannot be inferred directly from the summaries presentedabove.1. When the number of inequality constraints is large compared with the number of variables,the package currently adds slack variables to transform all inequalities into equalities, whichresults in a substantial increase in the e�ective problem size. Although convergence isusually obtained, the computational e�ort can be relatively large compared with methodthat use inequality constraints directly (see [14], for instance). The authors are well awareof this aspect of their implementation, and have recently given in [19] a method to overcomethis di�culty, although it has not been incorporated in the software.2. No special provision is made in the present code for linear network constraints, or even forlinear constraints. Again, LANCELOT seems to be robust in that convergence is obtainedfor problems with this kind of structure, but special purpose algorithms are often muchmore e�cient (see [1], [22], [46], [52] and [53], for instance).3. The ability of the generalized Cauchy point to determine the correct active set is disappoint-ing in practice. In many examples, the correct active set is actually found in the conjugategradient or direct matrix improvement beyond the GCP, at considerable cost. Althoughthe GCP asymptotically identi�es the correct active set as predicted by the theory (see [10],for instance), this is often at the end of a long calculation. A strategy treating the boundsthrough barrier functions (as proposed in [14]) might therefore be a useful alternative.8 ConclusionsWe �rst described the algorithms contained in Release A of the LANCELOT package for large-scale nonlinear optimization. We also analyzed the user-selectable variants. We �nally presentedand discussed the results of extensive numerical tests with these variants.The main conclusions of these tests, as far as the package is concerned, are as follows.36

1. The package is capable of solving a wide class of nonlinear optimization problems, includingmany large-scale examples.2. The package is relatively more e�cient for unconstrained and bound constrained prob-lems and for generally constrained problems for which the number of constraints does notsubstantially exceed the problem dimension.3. The default algorithmic choice in the package appears to be both reliable and acceptablye�cient, compared to other variants.4. Some algorithmic choices (automatic scaling, accurate solution of the inner BQP) shouldnot be used automatically, but may provide excellent behaviour on some harder problems.Beyond these conclusions relative to the LANCELOT package, our tests also reveal the followingpoints of more general interest.1. The di�culty of solving a problem is more often linked to its degree of nonlinearity thanto its size.2. The use of direct factorization appears to be most robust when used as preconditioners fora conjugate gradient linear solver.3. The use of exact second derivatives is recommended whenever available. However, the par-titioned symmetric-rank-one technique, as embedded in the package, gives very satisfactoryreliability and e�ciency (compared to other variants) when analytic second derivatives arenot available.4. When analytical �rst derivatives are not available, �nite di�erence approximations to thegradients coupled with SR1 quasi-Newton Hessian updating is an acceptably robust tech-nique, even for large problems.5. The use of full factorizations appears to be reliable for the class of problems analyzed in thispaper. It is however expected that this technique would appear less promising if even largerproblems were considered. In contrast, banded preconditioners would probably extend wellto larger problems.Of course, only continued experience with LANCELOT will really show its strengths andweaknesses. The authors very much hope to be informed by the users of the package of the(undoubtedly many) aspects where improvements are possible. Progress is expected to come bothfrom the point of view of the algorithms (see [14] and [17], for example) and from that of theimplementation details themselves. It is also clear that further comparisons with other packagesare desirable, in particular to better assess the e�ciency of LANCELOT in a wider context.The ongoing comparison with MINOS should thus provide useful additional conclusions, whencompleted. At this stage, the results discussed above certainly o�er the hope that the softwarewill prove useful in the increasingly important arena of large-scale nonlinear optimization.37

9 AcknowledgementsThe authors are indebted to Michel Bierlaire and Didier Burton, whose help was invaluable inproducing the graphics of this paper and in maintaining the workstation network during the 8months of nearly uninterrupted computation required for obtaining the results presented here.Nick Gould is grateful to CERFACS, Toulouse, France, for the facilities which made some of thisresearch possible. Thanks are also due to Ingrid Bongartz, Marc Breitfeld and Peihuang Chen fordetecting and correcting mistakes in our test problems. Ingrid Bongartz furthermore providedvaluable comments on a draft of the manuscript. The authors are grateful for the support providedfor their travels across the Atlantic by NATO grant 890867. Finally, the authors acknowledge thecontribution of the editor, associate editor and of a referee, whose comments and reports havebeen very stimulating.References[1] D. P. Ahlfeld, R. S. Dembo, J. M. Mulvey, and S. A. Zenios, \Nonlinear programming ongeneralized networks", ACM Transactions on Mathematical Software 13(4) (1987) 350{367.[2] B. M. Averick, R. G. Carter, and J. J. Mor�e, \The Minpack-2 test problem collection(preliminary version)", Technical Report ANL/MCS-TM-150, Argonne National Laboratory(Argonne, USA, 1991).[3] B. M. Averick and J. J. Mor�e, \The Minpack-2 test problem collection", Technical ReportANL/MCS-TM-157, Argonne National Laboratory (Argonne, USA, 1991).[4] I. Bongartz, A. R. Conn, N. Gould, and Ph. L. Toint. \CUTE: Constrained and Uncon-strained Testing Environment", ACM Transactions on Mathematical Software (to appear)(1994).[5] A. G. Buckley, \Test functions for unconstrained minimization", Technical Report CS-3,Computing Science Division, Dalhousie University (Dalhousie, Canada, 1989).[6] J. V. Burke and J. J. Mor�e, \On the identi�cation of active constraints", SIAM Journal onNumerical Analysis 25(5) (1988) 1197{1211.[7] J. V. Burke, J. J. Mor�e, and G. Toraldo, \Convergence properties of trust region methods forlinear and convex constraints", Mathematical Programming, Series A 47(3) (1990) 305{336.[8] P. H. Calamai and J. J. Mor�e, \Projected gradient methods for linearly constrained prob-lems", Mathematical Programming 39 (1987) 93{116.[9] A. R. Conn, N. Gould, M. Lescrenier, and Ph. L. Toint, \Performance of a multifrontalscheme for partially separable optimization" In Advances in Optimization and Numeri-cal Analysis, Proceedings of the Sixth Workshop on Optimization and Numerical Analysis,Oaxaca, Mexico (Kluwer Academic Publishers, Dordrecht, NL, 1994) 79{96.38

[10] A. R. Conn, N. Gould, and Ph. L. Toint, \Global convergence of a class of trust regionalgorithms for optimization with simple bounds", SIAM Journal on Numerical Analysis 25(1988)433{460, 1988. [See also same journal 26 (1989) 764{767.][11] A. R. Conn, N. Gould, and Ph. L. Toint, \Testing a class of methods for solving minimizationproblems with simple bounds on the variables" Mathematics of Computation 50 (1988) 399{430.[12] A. R. Conn, N. Gould, and Ph. L. Toint, \An introduction to the structure of large scalenonlinear optimization problems and the LANCELOT project", In R. Glowinski and A. Lich-newsky, editors, Computing Methods in Applied Sciences and Engineering (SIAM, Philadel-phia, USA, 1990) 42{51.[13] A. R. Conn, N. Gould, and Ph. L. Toint, \A globally convergent augmented Lagrangianalgorithm for optimization with general constraints and simple bounds", SIAM Journal onNumerical Analysis 28(2) (1991) 545{572.[14] A. R. Conn, N. Gould, and Ph. L. Toint, \A globally convergent Lagrangian barrier algorithmfor optimization with general inequality constraints and simple bounds", Technical Report92/07, Department of Mathematics, FUNDP (Namur, Belgium, 1992).[15] A. R. Conn, N. Gould, and Ph. L. Toint, \LANCELOT: a Fortran package for large-scalenonlinear optimization (Release A)", Springer Series in Computational Mathematics, volume17 (Springer Verlag, Berlin, 1992).[16] A. R. Conn, N. Gould, and Ph. L. Toint, \On the number of inner iterations per outeriteration of a globally convergent algorithm for optimization with general nonlinear equalityconstraints and simple bounds", In D.F Gri�ths and G.A. Watson, editors, Proceedings ofthe 14th Biennal Numerical Analysis Conference Dundee 1991 (Longmans, 1992) 49{68.[17] A. R. Conn, N. Gould, and Ph. L. Toint, \Convergence properties of minimization algorithmsfor convex constraints using a structured trust region", Technical Report 92/11, Departmentof Mathematics, FUNDP (Namur, Belgium, 1992).[18] A. R. Conn, N. Gould, and Ph. L. Toint, \Intensive numerical tests with LANCELOT (ReleaseA): the complete results", Technical Report 92/15, Department of Mathematics, FUNDP(Namur, Belgium, 1992).[19] A. R. Conn, N. Gould, and Ph. L. Toint, \A note on exploiting structure when using slackvariables", Mathematical Programming, Series A 67(1) (1994) 89{97.[20] A. R. Curtis and J. K. Reid, \On the automatic scaling of matrices for Gaussian elimination",Journal of the Institute of Mathematics and its Applications 10 (1972) 118{124.[21] R. S. Dembo, \A primal truncated-newton algorithm with application to large-scale nonlin-ear network optimization", Technical Report 72, Yale School of Management (Yale Univer-sity, New Haven, USA, 1984). 39

[22] R. S. Dembo, \The performance of NLPNET, a large scale nonlinear network optimizer",Mathematical Programming, Series B 26 (1986) 245{249.[23] J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization andnonlinear equations (Prentice-Hall, Englewood Cli�s, USA, 1983).[24] L. C. W. Dixon, \On automatic di�erentiation and continuous optimization", In E. Spedi-cato, editor, Algorithms for Continuous Optimization: the State of the Art (Kluwer AcademicPublishers, Dordrecht, NL, 1994) 501{513.[25] I. S. Du�, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices (ClarendonPress, Oxford, UK, 1986).[26] I. S. Du� and J. K. Reid, \MA27: A set of Fortran subroutines for solving sparse symmetricsets of linear equations", Report R-10533, AERE Harwell Laboratory (Harwell, UK, 1982).[27] I. S. Du� and J. K. Reid, \The multifrontal solution of inde�nite sparse symmetric linearequations", ACM Transactions on Mathematical Software 9(3) (1983) 302{325.[28] R. Fletcher, Practical Methods of Optimization (J. Wiley and Sons, Chichester, secondedition, 1987).[29] A. George and J. W.-H. Liu, Computer solution of large sparse positive de�nite systems(Prentice-Hall, Englewood Cli�s, USA, 1981).[30] P. E. Gill, W. Murray, D. B. Poncel�eon, and M. A. Saunders, \Preconditioners for inde�nitesystems arising in optimization", SIAM Journal on Matrix Analysis and Applications 13(1992) 292{311.[31] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic Press, Londonand New York, 1981).[32] G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University Press,Baltimore, second edition, 1989).[33] A. Griewank, \Computational di�erentiation and optimization", In J. R. Birge and K. G.Murty, editors, Mathematical Programming: State of the Art 1994 (The University of Michi-gan, Ann Arbour, USA, 1994) 102{131.[34] A. Griewank and Ph. L. Toint, \On the unconstrained optimization of partially separa-ble functions", In M. J. D. Powell, editor, Nonlinear Optimization 1981 (Academic Press,London and New York, 1982) 301{312.[35] M. Gulliksson, Algorithms for Nonlinear Least Squares with Applications to OrthogonalRegression, PhD thesis, Institute of Information Processing, University of Ume�a (S-901 87Ume�a, Sweden, 1990). 40

[36] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, LecturesNotes in Economics and Mathematical Systems 187 (Springer Verlag, Berlin, 1981).[37] M. M. Kostreva, \Elasto-hydrodynamic lubri�cation: a non-linear complementarity prob-lem", International Journal for Numerical Methods in Fluids 4 (1984) 377{397.[38] M. Lescrenier, \Convergence of trust region algorithms for optimization with bounds whenstrict complementarity does not hold", SIAM Journal on Numerical Analysis 28(2) (1991)476{495.[39] A. Lewis, private communication, 1990.[40] J. J. Mor�e, \Trust regions and projected gradients", In M. Iri and K. Yajima, editors,System Modelling and Optimization, Lecture Notes in Control and Information Sciences 113(Springer Verlag, Berlin, 1988) 1{13.[41] J. J. Mor�e, \A collection of nonlinear model problems", Technical Report ANL/MCS-P60-0289, Argonne National Laboratory (Argonne, USA, 1989).[42] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom, \Testing unconstrained optimization soft-ware", ACM Transactions on Mathematical Software 7(1) (1981) 17{41.[43] J. J. Mor�e and G. Toraldo, \On the solution of large scale quadratic programming problemswith bound constraints", SIAM Journal on Optimization 1(1) (1991) 93{113.[44] N. Munksgaard, \Solving sparse symmetric systems of linear equations by preconditionedconjugate gradients", ACM Transactions on Mathematical Software 6 (1980) 206{219.[45] B. A. Murtagh and M. A. Saunders, \MINOS 5.1 USER'S GUIDE", Technical Re-port SOL83-20R, Department of Operations Research, Stanford University (Stanford, USA,1987).[46] A. Sartenaer, \A class of trust region methods for nonlinear network optimization problems",SIAM Journal on Optimization (to appear) (1994).[47] K. Schittkowski, \More Test Examples for Nonlinear Programming Codes", Lecture notesin economics and mathematical systems 282 (Springer Verlag, Berlin, 1987).[48] T. Schlick, \Modi�ed Cholesky factorizations for sparse preconditioners", SIAM Journal onScienti�c and Statistical Computing 14(2) (1993) 424{445.[49] R. B. Schnabel and E. Eskow, \A new modi�ed Cholesky factorization", SIAM Journal onScienti�c and Statistical Computing 11 (1991) 1136{1158.[50] Ph. L. Toint, \Test problems for partially separable optimization and results for the routinePSPMIN", Technical Report 83/4, Department of Mathematics, FUNDP (Namur, Belgium,1983). 41

[51] Ph. L. Toint, \Global convergence of a class of trust region methods for nonconvex mini-mization in Hilbert space", IMA Journal of Numerical Analysis 8 (1988) 231{252.[52] Ph. L. Toint and D. Tuyttens, \On large scale nonlinear network optimization", Mathemat-ical Programming, Series B 48(1) (1990) 125{159.[53] Ph. L. Toint and D. Tuyttens, \LSNNO: a Fortran subroutine for solving large scale nonlinearnetwork optimization problems", ACM Transactions on Mathematical Software 18(3) (1992)308{328.Appendix AThe purpose of this section is to report the details of what algorithmic options were used to solvethe problem discussed in Section 7.1.2, when this proved possible, as well as the correspondingnumber of minor iterations, cg-iterations and cpu-time. These details are given in Table 4, wherethe two columns serve to identify the problem, the third indicating the basic variant used andthe fourth what further modi�cation of this variant have been speci�ed, if any. When the nameof another variant is mentioned in this column, this means that the features of both the variantsof columns three and four are used. For instance, CHEMRCTA was solved by using the seprcvariant (Schnabel-Eskow preconditioning) with constraints and variables scaling, as speci�ed inthe variant scaling. Columns �ve, six and seven indicate the associated number of minor iterations,cg-iterations and the cpu-time requested for LANCELOT to terminate. The last column refers tothe following comments.(1) The standard seprc variant fails because the step generated by the algorithm is insigni�cantlysmall at a point where the projected gradient is not small, but this seems to be due toproblem scaling and degeneracy. The optimal objective function produced by MINOS(�35991767:29) is slightly worse than that produced by LANCELOT (�35991766:35) butits solution is closer to feasibility (constraint violation of the order of 10�23 for MINOS andof the order of 10�7 for LANCELOT).(2) LANCELOT fails because the step becomes too short. This exit corresponds to the \stall"situation described in Section 7.1.1. However, the optimal solution appears to be found.We do not report here on the four problems, HS99EXP, NGONE and the two cases of LUBRIF,that we have not managed so far to solve using LANCELOT.These results of Table 4 show that in most cases (AGG, CHEMRCTA, ERRINBAR, HS84,HS93, HS99, HS103, HS116 LEWISPOL, MARATOSB, NONMSQRT (n = 529), OPTMASS(n = 606 and 1206) and TENBARS4) a satisfactory solution could be computed in reasonabletime. Only the six remaining problems requested substantially more computational e�ort fortheir solution. 42

Problem n basic additional minor cg cpu-time notename variant speci�cation iterations iterations (secs)AGG 163 seprc 266 76817 6013 (1)CHEMRCTA 5000 seprc scaling 35 64 760CORKSCRW 4497 seprc 122 60078 40033CORKSCRW 8997 seprc 126 215502 264573ERRINBAR 18 default 4053 30881 570HS84 5 default 74 403 7 (2)HS93 6 default �0 = 10�2 44 75 4HS99 7 default �0 = 10�5 32 28 3 (2)HS103 7 default accbqp and �0 = 10 2518 34780 460 (2)HS116 13 seprc �0 = 10�5 4108 15932 458 (2)LEWISPOL 6 default �0 = 10�10 18 22 2MARATOSB 2 default 1715 1286 144NOMSQRT 529 seprc accbqp 225 4421 5239NOMSQRT 1024 seprc accbqp 510 274355 559376OBSTCLAE 15625 default 5 7450 39588OPTMASS 606 seprc �0 = 10�4 3744 6268 2731OPTMASS 1206 seprc �0 = 10�4 13320 25033 18644OPTMASS 3006 seprc �0 = 10�4 44309 76825 149512SVANBERG 5000 default 100 12985 46730TENBARS4 18 default 2690 21031 372Table 4: Detailed algorithmic choices and performance for the problems solved using nonstandardvariants
43

