
Firmware Development of a LoRaWAN
Multi-Sensor Generic Node: an Industrial

IoT Empirical Study

Master of Science in Technology
Thesis
University of Turku
Department of Future Technologies
Embedded Systems Laboratory
2019
Ahmed Mohamed Elsalahy Mohamed

Supervisors:
PhD (Tech) Tomi Westerlund
PhD (Tech) Tuan Nguyen
MSc Jorge Peña Queralta
MSc Johan Stokking

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

AHMED MOHAMED ELSALAHY MOHAMED : Firmware Development of a LoRaWAN
Multi-Sensor Generic Node: an Industrial IoT Empirical Study

Master of Science in Technology Thesis, 74 p., 5 app. p.
Embedded Systems Laboratory
July 2019

Connectivity is the defining property of the Internet of Things (IoT). Multiple technolo-
gies and techniques allow embedded devices to transmit and receive data. The intersection
between connectivity demands, physical and environmental limitations is what triggers
the use of a specific technology. Low Power Wide Area (LPWA) wireless communication
technologies such as LoRa and LoRaWAN are showing practicality and ease of the use
in the field of IoT. LoRa modulation ability to provide devices with longer communica-
tion ranges make it an attractive choice in multiple IoT use cases. The energy efficiency
and scalability aspects of LoRaWAN protocol trigger the research curiosity around the
challenges and opportunities of using the technology.
In this study, we provide an extensive overview of the firmware development of an
industrial LoRaWAN device. An empirical analysis of the device capabilities provides a
deeper understanding of the technology potential and the possible areas of improvements.
Energy-efficient firmware design practices are explored, analysed and implemented to
provide a foundation for future developments in the field. Furthermore, we propose
and evaluate a new LoRaWAN application design that explores over the air firmware
configuration in runtime a novel micro update scheme. We devise a simple LoRaWAN
energy estimation model and apply it to the proposed application. The same model
is used to get an indication of LoRaWAN firmware updates over the air (FUOTA)
practicality. The applied model highlighted useful energy optimisation techniques for an
improved LoRaWAN firmware development.

Keywords: IoT, LoRa, LoRaWAN, Firmware, Design

Contents

1 Introduction 1

1.1 IoT and Low Power Wide Area Networks 1

1.2 LoRa and LoRaWAN . 3

1.3 The Things Network . 4

1.4 The Generic Node (GN) . 5

1.5 Research Focus and Goals . 7

1.5.1 Research Hypotheses . 7

1.5.2 Research Methodology . 8

1.5.3 Thesis Structure and Organisation 8

2 LoRaWAN: Under the Microscope 10

2.1 LoRa: Terms and Concepts . 11

2.1.1 LoRa Modulation . 11

2.1.2 LoRa Spreading Factor . 13

2.1.3 LoRa Operation . 14

2.2 LoRaWAN: Network Stack and Architecture 15

2.2.1 LoRaWAN MAC layer . 16

2.2.2 Adaptive Data Rate . 17

2.3 LoRaWAN Security . 18

2.3.1 Authentication and Data Encryption Frameworks 18

i

2.3.2 Vulnerabilities . 19

3 Generic Node Hardware Design 21

3.1 Device Components . 22

3.2 HW Design Best Practices . 24

3.3 Enclosure Effect . 26

3.3.1 Test Procedure . 27

3.3.2 Effect On Temperature Sensor 28

3.3.3 Effect On Capacitive Plates . 31

3.3.4 Effect On Light Sensor . 32

3.3.5 Effect On Lora Radio and Accelerometer 33

3.3.6 Impressions and Possible Solutions 33

4 Generic Node Software Design 34

4.1 SW Development Plan . 35

4.2 SW Components . 36

4.2.1 Embedded Operating System (Mbed OS) 36

4.2.2 Software Drivers (Sensors and Flash) 39

4.3 LoRaWAN Applications Design . 46

4.3.1 Requirements and Use Cases . 46

4.3.2 Proposed Application Design 48

4.3.3 Proposed Application Implementation and Analysis 51

5 Energy Efficient IoT 54

5.1 LoRaWAN Energy Consumption Models 54

5.2 Generic Node Energy Consumption . 56

5.2.1 Operational States . 56

5.2.2 Generic Node Battery Life Estimation 56

5.3 Generic Node Power Optimisations . 62

5.3.1 Energy Efficient Hardware . 63

5.3.2 Energy Efficient Software . 65

5.4 Generic Node Limitations . 67

6 Advanced IoT 69

6.1 Secure End Nodes . 69

6.1.1 Problem Description . 69

6.1.2 Device Operation . 70

6.1.3 Solution Benefits . 70

6.2 LoRaWAN and Firmware Updates Over The Air 70

6.2.1 Device Support . 71

6.2.2 Challenges . 71

7 Conclusion and Future Research 73

7.1 Future Research . 74

7.1.1 Lossless Compression for Improving Performance 74

7.1.2 Edge and Cloud Computing . 74

References 75

Appendices

A LoRaWAN A-1

B HW Design B-1

C SW Design C-1

D Energy D-1

List of Figures

1.1 Wireless communication technologies. 2

1.2 LoRaWAN network architecture. 3

1.3 Generic Node sensing abilities [15]. 5

1.4 Chapters outline. 9

2.1 LoRaWAN Stack. 15

2.2 LoRaWAN Class A communication scheme. 16

2.3 Over The Air Activation in LoRaWAN 1.1. 20

3.1 Generic Node components. 23

3.2 Generic Node enclosure. 27

3.3 Test 1: Enclosure effect on temperature measurements. 29

3.4 Test 2: Enclosure effect on temperature measurements. 30

3.5 Enclosure effect on the capacitive plates. 32

4.1 Software architecture and components. 36

4.2 Generic Node sensors and flash MCU connections. 41

4.3 Generic Node proposed application Fport design. 48

4.4 Downlink and uplink operational code example. 49

4.5 Application server and Generic Node communication sequence. 50

4.6 Sample Fport 220 downlink and uplink specifications. 51

5.1 Energy state diagram of an interval-based LoRaWAN class A application. 57

iv

5.2 Generic Node class A LoRaWAN energy consumption state capture. . . . 58

5.3 Simplified form of Generic Node power circuit. 63

A.1 Chirp pulse form with time and frequency change. A-2

B.1 Multi-angle view of Generic Node enclosure. B-2

C.1 LoRaWAN raw data transmission application build metrics with Fport 220. C-2

C.2 Application server side decoding raw payload uplink. C-3

C.3 Raw temperature sensor measurement decoding function with C++ on

GN firmware compared against similar functionality Java Script code for

application server side. C-4

D.1 GN Wake-up state Fport 220. D-1

D.2 GN Measure Sensor + Process Data states Fport220. D-1

D.3 GN Wake-up Transceiver + Transmit Data (SF7, BW125) states Fport220. D-2

D.4 GN Wake-up Transceiver + Transmit Data (SF12, BW125) states Fport220.D-2

D.5 GN Receive Data (Rx1 + Rx2) (0 bytes) state Fport 220. D-2

D.6 GN Receive Data (Rx1 + Rx2) (Micro Update) state Fport 220. D-3

D.7 Sleep state Fport 220. D-3

D.8 Applied GN battery estimation calculations based on devised equations

in Chapter 5 . D-4

D.9 Energy measurement setup. D-5

D.10 Average current capture before enabling sensor shutdown mode. D-5

D.11 Average current capture after enabling sensor shutdown mode. D-6

D.12 Average current capture before enabling low power ticker. D-6

D.13 Average current capture after enabling low power ticker. D-7

D.14 Inefficient SW driver measurement time capture. D-7

D.15 Device reset issue deep analysis report. D-8

List of Tables

2.1 LoRaWAN v1.1 before activation keys (OTAA) 19

3.1 Enclosure effect on the light sensor. 32

4.1 Sample Application metrics using Fport 220 52

5.1 Generic Node operational states energy consumption 60

5.2 Generic Node battery life with 100uA sleep current and heavy load appli-

cation . 62

vi

List of Acronyms

SW Software

HW Hardware

IoT Internet of Things

LPWA Low Power Wide Area

LPWAN Low Power Wide Area Network

UNB Ultra Narrow Band

MAC Medium Access Control

ISM Industrial, Scientific and Medical

TTN The Things Network

TTI The Things Industries

GN Generic Node

MCU Micro-Controller Unit

UHF Ultra High Frequency

LoRa Long Range Wireless Communication Protocol

RF Radio Frequency

LoRaWAN Long Range Wide Area Network

FSK Frequency-shift keying

SS Spread Spectrum

CSS Chirp Spread Spectrum

SF Spreading Factor

ADR Adaptive Data Rate

AES Advanced Encryption Standard

ABP Activation by Personalization

OTAA Over The Air Activation MIC! (MIC!)Message Integrity Check

PTC Peripheral Touch Controller

PCB Printed Circuit Board

RSSI Received Signal Strength Indicator

SNR Signal to Noise Ratio

RTOS Real Time Operating System

CMSIS Cortex M Software Interface Standard

FUOTA Firmware Update Over The Air

GNMA Genric Node Micro Application

Chapter 1

Introduction

In our current age, Internet of Things (IoT) is becoming more relevant than ever before.

It is mesmerising how a few years ago, humans were struggling to establish a reliable

method of communication between themselves, and now we are determined to connect

the "Things" around us. IoT is changing and improving the way we live, whether we no-

tice it or not. IoT involvement in agriculture, manufacturing, healthcare and many other

areas is paving the road for a digital transformation that will redefine a new roadmap for

human evolution.

With more than twenty IoT platforms [1] supporting all sorts of applications, it is clear

how the technology research and development is starting to pay off. However, IoT tech-

nologies attempt to solve complex problems in multiple sectors, and the adoption of IoT

can only be facilitated if the technology is offering a viable solution to an existing prob-

lem.

1.1 IoT and Low Power Wide Area Networks

Communication technologies allow for the creation of Internet-connected networks. Wire-

lessly connected devices allow the network to grow as it overcomes the challenges im-

posed by the need for wired infrastructure.

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Wireless communication technologies.

Wireless communication networks are split into multiple categories, as depicted in

Figure 1.1. The first category is short-range and high bandwidth with medium to high

energy consumption like WiFi. Similarly, the second category shares a similar short-range

with a focus on reducing data rates and energy consumption, and it is usually observed in

Bluetooth. The third category noted in cellular networks such as GSM, UMTS and LTE.

These networks are known for being longer in range with average to high bandwidth that

is often limited by the energy consumption aspect. The fourth category is known as Low

Power Wide Area (LPWA) networks, and it is found in proprietary technologies such as

LoRa, SigFox, INGENU RPMA, TELENSA and QOWISIO [2]. LPWANs fill the gap by

offering long-range, energy-efficient low data rate networks.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: LoRaWAN network architecture.

Many IoT devices are either battery operated or relaying on an energy harvesting solution

that allows them to operate for long periods [3]. LPWANs allow for inexpensive low

power transceivers, which makes them ideal for many IoT applications such as smart

cities, agriculture, industrial monitoring, logistics, home automation and many more [2].

1.2 LoRa and LoRaWAN

Long Range Wireless Communication Protocol (LoRa) is a term coined to describe the

physical (radio) layer of an LPWA technology. Alternatively, Long Range Wide Area

Network (LoRaWAN) is a communication protocol that builds upon the LoRa physical

layer by specifying the Medium Access Control (MAC) and application layers. The LoRa

alliance 1 introduced the protocol first in 2015 [4] to allow for usability, scalability and

security of the connected devices while maintaining the LoRa physical modulation fun-

damental characteristics such as long-range, low bandwidth and extended battery life.

The network architecture depicted in Figure 1.2 highlights the four major components.

End nodes describe the connected "things". They transmit and receive information to and

1www.lora-alliance.org/

CHAPTER 1. INTRODUCTION 4

from the gateways using LoRa Radio Frequency (RF), and in turn, they act as transla-

tors and communication bridges that allow the network and application servers to remain

general-purpose entities that are modulation/topology independent.

1.3 The Things Network

The network architecture proposed by the LoRa alliance could be considered simple and

easy to implement, but one of the main IoT properties is scalability, and here is where

The Things Network (TTN) 2 comes into the picture. TTN is a global distributed crowd-

funded 3 internet of things intuitive that provides an infrastructural service in a decen-

tralised manner (Distributed Infrastructure Initiative [5]) building upon the LoRaWAN

standard and providing a public, free and easy to use IoT network.

The idea behind a crowdsourced public network has many advantages and breaks the bar-

riers of entry that exist with most IoT networks and platforms. The collaboration exists

on multiple levels; mainly, it can be analysed based on the four major components of the

network architecture. Volunteers connect their gateways to the network server and allow

any end node within range to transmit and receive packets. TTN handles and maintains

the gateway, network and application servers while providing an open-source network

stack to allow for transparency and community collaboration.

TTN is pushing IoT and LoRaWAN forward in many aspects, and this can be easily

observed in a number of initiatives and papers that use The Things public network to do

research that helps define the technology promises and limitations.

Several research papers from multiple universities and various worldwide locations lever-

age the existence of the public network to research the use cases and improve upon the

existing technology.

In [6], air quality monitoring system for smart cities, in [7], an object tracking solution,

2www.thethingsnetwork.org
3www.kickstarter.com/projects/419277966/the-things-network

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Generic Node sensing abilities [15].

in [8], [9], e-health and agriculture systems are developed and evaluated. Improving on

the technology is observed in [10] by reducing energy consumption using an artificial

neural network, in [11], a LoRaWAN testbench, in [12], improved gateway server design,

in [13], edge analytics evaluation and in [14] , the integration of LoRaWAN and 4G/5G

for industrial IoT. The papers mentioned provide an insight into the usability and effec-

tiveness aspects of LoRaWAN and how TTN is helping accelerate the development and

integration of the new technology.

On the business side, The Things Industries (TTI) 4 helps businesses to build upon the

usability of LoRaWAN and allows companies to integrate the functionalities into their

core products.

1.4 The Generic Node (GN)

End nodes are the indispensable members of the architecture (Figure 1.2). All the other

components are only useful if the end nodes are providing practical and advantageous

4www.thethingsindustries.com

CHAPTER 1. INTRODUCTION 6

use-cases.

In January of 2019 at the things conference 5 in Amsterdam, TTN/TTI unveiled a multi-

sensor LoRaWAN end node called Generic Node (GN)6. It acts as a reference design for

a next generation LoRaWAN end device. It is a low power design, contains a replace-

able battery, supports firmware over the air updates, contains a secure element and it is

designed to support ARM Mbed OS platform. It contains four versatile sensors which

together drive around 20 to 30 use cases some of which are depicted in Figure 1.3.

Building upon the same community collaboration approach. The firmware of the device

and all related software components are available as open-source repository on Github.

Furthermore, the device schematics will be publicly available and can be commercially

licensed.

Software-defined IoT is an effort to eliminate the Hardware (HW) and Software (SW)

challenges by providing an easy to use development platform that allows developers to

focus on building applications, and ultimately accelerating the adoption of the technol-

ogy.

Due to the young nature of the standard and the usual long development and production

times of end nodes, only a few end devices exist on the market that supports the standard.

This creates an unwanted monopoly in a young and immature industry. Almost all com-

mercially available end nodes are closed source, and they provide limited functionality

with a high purchase cost.

TTN always had a history of supporting the LoRaWAN ecosystem by providing some of

the essential components such as indoor and outdoor gateways. GN is part of the endeav-

our to eliminate the barrier to entry.

It is a welcomed addition to the market as it targets providing a multi-sensor, cost-

effective, battery efficient and securely connected open source LoRaWAN end node to

5www.thethingsnetwork.org/conference/
6www.genericnode.com

CHAPTER 1. INTRODUCTION 7

Companies and individuals.

1.5 Research Focus and Goals

There is no doubt that the GN is a unique device, and the fact that it is an open-source

project makes it even more valuable. Being a firmware engineer at TTN/TTI allowed for

the unique opportunity to be part of a small team tasked with the design and implementa-

tion of an open-source GN firmware.

From an embedded engineer perspective, the device is considered the ultimate challenge.

It offers a new design and a multitude of sensors. It can communicate over long-ranges

and demands an efficient battery life. Furthermore, it utilises a young new standard (Lo-

RaWAN) and builds upon it with the addition of a secure element and Firmware Update

Over The Air (FUOTA).

1.5.1 Research Hypotheses

Due to LoRaWAN standard young nature and the competitive and secretive market built

around IoT end devices, publicly available research regarding end nodes capabilities and

possible future improvements is almost non-existent.

The research and development of GN establish multiple hypotheses that are verified,

validated and extensively analysed throughout the development phase; some of them are:

• Multi-sensor hardware design complexity can have a negative effect on sensors

measurements.

• IoT devices generic firmware design can allow for a multitude of use cases with

minimal configuration overhead.

• General purpose multi-sensor IoT end devices can achieve low energy consumption

and maintain long battery life.

CHAPTER 1. INTRODUCTION 8

• GN will enhance the security profile of LoRaWAN end devices with the inclusion

of an onboard cryptographic co-processor.

• Efficient implementation of FUOTA can be achieved with minimal impact on bat-

tery life.

1.5.2 Research Methodology

Building a general-purpose firmware focuses mainly on abstracting the HW capabilities of

the device and making them accessible through SW allowing developers and companies

to use the device in various applications.

The information collected throughout the development process provides an insight

into the state of the art of multiple technologies due to the reference design nature of the

device. The challenges and opportunities of building the device are highlighted, analysed

and recorded in an empirical approach. Related research is referenced, compared and

applied to relevant challenges to provide an overall view of current issues in the field of

IoT. Furthermore, the empirical findings are publicly shared in this document to provide

an insight into the recent development problems allowing for further research.

1.5.3 Thesis Structure and Organisation

The development covers several areas and subjects depicted in Figure 1.4. Each chapter

focuses on a specific research space. Implemented items refer to relevant reports, scripts,

test cases and SW components that are developed in order to aid in the analysis of the

corresponding research space.

CHAPTER 1. INTRODUCTION 9

Figure 1.4: Chapters outline.

Chapter 2

LoRaWAN: Under the Microscope

In IoT, communication technologies impose functional and non-functional requirements

on any network component. End nodes inherited connectivity capabilities are typically

considered the defining characteristics of the device. To explain further, any device using

Bluetooth is typically designed around power efficiency, limited range and average to high

data rates.

In the case of GN, LoRa and LoRaWAN are not different, as any device using LPWA

technology is expected to operate for several years on a single battery with a minimum

communication range in kilometres [2], all of which is achievable by decreasing the data

rates.

Understanding the communication technology requirements and specifications is crit-

ical to building a compliant device that delivers on the technology proposed vision. In the

upcoming sections in this chapter, we take a brief overlook at research relevant technical

terms and specifications that must be considered in the design and implementation of any

LoRaWAN end node.

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 11

2.1 LoRa: Terms and Concepts

LoRa is a proprietary wireless modulation technology that acts as a physical layer for

LoRaWAN specification.

2.1.1 LoRa Modulation

Low Power Wide Area Network (LPWAN) technologies are commonly divided into two

communication techniques, Ultra Narrow Band (UNB) and Spread Spectrum (SS) [3].

LoRa physical layer uses frequency shift chirp modulation patented technique [16] devel-

oped by Cycleo (later acquired by Semtech).

LoRa is considered a SS technique where signals are modulated by chirp pulses (Chirp

Spread Spectrum (CSS)) which is ultimately a frequency varying sinusoidal pulses [17]

(Appendix A Figure A.1).

In [3], UNB and SS are reviewed and compared with respect to interference, capacity,

link budget and coexistence. From an end node design and implementation perspectives,

the analysis provides a valuable evaluation of what is expected if one of the modulation

technologies is employed.

If we consider interference, in the case of LoRa, the utilization of CSS indicates a number

of points:

• The modulation is resistant to external interferences and jamming signals (most in-

terference signals lack the SS key, so most are rejected thus increasing the resistance

property), such property improves the range and reliability aspects.

• In ideal situations, LoRa transmission range can reach up to 15 KM. Data rate is

the deciding parameter, lower data rates deliver longer range and vice-versa.

• Dense environments populated with devices using the same modulation technique

are considered an interference hazard due to self-noise, this means nearby nodes are

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 12

considered a source of interference for other nearby devices, such problem high-

lights the need for LoRaWAN from a scalability perspective [18].

Capacity refers to the amount of usable data (without any physical layer overheads or re-

dundant noise offset data), and in the case of SS, it is significantly lower (theoretically five

times lower) than UNB modulation techniques (challenged by network planning exam-

ple in [19]). The capacity indicates the throughput of a modulation technique, and in the

case of SS, it signifies the importance of designing an efficient communication protocol

that takes into account the limited capacity. We can observe how the reduction of data is

demanded from the interference, range and capacity aspects, and this becomes critically

relevant when designing the application layer.

Link budget is a sophisticated equation that reflects the strength of a transmitted

signal arriving at a receiver, the equation takes into account all the parameters such as

antenna gain, path loss, propagation loss, receiver sensitivity, system dependant gains and

modulation technique to be able to quantify the system communication capabilities.

The equation ultimately indicates the coverage of the communication technology, higher

link budget typically means better coverage and since LPWAN is a constrained network

(power and cost-wise), it is critical to accurately asses the link budget to arrive at an ideal

network design that delivers on the promised functionalities, moreover the link budget is

critical to any firmware design to help avoid wasting precious energy and in achieving

reliable operation.

Using [19], a possible LoRa link budget could be 151 dB (calculation shown in Ap-

pendix A), and higher link budget can reach up to 164 dB as observed in [20], theoretically

this would allow for a coverage of 800 KM (pure free space loss = 150 dB). A LoRaWAN

world record of 766 KM was recorded [21], confirming similar link budget coverage cal-

culations, but wireless reach in reality is affected by multiple phenomena’s that fall under

signal propagation theory [20], and further in depth exploration would be outside of the

thesis scope.

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 13

Coexistence refers to the capability of using multiple LPWA networks in close prox-

imity of each other. The analysis conducted between multiple LPWAN deployments sce-

narios shows increased interference problems that highlight the existence of a scalability

problem.

Multiple solutions such as group splitting or power control coordination are recommended

[3], but in case of GN design, the analysis highlights the need for end nodes to employ a

reliable fallback mechanism that is able to detect transmission failures for long periods,

and diagnostically report the issue when possible to allow network maintainers to adjust

transmission rates and synchronise accordingly.

2.1.2 LoRa Spreading Factor

In digital modulation, some physical layer parameters are configurable and controlled at

the application level such as Baud Rate in UART, and in the case of LoRa, the Spreading

Factor (SF) acts similarly providing control of multiple LoRa transmission characteristics

such as data rate and power consumption. To explain the relation, we define some related

terms:

Symbol is an RF energy state that represents a cretin quantity of information (a symbol

can represent a bit or more). A symbol rate or modulation rate is most commonly known

as the baud rate, and it depicts the number of symbol changes over a period of time. From

[19], we can evaluate the symbol rate using the following formula:

Rs = BW

2SF
symbols/sec

Where Bandwidth (BW) is considered the width of the spectrum occupied by a chirp.

The SF represents the chirp signal spreading over the spectrum (the amount of frequency

variation over the spectrum)[19], this ultimately depicts the number of bits encoded per

symbol, or at a more granular level, 2SF represents the number of chirps used to encode a

bit [4], and in LoRa, SF parameter is configurable ranging from SF7 to SF12 (SF7 means

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 14

128 chirps per bit) We can observe that the data rate is inversely proportional to SF. SF12

corresponds to the lowest data rate, and the decreased data rate means more chirps per bit,

allowing the signal to travel for longer distances (lower sensitivity and higher link budget)

[19]. The spreading factor is also directly proportional to data transmission time, which

is similarly proportional to energy consumption [22].

Understanding SF and its effect on energy consumption and range is critical in the

development of any LoRa device. All loRa/LoRaWAN related research account for SF

in their analysis and findings, moreover, some research is fundamentally built around

the configurability aspect of the parameter as observed in [23], [24], [25], [26] and [27].

LoRa devices such as GN can control SF in runtime, and in devices that are promising

long-range and prolonged battery life, the responsibility falls upon the firmware developer

to properly configure SF to meet data rate, energy consumption and range requirements.

2.1.3 LoRa Operation

LoRa physical layer operates in the Industrial, Scientific and Medical (ISM) unlicensed

frequency bands. The bands are region-specific, and their usage is regulated and su-

pervised to ensure operability. Transmitting devices must comply with region-specific

regulations such as max transmission power and duty cycle.

In Europe, LoRa devices are allowed to operate in EU 433/863-870 MHz ISM bands with

a maximum transmission power of 14 dBm and a limited duty cycle up to 1% (every 1

second of transmission means the device cannot transmit for 99 seconds)[28].

The regional regulatory specifications act as functional requirements for LoRa capa-

ble devices, the implications of limited transmission power and duty cycle are significant

from SW and HW perspectives and must be accounted for in multiple design/implemen-

tation areas. Devices such as GN are expected to operate in multiple regions, and SW

configuration capabilities are demanded to allow for compliance in the various regions.

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 15

Figure 2.1: LoRaWAN Stack.

2.2 LoRaWAN: Network Stack and Architecture

LoRaWAN network architecture initially introduced in Chapter 1 Figure 1.2 highlights

the four major components (end nodes, gateways, network and application servers) ins a

star-of-stars topology.

The specifications [29] refers to messages transmitted and received by end devices as up-

link and downlink messages. End devices send uplink messages to the network server by

transmitting a LoRa message to one or several gateways which in turn relay the message

to the network server. Similarly, the network server sends a downlink to an end device

by relaying the message to a single gateway that transmits the LoRa message to the end

device. The network server is responsible for routing device packets to the associated

application server and handling application server request and scheduled downlink mes-

sages.

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 16

Figure 2.2: LoRaWAN Class A communication scheme.

2.2.1 LoRaWAN MAC layer

As depicted in Figure 2.1, LoRaWAN builds upon the physical layer and defines the MAC

layer and the specifications for the data link layer[30]. The LoRa alliance maintains

a detailed and updated specification [29] that target organizing the communication of

battery-powered LoRa end devices.

LoRaWAN recognizes three different classes of devices (MAC options); class A is

the baseline that all LoRaWAN devices must implement to comply with the specification.

Classes B and C are optional, depending on the end device required functionality and

power constraints. Class A is designed to be the lowest energy consuming class. The

energy efficiency is achieved by allowing all end devices to enter a deep sleep state most

of the time. The longevity of the deep sleep state is achieved by partially omitting the

downlink messages (end device is not listening for new messages), and therefore, the de-

vice can efficiently enter deep sleep. Only when the end node sends an uplink, it waits for

downlink in a predefined receive window as depicted in Figure 2.2.

In comparison, classes B and C consume more energy to allow for flexible receive win-

dows and downlinks.

A comprehensive analysis done in [31] shows the implication of varying SF and de-

vice class on total power consumption. Devices such as GN are class A devices and

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 17

the firmware should account for class A uplink and downlink communication scheme,

furthermore, the application layer is expected to employ a cretin level of intelligence to

properly utilize the enforced mac layer leaving room for further research and improve-

ments [32].

2.2.2 Adaptive Data Rate

Building upon the offered controllability of the physical layer, end devices can optionally

allow the network server to control the end node SF (data rate) and transmission power.

Since the network server and the gateways are not power constrained, they can use the

communication metadata to optimise the network traffic and end nodes energy consump-

tion in runtime.

End nodes can opt-in the Adaptive Data Rate (ADR) by setting uplink ADR bit and can

detect if the network is actively controlling the data rate by checking the ADR downlink

bit [29]. The ADR runtime algorithm at the end node is considered relatively simple and

offloads all the overhead to the network server[33]. The network traffic optimisation op-

portunity offered by LoRaWAN stack is the subject and focus of multiple research papers

[34] [35].

GN can be used in various applications and use-cases, therefore, activating ADR is

an important application decision that must be critically evaluated before various deploy-

ment scenarios. Using ADR is not recommended [36] when the link budget calculations

are known in the deployment scenario, furthermore, if the end node is expected to be mo-

bile, using ADR is shown to have negative impact due to the implied overhead [4] and a

reduced packet delivery ratio [36].

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 18

2.3 LoRaWAN Security

IoT security is a major research focus due to the recent technology development. More-

over, the research areas are extensively diverse and require in-depth analysis that is typ-

ically associated with multiple proposals and countermeasures. Extensive surveys show

an exhaustive categorisation of various IoT vulnerabilities [37]. Most IoT platforms and

protocols share similar security vulnerabilities, and LoRaWAN is no different. End nodes

inherit the security profile of the utilised communication protocol. Firmware designers

must comply with standard specifications (functional requirements) and employ research

best practices and countermeasures.

In this section, we inspect LoRaWAN (version 1.1) security specifications and high-

light relevant research. The analysis provides background and a basic understanding of

the current security profile of a typical LoRaWAN end node. GN HW and SW improves

upon LoRaWAN typical end node security profile, which is further illustrated and anal-

ysed in Chapter 6.

2.3.1 Authentication and Data Encryption Frameworks

LoRaWAN is built around security as it relies on symmetric cryptography with authentica-

tion and secure communication frameworks [38]. LoRaWAN employs a lightweight [39]

key-based encryption scheme based on 128 bit Advanced Encryption Standard (AES).

Two methods of activation are possible: Activation by Personalization (ABP) and

Over The Air Activation (OTAA). In the case of ABP there is no joining procedure, and

all the authentication data is hard-coded [40] such as DevAddr and four session keys.

The method is considered to be prone to replay message attacks and the use of OTAA is

a recommended alternative [41].

In OTAA, the communication between the end node and network server is session-based.

Each session must be activated for end node-server communication to take place, this is

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 19

Key Origin

NwkKey Stored before session activation

AppKey Stored before session activation

JSIntKey NwkKey + DevEUI

JSEncKey NwkKey + DevEUI

Table 2.1: LoRaWAN v1.1 before activation keys (OTAA)

done using pre-shared and derived keys scheme [33] [29][40].

In Table 2.1, we show the root keys needed before activation in LoRaWAN v1.1.

The end node derives the session keys after a successful joining procedure using the Join

Accept message and the previously known activation keys as depicted in Figure 2.3.

The generated keys are used to check uplink and downlink message integrity codes (FN-

wkSIntKey and SNwkSIntKey), and encrypt every MAC and payload data packets using

NwkSEncKey and AppSKey, respectively.

2.3.2 Vulnerabilities

LoRaWAN V1.1 introduces new security countermeasures to vulnerabilities discovered

in the initial stranded specification (V1.0). End Nodes such as GN are expected to follow

and comply with the latest specification. Countermeasures and best practices from older

research similar to [41], which is done on the older specifications should be revaluated

and only applied if the vulnerability still exists. New detailed analysis and exploration of

the new specifications is done in [42].

The attack tree describes several vulnerabilities and their countermeasures. End nodes

firmware design can apply described best practices such as avoiding using ABP to counter

keystream reuse and denial of service attacks.

CHAPTER 2. LORAWAN: UNDER THE MICROSCOPE 20

Figure 2.3: Over The Air Activation in LoRaWAN 1.1.

Action 1,2: Message Integrity Check (MIC). Action 3: derivation of session keys.

Chapter 3

Generic Node Hardware Design

Hardware design is one of the most challenging aspects of the development life cycle of an

embedded device. Collaboration between multiple vendors and hardware manufacturers

is encouraged to overcome all the challenges that accompany building and designing a

new device. GN is no different, as to achieve the vision of TTN, a collaboration between

TWTG, Microchip and ARM took place where they targeted building a reference design

for a multi-sensor general-purpose LoRaWAN end device. The target of such a device is

to supplement the LoraWAN ecosystem; furthermore, reduce the complexity of designing

LoRaWan end device while still pushing the industry in multiple areas such as security

and battery life. Microchip and ARM engineers developed the hardware requirements

for the device (MCU, external memory, number of sensors, secure element) and worked

closely with TWTG to design the schematics and the PCB.

TTN role as part of the collaboration is to build a firmware for the GN and design

software sample applications that show the benefits of using this reference design. One

of the initial steps in the firmware development is identifying the hardware components

and analysing the capabilities and limitations of the device. From a hardware perspective,

GN provides a multitude of challenges to any embedded firmware developer; this is a

result of the fact that the node accommodates many sensors and onboard components.

The firmware development of such device resembles developing several independent IoT

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 22

devices.HW validation is one of the activities undertaken by TTN acting as an entry point

for the firmware development.

The validation includes the following set of activities:

1. Analyse the device schematics and provide TWTG (HW designers) with feedback

related to any functional issues and required improvements.

2. Write sample SW applications to test the sensors and all the onboard components.

3. Validate the usability of GN and the effect of the device enclosure.

The validation of GN HW design provides a comprehensive overview of the device func-

tionally and details the issues that face HW and SW designers in the development of

similar IoT devices. In the upcoming sections in this chapter, we target the following:

• Highlight the components of a next-generation LoRaWAN IoT device.

• Show the promising aspects of using certain HW components.

• Discuss relevant HW design issues based on generated findings, thus opening the

door for future research that builds upon these findings.

• Provide best practices and relevant research solutions that could apply to the devel-

opment of similar devices.

3.1 Device Components

The GN is constructed to function as a multi-sensor gerenal purpose IoT device that is op-

erated by single double A battery. As seen in Figure 3.1, the device contains the following

components:

• SAMR34/35 Microchip system in package which integrates a 32-bit ARM Cortex

M0+ Micro-Controller Unit (MCU) with an Ultra High Frequency (UHF) transceiver

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 23

Figure 3.1: Generic Node components.

communication interface (Semtech SX1276) that supports LoRa and Frequency-

shift keying (FSK) modulation.

• Four sensors which are Accelerometer, Temperature, Light (backward LED) and

Capacitive plates (proximity, touch, slide and moisture sensor).

• ATECC608A cryptographic coprocessor (referred to later as secure element).

• SST26WF08 8 Mbits of external flash memory.

• Three LEDs (RED led functions as a light sensor as well).

• Translucent Polycarbonate IP64 rated enclosure depicted in Figure 3.2

• Other miscellaneous components such as regulators and crystal oscillators.

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 24

The components mentioned above construct a reference design that allows new products

(such as the MCU and the secure element) to establish a presence in the market while still

reducing the cost and saving on power consumption through various techniques.

3.2 HW Design Best Practices

Reducing energy consumption and cost of production is the main design objectives in IoT

HW design, and every approach that can empower achieving such objective is encouraged

and highlighted in the research. GN HW design incorporates many of the best practices

that make it a useful reference for any future development. Some of these practices are

mentioned below:

1. Dedicated MCU interrupt lines for sensors. (Temperature, Accelerometer and Ca-

pacitive plates) providing alert functionality for certain events.

Positive impact

• Improved battery life as the MCU can sleep most of the time and wake up

only when the interrupts are triggered.

• Allows application design to become event-driven.

Negative impact

• Occupies valuable MCU pins even if one of the sensors is never utilised for a

specific use case.

• Application dependant practice that might be unnecessary for some use cases

such as interval-based data collection.

• Interrupt lines are prone to noise and might unnecessarily trigger the system

in noisy environments.

2. Double usage of PCB mounted LED as a light sensor, taking advantage of the phys-

ical properties of a photodiode acting as a capacitor in case of reverse bias and

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 25

measuring the time of capacitor discharge time as an indicator of the surrounding

amount of light [43].

Positive impact

• Cost effective approach of implementing a light senor, elimnating the need for

a didacted light senor.

Negative impact

• No interrupt line, requiring all sensor measurements to be done by polling.

• Interval based light sensor measurements requires the processor to fetch the

data every time, reducing the number of use cases that can be implemented

with this sensor.

• Reduced accuracy and sensitivity in comparison with a dedicated sensor.

3. Power switching MCU pins/lines that allow the user to power on/off the sensors

depending on the application.

Positive impact

• Improved battery life and increased power management capabilities.

• Allow for sensor specific applications without compromise on energy.

Negative impact

• Can be complex to implement and requires a dedicated power distribution load

switches. More on the topic in Chapter 5.

• Requires multiple GPIO pins and load switches per each sensor, making it

an expensive practice. Sensor grouping (power up several sensors simultane-

ously) is one approach to reduce the number of pins and switches needed, but

this comes with the added sacrifice of application modularity.

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 26

4. Battery voltage indicator monitoring using an ADC pin is a common practice that

is critical for any battery-powered IoT device and combining this practice with the

previously mentioned sensor power switches makes it possible to implement low

battery modes that prolong the battery life.

3.3 Enclosure Effect

Battery operated end devices such as GN are typically used in various environmental

surroundings ranging from typical indoor locations such as homes and offices to harsh

outdoor locations such as farmlands and animal husbandries. A general-purpose device

such as GN must be able to function properly and survive a number of environmental con-

ditions for several years. This means that having an enclosure is critical to the functional

operability of the device.

The benefits of using an enclosure are overshadowed by the complexity of design-

ing one. Since GN will always be used with the protective casing, this means that it is

considered a critical HW component that must be appropriately verified and validated.

When you combine a multi-sensor device with an enclosure, we can get an idea of the

challenges that are faced in IoT HW design and the existing limitations and compromises

that are currently existent in the industry.

Considering the fact is that each sensor can be a separate production device on its own;

analysing the enclosure effect on all of the onboard sensors is an excellent research op-

portunity. On the other hand, it also highlights the problems that accompany building a

general-purpose end device as the enclosure design needs to satisfy multiple requirements

that don’t necessarily exist in other one sensor IoT devices.

As seen in Figure 3.2 and in Appendix B Figure B.1, the enclosure covers the entire

body of the PCB allowing GN to be IP64 certified device. The material of the enclosure

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 27

Figure 3.2: Generic Node enclosure.

is made of polycarbonate material which is typically transparent and used to protect the

device in harsh environments [44]. It also can act a heat insulator/deflector, which makes

it a focus on the process of HW validation. Using a polycarbonate material, in this case,

has positive and negative effects that will be highlighted per each sensor.

3.3.1 Test Procedure

Surrounding environment

Due to the nature of GN and its inherent capabilities of sensing environmental changes,

the nodes test environment (either indoor or outdoor) depended on the sensor under test.

To perform boundary value testing, extra equipment such as hot air blower, fridge and a

flashlight helped in generating the needed conditions.

Test setup

Tests conducted on GN sensors included the following components:

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 28

• One Generic node with the polycarbonate enclosure, see Appendix.

• One Generic node without the polycarbonate enclosure.

• Two serial to USB converters (FTDI232), connected to both nodes with jumper

wires to allow for increased sample rate and stress tests.

• Two external batteries connected to each node with jumper wires, to allow for syn-

chronous power switching (since access to the battery is blocked by the enclosure),

see Appendix B Figure B.1

• Ubuntu machine with two separate serial terminals for data logging.

Multiple software test applications allowed for testing the enclosure effect on each sensor.

The test application focused on isolating and testing only one sensor allowing for concise

and discrete test results.

3.3.2 Effect On Temperature Sensor

Multiple tests have been conducted on the temperature sensor in order to validate the HW,

these tests provide meaningful observations from a theoretical and practical stand points.

The Temperature sensor accuracy is the most affected by the enclosure as seen in Figures

3.3, 3.4

Test application

The applications uploaded on the nodes were sampling a new temperature readings ev-

ery five seconds. Both devices were started simultaneously. Every serial message was

received by the serial terminal on the Ubuntu machine and logged with a corresponding

timestamp.

Test 1: 15.02.2019 to 18.02.2019

As seen in Figure 3.3, this test targeted exposing the devices to various temperature

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 29

Figure 3.3: Test 1: Enclosure effect on temperature measurements.

changes, both during the night and during the day, this was done by placing the nodes

right next to the office windows. The test lasted for approximately three days (weekend

period) taking 45000 sample measurements, in this period the devices did not move and

had no external interference from any individuals.

Test 2: 22.02.2019 to 25.02.2019

As seen in Figure 3.3 (Blue is a node with enclosure and Red is Node without enclosure),

the Second test was intended to omit direct sunlight exposure and measure temperature in

a normal room climate. The test setup was placed on a table in the middle of the room, and

devices had a carton covering to ensure sunlight does not heat up the enclosure. Similar

to Test 1, The setup was left untouched for a weekend period.

Test impressions and overall take

Each of the tests separately gives an idea of how big of a role the casing plays in temper-

ature readings. In both cases it can be seen, that the sensitivity of the sensor is reduced

(less sharp reaction to small temperature fluctuations), heating in the peak day tempera-

ture is significantly higher, thus cooling down takes more time. In the test conducted near

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 30

Figure 3.4: Test 2: Enclosure effect on temperature measurements.

Blue plot indicates sensor measurements with an enclosure.

Red plot indicates sensor measurements without enclosure.

the window (Test 1), where temperature changes are more significant due to the sensors

being closer to the outside, some noticeable details can be seen:

1. Due to direct sun exposure, heating in peak daytimes, where the sun effect is the

biggest, the enclosure overheats and inaccurately show an inaccurate increased tem-

perature reading of approximately four degrees in comparison to the node with no

enclosure.

2. The sensitivity is slightly less with the casing than without the casing.

3. After cooling down to the evening temperature, both devices readings even up

showing similar readings until the next day where inaccurate measurements reoccur

due to the enclosure effect.

In the test conducted in the middle of the room (Test 2), where surrounding temperature

changes are less frequent, and devices were not exposed to direct sunlight, some notice-

able details can be seen:

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 31

1. The sensitivity with the enclosed node is significantly less as some temperature

fluctuations are barely recorded (due to the fact that room temperature changes are

not persistent, allowing the node without the enclosure to pick up the changes while

the enclosed one unable to detect the change).

2. Heat accumulation problem still exists during the day temperature peak times, same

as Test 1; although the inaccuracy in peak readings is reduced from four degrees

Celsius to two and a half degrees.

3. A constant difference in temperature readings of a half degree can be observed

throughout the whole test, except for the smallest regions where the outside tem-

perature starts to rise. This means that the extra heat accumulated by the casing is

not dissipated in the room temperature environment.

As a conclusion, the enclosure dramatically affects the temperature readings. Moreover,

the measurement overshoot is inconsistent and depends drastically on the surrounding

environment. The analysis shows the need for a SW solution to solve the inaccuracies

induced by using an enclosure (more on that in Chapter 3) as HW changes will increase

the cost of development and production leading to the increased final cost of the device.

3.3.3 Effect On Capacitive Plates

The enclosure material acts as an insulator making testing the capacitive plates with the

casing a priority to ensure the functionality of this critical component. The procedure

of testing involved increasing the sensitivity of the Peripheral Touch Controller (PTC) to

allow for touch detection.

As seen in Figure 3.5, with the current enclosure design, it is essential that the distance X

between the enclosure surface and the Printed Circuit Board (PCB) mounted capacitive

plates is within the max sensitivity range. Adjusting the channel touch detection threshold

and hysteresis with relation to the plates touch surface area is necessary to condition the

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 32

Figure 3.5: Enclosure effect on the capacitive plates.

Reference light level (lux) Light (%) without enclosure Light (%) with enclosure

0 0% 0%

231 3.179% 2.987%

570 7.387% 7.152%

2400 40.276% 38.137%

4300 78.291% 76.254%

6200 95.332% 92.142%

Table 3.1: Enclosure effect on the light sensor.

plates to act as proximity sensors allowing for the detection of any charges on the surface

of the enclosure.

3.3.4 Effect On Light Sensor

One of the benefits of using a polycarbonate enclosure is the capability of producing

an almost translucent casing as seen in Appendix B figure B.1 that doesn’t block light

making it possible to mount the light sensor (red LED) on the PCB, reducing the casing

impact significantly on the light-sensing capabilities. Tests conducted with and without

the casing seen in Table 3.1 show the enclosure material minimum impact on the light-

sensing capabilities.

CHAPTER 3. GENERIC NODE HARDWARE DESIGN 33

3.3.5 Effect On Lora Radio and Accelerometer

Lora radio antenna is one of the most indispensable HW components and analysing the

Received Signal Strength Indicator (RSSI), and the Signal to Noise Ratio (SNR) infor-

mation obtained from the connected gateways was important in evaluating the effects of

the enclosure (Appendix C Figure C.2). Based on multiple testing procedures done by

another team member, we concluded that the enclosure material does not affect the trans-

mission and receiving capabilities of GN. Furthermore, the accelerometer functionality is

also not influenced in any way by the addition of an enclosure, making it the only sensor

that does not require any calibration/ adjustment of any sorts thus allowing the user to use

and trust the data generated from the sensor.

3.3.6 Impressions and Possible Solutions

As observed with the analysis of the enclosure effect on the different sensors and HW

components, we can observe how the capacitive plates use cases (water, moisture and

touch detection) are complemented by the usage of an enclosure. On the other hand, we

can see how using an enclosure in this design affects the sensitivity and accuracy of the

temperature and light sensors.

This goes to show the complexity of designing and validating a general-purpose device

and the need for research-oriented solutions to fix the design challenges highlighted and

incurred by the usage of several components such as temperature sensor calibration done

in [45]. It is also worth highlighting that the enclosure effect analysis only shows the

limitations induced by the usage of the casing; this effect becomes more significant when

considering the measurement limitations of the sensors.

Chapter 4

Generic Node Software Design

General-purpose devices such as GN introduce several challenges from a software design

perspective. There are multiple areas where the hardware intersects with the software,

and a proper SW design needs to allow for the usability of all HW components. Being

a reference design device increased the need for a modular software that allows any user

from any background to utilise the device and be able to benefit from its functionality.

Embedded SW design has matured significantly throughout the years, and it is safe to

assume that no one needs to rebuild the wheel every time a new device is produced. A

huge number of references and books exist in the field, allowing any industry such as IoT

to move forward building upon previous experiences.

GN as a device is a mixture of multiple individual components and sensors, all of which

are not considered new in any way, this fact alleviates some of the challenges and allows

for building upon previous knowledge.

Only by approaching SW design with this mentality, we can build a device that pushes

the industry a step forward in the right direction. Since the device is targeted to push the

envelope of what is possible in the field, it is also necessary to approach the SW design

with a cost-effective mentality similar to any IoT production device, this means focusing

on fixing some of the challenges that face manufacturers and designers in the field and

showing possible solutions to these challenges.

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 35

The approach to building the firmware of GN treats it as a production device; this means

planning and executing said plans gives a clear overview of the practical issues that face

engineers building similar products.

4.1 SW Development Plan

As shown in Chapter 3, The first step was validating the HW components from a firmware

development perspective, and while this showed practical issues and noticeable HW best

practices, any action taken to fix some of these issues proved to be either very costly or

impractical to implement in the HW side.

Since TTN is fully responsible for the SW development of the device, we approach it

by taking into account the HW capabilities and limitations and devising a SW develop-

ment plan that adheres to all the requirements and addresses some of the issues.

To approach SW design, it is required to define a set of goals that act as targets in the

development phase.

Some of the high priority goals being:

• Reduce SW development time in any way possible while maintaining quality.

• Allow for SW modularity and re-usability taking into account possible future de-

velopments (For example the possibility of a new HW revision with a change in

MCU or any of the sensors).

• Show the capabilities of the device by building sample applications that show the

promise of using a LoRaWAN end device (long-range and low power).

Building on the above-defined goals, we adapted the V-model SW development process.

The benefits of using this model and combining it with an agile approach are vital in

achieving the goals we set for this project. While discussing the benefits of such a model

is out of our scoop, it is essential to mention it and indicate the need for a clearly defined

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 36

Figure 4.1: Software architecture and components.

process in the development of any IoT product.

In the subsequent sections, we show various aspects of the SW development cycle and

highlight critical approaches and findings.

4.2 SW Components

Similar to HW, SW can be divided into multiple components; each of these components is

a critical part of the final product. Several decisions are made when choosing the different

SW components in the development of any new device. These decisions dramatically

affect the development process and the end product functionality.

4.2.1 Embedded Operating System (Mbed OS)

As we approach an era where micro-controllers are becoming less constrained memory-

wise, we are observing the increased usage of sophisticated real-time operating systems

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 37

that take advantage of the increased memory. Deciding whether to use an RTOS or opting

for a bare-metal approach is highly application dependent decision that should be consid-

ered in requirements and architecture definition phase. In the case of GN, it was clear that

a simple Real Time Operating System (RTOS) is needed to ensure application versatility.

GN is a new device in a growing market, Microchip and ARM were involved in every

development step of the way to guide TWTG and TTN to overcome the challenges of

building a LoRaWAN end device successfully. One of the initiatives established by ARM

to accelerate the development of the IoT industry is the development of an open-source

embedded operating system called Mbed OS. Mbed OS provides a middle ground be-

tween using a bare-metal scheduler and an overly complicated memory-intensive RTOS.

The benefits of using it are immense and significantly accelerated the development time

of GN while still adhering to all the goals set for product development.

Using Mbed OS was a great decision that showed its benefits throughout the devel-

opment cycle of GN, and while it would be lengthy to illustrate all the benefits, it is

beneficial to mention some critical aspects that assisted in the development:

1. All Mbed OS related SW (scheduler, drivers, libraries) are unit and integration

tested with system testing done on multiple targets. Any SW that is generated as

part of GN development will be similarly tested, increasing the testing coverage of

the entire system significantly in comparison to any other system that does not use

Mbed OS.

2. Modularity and reconfigurability being an essential characteristic of Mbed OS makes

it perfect for a general-purpose device such as GN.

3. The communication protocols drivers are implemented in an open-source form. re-

ducing the cost of development, and the amount of resources and knowledge needed

to build a product. This allows any user to focus on building applications that solve

real-world issues and not be burdened by the complexity of the SW development

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 38

needed to bring a product to the market.

4. The OS is built from the ground up with support for the various IoT requirements

such as low power modes and efficient data transfers. This eliminates the need for

optimisation to the prebuilt drivers, and switches the focus towards optimising all

the newly developed SW.

5. Mbed OS is released under an Apache 2.0 licence; this means it can be used in

commercial products with minimal to no fees. This makes it ideal for young com-

panies that are unable to pay the hefty licensing fees for the commercially available

real-time operating systems. Complemented by the community and manufacturers

support of the drivers, it is definitely helping push IoT forward and can accelerate

the time to market of LoRaWAN end devices.

A simplified SW architecture and an illustration of the several SW components can be

seen in Figure 4.1, the SW development can be divided to three different layers (HW

interface, Mbed OS API, Application), each component within a layer should be easily

replaceable with minimum changes to the neighbouring components. Each layer should

be abstracting the layer before it, and if one of the layers is changed for any reason,

only minimum SW changes should be done without the need for a complex software

architecture redesign.

If we observe the Mbed OS API layer, we get an understanding of how Mbed OS

provides the flexibly needed in an agile fast-paced IoT development process. To further

illustrate, in the development of GN there is only need for building and configuring some

MCU peripheral drivers in the Mbed OS runtime sublayer, every other component within

the layer works seamlessly even with a new MCU (SAMR34/35) that was never used

before in the market.

This also means that the LoRaWAN stack is compatible with any MCU architecture

supported by Mbed OS and the fact that it is modular and easy to configure encourages

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 39

developers to experiment and build applications in a smooth and straight forward manner.

By using Mbed OS in the development of GN, it was easy to build upon previous SW

layers and focus all the resources in building the Application layer and Mbed OS libraries

that take advantage of GN capabilities.

4.2.2 Software Drivers (Sensors and Flash)

The usage of Mbed OS accelerates the development of any MCU related SW compo-

nent since Mbed OS leverages the shared architecture design between the various targets.

This allows it to support multiple targets (different vendors) with minimum need for SW

change.

Sadly this concept does not apply for the onboard sensors as each sensor will have its

unique architecture and HW interface even if it was designed by the same HW manufac-

turer.

By design, sensors target collecting analogue data and acting as a vessel by converting

the collected data and delivering it in a digital form to a receiver that will analyse it and

maybe act upon it. Due to the versatility of methods to collect and measure environmental

data, sensors are inherently incapable of sharing the same architecture/design. The only

common component between sensors is usually the HW interface, more specifically the

communication protocol such as SPI, I2C and UART.

From a SW development perspective, this means that each sensor often needs a set of

commands to either activate certain functionality or to deliver the measured data, all of

which are occurring on one of the previously mentioned buses.

Having to develop sensor drivers can be a daunting and challenging task that should

only be undertaken if the sensor is unique, and the generated data is needed. Multi-

ple sensor HW manufacturers already support their sensors with standardised platform-

independent C language SW drivers such as ST, and this allows the firmware developer to

integrate the method of communication (bus used usually is platform dependent) and then

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 40

it becomes a matter of activating the relative functions using the provided standardised

SW driver.

Some other manufacturers such as Microchip provide sample drivers that are function-

specific and platform-dependent (Atmel start, MPLAB and ASF); this makes integrating

their sample drivers with a different platform a challenging, time-consuming task.

The same applies to other components such as Flash memory and not only limited to

sensors (although the support varies).

By using Mbed OS we overcome a number of challenges. But, since most of GN

sensors are not supported by the Mbed OS platform, it is clear that developing the drivers

for some of the sensors is not something that can be escaped.

In mature embedded industries such as automotive, tier-one suppliers usually focus their

resources on developing applications and only interact with the drivers when optimisation

is needed, as building a driver is typically a task that concerns the HW manufacturer of

the device.

Building Mbed OS compatible GN sensor drivers can be considered an opportunity,

as the drivers can be designed from the start to support LoRaWAN various transmission

modes/approaches with a focus on enhancing the battery life.

In the next subsections, we highlight some of the approaches taken in building GN SW

drivers and implementation practices that lead to improvements to the device functional-

ity.

Development of Temperature, Accelerometer and Cryptographic Co-processor drivers

In building drivers, it is important to understand the architectures that are expected to

utilize it and target building a modular SW interface that is flexible, efficient and supports

multiple development platforms with minimal configurations.

An example of modularity is explained by understanding the capabilities of Cortex M0+

architectures as they target conserving energy over processing capabilities.

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 41

Figure 4.2: Generic Node sensors and flash MCU connections.

Best practices to achieve modularity and flexibility of sensor SW drivers are:

1. Reduce MCU-sensor communication to a minimum.

Justification: As seen in Figure 4.2, both accelerometer, temperature sensor and

the cryptographic co-processor communicate with the MCU using a shared I2C bus

and acting as slaves. This approach has the obvious benefit of reducing the number

of PINs needed for a multi-sensor device such as GN.

Activating any functionality of the sensors requires the MCU to be in an awakened

state (more on the topic in Chapter 5) and sending several bytes and waiting for

a response. From a battery lifetime improvement perspective, if we reduce the

amount of time taken to retrieve the data, we can return back to sleep faster, which

ultimately reduces the overall energy consumption.

2. Allow for modularity by separating data processing functions from data retrieval

functions.

Justification: LoRa capable devices strive to achieve long-range and low power,

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 42

and this comes at the cost of bandwidth. This means reducing the amount of data

sent and received as much as possible is a desirable feature; furthermore, the sepa-

ration provides the application layer with a choice of either formatting the received

sensor data or opting for sending the data in its raw form.

3. When processing is not needed it should always be omitted.

Justification: Edge devices such as GN can operate with respect to application

needs, and in most application use cases, cloud computing is the preferred model

in favour of edge computing. The topic is discussed in more detail in Chapter 5,

but it is important to understand that passive devices such as GN usually act as data

collectors and rely on other devices to make sense of the data and act upon it.

So maintaining long term battery survivability is more critical than any other fea-

ture.

A straightforward example is GN temperature sensor and the representation of tem-

perature measurements sent from the sensor to the MCU through the I2C bus. By

referring to the sensor datasheet [46] we see that positive numbers and negative

numbers have special 16-bit representation that needs to be formatted for the mea-

surements to become representative (1111 0101 1110 0000 represents -10.125 °C).

By sending the raw data without formatting and building cloud libraries that parse

the data, we save a considerable amount of energy, and we increase the battery life

significantly.

The benefits of applying some of these best practices are highlighted in Chapter 5.

Development of Flash driver

External memories have multiple usage scenarios when used within devices such as GN

as they can be incredibly useful in storing the sensor data or act as an enabler for firmware

updates over the air.

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 43

Building the flash driver benefits from all the previously mentioned best practices with

the only variable being, the use of the SPI bus for Flash-MCU communication instead of

I2C as seen in Figure 4.2.

Reducing the amount of SPI communications needed to write/erase a sector/block of data

is the key idea [47].

An example would be using block or chip erase commands instead of sector erase

commands if it is suitable to do so (application dependent), this mindset lowers the amount

of energy consumed in the long run, and the modular design approach (if applied) facili-

tates the application layer energy optimisation techniques.

Development of LED-based Light sensor drivers

In Figure 4.2 we observe the light sensor and the capacitive plates are utilising PT C

and GPIO as the methods of interacting with While PTC and GPIO are not serial com-

munication protocols (typical MCU supported peripherals), they still allow the MCU to

communicate with external components and get information similar to what a dedicated

sensor would provide.

In the case of the light sensor, as we established in Chapter 3, the red LED acts as a

light sensor exploiting the physical properties of a photodiode in a reverse-biased situation

[43]. This means applying no voltage to the positive terminal and applying voltage to the

negative terminal of the photodiode, in this reverse bias situation, the diode acts as a

capacitor charging up. Another property of the photodiode is that it reacts to the amount

of light and in reverse biased condition it resembles an optically induced photocurrent.

This means that when we stop applying the reverse bias, the photodiode discharges the

capacitor charge based on the amount of surrounding light, and by measuring the time

it takes to fully discharge we get an indication to the amount of light (hence acting as a

light sensor by switching the digital I/O pin connected to the negative photodiode terminal

to input), fast discharge time means an increased amount of surrounding light and vice

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 44

versa. This procedure is what enables an LED to acts as a light sensor and describes how

the MCU uses the GPIO pins to get an indication of the light.

The driver of the light sensor is responsible for applying this procedure every time

light measurements are needed. This means using an MCU timer to measure the dis-

charge time. Here it is critical in reducing the amount of time it takes the MCU to do

one measurement as the entire procedure of measurement is done while the processor is

awake and it cannot go to sleep until it finishes the measurement. Also eliminating any

processing of the measured time (converting it to light percentage) is critical, and this is

done by sending the time measurements to the cloud for processing and appropriate rep-

resentation.

Building a driver for the light sensor requires proper understanding of HW physical prop-

erties and the knowledge of several SW techniques, and in the case of the light sensor, it

proved to be easy and straight forward, but it is worth to mention that it is highly platfor-

m/design dependent. The driver also shows the exciting aspect of HW and SW working

together to achieve a new and different functionality from the one intended. This leads

to the reduction of the number of HW components on the board (no need for a dedicated

light sensor).

Development of Mbed OS compatible Touch sensor driver

Capacitive plates are usually connected to their own processing chip, and the measure-

ments information are relayed to the MCU similar to how the temperature and accelerom-

eter operate.

However, in the case of GN, the touch capabilities come from the support of the MCU

PTC seen in Figure 4.2. This makes it a target-specific feature and explaining the princi-

ple of operation behind it should be enough as PTC is a Microchip HW peripheral that is

not supported by other HW manufacturer.

The idea is for any pins supporting PTC is to perform capacitive touch sensor mea-

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 45

surements autonomously. The PCB capacitive plates are connected to an analogue charge

integrator (built-in HW that facilitates accurate measurements of touch) using the I/O

pins.

To explain in a simpler manner, PTC has HW and SW (firmware) that reduces the

processing power needed by the MCU for touch detection and measurements and allows

any MCU that supports it to get accurate and sensitive measurements without the need for

complex processing.

This is done by the integration of individual HW components and channelling all the mea-

surements to a dedicated SW library called Qtouch that is designed to understand what

these measurements represent. After doing some complex post-processing and filtering

for the measurements, it can accurately make sense of the event that occurred to the touch

plates and properly triggers the MCU.

To get an understanding of the PTC measurements (the data in the registers), there

is a need to integrate Qtouch library acting as the SW driver for the touch sensor. The

library is closed source and only allows for high-level configurations. This provides a set

of challenges that are hard to overcome:

1. The benefits of driver modularity and flexibility in data processing are unattain-

able as the application has a limited set of closed source functionalities that can be

invoked, limiting the application capabilities to optimise energy consumption.

2. Integrating the library with Mbed OS proved to be a complex task. Even after

successful integration, the application proved complex to develop in comparison to

using the Microchip supported platforms such as Atmel Start and MPLAB as they

have a set of tools that support Qtouch, unlike Mbed OS.

3. Qtouch code size (cannot be reduced since it is closed source), this acts as a critical

constraint for devices with small flash memories.

4. Using unofficial reverse engineered open source libraries available on Github limits

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 46

the device capabilities and opens the door for more problems in the future.

The overview of the previously mentioned design tips and challenges goes to show the

importance of HW/SW planning and co-design in reducing development times and time

to market.

4.3 LoRaWAN Applications Design

IoT devices require a SW application that takes advantage of all the HW can offer. Most

applications target adding value to the user by configuring the functionality of the HW to

serve a specific purpose. This means that most applications focus on solving a specific

set of problems, and defining these problems (use cases) is the starting point. Designing

and implementing GN applications is critical to show the capabilities of the device, the

application is where all the best practices mentioned beforehand take effect, and all the

benefits come to the surface.

4.3.1 Requirements and Use Cases

The use cases GN can help solve act as requirements for the application layer, and it

allows the device to solve some of the problems facing the users. The device ability

to implement a numerous number of use cases makes it essential to implement a set of

applications that act as a reference for the users. All use cases mentioned in the Chapter 1

share a number of requirements that should be considered when building any application.

By defining these requirements, we get an idea of how LoRaWAN devices function and

what are the areas of focus that need to be considered when designing the application.

Application requirements (functional and non-functional) that should be considered

when using LPWAN communication protocols (LoRaWAN):

• Transmission should target data delivery rather than event delivery.

If the sensor is used to count the occurrence of certain events (for example, how

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 47

many times a door was opened), a simple counter should increment and later sent

every specific interval (every x hours for example) as there is no need to send a

packet per event.

• Data delivery acknowledgements form server side should be reduced/eliminated.

They are considered unnecessary and resource-intensive as acknowledgements do

not guarantee data delivery since packet loss might still occur even if the node

receives an acknowledgement, they should be only be used in certain situations like

probing. Usage of streaming codes is recommended instead.

• Application must provide a method for detecting connection instability. An exam-

ple would be if connection problems are detected, the application would resolve

to send periodic short payload probes to check for a functional connection before

transmitting huge chunks of data that would be otherwise wasted due to the insta-

bility.

• Fallback mechanism is demanded from the application in case of long connection

loss (keep collecting data, while still trying to join).

Application requirements (functional and non-functional) that target improving battery

life:

• Reduce the number of transmitted bytes (payload size) whenever possible.

• Activate deep sleep for all onboard devices. (Applies for any sleep capable compo-

nent on the device such as MCU and sensors).

• Use interrupt-driven applications and reduce the polling approach to a minimum.

• Power off inactive sensors/ components once when they are not used.

• Use ADR algorithm when application payload length is indeterministic, and the

distance between the gateway and end device location is unknown.

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 48

Figure 4.3: Generic Node proposed application Fport design.

• Choose appropriate spreading factor when payload length and device location is

known.

4.3.2 Proposed Application Design

Applying the requirements and best practices is critical to any application design. Further-

more, any application needs to provide a certain level of flexibility and reconfigurability

to allow the user to utilise the device capabilities. Devices such as GN demand even more

flexibility; therefore, a special application is designed by taking into account the device

architecture. It is important to highlight that any GN user can remove the application and

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 49

Figure 4.4: Downlink and uplink operational code example.

replace it with any application that satisfies the use case special requirements, but since

the device is targeted as a reference design, there is a need to provide an application that

highlight’s the node capabilities and possible uses. To put it in easier terms, GN will be

shipped with a SW application that will run out of the box and provide a specific set of

features. The proposed application is called Genric Node Micro Application (GNMA),

and it is designed to take advantage of the underlying LoRaWAN MAC layer. This de-

sign is a personal effort (made for GN and thesis) to explore the flexibility of LoRaWAN

application layer. Moreover, it shows that proper understanding of the protocol and the

device architecture can be extremely beneficial.

As depicted in Figure 4.3, we break down the physical and MAC message formats

based on LoRaWAN specification [29]. Fport and FRM Payload are the most relevant

in terms of application development. The specifications mandate that Fport (1 byte with

allowed values from 1 to 223) is sent whenever there is any data in FRM Payload. In

GNMA we define a bitmask for Fport which maps bits to functionalities as observed in

Figure 4.4.

The application design treats Fport as an operational code and follows the sequence

depicted in 4.5. The sample sequence behaviour is as followed:

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 50

Figure 4.5: Application server and Generic Node communication sequence.

1. The node triggers communication by sending a probe uplink message indicating the

need for configurability.

2. Application server is expected schedules a downlink micro update message in any

receive window with suitable configurations as depicted in Figure 4.6.

3. GN parses the received FRM Payload according to the specified application Fport

and configures the device operation accordingly.

4. If the node is configured correctly, in the next uplink, the node transmits the infor-

mation using a micro measurement on the same Fport, which acts as an acknowl-

edgement of the micro update.

5. The node firmware concatenate the data in the FRM Payload according to the Fport,

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 51

Figure 4.6: Sample Fport 220 downlink and uplink specifications.

and transmits it to the application server which in turn can parse the data used

according to the predefined uplink payload specifications seen in Figure 4.6.

4.3.3 Proposed Application Implementation and Analysis

The proposed application takes into account all the requirements and possible uses cases.

Moreover, it pushes the boundary by applying a new design pattern that can be useful if

properly integrated. The novelty of the application comes from the introduction of over

the air HW configurability seen in the micro-updates as it shows a deep understanding of

the device, specifications and SW structure. The application also highlights the need for

further research exploration in possible LoRaWAN applications that efficiently utilise the

limited data rates.

The design of the application can seem complex to implement at first glance, espe-

cially for people who are not aware of the specifications and GN various HW configura-

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 52

Application Metric Empirical Finding GN Limit

Application number of lines 352 lines No limit

Application layer Flash size (text+data) 1.411 KB 256 KB

Application layer static RAM utilisation (data+bss) 4.054 KB 32 KB

Overall Firmware Flash size (text+data) 114.286 KB 256 KB

Overall Firmware static RAM utilisation (data+bss) 11.784 KB 32 KB

Table 4.1: Sample Application metrics using Fport 220

tion capabilities.

The complexity linearly increases with respect to the number of supported Fports. The

application can optionally support up to 223 Fports with a minimum of 4.

Beginners can opt for understanding and activating simple opcodes, on the other hand,

businesses who want to take full advantage of what the node can offer are also able to

customise how the node application behaves without having to reprogram the device or

waste effort designing a new application.

The Fport 220 design depicted in Figure 4.6 was implemented to get an idea of the

overhead and the complexity of applying the proposed application. Some data obtained

from developing the application is observed in Table 4.1 More detailed information on

application flash utilisation can be found in Appendix C Figure C.1.

With Mbed OS and the internally designed and developed drivers, the application imple-

mentation complexity is considered average with 352 lines of C++ application code that

invokes several underlying drivers. The analysis shows a need for simplifying the design

to allow ease of development.

Furthermore, application size is expected to increase with the introduction of more

Fports and with 114 KBytes for only one Fport implementation, it is recommended to

cautiously observe the text size in further development. From the application server-side,

it is important to highlight that between TTN console ease of use and the interesting

CHAPTER 4. GENERIC NODE SOFTWARE DESIGN 53

similarity between JavaScript and C++, it was fairly simple to build a Javascript decoder

on the application server side that parses and decodes the received RAW data on the cloud

side (refer to Figures C.2, C.3 in Appendix C).

Chapter 5

Energy Efficient IoT

Energy efficiency is one of the most researched topics in our current age, and in IoT, the

research is more significant than ever. Wireless communication is burdened by several

energy constraints, and IoT dependency on wireless technologies transfers the burden

and draws more attention to the problem. LoRaWAN devices aim to provide energy-

efficient long-range communication by compromising on the data rate. The LoRa modu-

lation explored in Chapter 2 has proven to be capable of delivering promised ranges with

minimum energy consumption. LoRaWAN end nodes need to build upon LoRa physi-

cal layer energy efficiency by incorporating battery-friendly HW components. GN HW

design includes a low power MCU, multiple sensors, external flash and cryptographic co-

processor that make it an ideal device to study and evaluate. Several SW components are

implemented with a focus on reducing energy consumption. In this chapter, we provide a

simple empirical analysis and discuss briefly the indications of the findings.

5.1 LoRaWAN Energy Consumption Models

Researchers are interested in evaluating the limits of LoRaWAN [17]. Nevertheless, most

work explores and evaluates the scalability aspect, network infrastructure and network

deployments. The work done in analysing end devices performance and energy con-

CHAPTER 5. ENERGY EFFICIENT IOT 55

sumption under LoRaWAN is surprisingly small in comparison and typically tends to be

application-specific with no emphasise on possible optimisation and best practices. Fur-

thermore, the evaluation is typically done on evaluation boards with commercial of the

shelf transceivers making the end device energy consumption evaluations subject to inac-

curacies and false representation. The research observations mentioned are obtained by

analysing most recent comprehensive and exhaustive surveys such as [33] and exploring

various research databases. However, new studies such as [22], [48] and [49] define an

extensive energy consumption models, and use the developed framework to empirically

evaluate and profile LoRaWAN end devices energy consumption patterns in various sce-

narios and applications. The work is extremely relevant to any LoRaWAN end device

firmware designer and acts as a source of inspiration to the energy consumption analysis

done in this chapter. However, the work falls short in multiple areas, some of which are:

• The energy consumption evaluations are done on development boards, which in

itself is problematic and provides an incomplete picture of the challenges.

• The boards used for evaluation have high leakage current due to the usage of high

voltage (3.3 V), which is typically employed by manufacturers to make it commer-

cially easy to use. Furthermore, the boards use weak, power inefficient and old

MCUs such as ATmega328p.

• The analysis uses a maximum of one sensor for an interval-based application, which

is not useful for devices with multiple sensors and several operational modes.

• The power optimisation techniques explored are directed towards the transceiver,

which is understandable, but the analysis does not explore sensor measurements

and the effect of one bad sensor operation model in the expected longevity of a

LoRaWAN end device.

• Battery behaviour and limitations are not considered from a practical perspective

such as behaviour in various temperatures, or the withdrawal of high current for

CHAPTER 5. ENERGY EFFICIENT IOT 56

extended periods. The shock typically arrives when the device operates differently

in real-life scenarios.

5.2 Generic Node Energy Consumption

The energy consumption model proposed in [48] is scenario-based, which in turn goes

to show that energy profiling of embedded devices is highly application dependent. To

reduce the complexity of this chapter, we choose to analyse the simplest GN application

possible. The application used in evaluating the power consumption is the one proposed

in Chapter 4 with uplinks from Fport 220 observed in Figure 4.6. The use of this appli-

cation ensures the thesis flow and allows us to proceed with the analysis without having

to explain a new application; thus the application flow depicted in Figure 4.5 provides a

basic understanding of the application operation.

5.2.1 Operational States

The application under analysis goes through different operational states energy-wise. Fig-

ure 5.1 visualises the energy-consuming states throughout node lifetime using a simple

interval-based application, furthermore, we use the measurements done in [22], [48], [49]

and GN measurement to better understand the amount of power and time spent in each

state. It is important to highlight that time and power percentages are rough estimations

based on the work mentioned, and that it is highly device, application and clock configu-

ration dependant.

5.2.2 Generic Node Battery Life Estimation

Equipped with an understanding of the operational states, GN HW and SW, we can eval-

uate the energy consumption of Fport 220 application and get a battery life estimation.

CHAPTER 5. ENERGY EFFICIENT IOT 57

Figure 5.1: Energy state diagram of an interval-based LoRaWAN class A application.

Battery Estimation Setup

The setup included the following components:

• Generic node.

• Microchip power debugger, see Appendix D Figure D.9.

• Microchip Data Visualizer windows application.

• Single slot battery case for input power and easy switching, see Appendix D Figure

D.9.

CHAPTER 5. ENERGY EFFICIENT IOT 58

Figure 5.2: Generic Node class A LoRaWAN energy consumption state capture.

Figure (a) represents SF7, BW125 Uplink (22 bytes) with no Downlink.

Figure (b) represents SF7, BW125 Uplink (22 bytes) with Downlink (5 bytes).

Figure (c) represents SF12, BW125 Uplink (22 bytes) with Downlink (5 bytes).

• Single new double-A Kodak Alkaline battery (1.5V, 2300 mAh).

Application Notes

• The main MCU clock frequency used for measurements is 48 MHz using the DFLL48M

source (uses external 32.768 kHz crystal) [50]. The usage of the highest speed pro-

vides a better estimation as it shows the current consumption ceiling.

• Sleep state time can be only calculated by defining how many Uplinks are done by

the device, which is application dependent.

• GN sleep state current consumption is being optimised even further, and it is ex-

pected to be lower than the value measured. If lower sleep current is achieved, the

estimation will require an update to measurements found in this document.

CHAPTER 5. ENERGY EFFICIENT IOT 59

• Wakeup transceiver state is delayed by 1 sec from measure sensors state in all cap-

tures; this is to be able to septate the states visually and reduce analysis complexity.

Measurements Notes

• The measurements are the most recent results obtained at the time of writing this

document, more on the optimisations done will be discussed in the upcoming sec-

tion 5.3.

• All measurements are done on GN prototype with a real-time optimised application

running on Mbed OS, and no datasheet reading was used in the analysis, which is

intended to provide accurate representation to the state of the technology reached

with GN.

• The device is suspended from sleep in some measurements to be able to verify and

validate the measurements multiple times. Nevertheless, a detailed capture of the

device sleeping current is provided for reference.

Measurements Technique and Accuracy

Microchip Data Visualizer1 application is used in conjunction with Microchip Power De-

bugger 2 to act as a digital oscilloscope allowing for capturing the energy consumption

with a maximum reported accuracy error margin of 3% [51]. All measurements are dig-

itally recorded and attached as image captures for reference in Appendix D. The images

are time-based energy measurements of the application behaviour, and all the current and

time values are manually extracted from the snapshots. The measurement was repeated

four times and the findings obtained are similar with small variations (0.47% due to the

need to manually align and adjust the oscilloscope curser).

1https://www.microchip.com/mplab/avr-support/data-visualizer
2https://www.microchip.com/developmenttools/ProductDetails/atpowerdebugger

CHAPTER 5. ENERGY EFFICIENT IOT 60

GN State Payload (bytes) Time (ms) Current (mA) Reference Capture

Wake-up - 2043 8.39 Appendix D, Figure D.1

Measure Sensor + Process Data 9 23.73 11.61 Appendix D, Figure D.2

Wake-up Transceiver + Transmit Data (SF7, BW125) 9 69.65 42.25 Appendix D, Figure D.3

Wake-up Transceiver + Transmit Data (SF12, BW125) 9 1521 38.69 Appendix D, Figure D.4

Receive Data (Rx1 + Rx2) 0 62.12 19.05 Appendix D, Figure D.5

Receive Data (Rx1 + Rx2) (Micro Update) 5 94.13 24.45 Appendix D, Figure D.6

Sleep - Tsleep 0.1019 Appendix D Figure D.7

Table 5.1: Generic Node operational states energy consumption

Findings

We measure GN energy consumption and the node behaviour in several LoRaWAN sce-

narios as depicted in Figure 5.2. Our measurements capture GN energy consumption

and the state transitions depicted in Figure 5.1. The Measurements observed in Table 5.1

represent the current consumption and duration of all GN various operational states and

scenarios using Fport 220 application specification. Tsleep represents all the time the node

spends not being in any other state. The duration and the current consumed in sleep sates

are considered the key parameters that define the usability of the device as a LoRaWAN

device. If the sleep current is low, Tsleep will increase accordingly, and the number of

entered states in the node lifetime will increase accordingly. Tsleep will reduce accord-

ing to the amount of activity the node undertake. Therefore, firmware designers should

optimise with the purpose of increasing Tsleep either by reducing the sleep current or re-

ducing the amount of activity undertaken in other states. Understanding LoRaWAN is key

to properly evaluating the performance, the Fport 220 specification forces GN to send 9

bytes FRM payload, but it is important to highlight that the LoRaWAN MAC and LoRa

physical layer add a minimum overhead of 13 bytes to any uplink. This indicates that

the energy consumption represent the transmission of 22 bytes (9 bytes Application +13

MAC and PHY metadata).

CHAPTER 5. ENERGY EFFICIENT IOT 61

Interval Application Estimated Battery Life

Using the empirical data retrieved, we can estimate GN application battery lifetime for

any interval-based application using the following equations:

• GN Battery Capacity (mAh) = B

• GN Requested Uplink Hourly Rate = Hr

• State Time (ms) = TS (available per each state in Table 5.1)

• State Current (mA) = IS (available per each state in Table 5.1)

• State Time (hour), calculated per each GN State S,

THS = TS × Hr

1000 × 60 × 60

• State Discharge Rate (mAh), calculated per each GN State S,

DHS = THS × IS

• Sleep State Time (hour)

THSleep = 1 −
S=ReceiveData∑

S=W ake−up

THS

• Sleep State Discharge Rate (mAh)

DHSleep = THSleep × ISleep

• Application Discharge rate (mAh)

DHApplication =
S=ReceiveData∑

S=Sleep

DHS

• Application battery Lifetime (hour)

B

DHApplication

CHAPTER 5. ENERGY EFFICIENT IOT 62

GN Application (22 bytes uplink every 15 minutes) Battery Discharge Rate (mAh) Battery (years)

SF7 and no downlinks 0.1255870518 2.090

SF12 and no downlinks 0.1875391462 1.4

SF7 with 5 bytes downlink (micro updates) 0.1268257526 2.07

Sf12 with 5 bytes downlink (micro updates) 0.188942172 1.389

Table 5.2: Generic Node battery life with 100uA sleep current and heavy load application

Application transmission interval Hr is usually sent as part of the micro update configura-

tion downlink observed previously in Figure 4.5. As depicted in Table 5.2, which assumes

the application server requests the node to transmit 4 uplinks per hour in a micro update

using the proposed application architecture (Fport 220). GN is estimated to approximately

survive on one battery for 2 years using SF7 and 1.4 years using SF12 with measurements

of all sensors and transmitting 22 bytes (9 Application + 13 LoRaWAN MAC metadata)

in each transmission. The detailed calculations are available in Appendix D, Figure D.8.

5.3 Generic Node Power Optimisations

LoRaWAN advertised battery efficiency is a product of the physical layer energy efficient

modulation and the MAC layer reduced listening time with Class A devices. Several

power optimisation techniques can be implemented in the HW and SW to allow for an

enhanced battery survivability. On HW level, the optimisations exploit techniques that

reduce the standby leakage current which ultimately target the reduction of sleep state

current. However, on the SW side, the optimisation space expands even further by target-

ing the reduction of active states current and duration.

GN firmware is responsible for employing several power-saving techniques based on

an understanding of the HW design. Furthermore, the energy measurements showed in

Table 5.1 give us an understanding of the areas where further optimisation can be benefi-

cial. In the upcoming sections, we explore the power optimisation techniques employed

CHAPTER 5. ENERGY EFFICIENT IOT 63

Figure 5.3: Simplified form of Generic Node power circuit.

in GN HW and SW. Moreover, we analyse the impact of the employed optimisations on

battery life.

5.3.1 Energy Efficient Hardware

The device HW design defines the energy efficiency profile and establishes how all com-

ponents interact. Therefore, firmware designers are always encouraged to explore the

device HW design and get an understanding of the capabilities and limitations. Some GN

HW design decisions have proven to be indispensable for a LoRaWAN device.

Components Power Gating

The concept of power gating is important for any multi-sensor IoT device and in the

case of LoRaWAN [52], the importance increases due to the reliance on sleep for longer

CHAPTER 5. ENERGY EFFICIENT IOT 64

periods. GN employes power gating control for all external components on the board as

depicted in Figure 5.3.

Results after utilising Power Gating:

GN design allows the MCU to power ON and OFF all the external components in runtime,

which allowed the node to reach the measured 101uA sleep current with all of these

components on board. One issue that arises with GN design is the inability to power

off individual sensors. If the external flash needs to be used, the temperature sensor and

accelerometer will need to be powered as well, which is not ideal for some use-cases.

Power Efficient Components

All components found in GN board target power efficiency. Each device supports entering

sleep modes if they are powered on and not used. As an example, the MCU can request

the temperature sensor to enter shutdown mode to save energy while the sensor is powered

and not being utilised.

Results after utilising Sensor Sleep:

When this mode was activated in the wake-up state, the current consumed by the state

dropped by 0.1 mA, Appendix D Figures D.10 and D.11. To put it in context, this minor

change increases GN Fport220 application operation by 36 hours with only one sensor

configuration. The effect of using such an approach increases as more sensors enter sleep

modes in the wake-up state. If applications target longer battery life, then this feature has

proven to be beneficial for multi-sensor LoRaWAN devices.

Moreover, the MCU supports multiple different sleeping modes that can make GN

survive longer if properly utilised [50]. The current withdrawn by the MCU is typically

high, and proper configuration depending on the application will allow the device to last

for longer periods. It’s worthy of mentioning that MCU deep sleep modes enforce some

tradeoffs to achieve lower sleep currents. As an example, one of the deep sleep config-

urations will give up RAM retention, this is not ideal for some applications and must be

CHAPTER 5. ENERGY EFFICIENT IOT 65

considered deeply by the designer before choosing the MCU. In the case of GN, simple

interval applications can give up RAM retention for better battery life as sensors data

are measured and updated in each interval. GN operational states depicted in Figure 5.1

stands to make use of better sleep current reduction over RAM retention.

5.3.2 Energy Efficient Software

On the SW side, there are multiple areas that can benefit from further optimisation.

Low Power Ticker

Real-time operating systems such as Mbed OS, FreeRtos and many others allow users to

attach the kernel scheduler to a low power ticker, thus, effectively activating a feature re-

ferred to as Tickless Scheduling. The feature uses a low power timer interrupt as a ticker

that awakens the system instead of actively waking up the system periodically to check

the queued tasks. This allows the system to enter the sleep state for longer periods in

between tasks, which in turn reduces the current of all other operational states.

Results after activating Tickless Scheduling:

Activating this feature for GN had interesting results. The wake-up state current reduced

from 11.86 mA to 4.897 mA, Appendix D Figures D.12 and D.13. This means an im-

provement of 41.63% which is a significant impact that will increase battery life by 50,5

days which is remarkable as the feature only required developing the low power ticker

driver for the target and porting it to Mbed OS.

Optimised SW Drivers

GN SW development was done from the beginning with a focus on energy efficiency,

as indicated in Chapter 4. All drivers developed were used in the assessments observed

in this chapter. However, some optimisations had a better impact on the battery than

expected:

CHAPTER 5. ENERGY EFFICIENT IOT 66

1. Raw data uplinks instead of sending formatted data

Using the temperature sensor as an example. Inefficient bare-metal drivers forcibly

convert any sensor reading to a float value as part of the driver. From LoRaWAN

perspective, this means a 2-byte measurement is now a 4-byte one with the same ex-

act information, which is an overhead of 100%. Furthermore, the node LoRaWAN

stack will need to process the float and break it into 4 bytes to be able to transmit it.

The overhead continuous in this scenario, as the application server, need to use the

uplinked 4 bytes and decode it back to a float again.

Key takeaway: It is not power-efficient to convert the measurement obtained from

the sensor at the node side. This is due to the fact that the application server will

need to process the data anyway (Appendix D Figure C.2). The idea is to offload

any computation from the node side to the cloud side.

2. Efficient serial bus communication.

All sensor readings translate to increased duration of measure sensor and wake-up

states, which leads to consuming more energy. Reducing the SPI or I2C bus traffic

by optimising the driver has proved to be useful in reducing energy consumption.

At the start of development, the bus traffic was high due to the use of inefficient SW

taking up to 1.5 seconds to retrieve driver information(Appendix D Figure D.14).

The optimisation reduced the measure time to 0.023 ms using the same clock (Ap-

pendix D Figure D.2).

It is necessary to highlight that all optimisations done are not device-specific and can be

employed by any LoRaWAN device that targets energy efficiency. Furthermore, all the

mentioned points are backed by real-time measurements (before and after improvements).

CHAPTER 5. ENERGY EFFICIENT IOT 67

5.4 Generic Node Limitations

The process of developing a new product such as GN highlights some problems and device

limitations that need to be considered and preferably improved in future developments.

GN HW design done by TWTG 3 targets providing an energy efficient multi-sensor Lo-

RaWAN device that caters to the power demands of various components. The device

operates on a single, double-A battery with a voltage range of 1.5 to 1.7V. The use of one

battery complicates the design and increases the complexity of the power delivery system,

as observed in Figure 5.3. To comply with the licensing agreement and protect TWTG

and TTN intellectual property rights we reframe from providing details about the compo-

nents used in the power delivery system, but thankfully due to the open-source SW nature

of the device, we can abstractly discuss HW complexity of the power delivery system.

Complex Power Delivery System

Figure 5.3 shows a simplified block diagram of GN circuit. The complexity of the power

delivery system arises from the different voltage operational domains needed by the ex-

ternal components. It is worthy to note the use of two different voltage steppers to power

the MCU, sensors, flash and the cryptographic co-processor. The MCU operates on 1.8V

similarly to all the sensors and the flash, however, the cryptographic co-processor requires

2.1V to operate. The voltage variation increases the design complexity as the entire sys-

tem runs on a single 1.5V battery.

As a result, component failures are hard to debug and analyse.

Furthermore, profiling the node energy consumption and estimating battery life becomes

highly application dependant.

3www.twtg.io

CHAPTER 5. ENERGY EFFICIENT IOT 68

Battery Discharge Rate

GN power source is a single double-A battery that can be bought off the shelf from any

store, and while this is an attractive feature from a user standpoint, it makes predicting the

device survivability in harsh environments extremely battery dependent [53] and further

complicates any power profiling endeavour. This can be counteracted by making the

node report the runtime battery voltage to predict the device survivability but requires a

sophisticated battery estimation model implementation on the application server-side.

Limited Transmission Power and Reset Issues

The Semtech SX1276 LoRa transceiver [54] can transmit in two power modes, the lower

power mode (when active) withdraws a peak of 42mA in SF7 transmissions, and the high

power mode consumes a 96 mA peak in SF7 transmissions Appendix D Figure D.15.

Unlike the low power mode which works well, the higher power transmission mode tends

to cause GN to enter continuous reset state when the device is powered by batteries that

are low on charge (rated at 20%). This is caused by a sudden voltage drop across several

power delivery components rendering them to OFF state and ultimately forcing the MCU

to reset.

The issue is still being investigated and can only be concerned to a cretin prototype

patch, but it can also be an indication to the node incapability to use high power trans-

mission modes. This can be a limitation of the power delivery system complex design.

Chapter 6

Advanced IoT

The last chapter establishes the device potential and proves with concrete findings the

device capability to deliver on LoRaWAN promises and vision. In the final chapter, we

explore how the device pushes the boundaries of what is possible in IoT. Furthermore,

we highlight future research topics that fit the device profile and provide a conclusion to

work done in the document.

6.1 Secure End Nodes

In Chapter 2, we explore how LoRaWAN is designed with a focus on security. GN HW

features a cryptographic co-processor chip (ATECC608A) [55] that adds a new layer of

security.

6.1.1 Problem Description

As we previously established, LoRaWAN allows devices to communicate with the net-

work server after a successful activation either through ABP or OTAA. In both cases,

the node and the network server secure the radio communication by using several 128-bit

AES keys which are used to encrypt and decrypt the communication.

CHAPTER 6. ADVANCED IOT 70

For LoRaWAN 1.1, the OTAA process (analysed in Chapter 2 Figure 2.3) relies on

two main root keys (AppKey and NwkKey). The root keys are used to create session keys

for each joining request. The handling of the root keys is the issue here since the keys

must be stored in the end node as well as the network/join servers. To further illustrate,

any mishandling of the keys by any involved party will leave all the device manufactured

borne to hijacking, impersonation and sniffing vulnerabilities [41].

6.1.2 Device Operation

1. ATECC608A securely stores a unique set of root keys for each device at the chip

manufacturing facility.

2. Microchip transfers device-specific keys to a trusted LoRaWAN join Server.

3. On activation, the ATECC608A calculates and provides the session keys based on

requests over the I2C bus (Previously highlighted in Chapter 4 Figure4.2).

6.1.3 Solution Benefits

ATECC608A acts as a secure vault for LoRaWAN root keys. The keys enter the vault

when the device is produced and never leave again. Microchip handles the delivery of

the keys to the trusted join server based on the buyer preference, therefore, reducing

production keys management issues. Microchip integrates the silicon with a service to

add a new layer of security to LoRaWAN end devices.

6.2 LoRaWAN and Firmware Updates Over The Air

LoRaWAN devices such as GN operate for several years and will require a firmware

update to deploy firmware improvements and comply with the latest requirements and

safety standers. LoRaWAN FUOTA specifications was released recently in 2018 [56].

CHAPTER 6. ADVANCED IOT 71

The recent release show how updates can be handled by different device classes. The

reduced data rates of LoRaWAN and the duty cycle regulations make FUOTA a challenge

that requires deep analysis. At the time of writing, GN FUOTA demo application is

still under development, and it provides some insights that might be beneficial for future

LoRaWAN devices that plan to support FUOTA.

6.2.1 Device Support

• In theory, any device can support FUOTA, but in practicality, it typically requires

an external flash to store the firmware update (delta or full) as the internal flash is

typically consumed by the bootloader and the application.

• The updates require a cretin amount of run time RAM to be able to check the va-

lidity and authenticity of the received data before storing it in external flash. This

typically causes memory pressure that leads to stack overflows and faults in devices

low on memory.

• The use of cryptographic co-processors in packet verification can reduce memory

pressure in the update process due to the reduced use of SW crypto libraries.

6.2.2 Challenges

• High energy consumption

FUOTA updates cause significant current discharges over long periods as the device

temporarily becomes a class C device, entering listening state all the time until the

update is finished. In case of GN, that means increasing wake-up current to 24.45

mA for the entire update period.

• Large application sizes

Smallest application size reached in GN development was 16KByte which means

that if a full application update is required, this means splitting the application into

CHAPTER 6. ADVANCED IOT 72

80 fragments of 200 bytes at SF7, assuming no packet loss, the update will have a

significant impact on the battery. Simple interval application reached sizes of 114

KBytes, which indicates the need for delta updates.

• Packet loss and self noise

We established in Chapter 2 how LoRa modulation is borne to interference from

nearby LoRa devices. The specification [56] attempts to solve the issue by forcing

the devices being updated to stop sending uplinks in the duration of FUOTA. How-

ever, nearby devices that are not being updated will be a source of interference, not

to mention the noise from the updating gateways downlinks on nearby devices and

gateways.

Chapter 7

Conclusion and Future Research

Embedded hardware designers are pushing the limits of what is possible in the field of

IoT. Firmware developers need to take note of what the hardware is aiming to achieve and

push the boundaries even further with an innovative exploration of what is possible. The

opportunity to develop the firmware of a next-generation LoRaWAN end-node has proven

to be an exciting and extremely challenging task.

In the document, we empirically proved the capabilities of LoRaWAN devices to achieve

long battery life (2 years) with multiple on-board sensors. We highlighted the sensing lim-

itation incurred by the use of multiple sensors and showed possible alternatives. Firmware

development time was reduced by the use of open-source platforms such as Mbed OS.

Energy-efficient design can be applied to the hardware and software sides to achieve op-

timal operation. In Chapter 4, we propose a novel way of configuring GN in runtime via

small micro-updates that allow the device to behave according to the needs of the user

without the need to do FUOTA. The empirical analysis done in Chapter 5 shows that

industrial IOT nodes are capable of surviving for longer periods. The research proves

that LoRaWAN end nodes can achieve low battery operation with the assistance of the

hardware and firmware designs. It also showed how the proposed application improves

usability with minimum impact on the device battery. For devices that are faced with

FUOTA challenges, the micro update scheme can be the solution. Further research will

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 74

focus on the energy and traffic overhead of using micro-updates in comparison to using

FUOTA.

7.1 Future Research

GN can be an asset in evaluating LoRaWAN. Several other research areas can benefit from

using the device such in areas such as energy estimation models, machine learning sensor

calibrations and predictive maintenance. However, research on optimizing LoRaWAN

end devices can definitely benefit from an open-source device such as GN. A number of

research topics can be explored even further with the assistance of such device.

7.1.1 Lossless Compression for Improving Performance

IoT Devices with sensors can typically benefit from compressing the measured data and

sending it [57], but with LoRaWAN low data rates, lossless compression [58] stands to

make an even more significant impact. GN can be used to evaluate how the compres-

sion allows devices to send twice the amount of data with minimum energy overhead.

The research needs to evaluate the energy consumed in compression against the energy

consumed in transmission for the same payload.

7.1.2 Edge and Cloud Computing

GN can collect data and transmit all the information without any processing, or it can

save the data internally and evaluate it at the edge side. The research area is still being

explored [13], but no analysis was done to compare the energy efficiency from LPWAN

point of view, in particular, the energy cost of processing the data on edge devices in

comparison to the energy cost of sending large amounts of data to the cloud. It should be

considered as an analysis of energy wasted by edge processor against energy wasted by

multiple transmissions to the cloud.

References

[1] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms for massive

iot”, in 2018 IEEE International Conference on Future IoT Technologies (Future

IoT), Jan. 2018, pp. 1–8. DOI: 10.1109/FIOT.2018.8325598.

[2] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks:

An overview”, IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 855–

873, Secondquarter 2017, ISSN: 1553-877X. DOI: 10.1109/COMST.2017.

2652320.

[3] N. Naik, “Lpwan technologies for iot systems: Choice between ultra narrow band

and spread spectrum”, in 2018 IEEE International Systems Engineering Sympo-

sium (ISSE), Oct. 2018, pp. 1–8. DOI: 10.1109/SysEng.2018.8544414.

[4] N. Blenn and F. A. Kuipers, “Lorawan in the wild: Measurements from the things

network”, CoRR, vol. abs/1706.03086, 2017. arXiv: 1706.03086. [Online]. Avail-

able: http://arxiv.org/abs/1706.03086.

[5] J. Kramer, J. M. van der Werf, J. Stokking, and M. Ruiz, “A blockchain-based mi-

cro economy platform for distributed infrastructure initiatives”, in 2018 IEEE In-

ternational Conference on Software Architecture (ICSA), Apr. 2018, pp. 11–1109.

DOI: 10.1109/ICSA.2018.00010.

[6] M. Y. Thu, W. Htun, Y. L. Aung, P. E. E. Shwe, and N. M. Tun, “Smart air qual-

ity monitoring system with lorawan”, in 2018 IEEE International Conference on

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 76

Internet of Things and Intelligence System (IOTAIS), Nov. 2018, pp. 10–15. DOI:

10.1109/IOTAIS.2018.8600904.

[7] C. Schmitt, J. Meier, M. Diez, and B. Stiller, “Otiot — a browser-based object

tracking solution for the internet of things”, in 2018 IEEE 4th World Forum on

Internet of Things (WF-IoT), Feb. 2018, pp. 445–451. DOI: 10.1109/WF-IoT.

2018.8355157.

[8] M. T. Buyukakkaslar, M. A. Erturk, M. A. Aydin, and L. Vollero, “Lorawan as an e-

health communication technology”, in 2017 IEEE 41st Annual Computer Software

and Applications Conference (COMPSAC), vol. 2, Jul. 2017, pp. 310–313. DOI:

10.1109/COMPSAC.2017.162.

[9] D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski, and N. Koteli, “Iot agriculture

system based on lorawan”, in 2018 14th IEEE International Workshop on Factory

Communication Systems (WFCS), Jun. 2018, pp. 1–4. DOI: 10.1109/WFCS.

2018.8402368.

[10] R. Kromes, A. Russo, B. Miramond, and F. Verdier, “Energy consumption min-

imization on lorawan sensor network by using an artificial neural network based

application”, in 2019 IEEE Sensors Applications Symposium (SAS), Mar. 2019,

pp. 1–6. DOI: 10.1109/SAS.2019.8705992.

[11] F. Torres, J. Soriano, and G. Riva, “First steps in the development of a lorawan test-

bench”, in 2018 Ninth Argentine Symposium and Conference on Embedded Systems

(CASE), Aug. 2018, pp. 7–12. DOI: 10.23919/SASE-CASE.2018.8542160.

[12] P. A. Barro, M. Zennaro, and E. Pietrosemoli, “Tltn – the local things network:

On the design of a lorawan gateway with autonomous servers for disconnected

communities”, in 2019 Wireless Days (WD), Apr. 2019, pp. 1–4. DOI: 10.1109/

WD.2019.8734239.

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 77

[13] H. Truong, “Enabling edge analytics of iot data: The case of lorawan”, in 2018

Global Internet of Things Summit (GIoTS), Jun. 2018, pp. 1–6. DOI: 10.1109/

GIOTS.2018.8534429.

[14] J. Navarro-Ortiz, S. Sendra, P. Ameigeiras, and J. M. Lopez-Soler, “Integration

of lorawan and 4g/5g for the industrial internet of things”, IEEE Communications

Magazine, vol. 56, no. 2, pp. 60–67, Feb. 2018, ISSN: 0163-6804. DOI: 10.1109/

MCOM.2018.1700625.

[15] ThethingsIndustries. (2019). Generic node sensing abilities, [Online]. Available:

https://www.genericnode.com (visited on 08/24/2019).

[16] L. Vangelista, “Frequency shift chirp modulation: The lora modulation”, IEEE Sig-

nal Processing Letters, vol. 24, no. 12, pp. 1818–1821, Dec. 2017, ISSN: 1070-

9908. DOI: 10.1109/LSP.2017.2762960.

[17] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T.

Watteyne, “Understanding the limits of lorawan”, IEEE Communications Maga-

zine, vol. 55, no. 9, pp. 34–40, Sep. 2017, ISSN: 0163-6804. DOI: 10.1109/

MCOM.2017.1600613.

[18] K. Mikhaylov, J. Petäjäjärvi, and J. Janhunen, “On lorawan scalability: Empiri-

cal evaluation of susceptibility to inter-network interference”, in 2017 European

Conference on Networks and Communications (EuCNC), Jun. 2017, pp. 1–6. DOI:

10.1109/EuCNC.2017.7980757.

[19] Semtech. (2015). Lora modulation basics an1200.22, [Online]. Available: https:

//www.semtech.com/uploads/documents/an1200.22.pdf (visited

on 07/06/2019).

[20] A. Ikpehai, B. Adebisi, K. M. Rabie, K. Anoh, R. E. Ande, M. Hammoudeh, H.

Gacanin, and U. M. Mbanaso, “Low-power wide area network technologies for

internet-of-things: A comparative review”, IEEE Internet of Things Journal, vol. 6,

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 78

no. 2, pp. 2225–2240, Apr. 2019, ISSN: 2327-4662. DOI: 10.1109/JIOT.

2018.2883728.

[21] Thethingsnetwork. (2019). Lorawan distance world record broken, twice. 766 km

(476 miles) using 25mw transmission power, [Online]. Available: https://

www.thethingsnetwork.org/article/lorawan-distance-world-

record (visited on 07/30/2019).

[22] L. Casals, B. Mir, R. Vidal, and C. Gomez, “Modeling the energy performance

of lorawan”, Sensors, vol. 17, no. 10, 2017, ISSN: 1424-8220. DOI: 10.3390/

s17102364. [Online]. Available: https://www.mdpi.com/1424-8220/

17/10/2364.

[23] M. Babaee and S. Sharifian, “An improved spread factor assignment method for

large-scale lorawan deployments in iot”, in 2018 4th Iranian Conference on Signal

Processing and Intelligent Systems (ICSPIS), Dec. 2018, pp. 183–187. DOI: 10.

1109/ICSPIS.2018.8700554.

[24] T. Elshabrawy and J. Robert, “Analysis of ber and coverage performance of lora

modulation under same spreading factor interference”, in 2018 IEEE 29th Annual

International Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), Sep. 2018, pp. 1–6. DOI: 10.1109/PIMRC.2018.8581011.

[25] F. Cuomo, J. C. C. Gámez, A. Maurizio, L. Scipione, M. Campo, A. Caponi,

G. Bianchi, G. Rossini, and P. Pisani, “Towards traffic-oriented spreading fac-

tor allocations in lorawan systems”, in 2018 17th Annual Mediterranean Ad Hoc

Networking Workshop (Med-Hoc-Net), Jun. 2018, pp. 1–8. DOI: 10.23919/

MedHocNet.2018.8407091.

[26] M. El-Aasser, T. Elshabrawy, and M. Ashour, “Joint spreading factor and coding

rate assignment in lorawan networks”, in 2018 IEEE Global Conference on Inter-

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 79

net of Things (GCIoT), Dec. 2018, pp. 1–7. DOI: 10.1109/GCIoT.2018.

8620147.

[27] A. Farhad, D. Kim, P. Sthapit, and J. Pyun, “Interference-aware spreading fac-

tor assignment scheme for the massive lorawan network”, in 2019 International

Conference on Electronics, Information, and Communication (ICEIC), Jan. 2019,

pp. 1–2. DOI: 10.23919/ELINFOCOM.2019.8706416.

[28] L. Alliance. (2017). Lorawan® regional parameters v1.1rb, [Online]. Available:

https://lora-alliance.org/sites/default/files/2018-

04/lorawantm_regional_parameters_v1.1rb_-_final.pdf.

[29] L. Alliance. (2017). Lorawan® specification v1.1, [Online]. Available: https://

lora-alliance.org/sites/default/files/2018-04/lorawantm_

specification_-v1.1.pdf.

[30] A. Lavric and A. I. Petrariu, “Lorawan communication protocol: The new era of

iot”, in 2018 International Conference on Development and Application Systems

(DAS), May 2018, pp. 74–77. DOI: 10.1109/DAAS.2018.8396074.

[31] P. S. Cheong, J. Bergs, C. Hawinkel, and J. Famaey, “Comparison of lorawan

classes and their power consumption”, in 2017 IEEE Symposium on Communi-

cations and Vehicular Technology (SCVT), Nov. 2017, pp. 1–6. DOI: 10.1109/

SCVT.2017.8240313.

[32] J. Lee, W. Jeong, and B. Choi, “A scheduling algorithm for improving scalability

of lorawan”, in 2018 International Conference on Information and Communication

Technology Convergence (ICTC), Oct. 2018, pp. 1383–1388. DOI: 10.1109/

ICTC.2018.8539392.

[33] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey of lorawan

for iot: From technology to application”, Sensors, vol. 18, no. 11, 2018, ISSN: 1424-

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 80

8220. DOI: 10.3390/s18113995. [Online]. Available: https://www.

mdpi.com/1424-8220/18/11/3995.

[34] K. Q. Abdelfadeel, V. Cionca, and D. Pesch, “Fair adaptive data rate allocation

and power control in lorawan”, in 2018 IEEE 19th International Symposium on

"A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), Jun. 2018,

pp. 14–15. DOI: 10.1109/WoWMoM.2018.8449737.

[35] S. Kim and Y. Yoo, “Contention-aware adaptive data rate for throughput optimiza-

tion in lorawan”, Sensors, vol. 18, no. 6, 2018, ISSN: 1424-8220. DOI: 10.3390/

s18061716. [Online]. Available: https://www.mdpi.com/1424-8220/

18/6/1716.

[36] J. M. Marais, R. Malekian, and A. M. Abu-Mahfouz, “Evaluating the lorawan pro-

tocol using a permanent outdoor testbed”, IEEE Sensors Journal, vol. 19, no. 12,

pp. 4726–4733, Jun. 2019, ISSN: 1530-437X. DOI: 10.1109/JSEN.2019.

2900735.

[37] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “Demysti-

fying iot security: An exhaustive survey on iot vulnerabilities and a first empirical

look on internet-scale iot exploitations”, IEEE Communications Surveys Tutorials,

pp. 1–1, 2019, ISSN: 1553-877X. DOI: 10.1109/COMST.2019.2910750.

[38] J. de Carvalho Silva, J. J. P. C. Rodrigues, A. M. Alberti, P. Solic, and A. L. L.

Aquino, “Lorawan — a low power wan protocol for internet of things: A review and

opportunities”, in 2017 2nd International Multidisciplinary Conference on Com-

puter and Energy Science (SpliTech), Jul. 2017, pp. 1–6.

[39] N. Hayati, K. Ramli, M. Suryanegara, and Y. Suryanto, “Potential development of

aes 128-bit key generation for lorawan security”, in 2019 2nd International Confer-

ence on Communication Engineering and Technology (ICCET), Apr. 2019, pp. 57–

61. DOI: 10.1109/ICCET.2019.8726884.

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 81

[40] R. Sanchez-Iborra, J. Sánchez-Gómez, S. Pérez, P. J. Fernández, J. Santa, J. L.

Hernández-Ramos, and A. F. Skarmeta, “Enhancing lorawan security through a

lightweight and authenticated key management approach”, Sensors, vol. 18, no. 6,

2018, ISSN: 1424-8220. DOI: 10.3390/s18061833. [Online]. Available: https:

//www.mdpi.com/1424-8220/18/6/1833.

[41] B. Oniga, V. Dadarlat, E. De Poorter, and A. Munteanu, “Analysis, design and im-

plementation of secure lorawan sensor networks”, in 2017 13th IEEE International

Conference on Intelligent Computer Communication and Processing (ICCP), Sep.

2017, pp. 421–428. DOI: 10.1109/ICCP.2017.8117042.

[42] X. Yang, E. Karampatzakis, C. Doerr, and F. Kuipers, “Security vulnerabilities

in lorawan”, in 2018 IEEE/ACM Third International Conference on Internet-of-

Things Design and Implementation (IoTDI), Apr. 2018, pp. 129–140. DOI: 10.

1109/IoTDI.2018.00022.

[43] K.-T. Lau, S. Baldwin, M. O’Toole, R. Shepherd, W. J. Yerazunis, S. Izuo, S.

Ueyama, and D. Diamond, “A low-cost optical sensing device based on paired

emitter–detector light emitting diodes.”, Analytica Chimica Acta, vol. 557, no. 1/2,

pp. 111–116, 2006, ISSN: 00032670. [Online]. Available: http://search.

ebscohost.com.ezproxy.utu.fi/login.aspx?direct=true&

db=aph&AN=19466369&site=ehost-live.

[44] P. S. Nasirabadi, M. Jabbari, and J. H. Hattel, “Numerical simulation of transient

moisture and temperature distribution in polycarbonate and aluminum electronic

enclosures”, in 2016 17th International Conference on Thermal, Mechanical and

Multi-Physics Simulation and Experiments in Microelectronics and Microsystems

(EuroSimE), Apr. 2016, pp. 1–6. DOI: 10.1109/EuroSimE.2016.7463382.

[45] J. Rivera, M. Carrillo, M. Chacón, G. Herrera, and G. Bojorquez, “Self-calibration

and optimal response in intelligent sensors design based on artificial neural net-

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 82

works”, Sensors, vol. 7, no. 8, pp. 1509–1529, 2007, ISSN: 1424-8220. DOI: 10.

3390/s7081509. [Online]. Available: https://www.mdpi.com/1424-

8220/7/8/1509.

[46] Microchip. (2014). At30ts750a datasheet, [Online]. Available: http://ww1.

microchip.com/downloads/en/devicedoc/Atmel-8855-DTS-

AT30TS750A-Datasheet.pdf (visited on 07/06/2019).

[47] Microchip. (2017). Sst26wf080b/080ba datasheet, [Online]. Available: http://

ww1.microchip.com/downloads/en/DeviceDoc/20005283C.pdf

(visited on 07/06/2019).

[48] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, R. Jaouadi, and G. Andrieux, “Energy

consumption model for sensor nodes based on lora and lorawan”, Sensors, vol. 18,

no. 7, 2018, ISSN: 1424-8220. DOI: 10.3390/s18072104. [Online]. Available:

https://www.mdpi.com/1424-8220/18/7/2104.

[49] B. Thoen, G. Callebaut, G. Leenders, and S. Wielandt, “A deployable lpwan plat-

form for low-cost and energy-constrained iot applications”, Sensors, vol. 19, no. 3,

2019, ISSN: 1424-8220. DOI: 10.3390/s19030585. [Online]. Available: https:

//www.mdpi.com/1424-8220/19/3/585.

[50] Microchip. (2017). Sam r34/r35 low power lora sub-ghz sip datasheet, [Online].

Available: http://ww1.microchip.com/downloads/en/DeviceDoc/

SAMR34- R35- Low- Power- LoRa- Sub- GHz- SiP- Data- Sheet-

DS70005356B.pdf (visited on 07/06/2019).

[51] Microchip. (2016). Power debugger user guide, [Online]. Available: http://

ww1.microchip.com/downloads/en/DeviceDoc/Power-Debugger_

UserGuide.pdf (visited on 07/06/2019).

[52] M. Hayashikoshi, H. Noda, H. Kawai, and H. Kondo, “Low-power multi-sensor

system with normally-off sensing technology for iot applications”, in 2016 Inter-

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 83

national SoC Design Conference (ISOCC), Oct. 2016, pp. 195–196. DOI: 10.

1109/ISOCC.2016.7799854.

[53] A. B. da Cunha, B. R. de Almeida, and D. C. da SilvaJr., “Remaining capacity

measurement and analysis of alkaline batteries for wireless sensor nodes”, IEEE

Transactions on Instrumentation and Measurement, vol. 58, no. 6, pp. 1816–1822,

Jun. 2009, ISSN: 0018-9456. DOI: 10.1109/TIM.2009.2013660.

[54] Semtech. (2016). Sx1276/77/78/79 datasheet, [Online]. Available: https://

www.mouser.com/ds/2/761/sx1276- 1278113.pdf (visited on

07/06/2019).

[55] Microchip. (2017). Atecc608a datasheet, [Online]. Available: http://ww1.

microchip.com/downloads/en/DeviceDoc/40001977A.pdf (vis-

ited on 07/06/2019).

[56] L. Alliance. (2018). Lorawan remote multicast setup specification v1.0.0, [Online].

Available: https://lora-alliance.org/sites/default/files/

2018-09/remote_multicast_setup_v1.0.0.pdf.

[57] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, “Microprocessor optimiza-

tions for the internet of things: A survey”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 37, no. 1, pp. 7–20, Jan. 2018, ISSN:

0278-0070. DOI: 10.1109/TCAD.2017.2717782.

[58] F. Marcelloni and M. Vecchio, “A simple algorithm for data compression in wire-

less sensor networks”, IEEE Communications Letters, vol. 12, no. 6, pp. 411–413,

Jun. 2008, ISSN: 1089-7798. DOI: 10.1109/LCOMM.2008.080300.

Appendix A

LoRaWAN

LoRa link budget sample calculation:

• Tx Power: 14 dBm

• Bandwidth: 125 kHz = 10log(125000) = 51

• SNR: -20 dB

• Noise Figure: 6 dB

• Sensitivity= -174 + 10log10(BW) + NF + SNR -174 + 51 + 6 – 20 = -137 dBm

• Link Budget= Tx power - Sensitivity = 14 + 137 = 151 dB

APPENDIX A. LORAWAN A-2

Figure A.1: Chirp pulse form with time and frequency change.

Appendix B

HW Design

APPENDIX B. HW DESIGN B-2

Figure B.1: Multi-angle view of Generic Node enclosure.

Appendix C

SW Design

APPENDIX C. SW DESIGN C-2

Figure C.1: LoRaWAN raw data transmission application build metrics with Fport 220.

APPENDIX C. SW DESIGN C-3

Figure C.2: Application server side decoding raw payload uplink.

APPENDIX C. SW DESIGN C-4

Figure C.3: Raw temperature sensor measurement decoding function with C++ on GN

firmware compared against similar functionality Java Script code for application server

side.

Appendix D

Energy

Figure D.1: GN Wake-up state Fport 220.

Figure D.2: GN Measure Sensor + Process Data states Fport220.

APPENDIX D. ENERGY D-2

Figure D.3: GN Wake-up Transceiver + Transmit Data (SF7, BW125) states Fport220.

Figure D.4: GN Wake-up Transceiver + Transmit Data (SF12, BW125) states Fport220.

Figure D.5: GN Receive Data (Rx1 + Rx2) (0 bytes) state Fport 220.

APPENDIX D. ENERGY D-3

Figure D.6: GN Receive Data (Rx1 + Rx2) (Micro Update) state Fport 220.

Figure D.7: Sleep state Fport 220.

APPENDIX D. ENERGY D-4

Figure D.8: Applied GN battery estimation calculations based on devised equations in

Chapter 5

APPENDIX D. ENERGY D-5

Figure D.9: Energy measurement setup.

Figure D.10: Average current capture before enabling sensor shutdown mode.

APPENDIX D. ENERGY D-6

Figure D.11: Average current capture after enabling sensor shutdown mode.

Figure D.12: Average current capture before enabling low power ticker.

APPENDIX D. ENERGY D-7

Figure D.13: Average current capture after enabling low power ticker.

Figure D.14: Inefficient SW driver measurement time capture.

APPENDIX D. ENERGY D-8

Imaged below: Lora Joining procedure with RFO_LF transmission mode and 20% full battery with
no issues (working with no reset issues)

As you can see it consumes (highest point) around 45mA, which is acceptable for a low
battery.

Imaged below: Lora Joining procedure with PA_BOOST transmission mode and 20% full battery
(same battery) with Reset issues

Zoomed in with correct peek current level reach 95 mA.

Figure D.15: Device reset issue deep analysis report.

	Introduction
	IoT and Low Power Wide Area Networks
	LoRa and LoRaWAN
	The Things Network
	The Generic Node (GN)
	Research Focus and Goals
	Research Hypotheses
	Research Methodology
	Thesis Structure and Organisation

	LoRaWAN: Under the Microscope
	LoRa: Terms and Concepts
	LoRa Modulation
	LoRa Spreading Factor
	LoRa Operation

	LoRaWAN: Network Stack and Architecture
	LoRaWAN MAC layer
	Adaptive Data Rate

	LoRaWAN Security
	Authentication and Data Encryption Frameworks
	Vulnerabilities

	Generic Node Hardware Design
	Device Components
	HW Design Best Practices
	Enclosure Effect
	Test Procedure
	Effect On Temperature Sensor
	Effect On Capacitive Plates
	Effect On Light Sensor
	Effect On Lora Radio and Accelerometer
	Impressions and Possible Solutions

	Generic Node Software Design
	SW Development Plan
	SW Components
	Embedded Operating System (Mbed OS)
	Software Drivers (Sensors and Flash)

	LoRaWAN Applications Design
	Requirements and Use Cases
	Proposed Application Design
	Proposed Application Implementation and Analysis

	Energy Efficient IoT
	LoRaWAN Energy Consumption Models
	Generic Node Energy Consumption
	Operational States
	Generic Node Battery Life Estimation

	Generic Node Power Optimisations
	Energy Efficient Hardware
	Energy Efficient Software

	Generic Node Limitations

	Advanced IoT
	Secure End Nodes
	Problem Description
	Device Operation
	Solution Benefits

	LoRaWAN and Firmware Updates Over The Air
	Device Support
	Challenges

	Conclusion and Future Research
	Future Research
	Lossless Compression for Improving Performance
	Edge and Cloud Computing

	References
	LoRaWAN
	HW Design
	SW Design
	Energy

