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Abstract
While database reverse engineering is getting mature, trying to recover the
semantics of recent OO applications seems to trigger little interest.  The reason is
that the problem is underlooked because OO programs should be written in a clean
and disciplined way, and based on state-of-the-art technologies which allow
programmers to write auto-documented code. The paper is an attempt to explain
why the reality is far from this naive vision.  Mainly through a small C++ case
study, it puts forward the main problems that occur when trying to understand
actual OO applications.  The example is processed through a generic reverse
engineering methodology which applies successfully to OO programs, thanks to
logical and conceptual OO models that can precisely describe object structures at
any level of abstraction.  As a synthesis of this case study, the paper discusses the
techniques and tool support that are needed to help analysts in reverse engineering
the object structures of OO applications.

Keywords
database, data reverse engineering, methodology, object-oriented applications,
object-oriented specification, semantics elicitation
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1. INTRODUCTION

While database reverse engineering is getting mature, as witnessed by the
increasing number of conferences on the topic, trying to recover the semantics of
recent OO applications seems to trigger little interest.  The reason is that the
problem is underlooked because OO programs are supposed to be written in a clean
and disciplined way, and based on state-of-the-art technologies which allow
programmers to write code that is auto-documented, easy to understand and to
maintain.  It quickly appears that the reality is far from this naive vision, as we will
argue in this paper.

So far, the term OO reverse engineering has been given two distinct
interpretations: namely building an OO description of a standard application and
building/recovering an OO description of an OO application.  The objective of this
paper is to contribute to the solving of the second kind of problems.  However, it is
worth discussing the goal and problems of both approaches since they share more
than we can think at first glance.

1.1 Building an OO description of a non-OO application

According to the first interpretation, a standard (typically 3GL) application is
analyzed in order to build an OO description of its data objects and of as many as
possible parts of its procedural components.  A typical overview of a reverse
engineering project following this approach consists in finding potential object
classes and their basic methods.  For example, a COBOL business application
based on files CUSTOMER, ITEM and ORDER will be given a description
comprising Customer, Items and Order classes, with their associated methods such
as RegisterCustomer, DropCustomer, ChangeAddress, SendInvoice, etc.  The initial
idea is quite simple (Sneed, 1996):
• each record type implements an object class and each record field represents a

class attribute;
• the creation, destruction and updating methods (e.g. RegisterCustomer,

DropCustomer, ChangeAddress) can be discovered by extracted and reordering
the procedural sections that manage the source records;

• the application methods (e.g. SendInvoice) can be extracted by searching the
code for the functional modules.

This idea has been supported by much research effort in the last years (Gall,
1995), (Sneed, 1995), (Yeh, 1995), (Newcomb, 1995). Unfortunately, it proved much
more difficult to implement than originally expected.  Indeed, the process of code
analysis must take into account complex patterns such as near-duplication (near-
identical code sections duplicated throughout the programs (Baker, 1995)),
interleaving (a single code section used by several execution flows (Rugaber, 1995))
and runtime-determined control structures (e.g. dynamically changing the target of
a goto statement or dynamic SQL).  Some authors even propose, in some situations,
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to leave the code aside, and to reuse the data only (Sneed, 1996b), among others
through wrapping techniques based on the CORBA model.  In addition many
extracted modules appear to cope with the management of several record types, i.e.
with more than one potential object class.  This latter problem forces the analyst to
make arbitrary choices, to deeply restructure the code, or to resort to some
heuristics (Penteado, 1996).

Several code analysis techniques have been proposed to examine the static and
dynamic relationships between statements and data structures.  Dataflow graphs,
dependency graphs and program slicing are among the most popular.  In particular,
the concept of program slicing, introduced by M. Weiser (Weiser, 1984), seems to
be the ultimate solution to locate the potential methods of the record/classes of a
program.

1.2 Building an OO description of an OO application

The second interpretation can be read reverse engineering of OO applications.
Quite naturally, the result will be expressed as OO specifications.  The problem is of
course different, and fortunately a bit easier, though many standard problems will
have to be coped with.

The basic idea is straightforward: the class definitions are parsed and abstracted
in a higher-level, generally graphical, OO model*.  The schema that is obtained in
this way comprises object classes with attributes, inheritance hierarchies and
methods.  Unfortunately, this schema is far from satisfying.  Indeed, most OO
applications are written with low-level languages as far as the object semantics is
concerned.  For instance, Smalltalk, C++ and current OO-DBMS lack many
important constructs and integrity constraints that should be necessary to express
essential properties of the application domain to be described.  Let us mention four
of them.
• Object collections.  Some languages do not propose the concept of set of

objects that collects all the (or some) instances of a class.  This concept must be
simulated by the programmer in ways that are not standardized: set-of built-in or
home-made constructor, record arrays, files, chains, pointer arrays, bit-maps,
etc.

• Object relationships.  Inter-object associations are not widespread yet, at least
in current implementations.  They can be implemented in various ways: complex
attributes, foreign keys, embedded objects, references (oid) to foreign objects,
pointer arrays, chains, etc.  Redundant implementations through which
bidirectional access is available can be controlled through the inverse
constraint.

* Many tools, such as the integrated development environments,  include object browsers that
offer this functionality.
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• Identifiers.  An identifier, or key, is an attribute (or set thereof) that designates a
property that is unique for each instance of a class.  Except in recent proposals
(e.g. ODMG (Cattell, 1994)), this uniqueness cannot be declared, but must be
procedurally enforced by the updating methods related to the class.

• Cardinality constraints.  In most OO models, an attribute can be mandatory
single-valued (only one value per instance) or multivalued (from 0 to N values*).
Defining any more precise constraint is up to the programmer.  For instance,
asserting that a BOOK has from 1 to 5 authors can be done only by declaring
attribute Authors as a set-of PERSON , degrading the [1-5] constraint into the
more general [0-N].  Here again, the programmer will develop checking code in
all the relevant program sections, most generally in the body of the object
management methods.

1.3 Motivation

While the relevance of reverse engineering standard applications, typically
Cobol/Vsam, Cobol/Codasyl or C/Oracle, can no longer be questioned at the
present time, applying this process to state-of-the-art programs can seem a bit
academic.  The short analysis developed above shows that the process can be
harder than first estimated.  In addition, OO applications can be concerned with the
same problems and evolution patterns than typical legacy applications (anyway,
there can be C++ and Smalltalk legacy applications).  We can mention four
scenarios in which the reverse engineering of OO applications must be carried out.
• Redocumentation of OO programs.  There is no objective reason to believe than

OO applications have been developed in a more scientific way, with abstract
models, CASE tools and complete, consistent and up-to-date documentation, ...
than legacy applications.  Hence the need to rebuild a correct documentation
that will allow the development team to modify, maintain and make the
application evolve (Kung, 1993).

• Translating an application from an OO language to another one (e.g.
converting from to Smalltalk to C++).  Since the logical object model of the
languages are not identical, recovering an abstract specification of the source
application is the most reliable way to build a good quality equivalent target
application.

• Mapping an OO application on a relational database.  This is a very popular
reengineering technique to make C++ objects persistent.  Since the semantics of
C++ and SQL are very different, recovering the conceptual model of the C++
classes is required before generating the semantically equivalent SQL schema.

• Migrating an OO application to a standard distributed persistant object
system such as CORBA or ODMG (Cattell, 1994).  The new standards can

* N standing for ∞.
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express in a declarative way much more semantics than, say, C++ or Smalltalk:
relationships, identifiers, inverse, etc.  Making these constructs explicit is a
mandatory process before building the new schema.

1.4 Objectives and structure of the paper

This paper is a contribution to the process of rebuilding an abstract documentation
of the object classes which are declared and manipulated in OO application
programs.  We base the discussion and our proposals on the DB-MAIN approach
and tool that have already proved useful to reverse engineer non-OO data-oriented
applications.  Section 2 is a short reminding of the components of the DB-MAIN
generic reverse engineering methodology.  The way object schemas can be
represented in an abstract way is shown in Section 3.  Section 4 is the development
of a case study made up of a short C++ program from which we will try to
understand the semantics of object classes.  In Section 5, we summarize the main
problems that can occur when trying to recover the abstract description of object
classes.  CASE support is discussed through some representative functions of the
prototype DB-MAIN CASE tool (Section 6).

2. A GENERIC DBRE METHODOLOGY

We have proposed a general methodology that can be specialized to the various
data models which most legacy systems are based on, such as standard files, or
CODASYL, IMS and relational databases.  This methodology is fitted to OO
applications with few extensions.  Since it has been presented in former papers
(Hainaut, 1993), (Hainaut, 1993b), (Hainaut, 1994), (Hainaut, 1996b), (Hainaut,
1996c), (Hainaut, 1996d), we will only recall some of its processes and the problems
they try to solve, and that will be illustrated in Section 4.  Its general architecture is
outlined in Figure 1.

The methodology is based on a transformational approach stating that many
essential data engineering processes can be modelled as semantics-preserving
specification transformations (Section 5.3).  Hence the idea that reverse engineering
can be (grossly) modeled as the reverse of forward engineering.  The model we
propose comprises two phases, namely Data structure extraction, the reverse of
Database Physical design, and Data structure conceptualization, the reverse of
Database Logical design, that produce the two main products of reverse
engineering.
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Normalized
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Figure 1 - Main processes of the generic DBRE methodology.

The Data Structure Extraction Process consists in recovering the logical schema
of the database, i.e. the complete DMS* schema, including all the implicit and
explicit structures and constraints.  It mainly consists of three distinct sub-
processes.
• DMS-DDL text ANALYSIS.  A first-cut schema is produced through parsing the

DDL texts or through extraction from data dictionaries.
• SCHEMA REFINEMENT. This schema is then refined through specific analysis

techniques (Hainaut, 1996c) that search non declarative sources of information
for evidences of implicit constructs and constraints (e.g. PROGRAM
ANALYSIS and DATA ANALYSIS). This is a complex process that was
emphasized rather recently, when analysts realized that many important
constructs and constraints are not explicitly translated into DMS schemas, but
rather are managed through procedural section, or even are left unmanaged.
Hence the many techniques and heuristics proposed in the literature
(Andersson, 1994), (Petit, 1994), (Blaha, 1995), (Hainaut, 1996c) to try to recover
these implicit constructs. In traditional, non-OO, applications, the analysts will
recover structures such as field and record hierarchical structures, identifiers,

*A Data Management System (DMS) is either a File Management System (FMS) or a Database
Management System (DBMS).
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foreign keys, concatened fields, multivalued fields, cardinalities and  functional
dependencies.

• SCHEMA INTEGRATION. If several schemas have been recovered, they have
to be integrated.  The output of this process is, for instance, a complete
description of COBOL files and record types, with their fields and record keys
(explicit structures), but also with all the foreign keys that have been recovered
through program  and data analysis (implicit structures).

The Data Structure Conceptualization Process addresses the conceptual
interpretation of the DMS logical schema.  It consists for instance in detecting and
transforming, or discarding, non-conceptual structures, redundancies, technical
optimization and DMS-dependent constructs.  It consists of two sub-processes,
namely BASIC CONCEPTUALIZATION and CONCEPTUAL NORMALIZATION.
• BASIC CONCEPTUALIZATION. The main objective is to extract all the relevant

semantic concepts underlying the logical schema.  Once the schema has been
cleaned (PREPARATION) two different problems have to be solved through
specific techniques and reasonings: SCHEMA UNTRANSLATION, through
which one identifies the trace of DMS translations and one replaces them with
their origin conceptual constructs and SCHEMA DE-OPTIMIZATION where
one eliminates the optimization structures.

• The CONCEPTUAL NORMALIZATION restructures the basic conceptual
schema in order to give it the desired qualities one expects from any final
conceptual schema, e.g. expressiveness, simplicity, minimality, readability,
genericity, extensibility, compliance with corporate standards (Batini, 1992).

3. REPRESENTATION OF OO CONCEPTS

The methodology produces specifications according to two levels of abstraction,
namely logical and conceptual schemas.  A logical schema  expresses the object
structures as they are perceived by the user or the programmer of a specific DMS.
For instance, we will consider C++, O2 or ODMG logical schemas.  A conceptual
schema  is DMS-independent, and expresses the semantics of data structures
according to a conceptual model.  At this level, we will find OMT, Coad-Yourdon or
UML conceptual schemas (Wieringa, 1997).

The DB-MAIN approach is based on a large-spectrum model that encompasses
the concepts of most logical and conceptual models used in data engineering.  In
other words, each practical model can be defined as a specialization of the DB-
MAIN generic model (Hainaut, 1989).  In the following two sections, we will
describe how logical and conceptual OO schemas can be specified in a uniform
way.  To simplify the presentation, we will use the graphical notation of the DB-
MAIN generic model* to represent schemas at both levels.

* Being intended to express in a uniform way several popular data and information models, these
graphical conventions result from trade-offs among the specific graphical representations of
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3.1 Logical OO schemas

There is a large variety of models at this level, ranging from very basic C++
constructs to recent ODMG and CORBA proposals and OODBMS models.  We
must represent all of them in as much detail as needed to ultimately recover the
semantics of the object classes.

The definition of a class (graphically represented by a rectangle) comprises
several parts, namely the class name, the attributes and the methods.  A fourth part,
dedicated to integrity constraints, will be introduced later on.  An attribute is atomic
or compound (tuple), single-valued or multivalued (set, bag, list, array).

Name
Address

change-address

PERSON

Emp#
Function[0-1]
History[0-20]

Year
ContractNbr

Origin: *DEPARTMENT

hire-employee
fire-employee
update-history

EMPLOYEE
Name
Location

Number
Street
City

Employees[0-N]: *EMPLOYEE

nbr-of-employees

DEPARTMENT
Client#
Responsible: *EMPLOYEE

change-responsible

CLIENT

Figure 2 - Attributes and methods of object classes.

A class can be declared a subclass of another one.  Each attribute A is given a
cardinality [I-J] stating that each parent instance (object or compound attribute
value) has from I to J associated values, where J="N" stands for infinity.  The
domain of an atomic attribute is either a basic domain (character, string, integer, real,
boolean, BLOB, etc.) or an object class of the schema, in which case it will be called
object-attribute. For simplicity, the basic domains and the most frequent attribute
cardinality (i.e. [1-1]) are not explicitly represented.  In addition, only the name of
the methods are specified. The schema of Figure 2 includes four object classes.
Class DEPARTMENT has three attributes, namely Name (basic domain, atomic,
single-valued, mandatory), Location (compound) and Employees.  The latter is

                                                                                                                                                     
each of them.  For instance, the representations of an entity type and of a conceptual object
class are similar.  In the same way, record types and logical object classes are given similar
graphical representations.
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multivalued (set) and its domain is the EMPLOYEE object class, each of its values
being an arbitrary large (and possibly empty) set of EMPLOYEE instances.  The
class has only one method, nbr-of-employees.  The basic methods such as the
constructors, destructors, modifiers and accessors are supposed to be defined, but
has not been shown for simplicity.  Class EMPLOYEE includes two mandatory
attributes (Emp# and Origin), an optional single-valued attribute (Function) and a
compound, multivalued (list) attribute (History) with cardinality [0-20].  Origin is a
single-valued object-attribute.  In addition, this class inherits attributes Name and
Address from class PERSON.

These concepts offer a general way to model complex object types built through
recursive application of the standard constructors tuple and collection-of (i.e. set-
of, bag-of, list-of or array-of).  Though some advanced models comprise the
concept of inter-object relationships (e.g. ODMG and CORBA), we will describe it in
the conceptual part of the generic model.

Simple object models comprise few (if any) integrity constraints, while more
advanced models propose at least identifiers, or keys, and inverse object-attributes.
• Class identifiers.  A set of attributes form a class identifier (sometimes called

key) if, at any time, no two objects can share the same values for these
attributes.  As in relational schemas, a class can have at most one primary
identifier (id), and any number of secondary identifiers (id').  In Figure 3, Name
is the primary id of class DEPARTMENT, while Employees is a secondary id. An
id is single-valued if it comprises single-valued attributes (e.g.
DEPARTMENT.Name).  It is multivalued when it is made of one multivalued
attribute.  In the latter case, no two instances can share each of the attribute
values.  For example, DEPARTMENT.Employees is declared a multivalued id (id:
Employees[*]), which translates the fact that an employee cannot be employed
in more than one department.

• Inverse object-attributes.  DEPARTMENT.Employees and EMPLOYEE.Origin
are declared inverse, indicating that the Origin of an employee is the department
of which s/he is one of the Employees, and vice-versa.  Note that the schema
indicates that Employees is both an identifier (id') and an inverse attribute
(inv).

We will describe some additional constraints that are commonly found in object
schemas, though they sometimes are not explicitly declared.
• Attribute identifiers.  A compound multivalued attribute A can be given an

internal identifier, which is made of a subset I of its components.  For each
parent instance of A, the values (tuples) of A have distinct values for I.  In
Figure 3, the History tuples of each EMPLOYEE instance have distinct Year
values (id(History): Year).

• Subtype constraints.  The set of subclasses of a given class can be constrained
to satisfy set properties: (1) the disjoint constraint (symbol D) preventS any two
subclasses to share common instances, otherwise, the classes can overlap, (2)
the total (symbol T) constraint imposes any superclass instance to fall in at
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least one subclass.  Subclasses that are both disjoint and total form a partition
(symbol P).

• Other constraints.  Any property that is relevant in other models can be defined
on object schemas as well.  Such is the case of the foreign keys, that can be
used to represent many-to-one relationships between two object classes.

Name
Address

change-address

PERSON

Emp#
Function
History[0-N]

Year
ContractNbr

Origin: *DEPARTMENT

hire-employee
fire-employee
update-history
id:Emp#
inv:Origin
id(History):

Year

EMPLOYEE
Name
Location

Number
Street
City

Employees[0-N]: *EMPLOYEE

nbr-of-employees

id:Name
id':Employees[*]

inv

DEPARTMENT
Client#
Responsible: *EMPLOYEE

change-responsible

id:Client#

CLIENT

P

Figure 3 - Integrity constraints: class identifiers, attribute identifiers, inverse
object-attributes, subtype constraints.

3.2 Conceptual OO schemas

A conceptual schema is supposed to be DMS-independent, and to offer an abstract
view of technical data structures.  According to the most popular models (e.g.
Coad-Yourdon, Booch, Merise-OO, OMT, Fusion, UML (Wieringa, 1997)), the main
aspect of conceptual object models, at least as far as structural aspects are
concerned, is the absence of object-attributes and the introduction of relationship
constructs (though the latter can be found in some recent logical models).  We will
discuss how to represent the relationship types.  For genericity reasons, we still use
the DB-MAIN notation.  Though it can appear different from the notation of each
OO model, it correctly expresses the main aspects of all of them, and is more than
adequate for the purposes of reverse engineering.
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1-1

0-N

is-employee-of
1-1

is-origin-of
0-N

0-N

1-1

responsible

P

Year
ContractNbr

id: .EMPLOYEE
Year

HISTORY

Emp#
Function

fire-employee
add-history

id: Emp#

EMPLOYEE

Name
Location

Number
Street
City

nbr-of-employees
hire-employee
id: Name

DEPARTMENT

Client#

change-responsible

id:Client#

CLIENT

Name
Address

change-address

PERSON

Figure 4 - A conceptual object schema.

A relationship type (rel-type) R has an optional name, comprises at least two roles
and can have attributes.  A role has an optional name and is taken by one or several
object classes.  It is submitted to cardinality constraints [I-J] that states in how
many (from I to J) relationships any class instance can appear in this role*.  In
Figure 4, rel-type (CLIENT, EMPLOYEE) has name Responsible, while the other
two rel-types are unnamed.  In the same way, some roles (e.g. is-origin-of) are
named while others are not.  The flexibility of these naming conventions is a
necessity for a generic model intended to comply with different operational models.

The identifier of an object class can now comprise attributes, but also roles, as
illustrated by object class History which is identified by its Year value among all the
instances associated with one EMPLOYEE instance.  Such a construct is
sometimes called weak  object/entity type.  A N-ary relationship type can have
identifiers and attributes too.

* Attention: this interpretation, which is compliant with such models as Merise or Batini at al.
(Batini,92) is the converse of that of, say, OMT.  However, together with the concept of
relationship identifier, it encompasses the cardinality concepts of all the other models.



12

4. A SHORT CASE STUDY

We will discuss the main concepts developed so far through a small case study
based on the C++ program presented in Appendix, the goal of which is the
management of information concerning customers, orders and products.  This
application is incomplete and unrealistic (data are not saved on program closure for
instance), but it is sufficient to illustrate both the kinds of problems that actually
occur in practice and the reasoning that can solve them. Most of the processes
mentioned in Section 2 apply, and will be discussed in some detail.

4.1 The DMS-DDL text ANALYSIS process

The C++ analyzer recognizes the class definitions: class name, superclasses, types,
attributes and methods (Figure 5).  Pointer to class instances (e.g. customer
*next) are abstracted as object-attributes (e.g. next: *customer).  Arrays[I]
are expressed as array-multivalued attributes with cardinality [I-I].  All the
attributes are supposed to be mandatory.  This process is a mere representation
translation and uses mere parsing techniques.  In particular, it does not rely on any
reverse engineering knowledge.

n_ord
ord_date
detail[10-10] array

n_prod
quant

next: *order
next_of_cust: *order
cust: *customer

order
get_n_order
get_date
get_detail
get_customer
add_detail
get_next
get_next_order
cost_order

order
n_cust
name
address

street
num
zip
city

first_ord: *order
next: *customer

customer
get_n_cust
get_name
get_address
get_next
get_first_order
set_first_order
amount_due

customer
n_prod
name
price
next: *product

product
get_n_prod
get_name
get_price
get_next

product

Figure 5 - The first-cut logical schema.

4.2 The SCHEMA REFINEMENT process

In most situations, the resulting schema will be too coarse, mainly due to the lack of
expressive power of the language.  The refinement phase is intended to recover the
implicit constructs and constraints that are buried in the programs.  Among the
numerous implicit structures and constraints that can be sought (Hainaut, 1996c),
we will concentrate on six of the most important ones.  In addition, we will base this
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process on program analysis, thus ignoring the other sources of information such
as the data, the user interface, program execution and the documentation (whatever
its state).

One of the frustrating aspects of reverse engineering is that one cannot guarantee
100% recovery of the specifications.  As it is true for any knowledge extraction
process, where quality of the final product is a (hopefully increasing) function of
the quality and completeness of the sources of information, and of the effort we
accept to put in the process.

A. Optional attributes

In C++, all the class attributes are considered mandatory.  By analyzing the way
each attribute is initialized, processed and used, we can discover whether it accepts
void, null or default values, which most often stand for absence of value.  As an
example, we will examine the attributes of customer through the behaviour of its
constructor customer::customer [line 108] which is where essential integrity
constraints should be monitored.

Observations.
• n_cust receives the value of input argument n_c,
• name receives the value of argument n,
• the components of address receive the values of those of argument adr,
• next receives the value of customers
• first_ord is set to null.

The analysis is not complete since we must understand the history of each of the
source variables.  Further analysis leads to learning that:
• the constructor is called from one program point only, namely procedure

new_cus [line 263]; in its body, we observe that all input arguments of the
constructor are set to non-empty values yielded by the user, except for zip, for
which no checking is performed;

• customers is a global variable initially set to NULL,
Conclusions. All the attributes of class customer are mandatory (cardinality [1-

1]) but three of them, namely address.zip, first_ord, and next (cardinality
[0-1]).  By similarly analyzing the origin of the attributes values in the constructors
we can state the cardinality of the other attributes of the schema.

B. Exact cardinality of multivalued attributes

C++ arrays are given a number of cells, but there is no way to declare how many
cells can, and must, receive actual values.  That is the case of attribute
order.detail[10].  The extraction process can only abstract such constructs
as an attribute detail[10-10]array.  Obviously, this cardinality must be
refined.  Manipulation of the array elements can be found in the procedure
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new_ord that introduces a new order, and in the methods it invokes, namely the
order::order constructor and method add_detail.
Observations.
• in new_ord, detail[*].n_prod and detail[*].quant are set to 0

through calling the constructor,
• then, add_detail is invoked as many times as there are non-zero n_prod

values entered by the user;  entering no details is a possible event,
• as expected, add_detail does not allow more than 10 product numbers to be

specified.
Conclusion. The exact cardinality of order.detail is [0-10] instead of

[10-10].

C. Class identifiers

It is natural that each major object class should be given an explicit identifier,
allowing users to designate, e.g., a specific customer or a definite product.  Name
patterns and domain knowledge are of particular help in this quest, but we will use
program pattern analysis, specifically in the constructors, to find possible class
identifiers.  We will concentrate on customer class.

Observation. The constructor includes an emergency exit [line 109] through
which no customer instance is created.  This exit is triggered by a positive
answer to the invocation of find_customer function.  The latter returns the
customer oid (physical address) of the first customer instance with attribute
n_cust=n_c, i.e. a customer that has the same n_cust value as that one tries to
introduce.

Conclusion.  n_cust is an identifier of object class customer.
Through the same analysis, we find the primary identifiers of classes order and
product.

D. Attribute identifiers

For any multivalued compound attribute, the question of whether a uniqueness
constraint is enforced must be asked.  That is the case for order.detail, the
management rules of which are concentrated in method order::add_detail.

Observation. The while loop terminates when either (1) all the detail cells have
been examined without success, or (2) the first cell with n_prod = 0 has been
found, or (3) the first cell with n_prod = n_p has been found.  Then, a new tuple
is inserted when an empty cell has been found, i.e. in case 2.  In summary, a new
tuple is inserted when the array does not include another tuple with the same
n_prod value.

Conclusion. Attribute n_prod is unique in the set of detail tuples of any
order instance, and must be declared an identifier of attribute detail.
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E. Non-set multivalued attributes

Due to the lack of expressive power of standard programming languages, including
C++, small sets of values most often are implemented as arrays, such as
order.detail[10].  By examining how the elementary values are processed,
we can learn whether the position or the ordering of these values are significant.

Observation. The detail attribute is managed in function add_detail.  We
already know that it represents a set of values, and not a bag.  Obviously, no
meaningful ordering seems to be maintained.  In addition, the other program
sections use indexing of the array elements only to get them, and there is no
apparent meaning associated with this index.

Conclusion.  order.detail is just a set of tuples where the element position
and ordering are immaterial.

F. Foreign keys

Domain knowledge suggests that some links should exist and be maintained
between order and product instances.  The examination of the methods
order::add_detail and order::cost_order gives us the key.

Observation. The most obvious observation relates to attribute names and
domains: two attributes, namely order.detail.n_prod and
product.n_prod, happen to share their names and domains.  In addition, one of
them is an identifier.  In the method add_detail, a detail tuple is inserted
only when the value of input argument n_p identifies a product instance.
Considering that this method is the only way to add details, we can be sure that
there is no detail tuples without a matching product instance.  Another
evidence can be found in method cost_order.  To compute the cost of the
order, the body of the method finds the product instance referenced by each
detail tuple.  We observe that the price of this instance is asked for without
worrying about its existence, which seems to be taken for certain.  We conclude
that each detail tuple is guaranteed to have a matching product instance,
unless the program is wrong.

Conclusion. The component n_prod of order.detail is a foreign key to
object class product.

G. Access structures

Unlike higher level data managers, C++ offers no explicit constructs to provide
programmers with instance collection and traversal techniques.  The programmers
have thus to implement technical structures to maintain instance collections and to
access successive instances of a class. Chaining is one of the most popular
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technique to implement ordered set of instances.  A chain comprises an external
head pointer that yields the first element of the chain, and next pointers that yield,
for each chain element, the next element, if any.  Typically, the next value of the last
element is null.

Observation. In a C++ class structure, chains generally are implemented through
instance pointers that are abstracted as attributes defined as attribute-
name[0-1]: *class-name. The example schema comprises five such
attributes*, whose behaviour has to be examined in detail.  Let us consider attribute
next of class customer.  As expected, this attribute is processed in the
constructor of its class, and it appears that it is used to chain all the customer
instances.  The global variable customers acts as chain head.  This hypothesis is
confirmed by the analysis of application procedure list_cus, which is based on
a chain traversal loop.  The analysis of the attributes order.next and
product.next leads to similar conclusions.

Through the same approach, the pointers customer.first_ord and
order.next_of_cust also appear as implementing chains whose head is in a
customer instance, and chaining order instances.

The random way instances are inserted in the chains suggests that instance
ordering is immaterial, and that they implement unstructured sets only.

Conclusions. There are two kinds of chains, those which merely implement the
collection of instances of each class, and those which implement access of a list of
order instances from each customer instance. The first kind of chains can be
discarded since the abstract OO model we use includes the notion of instance set of
classes. The second kind of chains seems more prone to support semantics, and
must be kept.  However, for reasons that will soon appear, these chains need to be
further processed.

First we replace it with another equivalent construct, namely multivalued object-
attribute orders.  We observe that an order instance could not be inserted in
more than one such chain, a property that translate into the following constraint: an
order instance cannot appear in the orders set of more than one customer
instance.  In other words, orders is a multivalued secondary identifier of class
customer.

When a class A includes an object-attribute with domain B, it is non unfrequent
that class B includes an inverse object-attributes with domain A.  This could be the
case with class customer with attribute orders and class order with attribute
customer.  The analysis of procedure new_ord shows that the value of attribute
cust of the current order instance is the address of the customet instance in the
chain of which this order instance is inserted.  Consequently, attributes
customer.orders and order.cust must be declared inverse.

* To be quite precise, we should have proved that each of them is a secondary identifier of its
class.
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The final logical OO schema is presented in Figure 6.

n_prod
name
price

product
get_n_prod
get_name
get_price
get_next

id: n_prod

product
n_ord
ord_date
detail[0-10]

n_prod
quant

cust: *customer

order
get_n_order
get_date
get_detail
get_customer
add_detail
get_next
get_next_order
cost_order

id: n_ord
ref: detail[*].n_prod
inv:cust
id(detail):

n_prod

order
n_cust
name
address

street
num
zip[0-1]
city

orders[0-N]: *order

customer
get_n_cust
get_name
get_address
get_next
get_first_order
set_first_order(ord)
amount_due

id:n_cust
id':orders[*]

inv

customer

Figure 6 - The refined logical schema. The multivalued foreign key detail[*].n_prod
is symbolized by a directed arc to the primary id of product.

4.3 The SCHEMA PREPARATION process

This phase is intended to prepare the conceptual interpretation by removing
constructs that are no longer useful.  Such is the case for the basic methods
dedicated to managing and accessing the object instances.  We just keep the
application methods, i.e. those which implement user-oriented functions. In our
schema, we can discard constructors (including the pseudo-constructor
add_detail) and accessors. Two methods are kept, namely
customer::amount_due and order::cost_order.

4.4 The SCHEMA DE-OPTIMIZATION processes

The size of the system being too small to exhibit realistic optimization constructs,
we will concentrate on untranslation reasonnings.  However, an important problem
must be addressed in this process, namely vicious IS-A relations implementing
part-of relationships (see Section 5.1).

4.5 The SCHEMA UNTRANSLATION process

We will consider three important untranslation rules that are intended to recover the
original conceptual constructs of OO schemas.
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A. Transforming the object-attributes

The schema includes two inverse object-attributes that are transformed globally
into one-to-many rel-type orders.

0-N

refer

1-10-N orders

1-1

0-10

of

n_prod
name
price
id:n_prod

productn_ord
ord_date

cost_order
id:n_ord

order

quant
id:refer.product

of.order

detail

n_cust
name
address

street
num
zip[0-1]
city

amount_due
id:n_cust

customer

1-1

Figure 7 - The basic conceptual schema.

B. Transforming the complex multivalued attributes

Attribute detail is compound, multivalued, has an identifier and includes a
foreign key.  This is a typical implementation of a dependent (sometimes called
weak ) object class.  This new class inherits the source name detail and the new
rel-type is called of.

C. Transforming the foreign keys

Foreign key n_prod of newly defined class detail is replaced with a many-to-
one rel-type called refer from detail to product.
The basic conceptual schema is presented in Figure 7.

0-N

place 1-N 0-N
Quant
detail N-prod

Name
Price
id:N-prod

PRODUCT
N-ord
Ord-date

cost_order

id: N-ord

ORDER

N-cust
Name
Address

Street
Num
Zip[0-1]
City

amount_due

id: N-cust

CUSTOMER

1-1

Figure 8 - The normalized conceptual schema.
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4.6 The CONCEPTUAL NORMALIZATION process

The schema obtained so far is modified in such a way that it satisfies corporate
methodological standards: model, naming conventions, graphical rules, etc.  To
illustrate the process, we propose in Figure 8 an equivalent schema, in which the
names have been normalized according to local rules (e.g. class names in uppercase,
attribute names capitalized, no underscores) and in which rel-types with attributes
are allowed.

5. PROBLEM SOLVING IN OO REVERSE ENGINEERING

Despite its small size and its artificial nature, the program processed in Section 4
exhibits some of the most common problems that can occur when recovering the
specifications of a structured collection of object classes.  Though larger
applications will include other kinds of problematic structures, the experiment above
is sufficient to discuss the minimal requirements for a general methodology to
perform OO application reverse engineering with success.

It is worth recalling some of the advantages of OO programs (even based on low
level DMS, such as C++) as compared with more traditional development tools.
Hierarchical object structures can be made explicit through recursively applying the
tuple/set constructors.  Explicit IS-A hierarchies can be explicitly declared.
Methods provide a centralized support to integrity control and to logical
relationships between objects (e.g. through inter-object navigation).

On the other hand, OO applications exhibit all the problems that have been found
in classical legacy systems.  The reason is three-fold.  Firstly, even if it is state-of-
the-art, each object manager has its own weaknesses that force the programmer to
resort to traditional programming techniques to compensate for them.  Secondly,
many object managers lack features that are available in even the most primitive file
managers (e.g. uniqueness constraint).  Finally, and more important, the best
programming environment, be it OO or not, cannot force programmers to work in the
consistent and disciplined way the OO paradigm seems to naturally imply.

The rest of the section will discuss OO-specific problems as well as more general
ones.

5.1 Ambiguity of the OO paradigm

One of the most disturbing observation is the fact that different scientific
communities have given the concept of object class hierarchy distinct
interpretations (Brachman, 1983).  Two communities are concerned with the
question we address in this paper, namely those from the programming and the
IS/DB realms.  Let us consider three object classes A, B and C; B and C being
subclasses of A.  On the one hand, OO programmers will generally consider that an
object is in class A, or in class B or in class C, but in one of them only.  For
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instance, A can be declared an empty or virtual class if all the instances fall in
either B or C. On the other hand, IS/DB people will consider that each B (or C)
instance is an A instance as well.  In short, in the programming realm, IS-A means
property inheritance while in the IS/DB realm, IS-A means a subset relation
between the populations.  In more precise terms, if we call prop(O)  the function that
returns the properties (attributes, roles and constraints) of object class O and
inst(O)  the function that returns the current set of instances of class O, we have the
following time-independent properties:
• according to the programming community:

prop (A) ⊆ prop (B) & inst (B) ∩ inst(A) = ∅
• according to the IS/DB community:

inst (B) ⊆ inst(A)
hence prop (A) ⊆ prop (B)

The semantics of the object classes in OO programs will be strongly influenced by
the interpretation they have been based on.  Recovering a conceptual schema from
an OO program can involve an in-depth analysis of the intended meaning of IS-A
relations, as illustrated in Figure 9 (left), which synthetizes one of the best
illustrations of the problem.

Radius
CIRCLE

X
Y

POINT

   ⇒
X
Y

POINT

Center: *POINT
Radius

CIRCLE

Figure 9 - Interpreting vicious IS-A hierarchies.

It has been provided by the Borland OO-Pascal (V7) documentation published
some years ago.  The very first example of class hierarchy presented in the tutorial
is the following.  Let us consider object class point, with attributes X and Y.  We
define a subclass circle, with which we associate a new attribute radius, and
which inherits X and Y interpreted as the circle center coordinates. Generations of
programmers were introduced to the OO approach with this particularly awkard
example which suggests that circles form a special kind of points!  The right side of
Figure 9 proposed a more natural expression of the intended semantics.
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5.2 Program analysis techniques

It is now quite obvious that program analysis can be the only way to extract the
necessary knowledge on object behaviour to make hidden constraints and
structures explicit. Visually analyzing the body of short object management
methods can be sufficient in small applications.  In can prove unreliable in large
applications, in which objects tend to get more complex, and the methods much
larger.  Indeed, associating several hundreds of methods with each object class is
not uncommon.  In addition, in complex applications, not all the object behaviour
will be localized in methods.  Operations on sets of objects (sometimes called object
societies) in which no member emerges as the kernel will often be wired in programs
instead of in methods.  Finally, the way the objects are manipulated in the program
itself will often bring much interesting information on implicit constraints, or on the
meaning of obscure attributes.

Hence the need for powerful program analysis techniques.  We will briefly
describe two classes of techniques, namely component dependency analysis and
program slicing.

Two program data components (file, record, object, field, type, frame, constants)
depends on each other if, at some point of the life of the program (compile time, run
time) a property (name, type, structure, state, value) of one of them may depend of
those of the other one.  For instance, variables A and B can be considered mutually
dependent if the program comprises either a statement assigning the value of A
with B (or conversely) or a chain of statements resulting in A and B being assigned
the same value at some point of program execution, or A being compared to B.  The
very meaning of such a dependency can vary according to the goal of the process:
semantical similarity, same structure, evidence of a foreign key, etc.   A special form
of dependency graph is the dataflow graph in which directed arcs represents
assignment operators only.  This abstraction can be smaller and more precise that
general dependency graphs (Anderson, 1996).  Such techniques have been
illustrated in Section 4 when trying to discover foreign keys.

In short, program slicing works as follows (Weiser, 1984).  Let us consider a data
object D (variable, constant, record type, file, etc.) of a program P, and any point p
of P (statement, label, inter-statement point).  Σ is the program slice of P with
respect to criterion (p, D) if it is the subset of the statements of P such that,
whatever the external conditions of execution, the state of D at point p is the same,
whether Σ or P is executed.  In other words, all the statements of P that can
influence the state of D at p form the subprogram Σ.  Normally, Σ is much shorter
than P, and will be much easier to examine than P as far as understanding the
behaviour of D is concerned.  A typical example is the slice of a record type (D) at a
file writing point (p).  It is expected that this program excerpt includes all the
statements that check and manage the records before writing them in the file.
Further analyzing this slice will be easier than coping with the whole program.  An
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application of program slicing to database reverse engineering can be found in
(Henrard, 1996).

For reasons that are out of the scope of this paper, several slices can be computed
(Tip, 1994), (Horwitz, 1990).  Optimistic slices include most of the statements of Σ as
defined above, but some contributing statements may be lost. Conservative slices
are garanteed to include all the statements of Σ, ... but some others as well.  Of
course, optimistic slices are shorter and cheaper to compute, but also less precise,
than conservative ones.

5.3 Schema transformation

This is the basic tool that can be used to reliably derive schemas from source
schemas.  Schema transformations are ubiquitous techniques that have been
proposed to support numerous processes in database engineering, and particularly
in reverse engineering (Hainaut, 1993b).  They are operators that replace constructs
in a schema with other constructs.  Generally, the second schema better meets
definite criteria (normalization, minimality, compliance with a data model, etc.)  the
first one does not meet.  The class of semantics-preserving transformations is of a
particular importance. Such a transformation guarantees that the source and the
final schemas convey the same semantics, i.e. they describe exactly the same
application domain, and any situation that can be described by one of them can be
described by the other one.

In reverse engineering, schema transformation will be mainly used in the
Conceptualization phase.  Indeed, replacing logical constructs with their conceptual
equivalent, restructuring the schema to discard optimization constructs and
normalizing conceptual schemas are typical schema transformations.

Due to the limited scope of this paper, we will only present three formal operators
that are used in Section 4 (Figure 10 to 12).  Being semantics-preserving, they can
be read in both directions.  The reader will find further information on these
techniques in (Batini, 1992), (Hainaut, 1993b), (Hainaut, 1996), (Rosenthal, 1994) for
example.  In (Blaha, 1996), specific OO transformations are proposed.

A1
A2
A3[i-j]: *B
inv: A3[*]

A

B1
B2
B3[k-l]: *A
inv:B3[*]

B ⇔
B3
i-j R B1

B2

    B
A1
A2

    A

A3
k-l

Figure 10 - Transformation of two inverse object-attributes into a rel-type (and
conversely).



23

A1
A2[i-j]

A21
A22
A23

A3
id(A2):

A21

A

⇔
i-j R

A1
A3

    A
A21
A22
A23
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Figure 11 - Extracting a multivalued attribute as an autonomous object class (and
conversely).
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    A
i-j

Figure 12 - Expressing a foreign key as a relationship type (and conversely).

6. DBRE CASE SUPPORT

From the analysis developed above, we can draw some minimal requirements that
should be addressed by CASE tools intended to support  reverse engineering of
legacy systems, included OO applications.  Besides natural functions related to
specification entry, management and browsing, the tool must offer powerful
program analysis processors and a large collection of transformation operators.
From several large scale experiments, we learnt that the process is largely interactive
and exploratory.  Hence the need for extensibility to cope with unexpected
situations.

To tackle data reverse engineering projects in a realistic way, we have developed
a CASE tool suite which is being extended to the object paradigm, not only to
recover the specifications of OO applications, but also to address the OO
expression of traditional applications.

The DB-MAIN tool can be used either as a toolset to support system (forward
and reverse) engineering, or as a CASE tool development environment (i.e. a meta-
CASE tool).

In its current version (Version 3, November 1997), the tool offers a sophisticated
support for forward and reverse engineering activities. More specifically, it includes
the following functions and components:
• specifications management: access, browsing, creation, update, copy, analysis,

memorizing;
• representation of all the project products, and of their relationships: schemas,

views, source texts, reports, generated programs;
• view derivation and management;
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• a generic, wide-spectrum, representation model for conceptual, logical and
physical objects, according to the most popular value-based, entity-based and
object-oriented paradigms;

• semantic and technical annotations attached to each specification object;
• multiple views of the specifications (4 hypertexts and 2 graphical views); some

views are particularly intended for very large schemas;
• a toolbox of about 30 semantics-preserving transformational operators which

provide a systematic way to carry out such activities as conceptual
normalization, or the development of optimized logical and physical schemas
from conceptual schemas, and conversely (i.e. reverse engineering);

• code generators; report generators;
• code parsers extracting physical schemas from SQL, COBOL, CODASYL, RPG

and IMS source programs; O2 and C++ parsers are under development;
• interactive and programmable text analysers which can be used, a.o. to detect

complex programming clichés in source texts, to build dataflow and dependency
diagrams, and to compute program slices;

• a sophisticated name processor to clean, normalize, convert or translate the
names of selected objects in a schema;

• a history manager which records the engineering activities of the analyst, and
which makes their further replay and analysis possible;

• import and export of specifications;
• a series of assistants.  An assistant is an expert module in a specific kind of

tasks, or in a class of problems, intended to help the analyst in frequent, tedious
or complex tasks.  It allows the analyst to develop scripts which automate
frequent processes.  A library of predefined scripts is provided for the most
frequent activities.  Six assistants are available at present: global
transformations, transformation script development, schema analysis, text
analysis (including pattern searching, dependency analysis and program
slicing), schema integration, foreign key analysis;

• meta functions that allow users to develop new specification objects* and new
functions, particularly through the Voyager language.

Database reverse engineering cannot be carried out automatically.  In addition, no
unique tool can support every kind of DBRE projects, due to the large variety of
problems that are encountered in practice, as opposed to development projects,
which can profit from fairly standard approaches.  Therefore, the DB-MAIN tool
does not claim to solve DBRE problems automatically.  On the contrary, it provides
a rich collection of configurable toolboxes, together with rapid development tools to
build ad hoc processors dedicated to specific projects.

The functions of the DB-MAIN CASE environment has been described in
previous papers, such as (Hainaut, 1996d).  Further information can be found at

* In the public version meta-objects and meta-relations cannot be created.  Only meta-
properties can be associated with builtin meta-objects.
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http://www.info.fundp.ac.be/~dbm.  A free education version of the tool is
available.  However, some of the OO extensions still are under development at
present time (and therefore may be unstable), and will be made available on request
only.

7. CONCLUSION

It is now clear that OO applications, beyond some positive aspects as far as
program understanding is concerned, share many of the difficult problems that have
been experienced in reverse engineering traditional, 3GL, legacy systems.  The
positive aspects derive from a (somewhat) more powerful data model and a stronger
localisation of the code which manage the data objects.  However, the weaknesses
of some languages concerning data integrity (e.g. C++) and development practices
inherited from old environments induce a complexity that is comparable to that of
applications based on traditional languages.  Therefore, it appears that the
techniques developed can be adopted, with some adaptation, to tackle OO
applications.

The experience also shows that data reverse engineering is far from an automated
process, except for some specific processes, such as preliminary analysis of
declarative code.  Full human control is essential, even if it can be supported by
powerful tools.

The last conclusion we would like to propose concerns the training of reverse
engineering analysts (Hainaut, 1997).  While forward engineering is fairly well
understood and mastered, reverse engineering appears as an engineering discipline
that makes use of complex theories and techniques known by very few professional
only.  For instance, the concept of program slicing, which is essential in program
understanding, requires much effort both from the trainers and the trainees before
being efficiently and reliably mastered.
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APPENDIX - THE C++ SOURCE CODE

1 #include <date.h>
2 #include <alloc.h>
3 #include <string.h>
4 #include <stdio.h>
5 #include <io.h>
6 class order;
7 class product;
8 class customer {
9 public :
10   typedef struct addr_ {
11     char street[40]; char num[5];
12     char zip[5]; char city[20];

13   } addrT;
14 private :
15   int n_cust; char name[30];
16   addrT address; order *first_ord;
17   customer *next;
18 public :
19   customer(int n_c, char *name, addrT

adr);
20   customer *get_next();
21   int get_n_cust();
22   char *get_name();
23   addrT *get_address();
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24   order *get_first_order();
25   void set_first_order(order *ord);
26   int amount_due();
27 };
28 class order {
29 public :
30   typedef struct det_ {
31     int n_prod; int quant;
32   } detT;
33 private :
34   int n_ord; TDate ord_date;
35   detT detail[10]; order *next;
36   order *next_of_cust; customer *cust;
37 public :
38   order(int n_o, customer *cus);
39   get_n_ord();
40   TDate *get_date();
41   detT *get_detail(int i);
42   customer *get_customer();
43   void add_detail(int n_p, int q);
44   order *get_next();
45   order *get_next_order();
46   int cost_order();
47 };
48 class product {
49 private :
50   int n_prod; char name[30];
51   int price; product *next;
52 public :
53   product(int n_p, char *n, int p);
54   int get_n_prod();
55   char *get_name();
56   int get_price();
57   product *get_next();
58 };
59
60 customer *find_customer(int n_c);
61 order *find_order(int n_o);
62 product *find_prod(int n_p);
63 customer *customers = NULL;
64 order *orders = NULL;
65 product *products = NULL;
66
67 customer *find_customer(int n_c)
68 { customer *cur;
69   cur = customers;
70   while(cur){
71     if(cur->get_n_cust() == n_c)
72       return(cur);
73     cur = cur->get_next();
74   }
75   return(NULL);
76 }
77
78 order *find_order(int n_o)
79 { order *cur;
80   cur = orders;
81   while(cur){

82     if(cur->get_n_ord() == n_o)
          return(cur);
83     cur = cur->get_next();
84   }
85   return(NULL);
86 }
87
88 product *find_prod(int n_p)
89 {  product *cur;
90   cur = products;
91   while(cur){
92     if(cur->get_n_prod() == n_p)
          return(cur);
93     cur->get_next();
94   }
95   return(NULL);
96 }
97
98 void read_not_null(char *str)
99 { str[0] = '\0';
100   while(str[0]=='\0') scanf("%s",str);
101 }
102
103 void read_not_null(int *val)
104 { *val = 0;
105   while(*val == 0) scanf("%d", val);
106 }
107
108 customer::customer(int n_c, char *n,

addrT adr)
109 { if(find_customer(n_c))

    {delete(this);return;}
110   n_cust = n_c;  strcpy(name, n);
111   strcpy(address.street, adr.street);
112   strcpy(address.num, adr.num);
113   strcpy(address.zip, adr.zip);
114   strcpy(address.city, adr.city);
115   next = customers;  customers = this;
116   first_ord = NULL;
117 }
118
119 customer *customer::get_next()
120 { return (next);}
121
122 int customer::get_n_cust()
123 { return(n_cust);}
124
125 char *customer::get_name()
126 { return(name);}
127
128 customer::addrT *customer::get_address()
129 { return(&address);}
130
131 order *customer::get_first_order()
132 { return(first_ord);}
133
134 void customer::set_first_order (order

*f)
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135 { first_ord = f;}
136
137 int customer::amount_due()
138 { int total;  order *cur;
139   total = 0;
140   cur = get_first_order();
141   while(cur){
142     total = total +
               cur->cost_order();
143     cur = cur->get_next_order();
144   }
145   return(total);
146 }
147
148 order::order(int n_o,customer *cus)
149 { int i;
150   order *cur, *prev;
151   if(find_order(n_o)){
152     delete(this);
153     return;
154   }
155   n_ord = n_o;
156   for(i=0; i <10; i++){
157     detail[i].n_prod = 0;
158     detail[i].quant = 0;
159   }
160   cust = cus;  next = orders;
161   orders = this;
162   cur = cust->get_first_order();
163   prev = NULL;
164   while(cur){
165       prev = cur;
166       cur = cur->get_next_order();
167     }
168   next_of_cust = NULL;
169   if (prev)

    prev->next_of_cust = this;
170   else cust->set_first_order(this);
171 }
172
173 customer *order::get_customer()
174 { return(cust);}
175
176 int order::get_n_ord()
177 { return(n_ord);}
178
179 TDate *order::get_date()
180 { return(&ord_date);}
181
182 order::detT *order::get_detail(int i)
183 { return(&detail[i]);}
184
185 void order::add_detail(int n_p, int q)
186 { int i;
187   if(!find_prod(n_p))
188     printf("the product does not

exist\n");
189   i = 0;

190   while(i<10){
191     if(detail[i].n_prod == 0)

      break;
192     if(detail[i].n_prod == n_p)

      break;
193     i++;
194   }
195   if(i<10)
196     if(detail[i].n_prod != n_p){
197       detail[i].n_prod = n_p;
198       detail[i].quant = q;
199     }
200 }
201
202 order *order::get_next()
203 { return(next);}
204
205
206 order *order::get_next_order()
207 { return(next_of_cust);}
208
209 int order::cost_order()
210 { int total, i; product *prod;
211   total = 0;
212   for(i=0; i<10; i++){
213     if(detail[i].n_prod == 0)

      break;
214   prod=find_prod(detail[i].n_prod);
215     total = total + detail[i].quant
216                * prod->get_price();
217   }
218   return(total);
219 }
220
221 product::product(int n_p, char *n, int

p)
222 { if(find_prod(n_p)){
223       delete(this);
224       return;
225     }
226   n_prod = n_p; strcpy(name, n);
227   price = p;
228   next = products; products = this;
229 }
230
231 product *product::get_next()
232 { return(next);}
233
234 int product::get_n_prod()
235 { return(n_prod);}
236
237 char *product::get_name()
238 { return(name);}
239
240 int product::get_price()
241 { return(price);}
242
243
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244 void new_cus()
245 { int n_cust;
246   customer::addrT addr;
247   char name[30];
248   printf("new customer : \nCustomer

code");
249   read_not_null(&n_cust);
250   printf("Customer's name : ");
251   read_not_null(name);
252   printf("address of customer\nstreet :

");
253   read_not_null(addr.street);
254   printf("number : ");
255   read_not_null(addr.num);
256   printf("zip code : ");
257   scanf("%s", addr.zip);
258   printf("city : ");
259   read_not_null(addr.city);
260   if(!new customer(n_cust, name, addr))
261     printf("err: cust not created\n");
262 }
263
264 void list_cus()
265 { customer *cur;
266   cur = customers;
267   while (cur){
268     printf("%s  amount due : %d\n",
269            cur->get_name(),

           cur->amount_due());
270     cur = cur->get_next();
271   }
272 }
273
274 void new_stk()
275 { int n_prod,price; char name[30];
276   printf("new product\n product

number:");
277   read_not_null(&n_prod);
278   printf("name : ");
279   read_not_null(name);
280   printf("price : ");
281   read_not_null(&price);
282   if(!new product(n_prod, name, price))
283     printf("error : product exists\n");
284 }
285
286 void list_stk()
287 { product *cur;
288   cur = products;
289   while(cur){
290     printf("%s->%d\n",

       cur->get_name(),
       cur->get_price());

291     cur = cur->get_next();
292   }
293 }
294
295 void new_ord()

296 { int n_ord, n_cus,n_prod, quant;
297   customer *cust;order *ord;
298
299   printf("New order\norder num: ");
300   read_not_null(&n_ord);
301   cust = NULL;
302   while(!cust){
303     printf("customer number : ");
304     read_not_null(&n_cus);
305     cust = find_customer(n_cus);
306   }
307   ord = new order(n_ord, cust);
308   if(!ord){
309     printf("err: order exists\n");
310     return;
311     }
312   printf("product num (0=end): ");
313   scanf("%d", &n_prod);
314   while(n_prod != 0){
315     printf("quantity: ");
316     read_not_null(&quant);
317     ord->add_detail(n_prod, quant);
318     printf("product n° (0=end): ");
319     read_not_null(&n_prod);
320   }
321 }
322
323 void list_ord()
324 { order *cur; order::detT *det;
325   int i;
326   cur = orders;
327   while(cur){
328     printf("order : %d\n",

           cur->get_n_ord());
329     for(i=0; i<10; i++){
330       det = cur->get_detail(i);
331       printf("\t%d  %d\n",
332          det->n_prod, det->quant);
333     }
334     printf("\tcost order : %d\n",
335          cur->cost_order());
336     cur = cur->get_next();
337   }
338 }
339
340 int main()
341 { char choice;
342   choice = ' ';
343   while(choice != '0'){
344     printf("1 New customer\n2 New

stock\n3 New order\n4 List of
customers\n5 List of stocks\n6 List
of orders\n0 end\n");

345     scanf("%c", &choice);
346     switch(choice){
347       case '1' : new_cus();
348         break;
349       case '2' : new_stk();
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350         break;
351       case '3' : new_ord();
352         break;
353       case '4' : list_cus();
354         break;
355       case '5' : list_stk();
356         break;
357       case '6' : list_ord();
358         break;
359       }
360     }
361 }
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