
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

A methodological framework to enable the generation of code from DSML in SPL

Belarbi, Maouaheb

Published in:
Proceedings of the 22nd International Systems and Software Product Line Conference

DOI:
10.1145/3236405.3236426

Publication date:
2018

Link to publication
Citation for pulished version (HARVARD):
Belarbi, M 2018, A methodological framework to enable the generation of code from DSML in SPL. in
Proceedings of the 22nd International Systems and Software Product Line Conference. vol. 2, suède,
gothenburg, pp. 64-71, 22nd International Systems and Product Line Conference , Gothenburg, Sweden,
10/09/18. https://doi.org/10.1145/3236405.3236426

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Nov. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/233021548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3236405.3236426
https://researchportal.unamur.be/en/publications/a-methodological-framework-to-enable-the-generation-of-code-from-dsml-in-spl(71f3d284-9acd-4422-ae9a-a2529c566d2a).html
https://doi.org/10.1145/3236405.3236426

A methodological framework to enable the generation of
code from DSML in SPL

Maouaheb Belarbi
University of Namur

Namur Digital Institute
PReCISE Research Centre

Faculty of Computer Science
Namur, Belgium

maouaheb.belarbi@unamur.be

ABSTRACT
Software Product Line has acquired a significant momentum
at the end of the 1990ies since it allows the production of
variable software systems corresponding to the same domain
portfolio. The effectiveness of the derivation process depends
on how well variability is defined and implemented which is
a crucial topic area that was addressed among two essential
trends: On the one hand, starting from Domain Specific
Modelling Language to express domain requirements and
automate the code generation with Model-Driven Engineering
techniques and on the second hand, exploiting the soar of
variability mechanisms.

In this context, the current research presents a method
that unifies the two aforementioned approaches to cover the
overall strategies by defining a framework that allows a better
code generation in terms of documentation, maintainability,
rapidity,etc. The starting point is the usage of the Domain
Specific Modelling Language to represent the stakeholders re-
quirements. Then, the resulting meta-model will be converted
into one our several Feature Diagrams on which variability
mechanisms can be applied to generate all the family prod-
ucts.

A preliminary experiment has been undertaken to design
the methodology of the proposed software factory in a meta-
model. The validation task was evaluated with an academic
use case called HandiWeb developed to facilitate handicap
persons access to the internet. The first results allow us to
put the hand on the key challenges that must be resolved by
the proposed methodology.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing;

KEYWORDS
DSML, SPL, methodology, software factory, variability

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLC’18, 10–14 September, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123

ACM Reference Format:
Maouaheb Belarbi. 2018. A methodological framework to enable
the generation of
code from DSML in SPL. In Proceedings of 22nd International
Conference on Software Product Line (SPLC’18). ACM, New
York, NY, USA, Article ?, 8 pages. https://doi.org/10.475/123

1 INTRODUCTION
Software Product Line (SPL) engineering has acquired a
significant attention at the end of the 1990ies as an emerging
paradigm for producing similar systems branching from a
domain portfolio. In other words, SPL governs a family of
software products that share common set of features, which
represent a logical unit of behavior specified by a set of
functional and quality requirements, and they differ each
other according to variable aspects. This last, was defined
as the ability of a software system or software artifacts to
be extended, customized or configured to use in a specific
context [23]. Thus, variability specifies parts of the system to
be kept variable and not fully defined during design phase,
which allows a fluent development of its different versions.

The effectiveness of a SPL approach is close fitting to how
well variability is implemented and managed. However, as
the complexity of such variability grows over time, variability
design and implementation have become a challenging issue.
One of the key steps is to select the variability implemen-
tation mechanism or a combination of mechanisms that is
suitable for a given system. The notion of variability is a
crucial topic area to tackle that was addressed in [14]. At
this level, two trends are of interest: On the one hand, start-
ing from a Domain Specific Modeling Language (DSML),
how to automate the code generation with Model-Driven
Engineering (MDE) techniques [20], and on the second hand
exploiting the soar of variability mechanisms.

The discussed variability mechanisms describe how vari-
able features are implemented on design and implementation
phases using different programming techniques. In this paper,
we consider the categorization mentioned in [8] to discuss
the following mechanisms: Cloning, Conditional Compilation,
Conditional Execution, Polymorphism, Module Replacement,
Aspect Orientation and Frame Technology. Indeed, these lat-
ter variability mechanisms vary in different parameters such
as techniques, binding times, granularity. Consequently, the
aforementioned mechanisms are applied, in practice, in vari-
ous development scenarios. However, the required flexibility

https://doi.org/10.475/123
https://doi.org/10.475/123

SPLC’18, 10–14 September, 2018, Gothenburg, Sweden Maouaheb Belarbi

and adaptability of SPL necessitates a high customization of
products family according to stakeholders’ requirements. In
industrial case studies, each mechanism showed advantage
but brought challenges during each software development.
Furthermore, these mechanisms do not present a methodology
to manage their aggregation and enhance the self-adaptation
of an SPL to variable contexts.

In another area, Model-Driven Engineering (MDE) was
integrated in SPL to facilitate variability implementation
and management [12]. MDE techniques rely on the DSML
meta-model that describes the main concepts of the domain
and their relations. MDE allows system designers (DSML
end-users) working closer to the system domain as they will
manipulate concepts from the real system [10]. Finally, gen-
erative methods can transform DSML into code artifacts.
DSMLs offer greater expressiveness in expressing the stake-
holders requirements within an applicative domain. Indeed,
DSMLs can offer graphic and/or text notations specific to
domains and can naturally encompass the expressivity of
general purpose modeling language. However, the benefits of
DSMLs do not come for free, as the language abstractions
and tools to automate development need to be first devel-
oped and later maintained. Research claims that it is costly
and hard to define modelling languages with tool support;
that domain-specific languages can be created effectively only
when the domain does not change; and that Model Driven
Development (MDD) does not scale [15]. Here, the evolution
of meta-models corresponding to the employed DSML implies
the evolution of the developed generating scripts which is
highly complicated.

In this light, our contribution unifies the two aforemen-
tioned trends by making the use of their gain and avoiding
their boundaries. Hence, the starting point consists in trans-
forming a DSML into a Feature Diagram (FD) (or possibly
several FDs), which allows exploiting variability mechanisms
further. Besides, it is crucial to dispose a methodology that
covers all the elements the product family is built from as well
as their corresponding composition rules. This methodology
clarifies how the various parts of a selected configuration may
be combined. In this context, the objective of the current
research is presented in a method that aims to:

(1) Cover the overall strategies to generate the variants in
the solution space that corresponds to a problem space
depicted in a Feature Diagram;

(2) Present a methodology to guide the software engineers
during the definition of a generative strategy;

(3) Generate the overall artefacts corresponding to the
selected features and according to the selected strategy

The rest of the paper is organized as follows: Section 2
introduces some of the relevant related work. In section 3,
we present the research questions mined throughout this
thesis followed by a description of the proposed research
methodology in Section 4. In section 5, we give a shade of
light on our preliminary results. Finally, we present the work
plan for the current year in Section 6 followed by a conclusion
in Section 7.

2 RELATED WORK
In this section, we discuss the existing variability imple-
mentation techniques. To do so, we start with variability
mechanisms in SPL and then we discuss integrating MDE
techniques that employ DSML to model and derive product
variants.

2.1 Variability mechanisms
Most of existing implementation mechanisms found in the
literature were usually classified as compositional or anno-
tative approaches [8]. Compositional approaches implement
features as distinct code units. In order to obtain a product
line part for a feature selection, the code units are deter-
mined and composed usually at compile-time or deploy-time.
Whereas, annotative approaches implement features by plant-
ing implicit or explicit annotations directly in the source code.
The prototypical example is the use of #ifdef and #endif
statements of the C-preprocessor to surround the target code.

Clone-and-own: The easiest way of producing a variant of
a certain software product consists in copying a code or non-
code artefact and evolving it further without keeping connec-
tion with original version. Cloning is perceived to be a simple
reuse mechanism that saves both time and resources. It allows
software engineers to start development from implemented
and verified artefacts. Moreover, the changed introduced
to the cloned do not threat old variants. However, cloning
is technically a new branch that can be used to develop a
new product. This leads to different problems, especially for
software maintenance. Performed modifications in the main
product need to be merged into all other product variants
and vice versa. This additional merging process is high cost
and cannot scale for a large number of products.

Conditional Compilation: It is one of the most widely used
techniques discussed in [18] and characterized by using pre-
processors. The pillar principle is to conditionally include or
exclude variability with #ifdef annotations. In fact, most
software developers are familiar with the easy-to-use prepro-
cessor directives. Moreover, this implementation mechanism
allows for fine-grained variability without involving architec-
tural overhead. The enclosed fragments of code surrounded
with #ifdef blocks can be either classes, functions, type
declarations, etc. Furthermore, variability is not separated
from the whole code and is explicit to identify. Although,
conditional compilation mechanism show some clear benefit,
they received severe criticism because of some boundaries.
Indeed, the code is usually complex and hard to understand
since #ifdef statements are nested with a complex structure.

Conditional Execution: In [11], it is considered as an an-
other annotative approach that aims to realize variability
by coding it explicitly using conditional if-else code parts.
Conditional code is enabled or disabled depending on the
given parameters and the program behaves differently at run-
time. In case of multiple variation points, if-else are replaced
with switch blocks. An obvious benefit of this mechanism is
that it is easy to use with no learning effort. Moreover, vari-
abilities are instantiated at runtime. Therefore, it provides

A methodological framework to enable the generation of
code from DSML in SPL SPLC’18, 10–14 September, 2018, Gothenburg, Sweden

high flexibility to adapt the system to unforeseen require-
ments. For this reason it is considered by Bosch et al. [13]
as a promising trend in software variability, although this
introduces complexity and other side effects. Despite the ben-
efit mentioned above, developers have encountered several
challenges: Variants must be fine-grained to be implemented
as conditional code blocks. In addition, it is hard to distin-
guish between variation logic and code functionality because
they are nested together. Finally, the compilation speed and
variation at run-time are degraded because of the inclusion
of all variant elements from code compilation until running.

Polymorphism: In [1], three types of polymorphism are in
wide use: Subtype Polymorphism, Parametric Polymorphism,
and Overloading. While Subtype Polymorphism and Paramet-
ric Polymorphism occur at either compile-time or run-time,
Overloading is often used at compile-time. For example, when
an overridden method is called through a reference of parent
class, then type of the object determines which method is
to be executed. Thus, this determination is made at run
time. As a compositional approach, variability is separated in
different files from common features. In addition, this mecha-
nism allows a high flexibility for run-time variability. Finally,
the open variation is frequently ensured by Polymorphism
to enable developers to extend framework capabilities with-
out modifying already compiled framework code. However,
the adoption of Polymorphism in practice presents several
challenges since it increases the risk of software defects at
run-time errors such as illegal pointers.

Aspect-Oriented-Programming (AOP): This mechanism re-
lies on code weaving techniques that require external tool
support such as AspectJ [6]. As a compositional mechanism,
it has the benefits of the separation of common and vari-
able features into separate files. Depending on the aspect
weaver, variability can be resolved at both compile-time and
run-time. Despite the benefits above, AOP is not supported
by a programming language and therefore it is difficult to
apply it rapidly in development process without learning
efforts. Moreover, Kastner et al.[9] have conducted a case
study to refactor variability realizations in Berkely database
system using AspectJ, which turned out to be unsuitable
for implementing variable features. Similarly, a literature
review established by Amine et al. [2] shows that the major
challenges of AOP are the increase in code size and low code
comprehensibility.

Frames technology: Basset[5] introduced the frames tech-
nology that uses adaptable code frames and assemble them
by a frame processor. It showed several benefits like other
compositional approaches. However, Variation points are ex-
plicitly identified in code and variation elements are only
handled as textual. Although, this mechanism is not widely
used because it requires special tool support and the standard
syntax is still missing.

Recent research regarding implementation mechanisms has
led to comparison summarized in [7]. This last, presents a
characterization of the variability mechanisms derived from
the aforementioned categorization. The discussed mechanisms
differs according various aspects. Initially, variabilities are

instantiated and bound to a variant at a specific point of
times in example at construction time or running time. Here,
we confess that mechanisms with early binding time resolve
the variability configuration space early and optimize run-
ning efficiency. However, approaches with late binding time
ensure dynamic system adaptions. In addition, traceability
describes the ability to track a feature among functional code.
Compositional approaches supports better traceability since
code is fragmented into separated units. In contrast, annota-
tive approaches handles poorly this characteristic seen that
variability is scattered over source code. Moreover, modular-
ity is a needed characteristic for modular reasoning or even
separate compilation. It is possibly supported in some com-
positional approaches. For example, when using components,
plug-ins, sub-jects or hyper-modules this is well handled. All
the variants of the SPL should be syntactically correct and
well-typed. Finally, compositional approaches ensured vari-
ants safety thanks to their composition mechanism. However,
annotative mechanisms can easily generate incorrect variant
elements.

2.2 MDE techniques
In traditional SPL engineering approaches, variability is
mainly handled using the aforementioned mechanisms and
performed on a FD. Despite their wide acceptation, there
is no de-facto standard. Hence, recent efforts have proposed
to facilitate variability implementation, management and
tracing by integrating Model Driven Software Development
MDSD techniques [16]. It is a natural candidate to fit in the
general framework of SPL. In fact, MDSD improves the way
the software is developed by capturing key features in system
models. In contrast to traditional modeling, MDSD models
may comprehend arbitrary complex systems, their rationales
and requirements, as well as the domain and technical con-
straints while being processed by tools [21]. In this context,
DSML is developed by specifying the domain meta-model in
order to identify all the concepts pertinent for the creation/
generation of an application. Transformation rules are defined
to generate code from the application model (when it will be
available). Obviously, the future application model must be
conformed to the meta-model depicted via DSM. In addition,
manually written source code can also be created that are
intended to be combined with the automatically generated
code later. The goal is here to maximize the reuse of all the
asserts developed during the liftetime of the software factory.
DSML is characterized by its expressiveness potential. Indeed,
variability is well defined in both problem space and solution
space as well as the mapping between them is standardized
and automated via transformation rules. However, FD is
commonly more used to model SPL variability and define
compactly all features. Besides, the desired configuration of
variant products is performed on a FD and consequently it is
of our interest to profit not only from DSML expressiveness
but also from the feasibility of FD.

SPLC’18, 10–14 September, 2018, Gothenburg, Sweden Maouaheb Belarbi

2.3 Discussion
To recapitulate, the first part of this section discussed vari-
ability mechanisms. We found that existing tactics aim to
handle this variability according to stakeholder requirements.
In fact, a resulting software product is generated according
to a selected configuration. That means the selected features
are implemented corresponding to a binding time, a granu-
larity, an explicit or implicit variation point and open/closed
variations. In SPL, the dynamic assembly of products in-
creases the flexibility of product configuration options and
is often preferred for that reason. In critical systems, new
tendencies were born to permit the possibility to switch be-
tween various systems modes automatically. So, to allow a
smooth transition among different binding times. For ex-
ample, runtime concerns and post-deployment configurable
options grab the attention of an important research work
quota. Hence, to overcome this trouble, software engineers
have been trending toward relying on new methods and rep-
resentation techniques able to support variability at any time,
any granularity varying context conditions. To the best of our
knowledge, limited research have proposed a methodology
that allows the combination of variability mechanisms to
generate a selected configuration. Upon this, the objective of
the current research is to define a methodology to design a
Software Factories that aim to cover all the generation code
tactics to realize all software variants. To do so, our starting
point is DSML to well-define the variability and optimize
the expressivity of the requirements concerning the domain.
This model would then be annotated with meta-information
to express the requirements about the binding times, the
open/close status of the variants and the rationales of these
decisions and further the resulting models will be converted
into FDs to make use of the SPL variability techniques.

3 RESEARCH QUESTIONS
Taking into account the main research focus of this Doctoral
thesis project, we present in this section the planned research
questions. The realization of the proposed methodology goes
through the following steps:

(1) How to transform a DSML specification into FDs?
∙ DSML raises the level of abstraction by specifying

software systems directly by domain concepts. Thus,
DSMLs can offer greater expressiveness than FDs in
expressing the requirements of stakeholders within an
applicative domain. Indeed, DSMLs can offer graphic
and/or text notations that are specific to domains
and defined with more expressive meta-languages (i.e.
meta-modelling or ontological languages) and do not
suffer from constraints related to FD (i.e. hierarchical
organization of features). However, since simplify-
ing assumptions in FDs can significantly reduce the
complexity of the transformational approach to code,
this thesis will use FD as an intermediate step in the
path to code generation from a DSML.

(2) How to transform a configuration expressed in an FD
into code source that respects the chosen tactics?

∙ A feature is a characteristic or end-user-visible be-
haviour of a software system [17]. Many tactics ex-
ist to transform a feature into code (AOP, meta-
programming, IoC, patterns,. . .). But the discipline
lacks methodologies in this regard to usefully guide
the method engineer in designing a strategy to as-
semble these tactics in a coherent and useful way.
Different points of view must indeed be taken into ac-
count when designing a “software factory” guided by
configurations: correction, feasibility, system mainte-
nance,return on invest, ease of use, skill level, com-
plexity, maintenance and scalability of the SF it-
self. . .

∙ How to interpret features usefully to make the gen-
erative approach possible.

∙ How to document tactics so that they can be assem-
bled into a strategy

∙ How to make a strategy operational?
(3) How to evaluate the relevance of a generative strategy?

The relevance describes how well the generative strat-
egy satisfies the expectations of the developers in terms
of cost, maintainability, rapidity, documentation, etc.
∙ what is the cost of a strategy?
∙ how easy is it to maintain a strategy?

4 RESEARCH METHODOLOGY
The objective of this thesis is to propose a methodology to
design Software Factories that cover the possible infinity of
generation code strategies to derive product variants belong-
ing to a FD. Note that our starting point is to well define
variability through DSML that will be converted later into
a FD. Hence, our thesis is performed through the following
stages:

The first step consists in going over MDE techniques and
how they were integrated in SPL to profit from DSML expres-
siveness. However, FD is perhaps the most common formal-
ism used to model SPL commonalities and variabilities [19].
Therefore, we need to convert the DSML to FD to take advan-
tage of the variability implementation techniques specific to
this family of languages. MDE may provide interesting tools
to ensure transitions from models to models or even code. We
also feel the need to extend the meta-model of the domain
with extra meta-information specific to our methodology in
order to usefully guide the transformation process. Hence,
the transformation task requires a clear understanding of
the abstract syntax and the semantics of both the extended
DSML as the source model and FD as the target. As a result,
we must on the first hand deepen our knowledge about the
different FD meta-models created throughout other research
works, besides the various model transformation tools and,
on the second hand, see how the meta-modelling language
used to design the DSML can be extended in order to provide
the extra-information required to guide the transformation
process (i.e. which concepts are denoting features, which pre-
ferred path among the concepts a transformation must follow
to generate the hierarchical representation of the features. . .).

A methodological framework to enable the generation of
code from DSML in SPL SPLC’18, 10–14 September, 2018, Gothenburg, Sweden

The second step consists in reviewing variability imple-
mentation mechanisms to have solid pillars on the existing
approaches as well as the existing frameworks and tools to ag-
gregate a combination of mechanisms. Hence, we can identify
the parameters and methods of aggregation, their benefits
as well as their challenges. Besides, we identify variability
types that can influence later on the generation code process.
For example building time and granularity are considered as
crucial parameters. This leads us to discuss the strengths and
weaknesses of the implementation mechanisms according to
the variability characteristics in order to guide the enhance
generation code process.

After that, we can design the overall architecture that
includes the conversion task of the DSML into FD by model
transformation and the derivation of the product variants
according to the strategy that has been selected among the
different possibilities.

The validation process can be realized in an applicative
domain to prove the validity and performance of the proposed
contribution. To do so, we will rely first on an academic use
case called HandiWeb developed to assist disabled persons
while using the internet services. This proof-of-concept should
help us convince then companies of the validity of our ap-
proach in order to deploy it on a larger scale industrial case
study.

5 PRELIMINARY RESULTS
The preliminary results were conducted to define the general
methodology of the proposed Software Factory. Our early
research have led to the meta-model depicted in Fig. 1.

The principal class of the proposed metamodel are Feature
Diagram (FD) that denotes main entry of the FD metamodel,
Strategy which represents the Selected Tactics that can be
used to implement Configurations, and finally Configuration
that collects a set of Selected Features within a feature model.
A strategy denotes for a subset of features the tactics “on the
shelf” that are eligible for its implementation, with attributes
that provide the rationales. In a FD, some features may have
a variant time that is defined once and for all while others
(in Selected Feature) are defined in the context of a peculiar
configuration. Tactics denote general mechanisms that can be
used with asset types to produce customized core components
of the target system from core assets identified by an URI.
Scenarios [3, 4] document the rationale of the variant time of
each feature in a configuration in order to guide the temporal
assembly of tactics and the methodology.
At this level we can define the first step of the proposed
methodology as the identification of the desired configuration
through the selected set of features.

Besides, to illustrate the importance of defining feature
binding times, we consider the example of Handiweb appli-
cation depicted in Fig. 2 where the visual handicap can be
handled at compile-time or run-time. Thereby, this leads to
two different applications. The first one is especially devel-
oped for disabled people and thus offers an evolved behaviour
with advanced techniques. For example, haptic touch-screen,

matrix pins and more advanced technologies are available
today. The second type of application, as shown in this pa-
per, tries to adapt its exploitation for disabled persons at
running time. Thus, it provides the basic behaviour to make
the application adapted for visual impairments.

The second step of the proposed methodology consists
in selecting tactics to implement the desired configuration
according to the feature variation times and the already
defined non-functional properties.

Initially, the tactics are characterized by their binding time,
cost and required engineering skills to make them useful.
Some variability mechanisms allow resolving variability at
run time, i.e. Conditional Execution which is easy to use with
no learning effort whereas AOP requires engineering skills.

Finally, the proposed methodology sorts available imple-
mentation tactics that are suitable for the generation of a
selected configuration according to their cost and required
skills. For instance, it does not allow developers to select Con-
ditional Execution tactics to implement a feature specified
at compile-time. In other words, the selected tactics must be
coherent to assemble.

The preliminary experiments were conducted to implement
HandiWeb according to the proposed methodology. The usage
scenario of the application is as follows: A user must select the
service of search or shop as a mandatory feature. The search
operation is ensured by Google engine or Yahoo engine while
the purchased goods are chosen via Amazon or EBay. Fur-
thermore, Handiweb opens its door to handicapped persons
by configuring mandatory services according to the disabled
type of the current user. According to this configuration,
the chosen generative strategy by the developer is as follow:
The searching operation is implemented with AOP, while the
shop is realized with the design pattern Factory. Both of the
aforementioned features are resolved at compile time. Finally,
the optional handicap functionalities are developed at run
time via the conditional execution mechanism.

To reveal the complexity hidden behind the simple hand-
iWeb FD, the number of generated variants is over 90. In
practice, if we consider a bigger FD the resulting amount
of variability, if not well treated, will be blocking. Hence,
this problematic entails the need to possess a methodology
that allows variants generation and their adjustment for the
plethora of existing contexts.

∙ As shown in Fig. 2, the selected configuration includes
visual handicap features at run-time and search service
resolved at compile-time.

∙ At this level, according to the aforementioned method-
ology the second step consists in selecting the applied
variability mechanisms to implement chosen features.
The search operation was implemented with design pat-
tern Decorator by including Jsoup library. While the
blind feature was set up with Conditional Execution to
replace the button and text by mouse events and aural
messages. The same feature can be implemented with
other advanced techniques using Aural User Interfaces
or haptic aural touch-screen. . .

SPLC’18, 10–14 September, 2018, Gothenburg, Sweden Maouaheb Belarbi

Figure 1: The metamodel corresponding to the proposed methodology.

Figure 2: Left figure: HandiWeb application. Right figure : Feature Diagram corresponding to HandiWeb.

∙ Finally, The generation of the desired configuration
code source is performed with featureIDE plugin. This
last, is an open-source framework for feature-oriented
software development (FOSD) based on Eclipse[22].
FOSD is a paradigm for construction, customization,
and synthesis of software systems. Code artefacts are
mapped to features and a customized software system
can be generated given a selection of features. As we can
see, there is a distinction between the selected tactics

that implement the selected features independently, on
the one hand and the applied tactic to generate the
whole of selected configuration.

The preliminary experiments allow us to put the hand on
the key challenges that must be resolved by the proposed
methodology. First, selecting the right set of features from
the overall available feature in FD is delicate because:

∙ The multiplicity of stakeholders’ functional require-
ments;

A methodological framework to enable the generation of
code from DSML in SPL SPLC’18, 10–14 September, 2018, Gothenburg, Sweden

∙ The positive or negative impact on the non-functional
properties;

∙ The desirable non-functional properties of the final
software product.

The existing variability mechanisms do not consider stake-
holders requirements and constraints especially regarding non-
functional preferences. Consequently, the designed Software
Factory must employs an artificial intelligence planning tech-
niques to automatically select suitable features that satisfy
both stakeholders’ functional and nonfunctional preferences
and constraints [3].

Second, the input FD notation must be completed with
possible binding times corresponding to each feature as well
as cardinality.

Finally, the selection of applied tactics must be documented
with additional information. For example, the selection of
Conditional Compilation mechanism to adapt HandiWeb for
blinds should be documented by its position in the source
code that is already generated with a different tactic.

6 WORK PLAN
Figure 3 shows a twelve-month work plan to visualize ad-
vances and activities to proceed as a half-time researcher.
Concretely, the tasks are the following:

Task 1. DSML conversion into FD. Until August, we plan
to contribute the conversion of DSMLs belonging to a domain
portfolio into a FD by the mean of MDE techniques. Hence, it
is necessary to sweep MDE methods that allow the transition
from a model to another and customize them according to
the specificities of FD.

Task 2. Variability Systematic Literature Review. Until No-
vember, we need to have solid pillars on SPL variability to be
able to identify key factors that influence on product variants
derivations. Hence, we need to perform a systematic literature
review for variability and implementation mechanisms.

Task 3. Operational combination variability mechanisms.
Until February, we intend to investigate existing approaches
that allow aggregating variability mechanisms, their advan-
tages as well as their deficiencies. From that point, we identify
an operational strategy aware of the aforementioned variabil-
ity key factor.

Task 4. Transforming a selected configuration into a FD to
computer assets. Until May, we need to look for how to trans-
form FD to computer assets by exploiting MDE techniques.
Functional and non-functional features should be recognized
during the transformation process as well as binding times
corresponding to each variation point.

Research work must be submitted to the scientific commu-
nity in order to get a valid feedback and provide visibility.
Thus, a publication plan was defined with two types of ex-
pected publications: (i) conference proceeding papers and (ii)
workshop papers. Indeed, conferences and workshops provide
an excellent environment to get feedback from experts in the
domain and improve the thesis contributions by reviewers
comments. A detailed list of the expected paper submissions
is presented via Table1.

7 CONCLUSIONS
The derivation of SPL variants is a practical challenge that
entails extra efforts to reduce development cost. Indeed, two
trends are of interest: On the one hand, starting from DSML
how to automate the code generation with MDE techniques
and on the second hand exploiting the soar of variability
mechanisms.

This paper presents the ongoing Ph.D. thesis research
which tend to propose a methodology for designing a soft-
ware factory able to cover the all over strategies to derive
product variants. The proposed methodology starts by defin-
ing variability with DSML and then convert it into FDs on
which we can exploit variability implementation mechanisms.

In future work, we plan to perform the aforementioned
activities in the work plan starting with the conversion of
DSML into FDs.

REFERENCES
[1] A. Demaille A. Duret-Lutz, T. Geraud. 2001. Design Patterns

for Generic Programming in C++. In 6th Conference on Object-
Oriented Technologies and Systems, 2001.

[2] A.Kamil A.Fazal and A.Oxley. 2010. A review on aspect oriented
implementation of software product lines components. Informa-
tion Technology Journal (2010).

[3] Felix Bachmann and Paul Clements. 2005. Variability in Soft-
ware Product Lines. Technical Report CMU/SEI-2005-TR-012.
Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA. http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=7675

[4] Len Bass. 2013. Software architecture in practice. Addison-
Wesley, Upper Saddle River, NJ.

[5] Bassett and G.Paul. 1996. Framing software reuse: lessons from
the real world. Prentice-Hall, Inc.

[6] S.Duszynski B.Zhang and M.Becker. 2016. Variability mechanisms
and lessons learned in practice. In Variability and Complexity in
Software Design (VACE), IEEE/ACM International Workshop
on, 2016.

[7] C.Gacek and M.Anastasopoules. 2001. Implementing product line
variabilities. In ACM SIGSOFT Software Engineering Notes,
2001.

[8] CKastner and S.Apel. 2008. Integrating Compositional and Anno-
tative Approaches for Product Line Engineering. In Proceedings
of the Workshop on Modularization, Composition, and Gen-
erative Techniques for Product Line Engineering (McGPLE),
October 19-23, 2008.

[9] S.Apel C.Kastner and D.Batory. 2007. A case study implementing
features using AspectJ. In Software Product Line Conference
SPLC, 2007.

[10] X.Cregut F.Zalila and M.Pantel. 2013. A transformation-driven
approach to automate feedback verification results. In Proceed-
ings of the Third International Conference on Model and Data
Engineering, 2013.

[11] Thomas Thum Thomas Leich Fabian Benduhn Gunter Saake,
Jens Meinicke and Reimar Schroter. 2017. Mastering Software
Variability with FeatureIDE. Springer.

[12] H.Papajewski I.Groher and M.Voelter. 2007. Integrating Model-
Driven Development and Software Product Line Engineering.
In Eclipse Summit 07: Proceedings of the Eclipse Modeling
Symposium, 2007.

[13] R. Capilla J. Bosch and R. Hilliard. 2015. Trends in systems and
software variability. In IEEE Software, 2015.

[14] D. Hoffman J. Coplien and D. Weiss. 1998. Commonality and
variability in software engineering. In IEEE Software, Nov/Dec
1998.

[15] J.Tolvanen and S.Kell. 2016. Model-driven development challenges
and solutions - experiences with domain-specific modelling in
industry. In Proceedings of the 4th International Conference on
Model-Driven Engineering and Software Development, 2016.

[16] C.Kim P.Hwan S.Lau K.Czarnecki, M.Antkiewicz and
K.Pietroszek. [n. d.]. Model-driven software product lines.
In Companion to the 20th annual ACM SIGPLAN conference

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675

SPLC’18, 10–14 September, 2018, Gothenburg, Sweden Maouaheb Belarbi

Figure 3: The detailed work plan for the 12 months Ph.D. studies.

Table 1: Publication plan

Publication scope Conference/Journal Deadline
Objective 1 (workshop paper) VAMOS 2019 October 2018
Objective 2 (workshop paper) MODELS 2019 March 2019

Objective 3 (conference paper) SPLC 2019 May 2019

on Object-oriented programming, systems, languages, and
applications, 2005.

[17] N.Cardozo K.Mens, R.Capilla and B.Dumas. [n. d.]. A taxonomy
of context-aware software variability approaches. In Companion
Proceedings of the 15th International Conference on Modularity,
2016.

[18] M. T. Valente M. V. Couto and E. Figueired. 2011. Extracting
software product lines: A case study using conditional compilation.
In IEEE Computer Society, 2011.

[19] F.Fleurey P.Lahire S.Moisan M.Acher, P.Collet and J.Rigault.
[n. d.]. Modeling context and dynamic adaptations with feature
models. In 4th International Workshop Models@ run. time at
Models, 2009.

[20] M.Voelter and I.Groher. 2007. Product Line Implementation
using Aspect-Oriented and Model-Driven Software Development.
In Software Product Line Conference, September 10-14, 2007.

[21] I.Galvão J.Noppen S.Khanand H.Arboleda A.Rashid N.Anquetil,
B.Grammel and A.Garcia. [n. d.]. Traceability for model driven,
software product line engineering. In ECMDA Traceability Work-
shop Proceedings,2008.

[22] F.Benduhn J.Meinicke G.Saake T.Thüm, C.Kästner and T.Leich.
[n. d.]. FeatureIDE: An extensible framework for feature-oriented
software development. Science of Computer Programming, Else-
vier, 2014 ([n. d.]).

[23] J.Bosch Van Gurp and M.Svahnberg. 2001. On the Notion of
Variability in Software Product Lines. In Working IEEE/IFIP
Conference on Software Architecture, August 28 - 31, 2001.
pages 45–54.

[24] T. Berger S. Duszynski M. Becker and K. Czarnecki Y. Dubinsky,
J. Rubin. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In Proceedings of the Conference on
Software Maintenance and Reengineering, 2013.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Variability mechanisms
	2.2 MDE techniques
	2.3 Discussion

	3 Research Questions
	4 Research Methodology
	5 Preliminary Results
	6 Work Plan
	7 Conclusions
	References

