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On the Behavior of the Gradient Norm
in the Steepest Descent Method*
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Abstract. It is well known that the norm of the gradient may be unreliable as a stopping test in unconstrained
optimization, and that it often exhibits oscillations in the course of the optimization. In this paper we present
results descibing the properties of the gradient norm for the steepest descent method applied to quadratic objective
functions. We also make some general observations that apply to nonlinear problems, relating the gradient norm,
the objective function value, and the path generated by the iterates.

Keywords: nonlinear optimization, unconstrained optimization, steepest descent method, behavior of gradient
norm

1. Introduction

The sequence of gradient norms generated by algorithms for unconstrained optimization
often exhibits oscillatory behavior, but it is not well understood whether the size of the
oscillations is related to the conditioning of the problem and to the rate of convergence of
the iteration. Since the norm of the gradient is often used in termination rules, it is also
interesting to ask under what circumstances does it provide a good estimate of the accuracy
in the optimal function value. In this paper we study the properties of the gradient norm for
the steepest descent method applied to a quadratic objective function. We also present some
results describing the path followed by the iterates, and the final accuracy in the function
obtained in the presence of rounding errors.

We write the unconstrained optimization problem as

min
x∈Rn

f (x), (1.1)

∗Travel support for this research was provided by NATO grant CRG 960688.
†This author was supported by National Science Foundation grant CDA-9726385 and by Department of Energy
grant DE-FG02-87ER25047-A004.
∗∗Research Associate of the Belgian National Fund for Scientific Research.
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Table 1. Final objective value and final square norm of the gradient obtained by two optimization methods on
the PENALTY3 problem.

Algorithm f ‖g‖2
2

L-BFGS (m = 5) 9.999458658 × 10−4 6.66 × 10−5

Inexact Newton 9.999701976 × 10−4 1.29 × 10−13

where f is a twice continuously differentiable function whose gradient will be denoted
by g.

The motivation for this work arose during the development of a limited memory code (L-
BFGS-B) for bound constrained optimization [5, 14]. We observed that for some problems
this code was unable to reduce the gradient norm ‖g(x)‖ as much as we desired, but that
LANCELOT [7] had no difficulties in doing so. Initially we reported this as a failure of
the limited memory code to achieve high accuracy in the solution, but a closer examination
of the results revealed that in some of these runs the limited memory code had actually
produced a lower function value than LANCELOT. Several examples of this behavior are
described in [14]. In Table 1 we present a striking example that was obtained when the
inexact Newton method described in [6] and the limited memory code L-BFGS-B [14]
(using m = 5 correction pairs) were applied to the unconstrained optimization problem
PENALTY3 from the CUTE collection [4]. Both methods were run until no further progress
could be made in reducing the objective function; we report the final function values and
gradient square norms obtained by each method. (All the computations reported in this
paper were performed in IEEE double precision arithmetic.)

This behavior of limited memory methods (and more generally of quasi-Newton methods)
has been noted by other researchers [9, 12], and confirms the well-known fact that the
gradient norm can be an unreliable measure of accuracy in the objective function f (see for
example Chapter 8 in [10]).

Nevertheless there are good reasons for using the gradient norm to terminate optimization
calculations. We know that it must be zero at a solution, its value is available at every itera-
tion of a gradient-related method, and it requires no knowledge of the optimal function value
f ∗ or the solution vector x∗. Because of this, it is used extensively in automatic stopping
tests. For example, a variety of algorithms for constrained optimization, such as augmented
Lagrangian and barrier methods, require the solution of unconstrained optimization sub-
problems, and the termination tests for these subproblems are usually based on the norm of
the gradient.

The paper is organized as follows. In Section 2, we make some observations relating
the size of the gradient and the accuracy in the objective function; they apply to general
objective functions and are independent of the minimization algorithms used to solve the
problem. The rest of the paper concentrates on the steepest descent method applied to
quadratic functions. Section 3 summarizes the important results developed by Akaike [1]
and extended by Forsythe [8]. In Section 4 we present an upper bound on the maximum
oscillation in the gradient norm that can occur at any iteration, and in Section 5 we analyze
the asymptotic behavior of the gradient norm in detail. The most important and relevant
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results presented in Sections 3 to 5 are summarized in Theorem 5.2. In Section 6 we study
the special case of a two-dimensional quadratic. We conclude in Section 7 by making some
observations on the final accuracy in the objective function.

Notation. Machine accuracy (or unit roundoff) is denoted by u. We denote the condition
number of a matrix A by γ (A), or simply by γ when the argument is clear. Throughout the
paper ‖ · ‖ denotes the �2 or Euclidean norm.

2. Accuracy in f vs gradient norm

Let us explore the relationship between the accuracy in the objective function, as measured
by difference in function values

f (x) − f ∗, (2.1)

and the norm of the gradient,

‖g(x)‖, (2.2)

which must be zero at a solution. Other norms can be used, but for the sake of con-
creteness we will focus our attention on the Euclidean norm of the gradient. Most of
the results given in this section can be found in [10], but we derive them for clarity and
completeness.

Using Taylor’s theorem we have

f (x) = f ∗ + g(x∗)T (x − x∗) + 1

2
(x − x∗)T Ĝ(x − x∗),

where Ĝ = ∇2 f (ζ ) for some ζ in the line segment connecting x and x∗. Noting that g(x∗) = 0
we obtain

f (x) − f ∗ = 1

2
λ(x)‖x − x∗‖2, (2.3)

where λ(x) is the Rayleigh quotient of Ĝ in the direction x − x∗, and is defined by

λ(x) = (x − x∗)T Ĝ(x − x∗)

‖x − x∗‖2
. (2.4)

Let us now consider the gradient. Taylor’s theorem gives

g(x) = g(x∗) + Ḡ(x − x∗),

where

Ḡ =
∫ 1

0
∇2 f (x + τ (x∗ − x)) dτ.
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Thus

‖g(x)‖2 = λ̄(x)‖x − x∗‖2, (2.5)

where

λ̄(x) = (x − x∗)T Ḡ2(x − x∗)

‖x − x∗‖2
(2.6)

is the Rayleigh quotient of Ḡ2 in the direction x − x∗. Thus f (x) − f ∗ and ‖g(x)‖2 are
both proportional to ‖x − x∗‖2, and combining (2.3) and (2.5) we obtain

f (x) − f ∗ = 1

2

[
(x − x∗)T Ĝ(x − x∗)

(x − x∗)T Ḡ2(x − x∗)

]
‖g(x)‖2. (2.7)

There is a simple geometrical interpretation of (2.7) in the case where the objective function
is a strongly convex quadratic,

f (x) = 1

2
xT Gx,

where G is positive definite. In this case Ĝ = Ḡ = G and (2.7) becomes

f (x) − f ∗ = 1

2

[ ‖z‖2

zT Gz

]
‖g(x)‖2, (2.8)

where z = G
1
2 (x − x∗). In figure 1 we plot contours of f and ‖g‖2 for the case f (x) =

(x2
1 + 5x2

2 )/2. Note that since ‖g(x)‖2 = xT G2x , the contours of ‖g‖2 are more elongated
than those of f . Let us consider the points x̂ = (0, 2/

√
5) and x = (2, 0), which have the

same objective function value. It is clear from figure 1 that

‖g(x̂)‖2 > ‖g(x)‖2,

Figure 1. Contours of f (x) = 1
2 (x2

1 + 5x2
2 ) and ‖g(x)‖2 = x2

1 + 25x2
2 .
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so that the gradient norm does not provide useful information about the accuracy in the
objective function in this case. Indeed, we see from (2.8) that the relative magnitudes of
f (x) − f ∗ and ‖g(x)‖2 can vary as much as the condition number of the Hessian. This
observation shall be related to the results of Table 1, since the Hessian matrix of problem
PENALTY3 at the solution has a condition number of 1.1 × 1013.

Figure 1 also suggests that the path followed by the iterates of an optimization algorithm
may determine whether a small or large final gradient norm is obtained. Let us suppose
that the region inside the solid line in figure 1 now denotes the set of points for which the
function values cannot be distinguished in machine arithmetic. If an iterate falls inside this
region the algorithm will stop as it will not be able to improve the objective function. An
algorithm that approaches this region near x̂ will give a higher gradient value than one
approaching near x , but the quality of the solution, as measured by the objective function,
will not be worse at x̂ .

We will show below that the steepest descent method will normally approach a solution
along a point such as x in figure 1. As a result it will produce a final gradient norm that
will be small, compared to other gradient norms corresponding to equal function values.
Quasi-Newton methods are less predictable. An examination of numerical results reveals
that the path generated by their iterates varies from problem to problem, and a description
of the behavior of their gradient norms remains an open question.

3. Akaike’s results and some extensions

In the rest of the paper we focus on the steepest descent method, with exact line searches,
applied to the strongly convex quadratic function

f (x) = 1

2
(x − x∗)T Q(x − x∗), (3.1)

where Q ∈ R
n×n is a symmetric positive definite matrix and x ∈ R

n . We begin by reviewing
results of Akaike [1] that play an important role in our analysis of the asymptotic behavior
of the gradient norm in the steepest descent method.

An iteration of the steepest descent method is given by

x (k+1) = x (k) − θ (k)g(k), (3.2)

where

g(k) = g
(
x (k)

) = Q
(
x (k) − x∗), (3.3)

and

θ (k) =
(
g(k)

)T
g(k)(

g(k)
)T

Qg(k)
. (3.4)
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Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of Q, and ξ1, ξ2, . . . , ξn the corres
ponding set of (orthonormal) eigenvectors. Let x (0) be the starting point and, with respect
to this point, define

λ− = min
{
λi : ξ T

i g(0) �= 0
}

and λ− = max
{
λi : ξ T

i g(0) �= 0
}
. (3.5)

In order to rule out the trivial case where the steepest descent method (3.2)–(3.4) finds
the solution after one single iteration, we make the following assumption.

Assumption 1. The starting point x (0) and the matrix Q are such that λ− < λ−.

Indeed when Assumption 1 does not hold, the initial gradient g(0) is an eigenvector of Q.
We will also make the following assumption whose significance to the analysis will be
discussed later on.

Assumption 2. The matrix Q in (3.1) satisfies

0 < λ1 < · · · < λn, (3.6)

and the starting point is such that

λ− = λ1 and λ− = λn. (3.7)

Under Assumptions 1, Akaike shows in [1, Theorem 4] that the error ε(k) = x (k) − x∗ of the
k-th approximate solution tends to be approximated by a linear combination of two fixed
eigenvectors of Q corresponding to the eigenvalues λ− and λ−. In particular, if Assumption 2
holds, the steepest descent method is asymptotically reduced to a search in the 2-dimensional
subspace generated by the two eigenvectors corresponding to the largest and the smallest
eigenvalues of Q. Akaike also shows in [1, Theorem 4] that ε(k) alternates asymptotically
in two fixed directions. In Proposition 3.1, we summarize the main results on which the
proof of Theorem 4 in [1] is based.

To state the results we define α
(k)
i , i = 1, . . . , n, to be the components of g(k) along the

eigenvectors ξi of Q, that is,

g(k) =
n∑

i=1

α
(k)
i ξi . (3.8)

Proposition 3.1. Suppose that Assumptions 1 and 2 hold, and that we apply the steepest
descent method (3.2)–(3.4) to a strongly convex quadratic function. Then
(i) the following limits hold,

lim
k→∞

(
α

(2k)
i

)2

∑n
j=1

(
α

(2k)
j

)2 =




1

1 + c2
, if i = 1,

0, if i = 2, . . . , n − 1,

c2

1 + c2
, if i = n,

(3.9)
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and

lim
k→∞

(
α

(2k+1)
i

)2

∑n
j=1

(
α

(2k+1)
j

)2 =




c2

1 + c2
, if i = 1,

0, if i = 2, . . . , n − 1,

1

1 + c2
, if i = n,

(3.10)

for some non-zero c, and
(ii) the components α

(2k)
1 , α(2k)

n , α
(2k+1)
1 and α(2k+1)

n have fixed signs for large k.

Proof: Item (i) is clearly established in the first part of the proof of Theorem 4 in [1]. Item
(ii) is a consequence of the second part of the proof of Theorem 4 in [1]. A clearer proof
is given by Forsythe in [8, Theorem 4.12] and the comment that follows. Indeed, Forsythe
shows that the even and odd normalized gradients (y2k and y2k+1, respectively, in Forsythe’s
notation), converge to a single point. The sequences of first and last components of these
vectors,

 α
(2k)
i√∑n

j=1

(
α

(2k)
j

)2


 and


 α

(2k+1)
i√∑n

j=1

(
α

(2k+1)
j

)2


 (3.11)

for i = 1 and i = n in our notation, thus converge to non-zero values, proving (ii). �

Proposition 3.2 gives the asymptotic rate of convergence of f (k) (= f (x (k))), as derived
by Akaike in [1, Page 11].

Proposition 3.2. Under the assumptions of Proposition 3.1, the sequence of function
values satisfies

lim
k→∞

f (k+1)

f (k)
= c2(γ − 1)2

(c2 + γ )(1 + c2γ )
, (3.12)

where c is the same constant as in Proposition 3.1, and γ = λn/λ1.

Proof: Akaike shows in [1, Page 11] that

lim
k→∞

f (k+1)

f (k)
= (λn − λ1)2{(λn + λ1)2 + (c − c−1)2λ1λn}−1, (3.13)

where c is the same constant as in Proposition 3.1. We can rewrite this limit as

lim
k→∞

f (k+1)

f (k)
= c2(γ − 1)2

c2(1 + γ )2 + (c2 − 1)2γ
, (3.14)

which is equivalent to (3.12). �
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A simple computation shows that the right hand side of (3.12) is maximized when c2 = 1;
this gives the worst rate of convergence in the objective function.

Next, we extend Akaike’s results to provide an interpretation for the meaning of c, and
in particular, show that it is related to the ratio of the components of the gradient g(k) in the
coordinate system defined by the eigenvectors ξ1 and ξn . Before establishing this result, we
make the following observations: Assumptions 1 and 2 guarantee that

α
(k)
1 �= 0 and α(k)

n �= 0 for all k ≥ 0. (3.15)

Indeed, since α
(k)
i = ξ T

i g(k), (3.15) is obviously true for k = 0, by definition of λ− and λ−

and by Assumption 2. For k > 0, observe that, by multiplying (3.2) by Q and using (3.3)
and (3.8),

α
(k)
i = α

(k−1)
i

(
1 − θ (k−1)λi

)
, i = 1, . . . , n, (3.16)

and

θ (k−1) =
∑n

i=1

(
α

(k−1)
i

)2

∑n
i=1

(
α

(k−1)
i

)2
λi

, (3.17)

by (3.4) and (3.8). It follows from Assumption 1, (3.7) and (3.17) that

λ1 <
1

θ (k−1)
< λn

for all k > 0. Hence (3.15) also holds for k > 0, by (3.16).
We next consider the asymptotic behavior of the sequence of steplengths {θ (k)}.

Lemma 3.3. Under the assumptions of Proposition 3.1, the following limits hold,

lim
k→∞

θ (2k) = 1 + c2

λ1(1 + c2γ )
(3.18)

and

lim
k→∞

θ (2k+1) = 1 + c2

λ1(c2 + λ)
, (3.19)

where c is the same constant as in Proposition 3.1.

Proof: From (3.17), (3.9) and (3.10) we have

lim
k→∞

(
θ (2k)

)−1 = λ1(1 + c2γ )

1 + c2
(3.20)
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and

lim
k→∞

(
θ (2k+1)

)−1 = λ1(c2 + γ )

1 + c2
. (3.21)

�

We can now provide an interpretation for the constant c.

Lemma 3.4. Under the assumptions of Proposition 3.1, the constant c satisfies

c = lim
k→∞

α(2k)
n

α
(2k)
1

, (3.22)

and

c = − lim
k→∞

α
(2k+1)
1

α
(2k+1)
n

. (3.23)

Moreover c is uniquely determined by the starting point x (0) and by the eigenvalues and the
eigenvectors of Q.

Proof: From (3.9) and (3.10) we have that

lim
k→∞

(
α(2k)

n

)2(
α

(2k)
1

)2 = lim
k→∞

(
α

(2k+1)
1

)2(
α

(2k+1)
n

)2 = c2. (3.24)

These limits together with item (ii) of Proposition 3.1 are sufficient to ensure the convergence
of the sequences {α(2k)

n /α
(2k)
1 } and {α(2k+1)

1 /α(2k+1)
n }. Hence we can deduce (3.22) from (3.24),

without loss of generality. Now (3.16), (3.18) and (3.22) imply that

lim
k→∞

α
(2k+1)
1

α
(2k+1)
n

= lim
k→∞

α
(2k)
1

(
1 − θ (2k)λ1

)
α

(2k)
n

(
1 − θ (2k)λn

) = −c, (3.25)

which proves (3.23).
Finally note that equalities (3.16) and (3.17) together with (3.22) or (3.23) show that c

is uniquely determined by the values of α
(0)
i , i = 1, . . . , n (and hence by the starting point

x (0)), and by the eigenvalues and the eigenvectors of Q. �

We now determine the range of values that c can attain, for a given starting point x (0). An
important quantity in this analysis is the minimum deviation of the eigenvalues of Q from
the midrange, as measured by

δ = min
i∈I

∣∣∣∣∣λi − λn+λ1
2

λn−λ1
2

∣∣∣∣∣, (3.26)
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where

I = {
i = 2, . . . , n − 1 : λ1 < λi < λn, ξ T

i g(0) �= 0 and λi �= (
θ (k)

)−1 ∀k ≥ 0
}
.

(3.27)

Note that δ ∈ [0, 1), and its value depends on x (0) through the definition of the set I. More-
over, δ can only be near one if all the eigenvalues whose index is in I cluster around λ1 and
λn . It is also important to observe that, by the identity α

(0)
i = ξ T

i g(0) and (3.16),

i ∈ I ⇒ λ1 < λi < λn and α
(k)
i �= 0 for all k ≥ 0. (3.28)

In other words, for i ∈ I, the gradient component along the eigenvector ξi whose corre-
sponding eigenvalue is strictly between λ1 and λn is not discarded in the course of the
algorithm.

The restriction on the possible values for c given by the following lemma is an obvious
consequence of a result of Akaike (see [1, Page 12]) from which the author deduces that
“the rate of convergence of the steepest descent method for ill-conditioned problems tends
near to its worst possible value (reached for c2 = 1), especially when there is some λi close
to the midpoint (λn + λ1)/2”.

Lemma 3.5. Under the assumptions of Proposition 3.1, and assuming that the set I is
nonempty, c is restricted to the interval

φ−1
δ ≤ c2 ≤ φδ, (3.29)

where

φδ =
2 + ηδ +

√
η2

δ + 4ηδ

2
, (3.30)

and

ηδ = 4

(
1 + δ2

1 − δ2

)
. (3.31)

Proof: Using the following inequality that holds for all i ∈ I (see [1, Page 12]),

(
λn − λ1

2

)2

+
(

λi − λn + λ1

2

)2

≥ (1 − c2)2

2(1 + c2)2
(λn − λ1)2, (3.32)

Akaike shows that

(c2 − 1)2

c2
≤ ηi (3.33)
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for all i ∈ I, where

ηi = 4

(
1 + δ2

i

1 − δ2
i

)
, (3.34)

and

δi = λi − λn+λ1
2

λn−λ1
2

. (3.35)

Since |δi | < 1 for all i ∈ I, using the definition (3.26) of the minimum deviation δ, we
obtain

(c2 − 1)2

c2
≤ ηδ, (3.36)

where ηδ is defined in (3.31). This last inequality is equivalent to (3.29). �

Note that, by (3.28), the requirement that the set I be nonempty in the assumptions of
Lemma 3.5 guarantees that at least one gradient component along an eigenvector ξi whose
corresponding eigenvalue is strictly between λ1 and λn is not discarded in the course of
the algorithm. If I is empty, the steepest descent method will be reduced to a search in the
2-dimensional subspace generated by ξ1 and ξn after a finite number of iterations rather than
asymptotically. In that case, the behavior of the method is not typical: it coincides with that
for the 2-dimensional case, which as we will see in Section 6, has some special properties.

Figure 2 illustrates the possible values of c2 as a function of δ. It is clear that φδ increases
very slowly with δ—except when δ approaches 1, when it diverges to ∞. Note also that the
value c2 = 1 giving the worst rate of convergence in f is always contained in the range of
possible values of c. The definitions (3.30) and (3.31) imply that φδ (and hence the set of
possible values of c2) is exclusively determined by δ (for a fixed starting point), and thus
by the distribution of the inner eigenvalues of Q—and is in general not directly dependent
on the condition number γ , since we can vary γ while leaving δ unchanged.

Lemma 3.5 specifies the interval (3.29) of possible values of c2, but it does not state
that all values of c2 in this interval can be attained for some starting point. We performed,
however, some numerical experiments that suggest that this is indeed the case. For the
two quadratic functions f (x) = (x2

1 + 4x2
2 + 16x2

3 )/2 and f (x) = (x2
1 + 75x2

2 + 80x2
3 )/2,

we generated 1000 random starting points on the unit sphere, applied the steepest descent
method (3.2)–(3.4), and recorded the values of c2, as given by (3.22) and (3.23). Figure 3
shows the plots of the recorded values for the two examples (one “x” per recorded value of
c2). We note that for the first example, δ = 0.6 and [φ−1

δ , φδ] = [0.0961, 10.4039], while
for the second example, δ = 0.8734 and [φ−1

δ , φδ] = [0.0315, 31.7036].
Assumption 2 has been made throughout this section to simplify the exposition. We note,

however, that (3.6) can be relaxed without altering the results stated here, as discussed by
Forsythe [8, Section 5]. On the other hand, (3.7) is assumed for convenience and without
loss of generality.
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Figure 2. Intervals [φ−1
δ , φδ] of possible values of c2, as a function of δ ∈ [0, 1).

4. Maximum oscillation in the gradient norm

The following result provides an upper bound on the growth of the gradient norm as a
function of the condition number γ . This bound holds, not only asymptotically, but at each
iteration, and its derivation is independent from the results of Section 3.

Theorem 4.1. At each iteration of the steepest descent method (3.2)–(3.4) applied to a
strongly convex quadratic function,

∥∥g(k+1)
∥∥2∥∥g(k)

∥∥2 ≤ (γ − 1)2

4γ
, (4.1)

where γ = λn/λ1.

Proof: The proof is similar to that used in [11] to establish the rate of convergence of the
objective function for the steepest descent method. By (3.2) and (3.3), we have

g(k+1) = g(k) − θ (k) Qg(k).
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Figure 3. Values of c2 (dark bars) attained from a sample of 1000 random starting points, for two quadratic
functions in three variables.

Therefore

∥∥g(k+1)
∥∥2 = ∥∥g(k)

∥∥2 − 2θ (k)
(
g(k)

)T
Qg(k) + (

θ (k)
)2(

g(k)
)T

Q2g(k).

Substituting (3.4) in the above expression yields

∥∥g(k+1)
∥∥2 =

{∥∥g(k)
∥∥2∥∥Qg(k)

∥∥2((
g(k)

)T
Qg(k)

)2 − 1

}∥∥g(k)
∥∥2

. (4.2)

By introducing z(k) = Q1/2g(k), we may rewrite this equation as

∥∥g(k+1)
∥∥2 =

{((
z(k)

)T
Q−1z(k)

)((
z(k)

)T
Qz(k)

)
((

z(k)
)T

z(k)
)2 − 1

}∥∥g(k)
∥∥2

. (4.3)
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Using the Kantorovich inequality (see [11]), we have

((
z(k)

)T
Q−1z(k)

)((
z(k)

)T
Qz(k)

)
((

z(k)
)T

z(k)
)2 ≤ (1 + γ )2

4γ
.

Substituting this inequality in (4.3) yields the desired bound (4.1). �

This result implies that, for the gradient norm to increase, it is necessary that (γ − 1)2 >

4γ , that is,

γ > 3 + 2
√

2. (4.4)

Conversely, if the condition number of Q satisfies γ ≤ 3 + 2
√

2, then the sequence of gra-
dient norms {‖g(k)‖} generated by the steepest descent method (3.2)–(3.4) is monotonically
decreasing. We can also deduce from this theorem that, if large oscillations in the gradient
are observed, the problem must be ill-conditioned.

5. Asymptotic behavior of the gradient norm

Theorem 4.1 might suggest that, for ill-conditioned problems, the norm of the gradient can
exhibit extreme growth at some iterations. Of course, since the gradient converges to zero
(in exact arithmetic), there must exist iterations at which it decreases, and in general we can
expect oscillatory behavior.

In the next theorem, we study the one-step and two-step ratios of gradient norms and
establish their limiting values in terms of γ and the constant c from Section 3.

Theorem 5.1. Suppose that Assumptions 1 and 2 hold. When applying the steepest descent
method (3.2)–(3.4) to a strongly convex quadratic function, we have both

lim
k→∞

∥∥g(2k+1)
∥∥2∥∥g(2k)

∥∥2 = c2(γ − 1)2

(1 + c2γ )2
, (5.1)

and

lim
k→∞

∥∥g(2k+2)
∥∥2∥∥g(2k+1)
∥∥2 = c2(γ − 1)2

(c2 + γ )2
, (5.2)

where c is the same constant as in Proposition 3.1. Moreover, the two-step asymptotic rate
of convergence of the gradient norm is equal to the one-step asymptotic rate in the function
value, i.e.

lim
k→∞

∥∥g(k+2)
∥∥∥∥g(k)

∥∥ = lim
k→∞

f (k+1)

f (k)
. (5.3)
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Proof: Using (3.8), (3.15) and (3.16), we have that

∥∥g(2k+1)
∥∥2∥∥g(2k)

∥∥2 =
∑n

i=1

(
α

(2k+1)
i

)2

∑n
i=1

(
α

(2k)
i

)2

=
(
α

(2k+1)
1

)2 ∑n
i=1

((
α

(2k+1)
i

)2/(
α

(2k+1)
1

)2)(
α

(2k)
1

)2 ∑n
i=1

((
α

(2k)
i

)2/(
α

(2k)
1

)2)
=

(
1 − θ (2k)λ1

)2 ∑n
i=1

((
α

(2k+1)
i

)2/(
α

(2k+1)
1

)2)
∑n

i=1

((
α

(2k)
i

)2/(
α

(2k)
1

)2) . (5.4)

As in the proof of Lemma 3.4, we observe that (3.9) and (3.10) yield

lim
k→∞

(
α(2k)

n

)2(
α

(2k)
1

)2 = lim
k→∞

(
α

(2k+1)
1

)2(
α

(2k+1)
n

)2 = c2 (5.5)

and, for i = 2, . . . , n − 1,

lim
k→∞

(
α

(k)
i

)2(
α

(k)
1

)2 = lim
k→∞

(
α

(k)
i

)2(
α

(k)
n

)2 = 0. (5.6)

We thus deduce (5.1) from (5.4) using these limits and (3.18) in Lemma 3.3. The proof of
(5.2) is similar, but uses (3.19) rather than (3.18), and (5.3) is an obvious consequence of
Proposition 3.2, (5.1) and (5.2). �

It is interesting to note that the two limits (5.1) and (5.2) coincide if and only if c2 = 1,
which as we recall gives the worst rate of convergence in the objective function. Indeed,
for this value of c2 the three limits (5.1), (5.2) and (3.12) are the same. Thus, if c2 = 1, the
one-step rates of convergence of ‖g(k)‖2 and f (k) are the same, and the sequence of gradient
norms will be monotonically decreasing for all sufficiently large k. These observations
indicate that we cannot use the amplitude of the oscillations in the gradient norm as a sign
that the starting point has caused the worst rate of convergence in f to take place; nor does
the lack of oscillations in the gradient norm imply that the condition number of the Hessian
Q is moderate. But, as noted earlier, since (4.1) is of order O(γ ), it is correct to state that
if the oscillations in the gradient norm are large, then the condition number of Q must be
large.

In the next section, we will make use of the results of Theorems 4.1 and 5.1 to make
further observations about the asymptotic oscillatory behavior of the gradient norm.

5.1. Oscillations in the gradient norms

For a given problem, the choice of initial point determines both whether oscillations in the
gradient norm will take place and the magnitude of the oscillations. Unlike the 2-dimensional
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case (see Section 6) we will not be able to directly characterize the regions of initial points
in R

n for which oscillations in the gradient norm take place. Instead we follow an indirect
approach, using the results established so far, to make some observations about the largest
possible oscillation and about the relationship between the rate of convergence in f and
the oscillatory behavior of the gradient norm. These observations apply to most, but not all,
problems.

We assume throughout this section that x (0) is fixed and γ is large enough that (4.4) holds.
We first ask whether the upper bound given in (4.1)—which gives the maximum increase
in the gradient norm, at one iteration—can be attained, asymptotically. Using (4.1), (5.1)
and (5.2), we set up the equations

c2(γ − 1)2

(1 + c2γ )2
= (γ − 1)2

4γ
and

c2(γ − 1)2

(c2 + γ )2
= (γ − 1)2

4γ
,

whose solutions are

c2 = 1/γ and c2 = γ, (5.7)

respectively. If c takes one of these values, then the maximum possible oscillation in ‖g‖
(for that γ ) will occur asymptotically.

From the one-step asymptotic behavior (5.1) and (5.2), we can also deduce that the
gradient norm will grow (and thus oscillate) for sufficiently large k if one of the following
conditions is satisfied:

c2(γ − 1)2

(1 + c2γ )2
> 1 or

c2(γ − 1)2

(c2 + γ )2
> 1.

These two inequalities yield

lγ
γ 2

< c2 <
uγ

γ 2
and lγ < c2 < uγ , (5.8)

where

lγ = (γ − 1)2 − 2γ − (γ − 1)
√

(γ − 1)2 − 4γ

2
, (5.9)

and

uγ = (γ − 1)2 − 2γ + (γ − 1)
√

(γ − 1)2 − 4γ

2
. (5.10)

Since the bounds in (5.8) depend only on γ , we have found a simple relationship between
c and γ that ensures oscillations in the gradient.
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Figure 4. Intervals (lγ /γ 2, uγ /γ 2) and (lγ , uγ ) of c2 values for which the gradient norm experiences oscillation
asymptotically, for γ ∈ (3 + 2

√
2, 104].

Figure 4 illustrates the values of c2 and γ satisfying (5.8). The two dashed lines represent
the values c2 = 1/γ and c2 = γ corresponding to the largest possible growth in ‖g‖ (see
(5.7)). Since lγ and uγ satisfy

1 < lγ < γ < uγ < γ 2 and lγ uγ = γ 2 (5.11)

for all γ satisfying (4.4), and since

lim
γ→∞ lγ = 1 and lim

γ→∞ uγ = ∞, (5.12)

whe see that as γ tends to infinity, the intervals (5.8) expand to cover (0, 1) and (1, ∞),
respectively, but never overlap. Thus the value c2 = 1, which gives rise to the worst rate of
convergence in f , is not contained in the shaded area of figure 4. This is consistent with
our previous observation that oscillations in the gradient norm do not occur in this case.

We have seen in Section 3, however, that the values of c2 must be restricted to the interval
(3.29). In figure 5 we superimpose over figure 4 the set of possible values of c2 (shaded
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Figure 5. Possible c2 values as a function of γ , for δ = 0.95, superimposed on the set of values of c2 and γ for
which oscillation in the gradient norm takes place.

region) for δ = 0.95. (Note that δ = 0.95 yields a rather large set of possible values of c2

and corresponds to a spectrum of Q whose eigenvalues are relatively far from (λ1 +λn)/2.)
Let us now consider how large can we expect the oscillations in ‖g‖ to be. It is immediately
apparent from figure 5 that the shaded region of possible values of c2 considerably limits
the size of the oscillations in ‖g‖—compared to the maximum value which occurs when
the values of c2 and γ lie on the dashed lines. More specifically, if

φδ < γ, (5.13)

the one-step growth in the gradient norm will not approach the upper bound given by (4.1),
regardless of the starting point. Moreover, as γ increases, the gap between the maximum
actual oscillation in ‖g‖ and the upper bound (4.1) will widen. Condition (5.13) will
be satisfied for most ill-conditioned problems and for most starting points since we have
observed in Section 3 that φδ is small except when δ is close to one. For example, even in
the mildly ill-conditioned case when γ = 200 we find that δ has to be greater than 0.98 for
(5.13) to be violated.

We conclude this section by making an interesting remark relating the rate of convergence
in f and the behavior of the gradient norm. Consider the right hand side of (3.12) as a function
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of c2, when γ > 1 is held fixed. This function is monotonically increasing for c2 ∈ (0, 1)
and monotonically decreasing in (1, ∞). Therefore:

(i) the rate of convergence in f decreases for c2 ∈ (0, 1);
(ii) the rate of convergence in f increases for c2 ∈ (1, ∞).

In terms of figure 5, as we move away vertically from both sides of the dash-dot line
corresponding to c2 = 1, the rate of convergence in f improves monotonically.

Let us now consider the oscillations in the gradient norm. If we vary c2 for a fixed value
of γ , it is easy to see that:

(iii) the right hand side in (5.1) is monotonically increasing for c2 ≤ 1/γ and monotonically
decreasing otherwise;

(iv) the right hand side in (5.2) is monotonically increasing for c2 ≤ γ and monotonically
decreasing otherwise.

We must, however, focus only on the possible values of c2. For the current case where
condition (5.13) holds, c2 must satisfy

c2 > 1/γ or c2 < γ,

by (3.29) in Lemma 3.5. From this and (iii) and (iv), we deduce (see figure 5) that when
increasing or decreasing c2 vertically (i.e. for fixed γ ) away from the value 1 until it reaches
the border of the shaded area of possible values of c2, the oscillations in the gradient increase
(for either the odd or even iterates). More precisely by moving c2 away from the value 1, we
first obtain values of c2 for which oscillations in the gradient will not occur (since the curves
in figure 5 do not touch along the line c2 = 1), while varying c2 further generates values for
which oscillations of increasing magnitude take place. Combining these observations with
(i) and (ii) we deduce that if (5.13) holds (which should be often the case) the asymptotic
behavior of the steepest descent method is such that the larger the oscillation in ‖g‖, the
faster the convergence rate in f . This observation was contrary to our initial expectations,
as we had speculated that the largest oscillations in the gradient would characterize the most
unfavorable starting points.

5.2. Path followed by the iterates

As we mentioned in Section 3, Akaike has shown (see [1, Theorem 4]) that if Assumptions
1 and 2 hold, the steepest descent method is asymptotically reduced to a search in the
2-dimensional subspace generated by the eigenvectors ξ1 and ξn . Let us therefore consider
the restriction of f to this subspace, and observe the values of the ratio

α(k)
n

α
(k)
1

. (5.14)
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Due to the definition of α
(k)
i , this ratio is the slope of the gradient g(k) restricted to the space

spanned by ξ1 and ξn . We deduce from (3.22), (3.23) and (3.29) that, for a given value of δ,

[
α(k)

n

α
(k)
1

]2

∈ [
φ−1

δ , φδ

]
, (5.15)

asymptotically. Since these intervals are generally narrow, the possible values for the slope
of the gradient are greatly restricted, and imply that the iterates approach the solution along
a path that is close to the eigenvector corresponding to the smallest eigenvalue of Q. This
is associated with relatively small gradient norms, as we discussed in Section 2.

To illustrate this, we plot in figure 6 the contours of f = (x2
1 + 49x2

n )/2, which can
be considered as the restriction of some quadratic function to R

2. Let us assume that
[φ−1

δ , φδ] = [0.1, 10], which corresponds to δ � 0.58. The sets of points for which the
slope of the gradient satisfies the restriction (5.15) has been highlighted in figure 6. (Note
that the highlighted areas in figure 6 do not overlap at the left and right extreme points of
the contours, because φ−1

δ > 0.) As γ grows and the contours become more elongated, the
highlighted areas shrink and move closer and closer to the horizontal axis.

Let us now consider an example in three dimensions and observe the path in R
3 followed

in by the iterates, for a given choice of the starting point. Figures 7 to 10 illustrate this path
in the case when f (x) = (x2

1 + 4x2
2 + 16x2

3 )/2 and x (0) = (3.1, 1, 0.39). For this example,
γ = 16, δ = 0.6 and c = 1.2. Figures 7, 9 and 10 show the rather fast speed at which the

Figure 6. Sets of possible iterates, restricted to the 2-dimensional subspace spanned by ξ1 and ξn , in the case
when [φ−1

δ , φδ] = [0.1, 10].
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Figure 7. Example of path generated by the steepest descent method.

Figure 8. Viewpoint perpendicular to the x1x3-plane.

method is reduced asymptotically to a search in the x1x3-plane (that is, at which the second
component becomes very small and converges to zero). Figure 8 shows that the iterates
alternate asymptotically in two fixed directions. Figures 8 and 9 illustrate the fact that the
path followed by the iterates is closely aligned with the eigenvector corresponding to the
smallest eigenvalue.

In summary, by combining the results of Sections 2 and 3, we conclude that the steepest
descent iterates will normally approach the solution along a path that will give a small final
gradient norm, compared to the set of all gradient norm values corresponding to the same
final function value.
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Figure 9. Viewpoint perpendicular to the x1x2-plane.

Figure 10. Viewpoint perpendicular to the x2x3-plane.

5.3. Summary of the results

For clarity, we now summarize the main results that have been presented in Sections 4 and
5. Since several of these results refer to the constant c, we also review its main properties
presented in Section 3.
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Theorem 5.2. Suppose that we apply the steepest descent method (3.2)–(3.4) with exact
line searches, starting from x (0), to the strongly convex quadratic function

f (x) = 1

2
(x − x∗)T Q(x − x∗), (5.16)

where Q ∈ R
n×n is symmetric positive definite with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn

and corresponding (orthonormal) eigenvectors ξ1, ξ2, . . . , ξn. Then
(i) for all k ≥ 0,

∥∥g(k+1)
∥∥2∥∥g(k)

∥∥2 ≤ (γ − 1)2

4γ
, (5.17)

where γ = λn/λ1;
(ii) if Assumptions 1 and 2 in Section 3 hold, then

lim
k→∞

∥∥g(2k+1)
∥∥2∥∥g(2k)

∥∥2 = c2(γ − 1)2

(1 + c2γ )2
, (5.18)

lim
k→∞

∥∥g(2k+2)
∥∥2∥∥g(2k+1)
∥∥2 = c2(γ − 1)2

(c2 + γ )2
, (5.19)

and

lim
k→∞

∥∥g(k+2)
∥∥∥∥g(k)

∥∥ = lim
k→∞

f (k+1)

f (k)
= c2(γ − 1)2

(c2 + γ )(1 + c2γ )
, (5.20)

for some constant c, which satisfies the following three properties:
(a) c is given by the limits

c = lim
k→∞

α(2k)
n

α
(2k)
1

= − lim
k→∞

α
(2k+1)
1

α
(2k+1)
n

, (5.21)

where α
(k)
i , i = 1, . . . , n, are the components of g(k) along the eigenvectors ξi of Q,

that is,

g(k) =
n∑

i=1

α
(k)
i ξi ; (5.22)

(b) c is uniquely determined by the starting point x (0) and by the eigenvalues and the
eigenvectors of Q;
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(c) if the set

I = {
i = 2, . . . , n − 1 : λ1 < λi < λn, ξ T

i g(0) �= 0

and λi �= (
θ (k)

)−1 ∀k ≥ 0
}

(5.23)

is nonempty, c is restricted to the interval

φ−1
δ ≤ c2 ≤ φδ, (5.24)

where

φδ =
2 + ηδ +

√
η2

δ + 4ηδ

2
, (5.25)

with

ηδ = 4

(
1 + δ2

1 − δ2

)
and δ = min

i∈I

∣∣∣∣λi − λn+λ1
2

λn−λ1
2

∣∣∣∣. (5.26)

In Section 3 we described numerical experiments that suggest that the bounds (5.24) are
tight. This observation, and the results summarized in Theorem 5.2 allowed us to make
the series of observations about the behavior of the gradient norm presented in this section.
More precisely, the characterization of the oscillatory behavior of the gradient norm derived
in Section 5.1 is a direct consequence of results (5.17), (5.18) and (5.19) when combined
with (5.24), while the characterization of the path followed by the iterates described in
Section 5.2 is a result of the combination of (5.21), (5.22) and (5.24).

6. The 2-dimensional case

Since the set I in (3.27) is always empty in the 2-dimensional case, the assumptions of
Lemma 3.5 are never satisfied and the values of c2 will not be restricted to the interval
(3.29). Therefore, we can expect a different behavior of the steepest descent method in the
2-dimensional case. In particular, we will be able to describe the behavior of the gradient
norm at every iteration in terms of the starting point and the condition number γ . The rate
of convergence in f is also easily characterized.

As the steepest descent method is invariant under the rotations and translations of the
coordinates, let us assume, without losing generality, that

Q =
(

λ1 0

0 λ2

)
and x∗ = (0, 0) (6.27)

in (3.1), and that 0 < λ1 < λ2.
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Writing x (k) = (x (k)
1 , x (k)

2 ), relation (3.3) implies that

g(k) = (
λ1x (k)

1 , λ2x (k)
2

)
. (6.28)

Let us define

ρ(k) = x (k)
1

x (k)
2

.

Using (3.2) and (3.4) it is easy to verify that ρ(k+1) = −γ 2/ρ(k) for all k ≥ 0, with γ = λ2/λ1,
as pointed out in [3]. This implies that

ρ(2k) = ρ(0) and ρ(2k+1) = − γ 2

ρ(0)
, (6.29)

for all k ≥ 0. Hence, the sequence of iterates {x (k)} zigzags between the pair of straight lines
x2 = (1/ρ(0))x1 and x2 = −(ρ(0)/γ 2)x1, as is the case asymptotically in the n-dimensional
case (see figures 7 and 8).

Observe now that (3.8), (6.28) and (6.29) imply that

α
(2k)
2

α
(2k)
1

= γ

ρ(2k)
= γ

ρ(0)
(6.30)

and

α
(2k+1)
2

α
(2k+1)
1

= γ

ρ(2k+1)
= −ρ(0)

γ
, (6.31)

for all k ≥ 0. Hence the two subsequences {α(2k)
2 /α

(2k)
1 } and {α(2k+1)

2 /α
(2k+1)
1 } are both

constant in the 2-dimensional case, and we can deduce from the definition of c in (3.22)
that

c = γ

ρ(0)
. (6.32)

In other words, c represents the constant slope γ /ρ(0) of the even subsequence of gradients
{g(2k)} at each iteration (the constant slope of the odd subsequence {g(2k+1)} is equal to
−ρ(0)/γ ).

As a consequence of this, the asymptotic analysis of the previous sections can now be
replaced by an exact analysis based on the ratio ρ(0) (or equivalently the starting point x (0)),
whose choice in the 2-dimensional plane is obviously free. Indeed, it is easy to verify that
(5.18), (5.19) and (5.20) hold for all k ≥ 0, i.e.,

∥∥g(2k+1)
∥∥2∥∥g(2k)

∥∥2 = γ 2
(
ρ(0)

)2
(1 − γ )2((

ρ(0)
)2 + γ 3

)2 , (6.33)
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∥∥g(2k+2)
∥∥2∥∥g(2k+1)
∥∥2 =

(
ρ(0)

)2
(γ − 1)2(

γ + (
ρ(0)

)2)2 , (6.34)

f (k+1)

f (k)
=

(
ρ(0)

)2
γ (γ − 1)2((

ρ(0)
)2 + γ 3

)((
ρ(0)

)2 + γ
) , (6.35)

and ∥∥g(k+2)
∥∥∥∥g(k)

∥∥ = f (k+1)

f (k)
. (6.36)

Let us now study under what conditions will the gradient norm oscillate. From (5.8) and
(5.11) we see that oscillations will take place if the starting point satisfies

γ l1/2
γ <

∣∣ρ(0)
∣∣ < γ u1/2

γ , (6.37)

or

l1/2
γ <

∣∣ρ(0)
∣∣ < u1/2

γ . (6.38)

Moreover, since (6.33) and (6.34) are equalities the amplitude of the oscillations of the odd
and even iterates is constant. Figure 11 gives a characterization of the oscillatory behavior

Figure 11. Characterization of the starting points for which the gradient norm will exhibit oscillations, in the
2-dimensional case. Here γ = 9.
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of the gradient norm according to the choice of the starting point in the 2-dimensional plane,
for the case λ1 = 1 and λ2 = 9. Conditions (6.37) and (6.38) determine two regions in each
quadrant (see the shaded areas) for which the starting point will give rise to oscillations
in the gradient. Observe that both conditions (6.37) and (6.38) together with (5.11) imply
that oscillation will never occur when |ρ(0)| ≤ 1. For the first quadrant for instance, this
corresponds to the region above the dotted line x2 = x1. Furthermore, because of (5.12),
when γ increases and tends to infinity, the smaller shaded cone in each quadrant will tend
to the horizontal axis, while the larger cone will expand to cover all the region |ρ(0)| > 1,
but without intersecting the smaller cone. Indeed, between these two cones lie the dash-
dot lines corresponding to the worst case for the rate of convergence in f , which occurs
when |ρ(0)| = γ , and for which oscillations in the gradient norm will never occur. Finally,
the largest oscillation in the gradient norm is obtained either when |ρ(0)| = γ 3/2 or when
|ρ(0)| = γ 1/2 (see the dashed lines).

Let us now consider the rate of convergence in f . It can easily be verified that

lim
γ→∞

f (k+1)

f (k)
=




0, if
∣∣ρ(0)

∣∣ < γ 1/2,

1

2
, if

∣∣ρ(0)
∣∣ = γ 1/2,

1, if γ 1/2 <
∣∣ρ(0)

∣∣ < γ 3/2,

1

2
, if

∣∣ρ(0)
∣∣ = γ 3/2,

0, if
∣∣ρ(0)

∣∣ > γ 3/2.

(6.39)

Hence again, the rate of convergence may be characterized according to the region of the
2-dimensional plane in which the starting point x (0) lies. Three kinds of regions can be distin-
guished in each quadrant, as illustrated by figure 12 for the case λ1 = 1 and λ2 = 9. If x (0) is
chosen outside the shaded areas (i.e. |ρ(0)| < γ 1/2 or |ρ(0)| > γ 3/2), the rate of convergence
in f will be fast. If x (0) is selected on the boundary of the shaded areas (i.e. |ρ(0)| = γ 1/2 or
|ρ(0)| = γ 3/2), the rate of convergence will be moderate. A starting point within the shaded

Figure 12. Characterization of the convergence rate in f in the 2-dimensional case according to the starting point
(for γ = 9).
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areas (i.e. γ 1/2 < |ρ(0)| < γ 3/2) will produce a slow rate of convergence—the slowest rate
being reached for a starting point satisfying |ρ(0)| = γ (see the two dash-dot lines).

We note also that as the condition number γ grows and tends to infinity, the shaded areas
in figure 12 shrink and tend towards the horizontal axis—which is the eigenvector ξ1. Thus
in the 2-dimensional case, if the starting point is chosen at random from, say, the uniform
distribution, the chance of selecting a starting point that produces a fast rate of convergence
increases with the condition number, a statement that cannot be made in the n-dimensional
case. Indeed, we have seen in Section 5.2 that in the n-dimensional case, as the algorithm is
progressively reduced to a search in the 2-dimensional subspace generated by ξ1 and ξn , the
iterates are generally attracted to the region near ξ1—which is precisely the area where slow
convergence in f prevails. This remark complements Akaike’s analysis and illustrates some
of the similarities and differences between the 2-dimensional and n-dimensional cases.

To conclude this section, we note from the fact that the shaded areas in figure 12 shrink and
tend toward the horizontal axis as γ → ∞, that for a fixed initial point x (0) (or equivalently
ρ(0)), the rate of convergence may even improve when γ increases (see figure 13). Indeed,
it can be shown that the derivative with respect to γ of the right hand side term in (6.35) is
negative if γ satisfies condition (4.4) and γ 1/2 ≥ |ρ(0)|.

Given this, we should comment on the concluding remarks made in [2]. In that paper,
the authors propose a two-point step size steepest descent method, and report numerical

Figure 13. Rate of convergence of f (k) as a function of γ , in the 2-dimensional case, and for different choices
of ρ(0).
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experiments on a n-dimensional quadratic function for which the proposed method is faster
than the classical steepest descent algorithm. To strengthen the numerical study, the authors
analyze the convergence rate of their algorithm in the 2-dimensional case, and are surprised
by the fact that the rate of convergence increases with the condition number of the Hessian
matrix. They speculate that this could contribute to explain the numerical advantage of
their method in the n-dimensional case. However, in the light of the analysis we have given
above, that line of reasoning seems questionable. Even though in the 2-dimensional case
the convergence rate of the steepest descent method may improve as the condition number
increases, this is not true in the n-dimensional case. It is therefore necessary to show that
the 2-dimensional case of the algorithm described in [2] is in fact representative of the
n-dimensional case.

7. Final accuracy in f

Now that we have studied the behavior of the gradient norm, we conclude by making some
observations on the final accuracy in the objective function, taking into account the effect
of rounding errors.

For many optimization algorithms, the final accuracy in f , as measured by the difference
f (x) − f ∗, is intimately related to their speed of convergence. To illustrate this let us suppose
that for all sufficiently large k there is a constant 0 < a < 1 such that

f (k+1) − f ∗ ≤ a
(

f (k) − f ∗), (7.1)

or equivalently, f (k) − f (k+1) ≥ (1 − a)( f (k) − f ∗). We let the algorithm iterate until the
steps are so small that function values can no longer be distinguished in finite precision, i.e.

f (k) − f (k+1)

f (k)
≈ u, (7.2)

where we have assumed for convenience that f (k) �= 0 for all k sufficiently large. Thus f (k)

is our best estimate of f ∗. Assuming that the inequality (7.1) is tight we have

f (k) − f ∗

f (k)
≈ u

1 − a
. (7.3)

Thus the slower the algorithm (the closer a is to 1) the fewer the correct digits in the final
function value. We should note that this argument ignores the effects of roundoff errors in
the computation of the iterates, which will prevent (7.1) from being sustained indefinitely.

For the steepest descent method with exact line searches, applied to a strongly convex
quadratic function whose Hessian has a condition number γ , it is well known [11] that

a =
(

γ − 1

γ + 1

)2

. (7.4)
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In addition, as argued by Akaike, we can expect (7.1) to be tight (see Section 3). Thus for
this method the final accuracy in f is determined by the condition number of the Hessian.
For large γ ’s, (7.3) can be approximated by

f (k) − f ∗

f (k)
≈ γ u

4
, (7.5)

showing that the inaccuracy in f grows linearly with γ .
To test whether the behavior predicted by these relations can be observed in practice,

even for non-quadratic objective functions, we performed numerical experiments using the
quartic objective function in 100 variables,

1

2
(x − 1)T D(x − 1) + σ

4
((x − 1)T B(x − 1))2 + 1, (7.6)

where D was chosen as

D = diag[(1 + ε)−50, (1 + ε)−49, . . . , (1 + ε)49],

with ε = 0.18, σ = 0.18, and

B = U T U, with U =




1 . . . 1

. . .
...

1


.

The starting point was chosen as (−1)i × 50 for i = 1, . . . , 100. The Hessian matrix of
this quartic function at the solution has a condition number of 1.3 × 107. We used double
precision so that u ≈ 2−16.

We used the steepest descent method, using the inexact line search of Moré and Thuente
[13] that enforces the standard Wolfe conditions, and terminated it when no further decrease
in the objectives function was possible. We obtained

f − f ∗ = 9.3D − 11 and ‖g‖2 = 4.4D − 13.

Note that there is a good agreement between our estimate (7.5) for the steepest descent
method, which predicts approximately 10 correct digits in f , and these results—in spite of
the fact that the problem was not quadratic.
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