
Security First approach in development of

Single-Page Application based on Angular

UNIVERSITY OF TURKU

Department of Future Technologies

Master of Science in Technology Thesis

Security of Networked Systems

September 2019
Daniel Danielecki

Supervisors:
Sampsa Rauti (University of Turku)

Dr Seppo Virtanen (University of Turku)
Thomas Beekman (KPMG N.V.)

The originality of this thesis has been checked in accordance with the University of Turku quality
assurance system using the Turnitin Originality Check service.

UNIVERSITY OF TURKU
Department of Future Technologies
DANIEL DANIELECKI: Security First approach in development of Single-Page Application
based on Angular
Master of Science in Technology Thesis, 70 p., 8 app. p.
Security of Networked Systems
September 2019

Recently a Single-Page Application (SPA) approach is getting attention even though this is based
on JavaScript is not considered to be a safe programming language. In the SPA ecosystem de-
velopers often have to use many external dependencies. Detected vulnerabilities in these external
dependencies are disclosed and updated in most cases by the community. Often, in-depth security
analysis is not included during the development stage, due to project deadlines and other circum-
stances. It goes with number of complications. The most straightforward is to be vulnerable for
cyber attacks which causes financial problems for companies. Currently law already includes penal-
ties in case of data breaches. Moreover, detected vulnerable code delays projects due to necessary
time to improve it. Sometimes it requires to change the whole architecture if the application was
poorly designed or in case security was skipped completely in the early stage. It might lead even
to putting changes in the architectural style once the application is already on the market. It does
makes high pressure on software developers to fix it fast. The rush to deliver it as fast as possible
can create new security risks, because in some scenarios it might take significant amount of time
to change the design with security prioritization.

Especially within the financial industry consequences of not including security during the design
stage might be harmful. Companies in this industry are entrusted with high social trust and sen-
sitive (personal) data. For such enterprises shortcomings in security might cause data, image and
money loss. Cybercrime activities are intensifying and for some companies it might causes to be
kicked out of business due to hacking. This important factor of software development is currently
getting more attention. That is why providing security in an early stage of a project is important,
as well should be considered as a prerequisite.

Security should be integrally included in all parts of the development cycle: specification, design,
implementation and testing. The desired result is a secure web application. Improving security
might be done explicitly by using security analysis and enhance security accordingly to the results.
However, implicit methods like clean code, programming best practices, proper architecture design
also applies. Ideally, in a continuous security way. Programming best practices and countermea-
sures against web application security threats have been used to analyse and verify SPA security.

In this research project, an Angular SPA has been developed with focus on security. It includes
programming best practices, security analysis and number of different tests. The main goal was to
develop a SPA based on the Angular framework with security first approach. An in-depth security
analysis of the deployed application is then conducted with validation of these results.

Keywords: Angular, continuous security, JavaScript, programming best practices, Single-Page
Application, web security.

Master of Science in Technology Thesis

Acknowledgments

The thesis was a final project for Master Degree at University of Turku (Finland) on Cyber Se-
curity track with Networked Systems Security specialization. This was an exit university, one of
two universities for EIT Digital Master School. This was a double degree program performed by
author of this thesis, where the entry university was University of Twente (Netherlands). Master
of Science in Technology Thesis is written at University of Turku, the supervisors from university
side are Sampsa Rauti, together with Dr Seppo Virtanen.

Performed internship at KPMG in their headquarters in Amstelveen (Netherlands) provided help
during this research. KPMG is a global consulting company specialized in accountancy, advisory
and tax services, which was originally founded in 1818. The Dutch firm belonging to the KPMG
has legal name KPMG N.V. Their focus is on advisory, financial audit and tax. Within their broad
portfolio of IT services, KPMG N.V. has a strong track record in cyber security and software de-
velopment. This thesis combines both of those two areas. The Digital Enablement department of
KPMG N.V. is the software development related division. This is the department, in which the
thesis has been co-created, especially from the practical side. Many thanks for Thomas Beekman.
He supervised the thesis from the business side.

The purpose of this research is to study security in Angular-based SPA. Therefore, all informa-
tion provided here, i.e. security investigation is for educational purposes only. Should not be used
for any other intention than study of this topic. No one involved in this project, including author
of the thesis, is responsible for possible damages it can cause, if not used correctly or ethically.

i

CONTENTS Master of Science in Technology Thesis

Contents

List of Figures iv

List of Tables v

Listings vi

1 Introduction 1

1.1 Background . 1
1.2 Problem . 1
1.3 Goal . 2
1.4 Methodology . 2
1.5 Scope . 3
1.6 Thesis Structure . 3

2 Architecture and Security 4

2.1 Software Architecture . 4
2.1.1 Client-Server . 4
2.1.2 Multitier architecture . 5
2.1.3 Service-Oriented Architecture . 6
2.1.4 Model-View-Controller . 6
2.1.5 Model-View-ViewModel . 7
2.1.6 Component-Based Architecture . 8

2.2 Software Security . 9
2.2.1 Risks . 11
2.2.2 Vulnerabilities . 13
2.2.3 Threats . 13
2.2.4 Control . 14
2.2.5 Secure Software Development Life Cycle . 14
2.2.6 SecDevOps . 15

3 Single-Page Applications 17

3.1 Web Applications . 17
3.1.1 JavaScript . 17
3.1.2 TypeScript . 19

3.2 Frameworks . 19
3.3 Angular . 19

3.3.1 Security . 20
3.3.2 Programming Best Practices . 24
3.3.3 Testing . 26

3.4 Workflow . 27

4 Design 28

4.1 Application Architecture . 28
4.1.1 Modules . 29
4.1.2 Components . 31
4.1.3 State Management . 32

4.2 Application Security . 32
4.2.1 Containerization . 32
4.2.2 Compilers Rules . 34
4.2.3 Secure Development . 36

ii

CONTENTS Master of Science in Technology Thesis

4.2.4 Security Testing . 38
4.2.5 Continuous Security . 39

4.3 Behavior-Driven Development . 40

5 Implementation 41

5.1 Functionalities . 41
5.2 Technology Stack . 42
5.3 Improving Security . 43

5.3.1 Input Validation . 44
5.3.2 File Upload Attack Prevention . 44
5.3.3 Security Headers . 45
5.3.4 Content Security Policy . 47
5.3.5 Others . 49

5.4 Clean Code . 50
5.5 Unit Testing . 52
5.6 Server-Side Rendering . 53
5.7 Version Control System . 54
5.8 Deployment . 54
5.9 Transpilation . 55

6 Security Analysis 56

6.1 Static Application Security Testing . 56
6.2 Dynamic Application Security Testing . 57

6.2.1 Information Gathering . 57
6.2.2 Web Scanners . 59
6.2.3 Skipfish . 61
6.2.4 Stress Testing . 61
6.2.5 Others . 62

6.3 Gray Box Testing . 63
6.3.1 Cross-Site Request Forgery . 63
6.3.2 File Upload Attack . 63
6.3.3 API Keys . 63

6.4 Results . 64

7 Conclusion 65

References 66

Appendices 71

A UI Design Elements 71

Index 74

iii

LIST OF FIGURES Master of Science in Technology Thesis

List of Figures

1 Client-server architecture in the Internet. 5
2 Multitier architecture, often present in modern applications. 6
3 MVC architectural style. 7
4 MVVM architectural pattern. 8
5 Component-based architectural pattern. 9
6 Seven software security touchpoints [15]. 10
7 SDLC methodology. 15
8 SSDLC methodology. 15
9 Logical layers separation of a typical web application. 17
10 Most popular technologies, annual report by Stack Overflow for 2018 [26]. Includes

languages with at least 10% usage by software developers. 18
11 Simplified architecture of the application. 29
12 Docker application containers. 33
13 Multistage GitLab CI pipeline of developed application. 37
14 General security analysis score by Mozilla Observatory. 60
15 In-depth security analysis by Mozilla Observatory. 60
16 Skipfish results. 61
17 Apache killer attack simulation. 62
18 HTTP header with API key for reCAPTCHA. 64

iv

LIST OF TABLES Master of Science in Technology Thesis

List of Tables

1 Percentage increase of cyber security incidents in 2017 in comparison to 2016. 9
2 Costs of hacking activity. 10
3 Layers with its accordingly protocols in the TCP/IP model. 11
4 Ten Most Critical Security Risks in Web Applications in 2013 and 2017, by OWASP. 11
5 Difference between DAST and SAST [50]. 39
6 Steps to load page using CSR and SSR . 53
7 Web scanners results for developed application. 59

v

LISTINGS Master of Science in Technology Thesis

Listings

1 TypeScript’s compiler custom stricter rules. 34
2 Important rules for Angular’s compiler. 36
3 Input validators in Angular. 44
4 Cloud Storage for Firebase security rules for file upload. 44
5 Cloud Storage for Firebase file upload security rules. 44
6 Declaration of security headers in NestJS. 45
7 CSP for developed application. 47
8 Bad code in TypeScript. 50
9 Clean code in TypeScript. 50
10 Nikto logs. 57

vi

1. INTRODUCTION Master of Science in Technology Thesis

Chapter 1

1. Introduction

This chapter introduces the context of the research. The used methodology for the practical
side, scope with its limitations for the research as well as structure of this document are
discussed.

1.1. Background

Since the time Tim Berners-Lee created the World Wide Web (WWW) in 1989 [1] and wrote
the first browser a lot has changed. The Web environment evolved. Currently, web resources
are still in a form of Uniform Resource Locators (URLs). However, Cascading Style Sheets
(CSS), Hypertext Markup Language (HTML) and JavaScript on the front-end side of the
browser changed how WWW looks and works nowadays. JavaScript currently is also used
on the back-end side, i.e. Node.js. The client-side has evolved over the years as well, latest
popularity of SPA shows it clearly. Many business solutions are served as a web platform
for the client. These include products of small companies, but also enterprise-scale solu-
tions. Thus, increased complexity of Information Technology (IT) projects based on WWW
enabled dynamic development of browser environments. In those environments, SPA-based
applications are becoming a common solution for the front-end layer. This is due to their
Service-Oriented Architecture (SOA), modularity, performance and simplicity. They have
an important role in the modern web development and as such, the Web environment itself.

The core aim of this research is to develop a secure SPA application based on Angular
(8.2.0) with programming best practices. These practices are part of software craftmanship
— an approach to build high quality software. Security analysis how resistant the software
is against web-based attacks by applying offensive technologies to it is a second aim.

This thesis is on the edge of software development and cyber security disciplines. Nowadays,
there is a rising number of black hat activities. These areas are getting merged together in
a natural way to achieve high quality source code resistant on most of the security risks.
New security-based terms of software development are evolving. These are Security, De-
velopment and Operation (SecDevOps), in case of Development and Operation (DevOps1).
Secure Software Development Life Cycle (SSDLC), in case of Software Development Life
Cycle (SDLC). It clearly show that there is a need on the market and slowly willingness to
pay to obtain higher security as well.

The presented degree project consists of four parts: theoretical introduction, practical soft-
ware development, practical penetration testing and the security analysis for the web appli-
cation.

1.2. Problem

The traditional web application is a multi-page applications (MPA), SPA takes different
approach. By preloading and re-rendering all websites’ elements during initialization, only

1Software development practices to automate stages of SDLC.

1

1. INTRODUCTION Master of Science in Technology Thesis

displayed content, i.e. User Interface (UI), is changed during state changes. This works
without the need of making additional network requests and full page loads [2]. This is
an advantage over the traditional model, because user does not have to wait for the whole
HTML file to be retrieved from the server. This results in higher performance (although the
first load will take longer), which improves the perceived User Experience (UX). But what
it means for overall security of web applications is not that straightforward.

Theoretically, a limitation of the number of Hypertext Transfer Protocol (HTTP) requests
should have a positive effect on the security, at least from the network side. However, from
the source code side security of a web application is dependent on using programming best
practices and security testing. In-depth security analysis usually is not performed due to
financial reasons. Hence, SPA-based applications are often deployed without performing
these security tests. This can be risky especially in the unsafe JavaScript technology.

1.3. Goal

As part of this research a high quality SPA based on Angular framework is developed,
with primary emphasis on security. The goal is to use SDLC best practices with a security
first approach. Due to this, the SSDLC methodology is applied as much as possible, with
in-depth analysis of the produced source code. Finally, it is measured security level using
offensive technologies. The results of this project might be interesting for software devel-
opers working with Angular, JavaScript, SPA, TypeScript as well as for security architects
and ethical hackers. Others technical specialists interested how to achieve security during
the SSDLC and how to measure it might be interested as well.

Research question is defined as well as several sub-questions which will be addressed in
this thesis:

1. How can an Angular SPA can be developed in a secure manner?

1.1. What kinds of methods can be used to measure security in Angular?

1.2. How to integrate software security in the SDLC of an Angular application?

1.3. Do programming best practices provide higher security of web application?

1.4. What are the typical security risks for web applications and how they can be
mitigated?

1.4. Methodology

In order to be able to answer the stated research questions a sample SPA project is developed
with features such as accessibility, internationalization and many other features relying on
external dependencies. This application looks like a website of an IT consulting company
which was an excellent use case in order to focus on Angular security. The reason for that
is these kind of websites are complex applications with interactive and interesting elements
to attract potential new customers, which results in having many external dependencies. It
can be a potential source of security research for front-end layer.

The actual work starts from Angular Command-Line Interface (CLI) that has been used to
set up project with extensions during development to create new classes and logic. Next,

2

1. INTRODUCTION Master of Science in Technology Thesis

components following the programming best practices and Don’t Repeat Yourself (DRY)
principle has been followed. The Behavior-Driven Development (BDD) methodology is used
for development and End-to-End (E2E) testing is applied. Next, black-hat and white-hat se-
curity tests have been performed. As a first explicit security check, scanner for dependencies
with known vulnerabilities has been used — npm (npm audit). Another tool was used to per-
form static code analysis. Once locally all quality elements have been achieved, automated
deployment to the hosting through Hypertext Transfer Protocol Secure (HTTPS) is per-
formed. Git is used as a Version Control System (VCS) and GitLab for repository hosting,
with its Continuous Integration (CI) and Continuous Delivery (CD) capabilities. Offensive
techniques to measure security once the application has been deployed include mostly pen-
etration testing based on The Open Web Application Security Project (OWASP) top 10
security risks lists [3, 4]. The code quality checks and security tests has been automated as
much as possible.

1.5. Scope

This research is limited mainly to the front-end layer, the Angular framework. Other SPA
frameworks such as React and Vue.js with focus on their security should follow the same
rules. From ethical hacking point of view, mainly security risks based on OWASP reports
have been researched. There might be some niche or fresh types of attacks which this
research does not cover. Both from development side and offensive hacking, it has been
tested on main modern browsers with its latest versions, i.e. Google Chrome 76, Microsoft
Edge 18, Mozilla Firefox 68, Opera 62 and Safari 12.1. Therefore, it might show different
results for older and less popular browsers available on the market.

1.6. Thesis Structure

Chapter 1 provides general introduction, motivation and scope of this Master of Science in
Technology Thesis. Chapter 2 is a theoretical introduction to software architecture, security
and contains key concepts related to SPA. Chapter 3 explains what SPA is, with focus on
Angular and explains the basic idea behind it, with metrics that measure security. Chapter
4 is the first practical chapter. General architecture of the application as well as security of
Angular components are described. Chapter 5 mainly focuses on methods and tools used
in order to achieve source code with high quality and security enhancements. Chapter 6
describes offensive technologies used in this research which is equivalent to practical research
how secure the developed SPA is. Chapter 7, as the latest one — concludes the research
and this thesis.

3

2. ARCHITECTURE AND SECURITY Master of Science in Technology Thesis

Chapter 2

2. Architecture and Security

For a long time software architecture and security were not combined together in terms of
source code requirements. However, cyber security threats forced on software development
industry to set up unified standards for architecture. It sets security as an important
factor within the entire system. Architects, developers and researchers started to look for
software techniques which can mitigate security risk. The reason for that is a good design
assumption with historical analysis of cybercrime which can identify possible attacks. New
threat scenarios based on this data could also be possible. Ignoring this fact could end
up with inoperative system [5]. That is why nowadays security is an important element of
software architecture already in the design stage. This is what mainly is tried to be achieved
within this research, with a SPA based on Angular.

2.1. Software Architecture

Well-designed architecture helps to improve the quality of the software, by giving a clear
view of how application components communicate with each other. By that it simplifies
clean code techniques [6]. Combined with adopting an Agile2 approach can be helpful to
provide high quality software for the end user. For those purposes and many others factors
software engineers community needed to invent architectural styles to simplify the work
environment. Sample architectures includes: client-server, multitier, SOA, Model-View-
Controller (MVC), Model-View-ViewModel (MVVM) or component-based, which all can
be found in modern web applications.

2.1.1. Client-Server

An absolute basic concept of web applications is the client-server model, in which clients
request certain resources from the server. After obtaining this request, servers are respon-
sible for handling it and providing a result to the clients. This is presented by Figure 1.
There are many different types of servers, e.g. file servers, network servers, print servers
or web servers. Clients could be desktop/mobile applications or web browsers. In general,
the WWW works with HTTP requests of which GET and POST are most frequently used
for communication in RESTful Web Services (RWS)3. The browser is able to obtain files
such as .css, .html, .js etc from web server. A GET request is normally used to retrieve
information from the server, whilst a POST request is used to send data to be processed.
It is noteworthy to mention that apart these two types of HTTP requests there exist also
different ones, e.g. DELETE, HEAD, PATCH and PUT. They are used for applications
categorized as Create, Read, Update and Delete (CRUD). Multimedia such as images and
videos are served as a response from the web server includes another use case. One more
could be submitting a form of data and waiting for specific response.

2A method of project management that simplifies meeting requirements of a clients to deploy highly
valuable software from technical and business aspect. It is done by analysing and improving developed
product already on stage of development.

3Web services conforming with REpresentational State Transfer (REST), REST — architecture style for
managing state information

4

2. ARCHITECTURE AND SECURITY Master of Science in Technology Thesis

whole process should be repeatable, it can be seen as a beginning of software craftmanship.

2.2.1. Risks

Security of software is dependent on many factors, especially in the web where many logical
layers exists. A structure of these layers can be represented in terms of the Internet Proto-
col Suite (TCP/IP), as Figure 3 shows. Different layers are managed by different protocols.
This figure shows only a limited number of protocols, it is not an exhaustive list. Numbering
layers in TCP/IP model starts from the bottom. Link layer in TCP is the bottom one, while
application layer is the top layer etc.

Position TCP/IP layer name Typical protocols
4. Application DNS, FTP, HTTP, HTTPS, IMAP
3. Transport TCP, UDP
2. Internet ICMP, IP
1. Link ARP, Ethernet, MAC

Table 3: Layers with its accordingly protocols in the TCP/IP model.

Due to the reason the WWW has a very complicated structure, some kind of report to make
developers aware about security was needed. Currently OWASP provides insights of secu-
rity for the web. Based on their cooperation with community, industry and researchers they
are publishing every few years list of top ten security risks. Recent lists are from 2013 [3]
and 2017 [4], presented by Figure 4. The order of the risks is according to their popularity,
e.g. injection is the most popular type of security risk for both reports.

Position OWASP Top 10 — 2013 OWASP Top 10 — 2017
1. Injection Injection
2. Broken Authentication and Session Management Broken Authentication
3. Cross-Site Scripting (XSS) Sensitive Data Exposure
4. Insecure Direct Object References XML External Entities (XXE)
5. Security Misconfiguration Broken Access Control
6. Sensitive Data Exposure Security Misconfiguration
7. Missing Function Level Access Control XSS
8. Cross-Site Request Forgery (CSRF) Insecure Deserialization
9. Using Components with Known Vulnerabilities Using Components with Known Vulnerabilities
10. Unvalidated Redirects and Forwards Insufficient Logging & Monitoring

Table 4: Ten Most Critical Security Risks in Web Applications in 2013 and 2017, by OWASP.

One of the crucial elements in web security is associated with transferring data between
web services. Web services are nowadays mostly based on the RESTful architecture style.
This architecture style is simple and flexible way to design Application Programming Inter-
faces (APIs), called RESTful APIs. REST takes advantage of existing protocols (HTTP).
Response objects are usually in JavaScript Object Notation (JSON), eXtensible Markup
Language (XML), YAML Ain’t Markup Language (YAML) or other text-based formats.
This is an advantage over SOAP which defines responses to be returned with a XML for-
mat. Even though SOAP is an official web standard, REST is getting more popular. Its

11

2. ARCHITECTURE AND SECURITY Master of Science in Technology Thesis

complexity is smaller, it provides higher performance and scales easier. SOAP is a protocol,
while REST is an architecture style. However, they both can be used for the same purpose
and thus can be compared with each other. An example of the SOAP is the PayPal SOAP
API [16], while for the REST it is WordPress REST API [17]. The reason for REST’s
popularity might be its simplicity in comparison to SOAP, but it comes with the price of
security. SOAP comes with standardized security rules such as built-in Atomicity, Con-
sistency, Isolation, Durability (ACID) compliance or authorization provides higher level of
security using when implementing its guidelines called WS-Security. Due to them SOAP
enables security implementation in more standardized way. REST supports JSON parsing
which is usually faster than parsing XML [18]. This is one of the most valuable advantages
over SOAP and could be one of the reasons why it is more popular than SOAP. Espe-
cially given the popularity of mobile devices, as for those end user every second matters.
However, in enterprise-level web services which require higher security, e.g. financial services
or in telecommunication companies, SOAP is still the preferred way for data communication.

The progressive popularity of mobile and web applications, mostly based on REST, enforced
OWASP to prepare special requirements for software which uses REST as a method to com-
municate between web services. The good security practices recommended by OWASP [19]
include:

• Access control — access control has to be enforced in all micro services which is a bit
more complicated in comparison to monolithic applications.

• API keys — to protect endpoints API keys should be used.

• Audit logs — analysis of token validation errors with security alerts are helpful to
detect attacks.

• Cross-Origin Resource Sharing (CORS) — a mechanism which allows website at spe-
cific domain to have permissions to access some resources from a different domain.

• Error handling — error message can be a source of potential helpful information for
an attacker, thus revealing technical details about them is a security mistake.

• HTTP return codes — semantic status codes should be used for responses in order to
follow proper HTTP specification for different scenarios.

• HTTPS — each API endpoint must provide HTTPS to protect authentication data
such as API keys or user credentials.

• Input validation — by default untrusting input parameters is a good practice, thus
entered data should be validated. Only strictly allowed can proceed further, suspicious
input must be rejected.

• JSON Web Tokens (JWT) — protection using digital signatures6 or by Message Au-
thentication Code (MAC) is required to protect this standard, because they are often
used for security tokens.

6Called also cryptographical signatures, those are mathematical methods to verify authenticity of a
certain message.

12

2. ARCHITECTURE AND SECURITY Master of Science in Technology Thesis

• Management endpoints — strong protection must be delivered by Access Control List
(ACL) or firewall rules. When accessing online multi-factor they should be hided from
the Internet.

• Restrict HTTP methods — rejecting all HTTP methods that are not on the white list
with a response code 405, i.e. Method Not Allowed.

• Security headers — returning Content-Type header with charset causes correct in-
terpretation of the content by the browser and the server’s correct answer also is
important against XSS.

• Sensitive information in HTTP requests — to avoid leakage of secret API keys, cre-
dentials or security tokens cannot be shown in the URL. Instead, GET, POST and
PUT methods should handle it in their appropriate sections to keep sensitive data.

• Validate content types — validating incoming requests and sending safe responses with
appropriate content types are required for correct interpretation on the client-side.

There are many security risks on different layers which can cause to defeat security defenses.
Thus, in the software industry information about many threats can be heard. These mostly
has been caused by exploiting vulnerabilities. Often, even one weakness in the application
was enough to break it totally or cause a data breach. As the list shows, there are many
parts to take care of.

2.2.2. Vulnerabilities

General issues related to security are based on vulnerabilities — possible weaknesses in a soft-
ware which can be exploited by an attacker [20]. They should be distinguished from security
risks, those two are different terms. Currently many applications are based on cloud solu-
tions, available through different types of services. These includes Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) or Software as a Service (SaaS). Vulnerabilities can
occur on many different layers. Beginning from web application core source code, through
network-related problem, all way to cryptographical methods. Such complicated combi-
nation of layers in a typical web-based project leads to many possible weaknesses. They
are caused by lack of testing, obsolete encryption algorithms, poor storage management,
programming mistakes, unencrypted communication protocols traffic, usage of APIs with
malicious code, weak passwords, wrong databases configuration [21]. Monitoring of Com-
mon Vulnerabilities and Exposures (CVE) is a valuable source of potential security risks.
Lists of those are published by National Institute of Standards and Technology (NIST) [22].
The records are based on specially designed for it website [23] which is kept up-to-date by
the community and security researchers. From developers perspective it is important not to
use dependencies and software versions which contains any kind of weaknesses. Automatic
monitoring as well as updating them as fast as possible once security updates are deployed
is a typical countermeasure.

2.2.3. Threats

A danger with possible harmful to certain system complications due to intentional or acci-
dental activity is called a threat [24]. Effects of a successful hacking activity can compromise
availability, confidentiality or integrity. Typical threats are botnets, computer worms, fake

13

2. ARCHITECTURE AND SECURITY Master of Science in Technology Thesis

security software, malicious spyware, malware, phishing, rootkits, spam, Trojan horses and
viruses. Most of them target machines, but some of them humans. Machines usually re-
spond automatically, thus their security relies on the software which is supposed to defend
from malicious activity. Humans should follow security policies, have basic knowledge or at
least installed antivirus software with up-to-date virus definitions database.

2.2.4. Control

Assurance of security requires that developers follow certain rules and should be controlled
through earlier established standards. Comprehensive list of preventive measures has been
published by OWASP in 2018 [25] and includes:

1. Define security requirements.

2. Leverage security frameworks and libraries.

3. Secure database access.

4. Encode and escape data.

5. Validate all inputs.

6. Implement digital identity.

7. Enforce access controls.

8. Protect data everywhere.

9. Implement security logging and monitoring.

10. Handle all errors and exceptions.

These rules are easy to follow not only on the stage of development, but also during vali-
dation, i.e. when assessing how secure the application is. Web applications contains many
layers of source code present in business logic, controllers, databases, views etc. That is
why ensuring high level on security includes to meet the requirements on all those layers.
Modern security defenses have many layers of security. It means that breaking into one
layer does not mean the whole system is broken. Keeping security in mind is easier with
these guidelines, from security analysis point of view as well as software development.

2.2.5. Secure Software Development Life Cycle

High quality source code with agile-oriented way of working is called SDLC. This is presented
on Figure 7. Its first stage starts with planning requirements for the project, followed by
defining requirements, designing the product architecture, developing, testing and deploying
the product. It can be easily implemented into Agile methodology, which will render the
SDLC to become iterative.

On top of the framework designed for security requirements a new model has been pro-
posed called SSDLC. Its basic concept is presented by Figure 8. Difference between those
two models by naming includes the first two stages, where in SSDLC security is mentioned
with a priority. The security definition phase would include planning as well. The research
phase would define general concept of that application. However, even though the next

14

2. ARCHITECTURE AND SECURITY Master of Science in Technology Thesis

(Development, Operations and Security).

The main difference between these three terms, i.e. SecDevOps, DevSecOps and DevOpsSec
is the Sec part. In terms of security this is crucial, because it defines on which stage of the
SDLC it should be placed. For SSDLC the correct way supposed to be only SecDevOps. In
terms of the SecDevOps security is defined already on the earliest stage of a project. The
DevSecOps predicts security checks after development. DevOpsSec will take security into
considerations once the application will be deployed.

Improving security in the last part of product development might be difficult to achieve.
The reason for that is when all the programming is already done and deployed as de-
signed, changes for security reasons would need to imply changes on the architecture level.
Enterprise-level applications might be very difficult to change on that level, sometimes it is
even impossible to fully integrate security, as it should be. In a positive scenario it would
take significant amount of time to make it properly. However, it is supposed to be the easiest
solution. The currently popular DevOps technique is present in many companies delivering
modern applications. In these projects which have started before SecDevOps was born it is
kind of natural way to extend it like so and thus follow DevOpsSec.

DevSecOps makes security a higher priority than DevOpsSec. In that model it is placed
directly after implementation, before deployment. In terms of security it is a more correct
approach, because the application is not delivered to the commercial environment before
passing necessary security tests. This approach causes similar problems. Once security flaws
will be discovered, then sometimes it might be quite difficult to increase security without
changing the architecture significantly. However, in terms of security this is much better
approach.

Including code reviews, proper cryptography usage, defensive techniques based on OWASP
guidelines, programming best practices, secure access control, static code analysis, threat
modeling, vulnerability assessment and others security-related mechanisms at the starting
stage of an IT project is what SecDevOps is about. In this technique security requirements
are defined before development starts The problem of completely redesigning the architec-
ture due to security changes does not exist, because it is defined during first stage of the
project. Only new vulnerabilities have to be taken into consideration, but with security first
approach it is easier to manage source code, than vice versa. It might come with a cost of
slower development. However, in a long term period decreasing potential of security issues
results in a smaller amount of successful attacks. They become more and more expensive
once getting older.

16

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

cross-platform solutions (Electron, Meteor), mobile applications (Apache Cordova, Ionic),
Progressive Web Applications9 (PWA) or even IoT (IoT.js).

Ruby 10.1%

TypeScript 17.4%

C 23.0%

C++ 25.4%

PHP 30.7%

C# 34.4%

Python 38.8%

Bash 39.8%

Java 45.3%

SQL 57.0%

CSS 65.1%

HTML 68.5%

JavaScript 69.8 %

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 10: Most popular technologies, annual report by Stack Overflow for 2018 [26]. In-
cludes languages with at least 10% usage by software developers.

JavaScript is a high-level, interpreted language which complies with ECMAScript — a
scripting-language specification on which JavaScript is based. Basic features of this lan-
guage include: delegation, dynamically typed, functional, object-based, supports structured
programming and wide usage of prototypes. For a long time it has been considered as a
non-secure programming language due to its unsafe nature. However, its recent popular-
ity also led to interest in the topic of security in this certain technology. Combination of
Document Object Model (DOM) with its manipulation by JavaScript are potential source

9Web applications with access to mobile native applications functionalities.

18

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

of vulnerabilities. Possible attacks are CSRF, XSS or other client-based possible exploits.
However, this is not limited only to the front-end layer of web applications. As mentioned
previously, JavaScript has been applied in different environments. Hence, its security be-
comes more and more important. Especially when handling authentication, authorization,
sensitive data or payments in the business logic layer.

Its ecosystem changed significantly over past several years. Currently plain JavaScript
(without any frameworks or libraries, also known as Vanilla JS) is not often used in de-
veloping modern applications. Frameworks such as Angular, React and Vue.js or libraries
like jQuery, RxJS and Underscore.js are daily used by hundreds of thousands of developers.
Moreover, workflow for this specific language includes its specific tools, such as Babel, Bower,
ESLint, Grunt, Gulp, Karma, npm, webpack, Yarn, Yeoman etc. They automate certain
tasks, bundle source code for deployment, check syntax, transpile into a syntax readable by
the browser and takes care of many other processes.

3.1.2. TypeScript

Angular is built in TypeScript, a programming language introduced by Microsoft in 2012.
TypeScript is recognized and advertised as a superset of JavaScript. As its name suggests
— it is strongly typed language. Apart strong typing other features includes asynchronous
pattern, classes, enumerations, generics, interfaces, namespaces, modules, tuples, typed
annotations and typed inferences. Angular applications projects source code is written
in TypeScript and transcompiled to JavaScript. Such kind of technique provides a way
to execute written code by a browser. It will be the main programming language used
to develop the practical side of this research project. However, once the application is
deployed JavaScript is the language present in the browser responsible for executing it
properly. TypeScript is not natively supported by the browsers, at least at this time of
writing this thesis.

3.2. Frameworks

Often modern web applications are taking advantage of using frameworks, external libraries
or both. Frameworks defines the structure of an application. Libraries provide ready func-
tions to be used by the developer, without the need to work in a plain language, e.g. Vanilla
JS. Nowadays, developers communities mostly use frameworks such as Angular, React or
Vue.js on the front-end. Frameworks are important additions to programming languages
because they motivate on developers to follow certain rules. Using them, projects are eas-
ier to follow and maintenance becomes simpler as such application have a more structured
architecture. Efficient and scalable SPAs are usually based on such frameworks. In this
thesis, Angular is studied. Its environment is mature, provides many best practices, good
technical documentations, as well many problems (including security) has been solved since
that time Google introduced it in 2016. The Angular framework should not be mistaken for
AngularJS framework, which was introduced by Google in 2010 but in fact is a completely
framework with a completely different approach solving different problems.

3.3. Angular

One of the most popular frameworks for developing SPAs is currently Angular. It is not only
possible to use Angular for web applications, but with its cross platform approach Angular

19

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

can also be used to create desktop and mobile applications. AngularJS follows the MVC
architectural pattern, but Angular does not. Moreover, it also does not follow MVVM, but
takes many practices from it. Instead, Angular follows a component-based architecture.
Angular consists the component itself, its View and business logic. Such components must
be added to declarations in a parent module, then assigned to the View, i.e. .html file and
is rendered by the browser.

Angular provides many built-in features, e.g. animations, code optimization techniques
like Ahead-of-Time10 (AoT) or lazy loading11, dependency injection12, form validation, in-
ternationalization, offline capabilities, security mechanisms, simplified HTTP API and type
safety (TypeScript). Thus, it is a good choice for scalable applications, even though it
has its specific workflow. At the beginning this workflow can be seen as a disadvantage
over other frameworks, but such kind of mature ecosystem is incredibly important when
releasing stable software. There is no need to rely on third-party packages, because the
core functionalities provided by Google are already forming ripe environment to create wide
spectrum of web applications. It is still possible to extend working environment by using
one of thousands of extensions developed by the community. It clearly shows how popular
Angular is.
Newly introduced mechanisms such as Angular Ivy13, i18n14, tree shaking15 are definitely
interesting. However, even more helpful changes for developers are coming. One example is
adding to the Angular CLI default renderer based on the Angular Ivy engine. This clearly
shows Angular’s potential. Google keeps, apart from having an internal, dedicated team for
Angular improvements this framework open source. This helps the community to contribute
with their ideas to further improve it. One of successful ideas coming from the community
includes introduction of NgRx, a reactive state management inspired by Redux16.

Another reason to create a SPA based on Angular is its willingness to test wide spectrum
of SPA features. These could be potential source of security vulnerabilities. Hence, more
features, such as accessibility or offline capabilities can be integrated using the latest version
of Angular and validated how secure the application is.

3.3.1. Security

There are several best practices for security in Angular applications such as using the latest
version of this framework, do not make any direct modifications to the core of Angular and
avoid usage of flagged as a security risk APIs. However, security on the front-end layer is
more than that. Terms such as Content Security Policy (CSP), CORS, CSRF, Cross-Site
Script Inclusion (XSSI), data sanitization or XSS are one of possible vulnerabilities devel-
opers can face.

10Compilation process to produce efficient JavaScript source code during build time to speed up rendering
in the browser.

11Approach to defer loaded content to the moment when it is actually needed, instead of loading them
upfront.

12Technique for producing loosely coupled code with supplying dependencies to another object.
13Rendering engine responsible for providing smaller bundles faster.
14Internationalization capabilities.
15Dead-code elimination.
16JavaScript library for managing application state.

20

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

XSS is an attack, in which malicious code can be injected into an application. Preven-
tion includes defending the DOM from ability to insert attacker’s code there, e.g. using a
script tag. By default Angular classifies all values as untrusted, while inserted values via
DOM are sanitized. That way, suspicious values are escaped by its framework design. Apart
from possible client-side XSS attacks, there also exists server-side XSS. For these different
type of protection should be ensured. For that reason generating Angular templates on
the back-end layer by using templating languages can be a source of unconscious template-
injection vulnerabilities. In terms of security it is better to use automated escaping of values
provided by templating language itself, but not by generated Angular templates based on it.

The security model for XSS includes also using an offline template compiler to avoid tem-
plate injection. This technique also improves performance. Dynamically generated tem-
plates based on concatenation of user input and templates are not considered to be secure.
They bypass built-in security protection of Angular.

Data sanitization is one of methods to prevent XSS attacks. It is performed to filter un-
trusted values from source code. Angular recognizes six security contexts, i.e. HTML,
none, resource URL, script, styles and URL. An important note is that resource URL is
not sanitized by Angular, because it is simply not doable. Sometimes developers have to
access DOM APIs directly which is not recommended in terms of security. Hence, in that
scenario built-in sanitization methods should be used, i.e. sanitize of the DomSanitizer17

with adequate security context. This technique is crucial, because native DOM APIs by
default do not provide protection against security vulnerabilities. Therefore, manipulating
DOM via Renderer2 18, instead of using ElementRef19 is considered to be more safe. De-
pendencies are key elements when developing SPAs. Third-party APIs might have calls to
unsafe methods such as ElementRef. Developers could assume that unit testing will provide
clean code and it is all in terms of security. However, those are isolated tests which do not
touch external dependencies the community has to rely on. Hence, this is another reason to
analyse security in Angular in more depth before deployment.

Next protection against XSS attacks is to introduce CSP into an application by permitting
only allowed origins to be executed. Let consider an example, an URL https://my-trusted-
source.com is whitelisted by a web application https://myapp.com, thus considered safe.
That is why execution of scripts from https://my-trusted-source.com on https://myapp.com
is permitted. On the other side, there exists a harmful sample script from https://malicious-
code.com. It has been not whitelisted by the https://myapp.com. Therefore, https://malicious-
code.com cannot execute its scripts on https://myapp.com. Defenses against XSS in terms
of CSP include the previously mentioned source whitelists. It is achieved using CSP-defined
set of policy directives (e.g. default-src, style-src, script-src, etc.) with whitelisted URLs [27].

Apart from that, good programming practices have a positive impact on security as well.
The first one is to disable executing eval()20 and minimize inline codes. It might lead to
detrimental behaviour of web application. These introduces the risk of DOM-based XSS21

17Security helper for XSS prevention when sanitizing values to be used in different DOM contexts.
18Abstraction for manipulating DOM without directly accessing it.
19Wrapper around native DOM element.
20Method for evaluation or executing an expression.
21Modifying DOM environment by executing scripts in victim’s browser using client-side script.

21

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

vulnerability due to unsanitised values. That is another reason to use separated .js files.
Usage of eval() seems to be outdated, however there are different object used in JavaScript
through which text can be injected, i.e. new Function()22, setInterval()23 or setTimeout()24.
Potentially, this could end up with injection of malicious content. Thus, CSP by default
blocks Strings in these functions and calls for these three methods should be written as
inline functions rather than Strings [28]. Information about security on the back-end side
is important as well. By using CSP developers can set up reports through POST requests
in form of JSON. Such response contains location (route) of a reported vulnerability, sus-
picious URL, resource of harmful script, what kind of directive it violates and page policy.
Specifying CSP can be done in HTTP header from web server. Alternatively, it can be also
enabled using the <meta>25 tag attribute in HTML with http-equiv26 attribute.

One of two most frequent HTTP vulnerabilities is CSRF. It is one of the OWASP Top
10 security risks in 2013. This type of attack combines social engineering techniques and
executed harmful script on the desired by an attacker link. In such type of attack the
hacker tries to trick the victim to visit a different page than the person wants, e.g. in-
fected https://attacker.bank.com, instead of trusted https://bank.com. In such a manner an
attacker via its controlled website, i.e. https://attacker.bank.com is able to manipulate a
specific action, e.g. transferring money from victim’s digital wallet to its own account. At
a first glance to defend against such attacks does not seems to be difficult, however some of
the defenses might cause security leaks [29], such as:

1. Using secret cookies — important to remember is the fact that secret cookies will
be transferred as well with every request. As a result, authentication tokens will be
also submitted with session identifiers. In such a way session identifiers are not helpful,
because they do not verify if the end user wanted to submit the request.

2. Only accepting POST requests — even though a web application would accept
only this kind of requests, hidden values in a form on website controlled by an attacker
might not be able to resilient against CSRF.

3. Multi-step transactions — in a scenarios when an attacker can guess the next step,
then it cannot defend the victim.

4. URL rewriting — even though an attacker cannot guess session ID by introducing
URL rewriting of the victim it would reveal the session ID in the URL.

5. HTTPS — usage of HTTP over Transport Layer Security (TLS) is only a solid
background for ensuring security in an application, but itself does not defend against
CSRF.

There are two methods of CSRF attack resistance, i.e. token based (stateful or stateless)
and user interaction based protection (one-time token or reauthentication) with token based
mitigation [30]. Most frequently used and most recommended is token based mitigation.
The stateful technique is achieved using synchronizer token pattern. Stateless, as an en-
crypted or hash-based token pattern. Those techniques require practical and well-designed

22Built-in constructor for defining a method.
23Method for calling certain logic at specified interval.
24Method for evaluating an expression after specific number of milliseconds.
25HTML tag for providing metadata about data.
26HTML attribute for providing HTTP headers.

22

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

usage of cryptography. Secondly, due to those strong foundations of cryptography it is easy
to make a mistake. That is why developers should use deployed implementations which have
been reviewed and tested by the community of a security experts. Many of those defenses
have been described by an important paper over a ten years ago [31] and the basic concepts
are still up-to-date.

Angular provides built-in protection against CSRF [32] via its HttpClient27. This mechanism
relies on reading tokens from cookies during HTTP requests. Scripts outside the trusted
domain should are not able to read those cookies. Therefore, server-side can be assured it
did not come from an attacker’s domain28. The default configuration of an interceptor29 is
set to accepting POST requests and other mutating requests with relative URLs. GET and
HEAD requests as well as absolute URLs are rejected. Moreover, for that to be working
correctly server of the hosted application must set an XSRF-TOKEN, a readable session
cookiecookie on page load or the first GET request. Based on this the server is able to ensure
that the cookie is valid if it matches appropriate HTTP header, i.e. X-XSRF-TOKEN. It
ensures that only scripts within specific domain could send this request. Preventing clients
from creating their own tokens is achieved by server verification and uniqueness of the token
for each user is important. Additional security might include adding salt30, while forming
a token to a hash code31 of the authentication cookie for the developed website. However,
this is only the front-end side of CSRF protection. For effective default security defenses
against CSRF the back-end also has to be configured properly. This can be achieved by set-
ting cookies for the page and verifying if desired header is available in all required requests.
Basically, this technique is achieved using same-origin policy. This is already doable from
technical point of view, due to the reason that it has been implemented by modern browsers.

However, sometimes developers have to request a resource from a server outside their do-
main. A typical use case is accessing an external API and in such scenarios CORS can
be used to handle those requests. It is achieved by setting up HTTP response head-
ers such as Access-Control-Allow-Origin, Access-Control-Expose-Headers, Access-Control-
Max-Age, Access-Control-Allow-Credentials, Access-Control-Allow-Methods, Access-Control-
Allow-Headers. This mechanism has been implemented in major browsers already during
their early versions [33]. For this reason, it is practical to implement and recommended
from the security point of view.

The second security issue from HTTP-level vulnerabilities is XSSI. This is related with
JSON and reading files from API relying on this format. That is why it is also called JSON
vulnerability. Only in a scenarios when JSON content is interpreted by vulnerable processor
it is possible to override native JavaScript object constructors. Prevention includes disabling
this script from abilities to be executed by starting JSON response with ")]}’,\n" or answer
by only POST requests. Angular provides built-in protection by recognizing the ")]}’,\n"
string and striping it off before parsing incoming responses.

27Angular’s module for handling commmunication services over HTTP.
28However, there is still a risk of Domain Name System (DNS) spoofing attacks. The network layer

requires to enable Domain Name System Security Extensions (DNSSEC) in order defend against DNS
spoofing attacks.

29Interceptors handles incoming responses and outgoing requests.
30Random data used for modification of encryption to safeguards passwords.
31Hash code is equivalent term to hash values and digest — all those are related to output of a hash

function.

23

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

3.3.2. Programming Best Practices

Angular intensively uses TypeScript. For that reason, best practices for Angular, JavaScript
and TypeScript should be combined. Some of those techniques are universal, can and should
be practiced in all three environments.

JavaScript basic best practices [34] focus on:

• Minimization of usage: global variables, creating objects using new keyword, compar-
ison variables using the double equal sign (==) and execution of eval() function.

• Local variables should be used as often as possible. Declarations should be placed
on the top using let or const keywords. Important is not to declare variable without
those keywords, because they can accidentally overwrite an existing global variable.
Declaration of variables should be combined with their initialization.

• The keyword new with its desired data types should be replaced with its short version,
i.e. {}, ””, 0, false, [], /()/, function(){}. Adequately, it stands for: creating object,
primitive string, primitive number, primitive boolean, array object, regexp object and
function. Otherwise, unexpected behaviours might occur. An example could be var
my_arr = new Array(5); console.log(my_arr.toString()); which returns „„ ,. Whilst
var my_arr2 = [5]; console.log(my_arr2.toString()); will return what it is expected
to return, i.e. 5.

• Operator to compare values === should be used — it compares values and types,
while == only checks if the values are equal.

• Usage of default parameters is also important, because value of a missing argument is
by default assigned to undefined. Such slightly mistake might end up with breaking
the whole application.

• Not the least — switch/case statements should end with a default keyword.

JavaScript is a loosely typed programming language. Therefore, automatic type conversions
occurs if best practices will not be used. Developer should be aware of this; avoiding over-
riding variables is crucial in JavaScript world. TypeScript solves this problem due to its
strongly typed nature.

TypeScript uses many JavaScript methods, thus best practices for this language described
in previous paragraphs apply. However, it has its own ecosystem and as every different
programming language has specific best practices [35]. These are:

• TypeScript, as the name suggests, is a strongly typed language. Hence, with definition
of variables explicitly defining a type is strongly recommended. Otherwise, it will be
assigned implicitly.

• Typing can be achieved using boolean, number, object, string. Boolean, Number, Object,
String are reserved words in JavaScript and cannot be used in TypeScript.

• Functions are supposed to return specific type as well. When specifying return type
developers should keep in mind that any should not be used in functions with callbacks.

24

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

• As a general approach to write secure code developers should not use optional pa-
rameters unless it is really needed. The same situation is in TypeScript’s optional
parameters in callbacks, e.g. in interfaces.

• Overloads32 should be grouped in an order that more specific signatures are before
more general overloads33.

• Writing few overloads for a scenario in which they differ only by one or two parameters
should be avoided as much as possible.

• Multiplying lines of code which differs by one optional parameter is against DRY
principle. In TypeScript developers can use optional parameters, thus using them
should be practiced.

• Union types are preferred in situations when writing overloads which are different by
type in only one argument position.

Angular best practices are defined by the company behind this framework, i.e. Google. The
instructions to follow in order to achieve clean code in the projects are:

• Specific file structure convention which separated by dots describes name of the class,
name of the element and ends by .css, .html, .spec.ts or .ts., e.g. home.component.ts.
Such kind of convention organize Angular application in an ordered way, simplifies
maintenance and makes easier to understand what is inside of each file. It influences
also how class names should be declared, e.g. HomeComponent (UpperCamelCase
naming) in this case.

• Following the same rule, components selectors34 shall follow dashed-case, e.g. app-
home. Functions preferable are in lowerCamelCase syntax, e.g. uploadFile().

• One of SOLID35 principles has been adapted into this framework best practices, i.e.
Single Responsibility Principle (SRP). It helps developers to define one functionality
per file, limits lines of code for each defined element and prefers small functions. It
simplifies easier maintenance, improves readability and testability.

• The Angular team strictly defines when to declare variables with const, i.e. when their
values are not supposed to change during application lifetime. Other rules to follow
is to define services as singletons36, implement lifecycle hooks37 interfaces, separate
styles with templates and using directives38 for enhancing HTML elements.

Those good practices include and should be applied into all Angular elements, i.e. compo-
nents, directives, interfaces, modules, services39, pipes40 and testing files [36].

32Creating multiple methods with the same name, but with different number or argument types.
33Signatures is equal term to overloads.
34Unique tag for a component used internally within Angular application.
35Acronym for five design principles which aim achieve high quality software.
36Design pattern which aims from class to have only one instance.
37Stages of components lifecycle.
38Custom behaviours added to the HTML syntax in order to extend some specific functionality.
39Objects which are supposed to execute narrow, well-defined functonality. Also known as singleton

objects.
40Elements used to transform values, e.g. filtering.

25

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

More general programming best practices [37] include41:

• Avoiding deep nesting, obvious comments and reserved words.

• Balanced usage of object oriented and procedural programming.

• Capitalization of Structured Query Language (SQL) keywords.

• Dividing code to logical parts.

• Consistent indentation, naming scheme and temporary names.

• Documentation of source code.

• Following the DRY principle.

• File and folder organization to uniform standard.

• Limiting line length to avoid too long horizontal lines of code.

• Proper commenting in a project.

• Separation of code and data.

3.3.3. Testing

The third important factor to develop a secure application written in Angular apart from
security itself and programming best practices, is testing. It applies not only to Angular.
In JavaScript environment it can be achieved using many different tools, e.g. AVA, Chai,
Cucumber, Cypress, Jasmine, Jest, Mocha, Protractor and Tape. Not all of them test the
same thing, i.e. Cypress and Protractor are used for E2E testing, whilst AVA, Chai, Cu-
cumber, Jasmine, Jest, Mocha and Tape are used for unit testing.

Apart from those "natural" choices software engineers can distinguish between different ap-
proaches of testing. However, there are also different levels, processes, techniques and types.
Black box, dynamic, static and white box testing are examples of a testing approach. Whilst
levels of testing levels are acceptance, integration, system or unit testing. It all depends by
functionalities which has to be tested. That is why there are certain stages of testing, e.g.
alpha, closed/open beta testing. Types of tests would include internationalization, localiza-
tion testing for a typical web shop. Financial industry would be more strict and security
testing is a must. On the other hand governmental websites would include accessibility tests.

The thesis focuses on testing techniques which are related to Angular, JavaScript, secu-
rity, web development topics, as well present daily in the industry working with Agile.
Acceptance and unit tests aim is to impact on a quality of software. TDD is a process with
an approach that tests are written first, including minimum amount of code to pass them.
Such kind of approach allows refactoring, helps to reduce amount of bugs and improves
design of an application. However, it can be used when technical requirements are strictly
defined at the beginning of development. To develop the application, a more flexible version

41These are also part of software quality practices widely used by Digital Enablement department of the
KPMG N.V.

26

3. SINGLE-PAGE APPLICATIONS Master of Science in Technology Thesis

— BDD, is used. It is helpful in scenarios, where some functionality has to be written, but
only during development it clarifies which components exactly will be used. BDD can be
seen kind of TDD, but from a higher level point of view and more flexible.

Testing in Angular’s logic is mostly about unit testing, also known as isolated testing and
functional testing — sometimes called E2E testing. Code coverage is a common mechanism
for developers to verify how much of source code has been covered by tests. Angular pro-
vides a tool for it. Developers are able to set a minimal percentage of passed tests to obtain
a permission for deployment. For this to work during testing phase in Angular CLI an
appropriate flag has to be added to the default command, i.e. ng test --code-coverage.

As a part of the SSDLC penetration testing should be included as well. SPA inherits
the same security risks as normal web application. Moving back to Figure 6 proposed by
Gary R. McGraw [15] it can be noticed that in terms of secure development penetration
tests are part of this process. Apart from these, other techniques related to security testing
should be considered too, i.e. code analysis, risk-based security tests.

3.4. Workflow

Angular comes with its specific workflow and while extending the application features devel-
opers sometimes have to look for some enhancements. Projects which empowers applications
for specific functionality are called dependencies. Such technique gives to the developers a
way to handy manage dependencies. This is mainly used to to install, uninstall and manage
across shared projects an efficient workflow to speed up development. Another element to
consider, while setting up a SPA project is to choose appropriate tools. These are: bundler,
CSS style, compiler tool, flavour of JavaScript, its framework, linter, package manager, task
runner and test runner.

27

4. DESIGN Master of Science in Technology Thesis

Chapter 4

4. Design

The SecDevOps methodology places security as a highest step in the SDLC. SecDevOps
prescribes that architecture design should include this factor of software engineering already
on an early stage of a project. Nowadays, web applications are able to provide rich front-end
to the end users using techniques such as Asynchronous JavaScript and XML (AJAX)42,
often in conjunction with REST. It provides higher responsiveness from a user point of view,
because of the usage of AJAX techniques. The UI improvements however may cause new
potential security risks in an application. These techniques are also used in SPA-specific
concept which applies to Angular applications. That is why better security assumptions for
Angular application must be done with high diligence.

4.1. Application Architecture

The SoC is a design pattern which divides each logical section into a separated section
(concern). Such solution helps to follow the DRY principle and creates a structured appli-
cation. In this research it has been included into project assumptions and implemented. A
simplified overview of the architecture of the within this research developed application is
presented in Figure 11.

This application consists of four main logical areas:

• apps — the place where all application modules, components are merged together
and application’s core settings (including routing) are done.

• functions — placeholder for deployment based on Cloud Functions for Firebase43.
It contains also information about dependencies to be installed on the deployment
server.

• libs — reusable code, most of them are so-called features. More technically speaking in
Angular one entity of such features is called FeatureModule. The others are CoreModule
and SharedModule. Difference between each of them is described in the 4.1.1 Modules
section.

• server — back-end serverless44 logic, server-related security settings and Server-Side
Rendering (SSR) configuration.

This is just a basic distinction between application’s root (apps), functions, server and
reusable code (libs). The (apps) will import all libraries which are supposed to be used
during the application’s execution. It will also configure basic settings such as rendering
in the right order on the page or routing. There are also located E2E test cases. The
functions folder contains only basic configuration used for serverless computing. From there
all application is rendered through dynamically injected logic with a Cloud Functions for

42Technique to interact with a page and dynamically modifying the page without reloading the page.
43Triggers for events without the need of a custom back-end, also known as serverless framework.
44Type of cloud computing with a dynamically managed resources by a cloud provider.

28

4. DESIGN Master of Science in Technology Thesis

application’s root

apps

ditectrev

src

app

routing

ditectrev-e2e

functions

libs

about-us (feature 1)

contact (feature 2)

...

terms-of-use (feature 16)

core

shared

server

Figure 11: Simplified architecture of the application.

Firebase support. The libs will contain most of the source code. It will be mostly so-
called features which in total in the application are 16. These are application’s elements
such as contact, home, not found, but also shared components which are on every page,
i.e. footer and header. The server contains minimalistic back-end, Cloud Functions for
Firebase triggers, SSR configuration and some security improvements. On top of this there
are also: core — the most essential Angular logic to required to run and shared — shared
code between different part of application.

4.1.1. Modules

Modularity is a software design technique to create separated functionalities of an application
into distinct, independent and small units. Modularity has been proven to have positive
impact on software design [38]. In Angular applications it is achieved using so-called modules.
Each module can contain specific logic and metadata. These can be components, directives,
exports, imports, services. The logic and metadata has five categories:

1. bootstrap — inform Angular from which component the application shall be boot-
strapped45.

2. declarations — components which are available to be used in a particular module.

45Automatically starting an application behind the scenes and display this in a browser.

29

4. DESIGN Master of Science in Technology Thesis

3. exports — make available logic from current module in different modules.

4. imports — enable exported modules in different modules available in the current
module.

5. providers — inject services required by other components in the current module.
These are directives, services or pipes.

In order to achieve solid SoC techniques exists to create special types of modules. These
are about how to split the modules between logical units. Proposed modules include core,
features, root, routing and shared. Hence, six kind of modules can be distinguished in an
average Angular application:

1. AppModule — the only required module. This is the root module that is boot-
strapped in order to launch the application.

2. CoreModule — modules and services which are declared only once should be imple-
mented here. Examples include module for the HTTP or BrowserModule — containing
core application service providers.

3. FeatureModule — ordinary Angular module, in most cases a page with separated
view. Often lazy loaded to reduce first load time.

4. RoutingModule — part of the application to define all URL paths.

5. SharedModule — place for components which are used globally in an application,
e.g. footer or header. However, it is also the correct place for UI elements. In the
application Angular Material UI elements has been imported there as well as other UI
libraries.

A module is always a parent for a component. However, they can also contain classes, di-
rectives, enums46, guards47, interfaces, pipes and services.

There are different module systems to be used during development of SPA based on An-
gular for JavaScript syntax. In the project ES2015 (also known as ES6) has been used.
CommonJS has been used in Jest testing environment. ES2015 modules recently became a
standard written by ECMA TC39 [39] and for front-end layer are highly recommended to
use. Other possibilities includes: AMD, CommonJS, ES3, ES5, ES2015, ESNext, System or
UMD [40], e.g. CommonJS modules are widely used in Node.js environment. Whilst AMD
often are used as a RequireJS module loader. Further investigation in these topics is out of
scope for this research. However, study this topic is highly recommended to fully understand
how the modern JavaScript stack works. They are also slightly different in terms of source
code analyzers. For example, ES2015 is considered to be easier for them in comparison to
AMD and CommonJS [41]. Source code analyzers has been described more in-depth in the
4.2.4 Security Testing section.

46Sets of constants.
47Interfaces which allows or blocks navigation to a requested route.

30

4. DESIGN Master of Science in Technology Thesis

4.1.2. Components

In Angular applications the most basic block of an UI is called component. Components are
defined as a separated elements of a front-end applications and exists across others modern
front-end frameworks. Such separated structure simplifies achieving SoC and follow the
DRY principle. Each component in Angular consists of four properties:

1. providers — Angular’s object injected into the specific component which contains
certain functionality.

2. selector — definition of an unique tag for the component which is reused later in the
HTML in order to control which component to display on specific page.

3. styleUrls — path to styles of the defined component, alternatively inline styles in the
HTML48 can be used.

4. templateUrl — path to the view, often this is a template file extended by Angular
syntax.

Components are kind of equivalents to typical classes known from different programming
languages. They also have the keyword class in their name definitions and can inherit from
interfaces or other classes as well as have its own constructor. Each component has lifecycle
hooks, in the order of their execution these are:

• constructor — invoked once Angular created a component.

• ngOnChanges() — respond each time once change on one of the input properties
has been detected and execute assigned logic.

• ngOnInit() — initialize the component and set it as ready-to-use.

• ngDoCheck() — respond each time there is a change on any event.

• ngOnDestroy() — called just before the component is destroyed.

The mentioned hooks are for the component itself, but there are also lifecycle hooks for the
components’ children. In order of their execution they are the following:

• ngAfterContentInit() — invoked after an external content has been loaded.

• ngAfterContentChecked() — respond each time after component’s content has
been checked.

• ngAfterViewInit() — invoked after component’s view has been initialized.

• ngAfterViewChecked() — respond each time when the view of the component has
been checked.

48This is possible, but is known as one of the CSS anti-patterns. Therefore, it is considered as a bad
practice.

31

4. DESIGN Master of Science in Technology Thesis

4.1.3. State Management

Modern SPA’s are often classified as rich web applications. Due to the application’s com-
plexity problems may arise when managing states. This is simply due to the reason that
currently developed web application have a big number of functionalities, which causes
source code to grow. An ordinary used Angular web application consists six types of states
[42]:

1. Client state — the most basic one on the front-end layer for storing client-side
functionality.

2. Local UI state — UI components’ state on the client-side.

3. Persistent state — subset of the server state stored in the client’s memory.

4. Server state — server-side state, often provided by REST endpoint to the front-end.

5. The URL router state — navigation functionality to keep information about which
view shall be displayed for the user.

6. Transient client state — holding certain actions on the client without metadata in
the URL.

The ecosystem of Angular simplifies management of these different states. However, for
very large applications the standard state management functionality might not be suffi-
cient. Applications with an enormous codebase might need to introduce more sophisticated
libraries. Akita, Apollo, NgRx, NGXS or RxJS can be used to challenge the problem of
state management.

4.2. Application Security

The complexity of modern applications is continuously growing. This increased complexity
lead to more possible security risks. JavaScript’s language-specific flaws are considered to
be unsafe and unsecure. However, currently JavaScript does has a strong position compared
to other languages in web environment in terms of popularity. Practically, the vast majority
of web application are powered by JavaScript, while JavaScript is also gaining popularity in
non-web environments (desktop, mobile).

Application security can be broken in many parts. Planning and achieving application
security is definitely a broad topic. The nature of JavaScript causes that security is often
overlooked. Isolation of the environment (containerization), compilers rules, secure devel-
opment, security testing may have a positive impact on the security per se. These elements
combined with continuous security technique can be seen as an important step to achieve a
decent security level of the application.

4.2.1. Containerization

Isolating the development environment from the physical machine has a significant security
impact. Virtualization within working environment has been used already for years. Re-
cently many JavaScript packages have been infected [43, 44, 45, 46], which clearly shows
that even developers can be victims of hacking activity which might affect the end users.

32

4. DESIGN Master of Science in Technology Thesis

incompatibility in dependencies versioning when working with legacy projects.

4.2.2. Compilers Rules

There are two types of compilers used in this project, one for compiling TypeScript and
another one for Angular. Nx provides support for created components to have different
settings on each single scope with a global compilers configuration file in an application
root. The project of this application has one file for its global configuration .tsconfig.json.
In this file Angular and TypeScript compiler settings are defined.

Each of these separately defined modules (under libs and src contain actually three dif-
ferent compiler setting files as shown on Figure 11). Considering an example one of libs
modules (e.g. home), the structure is as follows:

• tsconfig.json — general specification of compilers settings for particular local scope.

• tsconfig.lib.json — settings of compilers which apply only to the development envi-
ronment.

• tsconfig.spec.json — settings of compilers which apply only to the testing environ-
ment, i.e. unit testing using Jest.

For apps/ditectrev the only difference is name of a file for the second settings, i.e. it is
tsconfig.app.json. This is a place for development settings of application’s root components
where the page is actually rendered. E2E tests (ditectrev-e2e) have tsconfig.json and tscon-
fig.e2e.json. The second one works adequately to tsconfig.app.json. The server module
has only tsconfig.json. The functions is without compiler settings, as it is used only for
deployment and testing transpiled project. Apart from that, TypeScript compiler settings
have been defined in global tsconfig.json, from which all other files mentioned in this section
inherits. In case of a conflict for the same rule, the locally defined rules overwrites the global
settings.

Default configuration for TypeScript compiler is not that strict in terms of security. For
that, several options in TypeScript compiler in a JSON format has to be enabled. These
are specified in Listing 1.

1 {

2 "compilerOptions": {

3 "alwaysStrict": true,

4 "extendedDiagnostics": true,

5 "noFallthroughCasesInSwitch": true,

6 "noImplicitAny", true,

7 "noImplicitThis", true,

8 "noImplicitReturns": true,

9 "noUnusedLocals": true,

10 "noUnusedParameters": true,

11 "strict": true,

12 "strictBindCallApply": true,

34

4. DESIGN Master of Science in Technology Thesis

13 "strictFunctionTypes": true,

14 "strictNullChecks": true,

15 "strictPropertyInitialization": true

16 }

17 }

Listing 1: TypeScript’s compiler custom stricter rules.

All of them are disabled by default [40] and might have positive impact on security of
the application if turned on. Higher code quality is also achieved by following these rules.
Explanation on the benefits to enable them for each option is given below:

• alwaysStrict — enable parsing strict mode with emitting "use strict" for each file.

• extendedDiagnostics — show more in-depth diagnostic information.

• noFallthroughCasesInSwitch — report error when a switch/case would fail.

• noImplicitAny — disallow declarations and expressions with implied any type.

• noImplicitThis — raise an error when this has implied any type.

• noImplicitReturns — throw an error when not all code paths in method returns a
value.

• noUnusedLocals — enable reporting an error when local variable would not be used.

• noUnusedParameters — enable reporting an error if parameter of a method would
not be used.

• strict — all strict type checking options will be enabled.

• strictBindCallApply — stricter checking for apply49, bind50 and call51 methods.

• strictFunctionTypes — disable bivariant parameter checking for function types.

• strictNullChecks — allow null and undefined types to be used only with themselves
and any type.

• strictPropertyInitialization — ensure non-undefined class properties are initialized
in the constructor.

The option strict in terms of security is crucial. By settings this to true the application
will enable seven strict type-checkings, i.e. alwaysStrict, noImplicitAny, noImplicitThis,
strictBindCallApply, strictFunctionTypes, strictNullChecks and strictPropertyInitialization.
That way, most of these from Listing 1 will be enabled by this single line.

Angular’s compiler rules are defined in a different file, i.e. global tsconfig.lib.json. The
others tsconfig.lib.json files inherits from it. Listing 2 presents a code snippet for Angular
compiler rules.

49Built-in JavaScript method for calling a function.
50Built-in JavaScript method for creating a function.
51Built-in JavaScript method for calling a function. The difference to apply is only about taking arguments

in a different way.

35

4. DESIGN Master of Science in Technology Thesis

1 {

2 "angularCompilerOptions": {

3 "annotationsAs": "static fields",

4 "annotateForClosureCompiler": true,

5 "disableTypeScriptVersionCheck": false,

6 "enableLegacyTemplate": false,

7 "strictInjectionParameters": true,

8 "strictMetadataEmit": true,

9 "trace": true

10 }

11 }

Listing 2: Important rules for Angular’s compiler.

These following Angular compiler options gives the following benefits:

• annotationsAs — enable more sophisticated tree shaking, e.g. Closure Compiler52

techniques.

• annotateForClosureCompiler — this flag is required by the Closure Compiler.

• disableTypeScriptVersionCheck — TypeScript version must be checked if set to
false. Setting this to true would ignore errors about unsupported TypeScript versions.

• enableLegacyTemplate — make impossible to use deprecated <template> tag to
avoid collisions with element which has the same name in the DOM.

• strictInjectionParameters — throw an error for parameters without possible to
determine injection types.

• strictMetadataEmit — emit errors for metadata, that otherwise would be ignored.

• trace — show more information during compiling templates.

4.2.3. Secure Development

There are many factors developers should think about during the development phase in order
to deliver secure software. Angular offers protectsion from some of the attacks by default.
However, there are also attacks which developers have to take care of such as broken access
control, cryptographical protocols weaknesses, Denial of Service (DoS)/Distributed Denial of
Service (DDoS), known vulnerabilities, security misconfiguration, server malware and many
others. These attacks are not primarily related to the front-end layer. The background
of these weaknesses could be hacking, human-prone mistakes, open source vulnerabilities,
server-related issues and many others. Therefore, Angular applications developed following
the SSDLC should result to be more resistant on typical attacks.

An integral part of secure development is automation of security checks. This not only
includes security testing, but code quality checks too. Code smells53 in the application can

52Google’s compiler for JavaScript which outputs high quality and well-optimized JavaScript.
53Set of common characteristics which specifies that the source code is not good enough and should be

improved.

36

4. DESIGN Master of Science in Technology Thesis

are two main strategies to handle this problem:

1. Whitelisting — accept only specific types of files.

2. Blacklisting — reject listed files, accept all others.

First of all, in both strategies executable files as well as too large files definitely should not
be accepted. List of unsecure file patterns is long, especially including unordinary types of
files. For this reason, whitelisting is a better strategy, because the system will accept only
these kind of files which are supposed to be accepted. Moreover, the error handling message
should be rather general than detailed. By providing a detailed response the attacker might
guess what kind of strategy is used.

It is worth noting that even icons might be a potential source of vulnerabilities. The modern
standard for icons Scalable Vector Graphics (SVG) relies on a vector graphics rendering.
This uses JavaScript for scripting, which means it can be executed by a potential attacker.
Data injections and XSS attacks can be mitigated by implementing CSP in combination
with Angular’s built-in protection.

4.2.4. Security Testing

Protection of software from hypothetical attacks is a primary goal for security testing. Se-
curity is becoming an integral part of the SDLC since few years back, but it has been a topic
of research for more than 15 years [49]. Seven basic security concepts are authentication, au-
thorization, availability, confidentiality, identification, integrity and non-repudiation. These
are evaluated by different types of security tests [50]. The most general approach is to divide
them on two categories:

1. Dynamic Application Security Testing (DAST) — also known as black box
testing, is executed in running application where the ethical hacker intentionally in-
troduces fault injections to find weaknesses. In this scenario there is no access to the
source code.

2. Static Application Security Testing (SAST) — also known as white box testing,
is performed during development to find security vulnerabilities in the source code
without executing it.

These two types of techniques can be done both automatically and manually. It depends on
what is supposed to be tested, thus different tools are used for those. The core difference
between them are presented in Table 5. A hybrid approach, called grey box testing is also
sometimes distinguished between these two in which the security is tested by given partial
information about the system.
More recent approaches are Interactive Application Security Testing (IAST) and Runtime
Application Self-Protection (RASP). The first one is a combination of DAST and SAST
which works inside the application. Vulnerabilities can be continuously monitored and
identified, because these tests are performed right after the functional tests are done. Due
to this fact it can be easily integrated into the CI/CD pipelines. That is why vulnerabilities
are detected earlier than using the traditional SAST approach and the unsecure bundle can
be automatically dropped from a potential deployment. Another advantage is the code cov-
erage which includes also frameworks and libraries. RASP also works inside the application,
but it differs from the IAST. RASP is more like a security tool per se, whilst IAST has

38

4. DESIGN Master of Science in Technology Thesis

DAST SAST
Hacker approach Developer approach

Lack of knowledge about used technologies Access to the source code
Finds runtime and environment-related issues Does not find runtime and environment-related issues

Typically used only in web & mobile applications Supported by almost all kinds of programming languages
More expensive to fix Cheaper to fix

Table 5: Difference between DAST and SAST [50].

more focus on the security testing itself. RASP is included in the application, analyse it
and in case of anomalies sends an issue alert or even blocks an application execution. In
such a way it can thwart attacks automatically, especially important for these based on the
recently discovered vulnerabilities.

Security testing is an essential part of the SSDLC. Recent research shows that it is eas-
ier to implement it in an agile project management frameworks such as Scrum [51, 52].
These findings provide an interesting conclusion. The authors suggests that even the chosen
project management framework might influence achieving different security levels during
software development. This should be preceded by defining security risks which influence
on the decision what should be tested using what kind of techniques and tools.

4.2.5. Continuous Security

Nonstop monitoring of application in terms of security might be a challenging task. The
CI/CD apart improving productivity [53, 54, 55] can be helpful in automatic security tests.
However, there might be a confusion between CI/CD acronyms. In order to understand the
difference between them, it is important to define its meaning [55] and distinguish between
these:

• Continuous Integration (CI) — integrating code in a shared repository. It builds
and tests each commit change automatically54. It is part of continuous delivery as
well as continuous deployment.

• Continuous Delivery (CD) — releasing changes to production as quickly as pos-
sible by automatically pushing changes to a staging environment. From a staging
based on certain conditions the application can be manually pushed to the production
environment.

• Continuous Deployment (CD or CDE) — goes one step further than continuous
delivery. Deployment to production is fully automated.

Continuous security, similarly to continuous integration, should be an integral part of con-
tinuous delivery and continuous deployment. The security checks to achieve decent security
level should be strict. Steps to achieve it are usually: container and dependency scanning,
DAST and SAST. More sophisticated methods could include: fuzzing, IAST, mutation test-
ing or RASP.

54In some scenarios such as editing technical documentation in the source code repository it is not a
desired behaviour. Automatic pipeline build can be omitted. An example includes setting up a GitLab CI
command which would read Git commits containing information about skipping the build.

39

4. DESIGN Master of Science in Technology Thesis

From these three the most secure seems to be continuous delivery, where deployment from
staging to production is done manually. The reason for that is even though pipelines would
pass all tests, then the application might be still not working correctly. Continuous de-
ployment definitely speeds up time-to-production, but also contains some risks [56]. The
scenario for this could be for example when providing a wrong API key in the environmen-
tal variables of a CI system. Even though locally everything worked correctly, it is always
better deploy to staging. The environment is usually almost the same as the production
one. Thus, it can be manually tested there and manually deployed to the production once
the results of these tests will be positive. That is the reason why continuous delivery seems
to be more safe and secure.

4.3. Behavior-Driven Development

Integration of unit tests into Angular development environment is relatively easy due to its
component-based architecture. Apart from that, Angular CLI generates the test files au-
tomatically when creating a new component. Together with a testing framework it creates
a nicely isolated structure of the application literally created for unit testing. Similarly to
TDD three main phases are defined: red55, green56 and refactor57. In contrast to the TDD,
BDD focuses more on how the application should behave for the end user. TDD is more
strictly about implementation of the functionality. The BDD comes from the TDD, but
takes more flexible approach in the SDLC: test cases are not that strictly defined and are
in a more human-readable format.

Fundamental part of the BDD is Given-When-Then (GWT) approach [57], where

• Given — responsible for setting up a context.

• When — describe an event.

• Then — provide outcomes for the event.

The goal is to provide easy to understand and readable unit tests. By implementing BDD
it is easier to have more isolated structure of an application which gives enhancements in
terms of security. The code maintenance becomes simpler. Clean separation of application’s
components is easier for debugging. It improves the chance to detect mistakes during de-
velopment and to eliminate them before deployment. It can results in higher source code
quality and less security flaws in it. The BDD process also helps to focus on user expec-
tations, thus by applying it developers are able to achieve better UX. Developers benefit
from the fact that part of the application can be tested without completely compiling and
deploying the whole application. Since a small piece of code (unit) is the target it checks if
particular part of the application behaves as it is expected.

55First phase of BDD/TDD when a test is failing.
56Improving unit test to pass the test case.
57Possible improvements of a unit test.

40

5. IMPLEMENTATION Master of Science in Technology Thesis

Chapter 5

5. Implementation

Awareness of recent cybercrime activities is already a good first step to develop secure
application. Identifying security risks and implementing security measures for developed
scenario is the next one. Architecture designed from a security point of view is an important
factor of the application [58]. Implementation of architecture, clean code, the DRY principle,
programming best practices, SecDevOps and overall SSDLC process is challenging and yet
another step. Carefully selected technologies with appropriate tools may be helpful in that
stage. With security in mind, developers have to find trade-offs between modern techniques
and mature solutions. Modern techniques have a newer point of view to resolve some kind
of problems. However, mature solutions have been used for already some time and are
considered to be more stable.

5.1. Functionalities

The application build as part of this research contains some functionalities typical for a
modern web application. It has several views which contain content with associated logic
behind. These are typical web application features such as input field complete with input
validation, interactive elements, small back-end and routing functionality. Other notable
functionalities are:

• Accessibility — the application supports assistive technology for users with disabil-
ities. It has been achieved using Agastya58, semantic HTML and Web Accessibility
Initiative’s Accessible Rich Internet Applications specification (WAI-ARIA)59 [59].

• Analytics — every modern application tracks the user behaviour, the application
also contains it. Google Analytics and Hotjar have been used as a technologies for
this task by using Google Tag Manager.

• Internationalization — Google Translate with Oswald Labs Platform APIs provides
a way to smoothly integrate into an application automatic translation in more than
100 languages. It has been achieved implementing the Agastya software into the
application.

• Offline — a service worker60 is part of the application to include PWA characteristics.

• Responsiveness — Responsive Web Design (RWD) has been implemented using
modern techniques of CSS such as Flexbox Layout and Grid Layout. More precisely,
its implementation in forms of directives called Angular-Flex Layout has been used.

• Rich front-end — significant number of integrations has been performed in order to
provide appropriate UX. Many libraries and plugins in a form of external dependencies
have been used to achieve this effect.

58Software for improving websites’ accessibility.
59Technology which solves problem of reading web content for people with disabilities by adding special

directives to the source code.
60Script that runs in a background without interacting with a user.

41

5. IMPLEMENTATION Master of Science in Technology Thesis

Visualization of the application is attached to the thesis in the appendix A UI Design
Elements. Some of these functionalities can be noticed from these screenshots. seen from
the attached screenshots can be found in UI design elements.

5.2. Technology Stack

The application has been build using wide spectrum of technologies. They have been used
from the development stage, through testing, ending up on production. These are the
following:

• Core Framework — fundamental part of this project is Angular with its dedicated
CLI. It consists of its own API with number of useful methods for animations, com-
piling process, dependency injection, forms, handling HTTP, routing, service workers,
testing, validators and more. This framework supports most recent major browsers as
of the time of writing this thesis [60].

• Cypress — efficient test runner for automated E2E tests, which can be used as
all-in-one platform instead of few E2E tools.

• Dependencies — external dependencies installed during development in order to
enrich the application functionalities or development experience. These can be code
quality checks, external libraries, security testing tools or UI improvements.

• Docker — software for running applications in an isolated environment (container).

• Firebase — development platform for mobile and web projects. The developed ap-
plication has been deployed to Firebase Hosting which is supported by Google Cloud
Platform (GCP)61. Other Firebase features which has been used includes: Cloud Fire-
store62, Cloud Functions for Firebase and Cloud Storage for Firebase63. These helped
to create the application in a serverless technology, Firebase Security Rules64 was
responsible for improving security.

• Git — distributed VCS widely used for source code versioning and tracking changes
of code repository. Changes are send through HTTPS or Secure Shell (SSH) to source
code repository where the project is stored.

• GitLab — source code repository which embeds Git and provides an ecosystem for
DevOps lifecycle. Contains features such CI/CD integrations, code analysis, con-
tainer registry, planning tool, project management, security, Source Code Management
(SCM) and more. It also provides a secure way to store application secrets, such as
passwords, secret API keys and other sensitive properties in a form of environmental
variables.

• Jest — efficient platform used for unit testing. At this point of time this is currently
one of the TDD/BDD frameworks which integrates with Angular seamlessly. The
reason to choose Jest is its perfectly matching construction to monolithic repositories.

61Cloud computing services offered by Google.
62Non relational (NoSQL) database for Firebase.
63Storage service offered by Google within Firebase.
64Set of security rules for Firebase databases.

42

5. IMPLEMENTATION Master of Science in Technology Thesis

• NestJS — a Node.js framework for building back-end web applications. It has been
used to set up a minimalistic back-end with security configuration.

• Nx — extension for the Angular CLI for better management of Angular-based large
projects. It comes with specific architecture which promotes clean code, consistency,
productivity and safety. This is equipped with code formatter, easier state manage-
ment, simplified data persistence, static code analysis, visualization of dependencies
in a form of a graph and more useful features helpful during development.

• RxJS — library for reactive programming which simplifies asynchronous program-
ming. Functionalities such as filtering through glossary results and subscription for a
newsletter were the use cases in this project.

• Webpack — module bundler for JavaScript. Transcompiles Angular and TypeScript
code into JavaScript. Webpack also enables to work with yet unsupported natively new
standards of ECMAScript and translate it into executable by the browsers JavaScript.
Other customizations are also possible, mainly based on self-written scripts with cor-
responding plugins.

5.3. Improving Security

There are several well known techniques to increase security in web environments. The first
one is to enable HTTPS on the domain of the web application. This common practice pro-
tects against Man-In-The-Middle (MITM) attacks65. In that case only breaking encryption
or gathering cryptographical secrets seems to be the only way for an attacker to break the
system.

However, there are still more techniques to perform a MITM attack. It applies even to
websites served over HTTPS unless user does not has installed plugins like HTTPS Ev-
erywhere66. In one of the possible scenarios an attacker could make a request to a real
website over HTTPS and forward it to the victim over unencrypted HTTP. To mitigate
this issue HTTP Strict Transport Security (HSTS) policy mechanism is used. The HSTS
header forbids the browser to make calls to a known website without Secure Socket Layer
(SSL)/TLS. It does works only for users who visited the website. In order to have HSTS
policy mechanism working for users visiting the website for the first time a preload flag is
required. By doing this a SSL/TLS stripping67 is mitigated.

Nowadays, several countermeasures are provided by default from some cloud hosting com-
panies. For example, Firebase which is being used in this research to host the application
has some of them. The CDN provided by a Firebase partner includes basic (D)DoS server
protections. A reverse proxy with a 10 MB payload size is also in place for the serverless
back-end. Cloud Functions for Firebase also have rate, resource and time limits by default.
Logging and monitoring is also provided in the administrator dashboard. On the other side,
Angular provides data sanitization for injection attacks as well as CSRF and XSS protection
on the client-side. However, there are still defense mechanisms that developers have to take
into account in the development stage.

65Type of attack in which an attacker is between two communication parties, reads and possible alter the
communication between them.

66Extensions for major browsers which serves websites over HTTPS only.
67Type of MITM attack that forces a victim’s browser to communicate over unencrypted HTTP.

43

5. IMPLEMENTATION Master of Science in Technology Thesis

5.3.1. Input Validation

Input fields from HTML need to be validated. Angular has built-in support for input
validation. It can be easily achieved what kind of input it is required from the user as
Listing 3 shows.

1 Validators.email; // Accept only e-mail pattern.

2 FileValidator.maxContentSize (20971520); // Limit size of files to 20 MB.

3 Validators.maxLength (512); // Allow maximum 512 characters.

4 Validators.minLength (2); // Require at least 2 characters.

5 Validators.pattern(’^[0 -9]*$’); // Accept only numbers.

6 Validators.required; // Mark this field as required

Listing 3: Input validators in Angular.

These rules are quite straightforward. The developer only has to decide which validator will
be applied to a particular input field. This decreases the risk compared to a manual imple-
mentation. Custom input validation implementations in a form of regular expressions are
considered to be complicated. Wrongly implemented regular expressions could compromise
the server.

5.3.2. File Upload Attack Prevention

Unfortunately, Angular does not provide validators for file upload type. The HTML side
should whitelist accepted formats like on Listing 4. This in combination to Angular’s file
upload size validators is a current solution for defining types of accepted files for upload.

1 <ngx -mat -file -input [accept]="[’.doc ’, ’.docx ’, ’.jpg ’, ’.jpeg ’, ’.pdf ’, ’.

png ’, ’.xls ’, ’.xlsx ’]" (change)="uploadFile($event)" formControlName="

fileUploader" multiple type="file">

Listing 4: Cloud Storage for Firebase security rules for file upload.

Such validation is easy to bypass. The file after all is uploaded to a cloud storage and
this is where a proper validation is required. Listing 5 shows the back-end validation. The
back-end validation cannot be omitted. Accepted files are limited to accepted formats using
Multipurpose Internet Mail Extensions (MIME)68 content types and a designated amount
of files size. In such a way unrestricted file upload is handled on front-end and back-end side
with limiting the size. Limiting file types decreases the risk of executing dangerous types of
files which might led to execution of malicious scripts on the server. Setting boundaries of
file size protects from DoS due to large file upload.

1 // Allow write files Firebase Storage , only if:

2 // 1) File is no more than 20 MB

3 // 2) Content type is in one of the following formats: .doc , .docx , .jpg , .

jpeg , .pdf , .png , .xls , .xlsx.

4 allow write: if request.resource.size <= 20 * 1024 * 1024

5 && (request.resource.contentType.matches(’application/msword ’)

6 || request.resource.contentType.matches(’application/vnd.

openxmlformats -officedocument.wordprocessingml.document ’)

7 || request.resource.contentType.matches(’image/jpg’)

8 || request.resource.contentType.matches(’image/jpeg’)

9 || request.resource.contentType.matches(’application/pdf’)

10 || request.resource.contentType.matches(’image/png’)

11 || request.resource.contentType.matches(’application/vnd.ms-excel’)

68Standard for Internet formats.

44

5. IMPLEMENTATION Master of Science in Technology Thesis

12 || request.resource.contentType.matches(’application/vnd.

openxmlformats -officedocument.spreadsheetml.sheet’))

Listing 5: Cloud Storage for Firebase file upload security rules.

5.3.3. Security Headers

An effective way to handle various of security weaknesses within JavaScript-related back-
ends is by using a dependency called Helmet . Helmet helps in a relatively easy way to modify
many HTTP headers related with security and privacy. Its initialization implies adding
protection into seven different attacks. The remaining ones have to be set up manually.
Listing 6 clearly presents the logic behind it written in NestJS.

1 import * as express from ’express ’;

2 import { Express } from ’express ’;

3 const helmet = require(’helmet ’);

4
5 const expressApp: Express = express (); // Create Express instance.

6
7 expressApp.use(helmet ()); // Enable Helmet ’s 7 default middleware protections

, i.e. dnsPrefetchControl , frameguard , hidePoweredBy , hsts , ieNoOpen ,

noSniff and xssFilter.

8
9 // Preload HTTP Strict Transport Security (HSTS).

10 expressApp.use(

11 helmet.hsts({

12 includeSubDomains: true , // Must be enabled , so "preload" will work.

13 maxAge: 31536000 , // In seconds , one year.

14 preload: true

15 })

16);

17
18 expressApp.use(helmet.permittedCrossDomainPolicies ()); // Prevent Adobe Flash

and Adobe Acrobat from loading content.

19
20 // Enforce to expect Certificate Transparency (CT) for 24 hours.

21 expressApp.use(

22 helmet.expectCt ({

23 enforce: true ,

24 maxAge: 24 * 60 * 60 // In seconds , regard it for max 24 hours.

25 })

26);

27
28 // Limit website features by implementing Feature Policy.

29 expressApp.use(

30 helmet.featurePolicy ({

31 features: {

32 fullscreen: ["’self’"],

33 payment: ["’none’"],

34 syncXhr: ["’none’"]

35 }

36 })

37);

38
39 server.use(helmet.noCache ()); // Disable client -side caching.

40 server.use(helmet.referrerPolicy ({ policy: ’same -origin ’ })); // Send Referer

header only for pages on the same origin.

Listing 6: Declaration of security headers in NestJS.

45

5. IMPLEMENTATION Master of Science in Technology Thesis

Initialization of this (line seven) implies that these following middleware will inform HTTP
headers69 how the browser should behave. The following behaviour is expected from the
browser:

• dnsPrefetchControl — disable DNS prefetching in the browsers (sets X-DNS-Prefetch-
Control to off).

• frameguard — mitigate clickjacking70 attacks (sets X-Frame-Options to SAMEO-
RIGIN).

• hidePoweredBy — hide used on the website technological stack (removes X-Powered-
By).

• hsts — enforce keeping users on HTTPS (turns on Strict-Transport-Security).

• ieNoOpen — inform Internet Explorer no to execute downloads in a client site’s
context (sets X-Download-Options to noopen).

• noSniff — prevent browsers from trying to guess (sniff) a MIME type (sets X-
Content-Type-Options to nosniff).

• xssFilter — prevent reflected XSS attack by (sets X-XSS-Protection to 1; mode=block).

However, there are still a number of headers left which can be set to increase the security:

• contentSecurityPolicy — whitelist scripts which can be loaded in an application
(sets Content-Security-Policy).

• crossdomain — prevent handling data across domains (sets X-Permitted-Cross-Domain-
Policies to none). Especially it focus on Adobe Flash and Adobe Acrobat which can
load content from other sites.

• expectCt — browser will expect Certificate Transparency (CT)71 from the requested
website (sets Expect-CT).

• featurePolicy — restrict which features the application can use (sets Feature-Policy).

• noCache — disable browser caching (modifies Cache-Control, Expires, Pragma and
Surrogate-Control).

• referrerPolicy — disable forwarding information about site origin when user moves
from one site to another (modifies Referer and Referrer-Policy). This is a privacy
enhancement rather than a security issue.

One option has not been used at all, i.e. hpkp (HTTP Public Key Pinning (HPKP)). The
new Expect-CT header is considered to be more flexible and safer [61]. Both of them mitigate
the same attack.

69However, if particular browser does not support certain header it will not be enforced.
70Tricking victim to click on certain element which attacker controls. This element might be invisible or

masked.
71Technique for auditing and monitoring identity certificates (also known as public key certificate or digital

certificate). It detects fake and malicious SSL certificates.

46

5. IMPLEMENTATION Master of Science in Technology Thesis

5.3.4. Content Security Policy

Previous listings does not include implementation of CSP. This particular security header
itself required more source code than all the others headers. Listing 7 presents CSP which
limits allowed external scripts which can be executed in the application. The short comments
inform for which integrated technology it is required, whilst the others are self-explanatory.

1 import * as express from ’express ’;

2 import { Express } from ’express ’;

3 const helmet = require(’helmet ’);

4
5 const expressApp: Express = express (); // Create Express instance.

6
7 expressApp.use(

8 helmet.contentSecurityPolicy ({

9 browserSniff: false , // Disable browser sniffing.

10 directives: {

11 baseUri: ["’self’"], // Restricts use of the "<base >" tag to origin (

without subdomains). This directive doesn’t use "default -src" as

fallback , thus by default it allows anything.

12 blockAllMixedContent: true , // Prevent loading any assets using HTTP

when the page is loaded using HTTPS.

13 childSrc: [

14 "’self’", // Default policy for valid sources for web workers and

nested browsing contexts loaded using elements such as "<frame >"

and "<iframe >": allow all content coming from origin (without

subdomains).

15 ’https :// vars.hotjar.com’ // Hotjar.

16],

17 connectSrc: [

18 "’self’", // Default policy for restricting the URLs which can be

loaded using script interfaces: allow all content coming from

origin (without subdomains).

19 ’https :// agastya -version.oswaldlabs.com’, // Agastya.

20 ’https :// firebasestorage.googleapis.com’, // Cloud Storage for

Firebase.

21 ’https :// firestore.googleapis.com’, // Cloud Firestore.

22 ’https :// platform -beta.oswaldlabs.com’, // Agastya.

23 ’https ://www.google -analytics.com’, // Universal Analytics (Google

Analytics).

24 ’https ://*. hotjar.com:*’, // Hotjar.

25 ’https ://vc.hotjar.io:*’, // Hotjar.

26 ’wss ://*. hotjar.com’ // Hotjar.

27],

28 defaultSrc: [

29 "’none’" // Default policy for fallback for the other CSP fetch

directives [Link of these: https :// developer.mozilla.org/en -US/

docs/Web/HTTP/Headers/Content -Security -Policy/default -src]:

disallows everything.

30],

31 fontSrc: [

32 "’self’", // Default policy for specifiying valid sources for fonts

loaded using "@font -face": allow all content coming from origin (

without subdomains).

33 ’https :// fonts.gstatic.com’, // Google Fonts.

34 ’https :// script.hotjar.com’ // Hotjar.

35],

36 formAction: ["’self’"], // Default policy for restricting the URLs

which can be used as the target of a form submissions from a given

context: allow all content coming from origin (without subdomains).

47

5. IMPLEMENTATION Master of Science in Technology Thesis

This directive doesn’t use "default -src" as fallback , thus by

default it allows anything.

37 frameAncestors: ["’self’"], // Default policy for specyfing valid

parents that may embed a page using "<frame >", "<iframe >", "<object

>", "<embed >", or "<applet >". This directive doesn’t use "default -

src" as fallback , thus by default it allows anything. This is

basically clickjacking protection.

38 frameSrc: [

39 "’self’", // Default policy for specyfing valid sources for nested

browsing contexts loading using elements such as "<frame >" and "<

iframe >": allow all content coming from origin (without subdomains

).

40 ’https :// agastya -version.oswaldlabs.com’, // Agastya.

41 ’https :// vars.hotjar.com’, // Hotjar.

42 ’https ://www.google.com’ // reCAPTCHA.

43],

44 imgSrc: [

45 "’self’", // Default policy for specyfing valid sources of images and

favicons: allow all content coming from origin (without

subdomains).

46 ’https ://www.google -analytics.com’, // Universal Analytics (Google

Analytics).

47 ’https ://www.googletagmanager.com’, // Google Tag Manager.

48 ’https ://www.google.com’, // reCAPTCHA.

49 ’https :// script.hotjar.com’ // Hotjar.

50],

51 manifestSrc: ["’self’"], // Default policy for specyfing which manifest

can be applied to the resource: allow all content coming from

origin (without subdomains).

52 objectSrc: ["’none’"], // Default policy for specyfing valid sources

for the "<object >", "<embed >", and "<applet >" elements. It also

influences "pluginType" by disallowing all of them. The "pluginType"

directive doesn’t use "default -src" as fallback , thus by default it

allows anything.

53 scriptSrc: [

54 "’self’", // Default policy for valid sources for JavaScript: allow

all content coming from origin (without subdomains).

55 "’unsafe -eval’", // Unsecure , but required due to Angular ’s SSR.

56 ’https :// agastya -version.oswaldlabs.com’, // Agastya.

57 ’https :// ditectrev.us15.list -manage.com’, // MailChimp.

58 ’https :// platform.oswaldlabs.com’, // Agastya.

59 ’https :// platform -beta.oswaldlabs.com’, // Agastya.

60 ’https :// script.hotjar.com’, // Hotjar.

61 ’https :// static.hotjar.com’, // Hotjar.

62 ’https ://ssl.google -analytics.com’, // Universal Analytics (Google

Analytics).

63 ’https ://www.google -analytics.com’, // Universal Analytics (Google

Analytics).

64 ’https ://www.googletagmanager.com’, // Google Tag Manager.

65 ’https ://www.google.com’, // reCAPTCHA.

66 ’https ://www.gstatic.com’ // reCAPTCHA.

67],

68 styleSrc: [

69 "’self’", // Default policy for valid sources for stylesheets: allow

all content coming from origin (without subdomains).

70 "’unsafe -inline ’", // Unsecure , but required in order to render

styles generated by Angular compiler , which on SSR are generated

as inline styles.

71 ’https :// fonts.googleapis.com’ // Google Fonts.

72],

48

5. IMPLEMENTATION Master of Science in Technology Thesis

73 upgradeInsecureRequests: true // Block loading of active/passive

content over insecure FTP/HTTP by "upgrading" the connection to

secure SFTP/HTTPS.

74 }

75 })

76);

Listing 7: CSP for developed application.

5.3.5. Others

The application has number of other preventions for explicit security improvements. Some
of them has been included in a GitLab pipeline before it is deployed. These include:

• Error handling without revealing error details to the client.

• Importing application modules from a path, thus avoiding loading using variables. It
could have originated from user input which might be harmful.

• Limit concurrent requests using Express middleware. It can slow down brute-force
attacks significantly, in practice making them useless.

• Logging behaviour of different errors and events which helps in proper monitoring.

• Principle of least privilege for database access.

• Requesting manual interaction (also known as automation prevention, i.e. reCAPTCHA72)
for expected paths of bot attacks.

• Running Node.js inside a Docker container as a non-root user which by default runs
as root.

• Prevention of CSRF attacks by adding X-XSRF-TOKEN header only if the XSRF-
TOKEN cookie was generated on the back-end.

• Static code analysis to catch code security bugs and programming mistakes in an
early stage. Embedded in a pipeline, helped to detect and eliminate over a dozen
issues. There were two exceptions from the default rules: no-non-null-assertion73 and
no-shadowed-variable74. A single mistake in the source code will cause the GitLab
pipeline to fail.

• Scanning for known vulnerabilities and eliminating them as fast as possible. During
the project development about 1,500 known vulnerabilities have been detected and
eliminated. This is an integral part of a CI pipeline. The configuration has been set
up strictly, i.e. even one low vulnerability causes a failing deployment.

• Secure cookies and sessions management. This prevents cookies from being transferred
through HTTP75, it disables cookie forgery76 and hides revealed by default in sessions
application technology.

72System to validate humans and robots.
73Non-null assertions are required within passing data for some scenarios in a compilers strict mode.
74Unit test case specific for mocking one of external dependencies.
75Even if the application is served via HTTPS it is possible.
76Forging an authentication without actually doing it.

49

5. IMPLEMENTATION Master of Science in Technology Thesis

• Storing sensitive data such as application secrets in environmental variables.

• Whitelist API keys for external services and from which domains they are allowed to
be called.

There are also different elements which implicitly improves security. These are code format-
ting, E2E tests, unit tests and following all types of programming best practices.

5.4. Clean Code

An important part of programming best practices is clean code. Good documentation,
high readability, naming conventions and proper objects grouping are examples of the core
ideas. Developers arguably spend more time on reading the code than writing code. That
is why providing a clean working environment is important. It reduces onboarding time for
new members, decreases maintenance time and simplifies debugging [62]. Strongly typed
languages like TypeScript should take advantage of its nature and use types. Examples of
bad and clean code shows Listings 8 and 9.

1 // Case 1.

2 var x;

3 x = 5;

4
5 // Case 2.

6 currentDate = new Date();

7
8 // Case 3.

9 private crscn(renderer) {

10 ico = new Mesh(new IcosahedronGeometry (40, 4), new MeshStandardMaterial ({

11 color: new Color(’#061371 ’),

12 emissive: new Color(’#3f51b5 ’),

13 transparent: true ,

14 wireframe: true

15 }));

16 this.scene.add(ico);

17 return ico;

18 }

Listing 8: Bad code in TypeScript.

1 // Case 1.

2 const usersNumber: number = 5;

3
4 // Case 2.

5 public currentDate: Date = new Date();

6
7 // Case 3.

8 public scene: Scene = new Scene(); // Create the scene.

9
10 /**

11 * @description Create scene of this animation.

12 * @param {renderer} - the renderer object to display scenes using WebGL.

13 * @returns {Mesh}

14 */

15 public createScene(renderer): Mesh {

16 const radius: number = 40;

17 const detail: number = 4;

18
19 // Create material object with properties for surfaces with highlights.

50

5. IMPLEMENTATION Master of Science in Technology Thesis

20 const material: MeshStandardMaterial = new MeshStandardMaterial ({

21 color: new Color(’#061371 ’), // Color of the material.

22 emissive: new Color(’#3f51b5 ’), // Color of emissive light of the

material.

23 transparent: true , // Make transparent bacground.

24 wireframe: true // Render geometry as wireframe.

25 });

26
27 const icosphere: Mesh = new Mesh(new IcosahedronGeometry(radius , detail),

material); // Create the icosahedron geometry.

28 this.scene.add(icosphere); // Add icosahedron geometry to the scene.

29 return icosphere;

30 }

Listing 9: Clean code in TypeScript.

These two listings represents part of the source code used in the application. Even though
the code will be working for all of these examples, there are several programming flaws.
Analysis of the source code quality is based on three cases:

• Case 1 — uninitialized variable x with the var keyword. Lack of initialization of vari-
ables for some languages causes that it contains a certain value, but it is unpredictable.
It is known to be one of the most frequent programming mistakes resulting with secu-
rity flaws. Especially, it is present in programming languages for which stack variables
are not initialized by default, such as C/C++ [63]. A good practice is to avoid it
and declare it explicitly. Another mistake which is strongly related with JavaScript is
to use a problematic keyword var. It has several problems like scoping, possibility of
re-declarations and updating as well as hoisting77. Instead, let should be considered
as a preferred way to declare variables since the time of introducing ES2015. The new
syntax later is transpiled to the executable by browsers JavaScript. Variables with
constant values should use const keyword.

• Case 2 — implicit modifiers which in TypeScript can be: private, protected and public.
They help to limit exposure of classes, functions and variables. It is crucial especially
if working with two different languages in the same project. In some languages the
default modifiers policy is different. An example could be C#, where every property
has the private modifier, whilst in TypeScript it is public. A real world scenario
includes front-end on Angular, React or Vue.js. These can use TypeScript, in Angular
it is de facto a standard, with back-end in ASP.NET Core which is using C#. Being
explicit about the modifiers solves the problem of remembering what kind of policy is in
which language. These can be avoid confusing when working with cross-technological
projects.

• Case 3 — function definition without a stated return type, poorly documented and
containing unintuitive names without proper convention. An explicit declaration with
correctly defined type which this method has to return is cleaner to understand what
to expect from this function. Secondly, in the first example it is not correctly docu-
mented, it is especially important whilst working with third party libraries. It helps
to understand what kind of behaviour it causes, good documentation can be achieved
using JSDoc markup language. Thirdly, the good code listing outsources object prop-
erties, which helps to understand the technical context. Lastly, correct names with

77JavaScript’s default behavior of moving declarations to the top.

51

5. IMPLEMENTATION Master of Science in Technology Thesis

convention is much better than shortcuts or combined words without uppercase first
letters. Conventions like lowerCamelCase are a good approach for variables which
supposed to contain more complex objects.

One of the advantages of TypeScript is having the ability to use a better code intelligence
tool due to the static type-checking. In the two listings above in the explicit source code
it can be noticed what kind of advantage it gives. Even though the code executed by
the browsers is JavaScript, TypeScript helps improving security in the development stage.
Potentially made mistakes leading to bugs due to the nature of JavaScript can be largely
eliminated using TypeScript. Positive effect of using types have been recently researched
with the conclusion that it decreases number of bugs by 15% [64]. Apart from bug-catching
abilities, strongly typed languages also simplifies maintenance of an application once the
project grows and reduces the risk of overwriting properties.
Writing clear source code also minimizes the risk of code smells which at the end affects
security of the application. Some general basic principles [62] are:

• Avoid code smells like dead code, framework core modifications, hard-coding, large
classes, long conditional statements etc.

• Classes and methods should be not too large, follow the DRY and SRP rules.

• Use easy to follow logic within application.

• Adhere to naming convention recommended by the framework or language, follow it
consistently and uniformly.

• Grouping variables by importance, name and prefixes.

• Use meaningful, i.e. intention-revealing, pronounceable names with picking up one
word per concept.

• Use proper source code comments in order to understand what each class or method
is responsible for.

• Unit tests are written and are an integral part of the codebase.

• Use verbs for function names and nouns for classes and attributes.

5.5. Unit Testing

A fundamental part of BDD is unit testing. Tests should be simple and easy to read for
non-technical people. Unit tests also have best practices to follow, one of them is the
RITEway[65]. The first four letters are abbreviations of Readable, Isolated/Integrated,
Thorough, Explicit. These names clearly indicate in what kind of manner unit tests should
be written. An application with correctly written unit tests should follow the RITEway and
BDD. High level of test coverage might improve overall security of an application. Often it
is considered to have at least 80% in order to say it is a reasonable code coverage [66]. It
reduces risk of possible software defects which could occur after deployment without unit
tests embedded in the SDLC.
Besides if this is TDD or BDD every unit test should answer five questions [67], such as:

1. What has been tested?

52

5. IMPLEMENTATION Master of Science in Technology Thesis

2. What should it do?

3. What was the actual output?

4. What was the expected output?

5. How can the test be reproduced?

Following the RITEway and having answers for these questions helps to write tests with
keeping the code to absolute minimum. Isolation and minimization is a sign of a good unit
test. The only extension to isolated unit tests are when components are based on external
dependencies. Then to test it properly, mocking78 technique has to be involved in the pro-
cess.

A core benefit of implementing unit testing is that the logic cannot be changed accidentally
which may cause existing functionality to break. Doing unit tests also helps to improve the
design of application’s architecture. However, there are also less obvious implications of it.
One of them is that tests themselves helps to structure how the application should behave.
Moreover, by implementing TDD/BDD developers should be also be more confident about
their work.

5.6. Server-Side Rendering

Usually Angular executes source code in the browser, but it is also possible to run Angular
code on the server-side using Angular Universal. This technique is called SSR, its main ben-
efit is to improve Search Engine Optimization (SEO) and enhance performance, especially
on low-powered devices. This requires from developers custom modifications, because by
default Client-Side Rendering (CSR) is used, differences between SSR and CSR are multiple
[68] and are represented by Table 6.

Step Description for CSR Description for SSR
0. Requesting a page
1. Server sends response to the browser Servers sends ready to be rendered HTML

response to the browser
2. Browser downloads the assets (content files, JavaScript)
3. Application is executed in the browser
4. Page is interactable and viewable

Table 6: Steps to load page using CSR and SSR .

The main difference is in the process of rendering page contents. In the SSR approach
the page is displayed even before it will be ready to interact. In the CSR Angular makes
the application ready, once it is clickable and interactable. This small difference makes
different results in page speed tests in favor of SSR which might be important in enterprise
applications. The SSR for SPA is currently becoming more popular and has been used.

78Creating objects that simulates behaviour of real objects.

53

5. IMPLEMENTATION Master of Science in Technology Thesis

5.7. Version Control System

Practical part of this research requires significant amount of source code to write. For this
purpose Git has been used as a VCS and a Git repository managed by GitLab79 has been
set up to simplify development. Git is currently the most popular VCS of modern software
development. Semantic commits help to review this repository on later stage. Therefore,
convention of seven main behaviours has been kept for source code of the application:

• Add: — typical commit for adding new logic into the application.

• Change: — something has been changed in the project.

• Delete: — certain piece of code has been dropped.

• Fix: — some functionality has been repaired.

• Improve: — code formatting, documentation, error handling, security or any other
improvement.

• Refactor: — part of the source code is restructured.

• Update: — at least one of application’s dependencies has been updated.

As a good practice commits are done often with small changes which helps to standardize
versioning. However, there is one more important factor of using repository hosted on Git-
Lab. This is its good integration with GitLab CI, a system for CI/CD development practice
with various of tools it provides.

Versioning of the application is achieved using so-called semantic versioning. The general
idea behind it is to keep in Git tag numbering MAJOR.MINOR.PATCH [70], where:

• MAJOR — the most influential additions, e.g. 1.X.X implies first deployable version.

• MINOR — this includes more general changes in the application.

• PATCH — a small improvement has been added.

The repository should have been configured with permissions for certain collaborators. In
such a way that users making changes will require to have the correct permissions. Making
master as a protected branch is also required and a good practice.

5.8. Deployment

The application is deployed on Firebase Hosting — service for provided by Google for
serving web content. Pipelines have been set up and synchronized with Firebase to provide
automatic deployment. There are two implemented types of hosting environments:

1. Staging80 — used for testing purposes before deployment to production.

2. Production81 — the final destination for deployment of the application.

79Available to see at https://gitlab.com/danieldanielecki/thesis_app once permission will be received,
last access: 26 August 2019.

80https://thesisapp-dev.firebaseapp.com/, last access: 26 August 2019.
81https://thesisapp-16048.firebaseapp.com/, last access: 26 August 2019.

54

5. IMPLEMENTATION Master of Science in Technology Thesis

Applications hosted on Firebase by default are equipped with: built-in protection against
(D)DoS attacks, Content Delivery Network (CDN)82, GZIP compression83, HTTP/2 sup-
port84, Nginx web server, reverse proxy85 and SSL certificate86.

Firebase provides its own CLI to deploy an application using a terminal. It also smoothly
integrates with a CI system. The code is then transpiled which is described in detail in
the next section. Webpack is responsible for minification87 and obfuscation88 of the source
code into a form of ready-to-deploy bundle. This bundle is wrapped in a GitLab container
and shipped to the GitLab pipeline. The CI system performs automatic tests and once
these are passed sends the container to a staging environment. The staging environment
is for manual tests to check if the added logic works as expected in a real environment. It
has to be tested by a developer or tester. If approved, then the application is shipped to
production by manually informing the CI system about it. The whole communication and
server content is through secure connection served over HTTPS or SSH.

5.9. Transpilation

Once the implementation part has been finished the last concept to clarify is how actually
the source code is executed. A process called transpilation is performed, this is a different
than traditional compilation. Compiler translates language from high level programming
language to its lower representation, e.g. C# to Microsoft Intermediate Language (MSIL)
or Java to Java bytecode. In the transpilation process the written source code is compiled
from one programming language into another, but with a similar level of abstraction, e.g.
CoffeeScript to JavaScript.

There are different module systems as described in the 4.1.1 Modules section. Neverthe-
less which one would be specify to work with during development, ES5 must and has been
specified as a target platform. Currently, that is the standard compatible with all major
browsers [69]. Webpack is the tool which in the following project has been used during this
research to bundle this technological stack and perform the last step before deployment to
have runnable SPA. More precisely, webpack firstly calls the TypeScript compiler, then the
Angular compiler and finally builds the bundle during the build time (using AOT). This is
how TypeScript using ES2015 modern techniques are translated from the Angular project
into JavaScript interpretable by the browser.

82System of geographically distributed proxy servers working together in order to provide fast delivery of
web content.

83Method to improve performance for serving web content faster.
84Fully multiplexed version of HTTP network protocol.
85Type of proxy server with additional layer of abstraction which forwards clients requests to appropriate

back-end server.
86Data files which cryptographically allow a secure connection between browser and web server.
87Remove unnecessary characters in order to minimize the codebase size.
88Making source code more difficult for humans to read and understand.

55

6. SECURITY ANALYSIS Master of Science in Technology Thesis

Chapter 6

6. Security Analysis

The evaluation of security of an application is an integral part of SecDevOps and SSDLC
methodologies. Security testing of the application is performed in three different ways.
With full access to the source code (SAST/white box testing), without any access to the
source code (DAST/black box testing) and with limited access to the source code (gray box
testing).

6.1. Static Application Security Testing

First of all the source code of the application developed as part of this research is inves-
tigated. Some of the techniques have been automated in a GitLab pipeline presented by
Figure 13. Thus, the summary concludes some part of the pipeline as well as manual code
review. The derived conclusions are:

• E2E tests could cover more elements of the application. One test has been excluded
from the GitLab pipeline due to an unknown incompatibility in the GitLab environ-
ment. Locally the test passed.

• Files for webpack’s browser and server logic are separated. They could have been
merged into one file, because webpack enables to have separated logic for client-side
and server-side from a single file.

• High result of coverage in unit tests does not covers all application’s logic due to
Angular’s CLI bug [71]. This bug causes that code coverage report generated by
Angular’s CLI shows executed code. Adding test cases for the logic which was not
executed gives full code coverage of certain component. One test have been excluded,
i.e. not found component due to problematic testing a Three.js89. This graphics
library interacts with DOM intensively and causes problems with the testing platform
Jest. The reason for that is Jest is using specific type of DOM, i.e. JSDOM90.

• Imports for routing have long relative paths which could have been improved by adding
Nx logic to handle this. The compiler showed this as an improvement in terms of a
code quality.

• Most possible strict compiler rules have been applied.

• No known vulnerabilities were found out of 918.296 dependencies checked.

• Old secrets have been found in the GitLab repository. These have been submitted
accidentally when changing hiding secrets strategy. However, the credentials has have
changed immediately due to the reason that they will be in the repository forever.

• Static analysis of source code has been passed with two exceptions described in the
5.3.5 Others section, i.e. no-non-null-assertion and no-shadowed-variable. Security
rules for static analysis has been applied.

89JavaScript library for 3D browser graphics.
90Vanilla JavaScript implementation of DOM, which aims to speed up execution of logic placed inside it.

56

6. SECURITY ANALYSIS Master of Science in Technology Thesis

6.2. Dynamic Application Security Testing

There are several methods to check the application’s security from a hacker’s point of view.
These include amongst others information gathering, manual testing and scanning tech-
niques. A comprehensive security analysis is presented in the following sections.

6.2.1. Information Gathering

When it comes to penetration testing the first step is gathering information about the tar-
get system. Kali Linux91 with its penetration tools has been used for this. First of all,
port scanning has been performed using nmap92. From 1.000 scanned ports, the 80 and
443 ports gave some information. Port 80 showed that allowed HTTP methods are GET,
HEAD, POST and OPTIONS. It was determined that the proxy might be redirecting re-
quests. It also detected Varnish — a caching tool. It was revealed that port 443 was served
by Nginx as a web server and it was possible to retrieve several cryptographic properties
about the SSL certificate. The type of public key used was Rivest–Shamir–Adleman (RSA)
encryption with 2048 bits which holds a valid certificate for one year. The signature algo-
rithm used was SHA256withRSAEncryption with HTTPS challenge tls-alpn. Most of the
certificate information can be also found from a Mozilla Firefox browser. The configuration
is the recommended compatibility as of the time of writing this thesis [72]. It did also find
out that HTTP/2 was used and a TCP sequence prediction difficulty with a score of 17 was
determined. According to nmap documentation [73, 74], the result 17 is hard to break and
thus considered to be secure.

The data mining tool Maltego found information about the actual network infrastructure.
It showed that the CDN was operated by Fastly Network Operations. It located ns-cloud-
c1.googledomains.com as the DNS for the domain thesisapp-16048.firebaseapp.com. Personal
data was hidden and showed only business details of Google.

Wappalyzer is a tool to discover technologies used on certain website. The front-end tech-
nologies were revealed, but not the back-end (for which Express and Node.js are used). It
also did not show information about Nginx as a web server. However, this had been already
discovered using nmap.

More investigation has been provided by Nikto. This is a scanner with in-depth analy-
sis about web servers. The interesting logs are presented on Listing 10 and shows some
potential findings:

1 + The Content -Encoding header is set to "deflate" this may mean

that the server is vulnerable to the BREACH attack.

2 + /phpEventCalendar/file_upload.php: phpEventCalendar 1.1 and

prior are vulnerable to file upload bug.

3 + /contents/extensions/asp/1: The IIS system may be vulnerable

to a DOS, see https://docs.microsoft.com/en-us/security -

updates/securitybulletins/2002/MS02-018 for details.

4 + OSVDB -4598: /members.asp?SF=%22;}alert(223344);function%20x()

{v%20=%22: Web Wiz Forums ver. 7.01 and below is vulnerable

91Distribution of Linux designed for security testing.
92Network scanner which sends packets and analyzes its responses.

57

6. SECURITY ANALYSIS Master of Science in Technology Thesis

to Cross Site Scripting (XSS)\index{Cross -Site Scripting (

XSS)}. http://www.cert.org/advisories/CA -2000-02.html.

5 + /servlet/com.unify.servletexec.UploadServlet: This servlet

allows attackers to upload files to the server.

6 + OSVDB -3233: /index.html.ee: Apache default foreign language

file found. All default files should be removed from the

web server\index{Web Server} as they may give an attacker

additional system information.

7 + OSVDB -3233: /index.html.it: Apache default foreign language

file found. All default files should be removed from the

web server\index{Web Server} as they may give an attacker

additional system information.

8 + /151.101.1.195.tar: Potentially interesting archive/cert file

found.

9 + /thesisapp -16048firebaseapp.jks: Potentially interesting

archive/cert file found.

10 + /thesisapp -16048firebaseapp.tgz: Potentially interesting

archive/cert file found.

11 + /backup.egg: Potentially interesting archive/cert file found.

12 + /thesisapp -16048.firebaseapp.egg: Potentially interesting

archive/cert file found.

13 + OSVDB -3092: /trafficlog/: This might be interesting ...

14 + OSVDB -3092: /user/: This might be interesting ...

15 + OSVDB -3092: /users/: This might be interesting ...

16 + OSVDB -3092: /webaccess.htm: This might be interesting ...

17 + OSVDB -3092: /webaccess/access -options.txt: This might be

interesting ...

18 + OSVDB -3093: /database/metacart.mdb+: This might be

interesting ... has been seen in web logs from an unknown

scanner.

19 + OSVDB -3093: /OA_JAVA/Oracle/: Oracle Applications portal

pages found.

20 + OSVDB -3093: /OA_JAVA/servlet.zip: Oracle Applications portal

pages found.

21 + OSVDB -3093: /OA_JAVA/oracle/forms/registry/Registry.dat:

Oracle Applications portal pages found.

22 + 7864 requests: 0 error(s) and 109 item(s) reported on remote

host

23 + End Time: 2019-08-17 23:02:55 (GMT0) (2676 seconds)

Listing 10: Nikto logs.

There are several potential interesting files and information about possible vulnerabilities
on the server-side. Interesting are the findings about two different web servers, i.e. Apache
and Internet Information Services (IIS). Even though the application is served by Nginx,
it looks like the Firebase infrastructure uses mixed technologies. This includes also a Java
and a PHP stack.

Network security investigation revealed that neither DNSSEC nor firewall is enabled for

58

6. SECURITY ANALYSIS Master of Science in Technology Thesis

the application.

6.2.2. Web Scanners

Another method for security scanning includes online web scanning for typical web vulner-
abilities. The application has been tested by several of these, i.e. Checkbot: SEO, Web
Speed & Security Tester93, CryptCheck94, ImmuniWeb95, Mozilla Observatory96, Pentest-
Tools97, Security Headers98, SiteCheck99, Qualys SSL Labs100. All of the scans provided
excellent results for the developed application. Table 7 presents grading score for all these
web scanners.

Name of a web scanner Score
Checkbot: SEO, Web Speed & Security Tester 92%

CryptCheck A
ImmuniWeb A

Mozilla Observatory A+
Pentest-Tools Low security risk

Security Headers A
SiteCheck Low security risk

Qualys SSL Labs A+

Table 7: Web scanners results for developed application.

One of them — Mozilla Observatory has been integrated in GitLab pipeline with a minimum
result to pass 100 out of 100. Due to some additional security configuration the score actu-
ally was above the result of 100. The general score shows Figure 14, whilst more in-depth
analysis Figure 15.

93https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/

dagohlmlhagincbfilmkadjgmdnkjinl?hl=en, last access: 27 August 2019.
94https://tls.imirhil.fr/https/thesisapp-16048.firebaseapp.com, last access: 27 Augus 2019.
95https://www.immuniweb.com/websec/?id=Oy27vLRH, last access: 26 August 2019.
96https://observatory.mozilla.org/analyze/thesisapp-16048.firebaseapp.com, last access: 29 Au-

gust 2019.
97https://pentest-tools.com/home, last access: 26 August 2019.
98https://securityheaders.com/?q=https://thesisapp-16048.firebaseapp.com, last access: 26 Au-

gust 2019.
99https://sitecheck.sucuri.net/results/https/thesisapp-16048.firebaseapp.com, last access: 26

August 2019.
100https://www.ssllabs.com/ssltest/analyze.html?d=thesisapp-16048.firebaseapp.com&s=151.101.

1.195, last access: 26 August 2019.

59

6. SECURITY ANALYSIS Master of Science in Technology Thesis

However, not all functionalities were rendered correctly causing a lack of application’s fea-
tures which for end users are essential. Thus, it could mitigate certain amount of phishing
attacks when an attacker would like to use it against a victim.

6.3. Gray Box Testing

Limited access to source code helps to investigate security of particular parts of the appli-
cation. This sometimes cannot be covered by DAST or SAST. Two testing techniques have
been found as valuable for this type of security evaluation.

6.3.1. Cross-Site Request Forgery

The most surprising finding is lack of Angular’s protecting against CSRF without creating
custom intercepters. This is an open issue in the official repository of this framework and
has been not solved yet [75]. Moreover, discussion across specialized forums gave an insights
that to handle this problem the official documentation is missing certain steps [76]. On the
other side, following these steps would imply setting httpOnly to false in cookies, which is
not recommended. In such a way cookies would be accessible not only for the web server
[77]. Thus, implementing security against CSRF would cause lack of security in cookies or
vice versa. The finding of CSRF has been confirmed by using Acunetix and OWASP ZAP
web application vulnerabilities scanners.

6.3.2. File Upload Attack

Files larger than 20 MB are not accepted as upload. However, the front-end informs the user
that combined files cannot be larger than 20 MB, whilst back-end only rejects a single file
below 20 MB. For example, uploading a five files, each 19 MB is accepted by the back-end.
But sending a form with these attachments together was not accepted. These files are still
too small to cause DoS from single file upload. Still this could be development improvement.
Files different than DOC, DOCX, JPG, JPEG, PDF, PNG, XLS or XLSX are not accepted
by both, front-end and back-end.

6.3.3. API Keys

Many secrets are hidden in the environmental variables. These includes client-side and
server-side API keys, credentials and identification data. However, the client side API keys
are visible in the HTTP headers. This clearly shows in Figure 18, where the application
took the reCAPTCHA API key from environmental variables. Because of that the only one
way to limit access when using client-side API keys is to whitelist domains on which it is
supposed to be used. The only benefit might be the fact that keeping all API keys in one
place simplifies management of external services used across the application.

63

7. CONCLUSION Master of Science in Technology Thesis

Chapter 7

7. Conclusion

The research project provided lots of valuable information about security in SPAs based
on Angular. Many techniques have been tested in order to check how to develop an Angu-
lar SPA in a secure manner. These methods can be divided in two categories: implicitly
and explicitly influencing security. Implicitly influencing security is mainly about delivering
high quality code, designing robust architecture, implementing tests or programming best
practices. Explicitly influencing security is about improving the security itself. The explicit
techniques to improve security are related with detecting compilers rules, hiding secrets, lim-
iting access to database, sensitive data and infrastructure, known vulnerabilities, requesting
manual interaction (e.g. reCAPTCHA), setting up security policies or static code analysis.
Implicit factors can influence explicit security. However, in this research the impact has
been noticed only slightly due to its medium size. For enterprise projects it can be a more
important factor. Projects with an enormous codebase can be very fragile. In these kind of
applications, the implicit factors are expected to be more influential on the security itself.

Integrating software security in the SDLC of an Angular application is done in many ways.
The continuous security approach turned out to be crucial for this, where an important
element was automation. The methods for different types of testing and security measure-
ments were automated as much as possible, which assisted in catching mistakes or security
vulnerabilities much sooner. However, the research showed that not everything can be au-
tomated. That is why manual penetration testing with different types of access to source
code should be performed.

Many penetration tools have been used to perform a security analysis. These tools in-
cludes Kali Linux tools, online scanners and a few others. The results evaluated the security
level of the application as good, however it was still doable to find something niche vulner-
abilities. It clearly shows that even if most of the tests passes with a very good results with
a proper investigation it is doable to find weaknesses. Finding them is one skill, but ex-
ploiting them is another. For these kind of sophisticated attacks there is no easy mitigation.
The same applies for vulnerabilities which has not yet been reported. There will be always
techniques known by small circle of people which can break application. Thus, security can
never be fully guaranteed.

Angular itself provides many built-in protections. However the research showed that the
security options which are enabled by the default are not sufficient. Without custom im-
plementation of security defenses such as cookies and sessions management, CSP, security
headers and CSRF applications based on Angular should be considered unsecure. The SSR
implementation for this framework is far from desired in terms of security. Enforcing by
design unsafe-eval and unsafe-inline effectively weakens carefully implemented CSP. Mu-
tual exclusion of cookies security and protection against CSRF should be improved as well.
Findings by Skipfish showed niche attack vector which are not easy to mitigate. It clearly
shows wide spectrum of possible attacks and how difficult is to build security against it.
The framework itself provides a good development environment to develop scalable SPAs,
but for the security part there is still a lot to improve which has been shown in the research.

65

REFERENCES Master of Science in Technology Thesis

References

[1] Tim Berners-Lee, Information Management: A Proposal, CERN, Switzerland, March
1989.

[2] Ben Adida, Helios: Web-based Open-Audit Voting, Harvard University, 17th USENIX
Security Symposium, USENIX Association, pp. 335-348, San Jose, United States, 2008.

[3] OWASP, OWASP Top 10 — 2013, The Ten Most Critical Web Application Security
Risks, The OWASP Foundation, 2013.

[4] OWASP, OWASP Top 10 — 2017, The Ten Most Critical Web Application Security
Risks, The OWASP Foundation, 2017.

[5] Mohamed Almorsy, John Grundy, Amani S. Ibrahim, Automated Software Architecture
Security Risk Analysis using Formalized Signatures, Swinburne University of Technology,
ICSE 2013, pp. 662-671, San Francisco, United States, 2013.

[6] Nenad Medvidovic, Richard N. Taylor, Software Architecture: Foundations, Theory and
Practice, ICSE’10, pp. 471-472, Cape Town, South Africa, 2010.

[7] IBM, How service-oriented architecture (SOA) impacts your IT infrastructure, January
2008.

[8] David Sprott, Business Flexibility Through SOA, CBDI Forum Limited, 2005.

[9] Fortune, Facebook-Cambridge Analytica data breach, https://www.bbc.com/news/

topics/c81zyn0888lt/facebook-cambridge-analytica-data-breach, last access:
10 January 2019.

[10] Forbes, Marriott Breach Exposes Far More Than Just Data,
https://www.forbes.com/sites/davidvolodzko/2018/12/04/

marriott-breach-exposes-far-more-than-just-data/, last access: 10 January
2019.

[11] BBC, Uber Data Breach Exposed Personal Information of 20 Million Users, http:

//fortune.com/2018/04/12/uber-data-breach-security/, last access: 10 January
2019.

[12] Techopedia, Hacking Activities Increase Along with
Cryptocurrency Pricing, https://www.techopedia.com/

hacking-activities-increase-along-with-cryptocurrency-pricing/2/33174,
last access: 10 January 2019.

[13] European Parliament and of the Council, Regulation (EU) 2016/679, Official Journal
of the European Union, April 2016.

[14] Varonis, 60 Must-Know Cybersecurity Statistics for 2019, https://www.varonis.com/
blog/cybersecurity-statistics/, last access: 10 January 2019.

[15] Gary R. McGraw, Building Security In, Addison-Wesley, 2006.

[16] PayPal, PayPal SOAP API Basics, https://developer.paypal.com/docs/classic/
api/PayPalSOAPAPIArchitecture/, last access: 14 January 2019.

66

REFERENCES Master of Science in Technology Thesis

[17] WordPress, REST API Handbook, https://developer.wordpress.org/rest-api/,
last access: 14 January 2019.

[18] Microsoft, JSON parsing 10x faster than XML parsing, https:

//blogs.msdn.microsoft.com/sqlserverstorageengine/2017/11/13/

json-parsing-10x-faster-than-xml-parsing/, last access: 3 June 2019.

[19] OWASP, REST Security Cheat Sheet, https://www.owasp.org/index.php/REST_

Security_Cheat_Sheet, last access: 14 January 2019.

[20] F-Secure Labs, Vulnerabilities, https://www.f-secure.com/en/web/labs_global/

vulnerabilities, last access: 31 January 2019.

[21] Bernd Grobauer, Elmar Stöcker, Tobias Walloschek, Understanding Cloud Computing
Vulnerabilities, Siemens, IEEE Security & Privacy, pp. 50-57, March-April 2011.

[22] NIST, National Vulnerability Database, https://nvd.nist.gov/vuln, last access: 17
January 2019.

[23] CVE, Publicly known Cybersecurity Vulnerabilities, https://cve.mitre.org/index.
html, last access: 17 January 2019.

[24] Thomas S. Beekman, Auditing Information Security in Mobile Device-enabled Infras-
tructure, Erasmus School of Accounting & Assurance Rotterdam, Leiderdorp, Nether-
lands, 3 October 2016.

[25] OWASP, OWASP Proactive Controls, https://www.owasp.org/index.php/OWASP_

Proactive_Controls#tab=OWASP_Proactive_Controls_2016, last access: 10 January
2019.

[26] Stack Overflow, Developer Survey Results 2018, https://insights.stackoverflow.
com/survey/2018#most-popular-technologies?utm_source=codecademyblog, last
access: 18 January 2018.

[27] Foundeo Inc., Content Security Policy Reference, https://

content-security-policy.com/, last access: 8 January 2019.

[28] Google Developers, Content Security Policy, https://developers.google.com/web/
fundamentals/security/csp/, last access: 8 January 2019.

[29] OWASP, Cross-Site Request Forgery (CSRF), https://www.owasp.org/index.php/
Cross-Site_Request_Forgery_(CSRF), last access: 8 January 2019.

[30] OWASP, Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet, https:

//www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_

Cheat_Sheet, last access: 8 January 2019.

[31] Adam Barth, Collin Jackson, John C. Mitchell, Robust Defenses for Cross-Site Request
Forgery, Stanford University, Alexandria, United States, 2008.

[32] Google, Angular — Security, https://angular.io/guide/security, last access: 9
January 2019.

67

REFERENCES Master of Science in Technology Thesis

[33] Can I use..., Cross-Origin Resource Sharing, https://caniuse.com/#search=cors,
last access: 20 February 2019.

[34] W3Schools, JavaScript Best Practices, https://www.w3schools.com/js/js_best_

practices.asp, Refsnes Data, last access: 20 December 2018.

[35] Microsoft, Do’s and Don’ts, https://www.typescriptlang.org/docs/handbook/

declaration-files/do-s-and-don-ts.html, last access: 21 December 2018.

[36] Google, Angular — Style Guide, https://angular.io/guide/styleguide, last access:
22 December 2018.

[37] Envato Tuts+, Top 15+ Best Practices for Writing Su-
per Readable Code, https://code.tutsplus.com/tutorials/

top-15-best-practices-for-writing-super-readable-code--net-8118, last
access: 20 February 2019.

[38] Yuanfang Cai, Ben Hallen, William G. Griswold, Kevin J. Sullivan, The Structure
and Value of Modularity in Software Design, ACM 2001, pp. 99-108, Vienna, Austria,
September 2001.

[39] Standard ECMA-262, ECMAScript 2015 Language Specification, Sections: 15.2.2 Im-
ports and 15.2.3 Exports, Ecma International, Geneva, Switzerland, June 2015.

[40] Microsoft, Compiler Options TypeScript, https://www.typescriptlang.org/docs/

handbook/compiler-options.html, last access: 5 March 2019.

[41] Auth0, JavaScript Module Systems Showdown: CommonJS vs AMD vs ES2015,
https://auth0.com/blog/javascript-module-systems-showdown/, last access: 29
May 2019.

[42] Victor Savkin, Managing State in Angular Applications, https://blog.nrwl.io/

managing-state-in-angular-applications-22b75ef5625f, last access: 8 August
2019.

[43] The npm Blog, Details about the event-stream incident, https://blog.npmjs.org/

post/180565383195/details-about-the-event-stream-incident, last access: 17
January 2019.

[44] BleepingComputer.com, JavaScript Packages Caught Stealing Environ-
ment Variables, https://www.bleepingcomputer.com/news/security/

javascript-packages-caught-stealing-environment-variables/, last access:
31 May 2019.

[45] ESLint, Postmortem for Malicious Packages Published on July 12th, 2018, https:

//eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes, last
access: 31 May 2019.

[46] The npm Blog, Reported malicious module: getcookies, https://blog.npmjs.org/

post/173526807575/reported-malicious-module-getcookies, last access: 31 May
2019.

68

REFERENCES Master of Science in Technology Thesis

[47] Jurgen Cito, Harald C. Gall, Philipp Leitner, Gerald Schermann, John Erik Wittern,
Sali Zumberi, An Empirical Analysis of the Docker Container Ecosystem on GitHub,
2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pp. 323-333, Buenos Aires, Argentina, 20-21 May 2017.

[48] Emily Freeman, DevOps For Dummies, John Wiley & Sons Inc., 2019.

[49] Gary McGraw, Bruce Potter, Software Security Testing, IEEE Security & Privacy, pp.
81-85, September-October 2004.

[50] Synopsys, SAST vs. DAST: What’s the best method for application se-
curity testing?, https://www.synopsys.com/blogs/software-security/

sast-vs-dast-difference/, last access: 8 August 2019.

[51] Ihab Mohamed Abdelwahab, Nagy Ramadan Darwish, A Security Testing Framework
for Scrum based Projects, IJCA, pp. 12-17, March 2016.

[52] Tomas Klima, Martin Tomanek, Penetration Testing in Agile Software Development
Projects, IJCIS, pp. 1-7, March 2015.

[53] Lianping Chen, Continuous delivery: Huge benefits, but challenges too, IEEE Software,
pp. 50-54, March/April 2015.

[54] Kent Beck, Mitchell Douglas, Michael Gentili, Tony Savor, Michael Stumm, Laurie
Williams, Continuous Deployment at Facebook and OANDA, ICSE’16 Companion, pp.
21-30, Austin, United States, 14-22 May 2016.

[55] Muhammad Ali Babara, Mojtaba Shahina, Liming Zhub, Continuous Integration, De-
livery and Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices, IEEE, pp. 1-32, 2016.

[56] Muhammad Ali Babar, Adam Johannes Raf, Mojtaba Shahin, Faheem Ullah, Man-
sooreh Zahedi, Security Support in Continuous Deployment Pipeline, 2017.

[57] Robert C. Martin, The Truth about BDD, https://sites.google.com/site/

unclebobconsultingllc/the-truth-about-bdd, last access: 8 August 2019.

[58] Eduardo Fernandez-Buglioni, Security Patterns in Practice: Designing Secure Archi-
tectures Using Software Patterns, John Wiley & Sons Inc., 2013.

[59] World Wide Web Consortium, Accessible Rich Internet Applications (WAI-ARIA) 1.1,
W3C Recommendation, December 2017.

[60] Google, Angular — Browser support, https://angular.io/guide/browser-support,
last access: 4 March 2019.

[61] Threatpost, Google to Ditch Public Key Pinning in Chrome, https://threatpost.

com/google-to-ditch-public-key-pinning-in-chrome/128679/, last access: 8 Au-
gust 2019.

[62] Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Prentice
Hall, 2009.

69

REFERENCES Master of Science in Technology Thesis

[63] Common Weakness Enumeration, CWE-457: Use of Uninitialized Variable, https:

//cwe.mitre.org/data/definitions/457.html, last access: 19 August 2019.

[64] Earl T. Barr, Christian Bird, Zheng Gao, To Type or Not to Type: Quantifying De-
tectable Bugs in JavaScript, IEEE, 2017.

[65] Eric Elliott, RITEway, https://github.com/ericelliott/riteway, last access: 12
March 2019.

[66] Yong Woo Kim, Efficient use of code coverage in large-scale software development,
CASCON ’03, pp. 145-155, Toronto, Canada, 6-9 October 2003.

[67] Eric Elliott, 5 Questions Every Unit Test Must Answer, https://medium.com/

javascript-scene/what-every-unit-test-needs-f6cd34d9836d, last access: 12
March 2019.

[68] Alex Grigoryan, The Benefits of Server Side Rendering
Over Client Side Rendering, https://medium.com/walmartlabs/

the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8,
last access: 26 August 2019.

[69] Kangax, ECMAScript 5 compatibility table, http://kangax.github.io/

compat-table/es5/, last access: 4 March 2019.

[70] OSGi Alliance, Semantic Versioning, 6 May 2010.

[71] Jared Youtsey, Angular Unit Testing Code-Coverage Lies, https://medium.com/

ngconf/angular-unit-testing-code-coverage-lies-603c6c85f801, last access: 29
August 2019.

[72] Mozilla, Security/Server Side TLS, https://wiki.mozilla.org/Security/Server_
Side_TLS, last access: 29 August 2019.

[73] Nmap: the Network Mapper - Free Security Scanner, Usage and Examples, https:

//nmap.org/book/osdetect-usage.html, last access: 29 August 2019.

[74] Nmap: the Network Mapper - Free Security Scanner, GitHub
source code repository, https://github.com/nmap/nmap/blob/

ac2e140a1483f2c539e71c1aba354d31c8952fc4/osscan2.cc#L410, last access: 29
August 2019.

[75] Angular - GitHub, GitHub source code repository open issue: HttpClient does not set
X-XSRF-Token on Http Post, https://github.com/angular/angular/issues/20511,
last access: 29 August 2019.

[76] Stack Overflow, Angular 6 does not add X-XSRF-TOKEN header
to http request, https://stackoverflow.com/questions/50510998/

angular-6-does-not-add-x-xsrf-token-header-to-http-request/50511663,
last access: 29 August 2019.

[77] CSRF token middleware, GitHub source code repository: cookie documentation, https:
//github.com/expressjs/csurf#cookie, last access: 29 August 2019.

70

Index

A
Acunetix, 63
Address Resolution Protocol (ARP), 11
Agastya, 41
Agile, 4, 6, 14, 15, 26, 39
Ahead-of-Time (AoT), 20, 55
Akita, 32
AMD, 30
Angular, 1–4, 7, 8, 17, 19–21, 23–32,

34–37, 40, 42–44, 51, 53, 55, 60,
63–65

Command Line Interface (CLI), 20,
40, 42, 43, 56

Flex Layout, 41
Ivy, 20

AngularJS, 19, 20
Apache, 58

Cordova, 18
Killer, 62

Apollo, 32
Application Programming Interface

(API), 11–13, 20, 21, 23, 41, 42,
61

key, 12, 13, 40, 42, 50, 63, 64
ASP.NET Core, 51
Atomicity, Consistency, Isolation,

Durability (ACID) compliance,
12

AVA, 26

B
Back-end, 1, 17, 21–23, 28, 29, 41, 43–45,

49, 51, 55, 57, 63
Bash, 18
Behavior-Driven Development (BDD), 3,

8, 27, 40, 42, 52, 53
Bivariant parameter, 35
Botnet, 13
Brute-force, 49

C
C, 18, 51
C++, 18, 51
C#, 17, 18, 51, 55
Cascading Style Sheets (CSS), 1, 18, 25,

27, 41

anti-patterns, 31
Flexbox Layout, 41
Grid Layout, 41

Certificate Transparency (CT), 46
Chai, 26
Checkbot: SEO, Web Speed & Security

Tester, 59
Clean code, 4, 21, 25, 41, 43, 50, 51
Clickjacking, 46
Client-Side Rendering (CSR), 53
Closure Compiler, 36
Code Coverage, 27, 38, 52, 56
CoffeeScript, 55
Common Vulnerabilities and Exposures

(CVE), 13
CommonJS, 30
Containerization, 32, 33
Content Delivery Network (CDN), 43,

55, 57
Content Security Policy (CSP), 20–22,

38, 47, 60, 61, 64, 65
Continuous Delivery (CD), 3, 38, 39, 42,

54
Continuous Deployment (CD or CDE),

39
Continuous Integration (CI), 3, 37–40,

42, 54, 55
Continuous Security, 32, 39, 65
Cookies, 22, 23, 49, 63, 65

forgery, 49
Countermeasures, 13, 43
Cross-Origin Resource Sharing (CORS),

12, 20, 23
Cross-Site Request Forgery (CSRF), 11,

19, 20, 22, 23, 43, 49, 63–65
Cross-Site Script Inclusion (XSSI), 20, 23
Cross-Site Scripting (XSS), 11, 13,

19–21, 38, 43, 46
CryptCheck, 59
Cryptography, 12, 13, 16, 23, 36, 43, 55,

57
Cucumber, 26
Cyber

security, i, 1, 4, 9
Cybercrime, 4, 9, 10, 41, 46

74

INDEX Master of Science in Technology Thesis

Cypress, 26, 42

D
Data Breach, 13
Denial of Service (DoS), 36, 43, 44, 55,

61, 63
Dependencies, 2, 3, 13, 20, 21, 27, 28, 33,

34, 39, 41–43, 45, 46, 49, 53, 54,
56

Dependency injection, 42
DevOps, 15, 16, 42
DevOpsSec, 15, 16
DevSecOps, 15, 16
Distributed Denial of Service (DDoS),

36, 43, 55
Docker, 33, 42, 49

container, 33, 39, 42, 49, 55
image, 33

Document Object Model (DOM), 18, 21,
56

Domain Name System (DNS), 11, 46, 57
spoofing, 23

Domain Name System Security
Extensions (DNSSEC), 23, 58,
64

Don’t Repeat Yourself (DRY), 3, 9, 25,
26, 28, 31, 41, 52

E
ECMA TC39, 30
ECMAScript, 18, 43
Environmental Variable, 40, 42, 50, 63,

64
Error Handling, 12, 38, 49, 54
ES2015, 30, 51, 55
ES3, 30
ES5, 30, 55
ES6, 30
ESNext, 30
Ethernet, 11
Express, 17, 57

middleware, 49
eXtensible Markup Language (XML), 11,

12

F
File Transfer Protocol (FTP), 11
File Upload Attack, 63

prevention, 44

Firebase, 42, 43, 54, 55
Cloud Firestore, 42
Cloud Functions for Firebase, 28, 29,

42, 43
Cloud Storage for Firebase, 42, 44
Command Line Interface (CLI), 55
domain, 64
hosting, 42, 54, 64
infrastructure, 58, 64

Firewall, 58, 64
rules, 13

Framework, 2, 3, 8, 14, 19–21, 25, 27, 28,
31, 38–40, 42, 43, 52, 63, 65

Front-end, 1–3, 6, 17, 19, 20, 23, 28,
30–32, 36, 41, 44, 51, 57, 63

Fuzzing, 15, 39, 61

G
Git, 3, 39, 42, 54
GitLab, 3, 39, 54, 56

container, 55
pipeline, 33, 37–40, 49, 54–56, 59

Go, 17
Google

Analytics, 41
Chrome, 3
Tag Manager, 41
Translate, 41

Google Cloud Platform (GCP), 42
GZIP compression, 55

H
Hacking, 3, 10, 13, 32, 36
Helmet, 45
Hotjar, 41
HTTP Strict Transport Security (HSTS)

header, 43
policy mechanism, 43

HyperText Markup Language (HTML),
2, 18, 21, 22, 25, 31, 41, 44

Hypertext Transfer Protocol (HTTP), 2,
4, 11, 12, 20, 22, 23, 30, 42, 43,
49, 62

DELETE request, 4
GET request, 4, 13, 57, 62
HEAD request, 4, 57
header, 12, 13, 22, 23, 45, 46, 55, 57,

62–64

75

INDEX Master of Science in Technology Thesis

HTTP/2, 55, 57
OPTIONS request, 57
PATCH request, 4
POST request, 4, 13, 22, 23, 57
Public Key Pinning (HPKP), 46
PUT request, 4, 13
request, 13
response, 23

Hypertext Transfer Protocol Secure
(HTTPS), 11, 12, 42, 43, 46, 49,
55

challenge, 57
Everywhere, 43

I
ImmuniWeb, 59
Immutability, 33
Incompatibility, 34
Infrastructure as a Service (IaaS), 13
Inheritance, 27, 31, 34, 35
Interactive Application Security Testing

(IAST), 38, 39
Internet Control Message Protocol

(ICMP), 11
Internet Explorer, 46
Internet Information Services (IIS), 58
Internet Message Access Protocol

(IMAP), 11
Internet Protocol (IP), 11
Internet Protocol Suite (TCP/IP), 11
Ionic, 18
Isolation, 21, 27, 32, 33, 40, 42, 53

J
Jasmine, 26
Java, 17, 18, 55, 58
Java bytecode, 55
JavaScript, 1, 2, 17–20, 22–24, 26, 27, 30,

32, 35, 36, 38, 43, 51–53, 55, 56
JavaScript Object Notation (JSON), 11,

12, 22, 23, 34
JSON Web Tokens (JWT), 12

Jest, 26, 30, 34, 42, 56
jQuery, 19
JSDoc, 51
JSDOM, 56

L
Linux, 33, 57

Kali, 57, 65

M
Maltego, 57
Malware, 10, 14, 36
Man-In-The-Middle (MITM)

attack, 43
Medium Access Control (MAC), 11
Microsoft Edge, 3
Microsoft Intermediate Language

(MSIL), 55
Middleware, 5, 46
Mocha, 26
Modularity, 1, 5, 8, 29
MongoDB, 17
MongoDB, Express, Angular, Node.js

(MEAN) stack, 17
Mozilla

Firefox, 3, 57
Observatory, 59, 60

Multi-page applications (MPA), 1, 17
Multipurpose Internet Mail Extensions

(MIME), 44, 46

N
NestJS, 43, 45
Nginx, 55, 57, 58
NgRx, 20, 32
NGXS, 32
Nikto, 57
Nmap, 57
Node.js, 1, 17, 30, 43, 49, 57
Nx, 34, 43, 56

O
Obfuscation, 55
Opera, 3

P
Pentest-Tools, 59
Phishing, 14, 62, 63
PHP, 18, 58
Platform as a Service (PaaS), 13
Portability, 9, 33
Programming Best Practices, 1–3, 16, 24,

26, 41, 50
Progressive Web Application (PWA), 18,

41
Protractor, 26
Python, 18

76

INDEX Master of Science in Technology Thesis

Q
Qualys SSL Labs, 59

R
R-U-Dead-Yet, 62
React, 3, 17, 19, 51
reCAPTCHA, 49, 62–65
REpresentational State Transfer

(REST), 4, 6, 11, 12, 28, 32
RESTful, 4, 11

RESTful Web Services (RWS), 4
RequireJS, 30
Responsive Web Design (RWD), 41
Reverse Proxy, 43, 55
Rivest–Shamir–Adleman (RSA), 57
Rootkit, 14
Routing, 17, 28, 30, 41, 42, 56
Ruby, 18
Ruby on Rails, 17
Runtime Application Self-Protection

(RASP), 38, 39
RxJS, 19, 32, 43

S
Safari, 3
Scalability, 5, 6, 33
Scalable Vector Graphics (SVG), 38
Scrum, 39
Search Engine Optimization (SEO), 53
SecDevOps, 1, 15, 16, 28, 41, 56
Secure Shell (SSH), 42, 55
Secure Socket Layer (SSL), 43, 46, 55, 57
Secure Software Development Life Cycle

(SSDLC), 1, 2, 14–16, 27, 36,
39, 41, 56

Security
analysis, 1, 2, 14, 56, 57, 60, 65
first approach, 2, 16
header, 13, 45, 47, 65
Headers, 59
improving, 16, 29, 42, 43, 52
misconfiguration, 11, 36
risks, 1–4, 11, 13, 20, 22, 27, 28, 32,

39, 41
testing, 2, 26, 27, 32, 36, 38, 39, 42,

56, 57
web, 11

Separation of Concerns (SoC), 9, 28, 30,
31

Server-Side Rendering (SSR), 28, 29, 53,
60, 64, 65

Serverless, 28, 42, 43
Service Worker, 41, 42
Simple Object Access Protocol (SOAP),

6, 11, 12
Single Responsibility Principle (SRP),

25, 52
Single-Page Application (SPA), 1–4, 17,

19, 20, 27, 28, 30, 53, 55, 65
SiteCheck, 59
Skipfish, 61, 64, 65
SLOW BODY, 62
SLOW HEADERS, 62
SLOW READ, 62
SlowHTTPTest, 61
Slowloris, 62
Software

architecture, 4, 7, 28
client-server, 4
component-based, 4, 8, 9, 20, 40
Model-View-Controller (MVC), 4,

6, 7, 20
Model-View-ViewModel

(MVVM), 4, 7, 8, 20
multitier, 4–7
Service-Oriented Architecture

(SOA), 1, 4, 6
craftmanship, 1, 11
development, i, 1, 4, 6, 14, 39, 54
testing

black box, 26, 38, 56
Dynamic Application Security

Testing (DAST), 38, 39, 56, 57,
63, 64

End-to-End (E2E), 3, 26–28, 34,
42, 50, 56

gray box, 56
mutation, 15, 39
penetration, 1, 3, 10, 27, 57, 61
Static Application Security

Testing (SAST), 38, 39, 56, 63,
64

stress, 61
unit, 21, 26, 27, 34, 40, 42, 49, 50,

52, 53, 56
white box, 26, 38, 56

Software as a Service (SaaS), 13

77

INDEX Master of Science in Technology Thesis

Software Development Life Cycle
(SDLC), 1, 2, 14–16, 28, 38, 40,
52, 65

Spam, 14
Spyware, 14
Static Code Analysis, 3, 16, 43, 49, 65
Structured Query Language (SQL), 18,

26
non SQL (NoSQL), 42

T
Tape, 26
Test-Driven Development (TDD), 8, 26,

27, 40, 42, 52, 53
The Open Web Application Security

Project (OWASP), 3, 11, 12, 14,
16, 22

ZAP, 63
Threat, 4, 13, 16
Three.js, 56
Transmission Control Protocol (TCP),

11, 57
Transpilation, 19, 34, 43, 51, 55
Transport Layer Security (TLS), 22, 43
Trojan horse, 14
Tuple, 19
TypeScript, 2, 18–20, 24, 25, 34, 36, 43,

50–52, 55

U
UMD, 30
Underscore.js, 19
User Datagram Protocol (UDP), 11
User Experience (UX), 2, 8, 17, 40, 41
User Interface (UI), 2, 8, 28, 30–32, 42

V
Validation, 6, 11–14, 20, 37, 42, 44, 49,

64
back-end, 44
file upload, 44
input, 12, 14, 37, 41, 44

Varnish, 57
Version Control System (VCS), 3, 42, 54
Virtualization, 32, 33
Virus, 14
Vue.js, 3, 17, 19, 51
Vulnerabilities, 13, 16, 19–23, 36, 38, 39,

49, 58, 59, 65
Known Vulnerabilities, 3, 11, 36, 49,

56, 65

W
Wappalyzer, 57
Web Accessibility Initiative’s Accessible

Rich Internet Applications
specification (WAI-ARIA), 41

Web Application, 1, 2, 4, 5, 11–14,
17–22, 27, 28, 32, 37, 41, 43

Web Server, 4, 17, 22, 55, 57, 58, 62
webpack, 19, 43, 55, 56
Windows, 33
WordPress, 12

X
XML External Entities (XXE), 11

Y
YAML Ain’t Markup Language (YAML),

11

78

	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Problem
	Goal
	Methodology
	Scope
	Thesis Structure

	Architecture and Security
	Software Architecture
	Client-Server
	Multitier architecture
	Service-Oriented Architecture
	Model-View-Controller
	Model-View-ViewModel
	Component-Based Architecture

	Software Security
	Risks
	Vulnerabilities
	Threats
	Control
	Secure Software Development Life Cycle
	SecDevOps

	Single-Page Applications
	Web Applications
	JavaScript
	TypeScript

	Frameworks
	Angular
	Security
	Programming Best Practices
	Testing

	Workflow

	Design
	Application Architecture
	Modules
	Components
	State Management

	Application Security
	Containerization
	Compilers Rules
	Secure Development
	Security Testing
	Continuous Security

	Behavior-Driven Development

	Implementation
	Functionalities
	Technology Stack
	Improving Security
	Input Validation
	File Upload Attack Prevention
	Security Headers
	Content Security Policy
	Others

	Clean Code
	Unit Testing
	Server-Side Rendering
	Version Control System
	Deployment
	Transpilation

	Security Analysis
	Static Application Security Testing
	Dynamic Application Security Testing
	Information Gathering
	Web Scanners
	Skipfish
	Stress Testing
	Others

	Gray Box Testing
	Cross-Site Request Forgery
	File Upload Attack
	API Keys

	Results

	Conclusion
	References
	Appendices
	UI Design Elements
	Index

