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Abstract 

ABSTRACT 

Eva-Maria Birkman  

Epidermal growth factor receptor and other tissue biomarkers in gastrointestinal cancers 

University of Turku, Faculty of Medicine, Institute of Biomedicine, Department of Pathology, 

Turku Doctoral Programme of Molecular Medicine  

Annales Universitatis Turkuensis, Medica-Odontologica, Turku, 2019 

Personalised medicine plays an increasing role in the treatment of cancer. New therapeutic 
molecules are being developed, but their compatibility for each patient has to be tested before 
starting the treatment by examining the appropriate tissue biomarkers expressed in the tumour. 
These biomarkers can be utilised not only in treatment selection but also in predicting treatment 
efficacy and patient survival. They can also be used to classify tumours into specific molecular 
subtypes that have distinct characteristics related to tumour behaviour, response to cancer 
treatments and prognosis of the patients. In order to implement these classifications in clinical 
practice, instead of time-consuming sequencing-based techniques, the methods have to be simple 
enough and easy to interpret. 

Gastrointestinal cancers are among the most prevalent malignancies and often lead to death. Mono-
clonal antibodies against the epidermal growth factor receptor (EGFR) can be used in the treatment 
of RAS wild-type metastatic colorectal cancer. It has been shown that in addition to RAS mutation 
testing, determining the EGFR gene copy number (GCN) of the tumours can aid in selecting the 
patients likely to benefit from the antibody treatment. In oesophagogastric cancer, EGFR GCN has 
not yet been shown to have a predictive role, although the overexpression of HER2, which belongs 
to the same receptor family as EGFR, is used as a biomarker to predict response to anti-HER2 
antibody treatment. In this thesis, the prevalence of EGFR amplification was observed to be at a 
similar level with the prevalence of HER2 amplification specifically among the intestinal-type 
oesophagogastric adenocarcinomas from 220 patients. This implies that it might be useful to 
examine whether EGFR GCN analysis could function as a biomarker predicting anti-EGFR 
treatment response in the intestinal-type tumours. In addition, in this thesis, tissue microarray was 
used to detect the different molecular subtypes of oesophagogastric cancers from 244 patients by 
staining methods applicable to clinical practice. 

Comparative studies detecting EGFR GCN in primary colorectal tumours and their metastases are 
scarce. In this thesis, corresponding primary and metastatic tumours from 80 patients were 
examined. EGFR GCN was observed to decrease between the primary and metastatic tumours 
during anti-EGFR treatment but to remain stable or even increase among patients not treated with 
anti-EGFR antibodies. This EGFR GCN change may be relevant regarding the clinical response to 
anti-EGFR treatment. 

Preoperative chemoradiotherapy can be used in the treatment of rectal cancer patients to enable a 
complete resection of the tumour or reduce the risk of local recurrence. However, treatment 
response among patients is variable. Thus, a suitable biomarker could be helpful in predicting 
response or stratifying patients into separate treatment groups according to their prognosis. In this 
thesis, CIP2A expression was examined in rectal cancer tissue samples from 210 patients. Low 
CIP2A expression level was observed to associate with a better response among patients treated 
with long-course chemoradiotherapy. Affirming results were obtained in cell culture studies, where 
the suppression of CIP2A expression was observed to render the cells more sensitive to irradiation 
than the cells with normal CIP2A expression. 

Keywords: gastric cancer, colorectal cancer, EGFR, in situ hybridisation, molecular classification, 
tissue microarray  



Tiivistelmä 

TIIVISTELMÄ 

Eva-Maria Birkman  

Epidermaalinen kasvutekijäreseptori ja muita kudosbiomarkkereita ruoansulatuskanavan 

syövissä 

Turun yliopisto, Lääketieteellinen tiedekunta, Biolääketieteen laitos, Patologia, Molekyylilääketieteen 

tohtoriohjelma 

Annales Universitatis Turkuensis, Medica-Odontologica, Turku, 2019 

Yksilöllistetty lääketiede on yhä merkittävämmässä osassa myös syöpätautien hoidossa. Syövän 
hoitoon kehitetään jatkuvasti uusia lääkemolekyylejä, joiden soveltuvuus kullekin potilaalle on 
ennen hoidon aloitusta selvitettävä kasvaimen ilmentämien molekulaaristen biomarkkereiden avulla. 
Biomarkkereita voidaan käyttää paitsi hoitojen valitsemisen apuna niin myös syövän käyttäytymisen 
ja potilaiden ennusteen arvioimiseen. Biomarkkereiden avulla tietty syöpätyyppi voidaan myös 
luokitella molekulaarisiin alatyyppeihin, joilla on toisistaan poikkeavia kasvaimen käyttäytymiseen, 
ennusteeseen ja hoitovasteisiin liittyviä ominaisuuksia. Molekulaaristen luokittelun käytännön 
soveltamiseen tarvitaan kuitenkin riittävän yksinkertaisia ja helposti tulkittavissa olevia menetelmiä 
aikaa vievien sekvennointitutkimusten sijaan.  

Ruoansulatuskanavan syövät ovat yleisimpiä pahanlaatuisia kasvaimia ja johtavat usein kuolemaan. 
Levinneen suolistosyövän hoidossa voidaan käyttää epidermaaliseen kasvutekijäreseptoriin (EGFR) 
kohdistuvaa vasta-ainehoitoa, mikäli kasvaimessa ei ole osoitettavissa Ras-geenimutaatiota. 
Aikaisemmin on todettu, että Ras-geenitestin ohella EGFR:n geenikopiomäärän selvittämisen avulla 
voidaan valikoida pelkkää geenitestiä paremmin hoidosta todennäköisesti hyötyvät potilaat. Maha- 
ja ruokatorvisyövässä suurentuneen EGFR:n geenikopiomäärän ennusteellista merkitystä ei 
kuitenkaan ole vielä pystytty osoittamaan, vaikka samaan reseptoriperheeseen kuuluvan HER2:n 
geenimonistuman tiedetään ennustavan siihen kohdistuvan vasta-ainehoidon tehoa. 
Väitöstutkimuksessa EGFR:n geenimonistuman yleisyyden todettiin 220 potilaan aineistossa olevan 
nimenomaan intestinaalisen alatyypin maha- ja ruokatorvisyövissä HER2:n monistuman tasoa, joten 
sen selvittämisestä voisi olla hyötyä tutkittaessa EGFR-vasta-ainehoidon tehoa maha-ja 
ruokatorvisyövän hoidossa. Lisäksi maha- ja ruokatorvisyöpien molekulaaristen alatyyppien 
tunnistamista selvitettiin 244 potilaan näytteistä koostetun kudosmikrosirun avulla, ja tunnistamisen 
todettiin onnistuvan myös kliiniseen diagnostiikkaan soveltuvien menetelmien avulla.   

EGFR:n geenikopiomäärää alkuperäisen paksusuolikasvaimen ja sen lähettämän etäpesäkkeen välillä 
vertailevia tutkimuksia on tehty niukasti. Väitöstutkimuksessa verrattiin 80 potilaan primaari- ja 
metastaattisia kasvaimia. EGFR:n kopiolukumäärän todettiin pienenevän vasta-ainehoitoa saaneilla 
potilailla mutta pysyvän samana tai jopa suurentuvan muuta hoitoa saaneiden potilaiden 
etäpesäkkeissä. Kopiolukumäärän muutoksella saattaisi olla merkitystä vasta-ainehoidon tehon 
kannalta.  

Peräsuolipotilaiden hoidossa voidaan käyttää ennen leikkausta annettavaa kemosädehoitoa, jonka 
avulla pyritään mahdollistamaan kasvaimen täydellinen poisto. Osa potilaista jää kuitenkin ilman 
merkittävää hoitovastetta tai saa haitallisia sivuvaikutuksia, joten soveltuvasta biomarkkerista voisi 
olla hyötyä hoidon kohdentamisen parantamisessa. CIP2A:n ilmentymistä tutkittiin 210 potilaan 
peräsuolisyöpänäytteissä, ja matalan ilmenemistason todettiin olevan yhteydessä parempaan 
vasteeseen pitkän kemosädehoidon saaneilla potilailla. Samansuuntainen tulos saatiin 
syöpäsoluviljelmien sädetyskokeissa, joissa sädetyksen todettiin estävän enemmän CIP2A:ta 
ilmentämättömien kuin sitä normaalisti ilmentävien solujen kasvua. 

Avainsanat: mahasyöpä, paksusuolisyöpä, EGFR, in situ hybridisaatio, molekulaarinen luokitus, 
kudosmikrosiru 
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16 Review of literature 

1 INTRODUCTION 

Cancer cells have accumulated various genetic alterations ranging from single nucleotide mutations 

to whole-genome duplications during their evolution originating from a normal cell and leading to a 

malignant tumour. Recent cancer genome sequencing studies, particularly by The Cancer Genome 

Atlas (TCGA) project, have provided enormous amounts of information about the molecular 

characteristics of different types of cancers. (Chen et al. 2018).  

This literature review discusses some general mechanisms leading to the development of cancer but 

mainly concentrates on certain molecular characteristic of gastric and colorectal adenocarcinomas, 

which have been studied in the original publications.   

Gastrointestinal cancers, particularly gastric and colorectal cancer, belong to the most common 

malignancies and causes of cancer death worldwide (Bray et al. 2018; Ferlay et al. 2019). 

Adenocarcinomas form the large majority of gastrointestinal cancers. Over the last decades, the 

incidence of gastric cancer has gradually declined in Western Europe and North America even 

though this decline has recently been slowing down in some countries. Gastric cancer still remains 

very common in Eastern Europe, South America and Eastern Asia. (Smyth et al. 2016; Van Cutsem 

et al. 2016). In contrast, at the same time the incidence of adenocarcinoma of the oesophagus and 

gastro-oesophageal junction (GOJ) has increased in Western countries (Pohl et al. 2010). These 

proximal gastrointestinal adenocarcinomas are usually considered as separate entities from true 

gastric adenocarcinomas, but it has recently been shown that they share very similar molecular 

features with a subtype of gastric cancer characterised by chromosomal instability (CIN) (Liu et al. 

2018).  

Persistent Helicobacter pylori infection is one of the most important causes of sporadic gastric cancer. 

The chronic inflammation associated with the infection can lead to mucosal atrophy, intestinal 

metaplasia and in some patients further to dysplasia and adenocarcinoma. Other factors associated 

with an increased cancer risk include autoimmune atrophic gastritis, smoking, nutritional factors 

such as high salt intake and nitrates, and obesity. Chronic reflux disease and intestinal metaplasia in 

the distal oesophagus (Barrett’s syndrome) increase the risk for GOJ adenocarcinoma. (Lordick et 

al. 2016; Smyth et al. 2016; Van Cutsem et al. 2016). Germline mutations, such as mutations in 

CDH1 encoding E-cadherin, account for 1 – 3% of all gastric cancer (Smyth et al. 2016; Van 

Cutsem et al. 2016). 

In contrast to gastric cancer, the incidence of colorectal cancer is highest in Western countries, 

while the lowest incidences are found in some Asian and African countries. Established risk factors 

include the so-called Western diet with high intake of red meat and low intake of plant-based and 

unrefined foods, smoking, alcohol consumption and obesity. Importantly, inflammatory bowel 

disease is an independent risk factor for colorectal cancer. Germline mutations leading to hereditary 

syndromes such as Lynch syndrome account for 3 – 5% of all colorectal cancer. (Brenner et al. 

2014). 
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The purpose of different molecular biomarkers in the context of cancer management is mainly to 

function as diagnostic, prognostic or predictive factors that can help in specifying the type of 

disease and in selecting and optimising the treatments offered for the patients. A molecular 

biomarker can be, for example, a specific protein, mutation or gene amplification, the presence of 

which predicts response or lack of response to a specific treatment or indicates the likely behaviour 

of the disease. Alternatively, a biomarker can be used by proxy to classify a particular tumour into a 

molecular subtype associated with specific properties and behaviour, which are not necessarily 

directly linked with the biological functions of that biomarker. 

One of the predictive biomarkers utilised in clinical pathology is HER2, the overexpression or gene 

amplification of which in breast and gastric cancer indicates favourable response to anti-HER2 

antibody therapy (Bang et al. 2010). Another example is the detection of RAS mutations in patients 

with metastatic colorectal cancer, as anti-EGFR antibody treatment is beneficial only for patients 

with RAS wild-type (wt) tumours (Bokemeyer et al. 2009; Douillard et al. 2010). Furthermore, in 

retrospective studies, EGFR gene copy number (GCN) ≥ 4.0 in primary colorectal 

adenocarcinomas has been associated with a favourable anti-EGFR antibody treatment response in 

patients with RAS wt metastatic disease (Ålgars et al. 2011; Ålgars et al. 2014; Ålgars et al. 2017). 

In contrast, no survival benefit has been observed in clinical trials for oesophagogastric cancer 

patients treated with an anti-EGFR antibody together with standard chemotherapy in comparison 

to only chemotherapy (Lordick et al. 2013; Waddell et al. 2013). However, these trials have not 

included any patient selection based on the histological subtype of the tumours or EGFR GCN 

analysis. As the clinical significance of HER2 overexpression or gene amplification has been 

demonstrated in the context of anti-HER2 therapy (Bang et al. 2010), it could be of interest to 

investigate if the presence of EGFR amplification might indicate those patients who could benefit 

from anti-EGFR antibodies. A prerequisite for the utilisation of EGFR GCN analysis in cancer 

treatment would be a high enough prevalence of EGFR amplification in oesophagogastric 

adenocarcinomas.   

A large study has recently classified gastric adenocarcinomas into four distinct molecular subtypes 

based on their genomic alterations. These subtypes are characterised by either chromosomal 

instability, genomic stability (GS), microsatellite instability (MSI) or Epstein-Barr virus (EBV) 

infection. (TCGA 2014). Notably, even in the age of genome sequencing, the traditional Laurén 

classification (Laurén 1965) has remained a relevant part of cancer diagnostics. A modified version 

of the classification recognises three categories, proximal non-diffuse, distal non-diffuse and 

diffuse-type tumours, each with distinct epidemiology and gene expression patterns (Shah et al. 

2011). The molecular characterisation studies have also demonstrated that the intestinal and diffuse 

histological subtypes originally described by Pekka Laurén are distinguishable to a large extent also 

at the molecular level (TCGA 2014; Cristescu et al. 2015). The CIN subtype is observed to be 

strongly associated with the intestinal histological subtype and the activation of the receptor 

tyrosine kinase (RTK)–RAS pathway, for example by RTK gene amplifications. In contrast, diffuse-

type tumours are concentrated in the GS subtype. (TCGA 2014).  
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These studies have also provided information about the variability in biological properties among 

oesophagogastric adenocarcinomas. Instead of considering cancer of a specific organ as a single 

disease, it has become clear that when exploring new cancer therapies, future studies need to be 

conducted among defined sets of patients having tumours with specific genomic aberrations. 

However, genome-wide characterisation studies typically use complex and expensive methodologies 

that are not applicable for routine clinical diagnostics. Daily diagnostic work rather requires more 

straightforward and less costly methods that are still able to provide the relevant information 

needed for the subtype determination.   

Preoperative (chemo)radiotherapy, (C)RT, is used in the treatment of rectal cancer patients. 

However, tumour response to (C)RT among patients is variable and currently no clinical 

biomarkers exist that could be used to predict response to this therapy or to stratify patients into 

different preoperative treatment groups according to their prognosis. High expression of cancerous 

inhibitor of protein phosphatase 2A (CIP2A) has been indicated to contribute to radioresistance in 

head and neck squamous cell carcinoma (Ventelä et al. 2015), but no studies so far have examined 

the role of CIP2A in radiation response in rectal cancer patients. If it were associated with the 

degree of tumour regression after preoperative (C)RT, CIP2A expression level might deserve 

further examination as a potential biomarker for radiosensitivity in rectal cancer patients. 

It is a well-known phenomenon that cancer cells continue to acquire mutations and other genomic 

alterations during the metastatic process. At worst, these new aberrations might render the 

metastatic tumour unresponsive to treatment which was originally selected based on the properties 

of the primary tumour. Also the association between EGFR GCN ≥ 4.0 and a favourable response 

to anti-EGFR antibodies has been observed examining particularly primary RAS wt colorectal 

tumours (Ålgars et al. 2011; Ålgars et al. 2014; Ålgars et al. 2017). However, data comparing EGFR 

GCN between the primary tumours and the corresponding metastases are limited. In addition, few 

studies have examined the effect of anti-EGFR antibody treatment on the EGFR GCN in 

metastatic tumours. Possible GCN changes in the metastatic tumours might affect the response to 

antibody therapy during continuous treatment and thus could be one of the mechanisms 

responsible for acquired treatment resistance to anti-EGFR antibodies.  
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2 REVIEW OF LITERATURE 

2.1 Development of the gastrointestinal tract 

The epithelium of the gastrointestinal tract develops from the endoderm during embryogenesis, 

while the morphogenesis of the intestinal epithelial structures proceeds through the gestation and 

continues even after birth. Small intestine villi begin to form during embryogenesis, whereas the 

intestinal crypts form after birth. The formation of these structures requires constant signalling 

between the epithelial and mesenchymal cells mediated, for example, by the Wnt and Hedgehog 

pathways. (Barker et al. 2009; Brabletz et al. 2009). In addition, transforming growth factor β (TGF-

β) is an essential regulator of signalling in the gastrointestinal epithelium starting from embryonic 

development and continuing thereafter throughout adulthood (Mishra et al. 2005; Liu et al. 2018). 

The  columnar  epithelium  of  the  stomach  and  intestines  is  continuously  renewed  by  the  

division  of  stem  cells  located  at  the  base  of  the  gastric  glands  and  intestinal  crypts. These 

stem cells can be identified by leucine-rich repeat-containing G-protein coupled receptor (LGR5) 

expression. (Barker et al. 2007; Barker et al. 2009; Barker et al. 2010). Wnt signalling is the main 

pathway controlling the intestinal stem cells, and LGR5 is one of the target genes of Wnt/β-catenin 

signalling (Clevers 2006; Brabletz et al. 2009). Also TGF-β signalling is involved in the regulation of 

intestinal stem cells (Mishra et al. 2005; Schepers & Clevers 2012). In the stomach, the LGR5 

expressing stem cells are mainly located in the antrum (Zhao et al. 2015). 

The common embryonic origin of the gastrointestinal tract is reflected in the development of 

gastrointestinal cancers in which the pathogenesis often involves the activation of developmental 

pathways, such as Wnt or TGF-β signalling. Normally, TGF-β mediates growth promoting signals 

during development but has a suppressive role in adult tissues. (Mishra et al. 2005; Schepers & 

Clevers 2012). Particularly, gastrointestinal adenocarcinomas in the lower gastrointestinal tract are 

enriched with active Wnt signalling (Schepers & Clevers 2012; Liu et al. 2018). According to the 

stem cell hypothesis, gastrointestinal cancer originates from intestinal cancer stem cells with 

dysregulated signalling pathways (Brabletz et al. 2009).  

2.2 General mechanisms of cancer development 

Cancer develops when cells acquire the ability to divide and grow uncontrollably, survive and 

invade. This development typically takes place over a long period of time, and it is due to the 

accumulation of genetic alterations. These alterations affect diverse signalling pathways that control 

a number of essential cellular functions. The result is a set of capabilities promoting carcinogenesis, 

and given their ubiquitous nature, they have been called the hallmarks of cancer. These hallmarks 

are enabled by genomic instability and supported by various molecules released by tumour-

associated inflammatory cells. (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011). In 
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addition to somatic alterations, a notable proportion of cancers are associated with germ line 

variants of the signalling pathway genes that predispose to cancer (Huang et al. 2018).   

2.2.1 Becoming a cancer cell 

All cancers have their origin in normal cells. Every cell that is able to proliferate is also able to 

acquire changes in its genome during every cell division. Small changes in the DNA nucleotide 

sequence, such as mutations, can be fixed by DNA repair proteins present in the nucleus. However, 

if they remain unrepaired, the mutations will transfer into subsequent cell generations. Some of 

them may not have any effect on cell function, whereas others are harmful and lead to cell death, 

which cures the problem. Eventually, some changes remain and have a beneficial effect on the cell. 

That is, they give the cell a survival advantage among other cells that reside in the same 

environment and do not contain similar changes. As these beneficial effects transfer into new cell 

generations, additional genomic and posttranslational changes can accumulate and lead to 

progressive alterations. The cell also becomes able to escape the control mechanisms that normally 

keep it functioning properly. At some point, the output of this evolution can be considered a cancer 

cell. (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011; Lee et al. 2016). 

In addition to mutations, the changes acquired during cell division can affect larger parts of the 

genome and lead to gain or loss of whole genes, chromosome arms or chromosomes. The 

susceptibility of a cell to accumulate these changes is related to genomic instability. The hallmarks 

that support the survival of cancer cells include the ability to resist cell death, to evade growth 

suppressors, to sustain proliferative signalling, to gain replicative immortality, to invade and 

metastasise, to induce angiogenesis, to reprogram energy metabolism and to evade immune 

destruction as well as to sustain tumour-promoting inflammation. In addition, cancer cells have the 

ability to interact with and recruit surrounding normal cells, such as stromal fibroblasts, to create a 

tumour microenvironment that supports the acquisition of other capabilities necessary for their 

survival. (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011).  

2.2.2 Genome of a cancer cell 

Across different cancer types, the functional changes driving tumorigenesis tend to be either 

somatic mutations or copy number alterations. This distinction is seen most clearly in tumours 

exhibiting high levels of genomic instability, which have been observed to contain either large 

numbers of mutations or copy number alterations but not both. TP53 mutations are an exception 

because they are enriched in tumours typically containing also copy number alterations. (Ciriello et 

al. 2013).  

This division between tumours characterised either by mutations or copy number alterations might 

be related to the variability in chromatin structure between patients caused by epigenetic changes 
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such as DNA methylation or histone modifications. The epigenetically affected chromatin state in a 

single progenitor cell could be inherited during cell division and lead to the accumulation of a 

particular set of aberrations over time. (Chen et al. 2018).  

The chromatin structure can be either open or compact. Open chromatin, which is associated with 

active enhancers, tends to contain fewer mutations than closed chromatin because it can be 

accessed by the DNA repair proteins. However, open chromatin, being a much longer molecule 

than the closed form, is more likely to be involved in long-range DNA – DNA interactions. This 

could increase the likelihood of structural rearrangements such as somatic copy number alterations 

(SCNA). (Polak et al. 2014; Chen et al. 2018). 

A limited number of alterations can suffice to transform many different cell types (Hanahan & 

Weinberg 2000; Hanahan & Weinberg 2011). Each tumour has a unique combination of genetic 

alterations but each specific type of alteration is almost always found across various types of 

tumours. By analysing large numbers and different types of tumours, patterns of co-occurring or 

mutually exclusive changes can be discerned among them. (Wood et al. 2007; Boland & Goel 2010; 

Sanchez-Vega et al. 2018). 

The genetic alterations in a single tumour are typically several and affect several different pathways. 

Some of the observed carcinogenic alterations are mutually exclusive, which could indicate that they 

are functionally redundant and their simultaneous occurrence would not provide further selective 

advantage. Alternatively, their simultaneous occurrence could be disadvantageous to the cell and 

lead to apoptosis. In contrast, the co-occurrence of specific alterations could indicate that both of 

them are beneficial for the cell. (Mina et al. 2017; Sanchez-Vega et al. 2018). When analysing 

interactions between somatic driver genes, TP53 is found to have most connections to other genes 

(Ding et al. 2018).  

Driver gene mutations involved in the same pathways tend to show strong exclusivity. In colorectal 

cancer, oncogenic mutations in KRAS, NRAS and BRAF are usually mutually exclusive (TCGA 

2012; Mina et al. 2017; Ding et al. 2018). TP53 and KRAS mutations are mutually exclusive in 

colorectal and lung adenocarcinomas but often co-occur in pancreatic adenocarcinomas (Ding et al. 

2018). 

2.2.3 Genomic instability 

Genomic instability can be detected in most cancers, but its degree and consequences are variable 

between different cancer types and even within the same cancer type. (Lee et al. 2016). Temporal 

and spatial differences in genomic instability may even contribute to intratumoural heterogeneity 

(Gerlinger et al. 2012; Bedard et al. 2013; de Bruin et al. 2014; Zhang et al. 2014). The major 

categories of genomic instability are chromosomal and nucleotide-level instability. The most 
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common manifestations of these are somatic copy number alterations (SCNA) and point 

mutations, respectively. (Lee et al. 2016; Chen et al. 2018).  

2.2.3.1 Chromosomal instability  

Chromosomal instability (CIN) refers to an increased rate of chromosomal change in comparison 

to normal cells and results in a wide range of different structural variations observed in cancer 

genomes. These include inversions, translocations, duplications, larger insertions/deletions (> 30 

bp), chromothripsis and SCNAs. Large-scale SCNAs (comprising chromosome arms or whole 

chromosomes leading to aneuploidy) are usually described as gain or loss of copy number, while 

focal SCNAs are called amplifications or deletions. (Lee et al. 2016). Chromothripsis refers to the 

fragmentation of chromosomes or chromosomal regions within a restricted area followed by an 

incorrect rearrangement by DNA repair mechanisms. It is thought to occur early in cancer cell 

evolution and suggested to promote carcinogenesis by leading to oncogene amplifications and 

fusions or loss of tumour suppressor genes. (Forment et al. 2012).  

CIN seems to be rather a driver than a passenger event in carcinogenesis even though this has been 

a topic of debate (Holland & Cleveland 2009; Gordon et al. 2012; Lee et al. 2016). Aneuploidy 

caused by CIN seems to both promote tumorigenesis (a low level of CIN) and cause tumour 

suppression (a high level of CIN) (Weaver et al. 2007; Weaver & Cleveland 2009; Gordon et al. 

2012). As tumour cells with high levels of aneuploidy are still detected, it is thought that the 

harmful effects of aneuploidy could be compensated by the acquisition of other alterations (Weaver 

& Cleveland 2009; Lee et al. 2016) such as the inactivation of the TP53 tumour suppressor pathway 

(Thompson & Compton 2010). It has been suggested that a high level of CIN together with the 

loss of TP53 function is sufficient to promote carcinogenesis with fewer additional tumour 

suppressor mutations than is required in precursors without aneuploidy (Liu et al. 2018). 

Mechanisms leading to CIN include oncogene-induced replication stress, mitotic defects and 

telomere attrition (Lee et al. 2016). 

2.2.3.1.1 Oncogene-induced replication stress, mitotic defects and telomere attrition 

Oncogene-induced replication stress means the impairment of DNA replication as the cell is driven 

to excessive replication due to oncogene activation or tumour suppressor gene inactivation. 

Eventually, this can lead to DNA double-strand breakage. (Bartkova et al. 2006; Di Micco et al. 

2006; Negrini et al. 2010; Lee et al. 2016). In the context of the stepwise carcinogenesis model 

described for colorectal cancer (Fearon 2011), mutations in oncogenes, tumour suppressor genes or 

DNA repair genes, such as mismatch repair (MMR) genes, are the early events maintaining cell 

proliferation but also leading to replication stress (Macheret & Halazonetis 2015). Replication stress 
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can lead to abnormalities in both the structure and number of chromosomes (Burrell et al. 2013; 

Lee et al. 2016).  

Mitotic defects can result from, for example, whole-genome duplication, uneven distribution of 

chromosomes into daughter cells during earlier mitoses and mitotic checkpoint dysfunction. 

Whole-genome duplication is thought to be an early event in tumorigenesis. (Kops et al. 2005; 

Holland & Cleveland 2009; Holland & Cleveland 2012). Uneven distribution of chromosomes may 

be caused by defective sister-chromatid cohesion (Barber et al. 2008) or merotelic attachment, 

which means that a single kinetochore is attached to microtubules emanating from both spindle 

poles resulting in a lagging chromosome. Merotelic attachment is believed to be an important cause 

of CIN. (Kops et al. 2005; Thompson & Compton 2008; Holland & Cleveland 2012). Inactivating 

mutations in genes coding for mitotic checkpoint proteins are rarely observed in human cancers 

(Holland & Cleveland 2009).  

Telomere attrition (shortening) is has been observed already in colorectal adenomas (Engelhardt et 

al. 1997; Roger et al. 2013; Lee et al. 2016). Telomere shortening leads to dysfunctional telomeres, 

activation of DNA repair mechanisms, genomic instability and apoptosis or senescence (Maser & 

DePinho 2002; Artandi & DePinho 2010; Lee et al. 2016). However, in more advanced tumours the 

cells have acquired mechanisms to regenerate telomeres either through the reactivation of 

telomerase or the alternative lengthening of telomere (ALT) pathway (Maser & DePinho 2002).  

2.2.3.1.2 Somatic copy number alterations 

SCNAs are responsible for a major part of somatic alterations in cancer cell genomes and can lead 

to both oncogene activation and tumour suppressor inactivation. Focal SCNAs are the most 

common SCNAs and typically have a higher amplitude (several copies) than larger SCNAs such as 

arm-level and chromosome-level alterations (usually single-copy changes). (Beroukhim et al. 2010; 

Zack et al. 2013; Lee et al. 2016). Similar types of functional SCNAs have been found across 

different cancer types implying positive selection (Beroukhim et al. 2010). However, decreased 

negative selection or increased SCNA formation may also be responsible for some recurring 

SCNAs. Some SCNAs may be passenger events and not affect tumorigenesis.  

Recurrent gene amplifications and deletions tend to occur in specific regions across cancer cell 

genomes. Frequently amplified regions typically contain epigenetic regulators and genes such as 

EGFR, ERBB2, MDM2 and MYC, which become activated by amplification and function as 

oncogenes. Frequently deleted regions have been observed to contain tumour suppressor genes 

such as ATM, NOTCH1 and PPP2R2A. (Zack et al. 2013). 

Whole-genome duplications and loss of heterozygosity (LOH) events (deletion of one gene allele 

and amplification of the other) can also be included in SCNAs (Zack et al. 2013). Whole-genome 

duplications have been observed in about one third of cancers. As an early event in tumorigenesis, 
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they could enable the acquirement of other chromosomal instabilities. (Zack et al. 2013; Dewhurst et 

al. 2014; Lee et al. 2016). In comparison to diploid cancer cells, cancer cells with whole-genome 

duplications tend to have higher rates of also other types of SCNAs (Zack et al. 2013). 

2.2.3.2 Nucleotide-level instability  

Nucleotide-level instability leads to single nucleotide variations (SNV) and small insertions or 

deletions (< 30 bp, indel mutations) (Lee et al. 2016). These nucleotide-level changes result in the 

distinct mutational signatures observed in various cancers that can be associated with, for example, 

defects in the DNA repair mechanisms or specific carcinogens (Alexandrov et al. 2013).  

Nucleotide-level instability is typically found in tumours with high levels of somatic mutations. It is 

often the consequence of defective DNA repair mechanisms like the MMR system or the 

proofreading function of DNA polymerases (Preston et al. 2010; Kim et al. 2013a; Lee et al. 2016). 

As in the case of CIN, it has been debated whether a hypermutated phenotype is advantageous to 

cancer cells (Fox et al. 2013). Nevertheless, it has been observed that cancers characterised by 

somatic mutations tend not to require additional SCNAs to increase genomic instability and drive 

tumorigenesis (TCGA 2012; Ciriello et al. 2013).   

Among the hypermutated colorectal adenocarcinomas, the most commonly mutated genes include 

BRAF, MSH3 and MSH6, while APC  and TP53 mutations are more common in non-

hypermutated tumours together with mutations in KRAS, NRAS, PIK3CA and SMAD4. This 

supports the hypothesis that hypermutated and non-hypermutated tumours progress through 

different genetic pathways. (TCGA 2012). 

2.2.3.2.1 Mismatch repair system defects 

Defects in the MMR system lead to the accumulation of small insertions and deletions in DNA 

microsatellite regions, which results in a phenotype called microsatellite instability (MSI). Its role in 

cancer was first described in colorectal cancer patients. (Aaltonen et al. 1993; Ionov et al. 1993; 

Thibodeau et al. 1993; Lynch et al. 2015). Normally, MMR proteins recognise mismatched 

nucleotides during DNA replication and recruit other proteins to remove them in order to enable 

the insertion of the correct nucleotide. The MMR proteins function as dimers (MSH2 together with 

MSH6 or MSH3, MLH1 together with PMS2). Inactivation of both of the MMR alleles results in 

defective MMR and in the MSI phenotype. This inactivation can be caused either by mutation or 

promoter hypermethylation. (Lynch & de la Chapelle 2003; de la Chapelle & Hampel 2010).  

Microsatellites are usually located in non-coding regions of the genome, but they are also found in 

coding regions of genes involved in cell proliferation or apoptosis (Ionov et al. 1993; Kinzler & 

Vogelstein 1996). MSI events most often occur in euchromatin regions (in contrast to 
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heterochromatin) and in early-replicating (in contrast to late-replicating) DNA segments (Kim et al. 

2013a). The MMR system has been suggested to suppress mutations especially in the early-

replicating euchromatin regions, which typically contain active genes essential for cell functions 

(Supek & Lehner 2015). Approximately 17% of cancers with amino-acid altering somatic mutations 

in MMR genes have been observed to have high MSI (MSI-H) status. Among cancers with 

germline MMR mutations, MSI-H has been observed in about 30% of them, most of which contain 

both pathogenic germline and somatic MMR mutations. (Ding et al. 2018). 

2.2.3.2.2  DNA polymerase mutations 

The proofreading function of DNA polymerases depends on their 3’ to 5’ exonuclease activity. 

Mutations in POLE and POLD1, coding for polymerase epsilon and delta, have been detected in 

both sporadic and hereditary colorectal cancers. (Flohr et al. 1999; TCGA 2012; Palles et al. 2013; 

Heitzer & Tomlinson 2014). Tumours with POLE mutations are characterised by even a greater 

number of mutations than MSI-H tumours (TCGA 2012). The presence of mutated POLE may be 

sufficient to drive tumorigenesis, as these tumours usually have microsatellite-stable (MSS) 

phenotype even in the presence of MMR mutations (Kim et al. 2013a) and do not contain SCNAs 

(Shlien et al. 2015). The functional role of POLD1 mutations in cancer is uncertain (Lee et al. 2016). 

2.2.3.3 Epigenetic changes 

Epigenetic changes are heritable modifications of DNA or chromatin that do not alter the DNA 

sequence. Epigenetic modifications are required for normal cellular functions, but they are also 

commonly detected in cancer cells. Epigenetic changes are suggested to be functionally similar to 

mutations in being able to cause oncogene activation or tumour suppressor inactivation. Epigenetic 

modifications include events such as DNA methylation, genomic imprinting as well as histone and 

other modifications of chromatin. (Iacobuzio-Donahue 2009). Early epigenetic alterations affecting 

the stem cell population in the intestinal crypts and causing changes in their gene expression have 

been suggested to promote the accumulation of subsequent mutations and the development of 

cancer stem cells (Pardal et al. 2003; Feinberg et al. 2006).  

DNA methylation refers to the covalent modification of DNA by a family of cytosine (DNA-5)-

methyltransferases (DNMTs). In this process, a methyl group is transferred from S-

adenosylmethionine to a cytosine located 5’ to a guanosine (CpG dinucleotides). Short regions of 

DNA enriched with CpG dinucleotides are called CpG islands. Most CpG islands are found in 

areas such as microsatellites, centromeres and in promoter regions of approximately half of the 

genes in normal cells. (Jones & Baylin 2002; Issa 2004; Klose & Bird 2006). The methylation of the 

promoters prevents the transcription factors from binding to their binding sites, which results in 

gene silencing (Noffsinger 2009).  
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In normal cells, hypermethylation is suggested to contribute to genomic stability by repressing 

repetitive, often retroviral, elements. In contrast, cancer cells are often characterised by global 

hypomethylation, which may lead to the expression of normally silent genes, such as those which 

are normally expressed only during embryogenesis. (Iacobuzio-Donahue 2009). Global 

hypomethylation may also promote overall genomic instability and thus tumorigenesis (Eden et al. 

2003).  

However, promoter hypermethylation leading to loss of gene function is also commonly observed 

in cancer cells (Esteller 2007). It is one of the mechanisms leading to tumour suppressor 

inactivation as observed for example in patients with sporadic MSI-H colorectal cancer. In these 

patients, MLH1 promoter hypermethylation has been detected in both the tumour cells and 

surrounding normal intestinal mucosa, which suggests that hypermethylation is an early event of 

tumorigenesis. (Ricciardiello et al. 2003; Kawakami et al. 2006; Iacobuzio-Donahue 2009). Promoter 

hypermethylation results in permanent gene silencing that is preserved in offspring cells (Kondo & 

Issa 2004). Increased methylation has been associated with older age and chronic inflammation 

such as in inflammatory bowel disease. Oxidative stress associated with inflammation may reduce 

DNA repair and thus lead to MSI. (Boland & Goel 2010). 

Genomic imprinting refers to a mechanism where only one gene allele is transcriptionally active and 

the other becomes inactivated by methylation. The active allele is determined by the parent of 

origin. (Iacobuzio-Donahue 2009; Noffsinger 2009). Loss of imprinting (LOI) leading to abnormal 

gene expression has been observed in different cancers. LOI can be obtained by activation of the 

normally inactive allele or by inactivation of the remaining active allele. (Iacobuzio-Donahue 2009).  

2.2.4 Phosphorylating enzymes and phosphatases 

In addition to translational regulation, the various proteins involved in different cell signalling 

pathways are regulated post-translationally by the addition or removal of different types of chemical 

groups. This regulation is performed by a vast number of different enzymes, each of which is 

specialised to a certain reaction type. One of the post-translational regulatory mechanisms is 

reversible phosphorylation involving the addition or removal of phosphate groups. (Hunter 1995; 

Khanna & Pimanda 2016). 

Phosphorylating enzymes are called protein kinases and they usually activate their target proteins. In 

contrast, protein phosphatases are dephosphorylating enzymes and usually deactivate their target 

proteins. Disturbances in the balance between kinase and phosphatase expression or activity alter 

intracellular signalling and thus the regulation of cellular functions. (Hunter 1995; Khanna & 

Pimanda 2016). Some of these alterations may promote cell survival, carcinogenesis and tumour 

growth. Cancer cells typically contain mutations leading to constitutively active protein kinases. 

(Hanahan & Weinberg 2011). In contrast, protein phosphatases tend to act as tumour suppressors 

and therefore become inactivated in cancer cells (Khanna & Pimanda 2016). In cancer cells, this 
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regulation by phosphorylation and dephosphorylation can function together with activating 

mutations of KRAS, NRAS and HRAS (Prior et al. 2012). For example, dephosphorylation of 

signalling proteins by protein phosphatase 2A (PP2A) can counter the oncogenic effects of 

constantly active RAS (Sablina et al. 2010; Naetar et al. 2014). 

2.2.4.1 Protein phosphatase 2A 

The PP2A family of heterotrimeric phosphatases contains together with the protein phosphatase 1 

(PP1) family the predominant serine-threonine phosphatases in eukaryotic cells. PP2A is involved 

both in normal cell functions and malignant transformation. (Sablina & Hahn 2008; Westermarck & 

Hahn 2008; Eichhorn et al. 2009). The three-part structure of the core enzyme consists of a 

scaffolding A subunit (PR65α, encoded by PPP2R1A, or PR65β, encoded by PPP2R1B), a catalytic 

C subunit (PP2ACα, encoded by PPP2CA, or PP2ACβ, encoded by PPP2CB) and one of the 

several isoforms of a regulatory B subunit binding the other subunits. (Janssens & Goris 2001; 

Westermarck & Hahn 2008; Eichhorn et al. 2009; O'Connor et al. 2018).    

The B subunit defines both the localisation and substrate specificity of the enzyme complex. The 

variable combinations of these subunits give rise to different PP2A complexes with diverse 

substrate specificities. (Janssens & Goris 2001; Westermarck & Hahn 2008; Eichhorn et al. 2009; 

O'Connor et al. 2018). Normally, PP2A inhibits the oncogenic signalling by dephosphorylation, but 

only some of the B subunits direct the PP2A complex to function as a tumour suppressor 

(Westermarck & Hahn 2008; Eichhorn et al. 2009; Sablina et al. 2010).  

PP2A plays a role in carcinogenesis through its inactivation, which mainly occurs by non-genomic 

mechanisms. These include the overexpression of endogenous inhibitor proteins and post-

translational modifications of the catalytic subunit. (Chen et al. 1992; Westermarck & Hahn 2008; 

Kauko & Westermarck 2018). Non-genomic mechanisms allow a more selective and transient 

regulation of PP2A activity than can be obtained through the inactivating mutations (Kauko & 

Westermarck 2018). Mutations in PP2A subunits seem to have a relatively minor role in malignant 

transformation (Sablina & Hahn 2008; Zack et al. 2013, Kauko & Westermarck 2018).  

2.2.4.1.1 Inhibition of protein phosphatase 2A  

Several proteins have been recognised to function as endogenous PP2A inhibitors. For example, 

cancerous inhibitor of PP2A (CIP2A), protein phosphatase methylesterase 1 (PME-1) and protein 

SET (SET) are involved in the regulation of cell proliferation, while cAMP-regulated 

phosphoprotein 19 (ARPP19), biorientation of chromosomes in cell division protein 1 (BOD1) and 

alpha-endosulphine (ENSA) are inhibiting PP2A during mitosis. (Westermarck & Hahn 2008; 

Puustinen et al. 2009; Ventelä et al. 2012; Laine et al. 2013; Kauko & Westermarck 2018).  
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The post-translational mechanisms of PP2A inhibition include the phosphorylation or 

demethylation of PP2A subunits at specific sites (Kauko & Westermarck 2018). PME-1 can inhibit 

PP2A both by demethylation and binding directly to the catalytic site of PP2A (Kaur & 

Westermarck 2016). Viral proteins such as the simian virus 40 (SV40) small t antigen have also been 

suggested to act as PP2A inhibitors (Westermarck & Hahn 2008). However, the role of SV40 or 

other viruses in promoting human cancers by PP2A inhibition is uncertain (Kauko & Westermarck 

2018).  

Mutations of PP2A are most frequently observed in PPP2R1A and PPP2R2A (Zack et al. 2013). 

PPP2R2A encodes one of the regulatory subunits of PP2A (Eichhorn et al. 2009). In addition, 

genomic inhibition of PP2A can be obtained by larger alterations such as arm-level deletions. For 

example, loss of the 8p chromosome arm, containing PPP2R2A, is frequently observed among 

different cancer types. Deletions of PPP2R2A and mutations in PPP2R1A have been found to be 

associated with whole-genome duplication. (Zack et al. 2013).  

2.2.5 From primary to metastatic tumours 

When acquiring metastatic properties, cancer cells typically change their shape as well as their 

attachments to other cells and the extracellular matrix. The purpose of these changes is to enable 

cancer cells to leave the primary tumour, move through the surrounding tissues into blood or 

lymphatic vessels, exit the vessel and form a new tumour at a distant site. These metastatic 

properties are achieved through modifications in gene expression and intracellular signalling leading 

to alterations in the cytoskeletal structures and adhesion proteins on cell membranes. (Hanahan & 

Weinberg 2011).  

Normally, the molecular mechanisms of the epithelial-to-mesenchymal transition (EMT) are 

involved in embryogenesis and wound healing. In cancer cells, EMT is likely an essential process 

for acquiring the properties needed for invasion, apoptosis resistance and metastasis. The central 

mechanism of EMT is the suppression of E-cadherin and upregulation of N-cadherin expression 

through the action of a number of transcription factors. E-cadherin is normally involved in 

adherence junctions between epithelial cells, while N-cadherin is expressed in migrating 

mesenchymal cells and neurons during embryonic development. (Hanahan & Weinberg 2011). 

Metachronous metastases, occurring after the resection of the primary tumour, are thought to arise 

from disseminated tumour cells (DTC) that have travelled to distant sites already before the 

primary surgery. However, it cannot yet be predicted which molecular characteristics are required 

from those DTCs that will eventually form metastatic tumours. (Klein 2009).  
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2.2.5.1  Linear and parallel progression 

The two principal models of metastasis are the linear progression model and the parallel 

progression model. Stepwise linear progression is thought to occur within the primary tumour 

where the tumour cells are continuously acquiring and selected for growth promoting mutations 

and epigenetic alterations. The surviving clones are able to proliferate and seed the distant 

metastases. Therefore, according to this model, the DTCs would share many of the molecular 

characteristics present in the primary tumour. (Nowell 2002; Klein 2009). The expansion of the 

surviving clones has been associated with tumour size, and larger tumours are thought to have been 

able to acquire more significant mutations than smaller tumours. Larger tumour size has also been 

associated with a higher frequency of metastases. (Klein 2009). 

However, the presence of similar changes in primary and metastatic tumour does not provide an 

ultimate proof that the metastatic cells have clonally descended from the primary tumour. As it is 

known that certain mutations or other aberrations are selected over others, it is feasible that similar 

alterations may occur independently both in the primary and metastatic tumour as well as in 

different cells within the same tumour. Genetic differences between primary and metastatic 

tumours would indicate, however, that some selection has occurred and led to the survival of 

divergent clones. (Klein 2009).  

According to the parallel progression model, tumour cells leave the primary tumour while still 

evolving towards a fully malignant phenotype, and metastases could start to develop even before 

the occurrence of the first symptoms from the primary tumour (Klein 2009). In this case, the 

genomic aberrations needed for metastasising should already be present in the primary tumours and 

show intratumoural heterogeneity (Hühns et al. 2018). After reaching a suitable distant site, tumour 

cells would acquire further genomic alterations and undergo clonal selection. This mechanism 

would enable the adaptation of different tumour cell populations to different microenvironments 

even after dissemination. According to the parallel model, the primary tumour would not be the 

optimal reference when selecting systemic therapy for the patient, as the primary and metastatic 

tumour cells could be genetically different. Thus, the characterisation of DTCs would be required 

for predicting therapy responses. (Klein 2009). 

In support of the parallel model, it has been observed that notable heterogeneity of genomic 

aberrations may already be present in colorectal adenomas and early primary adenocarcinomas 

rather than only in later occurring metastatic tumours (Hühns et al. 2018). In this case, genomic 

heterogeneity observed in metastatic tumours could develop later due to genomic instability but 

might not be required for growth advantage (Sottoriva et al. 2015).  

It has not been definitely proven that one of these models would apply for all metastatic processes. 

They need not to be mutually exclusive. In some tumours, the required mutations necessary for 

metastasising might be acquired in the beginning of carcinogenesis, whereas in others the mutations 

could occur in a step-wise fashion over a longer time period. (Hühns et al. 2018). However, at the 
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moment, the parallel progression model seems to be favoured over the linear progression model 

(Klein 2009; Hühns et al. 2018).  

2.3 Mechanisms of molecular pathogenesis in gastrointestinal cancer 

2.3.1 Adenoma – carcinoma sequence 

The classical model for cancer development has been derived from the adenoma-carcinoma 

sequence originally proposed for the development of colorectal adenocarcinomas (Vogelstein et al. 

1988; Boland & Goel 2010; Fearon 2011). According to this model, the conventional low grade 

adenomas progress into high grade adenomas and finally into invasive tumours due to a stepwise 

accumulation of genetic changes. At the beginning of this pathway, the inactivation of APC leads to 

the development of an adenoma, which then gains the ability to grow due to subsequent KRAS 

mutations and deletions on chromosome 18q. Finally, biallelic loss or inactivation of TP53 leads to 

the transition from adenoma to carcinoma. (Fearon 2011).  

This pathway applies predominantly to sporadic colorectal cancers, but it is also detected in familial 

adenomatous polyposis (FAP). It is sometimes also called the chromosomal instability pathway 

because tumours arising by this pathway are characterised by chromosomal abnormalities including 

deletions, insertions and LOH. (Noffsinger 2009). Later, it has been noticed that only a few 

colorectal cancers actually evolve along this pathway (Wood et al. 2007) and alternative routes have 

been suggested.  

Aberrant Wnt signalling, due to APC or β-catenin mutations, or other alterations leading to 

stabilisation and nuclear accumulation of β-catenin, is detected already in colorectal adenomas, and 

it remains involved in tumour progression during invasion and metastasis (Brabletz et al. 2009). 

Alterations in the Wnt pathway are observed in over 90% of colorectal adenocarcinomas. The 

majority of these is due to biallelic inactivation of APC or activating mutations in CTNNB1 

(encoding β-catenin). Defective Wnt signalling is common both in hypermutated and non-

hypermutated colorectal tumours. APC mutated tumours often contain also other mutations along 

the Wnt pathway, which could provide selective advantage. (TCGA 2012). In sporadic colorectal 

cancer, the loss of both APC alleles is required for the loss of APC function (Kinzler & Vogelstein 

1996; Clevers & Nusse 2012). Later in tumorigenesis, KRAS and TP53 mutations occur together 

with CIN (Lengauer et al. 1997; Smith et al. 2002; Fearon 2011) and LOH (Fearon 2011).  

The development of focal CIN (CIN-F), characterised by fragmented genomes with focal, short 

and high-amplitude SCNAs, is associated with TP53 mutations particularly in the upper 

gastrointestinal tract. In the lower gastrointestinal tract, loss of APC is often an earlier event than 

loss of TP53. APC loss may lead the carcinogenic process to another direction than TP53 loss, 

which may explain the lower prevalence of CIN-F in colorectal adenocarcinomas. APC mutant 



 Review of literature 31 

cells in the lower gastrointestinal tract might be able to undergo malignant transformation without 

the need for TP53 mutation or aneuploidy. Upper gastrointestinal tumours with broad and low-

amplitude SCNAs (CIN-B) often contain mutations in tumour suppressors such as APC, 

CDKN2A and SMAD4 instead of TP53 mutations. This implies that genomic instability leading to 

aneuploidy and CIN-F does not occur very easily in the absence of TP53 aberrations. In general, 

early APC loss and activating mutations in oncogenes like KRAS are typical of colorectal cancer, 

while extensive aneuploidy and resulting oncogene amplification are more characteristic of upper 

gastrointestinal tract adenocarcinomas. (Liu et al. 2018).  

Wnt signalling is the central activator of EMT through which cancer cells acquire their invasive 

properties. Nuclear accumulation of β-catenin, which is a sign of Wnt activation, is typically 

observed at the invasive front of the tumours where cancer cells can also have a dedifferentiated 

phenotype. (Brabletz et al. 2001). In addition, due to the activation of Wnt signalling, cancer cells 

might be able to undergo EMT and gain stem cell properties, both of which could contribute to 

their metastatic ability (Brabletz et al. 2001; Fodde & Brabletz 2007; Brabletz et al. 2009; Vermeulen 

et al. 2010). In contrast, at the metastatic sites cancer cells can undergo mesenchymal-epithelial 

transition (MET) and regain a more differentiated phenotype showing E-cadherin and membranous 

β-catenin expression (Brabletz et al. 2009).  

It has been hypothesised that only a small subset of tumour cells, cancer stem cells, has tumorigenic 

properties, while the rest of the tumour cells have lost their tumorigenic capacity due to 

differentiation. Maintaining active Wnt signalling may require interaction between the cancer stem 

cells and surrounding myofibroblasts. Myofibroblasts may also be able to induce stem cell 

properties in more differentiated tumour cells by promoting activation of the Wnt pathway. The 

concentration of nuclear β-catenin into the invasive tumour front could indicate Wnt activation by 

the surrounding myofibroblasts. (Vermeulen et al. 2010).  

2.3.2 CpG island methylator phenotype 

Cancers showing elevated frequencies of aberrant CpG island methylation are described as having a 

CpG island methylator phenotype (CIMP) (Issa 2004). Colorectal cancers with CIMP form a 

distinct subgroup characterised by methylation of tumour suppressor genes such as CDKN2A 

(encoding p16 and p14ARF) and DNA repair genes such as MLH1 and MGMT (encoding 

methylguanine methyltransferase) (Issa 2004; Ogino et al. 2009; Boland & Goel 2010).  

CIMP can be observed in 30 – 50% of colorectal cancers (Kambara et al. 2004; O'Brien et al. 2006). 

The inactivation of MLH1 and MGMT lead to high-level MSI (MSI-H) and low-level MSI (MSI-L), 

respectively. MLH1 and MGMT methylation may also coexist in MSI-H tumours. (Noffsinger 

2009). Colon tumours with CIMP tend to occur in elderly patients, and they are typically right-

sided, mucinous, poorly differentiated, MSI-H and BRAF mutated (Kambara et al. 2004; Noffsinger 

2009).  
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A small subset of colorectal cancer does not show CIN or MSI-H but are still characterised by 

CIMP. These tumours are associated with serrated morphology and poor prognosis of the patients. 

(De Sousa E Melo et al. 2013). In a large analysis, MSI-H due to epigenetic silencing of MLH1 was 

found to be lacking in about 40% of the high-level CIMP (CIMP-H) gastrointestinal 

adenocarcinomas. Most commonly, these were CIN tumours located in the oesophagus or 

proximal stomach, descending colon or rectum. Conversely, some MSI-H gastrointestinal 

adenocarcinomas without MLH1 methylation or CIMP were observed to contain somatic 

mutations in MLH1 or MSH2, which suggests an alternative way to the loss of DNA MMR 

function. In these tumours, KRAS mutations are more common than BRAF mutations. In a small 

number of MSI-H gastrointestinal adenocarcinomas, the hypermutated status is explained neither 

by MMR promoter methylation or MMR mutations. (Liu et al. 2018). 

2.3.3 Mismatch repair deficiency and microsatellite instability 

MSI was first described in tumours arising in patients with Lynch syndrome. Among them, 

mutations in DNA MMR genes (usually MLH1 and MSH2, rarely MSH6 and PMS2) typically lead 

to MSI-H tumours. (Aaltonen et al. 1993; Peltomäki et al. 1993; Thibodeau et al. 1993). MGMT 

methylation is rare in Lynch syndrome. In sporadic colon cancers, loss of MMR function and MSI-

H result from promoter methylation, whereas in Lynch syndrome they usually result from germline 

MMR mutations (Deng et al. 2004). In addition to point mutations, MMR genes may become 

inactivated by insertions, deletions or rearrangements. Instead of germ line mutations, epigenetic 

MMR inactivation by promoter hypermethylation can be observed in some Lynch syndrome 

patients. (Boland & Goel 2010). 

MMR defects have been detected in about 12 – 15% of sporadic colorectal adenocarcinomas 

(Noffsinger 2009; Lynch et al. 2015). MLH1 promoter methylation has been observed to be 

responsible for almost 90% of sporadic MSI-H colorectal cancers, while methylation of other MMR 

gene promoters is rare (Jass 2005). The carcinogenic DNA mismatch repair pathway (Aaltonen et al. 

1993; Thibodeau et al. 1993) is characterised by CIMP and gives rise to sporadic MSI-H colorectal 

cancer (Toyota et al. 1999; Goel et al. 2007; Ogino et al. 2009). Conversely, most of the sporadic 

colorectal cancers with MSI-H arise from a CIMP background (Weisenberger et al. 2006; Nagasaka 

et al. 2008).  

APC mutations, β-catenin activation, KRAS mutations and LOH are unusual in sporadic MSI-H 

colorectal cancer (Salahshor et al. 1999; Jass et al. 2003; Kambara et al. 2004; Boland & Goel 2010). 

Instead of the APC mutation pathway, sporadic MSI-H tumours are thought to develop via an 

alternative pathway initiated by an epigenetic mechanism causing CIMP-H. In this context, 

epigenetic silencing of MLH1 would give rise to CIMP-H MSI-H tumours. If MLH1 remains 

unaffected, the tumour would develop into CIMP-H MSS. (Liu et al. 2018).  
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In addition, sporadic MSI-H colorectal cancers seem to develop along a different pathway than 

MSI-H tumours associated with Lynch syndrome. Sporadic adenomas rarely demonstrate MSI-H, 

while adenomas associated with Lynch syndrome are often characterised by MSI-H. It has been 

suggested that MSI-H occurs late in adenomas developing to sporadic colon cancers and early in 

adenomas of patients with Lynch syndrome. (Noffsinger 2009).  

Most sporadic MSI-H colorectal cancers occur in elderly patients and contain BRAF mutations 

(V600E) (Ribic et al. 2003; Popat et al. 2005). The association between the BRAF V600E mutation 

and MSI-H is observed particularly in proximal colon tumours (Liu et al. 2018). Patients with MSI-

H colorectal tumours do not benefit from fluorouracil-based adjuvant therapy (Ribic et al. 2003; 

Popat et al. 2005). MSI-H tumours are also associated with a reduced mortality (Ogino et al. 2009; 

Boland & Goel 2010), which may be related to the typically abundant presence of tumour-

infiltrating lymphocytes (Brenner et al. 2014).  

CIMP-H MSI-H tumours are most prevalent in distal stomach and proximal colon (Budinska et al. 

2013; Liu et al. 2018). The reason for this may be that these areas have a higher epithelial cell 

turnover and DNA replication rate, and thus are more sensitive to MLH1 silencing than other areas 

of the gastrointestinal tract. Gastrointestinal adenocarcinomas developing due to germline MMR 

mutations are also more often observed in areas with highly proliferative epithelia. (Lynch et al. 

2015; Liu et al. 2018). 

2.3.4 Sessile serrated adenomas/polyps, traditional serrated adenomas and serrated 

adenocarcinomas 

Sessile serrated adenomas/polyps (SSA/P) have been associated with sporadic MSI-H colorectal 

cancer.  The exact risk of malignant transformation in SSA/Ps without dysplasia is still unknown 

but it is likely at least equivalent to that of conventional adenomas. SSAs located in the proximal 

colon are typically characterised by CIMP and also contain activating BRAF mutations. Sporadic 

adenocarcinomas developing from these serrated precursor lesions usually show MSI-H caused by 

epigenetic MLH1 promoter methylation. (Aaltonen et al. 1993; Thibodeau et al. 1993; Noffsinger 

2009; Bettington et al. 2013; Brenner et al. 2014).  

Traditional serrated adenomas (TSA) may also show CIMP-H but they contain more often KRAS 

than BRAF mutations. TSAs may progress to left-sided serrated colorectal adenocarcinomas 

characterised by either MSI-L or MSS. (Noffsinger 2009). Loss of MLH1 expression does not 

usually occur in TSAs (Sawyer et al. 2002; Goldstein et al. 2003).  

Serrated adenocarcinomas comprise about 7.5% of colorectal cancers. They are predominantly 

located in the right-sided colon but also occur in the rectum (Mäkinen et al. 2001; Tuppurainen et al. 

2005). The left-sided tumours are typically MSS or MSI-L (Dong et al. 2005; Tuppurainen et al. 

2005) and are associated with KRAS mutations (Jass et al. 2002). Between 15% and 20% of serrated 
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adenocarcinomas arise in proximally located SSA/Ps (Goldstein et al. 2003; Tuppurainen et al. 

2005). These serrated adenocarcinomas frequently show MSI-H and CIMP (Jass et al. 2002; 

Noffsinger 2009). APC and TP53 mutations as well as LOH are rare in serrated tumours (Jass et al. 

2002; Sawyer et al. 2002; Yamamoto et al. 2003; Noffsinger 2009). MGMT promoter methylation is 

characteristic of serrated adenomas and can be observed in about 50% of serrated adenocarcinomas 

(Dong et al. 2005; Mäkinen 2007).  

The most reliable method for MSI detection is based on PCR. Tumours in which > 30% of the 

microsatellite PCR markers are mutated are defined as MSI-H. Tumours in which at least one but < 

30% of the markers are mutated are defined as MSI-L, and they typically resemble MSS tumours in 

their clinical behaviour. (Boland et al. 1998; Boland & Goel 2010). However, immunohistochemistry 

is typically used as a MSI screening method in clinical practice (de la Chapelle & Hampel 2010). The 

majority of MSI-H colorectal tumours have lost the expression of both MLH1 and PMS2, while a 

smaller percentage of MSI-H tumours are negative for both MSH2 and MSH6. It has been 

estimated that MSI IHC identifies MMR-deficient colorectal tumours with approximately 93% 

sensitivity (most insensitivity is caused by MSH6 mutations), and that MLH1 and MSH2 IHC can 

identify MMR defects with 92% sensitivity and 100% specificity (Boland & Goel 2010). 

2.3.5 Epstein-Barr virus-related gastric cancer 

Epstein-Barr virus (EBV) positivity has been detected in approximately 9 – 10 % of gastric 

adenocarcinomas. It is more common in males than females and in tumours located in gastric 

cardia or corpus than in antrum. (Murphy et al. 2009; Sanchez-Vega et al. 2018). Persistent EBV 

infection leads to the expression of latent viral genes encoding latent membrane proteins (LMP), 

EBV nuclear antigens (EBNA), EBV-encoded small RNAs (EBER) and BamH1 A region 

rightward transcripts (BART). These products are thought to promote tumorigenesis by affecting 

different tumour suppressors and signalling pathways. (Akiba et al. 2008; Murphy et al. 2009; Chen et 

al. 2012; Shinozaki-Ushiku et al. 2015).  

Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MEK) alterations are 

observed to co-occur in EBV positive gastric cancer and thus the combination of PI3K and MEK 

inhibitors has been suggested as an treatment option (Sanchez-Vega et al. 2018). The immune 

signatures related to CD8 or IFN-γ signalling and the presence of PD-L1/2 overexpression 

observed in EBV positive gastric tumours could be indicators for a possible therapeutic effect from 

immune checkpoint inhibitors (TCGA 2014). 

2.4 Clinipathological aspects of gastric cancer 

The treatment of gastric cancer with curative intent includes surgery. In addition, adjuvant 

chemotherapy is used for locally advanced disease, which refers to tumours invading muscularis 
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propria or beyond. Preoperative chemoradiotherapy (CRT) or perioperative chemotherapy for 

oesophageal adenocarcinomas as well as perioperative chemotherapy for gastric cancer can also be 

used for certain patients. Patients with metastatic disease can be treated with chemotherapy and 

targeted therapies such as trastuzumab or ramucirumab. Patients with metastatic gastric cancer do 

not generally benefit from metastasectomy. Trastuzumab is a monoclonal antibody against human 

epidermal growth factor receptor 2 (HER2) and can be used in the treatment of patients with 

HER2 overexpressing tumours. Ramucirumab is a monoclonal antibody against vascular 

endothelial growth factor receptor 2 (VEGFR2). (Brenner et al. 2014; Smyth et al. 2016; Van 

Cutsem et al. 2016).  

2.4.1 Histopathological classification of gastric cancer 

The histological Laurén classification was first proposed by Pekka Laurén in 1965. It uses 

morphological characteristics of gastric adenocarcinomas to divide them into two histologically 

distinct subtypes, intestinal and diffuse, which were also demonstrated to have different clinical 

characteristics. A small proportion of tumours does not fit into these categories and can be 

classified as mixed- or indeterminate-type. Intestinal-type tumours are usually well- or moderately 

differentiated and composed of glandular structures. In contrast, diffuse-type tumours are poorly 

differentiated, composed of poorly cohesive cells and can include a signet-ring cell component. 

(Laurén 1965; Bosman et al. 2010). An alternative histology-based classification method is the 

WHO classification system dividing gastric adenocarcinomas into tubular, papillary, mucinous, 

poorly cohesive and rare variants (Bosman et al. 2010). 

Based on anatomical location, gastric cancers can be divided into true gastric cancers and GOJ 

cancers located in cardiac area. The Siewert classification (Siewert & Stein 1998) has been 

developed to determine if the tumour should be classified as a distal oesophageal carcinoma, true 

cardiac carcinoma or subcardial carcinoma according to the location of the tumour epicentre in 

relation to the GOJ. The TNM classification uses a simplified categorisation and divides the 

tumours into either carcinomas of the oesophagus and oesophagogastric junction or gastric 

carcinomas (Brierley et al. 2017). 

According to the TNM classification, intraepithelial gastric tumours are classified as Tis and 

invasive tumours as T1 – T4 according to the level of invasion. Tumours invading lamina propria 

or submucosa are T1, tumours invading muscularis propria are T2, tumours invading subserosal 

connective tissue are T3, and tumours perforating visceral peritoneum or invading adjacent 

structures are classified as T4. If no lymph node metastases are found (N0), the tumour belongs to 

stage 0, IA – B, IIA – B or IIIA according to T. If lymph node metastases are found (N1 – 3), the 

tumour is stage IB, IIA – B or IIIA – C according to T and the number of metastatic regional 

lymph nodes (N1, ≤ 2 metastases; N2, 3 – 6 metastases; N3, ≥ 7 metastases). In the presence of 

distant metastases (M1), the stage is IV regardless of T or N. (Brierley et al. 2017). 
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The most essential prognostic factors in gastric cancer are the TNM category, HER2 status and the 

presence of residual disease (R0, R1 or R2). Additional factors include the location of the tumour, 

histological type, the presence of lymphovascular invasion and patient age. (Brierley et al. 2017). 

2.4.2 Hereditary gastric cancer 

Germline mutations associated with cancer susceptibility account for 1 – 3% of all gastric cancer. 

These include conditions such as hereditary diffuse gastric cancer (due to CDH1 mutation) 

(Richards et al. 1999) and gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) 

as well as syndromes more often associated with colorectal cancer such as FAP and Lynch 

syndrome (Keller et al. 1996). Also patients with Peutz-Jeghers syndrome have an increased risk for 

gastric cancer as well as for tumours in many other organs (Smyth et al. 2016; Van Cutsem et al. 

2016). 

2.5 Clinicopathological aspects of colorectal cancer 

The treatment of colorectal cancer with curative intent includes surgery. In addition, adjuvant 

chemotherapy is used for stage III/IV or high-risk stage II colorectal cancer. Preoperative 

(chemo)radiotherapy, (C)RT, can be used for rectal cancer patients. Patients with metastatic disease 

can be treated with chemotherapy and targeted therapies such as cetuximab, panitumumab, 

bevacizumab, aflibercept or regorafenib. Liver or lung metastases from colorectal cancer are 

sometimes suitable for surgical resection. Cetuximab and panitumumab are monoclonal antibodies 

against epidermal growth factor receptor (EGFR) and can be used in the treatment of patients with 

RAS wt tumours. Bevacizumab is a monoclonal antibody against vascular endothelial growth factor 

A (VEGF-A) and aflibercept is a recombinant protein binding to circulating VEGF. Regorafenib is 

a molecule inhibiting several receptor tyrosine kinases. (Brenner et al. 2014; Smyth et al. 2016; Van 

Cutsem et al. 2016).  

2.5.1 Histopathological classification of colorectal adenocarcinoma 

Histological grading of colorectal adenocarcinomas is based on the proportion of glandular 

structures. Well-differentiated tumours (grade I) are composed of > 95% glandular structures, 

moderately differentiated (grade II) tumours have 50 – 95% and poorly differentiated (grade III) 

tumours have < 50% glandular structures. Over 90% of colorectal cancers can be classified as 

adenocarcinomas, while the remaining tumours include rare variants such as mucinous 

adenocarcinoma, serrated adenocarcinoma, signet ring cell carcinoma, micropapillary 

adenocarcinoma and undifferentiated carcinoma. (Bosman et al. 2010). 
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According to the TNM classification, intramucosal tumours are classified as T0, tumours invading 

submucosa as T1, tumours invading muscularis propria as T2, tumours invading subserosa as T3, 

and tumours either perforating visceral peritoneum or invading other organs or structures are 

classified as T4. If no lymph node metastases are found (N0), the tumour belongs to stage 0, I or 

IIA – C according to T. If lymph node metastases are found (N1 – 2), the tumour is stage IIIA – C 

according to T and the number of metastatic regional lymph nodes (N1, ≤ 3 metastases; N2, > 4 

metastases). In the presence of distant metastases, the stage is IV regardless of T or N. (Brierley et 

al. 2017).  

Histopathological staging is still the most important prognostic factor for colon cancer (Bijlsma 

2017). The essential prognostic factors include also patient age, participation in a screening 

programme and the circumferential resection margin (CRM) for rectal cancer. Additional factors 

include the presence of lymphovascular and perineural invasion, histological differentiation grade, 

tumour budding and bowel perforation as well as the presence of MSI and KRAS or BRAF 

mutations. (Brierley et al. 2017). High-risk features that indicate adjuvant treatment in stage II colon 

cancer include large tumour size, bowel obstruction or perforation, the presence of lymphovascular 

invasion and poorly differentiated histology (Bijlsma et al. 2017). 

2.5.2 Hereditary colorectal cancer 

Lynch syndrome is the most common of hereditary colorectal cancer syndromes. Patients with 

Lynch syndrome have a germline mutation in one of their MMR gene alleles, and the inactivation 

of the other allele by mutation or epigenetic silencing can lead to malignant transformation. (Boland 

& Goel 2010). Colorectal tumours associated with Lynch syndrome may contain KRAS mutations 

but practically never BRAF mutations (Bettstetter et al. 2007; Brenner et al. 2014). In clinical 

diagnostics, detection of BRAF mutations is used to distinguish patients with sporadic cancer from 

those with Lynch syndrome (Brenner et al. 2014). Patients with Lynch syndrome develop tumours 

at an early age and often at multiple sites. In addition to colorectal adenocarcinomas, they are prone 

to have tumours in the endometrium, stomach, ovaries, urinary tract and small intestine. (Boland & 

Goel 2010). The life-time risk of colorectal cancer in Lynch syndrome patients has been estimated 

to be as high as 78% (Aarnio et al. 1995). 

Another hereditary form of colorectal cancer is familial adenomatous polyposis (FAP), which is 

associated with germline mutations in one of the alleles for the APC tumour suppressor gene. Both 

Lynch syndrome and FAP have autosomal dominant inheritance. The estimated allele frequencies 

are 1:350 – 1:1700 for Lynch syndrome and 1:10 000 for FAP. (Brenner et al. 2014). 
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2.6 Molecular classification of gastric adenocarcinoma 

The molecular classification of gastric adenocarcinoma has identified four tumour subgroups, 

which are characterised by EBV positivity, MSI, CIN or genomic stability (GS). Regarding the 

Laurén classification, MSI tumours typically have an intestinal phenotype, whereas diffuse tumours 

are concentrated in the GS subtype. Both EBV positive and MSI tumours are characterised by 

hypermethylation, which in the MSI tumours often affects the MLH1 promoter. MSI tumours 

typically have a hypermutated genome. The remaining tumours are divided according to the 

presence of SCNAs into either CIN tumours enriched with SCNAs or into GS tumours without 

hypermutation or SCNAs. In addition to chromosomal-level structural changes and aneuploidy, 

CIN tumours usually have intestinal-type histology and mutations in proto-oncogenes and tumour 

suppressor genes. Approximately 36 – 50% of gastric adenocarcinomas are characterised by CIN. 

(TCGA 2014).  

The Asian Cancer Research Group (ACRG) has divided gastric adenocarcinomas into four 

subgroups, which include MSI tumours, MSS tumours showing EMT (MSS/EMT), MSS tumours 

with intact TP53 activity (MSS/TP53+) and MSS tumours with functional loss of TP53 

(MSS/TP53-) (Cristescu et al. 2015). The latter is somewhat comparable with the CIN subtype. 

Several other studies have applied these results and proposed slightly variable classification systems 

for gastric cancer. Some of these proposals are mainly based on gene-expression patterns (Tan et al. 

2011; Lei et al. 2013; Kim et al. 2017; Min et al. 2017; Oh et al. 2018), while others have concentrated 

on immunohistochemical and in situ hybridisation methods (Kim et al. 2016; Park et al. 2016; Setia et 

al. 2016; Díaz Del Arco et al. 2018). A few of these studies have also included histopathological 

criteria for subtype specification (Park et al. 2016; Min et al. 2017). The proportions of different 

subtypes as reported by some of these studies have been summarised in Table 1. 
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Table 1. The distribution of different molecular subtypes of oesophagogastric cancer in relevant 

studies together with the typical genomic alterations according to the TCGA 

studies (Cerami et al. 2012; Gao et al. 2013; TCGA 2014, 2017; Liu et al. 2018). 

 
TCGA 

2014a 

Cristescu et 

al. 2015b 

Kim et al. 

2016c 

Park et al. 

2016d 

Setia et 

al. 2016e 

Ahn et al. 

2017 

Díaz del 
Arco et 

al. 2018f 

Number of 
patients (%) 295 300 438 993 146 349 206 

Intestinal 196 (66) 150 (50) 98 (22) 518 (52) ND 199 (57) 111 (54) 
Diffuse 69 (23) 142 (47) 130 (30) 475 (48)  147 (42) 71 (34) 

Mixed 19 (6.4) 8 (2.7) 17 (3.9)   3 (0.9)  24 (12) 

EBV pos 26 (8.8) 18 (6.0) 14 (3.2) 61 (6.1) 7 (4.8) 26 (7.4) ND 
EBV neg 269 (91) 257 (86) 424 (97) 910 (92)  323 (93)  

MSI 64 (22) 68 (23) 21 (5.0) 114 (11) 24 (16) 24 (6.9) 48 (24) 
MSS 205 (69) 232 (77) 403 (95) 876 (88)  299 (86) 158 (77) 

GS 58 (20)   253 (25) 30 (21)   

CIN 147 (50)   565 (57) 75 (51)   

MSS/EMT  46 (15)     12 (6.0) 

MSS/TP53+   79 (26)   [10 (6.8)]  110 (54) 
MSS/TP53-  107 (36)     35 (17) 

TCGA 

subtype       
 
 

EBV MSIg GS CIN 

Oeso-
phageal 
adeno-

carci-
noma 

Oesophagogastric 
adenocarcinoma 

 

CIN-F CIN-B 

Clinicopatho-

logical features 

Males, 

gastric 
corpus 

Females, elderly 

patients, distal 
stomach 

Younger 

patients, 
diffuse-type 

Proximal 
stomach    

Mutations 

PIK3CA 
(80%) 

ARID1A 
(55%) PTEN 

(15%) 

ARID1A (84%) 

EGFR (19%) 
ERBB2 (11%) 
ERBB3 (33%) 
PIK3CA (42%) 

TP53 (39%) 
BRAF (28%) 
KRAS (23%) 

CDH1 (34%) 

RHOA (14%) 
ARID1A (16%) 

TP53 (14%) 
TP53 (71%) 

ARID1A (9%)   

ERBB2 
(15%) 

ARID1A 
(13%) 

CDKN2A 
(15%) 

SMAD4 
(10%) TP53 

(81%) TP53 (76%) 

TP53 (54%) 
ERBB2 

KRAS APC 
CDKN2A 
SMAD4 

Amplificationsh 

JAK2 (15%) 
CD274i 

(15%) 
CD273i 

(12%) 

ERBB2 
(12%) PIK3CA (3%) MYC (4%) 

EGFR (9%) 
ERBB2 (22%) 

GATA4 (10%) 
GATA6 (14%) 

KRAS (14%) 

MYC (19%) 
VEGFA (13%) 

ERBB2 
(29%) EGFR 
(8%) GATA4 

(15%) 
GATA6 

(20%) KRAS 

(9%) VEGFA 
(12%) 

EGFR 
ERBB2 

ERBB3 
KRAS NRAS 

BRAF 

PIK3CA 
CDKN2A  

Deletions 

PTEN (8%) PTEN (3%) 

CDKN2A 

(10%) 

ARID1A (3%) 

CDKN2A 
(14%) PTEN 

(5%) SMAD4 

(10%) 

CDKN2A 
(13%) 

SMAD4 

(13%)   

Characteristic 
protein 

expression 

JAK2, PD-
L1/L2, IFN-

γ signalling IFN-γ signalling      
aHistological subtype was not determined for eleven tumours. 
bEBV information was available for 275 tumours. 
cLaurén classification was determined for 245 tumours. 
dIntestinal- and mixed-type tumours were combined. EBV was analysed in 971 and MMR information in 990 tumours. 
eTen intestinal-type tumours with TP53 wt, EBV neg and MSS were identified.   
fOne tumour with an isolated loss of MSH6 expression was excluded from the analyses. 
gMSI-H, CIMP-H tumours with epigenetic silencing of MLH1 and defective MMR. 
hUpper gastrointestinal CIN-F tumours have more intense amplifications than lower CIN-F tumours.  
iCD274 encodes PD-L1; CD273, also known as PDCD1LG2, encodes PD-L2. 
 

CIN, chromosomal instability; EBV, Epstein-Barr virus; GS, genomic stability; IFN-γ, interferon-γ; MSI, microsatellite instability; 

MSS, microsatellite-stable; ND, not determined; TP53-, functional loss of TP53; TP53+, functional TP53. 
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2.6.1 Characteristics of the EBV, MSI, GS and CIN subtypes of gastric 

adenocarcinomas 

Among all cancers, EBV is mainly detected in gastric adenocarcinomas (Liu et al. 2018, Thorsson et 

al. 2018). CIMP-H is often observed among the EBV positive tumours (Matsusaka et al. 2011; 

Wang et al. 2014), but these contain different mutations and have different gene expression profiles 

than the CIMP-H MSI tumours. For example, hypermethylation of the MLH1 promoter is not 

observed among the EBV positive tumours, while CDKN2A (p16INK4A) promoter 

hypermethylation is common. TP53 mutations are rare. (TCGA 2014). The presence of EBV 

associates with high CTLA4 and CD274 (encodes PD-L1) expression levels (Thorsson et al. 2018). 

EBV positive tumours also contain high levels of CD8+ T cells, M1-macrophages and interferon-γ 

signatures (Derks et al. 2016; Koh et al. 2017). 

In contrast to sporadic MSI colorectal cancers (TCGA 2012), BRAF (V600E) mutations are not 

typical of upper gastrointestinal MSI adenocarcinomas (TCGA 2014; Liu et al. 2018). While the 

TCGA classification could not demonstrate survival differences between the different molecular 

subtypes, the ACRG classification system showed that patients with MSI tumours have the best 

prognosis and patients with MSS/EMT tumours have the shortest survival. The MSS/EMT 

subtype shares some properties with the GS subtype. (Cristescu et al. 2015). Alterations in the 

RTK–RAS signalling pathways, RTK amplifications and TP53 aberrations are often detected in 

CIN tumours. In addition to EGFR amplification, elevated levels of phosphorylated EGFR are 

observed in CIN tumours reflecting the functional significance of the amplification. (TCGA 2014). 

Especially gastro-oesophageal adenocarcinomas with CIN-F are enriched with focal, short and 

high-amplitude SCNAs. (Liu et al. 2018).  

RHOA and somatic CDH1 mutations are enriched in the GS subtype. RHOA is involved in 

controlling cell motility and contractility and thus mutations in both RHOA and CDH1 may 

contribute to the low cohesion growth pattern typical of diffuse-type tumours (Ridley et al. 2003; 

Hanahan & Weinberg 2011; TCGA 2014).   

2.7 Molecular classification of oesophageal adenocarcinoma 

Oesophageal adenocarcinomas have been observed to share their molecular profile with the CIN 

gastric adenocarcinomas to the extent that they cannot be consistently separated from each other at 

the molecular level. In contrast, oesophageal squamous cell carcinomas contain distinctly different 

mutations. EBV positive or MSI tumours have not been observed within the oesophagus, but 

adenocarcinomas arising around the GOJ include some EBV positive and MSI tumours. GS 

subtype is very rare in this area. The only differential feature among oesophageal and CIN gastric 

adenocarcinomas is seen in the extent of DNA hypermethylation, which is enriched in the 

oesophageal and most proximal CIN gastric tumours. (TCGA 2017). The characteristic features of 

oesophageal adenocarcinomas are summarised in Table 1.  
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Similar to CIN gastric adenocarcinomas, RTK alterations are typical of oesophageal 

adenocarcinomas (Secrier et al. 2017, TCGA 2017). The most common oncogenic alterations are 

found in ERBB2, which is either amplified or mutated in 32% of oesophageal adenocarcinomas. 

EGFR alterations can be found in 15% of oesophageal adenocarcinomas. (TCGA 2017). 

Barrett’s oesophagus predisposes to the development of oesophageal adenocarcinomas and thus 

these tumours have not been thought to be of gastric origin. However, it has been suggested that 

Barrett’s oesophagus could have its origin in the proximal stomach or GOJ (Wang et al. 2011), 

which could also explain the similar molecular features observed in oesophageal and gastric 

adenocarcinomas. (TCGA 2017). 

2.8 Molecular classification of colorectal adenocarcinoma 

The different molecular classification systems suggested for colorectal cancer have recognised three 

to six distinct subtypes (Jass 2007; Perez-Villamil et al. 2012; Schlicker et al. 2012; Budinska et al. 

2013; De Sousa E Melo et al. 2013; Marisa et al. 2013; Sadanandam et al. 2013; Roepman et al. 2014). 

The most stable subtypes appear to be those characterised by MSI-H and frequently associated with 

CIMP, and those enriched with mesenchymal gene expression due to EMT (Guinney et al. 2015; 

Bijlsma et al. 2017). About 75% of the hypermutated colon tumours have MSI-H, usually due to 

MLH1 promoter hypermethylation. The rest of the hypermutated tumours have somatic mutations 

in POLE or in genes encoding MMR proteins. (TCGA 2012). 

Integrating the available mutation, copy number, methylation, microRNA, proteome and survival 

data, four distinct consensus molecular subtypes (CMS) have been suggested for colorectal 

adenocarcinomas (Guinney et al. 2015; Dienstmann et al. 2017). These four subtypes comprise 86% 

of the tumours included in the analyses. The remaining 14% show mixed features, which could be 

due to intratumoural heterogeneity, or they could represent so-called transition phenotypes. RAS 

mutations are detected in all CMS subtypes of colorectal cancer, but specific biological differences 

in each of these subtypes may modify the response from anti-EGFR therapy even in RAS wt 

tumours. What those differences might be is not yet known. (Guinney et al. 2015). The consensus 

subtypes have been summarised in Table 2. 

CMS1 tumours typically contain dense immune cell infiltrates, which indicate immunological 

activation. This is also reflected in the increased expression of genes associated with the activation 

of type 1 T helper cells (Th1) and cytotoxic T cells. (Guinney et al. 2015). In comparison with the 

TCGA subtypes, the CMS1 group contains both MSI-H tumours and hypermutated tumours 

enriched with single-nucleotide variants (HM-SNV). The CMS system does not clearly discriminate 

between CIN and GS tumours (Liu et al. 2018). 
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Table 2. The consensus subtypes of colorectal adenocarcinoma and their characteristics together 

with a summary of the TCGA molecular subtypes (TCGA 2012; Guinney et al. 

2015; Dienstmann et al. 2017; Liu et al. 2018). 

 
 CMS1 CMS2 CMS3 CMS4 

 
Immune subtype 

(14%) 
Canonical subtype 

(37%) 
Metabolic subtype 

(13%) 
Mesenchymal 
subtype (23%) 

Clinicopathological 
characteristics 

Right > left, females > 
males  Left > right  

Advanced stage, 
worst prognosis 

Histological characteristic Poor differentiation, 
dense lymphocytic 

infiltrates Well-differentiated   

Overall genomic 

characteristics 

MSI-H, 

hypermethylation, 
hypermutation, active 

RTK and MAPK 
pathways 

Active Wnt and Myc 
pathways 

Hypermutation, active 

RTK and MAPK 
pathways 

Active TGF-β 

signalling 

Characteristic mutations BRAF  KRAS  

Characteristic 
amplifications Fewest SCNAs ERBB2 (4%)   

TCGA subtypes MSIa HM-SNV GS CIN 

    CIN-F CIN-B 

Clinicopathological 
characteristics 

Proximal colon, rare in 
descending colon and 

rectum  Right > left  

Distal 
colon, 

rectum 

Characteristic mutations 

BRAF (56%, mainly 

proximal colon) APC 
(41%) KRAS (26%) 

PIK3CA (30%) POLE 

APC (81%) KRAS NRAS 

BRAF PIK3CA SOX9 

TGF-β pathway 
genes; TP53 (16%)  

TP53 

(80%) 
APC 

(85%) 
KRAS 

NRAS 
BRAF 

PIK3CA 

Characteristic 
amplifications    

CDX2 
ERBB2  

Other features Hypermutation, 
epigenetic MLH1 

silencing, CDKN2A 

methylation, low Wnt 

signalling, IFN-γ signalling     
aMSI-H, CIMP-H tumours with epigenetic silencing of MLH1 and defective MMR. 

 
CIN, chromosomal instability; CIN-B, CIN broad; CIN-F, CIN focal; CMS, consensus molecular subtype; GS, genomic stability; 

HM-SNV, hypermutated tumours enriched with single-nucleotide variants; IFN-γ, interferon-γ; MAPK, mitogen-activated protein 

kinase; MSI-H, high level of microsatellite instability; RTK, receptor tyrosine kinase; SCNA, somatic copy number alteration; 
TCGA, The Cancer Genome Atlas. 

CMS2 tumours have retained their epithelial differentiation and are enriched with SCNAs. 

Activating alterations in the Wnt and Myc signalling pathways are typical (Guinney et al. 2015) but 

not exclusive to the CMS2 tumours (TCGA 2012). CMS3 tumours are characterised by 

deregulation of metabolic pathways responsible for processing different sugars, aminoacids and 

lipids (Dienstmann et al. 2017). About a third of these tumours are hypermutated and thus CMS3 

overlaps to some extent with the CMS1 subtype (Guinney et al. 2015). CMS3 tumours also share 

some molecular features with the GS subtype (TCGA 2012, TCGA 2014, Liu et al. 2018).  

CMS4 tumours are characterised by the activation of TGF-β-signalling and other pathways involved 

in EMT, invasion, angiogenesis and complement-mediated immune response. However, alterations 

in the TGF-β pathway components are also typical of the hypermutated tumours. (Guinney et al. 

2015). 
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2.9 Molecular classification of gastrointestinal adenocarcinomas 

A collective study on adenocarcinomas of the oesophagus, stomach, colon and rectum has revealed 

that all gastrointestinal adenocarcinomas share some molecular characteristics at the genomic, 

epigenomic, mRNA, microRNA and protein level, which is consistent with their common 

developmental origin (Liu et al. 2018). Based on their molecular characteristics, gastrointestinal 

adenocarcinomas can be identified as a distinct group of tumours among all different cancers 

(Hoadley et al. 2018).  

In comparison with other cancer types, gastrointestinal adenocarcinomas are observed to contain 

on average more somatic mutations, some of which are specific for the gastrointestinal tract. Also 

some genes associated with EGFR signalling pathways or gastrointestinal stem cells have higher 

expression levels in gastrointestinal adenocarcinomas than in other cancers. SCNAs typical of 

gastrointestinal adenocarcinomas include amplifications in EGFR, FGFR1, GATA4, GATA6 and 

IGF2 as well as deletions in APC and SOX9. Arm-level gain of the region (Chr13q), containing the 

tumour suppressor gene RB1 and transcription factor gene CDX2, is also common in 

gastrointestinal adenocarcinomas. (Liu et al. 2018).  

Although the classification systems have been able to define distinct tumour subtypes and recognise 

similarities between subtypes in different gastrointestinal organs, it is still uncertain whether or not 

these subtypes share a common origin. It has been suggested that they could arise from a so-called 

ground state, or canonical subtype, which diverges into different subtypes under the influence of 

various events. Alternatively, each subtype could be determined at the earliest stages of 

tumorigenesis, and the tumour would progress along that line throughout its development. (Bijlsma 

et al. 2017). The percentages of the five molecular subtypes for upper and lower gastrointestinal 

adenocarcinomas are summarised in Table 3. 

Table 3. The distribution of the molecular subtypes among upper and lower gastrointestinal 

adenocarcinomas (n = 921) (Liu et al. 2018). 

 EBV (n = 30) MSI (n = 138) HM-SNV (n = 19) GS (n = 625) CIN (n = 109) 

Upper GIACs 100% 54% 47% 47% 48% 

 

    

CIN-F 

(74%) 

CIN-B 

(26%) 

Lower GIACs 0% 46% 53% 53%   52% 

 
    

CIN-F 
(22%) 

CIN-B 
(78%) 

CIN, chromosomal instability; CIN-B, CIN broad; CIN-F, CIN focal; EBV, Epstein-Barr virus; GIAC, gastrointestinal 
adenocarcinoma; GS, genomic stability; HM-SNV, hypermutated tumours enriched with single-nucleotide variants; MSI, 
microsatellite instability. 

Hypermutated tumours form a distinct group among all gastrointestinal adenocarcinomas and can 

be divided into two subgroups: MSI tumours and POLE mutated tumours (HM-SNV) (TCGA 

2012; Palles et al. 2013; Liu et al. 2018).  

MSI tumours form the most consistent subtype among all gastrointestinal adenocarcinomas. In 

contrast, the EBV positive or GS tumours of the upper gastrointestinal tract contain alterations that 
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are not observed in the other subtypes. The co-occurrence of CIMP-H and MSI is predominantly 

observed in tumours located in distal stomach and proximal colon, while CIMP-H or MSI is rare in 

tumours of descending colon and rectum. The majority of CIMP-H MSI tumours display 

methylation of the tumour suppressor CDKN2A (encodes p16). Among all gastrointestinal 

adenocarcinomas, promoter hypermethylation is observed to silence particularly genes encoding 

DNA binding proteins such as transcription factors (Liu et al. 2018). 

The GS subtype differs most between the upper and lower gastrointestinal adenocarcinomas 

(Bijlsma et al. 2017). The upper gastrointestinal GS tumours comprise a more distinct subgroup 

than GS colorectal carcinomas, which display overlapping features with the CIN subtype. For 

example, loss of APC is equally common in both GS and CIN colorectal carcinomas. However, GS 

colorectal carcinomas are more frequently right- than left-sided, while the reverse is true for CIN 

tumours. (Liu et al. 2018).  

CIN is the most common molecular subtype among all gastrointestinal adenocarcinomas (Dulak et 

al. 2012; Liu et al. 2018). However, SCNAs are less common and less intense in the lower than in 

the upper gastrointestinal tumours. In colorectal CIN tumours, oncogene activation is more often 

obtained by mutation than amplification. With regard to SCNAs and somatic mutations, CIN-F 

and CIN-B subgroups are more similar to each other among colorectal than oesophagogastric 

tumours. Mutation patterns in colorectal CIN tumours also resemble more the oesophagogastric 

CIN-B than CIN-F tumours. Nevertheless, CIN-F, but not CIN-B, colorectal tumours are 

associated with decreased survival. (Liu et al. 2018). 

2.10 Biomarkers and signalling pathways 

2.10.1 Receptor tyrosine kinases 

Receptor tyrosine kinases are evolutionarily conserved cell membrane receptors, of which 58 are 

known to be expressed in human cells (Lemmon & Schlessinger 2010; Yarden & Pines 2012). All 

RTKs have an extracellular ligand-binding region, a single helical transmembrane region, and a 

domain with tyrosine kinase activity together with regulatory regions on the cytoplasmic side. The 

ligand is typically a growth factor. RTKs transmit information from the mesenchyme to the inside 

of the cell, and they are involved in the regulation of several cellular processes such as cell 

proliferation, cell migration, cell cycle and angiogenesis the aberrations in which are often beneficial 

for cancer cell survival. In human cancers, altered RTK activation is obtained by increased 

autocrine signalling, chromosomal translocations, receptor overexpression or by gain-of-function 

mutations. (Lemmon & Schlessinger 2010).  

In general, the active form of RTKs is a dimer, the formation of which can be induced by ligand 

binding. Alternatively, some RTKs form dimers on the cell surface even in the absence of the 
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ligand, and the ligand is only needed for inducing structural changes that lead to receptor activation. 

(Lemmon & Schlessinger 2010).  

The activation of the kinase is followed by the recruitment of several cytoplasmic signalling 

molecules containing Src homology-2 (SH2) and phosphotyrosine-binding (PTB) domains. They 

interact with the RTKs either binding directly to phosphorylated tyrosines in the receptor or 

indirectly via docking proteins. A single RTK can interact with several different proteins leading to 

a complex intracellular signalling network. (Lemmon & Schlessinger 2010). The networks 

associated with different RTKs often have overlapping components but can nevertheless produce 

distinct effects. The behaviour of a specific signalling route is to a great extent determined by the 

expression levels of the different components. (Jones et al. 2006). The variability in cellular 

responses to RTK signalling is partly related to changes in positive and negative feedback 

mechanisms. The inputs from the several RTKs are thought to converge on a relatively small 

number of conserved processes such as mitogen-activated protein kinase (MAPK), PI3K and Ca2+ 

signalling. From there, the signalling diverges again to produce the various effects on different 

cellular functions. (Lemmon & Schlessinger 2010).  

2.10.2 EGFR/ERBB family  

The EGFR/ERBB family includes four members: EGFR, ERBB2 (HER2), ERBB3 and ERBB4 

(Yarden & Sliwkowski 2001; Hynes & MacDonald 2009; Lemmon & Schlessinger 2010; Arteaga & 

Engelman 2014). The ERBB signalling has effects on cell proliferation and migration, adhesion, 

differentiation and apoptosis. ERBB receptor heterodimers have been shown to be more mitogenic 

and transforming than homodimers, and heterodimers containing ERBB2 are the most potent 

complexes. (Yarden & Sliwkowski 2001, Hynes & MacDonald 2009).  

The extracellular part of an ERBB receptor monomer consists of four domains (I – IV) among 

which domains I and III bind the activating ligand (Lemmon & Schlessinger 2010). ERBBs can 

bind to several ligands, which are stored in the mesenchyme (Yarden & Sliwkowski 2001). In the 

absence of a ligand, the intracellular tyrosine kinase domains interact in an autoinhibitory fashion, 

which is reversed by ligand binding. When a ligand binds to a monomeric receptor tyrosine kinase, 

the receptor monomers dimerise, and one of them phosphorylates the other at the kinase domain, 

which activates the cytoplasmic catalytic function. (Hynes & MacDonald 2009; Lemmon & 

Schlessinger 2010; Arteaga & Engelman 2014). 

All ERBB ligands have an EGF-like domain, which is a motif of about 50 amino acids (Jones et al. 

1999; Yarden & Sliwkowski 2001). Eleven different ligands are known to bind the different ERBB 

receptors, and in human malignancies they mainly exert their activating effect through autocrine 

secretion (Yarden & Pines 2012). EGFR binds not only EGF but also amphiregulin, epiregulin, 

betacellulin, TGF-α, epigen and heparin-binding EGF-like growth factor (HBEGF). HER2 has no 

known ligand. ERBB3 binds neuregulins (NRG) 1 and 2 but has no or little kinase activity. ERBB4 
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binds NRG1 – 4 in addition to epiregulin, betacellulin and HBEGF. (Jones et al. 1999; Yarden & 

Sliwkowski 2001; Hynes & MacDonald 2009; Yarden & Pines 2012). The ERBB receptors may also 

respond to other signals including hormones, neurotransmitters and stress stimuli such as 

ultraviolet light (Carpenter 1999). 

The ERBB family members generate potent signals needed for the initiation and maintenance of 

several types of cancer (Yarden & Sliwkowski 2001; Arteaga & Engelman 2014). In different cancer 

types, the ERBB pathway may become hyperactivated by various mechanisms such as 

overproduction of ligands or receptors, or by constant activation of receptors due to mutations 

(Yarden & Sliwkowski 2001). In colorectal cancer, mutations or amplifications in ERBB genes have 

been detected in 13% of the non-hypermutated and 53% of the hypermutated tumours (TCGA 

2012).  

2.10.3 Epidermal growth factor receptor 

The association between ERBBs and cancer was first recognised in the 1980s. The product of a 

viral oncogene, analogous to EGFR, was observed to be tumorigenic in birds affected by the avian 

erythroblastosis virus. (Yarden & Sliwkowski 2001; Yarden & Pines 2012; Arteaga & Engelman 

2014).   

EGFR is has an essential role in embryonal signalling pathways regulating the development of many 

organs such as brain, kidney, liver and gastrointestinal tract as well as pathways involved in tooth 

growth and eye opening (Miettinen et al. 1995; Threadgill et al. 1995; Sibilia et al. 1998). It is also 

involved in promoting epithelial proliferation and differentiation in, for example, the skin, lung and 

pancreas. (Yarden & Sliwkowksi 2001).  

EGFR can function as a homodimer or it can form heterodimers with ERBB2. Ligand binding 

induces receptor dimerization, which is both necessary and sufficient for the kinase activity in wild-

type receptors. (Yarden & Pines 2012). However, the exact structural changes required for EGFR 

activation are still unclear. EGFR can also be activated without ligand binding if the autoinhibitory 

mechanism is disrupted by mutation. (Lemmon & Schlessinger 2010).  

Both EGFR overexpression and mutations are observed in several human malignancies (Yarden & 

Sliwkowski 2001; Hynes & MacDonald 2009; Yarden & Pines 2012). EGFR can be overexpressed 

in head and neck, breast, bladder, prostate, kidney and non-small-cell lung cancer as well as in 

gliomas. The overexpression often occurs due to EGFR amplification, which is most common in 

glioblastomas where it is observed in as many as 50% of patients. EGFR overexpression has also 

been associated with reduced survival in, for example, breast cancer and gliomas. (Yarden & 

Sliwkowski 2001; Yarden & Pines 2012). EGFR mutations are observed especially in gliomas and 

lung, ovarian and breast cancer (Yarden & Sliwkowski 2001; Lemmon & Schlessinger 2010; Yarden 

& Pines 2012; Arteaga & Engelman 2014).  
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EGFR expression has been reported in about 10 – 80% of gastric (Zhang et al. 2017) and 50 – 80% 

of colorectal cancers (Cunningham et al. 2004; Scartozzi et al. 2007) depending on the evaluation 

criteria. EGFR amplification has been detected in 5.3% of gastric adenocarcinomas but only 0.4% 

of colorectal adenocarcinomas (Cerami et al. 2012; Gao et al. 2013). Instead of true amplification, 

increased EGFR GCN in colorectal cancer is more often observed to be related to Chr7 polysomy 

(Ålgars et al. 2011).  It is thought that EGFR overexpression can lead to malignant transformation 

only in the presence of a ligand. Accordingly, EGF-like ligands are often overexpressed together 

with EGFR in malignant tumours. (Yarden & Sliwkowski 2001). 

Anti-EGFR antibodies cetuximab and panitumumab are indicated for the treatment of RAS wt 

metastatic colorectal cancer (Cunningham et al. 2004; Benvenuti et al. 2007; Di Fiore et al. 2007). 

Mutated RAS can directly activate downstream signalling without input from the EGFR, which 

could explain the lack of therapeutic response from these antibodies in patients with RAS mutated 

tumours (Arteaga & Engelman 2014). However, only about 60 % of the RAS wt patients are 

responsive to anti-EGFR treatment, which implies that some additional mechanisms affect the 

antibody response (Misale et al. 2014). This has led to proposals of new predictive methods such as 

EGFR GCN assessment. Indeed, it has been shown that RAS, BRAF and PIK3CA wt colorectal 

cancer patients with EGFR GCN ≥ 4.0 tumours have a better treatment response and increased 

progression-free survival (PFS) than patients with EGFR GCN < 4.0 tumours regardless of the 

RAS, BRAF or PIK3CA mutation status (Ålgars et al. 2017). 

2.10.4 HER2/ERBB2 

ERBB2 was first identified as a mutated ortholog (Neu) in carcinogen-induced brain tumours of 

rats (Yarden & Pines 2012; Arteaga & Engelman 2014). Overexpression of HER2 has been 

observed in breast, lung, pancreatic, colon, oesophageal, endometrial and cervical cancer. The 

overexpression is most often due to gene amplification, which is detected in up to 30% of breast 

cancers (Yarden & Sliwkowski 2001) and 13% of gastric cancers (Cerami et al. 2012; Gao et al. 

2013). HER2 amplification has been associated with reduced survival in, for example, breast 

(Yarden & Sliwkowski 2001; Yarden & Pines 2012; Arteaga & Engelman 2014) and gastric cancer 

(Tanner et al. 2005, Gravalos & Jimeno 2008; Begnami et al. 2011). 

With regard to anti-HER2 antibody treatment, overexpression of HER2 is determined by IHC and 

in situ hybridisation (ISH). Tumours with either strong protein expression (3+) or moderate protein 

expression (2+) together with gene clusters in ISH are defined as showing HER2 overexpression. 

HER2 mutations are also observed in several cancers but almost solely in tumours without HER2 

amplification (Arteaga & Engelman 2014).  

ERBB2 has not been observed to have any specific ligand. (Klapper 1999 et al.; Yarden & Pines 

2012; Arteaga & Engleman 2014). However, the conformation of ERBB2 favors dimerisation 

(Arteaga & Engelman 2014), and the formation of ERBB2-containing heterodimers are preferred 
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over other combinations (Tzahar et al. 1996; Graus-Porta et al. 1997; Olayioye et al. 1998). Especially 

ERBB2 – ERBB3 heterodimers are potent activators of both MEK – ERK and PI3K – AKT 

pathways (Yarden & Pines 2012). ERBB2 amplification has been detected to promote the 

formation of both ERBB2 homo- and heterodimers (Olayioye et al. 1998). ERBB2 homodimer 

formation can also be induced by point mutations in the transmembrane region of the receptor or 

by antibody binding (Olayioye et al. 1998; Klapper et al. 1999). 

2.10.5 EGFR/ERBB signalling 

The main determinants of the specificity and potency of intracellular EGFR/ERBB signalling are 

the intracellular proteins that bind to the phosphorylated tyrosines after receptor dimerisation. The 

type of these proteins, and thus the output, is determined by the ligand and by the structure of the 

intracellular part of the receptor monomer. Thus the ability to form heterodimers results in more 

diverse intracellular signalling. In addition, the amount of receptor monomers, especially ERBB2, 

adjusts the function of the network. (Olayioye et al. 1998; Yarden & Pines 2012).  

The central signalling pathways connected to the ERBB receptors are the RAS-RAF-MEK-ERK 

pathway and the PI3K-AKT-mTOR pathway. Co-occurring alterations in the RAS and PI3K 

signalling cascades can be observed in about one-third of colorectal adenocarcinomas. (TCGA 

2012). Although sharing some intracellular secondary messenger pathways, each ERBB receptor is 

coupled with a distinct set of signalling proteins. The positive feedback mechanisms of EGFR 

signalling include the autocrine production of EGFR ligands, while negative feedback is provided 

by receptor endocytosis and ubiquitination-mediated protein degradation. (Yarden & Sliwkowski 

2001; Yarden & Pines 2012; Arteaga & Engelman 2014). Other pathways associated with ERBB 

receptors include JAK/STAT, Wnt and Src kinase pathways (Yarden & Sliwkowski 2001). A 

simplified depiction of ERBB signalling pathways is presented in Figure 1. 

EGFR and ERBB2 use the same signalling pathways in both cancer cells and normal cells. 

However, constitutively active signalling, together with impaired feedback regulation, contributes to 

the abnormal properties of cancer cells. (Hynes & MacDonald 2009). This state of aberrant 

signalling can be obtained by, for example, the overexpression of ERBB ligands (Arteaga & 

Engelman 2014) or by mutations. KRAS, NRAS and BRAF mutations result in continuous 

activation of their signalling pathways and thus promote cell proliferation (Weisenberger et al. 

2006). KRAS mutations are present in about 40%, NRAS mutations in 9% and BRAF mutations in 

9 – 14% of colorectal cancers (Weisenberger et al. 2006; Cerami et al. 2012; Gao et al. 2013). 

The main mechanism to turn off EGFR signalling is ligand-mediated receptor endocytosis. After 

ligand binding, EGFR molecules concentrate on clathrin-coated regions of the plasma membrane, 

which then invaginate to form endocytic vesicles. In these vesicles, the receptor parts are degraded 

by hydrolytic enzymes. In contrast, the other three ERBB proteins are usually recycled back to the 

cell surface instead of degradation. (Yarden & Sliwkowski 2001). Sorting to degradation is 
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determined by the composition of the dimer: phosphorylated EGFR homodimers are directed 

primarily to lysosomal degradation from the endosome by ubiquitinylation, while 

heterodimerisation with ERBB2 decreases the rate of endocytosis and increases the rate of recycling 

back to the cell membrane. (Levkowitz et al. 1998; Waterman et al. 1998; Yarden & Sliwkowski 

2001).  

The therapeutic effect of anti-EGFR antibodies is thought to occur through the downregulation of 

the receptor from the cell membrane. Consequently, signalling via the affected pathway ceases and 

this may inhibit cell proliferation and induce apoptosis. Trastuzumab may be able not only to 

inhibit intracellular signalling by uncoupling HER2-containing dimers (Arteaga & Engelman 2014) 

but also to recruit natural killer cells by its constant region. This can induce antibody-dependent 

cell-mediated cytotoxicity (ADCC), which could contribute to the therapeutic effect. (Yarden & 

Pines 2012; Arteaga & Engelman 2014). In contrast, ADCC may not be central to the effect of 

cetuximab and panitumumab (Arteaga & Engelman 2014). 

 

Figure 1. The main EGFR signalling pathways associated with transcriptional regulation and 

typically activated in cancer cells. Modified from Yarden & Sliwkowski 2001; Hynes & Lane 2005; 

Ciardiello & Tortora 2008. 
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2.10.6 Resistance to ERBB-targeting therapies 

Several different ERBB-targeting antibodies and tyrosine kinase inhibitors (TKIs) have been 

developed for the treatment of various cancers. Among TKIs, gefitinib and erlotinib are used for 

patients with non-small cell lung cancer (NSCLC) containing activating EGFR mutations. (Yarden 

& Pines 2012). TKIs predominantly bind to mutated EGFR, but they are not as effective as anti-

EGFR antibodies against tumours that depend on ligand-mediated receptor activation (Arteaga & 

Engelman 2014). Lapatinib is a dual inhibitor of EGFR and ERBB2, and it is approved for patients 

with HER2-positive breast cancer. However, the clinical efficacy of ERBB-targeting therapies is 

known to vary between patients (primary or intrinsic resistance), and a significant number of 

patients become resistant to these therapies (secondary or acquired resistance). (Yarden & Pines 

2012). Both types of resistance may involve the same molecular mechanisms (Arteaga & Engelman 

2014).   

A well-known example of primary resistance to anti-EGFR antibodies is the presence of RAS 

mutations in colorectal carcinomas. In fact, the antibody treatment may even be harmful for 

patients with RAS mutated tumours. (Amado et al. 2008; Karapetis et al. 2008; Bokemeyer et al. 

2009; Van Cutsem et al. 2009; Peeters et al. 2010; Bokemeyer et al. 2011; Van Cutsem et al. 2011; 

Douillard et al. 2013; Bokemeyer et al. 2015; Van Cutsem et al. 2015; Peeters et al. 2015; Van Cutsem 

et al. 2016; Stintzing et al. 2017). The KRAS and NRAS codons that should be tested for mutations 

include codons 12 and 13 in exon 2, codons 59 and 61 in exon 3 and codons 117 and 146 in exon 4 

(Allegra et al. 2016).  

However, about 40% of patients with RAS wt colorectal cancer do not respond to anti-EGFR 

therapy (Misale et al. 2014). Among them, alterations such as BRAF, PI3K and PTEN mutations 

have been implicated in causing primary resistance to anti-EGFR therapies (De Roock et al. 2011; 

Misale et al. 2014). Some evidence suggests that patients with RAS wt/BRAF wt tumours could 

benefit more from anti-EGFR therapy than patients with RAS wt/BRAF mutated tumours 

(Pietrantonio et al. 2015; Rowland et al. 2015). High levels of amphiregulin and epiregulin have also 

been reported to predict favourable response to cetuximab (Khambata-Ford et al. 2007). 

Acquired resistance to ERBB-targeting treatments can develop either through changes in the target 

receptor or by the utilisation of an alternative signalling pathway that circumvents the inhibitory 

effect of the antibody (Yarden & Pines 2012; Arteaga & Engelman 2014). For example, resistance 

to cetuximab, but not to panitumumab, has been observed in patients with an acquired EGFR 

mutation (S492R) preventing antibody binding (Montagut et al. 2012; Bertotti et al. 2015). Aberrant 

HER2 signalling, either due to ERBB2 amplification or increased NRG1 levels, may also contribute 

to cetuximab resistance (Yonesaka et al. 2011; Bertotti et al. 2015). In addition, the emergence of 

activating mutations in downstream signalling pathways can promote resistance. It is also possible 

that intrinsically resistant subclones are present in the tumour due to tumour heterogeneity even 

before starting the ERBB-targeting therapy and subsequently expand under the selective pressure 

from the treatment. (Diaz et al. 2012; Misale et al. 2012; Arteaga & Engelman 2014; Misale et al. 
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2014). Treatment resistance related to the usage of single agents might be overcome by the 

development of combination therapies targeting more than one component of the ERBB network. 

Alternatively, a key regulator could be targeted by two or more drugs with different mechanisms of 

action. (Yarden & Pines 2012). 

2.10.7 Cancerous inhibitor of PP2A 

One of the endogenous inhibitory proteins of PP2A is the cancerous inhibitor of PP2A (CIP2A) 

(Junttila et al. 2007; Westermarck & Hahn 2008). The specific structure of CIP2A is unknown, and 

it has not been assigned to any enzyme gene family. Currently, among the PP2A complexes, two 

forms with specific B subunits are known to be involved in CIP2A-mediated inhibition. (Khanna et 

al. 2013b). CIP2A is expressed at very low levels in normal cells (Junttila et al. 2007), but it is 

overexpressed in several cancers such as head and neck squamous cell carcinoma (Junttila et al. 

2007), gastric adenocarcinoma (Khanna et al. 2009), breast carcinoma (Côme et al. 2009; Laine et al. 

2013), serous ovarian carcinoma (Böckelman et al. 2011) and colorectal adenocarcinoma 

(Böckelman et al. 2012).  

One explanation for the widespread overexpression of CIP2A in different malignancies might be 

related to DNA damage and the activation of DNA damage response proteins in cancer cells. One 

of these proteins, checkpoint kinase 1 (CHK1) has been observed to promote CIP2A transcription 

and c-Myc activity. (Khanna et al. 2013a).  

By inhibiting PP2A from dephosphorylating Myc proto-oncogene protein (c-Myc), CIP2A stabilises 

c-Myc and promotes malignant transformation. CIP2A can bind directly to c-Myc that is associated 

with the PP2A protein complex. The stabilisation, and inhibition of proteolytic degradation, is 

attained by selectively keeping the serine 62 of c-Myc in phosphorylated form, which enables its 

function as a transcription factor. Inversely, inhibition of CIP2A leads to increased PP2A 

dephosphorylation activity. (Junttila et al. 2007; Westermarck & Hahn 2008). Among the different B 

subunit isoforms, PPP2R5A is mediating the regulation of serine 62 phosphorylation in c-Myc. 

(Kauko & Westermarck 2018). c-Myc can also positively regulate CIP2A, and thus c-Myc activation 

by, for example, gene amplification could contribute to the inhibition of PP2A. (Khanna et al. 2009; 

Myant 2015 et al.; Kauko & Westermarck 2018). CIP2A has also been shown to function 

independently of c-Myc at least in promoting cell migration (Niemelä et al. 2012).  

PP2A can also act as a tumour suppressor by inhibiting the Wnt/β-catenin signalling pathway 

(Westermarck & Hahn 2008; Perrotti & Neviani 2013), and has a role in the regulation of 

senescence and TP53 mediated tumour suppression (Laine et al. 2013). TP53 activity can inhibit the 

expression of E2F1 transcription factor, which leads to the suppression of CIP2A expression. 

Further, CIP2A suppression can inhibit E2F1 expression by PP2A-mediated dephosphorylation 

resulting in cancer cell senescence. Conversely, the positive feedback loop between E2F1 and 
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CIP2A can contribute to senescense inhibition and tumour growth if TP53 activity is lost. (Laine et 

al. 2013; Laine & Westermarck 2014).  

In addition to malignant transformation, CIP2A has a role in promoting anchorage-independent 

growth, cancer cell viability and in protecting the cancer cells from apoptosis or senescence related 

to cancer therapies (Côme et al. 2009; Khanna et al. 2009; Böckelman et al. 2011; Dong et al. 2011; 

Lucas et al. 2011; Niemelä et al. 2012; Laine et al. 2013). CIP2A is also involved in the regulation of 

mitosis and cell cycle (Kim et al. 2013b).  

High CIP2A mRNA or protein levels have been associated with poor prognosis in, for example, 

gastric (Khanna et al. 2009), breast (Laine et al. 2013) and colorectal (Wiegering et al. 2013) cancer as 

well as with poor histological differentiation in breast (Côme et al. 2009) and colorectal (Böckelman 

et al. 2011) cancer. CIP2A overexpression has also been associated with EGFR overexpression and 

EGFR amplification in serous ovarian carcinoma (Böckelman et al. 2011). It has been found that 

EGFR signalling upregulates CIP2A expression through the activation of the EGFR-MEK1/2-

ETS1 pathway (Khanna et al. 2011; Khanna & Pimanda 2016).  

It has been noticed in vitro that in order to undergo malignant transformation, the cells require both 

the constitutive activity of mutated RAS and the inhibition of PP2A (Westermarck & Hahn 2008). 

CIP2A-mediated inhibition of PP2A can function synergistically with RAS activity to drive the cell 

towards a more malignant phenotype. (Junttila et al. 2007; Mathiasen et al. 2012). In addition, both 

CIP2A- and RAS-mediated signalling have been shown to share several common phosphorylation 

target proteins (Kauko et al. 2015). They may also have overlapping regulatory functions and be co-

operating during cancer progression (Hahn et al. 2002). In survival analyses, patients with both high 

CIP2A expression and KRAS or NRAS expression, or KRAS mutations, have been observed to 

have worse survival than patients with low CIP2A and KRAS/NRAS expression (Kauko et al. 

2015). 

Molecules activating PP2A or inhibiting the endogenous PP2A inhibitors might have potential as 

cancer treatment (Kauko & Westermarck 2018; O’Connor et al. 2018). As many existing cancer 

therapies are protein kinase inhibitors (Eifert & Powers 2012), additional therapeutic benefits might 

be obtained by combining kinase inhibitors with PP2A reactivating agents (Westermarck & Hahn 

2008; Perrotti et al. 2013; Kauko & Westermarck 2018; O’Connor et al. 2018).  

2.11 Tumour infiltrating lymphocytes and immunological therapies 

The prominent lymphocytic infiltration observed in some tumours has been associated with the 

presence of neoantigens that have triggered a cell-mediated immune response against cancer cells 

(Sæterdal et al. 2001; Segal et al. 2008). The production of these neoantigens can result from a 

hypermutated phenotype as observed for example in MSI-H tumours (Sæterdal et al. 2001; Llosa et 
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al. 2015). The most frequently predicted neoantigens in cancer include KRAS/NRAS/HRAS and 

BRAF V600 mutations (Ding et al. 2018; Thorsson et al. 2018). 

Lymphocytic infiltrations associated with MSI-H contain mainly cytotoxic T cells (CD8+) and type 

1 helper T cells (Th1, CD4+) (Phillips et al. 2004; Llosa et al. 2015), and the overall number of 

frameshift mutations in MSI-H colorectal cancer tumours has been associated with the density of 

tumour infiltrating lymphocytes (Tougeron et al. 2009). BRAF mutated tumours have been 

observed to contain a higher proportion of CD8+ T cells than NRAS mutated tumours, and the 

predominance of CD8+ T cells has been associated with a better outcome (Ding et al. 2018; 

Thorsson et al. 2018). Overall, the presence of a prominent lymphocytic infiltration has been 

associated with an improved survival regardless of clinical stage (Galon et al. 2006; Ogino et al. 2009; 

Mlecnik et al. 2011). In contrast, low levels of T cell infiltration associate with poor prognosis even 

in patients with stage I colorectal tumours (Galon et al. 2006).  

The immune response triggered by the neoantigens can be suppressed by immune checkpoint 

molecules such as PD-1 and PD-L1. These proteins are highly expressed in the infiltrating immune 

cells and tumour cells in MSI-H tumours. (Llosa et al. 2015). Monoclonal antibodies against PD-1 

and PD-L1/2 have been implicated to provide clinical benefit also in the treatment of metastatic or 

recurrent PD-L1-positive gastric cancer (Muro et al. 2016) and metastatic MSI-H colorectal cancer 

(Le et al. 2015; Le et al. 2017). 
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3 AIMS OF THE STUDY 

The specific aims of this study were: 

1. To study the prevalence, clinicopathological associations and prognostic role of EGFR and 

HER2 protein expression and gene amplification in intestinal-type adenocarcinomas of the 

stomach, gastro-oesophageal junction and distal oesophagus.  

2. To study the prevalence of EBV positivity and MSI together with aberrant E-cadherin and 

TP53 expression in intestinal- and diffuse-type oesophagogastric adenocarcinomas using 

next-generation tissue microarray. This information was combined with the Laurén 

classification and EGFR and HER2 amplification data to identify subgroups with distinct 

molecular and clinicopathological characteristics. 

3. To study the association between CIP2A expression and clinical response to long-course 

(chemo)radiotherapy in rectal cancer patients. To support the finding, the effect of CIP2A 

suppression by siRNA on the viability of colorectal cancer cells after irradiation was 

examined in vitro. 

4. To analyse the EGFR GCN change between the primary and recurrent tumours from 

colorectal cancer patients. The EGFR GCN change among patients treated with anti-EGFR 

therapy after primary surgery was compared with the GCN change among patients not 

exposed to anti-EGFR antibodies. 
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4 PATIENTS AND METHODS 

4.1 Patients and tumours (I – IV) 

All of the studies were retrospective in nature. The characteristics of the patients and tumours 

included in the studies I – IV are presented in Table 4. The materials and methods are presented in 

more detail in the original publications I – IV. 

Table 4. The clinicopathological characteristics of the patients and the gastric and colorectal 

tumours included in studies I – IV.  

 
Gastric cancer Colorectal cancer 

 Study I Study II  Study III  Study IV 

Number of patients 220 244  210  80 

Median age in years 

(range) 74 (33–93) 72 (33–91)  70 (34–92)  66 (34–87) 

Median follow-up time 

in years 10.5 10.4  6.2  8.1 

Patient sex       

Female 79 (35.9) 101 (41.4)  89 (42.4)  38 (47.5) 

Male 141 (64.1) 143 (58.6)  121 (57.6)  42 (52.5) 

Histological type       

Intestinal 220 190 (77.9)     

Diffuse  54 (22.1)     

Gradea       

I  30 (13.6) 17 (7.0)  32 (15.2)  9 (11.3) 

II 103 (46.8) 93 (38.1)  135 (64.3)  55 (68.8) 

III 87 (39.5) 134 (54.9)  36 (17.1)  14 (17.5) 

KRAS status       

wild-type      47 (58.8) 

mutated      33 (41.3) 

Location of tumour       

Distal oesophagus 20 (9.1) 19 (7.8) Colon   40 (50.0) 

GOJ/cardia 63 (28.6) 60 (24.6)     

Corpus 65 (29.5) 106 (43.4) Rectum 210 (100.0)  40 (50.0) 

Antrum/pylorus 72 (32.7) 59 (24.2)     

Postoperative stageb       

I 59 (26.8) 46 (18.9)  56 (26.7)  7 (8.8) 

II 83 (37.7) 102 (41.8)  70 (33.3)  27 (33.8) 

III 64 (29.0) 83 (34.0)  82 (39.0)  42 (52.5) 

IV 14 (6.4) 13 (5.3)    4 (5.0) 
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Gastric cancer Colorectal cancer 
  

 Study I Study II  Study III  Study IV 

Residual tumourc   CRM (mm)    

R0 167 (75.9) 180 (73.8) 0 15 (7.1)   

R1 24 (10.9) 34 (13.9) 0 – 2 24 (11.4) < 2 13 (16.3) 

R2 17 (7.7) 20 (8.2) > 2 117 (55.7) ≥ 2 28 (35.0) 

Rx 12 (5.5) 10 (4.1) ND 54 (25.7)  38 (48.8) 

Preoperative therapy       

Chemotherapy 18 (8.2) 29 (11.9) 

Short-course 

RTd 89 (42.4)  10 (12.5) 

   

Long-course 

(C)RTd 51 (24.3)  7 (8.8) 

No treatment 202 (91.8) 215 (88.1) No RT 70 (33.3)  63 (78.8) 

Disease recurrence (≥ 

6 months after dg)e 

  Disease 

recurrence (all 

recurrences) 

   

Yes 58 (29.8) 73 (29.9)  67 (31.9)   

No 137 (70.3) 134 (54.9)  143 (68.1)   

Recurrence site  

(≥ 6 months after dg)f 

  Recurrence site 

(all recurrences) 

   

Local 21 (9.5) 24 (9.8)   18 (8.6)  21 (26.3) 

Distant 37 (16.8) 49 (20.1)  49 (23.3)  59 (73.8) 

Tumour regressiong       

   Poor 26 (51.0)    

   Moderate 15 (29.4)   

   Excellent 10 (19.6)    

Antibody therapyh       

Anti-EGFR      24 (30.0) 

Anti-HER2 5 (2.3) 5 (2.0)     

Patient status at the 
end of follow-up 

      

Alive 55 (25.0) 49 (20.1)  114 (54.3)  22 (27.5) 

Dead 165 (75.0) 195 (79.9)  96 (45.7)  58 (72.5) 
aGrade could not be determined for seven tumours in study III and two tumours in study IV. 
bAccording to the WHO Classification manual (2010) for studies I – II. The TNM classification applicable at the time 

of surgery was used for study III (Sobin & Wittekind 2002). In study III, no vital tumour was observed in two 

patients. 
cDetermined only for gastric and oesophageal tumours.  
dShort‐course RT consisted of a total dose of 25 Gy delivered over 5 days in 5 Gy fractions and long‐course RT was 
given in 1.8 Gy fractions to a total dose of 50.4 Gy over 6 weeks with or without chemotherapy.  
eIn study I, 14 patients had metastatic disease at the time of primary diagnosis and 11 patients < 6 months after 

diagnosis. In study II, 13 patients had metastatic disease at the time of primary diagnosis and 22 patients < 6 months 

after diagnosis. Disease recurrence was not known for two patients. In study III, follow‐up information was available 

for 206 patients. 
fIn study I, disease recurrences < 6 months after diagnosis included two local recurrences and nine distant 

metastases. In study II, disease recurrences < 6 months after diagnosis included six local recurrences and sixteen 

distant metastases. 
gTumour regression was determined only after long-course (chemo)radiotherapy. 
hAnti-EGFR therapy included either cetuximab or panitumumab, with or without irinotecan. Anti-HER2 therapy was 

trastuzumab administered together with chemotherapy. 

 

CRM, circumferential resection margin; (C)RT, (chemo)radiotherapy; dg, diagnosis; GOJ, gastro-oesophageal 

junction; ND, not determined.  
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4.1.1 Gastric cancer patients (I – II) 

The study population in the original publications I – II consisted of patients diagnosed with 

adenocarcinoma of the stomach, gastro-oesophageal junction or distal oesophagus at the Turku 

University Hospital in 1993–2012. Intestinal-type tumours from thirty patients included in study I 

were excluded from study II due to insufficient sample material for next-generation tissue 

microarray (ngTMA). 

Primarily, tissue samples from surgical specimens were used in study I. Representative biopsies 

were analysed in case of 22 patients because four patients were not operated due to stage IV disease 

at the time of diagnosis and 18 patients had received perioperative chemoradiotherapy resulting in 

insufficient surgical material for immunohistochemistry and in situ hybridisation.  

4.1.2 Rectal cancer patients (III) 

The study population in the original publication III consisted of 210 rectal cancer patients with 

tumours located in either middle or distal rectum. They were operated at Turku University Hospital 

in 2000–2009. Patients with superficial tumours operated by local excision and patients with distant 

metastases at the time of diagnosis were excluded from the study. The patients received either 

short‐course preoperative RT, long‐course preoperative (C)RT or no treatment before surgery. 

Long-course RT was given with (n = 43) or without (n = 8) chemotherapy. Chemotherapy included 

either 5-fluorouracil (5-FU, n = 5) or capecitabine (n = 38). The type of treatment was chosen 

based on preoperative tumour staging. Patients with established high‐risk features were treated with 

adjuvant chemotherapy.  

Tumour regression after long‐course (C)RT was determined according to a simplified classification 

based on Dworak and Rödel scales (Dworak et al. 1997; Rödel et al. 2005; Korkeila et al. 2009; 

Avoranta et al. 2012). The response to RT was divided into three categories: poor (only minimal or 

no tumour regression), moderate (some detectable vital tumour cells or cell groups), or excellent 

response (very few or no detectable tumour cells). 

4.1.3 Colorectal cancer patients (IV) 

The study population in the original publication IV consisted of 80 patients treated for colorectal 

cancer at the Turku University Hospital and Central Finland Central Hospital in 2000–2015. Three 

of the Turku patients had their liver metastasis resection performed at the Helsinki University 

Hospital.  

Altogether 24 patients were treated with anti-EGFR therapy. Of those, the relationship between 

EGFR GCN change and anti-EGFR antibody treatment was analysed in 14 KRAS wt patients 
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whose primary tumour samples were obtained prior to and recurrent tumour samples after the 

administration of anti-EGFR therapy. The EGFR GCN of their tumour samples was compared to 

the samples of patients having received adjuvant chemotherapy or no adjuvant therapy after 

primary surgery. In addition, the clinical response to anti-EGFR antibody treatment was evaluated 

in 13 patients receiving antibodies before the sample was obtained from the recurrent tumour. The 

evaluation was performed by computed tomography (CT) or magnetic resonance imaging (MRI) 

according to the Response Evaluation Criteria in Solid Tumors (RECIST) (Eisenhauer et al. 2009). 

4.2 Immunohistochemistry, in situ hybridisation, Western blot and KRAS 

mutation analysis 

4.2.1  Antibodies, in situ hybridisation probes and staining procedures (I – IV) 

The same EGFR and HER2 IHC and SISH samples were included in studies I – II.  

The antibodies and staining procedures used in studies I – IV are described in more detail in Table 

5 together with specifics of the KRAS mutation analysis. The IHC and in situ hybridisation scoring 

principles are described in Table 6. 

Table 5. The antibodies and in situ hybridisation probes used in studies I – IV together with 

specifics of KRAS mutation analysis used in study IV.  

IHC antibody 

(clone) 

Dilution Tissue 

sections 

Reagents, signal detection, 

procedures 

Antibody/

probe 

incubation 
EGFR monoclonal 

(5B7)a 

Ventana/Roche 

ready-to-use 3 μm ultraView Universal DAB Detection Kit, 

BenchMark XT (Ventana/Roche) 

 

HER2 monoclonal 
(4B5) 

Ventana/Roche 

ready-to-use 
” ”  

MLH1 (G168-15) BD 

Pharmingen 

1:5 4 µm ” & amplification kit 36 min  

MSH2 (G219-1129) 

BD Pharmingen 

1:200 
” ” 

28 min  

MSH6 (EP49) Epitomoc 1.200 ” ” 32 min  

PMS2 (EPR3947) 

Ventana/Roche 

ready-to-use 
” 

OptiView Universal DAB Detection Kit 

& amplification kit (Ventana/Roche) 

44 min 

TP53 (Bp53-11) 

Ventana/Roche 

ready-to-use 
” 

ultraView universal DAB Detection Kit 

(Ventana/Roche) 

28 min  

E-cadherin (NHC-38) 

Agilent Technologies 

1:100 
” 

” & amplification kit 32 min  

CIP2A polyclonal 

(Soo Hoo et al. 2002) 

1:4000  Antibody Diluent Buffer (Dako Denmark 

A/S), Dual Link System–HRP and DAB 

Chromogen System (Dako Denmark 

A/S), Lab Vision Autostainer 

60 min  
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ISH probe     

EGFR DNA Probe 

Ventana/Roche 

 5μm ultraVIEW SISH Detection Kit, 

BenchMark XT (Ventana/Roche) 

 

HER2 DNA Probe and 

INFORM Chromosome 

17 Probe 

Ventana/Roche  

 

” 

” & ultraView Alkaline Phosphatase 

Red ISH Detection Kit, BenchMark 

XT (Ventana/Roche) 

 

EBER (Epstein-Barr 

virus –encoded small 

RNA) Ventana/Roche 

 

” 

ISH iVIEW Blue Detection Kit, 

BenchMark XT (Ventana/Roche) 

60 min  

Western blot     

CIP2A (2G10-3B5) 

monoclonal 

Santa Cruz 

Biotechnology 

 

anti‐GAPDH  

monoclonal (mAbcam 

9484) Abcam 

  cell lysis in RIPA buffer, 

HRP‐conjugated anti-GAPDH was 

used as a loading control  

 

KRAS mutation 

analysisb 

    

60 patients 

(pyrosequencing) 

 10 μm QIAamp DNA FFPE tissue kit, 

Qiagen TheraScreen KRAS Pyro kit, 

PyroMark Q24 analysis program 

(Qiagen) 

 

20 patients (real-time 

PCR) 

 

” 

QIAamp DNA FFPE tissue kit 

(Qiagen), DxS K-RAS Mutation kit 

(DxS Ltd) 

 

aTargeted against the internal domain of EGFR. 
bIncluded the analysis of codons 12, 13 and 61. 

 

DAB, 3,3’-diaminobenzidine; FFPE, formalin-fixed paraffin-embedded; DAB, GADPH, glyceraldehyde-3-phosphate 

dehydrogenase; PCR, polymerase chain reaction; SISH, silver in situ hybridisation. 

4.2.2 CIP2A staining indices (III) 

In study III, the most intense cytoplasmic staining index (MICI) and the average cytoplasmic 

staining index (ACI) were used to classify the samples into two subgroups according to the index 

value being either below or above median level. The indices were calculated with the following 

formula: I = 0 × f0 + 1 × f1 + 2 × f2 + 3 × f3, where I is the staining index and f0 – f3 the 

fraction of cells (from 0 to 1) showing a defined level of staining (from 0 to 3). To obtain MICI, the 

area containing the most intense staining of cancer cells was chosen from each sample, and the 

fraction of cancer cells (percentage/100) belonging to each staining intensity category was estimated 

from that area. ACI was calculated as an average of three randomly selected areas from which the 

fraction of cancer cells belonging to each staining intensity category was estimated. (Lipponen & 

Collan 1992). 
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Table 6. The scoring principles of immunohistochemical stainings and in situ hybridisations used in 

studies I – IV. 

 
Immunohisto-

chemistry 
Negative (0) Weak (1+) Moderate (2+) Strong (3+) 

EGFR No staining 

(membranous or 

membranous + 

cytoplasmic) 

Detected only with 

10x objective 

magnification 

Clearly identified with 

5x objective 

magnification 

Intense reaction with 

5x objective 

magnification 

HER2b No reactivity or 
membranous 

reactivity in < 10% 

of tumour cells 

Faint membranous 
reactivity in ≥ 10% of 

tumour cells; only 

partial membranous 

reaction 

Weak to moderate 
complete, basolateral 

or lateral membranous 

reactivity in ≥ 10% of 

tumour cells 

Moderate to strong 
complete, basolateral 

or lateral membranous 

reactivity in ≥ 10% of 

tumour cells 

     

 MSIc  MSS  

MLH1 

MSH2 

MSH6 

PMS2 

Complete loss of 

nuclear reactivity in 

tumour cells 

together with 

positive reaction in 

normal epithelium, 

lymphocytes, 

stromal and smooth 

muscle cells 

 Positive nuclear 

reaction in tumour 

cells together with 

positive reaction in 

normal epithelium, 

lymphocytes, stromal 

and smooth muscle 

cells 

 

     

 Aberrant  Wild-type  

TP53 Complete loss of or 

strong diffuse 

nuclear positivity in 

tumour cells 

 Moderate or weak 

nuclear reaction in 

tumour cells 

 

E-cadherin Loss of membranous 

reactivity or only 

weak cytoplasmic 

reaction in tumour 

cells 

 Moderate or strong 

membranous reaction 

in tumour cells 

 

     

 Negative (0) Weak (1+) Moderate (2+) Strong (3+) 

CIP2A No detectable 

cytoplasmic staining 

with 10x objective 

magnification 

Cytoplasmic staining 

still distinguishable 

from the background 

with 10x objective 

magnification 

Cytoplasmic staining 

intermediate between 

weak and strong with 

10x objective 

magnification 

Cytoplasmic staining 

corresponding to the 

positive control 

(normal testis) with 

10x objective 

magnification 
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In situ 

hybridisation 
Positive Negative   

EBER Positive nuclear 

reaction 

No detectable 

reaction 

  

 Gene copy 

number 
 Amplification No amplification 

EGFRa A mean value from 

forty tumour cells was 

calculated from the 

areas of highest IHC 

reactivityd 

 Surgical specimens: 

detectable clusterse in 

forty tumour cells 

Biopsies: a group of ≥ 

5 tumour cells 

containing clusters 

 

No detectable 

clusterse  

HER2a, b HER2/Chr17 GCN 

ratio was calculated as 

a mean value from 

forty tumour cells 

from the areas of 

highest IHC reactivity 

 Surgical specimens: 

detectable clusters in 

≥ 10% of tumour cells 

Biopsies: a group of ≥ 

5 tumour cells 

containing clusterse 

 

No detectable 

clusterse 

aSamples with EGFR or HER2 IHC 2+ or 3+ in ≥ 10% of tumour cells in surgical specimens or in ≥ 5 clustered 

tumour cells in biopsies were further analysed with SISH. 
bHofmann 2008, Bang 2010. 
cA tumour was classified as MSI if at least one of the markers (MLH1, MSH2, MSH6 and PMS2) showed a complete 

loss of nuclear reactivity together with positive reaction in benign colorectal epithelium, lymphocytes, stromal and 

smooth muscle cells. Tumours showing negative nuclear reactivity with negative background were not used for 

classification (inconclusive staining). 
dÅlgars et al. 2011; Ålgars et al. 2014. 
eA cluster contains numerous overlapping SISH signals. One EGFR cluster was approximated to contain ≥ 10 gene 

copies and one HER2 cluster was approximated to contain ≥ 6 gene copies. In practice, HER2/Chr17 ratio was 

always ≥ 2.0 when clusters were detected and < 2.0 when no clusters were detected in tumour cells.  

 

Chr7, chromosome 7; EBER, Epstein-Barr virus encoded small RNA; GCN, gene copy number; IHC, 

immunohistochemistry; MSI, microsatellite instability; MSS, microsatellite-stable. 

4.3 Next generation tissue microarray (II) 

The next generation tissue microarray (ngTMA) was created by using representative paraffin blocks 

containing invasive carcinoma from each tumour. The blocks were selected by evaluating the 

original hematoxylin-eosin (H&E) stained sections. New H&E slides were produced, scanned 

(Pannoramic P250, 3DHistech) and uploaded into the university digital microscopy web portal 

(casecenter.utu.fi) for annotation. The digital slides were viewed using Pannoramic Viewer software 

(3DHistech). From each tumour, two areas were selected in the centre and two areas in the 

periphery or invasive front by using the 1.0 mm annotation tool. The annotated digital slide was 

overlaid with the corresponding tissue specimen, and the corresponding tissue cores were 

transferred into the TMA blocks by using an automated TMA instrument (TMA Grandmaster, 

3DHistech). (Zlobec et al. 2014). One core containing benign tissue was selected from each tumour 

to act as a control. The constructed TMA blocks were sectioned, stained, scanned and uploaded 

into the web portal.  
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4.4 In vitro experiments (III) 

4.4.1 Cell culture and CIP2A siRNA transfection 

The RKO human colorectal cancer cell line (ATCC® CRL‐2577™) was purchased from ATCC 

(Manassas, VA, USA) and its validity was affirmed by sequencing (Eurofins Genomics, Ebersberg, 

Germany). Cells were grown in Dulbecco's minimal essential medium supplemented with 10% fetal 

bovine serum (FBS), 2 mmol/L glutamine and 1% penicillin/streptomycin. 

Cells in the logarithmic growth phase were transfected with CIP2A or scrambled double‐stranded 

small interfering RNAs (siRNA) using Oligofectamine (Invitrogen™, Thermo Fisher Scientific, 

Waltham, MA, USA). The siRNA sequences have been previously published (Côme et al. 2009). 

The CIP2A protein levels were analysed by Western blotting using a monoclonal CIP2A antibody 

(Table 3). 

4.4.2 Cell irradiation experiment and cell survival assay  

Radiation experiments were performed on RKO cells transfected with either CIP2A siRNA or 

scrambled siRNA (control). Forty‐eight hours after the transfections, the cells were harvested into 

single‐cell suspensions. The cells were irradiated at room temperature in separate tubes containing 

25 000 cells/treatment in 6 mL culture medium. The irradiation was performed at the radiotherapy 

department using a linear accelerator (Clinac 2100; Varian CA) with 6 MeV photon irradiation at a 

dose rate of 2 Gy/min. After irradiation, the cells were further diluted into 50 mL culture medium 

in appropriate concentration and 200 μL of cell suspension/well was pipetted in duplicate into 

96‐well plates (Pekkola-Heino et al. 1989). The cell plating is described in Figure 2.   

The surviving fractions (SF) were calculated with the formula: 

 

The survival curves of cancer cells were fitted using the linear quadratic (LQ) model (SF = 

exp[‐(αD + βD2)]; D, radiation dose). The area under the curve (AUC) values were calculated with 

a numerical integration algorithm. The results were calculated from three experiments for each 

treatment with duplicate plates for each radiation dose. 
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Figure 2. The number of cells per well was adjusted according to the expected cell death.  The 

plates were incubated in the cell culture incubator until visible colonies were formed. The plates 

were examined using an inverted phase contrast microscope. Wells containing colonies of at least 

32 cells were considered positive. 

4.5 Statistical analyses 

Statistical analyses were performed with IBM SPSS Statistics for Windows (IBM Corporation, 

Armonk, NY), version 21.0 (studies I – III) and version 24.0 (study IV). Frequency table data were 

analysed using the Pearson’s χ2 test or Fisher’s exact test for categorical variables. 2 x 2 tables were 

used to calculate odds ratios (OR) and 95% confidence intervals (CI) using the exact method. In 

Study IV, to compare the mean GCN in relation to categorical variables, non-parametric Mann-

Whitney and Kruskal-Wallis tests were used as the EGFR GCN was not normally distributed. 

Pairwise concordance of EGFR GCN between primary and metastatic tumours were analysed 

using a non-parametric paired-samples test (McNemar and Wilcoxon signed rank test).  

In study III, interobserver reproducibility of the IHC assessments was tested with weighted kappa, 

which was calculated with the intraclass correlation coefficient (ICC) test in parallel mode with a 

two‐way random model using consistency assumption and the average measures option. The 

interobserver reproducibility was very good for MICI (weighted kappa 0.83, 95% CI: 0.67–0.91) 

and moderate for ACI (weighted kappa 0.56, 95% CI: 0.16–0.77). For the irradiation experiments, 

calculations were performed with Microsoft Excel 2007 (Microsoft Corporation, Redmond, WA) 

and paired t‐test was used to compare the mean AUC values.  

Kaplan-Meier method and log-rank test as well as Cox’s proportional hazards regression model 

were used for univariate survival analysis. Multivariate survival analysis was performed using Cox’s 
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proportional hazards regression model. In multivariate analyses, all covariates were entered 

simultaneously in studies I – II and in a stepwise backward manner in study III. The multivariate 

analyses included variables with a p value under 0.2 in univariate analysis in study I, variables with a 

p value under 0.05 in univariate analysis in study II and variables considered clinically relevant in 

study III. The different clinical survival endpoints are described in Table 7. All statistical tests were 

two-sided and p-values under 0.05 were considered statistically significant. 

Table 7. The definition of different clinical endpoints used in survival analyses in studies I – III. All 

variables were calculated from the time of diagnosis. (Punt et al. 2007; Birgisson et 

al. 2011). 

 

Original 

publication 

Recurrent 

disease 

(local or 

distant) 

Second 

primary 

cancer 

Death from 

primary 

cancer 

Death 

from other 

cancer 

Non-cancer 

related 

death 

Loss to 

follow-up 

RFSa II E I E E E C 

DFSa III - IV E E E E E C 

TTRa I E I E C C C 

CSS I I I E C C C 

DSS  III I E E C C C 

OS I – IV I I E E E C 
aIn studies I – II and IV, only recurrences occurring ≥ 6 months after diagnosis were considered relevant. Earlier 

detection of a local or distant recurrence was considered likely to present an initially advanced disease. Patients 

treated with surgery or surgery and adjuvant therapy without disease recurrence ≥ 6 months after diagnosis were 

considered curatively treated. 

 
C, censored; E, event; I, ignored. CSS, cancer-specific survival; DFS, disease-free survival; DSS, disease-specific 

survival; OS, overall survival; RFS, recurrence-free survival; TTR, time to recurrence.  

 

In study I, five patients (2.3%) who had received trastuzumab treatment for recurrent cancer were 

excluded from the cancer-specific survival (CSS) and overall survival (OS) analyses and additionally 

14 patients with stage IV disease (6.4%) from the time to recurrence (TTR) analysis. In study II, 

five patients (2.0%) who had received trastuzumab treatment for recurrent cancer were excluded 

from the OS analysis and additionally 13 patients with stage IV disease (5.3%) from the RFS 

analysis. In study III, exact follow-up information for survival analyses was unavailable for four 

patients.  

4.6 Ethical issues 

The studies were conducted in accordance with the Declaration of Helsinki and the Finnish 

legislation for the use of archived tissue specimens and associated clinical information. The clinical 

data were retrieved and the histological samples collected and analysed with the endorsement of the 

National Authority for Medico-Legal Affairs and the Institutional Review Board of the Hospital 

District of Southwest Finland and, in studies I – II, also with the permission of Auria Biobank 

hosting the specimen archive. For study I, information about the cause of death of the patients was 

obtained from Statistics Finland (Dnro TK-53-1286-14). In study III, the clinical data were 
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retrieved and the histological samples were collected and analysed with the endorsement of the 

National Supervisory Authority for Welfare and Health, Finland (Dnro 1709/32/300/02, 

13.5.2002). In study IV, oral or written informed consent was not obtained due to the fact that the 

majority of the patients included in this study had died of their disease. The need for informed 

consent from participants was waived by the National Authority for Medico-Legal Affairs (Dnro 

4423/32/300/02, 15.10.2002). 
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5 RESULTS 

5.1 Gastric cancer (I – II) 

5.1.1 EGFR and HER2 IHC and SISH (I) 

In study I, all 220 intestinal-type adenocarcinomas were analysed with EGFR and HER2 IHC. 

EGFR or HER2 SISH was performed on all tumours with high EGFR or HER2 IHC staining 

intensity (2+/3+), respectively. The summary of EGFR and HER2 IHC and SISH results is 

presented in Figure 3. In study I, in order to validate the method of including only tumours with 

high EGFR IHC intensity for EGFR SISH, EGFR GCN was also assessed in fifteen randomly 

selected tumours in which EGFR IHC was scored as negative/weak. No EGFR amplification was 

found in these tumours (GCN 2.1–3.3). 

 

Figure 3. The distribution of EGFR and HER2 high (2+/3+) and low (0/1+) staining intensity in 

relation to EGFR and HER2 gene amplification. The number of tumours (%) in each subgroup is 

presented in parentheses. 

5.1.2 EGFR, HER2, EBV, MSI, TP53 and E-cadherin in relation to clinicopathological 

variables (I – II)  

The distribution of EBV positivity, MSI, E-cadherin aberrations and TP53 aberrations together 

with the occurrence of EGFR and HER2 amplifications among the intestinal- and diffuse type 

oesophagogastric adenocarcinomas is presented in Figure 4. 
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Figure 4. The distribution of EBV positivity, MSI, E-cadherin and TP53 aberrations among 

intestinal- and diffuse-type adenocarcinomas together with EGFR and HER2 amplifications. The 

figures show the number of tumours (%). In study II, 183 out of the 190 intestinal-type 

adenocarcinomas included in the TMA had been evaluated for EGFR and HER2 protein 

expression levels in study I. EBV, MSI and TP53 were analysed in 238 tumours and E-cadherin in 

232 tumours. In remaining tumours, the markers could not be evaluated due to insufficient tissue 

material.   

EBV RNA (p = 0.028) and MSI (p = 0.017) were detected only in the intestinal-type tumours. 

Aberrant TP53 expression was also observed to be more common among intestinal-type than 

diffuse-type tumours (p < 0.0001). The intestinal-type tumours with aberrant TP53 were typically 

EBV negative (p < 0.0001) or MSS (p = 0.003). The majority of the EGFR (17/98, 17%) and 

HER2 (15/98, 15%) amplifications as well as co-amplifications (5/98, 5.1%) were also found in 

tumours characterised by EBV negativity, MSS and aberrant TP53. The EBV negative, MSS and 

TP53 wt intestinal-type tumours were the second most common subgroup for EGFR and HER2 

amplifications (8/52, 15% for both genes). Among the diffuse-type tumours, aberrant E-cadherin 

expression could be detected in 25/49 (51%) tumours, whereas only 3/183 (1.6%) of the intestinal-

type tumours had aberrant E-cadherin expression.  

The combination of EBV negativity, MSS and TP53 wt was found in 52/186 (28%) of the 

intestinal-type and 42/52 (81%) of the diffuse-type tumours (p <0.0001). Among these, 21/39 

(54%) of the diffuse-type tumours but none of the intestinal-type tumours (n = 51) had aberrant E-

cadherin expression. 

The association between EGFR amplification, EBV positivity, MSI and TP53 aberration and 

selected clinicopathological variables among the intestinal-type tumours is shown in Table 8. In 

study I, the presence of HER2 amplification or diffuse-type histology was not associated with the 

examined variables. No significant associations were observed between the presence of EGFR or 

HER2 amplification and EBV, MSI or TP53 status.  
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Table 8. The association between selected clinicopathological variables and some of the molecular 

markers from studies I – II in intestinal-type oesophagogastric tumours. The 

figures show the number of patients (%) together with p values. 

 EGFR amplification EBV positivity MSI TP53 aberration 

Patient sex NS 0.035 0.042 NS 

Female 8 (25.8) 2 (11.8) 11 (57.9) 34 (33.0) 

Male 23 (74.2) 15 (88.2) 8 (42.1) 69 (67.0) 

Location 0.016 NS 0.003 0.002 

Distal 
oesophagus/GOJ/cardia 18 (58.1) 7 (41.2) 2 (10.5) 54 (52.4) 

Corpus/antrum/pylorus 13 (41.9) 10 (58.8) 17 (89.5) 49 (47.6) 

Location 0.013 0.011 0.002 0.010 

Distal oesophagus 5 (16.1) 0 (0) 0 (0) 15 (14.6) 

GOJ/cardia 13 (41.9) 7 (41.2) 2 (10.5) 39 (37.9) 

Corpus 2 (6.5) 9 (52.9) 4 (21.1) 23 (22.3) 

Antrum/pylorus 11 (35.5) 1 (5.9) 13 (68.4) 26 (25.2) 

Grade NS < 0.0001 NS NS 

I 2 (6.5) 0 (0) 1 (5.3) 10 (9.7) 

II 17 (54.8) 2 (11.8) 8 (42.1) 54 (52.4) 

III 12 (38.7) 15 (88.2) 10 (52.6) 39 (37.9) 

T 0.020 NS NS  NS  

T1 – T2 4 (13.3) 5 (29.4) 3 (15.8) 28 (27.2) 

T3 – T4 26 (86.7) 12 (70.6) 16 (84.2) 75 (72.8) 

Stage 0.024 NS NS NS 

I – II 14 (45.2) 11 (64.7) 13 (68.4) 65 (63.1) 

III – IV 17 (54.8) 6 (35.3) 6 (31.6) 38 (36.9) 

EBV, Epstein-Barr virus; GOJ, gastro-oesophageal junction; MSI, microsatellite instability; NS, not significant. 

EGFR gene amplification was more common in tumours with deep invasion (p = 0.020) and 

overall in more advanced tumours (p = 0.024). It was also most commonly detected in proximally 

located tumours (p = 0.016). Among the intestinal-type tumours, aberrant TP53 expression was 

more frequent in proximal than distal tumours (p = 0.002). Additionally, the co-localisation of 

aberrant TP53 expression and either EGFR or HER2 gene amplification was detected more often 

in the proximal (distal oesophagus/GOJ/cardia) than distal (corpus/antrum/pylorus) intestinal-

type tumours (p = 0.019, data not shown). In contrast, tumours with MSI were most frequent in 

distal location (p = 0.002). 

EBV positivity was least common in the most proximal and distal tumours (p = 0.011), and it was 

associated with poor histological differentiation (p < 0.0001). EBV positivity was less often 

detected in female than male patients (p = 0.035), while MSI tumours were more common among 

female than male patients (p = 0.042). 

5.1.3 EGFR and HER2 gene amplification and MSI in relation to survival (I – II) 

Patients with intestinal-type tumours containing EGFR amplification had shorter TTR (p = 0.026) 

and CSS (p = 0.033) in univariate survival analysis than other patients. In addition, increasing depth 

of tumour invasion (p < 0.0001), and accordingly, increasing tumours stage, were associated with 
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decreased TTR (p = 0.005) and CSS (p < 0.0001) of the patients. Additional factors associated with 

shorter CSS were tumour differentiation grade (grade II, p = 0.020; grade III, p = 0.029) and older 

age of the patients at the time of diagnosis (p = 0.048). In multivariate analysis, only tumour stage 

remained as a predictive factor. In study II,  the presence of MSI was predictive for longer OS both 

in univariate (p = 0.040) and multivariate (p = 0.015) analysis together with increasing tumour stage 

and patient age above median at the time of diagnosis. Increasing depth of tumour invasion, 

increasing tumour stage and older age were associated with shorter RFS in univariate, but not in 

multivariate, analysis.  

In study I, EGFR or HER2 protein expression level or HER2 amplification status was not 

associated with survival. In study II, no significant associations were observed between EBV, TP53 

or E-cadherin status and survival. The association of EGFR amplification, MMR status and 

selected clinicopathological variables with survival endpoints in the intestinal-type tumours is 

presented in Tables 9 – 10. 

In study I, the multivariate model for TTR included EGFR amplification status, postoperative 

tumour stage, histological differentiation grade and anatomical location of the tumour (proximal vs 

distal). The multivariate analysis for CSS included EGFR gene amplification status, postoperative 

tumour stage, histological differentiation grade and patient age at the time of diagnosis. Tumour 

stage remained as a single predictive factor for shorter TTR in patients with stage III tumours (p = 

0.014) and for shorter CSS in patients with stage III (p = 0.023) or stage IV tumours (p < 0.0001).  

In study II, the multivariate model for OS included patient age at diagnosis, postoperative T, 

postoperative tumour stage and MMR status of the tumour. MSI status was found to be predictive 

for longer OS (p = 0.015) while patient age above median (p = 0.009) and tumour stage III – IV (p 

= 0.036) were predictive for shorter OS among patients with intestinal-type tumours. Age above 

median remained as a single predictive factor for shorter OS (p = 0.030) among patients with 

diffuse-type tumours.  
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Table 9. Univariate survival analysis with selected clinicopathological variables for intestinal-type 

oesophagogastric tumours in studies I–II.  

 
 TTR    CSS    

Study I 
p value 

log-rank 
p value 

Cox test HR 95% CI 
p value 

log-rank 
p value   

Cox test HR 95% CI 

EGFR amplif 0.026 0.028 1.73 1.06–2.83 0.033 0.035 1.67 1.04–2.69 

Age (cont)  NS    0.048 1.02 1.00−1.04 

T < 0.0001 < 0.0001 1.46 1.19–1.80 < 0.0001 < 0.0001 1.60 1.30–1.96 

T1  ref    ref   

T2  NS    NS   

T3  NS    NS   

T4  0.002 2.59 1.44–4.67  0.001 2.94 1.58–5.47 

Stagea 0.005 0.001 1.52 1.18–1.96 < 0.0001 < 0.0001 1.94 1.53–2.45 

I  ref    ref   

II  NS    NS   

III  0.001 2.33 1.38–3.92  0.002 2.36 1.37–4.08 

IV      < 0.0001 14.2 6.86–29.3 

Grade  NS    NS    

I   ref    ref   

II  0.043 1.95 1.02–3.74  0.020 2.22 1.13–4.36 

III  NS    0.029 2.15 1.08–4.27 

         
 RFS    OS    

Study II 
p value 
log-rank 

p value 
Cox test HR 95% CI 

p value 
log-rank 

p value   
Cox test HR 95% CI 

MSS  ref    ref   

MSI NS NS   0.040 0.043 0.54 0.30–0.98 

T1 – T2  ref    ref   

T3 – T4 0.045 0.046 1.53 1.01–2.32 0.030 0.031 1.54 1.04–2.28 

Stage I–II  ref    ref   

Stage III–IVa 0.019 0.020 1.56 1.07–2.26 < 0.0001 < 0.0001 1.84 1.32–2.57 

Age < median  ref    ref   

Age ≥ median 0.006 0.006 1.67 1.16–2.42 0.026 0.027 1.46 1.04–2.03 
aStage IV excluded from TTR and RFS. 
 
amplif, amplification; CI, confidence interval; cont, continuous variable; CSS, cancer-specific survival; HR, hazard 
ratio; ref, reference; TTR, time to recurrence 

Table 10. Multivariate survival analysis with selected clinicopathological variables for intestinal-type 

tumours in studies I–II. 

 TTR   CSS   OS    

Study I p  HR 95% CI p  HR 95% CI Study II p  HR 95% CI 

Stagea           

I ref   ref   MSS ref   

II NS   NS   MSI 0.015 0.46 0.25–0.86 

III 0.014 2.05 1.16–3.63 0.023 1.99 1.10–3.61 Stage I–II ref   

IV    < 0.0001 11.4 5.34–24.4 Stage III–IV 0.036 1.50 1.03–2.18 

 
      

Age  
< median ref   

 
      

Age  
≥ median 0.009 1.57 1.12–2.21 

aStage IV excluded from TTR. 
 
CI, confidence interval; CSS, cancer-specific survival; HR, hazard ratio; MSS, microsatellite-stable; MSI, microsatellite 
instability; NS, not significant; OS, overall survival; ref, reference; TTR, time to recurrence. 



 Results 71 

5.2 Colorectal cancer (III - IV) 

5.2.1 CIP2A expression in relation to selected clinicopathological variables, tumour 

regression grade and survival 

The association between CIP2A expression and selected clinicopathological variables is presented 

in Table 11. Moderate or excellent response to long-course (C)RT was associated with both low 

CIP2A MICI (p = 0.006) and ACI (p = 0.007). Low CIP2A MICI was also more common in 

younger patients (p = 0.023) and in the most invasive tumours (p = 0.022). Low CIP2A ACI 

tended to be more common in the well‐differentiated tumours (p = 0.050). In addition, patients 

with low CIP2A MICI were more likely to be alive 36 months after diagnosis than patients with 

high CIP2A MICI (p = 0.014). No association was found between CIP2A expression level and 

patient sex, postoperative histological differentiation grade, lymph node status, postoperative stage, 

CRM or the presence of lymphovascular invasion. 

In the univariate analysis, CIP2A MICI was not associated with patient survival. The multivariate 

analysis for DSS included CIP2A MICI, RT treatment group, patient sex, patient age at diagnosis, 

postoperative lymph node status, the presence of lymphovascular invasion, CRM and disease 

recurrence status. In the multivariate analysis, high CIP2A MICI (p = 0.014), patient age above 

median (p = 0.002), long‐course (C)RT (p = 0.040) and disease recurrence (p < 0.0001) were found 

to predict reduced DSS. CIP2A MICI did not remain as an independent predictive factor for DFS. 

5.2.2 The effect of CIP2A knockdown on radiosensitivity 

The RKO cells with reduced CIP2A expression obtained by CIP2A siRNA transfection were 

observed to be more sensitive to irradiation than the control cells with intact CIP2A expression 

level (p = 0.015). The cell survival curves from the irradiation experiments and corresponding 

Western blot results are presented in more detail in Figure 2 in the respective publication (III).  
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Table 11. The association between the most intensive or average CIP2A expression level and 

selected clinicopathological variables in rectal adenocarcinomas.   

 
 Most intensive cytoplasmic staining index 

(MICI, n = 204)a 

Average cytoplasmic staining index  
(ACI, n = 198)a 

 

Below median Above median p value Below median Above median p value 

Tumour regressionb       

Poor 15 (42.9) 11 (91.7) 0.006 16 (50.0) 10 (100.0) 0.007 

Moderate/excellent 20 (57.1) 1 (8.3)  16 (50.0) 0 (0)  

Age at dg       

≤ median 67 (57.8) 36 (40.9) 0.023   NS 

> median 49 (42.2) 52 (59.1)     

Tc       

T1 – T2 36 (31.1) 37 (42.0) 0.022   NS 

T3 63 (54.8) 48 (54.5)     

T4 16 (13.9) 3 (3.4)     

Graded       

I   NS 21 (21.2) 9 (9.5) 0.050 

II    59 (59.6) 70 (73.7)  

III    19 (19.2) 16 (16.8)  

DSSe       

≥ 36 months 95 (90.5) 60 (76.9) 0.014   NS 

< 36 months 10 (9.5) 18 (23.1)     
aSix tumours (MICI) and 12 tumours (ACI) could not be evaluated with IHC due to limited amount of tumour cells. 
bTumour regression was assessed only after long-course (C)RT (n = 47). 
cPostoperative T could not be determined for one tumour. 
dFour tumours could not be graded. 
eDisease-specific survival, alive vs death of disease. 
 
ACI, average cytoplasmic staining index; (C)RT, (chemo)radiotherapy; dg, diagnosis; DSS, disease-specific survival; 
MICI, most intensive cytoplasmic staining index; NS, not significant. 

5.3 Primary and recurrent colorectal tumours (IV) 

5.3.1 EGFR gene copy number in the primary and recurrent colorectal tumours 

The EGFR GCN of the primary and recurrent tumours and the GCN change during disease 

progression are presented in Figures 5 and 6 both for the whole study population and with regard 

to the type of therapy after primary surgery (patients treated with anti-EGFR antibodies vs patients 

not receiving anti-EGFR therapy). 
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Figure 5. The median EGFR gene copy number is presented for each group of tumours. EGFR 

GCN change between primary and recurrent tumours is presented as absolute median values 

(relative change, %). The number of patients with tumours showing GCN change ≥ 1.0 units is 

noted on the side. The p values are calculated for comparisons between patients receiving either 

anti-EGFR treatment or other forms of therapy after primary surgery. The comparisons between 

patients with or without anti-EGFR treatment are presented both for all recurrent tumours and for 

distant metastases only (all anti-EGFR treated patients had distant recurrencies). Among the anti-

EGFR treated patients, one patient was excluded because the sample taken before anti-EGFR 

treatment was obtained from the metastatic site, and one patient was excluded because the primary 

tumour was KRAS mutated. 

Among the whole study population, the EGFR GCN did not change during disease progression 

when analysed as a continuous variable (p = 0.268). However, there was a significant decrease in 

EGFR GCN between the primary and recurrent tumours among the anti-EGFR-treated patients (p 

= 0.028) but not among patients without anti-EGFR therapy (p = 0.771). Also the relative GCN 

decreased significantly among the anti-EGFR-treated patients in comparison to the other group (p 

= 0.047). When EGFR GCN change of ≥ 1.0 was used as a cut-off value, GCN tended to decrease 

or stay stable among the anti-EGFR-treated patients in comparison to patients not treated with 

anti-EGFR therapy (p = 0.059), and particularly so when analysing only patients with distant 

metastases (p = 0.028). None of the anti-EGFR-treated patients experienced GCN increase ≥ 1.0 

units between the primary and recurrent tumours. In contrast, EGFR GCN values among patients 

not treated with anti-EGFR therapy after primary surgery increased in 15/63 (24%) patients among 

all recurrences and in 12/44 (27%) patients with distant metastases (p = 0.028) (Figure 5). 
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Figure 6. EGFR gene copy number change with regard to the cut-off value 4.0 in primary and 

recurrent tumours. Among the anti-EGFR treated patients, one patient was excluded because the 

sample taken before anti-EGFR treatment was obtained from the metastatic site, and one patient 

was excluded because the primary tumour was KRAS mutated. 

When EGFR GCN change was analysed as a categorical variable using GCN 4.0 as a cut-off value, 

EGFR GCN did not change during disease progression among the whole study population (p = 

0.572) (Figure 6). With regard to the cut-off value 4.0, discordant EGFR GCN was detected in 36% 

(28/78) of the primary – metastasis tumour pairs among the whole study population. Among the 

primary tumours, the EGFR GCN did not differ between patients treated later with anti-EGFR 

therapy (n = 14) and patients receiving other forms of therapy (n = 63, p = 0.588). Similarly, the 

EGFR GCN of the recurrent tumours did not differ between patients having received anti-EGFR 

therapy (n = 14) and patients not treated with anti-EGFR therapy (n = 64, p = 0.123). 

However, among the anti-EGFR-treated patients, 43% (6/14) of the tumour pairs were discordant, 

and the recurrent tumours had more often GCN < 4.0 than the primary tumours (p = 0.031). 

Among the patients not treated with anti-EGFR therapy, the number of discordant tumour pairs 

(33%, 21/63) was not significant (p > 0.999). None of the anti-EGFR-treated patients experienced 

GCN increase during anti-EGFR therapy, while the GCN values among patients not treated with 

anti-EGFR therapy were either stable or even increased (33%, 21/63; p = 0.047). (Figure 6). 

5.3.2 EGFR gene copy number of the primary tumours in relation to selected 

clinicopathological variables 

The relationship between EGFR GCN and KRAS status, tumour stage and lymph node status of 

the primary tumours is presented in more detail in the respective publication (IV). In brief, EGFR 

GCN was observed to be higher in KRAS wt tumours (p = 0.019), patients with stage III disease (p 

= 0.024) and patients with N1–2 lymph node status (p = 0.018) in comparison to KRAS mutated 
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tumours, stage I–II disease and N0 lymph node status, respectively. Similar associations were 

observed between EGFR GCN ≥ 4.0 and KRAS wt tumours (p = 0.021), stage III disease (p = 

0.037) and N1–2 lymph node status (p = 0.039). No significant associations were seen between 

EGFR GCN and patient sex, patient age at diagnosis, location of primary tumour (colon vs rectum 

or left-sided vs right-sided), depth of tumour invasion (pT), histological differentiation grade or 

location of recurrent tumour (local vs distant).  
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6 DISCUSSION 

Gastrointestinal adenocarcinomas have been extensively studied with various molecular 

characterisation methods (TCGA 2012; TCGA 2014; Wang et al. 2014; Cristescu et al. 2015; Secrier 

et al. 2016; TCGA 2017) with the aim of identifying distinct molecular subtypes that could be 

utilised in cancer diagnostics and treatment of patients. (Liu et al. 2018). The result from all of these 

analyses is a multitude of information about gene expression, mutations, chromosomal alterations 

and other features that needs to be converted into relevant knowledge of practical use.  

In this thesis, the main focus has been on biomarkers associated with signalling or regulatory 

processes known to be altered in cancer cells. EGFR is already utilised in the form of anti-EGFR 

antibodies in the treatment of metastatic colorectal cancer but it does not (yet) play any role in the 

treatment of oesophagogastric adenocarcinomas. In the future, the usage of new cancer therapies 

will likely require more sophisticated tumour characterisation than the detection of single 

biomarkers. This demands methods that are suitable for routine clinical use: easy to perform, 

inexpensive and straightforward to interpret. Furthermore, the utilisation of traditional therapies 

such as RT might also profit from molecular markers that could aid in selecting patients likely to 

benefit from the treatments.  

6.1 EGFR and HER2 in oesophagogastric cancer (I) 

The prevalence of EGFR amplification in gastric cancer has previously been reported to be 2.3–

4.9% among all histological subtypes (Kim et al. 2008; Kandel et al. 2014; Nagatsuma et al. 2015), 

whereas the prevalence of HER2 amplification has been reported to vary from 7 to 17% (Takehana 

et al. 2002; Tanner et al. 2005). In study I, the working hypothesis was that EGFR amplification 

might be detected more commonly among the intestinal-type tumours than what has been reported 

for gastric cancer in general. The rationale behind this originated in earlier reports according to 

which RTK gene amplifications are prevalent particularly in the CIN subtype of gastric 

adenocarcinomas, the majority of which (80%) have intestinal-type histology (TCGA 2014). This 

observation also implies that there might exist a subgroup of tumours that could be targeted by 

therapeutic agents inhibiting EGFR signalling parallel to the usage of trastuzumab in HER2 

overexpressing tumours (Bang et al. 2010).  

In study I, it was shown that in intestinal-type adenocarcinomas the prevalence of EGFR 

amplification (14%) was comparable with that of HER2 (13%) and, indeed, not as uncommon as 

previously reported for gastric cancer in general. Particularly, EGFR amplification was most 

prevalent in tumours of distal oesophagus and GOJ. EGFR and HER2 co-amplification was 

detected in 3.6% of intestinal-type adenocarcinomas, which is somewhat higher than what has been 

reported for all histological subtypes (< 0.5%) (Kandel et al. 2014; Nagatsuma et al. 2015)  
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No survival benefit has so far been demonstrated in clinical trials for patients treated with anti-

EGFR antibodies in comparison to patients receiving standard chemotherapy. A phase III clinical 

trial has recently been conducted that examined the effect of an anti-EGFR monoclonal antibody 

(nimotuzumab) in patients with EGFR overexpressing tumours. The study was completed in 

February 2018 but the results have not yet been published. However, the overexpression of EGFR 

was only defined by IHC (2+ or 3+) without considering the GCN. (ClinicalTrials.gov 

NCT01813253).  

Overexpression of EGFR has been reported in 24–27 % of all gastric adenocarcinomas (Kim et al. 

2008; Nagatsuma et al. 2015) and specifically in 31% (Kim et al. 2008) of intestinal-type tumours. 

Consistent with these findings, high EGFR IHC staining intensity was detected in 33% of the 

intestinal-type adenocarcinomas in study I. Notably, only 31/72 (43%) of these contained EGFR 

amplification. The relatively low prevalence of gene amplification among tumours with protein 

overexpression implies that determining the EGFR status solely based on protein expression may 

be an inadequate method for selecting patients for anti-EGFR therapy. Similar to the definition of 

HER2 overexpression (Bang et al. 2010), it seems reasonable that the definition of EGFR 

overexpression might include both the overexpression of EGFR protein and EGFR gene 

amplification. Moreover, it has been observed in vitro that patient derived gastric cancer xenografts 

containing EGFR amplification respond better to anti-EGFR therapy than tumours without the 

gene amplification (Zhang et al. 2013). 

The infrequency of co-amplification of EGFR and HER2 implicates the presence of two distinct 

subgroups of patients with either EGFR or HER2 amplification. Similarly, in large-scale sequencing 

studies EGFR amplification has proven to be mutually exclusive with HER2 activation and with 

activating mutations in KRAS or BRAF (Sanchez-Vega et al. 2018). These findings suggest that the 

potential candidates for clinical anti-EGFR antibody trials are specifically those patients not eligible 

for anti-HER2 treatment. The few patients with tumours containing receptor co-amplification 

might benefit from some kind of treatment targeting both EGFR and HER2 signalling. 

EGFR amplification was also found to be associated with decreased TTR and CSS. A similar 

association with survival has also been observed by others (Kim et al. 2008; Kandel et al. 2014). 

Studies examining HER2 amplification as a negative prognostic factor in gastric cancer have not 

yielded unequivocal results (Tanner et al. 2005; Kandel et al. 2014), and in study I the presence of 

HER2 amplification was not found to be associated with the survival of patients. Regardless of 

whether or not EGFR amplification proves to have a prognostic role, the main potential advantage 

to be gained from GCN analysis will most likely be related to the selection of cancer treatment. 

However, the association with decreased survival could indicate a subgroup of patients in need of a 

targeted therapy. 

Potential weaknesses of the study regarding the survival analyses include the heterogeneity in the 

treatment regimens and the inclusion of patients with all stages of disease. The primary aim of the 

study, however, was to examine the prevalence of EGFR and HER2 amplification in intestinal-type 

oesophagogastric adenocarcinomas and only secondarily to examine their prognostic role. In order 
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to avoid at least some treatment-related bias, patients treated with trastuzumab were excluded from 

the TTR and CSS analyses and patients with stage IV disease were excluded from the TTR analysis. 

With regard to the primary aim, a limitation of the study was the usage of tumour biopsy material 

instead of surgical specimens for GCN analyses in 22 patients. This could result in misclassifying a 

tumour, due to tumour heterogeneity, as containing or, more likely, not containing a gene 

amplification.   

6.2 Molecular subtypes of oesophagogastric cancer (II) 

In study II, the aim was to apply the findings from the molecular characterisation of stomach 

adenocarcinomas (TCGA 2014) and to examine the applicability of the proposed categorisation 

algorithm to clinical diagnostics. A similar approach has been undertaken by several other research 

groups (Kim et al. 2016; Park et al. 2016; Setia et al. 2016; Ahn et al. 2017; Díaz del Arco et al. 2018; 

Huang et al. 2019), each of which have utilised some variation of the original theme. 

In contrast with the aforementioned publications, in study II the oesophagogastric 

adenocarcinomas were first divided into two groups based on the Laurén classification and then 

examined with other methods. Intestinal-type adenocarcinomas have observed to present more 

diverse molecular profiles than diffuse-type tumours, which predominantly fall under the category 

of genomically stable tumours (TCGA 2014) or tumours with MSS/EMT features (Cristescu et al. 

2015). RTK copy number alterations are mainly present in the intestinal-type tumours and thus the 

histological subtype could also be a relevant factor to take into account when investigating new 

RTK-targeting therapies for gastric cancer (TCGA 2014). Therefore, the intestinal-type 

adenocarcinomas were the main focus of our analyses in study II. A small subset of diffuse-type 

tumours was included to serve as a reference group but not used in statistical analyses to the same 

extent as the intestinal-type tumours. Therefore, in study II the percentages for different markers 

for diffuse-type tumours should be considered as approximate. 

A summary of the results from previous studies examining the prevalence of the molecular 

subtypes and related molecular markers among gastric adenocarcinomas is presented in Table 12. 

The principles for the final division of tumours into each molecular subtype vary in each study. 

Inevitably, a few tumours in each study could have been sorted into more than one category. 

Therefore, the classification was usually performed sequentially and one marker was given more 

significance over another. The percentages for each marker have been derived from the 

information given in each study or in its supplementary material. 

In study II, aberrant E-cadherin expression could be detected in only three intestinal-type tumours, 

whereas almost all of the tumours with aberrant E-cadherin expression were already categorised as 

diffuse-type according to the Laurén classification. The proportion of intestinal-type tumours with 

aberrant E-cadherin is comparable to the frequency of E-cadherin mutations (4.1%) detected in the 

TCGA study (TCGA 2014). These findings imply that the Laurén classification could be used as an 
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approximate marker for tumours characterised by EMT and thus loss of E-cadherin expression. 

The three intestinal-type tumours with aberrant E-cadherin showed either EBV positivity, MSI or 

TP53 aberration and thus could be classified according to these characteristics. Notably, EBV 

positivity and MSI were found to be mutually exclusive, which is consistent with other studies 

(TCGA 2014; Kim et al. 2016).  

None of the EBV negative, MSS and TP53 wt intestinal-type tumours showed aberrant E-cadherin 

expression, and inversely, none of the diffuse-type tumours was found to be EBV positive or MSI. 

Interestingly, diffuse-type tumours are practically always considered poorly differentiated, whereas 

poor histological differentiation among the intestinal-type tumours was found to be associated with 

EBV positivity. 

These observations imply that the Laurén classification followed by EBER in situ hybridisation and 

MSI IHC could be enough for general tumour characterisation without the need to perform E-

cadherin, or even TP53 staining. Detecting TP53 aberration by IHC can be more equivocal than 

the detection of EBV or MSI-H due to variable staining intensity in TP53 wt tumours. In fact, 

similarly to the approach employed in study II, a recent study has combined the TCGA and Laurén 

classification systems, and first separated the EBV positive and MSI-H tumours followed by the 

division of the remaining tumours into either intestinal- and diffuse-type based on histology (Huang 

et al. 2019). However, some additional biomarker might be needed to detect or characterise those 

intestinal-type tumours that show neither EBV positivity, MSI nor definite TP53 or E-cadherin 

aberration.  

In contrast with study II, a small proportion of diffuse-type tumours has been reported to be either 

EBV positive or MSI (TCGA 2014; Cristescu et al. 2015; Kim et al. 2016; Ahn et al. 2017). 

Somewhat exceptionally, Cristescu et al. (2015) reported MSI in 17% of the diffuse-type tumours. 

The proportion of diffuse-type tumours with TP53 aberration in study II was quite similar to some 

other reports (TCGA 2014; Cristescu et al. 2015) but notably different from the 54% observed by 

Kim et al. (2016). In addition to methodological differences, some discrepancy in the proportions of 

different markers may result from molecular variation between tumours derived from ethnically 

diverse patients. 

The criteria for differentiating between oesophageal, gastro-oesophageal and proximally located 

gastric adenocarcinomas have been a subject of debate. Recent molecular analyses have shown, 

however, that defining the precise anatomical localisation of the tumours could be regarded as less 

important than their biological and molecular properties as the oesophageal and gastro-oesophageal 

adenocarcinomas show strong genetic similarities to CIN gastric adenocarcinomas (TCGA 2017). 

Thus, in study II, tumours of distal oesophagus, GOJ and cardia were also analysed as a single 

group of proximally located tumours.  
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Table 12. The distribution of gastric adenocarcinomas examined with the different molecular 

markers in study II and in other similar studies. 

 

Study IIa TCGA 2014b 

Cristescu et 

al. 2015c 

Kim et al. 

2016d 

Park et 

al. 2016e 

Ahn et al. 

2017f 

Díaz 

del 
Arco et 

al. 

2018g 

Number 
of patients 

(%) 244 295 300 438 993 349 206 

Intestinal 190 (78) 196 (66) 150 (50) 98 (22) 518 (52) 199 (57) 111 (54) 
Diffuse 54 (22) 69 (23) 142 (47) 130 (30) 475 (48) 147 (42) 71 (34) 

Mixed - 19 (6.4) 8 (2.7) 17 (3.9) - 3 (0.9) 24 (12) 

 Int Diff Int Diff Int Diff Int Diff  Int Diff  

EBV pos 17 

(9.1) 0 (0) 

15 

(7.7) 5 (7.2) 4 (3.0) 

13 

(9.8) 

3 

(3.1) 

5 

(3.8) 61 (6.1) 

19 

(9.5) 

7 

(4.8) ND 
EBV neg 169 

(91) 

52 

(100) 

181 

(92) 64 (93) 

131 

(97) 

119 

(90) 

95 

(96.9) 

125 

(96) 910 (92) 

180 

(90) 

140 

(95)  

MSI 19 

(10) 0 (0) 

48 

(25) 6 (8.7) 39 (26) 

24 

(17) 

9 

(9.2) 

5 

(3.8) 114 (11) 26 (7.4) 60 (29) 
MSS 167 

(90) 
52 

(100) 
148 
(76) 63 (91) 

111 
(74) 

118 
(83) 

89 
(91) 

125 
(96) 876 (88) 323 (93) 145 (70) 

E-cadherin 

aberr 

3 

(1.6) 

25 

(51) 

8 

(4.1) 23 (33)  

8 

(3.6)  ND ND 56 (16) 13 (6.3) 
E-cadherin 
wt 

180 
(98) 

24 
(49) 

188 
(96) 46 (67)  

215 
(96)    293 (84) 193 (94) 

TP53 
aberr 

103 
(55) 

10 
(19) 

104 
(53) 19 (28) 47 (31) 

37 
(26) 

66 
(67) 

70 
(54) 622 (63) 221 (63) 35 (17) 

TP53 wt 83 

(45) 

42 

(81) 

88 

(45) 48 (70) 

103 

(69) 

105 

(74) 

32 

(33) 

60 

(46) 371 (37) 128 (37) 171 (83) 

EGFR 

amplif 
27 

(15) - 

9 

(4.6) 3 (4.3)  

9 

(3.5) ND ND 49 (4.9) ND ND 
HER2 
amplif 

24 
(13) - 

32 
(16) 3 (4.3)  

17 
(6.7) 

18 
(7.3) 

10 
(4.1) 49 (4.9) 8 (2.3) ND 

a183 intestinal-type tumours and 49 diffuse-type tumours could be analysed with all of the molecular markers. Mixed-type tumours 
were not included. EGFR and HER2 amplifications were detected among 183 intestinal-type tumours analysed with EGFR and HER2 
IHC. 
bHistological subtype could not been determined for 11 tumours. Among the mixed-type TCGA tumours, EGFR amplification was 
also detected in five tumours and HER2 amplification in three tumours. 
cFor E-cadherin, the number of mutations is reported for all histological types; data available for 223 tumours. Gene amplification 

data available for 254 tumours; intestinal- and diffuse-type tumours are combined.  
dLaurén classification was determined for 245 tumours. EGFR was analysed with IHC, HER2 with IHC and SISH. 
eIntestinal- and mixed-type tumours were analysed together. EBV information was available for 971 and MMR information for 990 

tumours. EGFR and HER2 were analysed with SISH.  
fThe frequencies are presented for all histological subtypes except for EBV, the presence of which is shown separately for 
intestinal- and diffuse-type tumours. HER2 was analysed with IHC. 
gOne tumour with isolated loss of MSH6 expression was scored inconclusive. Twelve tumours with MSI were classified based on 
either aberrant E-cadherin or TP53 expression.  

 
aberr, aberration; amplif, amplification; diff, diffuse-type; EBV, Epstein-Barr virus; IHC, immunohistochemistry; int, intestinal-type; 

MMR, mismatch repair; MSI, microsatellite-stable; MSI, microsatellite instability; ND, not determined; SISH, silver in situ 
hybridisation; wt, wild-type. 

Indeed, EGFR amplifications were observed to be most common in the tumours of distal 

oesophagus and GOJ/cardia, which are also the main locations for the CIN subgroup (TCGA 

2014, 2017, 2018). In accordance with the features of the CIN subgroup (TCGA 2017), the co-

localisation of aberrant TP53 expression together with EGFR or HER2 amplification was also 

noticed to concentrate in the proximally located intestinal-type tumours. The association between 

HER2 amplification and intestinal-type histology and the gastro-oesophageal location of tumours 

has also been observed by others (Tanner et al. 2005; Gravalos et al. 2008). EGFR amplification was 

infrequent in the tumours of gastric corpus, and its prevalence in antral/pyloric tumours was 

intermediate to that in other locations. MSS/TP53- tumours according to the ACRG classification 
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also typically contain RTK gene amplifications and are predominantly situated in gastric antrum 

(Cristescu et al. 2015). 

Among the intestinal-type tumours, EGFR amplifications were most common in tumours with 

EBV negativity, MSS and TP53 aberration (17% of these contained EGFR amplification) and 

second most common (15%) in EBV negative, MSS and TP53 wt tumours. The proportion of 

HER2 amplification was equal in both subtypes (15%). In the TCGA material, HER2 

amplifications were more distinctly concentrated in the EBV negative, MSS and TP53 aberrated 

tumours (29/85, 34%) than in the EBV negative, MSS and TP53 wt tumours (6/45, 13%). The 

prevalence of EGFR amplification in the TCGA material was somewhat smaller in both of these 

tumour subtypes (11%; 9/85 and 5/45) than in study II. (Cerami et al. 2012; Gao et al. 2013; TCGA 

2014). These discrepancies might be related to methodological differences between the two studies 

(detecting mutations vs protein expression; genomic copy number analysis vs ISH) and tumour 

heterogeneity (GCN analysis in random samples vs selected areas). 

Patients with MSI tumours had longer overall survival in comparison to patients with MSS tumours 

both in the univariate and multivariate analysis in study II, which is consistent with earlier 

observations (Cristescu et al. 2015; Park et al. 2016). The study by Huang et al. (2019) could show 

that patients with either EBV positive or MSI-H tumours had a favourable prognosis in 

comparison to patients with diffuse-type tumours. Especially, patients with EBV positive 

lymphoepithelioma-like carcinoma were noticed to have the most indolent disease. 

A potential source of error with molecular classifications in general is the usage of surrogate 

markers. For example, IHC stainings for MSI and TP53 were used in study II and in many other 

studies instead of direct mutational analyses. In particular, some studies have used only one MSI 

marker (MLH1) (Ahn et al. 2017), while others have used all four markers (Kim et al. 2016; Park et 

al. 2016; Díaz del Arco et al. 2018). Additional limitations of the study include the TMA method 

itself because it multiplies the potential selection bias already present in the histological sampling of 

tumours and may lead to erroneous interpretations. In fact, all studies analysing tissue samples 

taken at one time point and comprising only a small fraction of the tumour are susceptible to bias 

caused by spatial and temporal intratumoural heterogeneity (Bedard et al. 2013; de Bruin et al. 2014; 

Zhang et al. 2014). Thus, the usage of only small tissue cores per each tumour for IHC and ISH 

analyses may result in over- or underestimating protein expression or RNA transcription levels. 

Especially gene amplifications may be present in a scattered pattern (Yoon et al. 2012).  

This bias could partly be alleviated by including several tissue cores from each tumour into the 

TMA or, in general, by profiling multiple samples from a single tumour (Bedard et al. 2013). Also 

for this reason, whole slide sections were used for detecting EGFR and HER2 GCN in studies I – 

II. In addition, repeated analyses of circulating tumour cells (CTC) or cell-free circulating tumour 

DNA (ctDNA) might offer a way to detect emerging genomic aberrations when monitoring 

treatment response or disease recurrence (Bedard et al. 2013). With regard to survival analyses, 

potential weaknesses in study II are similar to those in study I, that is, the heterogeneity in the 

treatment regimens and the inclusion of patients presenting all stages of disease. 
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6.3 CIP2A and radiosensitivity (III)  

There is limited information about the association between CIP2A expression and clinical response 

to (chemo)radiotherapy in rectal cancer patients. In previous studies, CIP2A has been demonstrated 

to promote resistance to irradiation and other DNA‐damaging therapies in intestinal progenitor 

cells (Myant et al. 2015). Similarly, elevated CIP2A expression contributes to radioresistance in head 

and neck squamous cell carcinoma (HNSCC) through increased cell proliferation and resistance to 

apoptosis (Ventelä et al. 2015), while ovarian (Böckelman et al. 2011) and breast (Laine et al. 2013) 

tumours negative for CIP2A respond favorably to cancer therapies. It has been postulated that a 

stem cell transcription factor, Oct4, could act both as a regulator of stem cells and as a driver of 

CIP2A expression, and both of these functions could contribute to radioresistance. IHC positivity 

for both Oct4 and CIP2A has also been associated with poor histological differentiation. (Ventelä et 

al. 2015). Moreover, suppression of CIP2A transcription by siRNA results in increased 

radiosensitivity in cervical squamous cell carcinoma and hepatocellular carcinoma cell lines (Huang 

et al. 2012).  

In study III, the hypothetical relationship between CIP2A expression level and radiation response 

was examined in the context of rectal cancer using the previously collected sample material 

comprised of patients treated with either short- or long-course RT or not treated with RT at all. As 

the number of patients treated with long-course (C)RT was limited, supportive studies were carried 

out in vitro by exposing colorectal cancer cells treated with CIP2A siRNA to different doses of 

irradiation.    

Among patients treated with long-course (C)RT, low-CIP2A-expressing tumours responded better 

to preoperative treatment than high-CIP2A-expressing tumours. This is in agreement with previous 

findings regarding HNSCC (Ventelä et al. 2015) and might indicate that the more responsive 

tumours are those with less stem cell-like properties. However, no significant association was 

observed between CIP2A expression and tumour differentiation grade. 

CIP2A expression could be evaluated only in posttreatment tumour samples because an adequate 

number of representative pretreatment biopsies were not available, which is a source of uncertainty 

in interpreting the results. Nevertheless, in support of the finding, reduction of CIP2A transcription 

by siRNA was observed to sensitise colorectal cancer cells to irradiation and decrease their survival. 

Another in vivo study has reported that irradiation did not markedly affect CIP2A transcription or 

expression in mouse testis during the 144‐hour observation period (Ventelä et al. 2015). This would 

be in accordance with the hypothesis that initially low CIP2A expression could associate with a 

more pronounced response to preoperative (C)RT. In order to confirm the possible association 

between CIP2A expression and (C)RT treatment response, tissue samples from rectal cancer 

patients obtained both before and after the treatment should be compared to each other. Moreover, 

it would be interesting to study whether, in addition to the pretreatment CIP2A expression level of 

the tumour, the magnitude of change in CIP2A expression during (C)RT affected the radiation 

response.  
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Even though low CIP2A expression was found to be more common than high CIP2A expression 

among the most invasive tumours, low CIP2A expression level was still associated with better 

treatment response after long‐course (C)RT. Low CIP2A expression level also associated with 

higher 36‐month DSS rate of the patients in categorical analysis. The multivariate analysis also 

suggested that low CIP2A expression level could be an independent prognostic factor for increased 

DSS.   

A prognostic role of CIP2A in various cancers is supported by several previous studies, which have 

found an association between low CIP2A expression and increased survival (Khanna & Pimanda 

2016). Whether or not CIP2A has a role as a prognostic biomarker in colorectal cancer is somewhat 

uncertain. In one study, CIP2A expression level was not associated with five‐year DSS of patients 

with either colon or rectal cancer. (Böckelman et al. 2012). In contrast, high CIP2A mRNA levels 

(Wiegering et al. 2013) or CIP2A overexpression (Chen et al. 2015) have been associated with 

reduced overall survival (OS) of colorectal cancer patients. The study by Chen et al. (2015) included 

patients with KRAS wt tumours after surgical treatment of liver metastases.  

In addition to the inclusion of only posttreatment samples, weaknesses of study III include the 

relatively small number of patients treated with long-course (C)RT, the lack of clear-cut survival 

differences between patients with either high or low CIP2A expression levels and the relatively 

weak overall CIP2A IHC staining intensity, which may make it difficult to consistently differentiate 

between weakly, moderately and strongly stained areas both within the same tumour and between 

different tumours. It is also possible that the RT has some unspecific effects on CIP2A expression 

levels unrelated to CIP2A function or on tumour tissue in general, which could affect the CIP2A 

staining intensity and thus bias the interpretation of the IHC stainings. 

6.4 Primary and recurrent colorectal tumours (IV) 

Anti-EGFR antibodies are recommended for the treatment of metastatic colorectal cancer in 

patients with RAS wt tumours (Atreya et al. 2015; Sorich et al. 2015). As an additional predictive 

factor, EGFR GCN has also been demonstrated to have an impact on the anti-EGFR treatment 

response (Moroni et al. 2005; Sartore-Bianchi et al. 2007). Specifically, EGFR GCN ≥ 4.0 in primary 

colorectal adenocarcinomas has been associated with a favourable anti-EGFR treatment response 

in patients with RAS wt tumours (Ålgars et al. 2011; Ålgars et al. 2014; Ålgars et al. 2017). In 

contrast to gastric cancer, elevated EGFR GCN in colorectal cancer is observed to be related to 

Chr7 polysomy, while true gene amplifications are rare (Ålgars et al. 2011). 

However, little is known about the potential effects of anti-EGFR therapy on EGFR GCN in 

recurrent disease. Some studies have compared EGFR expression levels in primary and 

corresponding metastatic colorectal tumours (Loupakis et al. 2009), but comparative studies 

detecting EGFR GCN both in primary colorectal tumours and their metastases are scarce, and even 

fewer have made comparisons among patients treated with anti-EGFR therapy. In these studies, 
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EGFR GCN has been reported to be discordant in 5 – 13% of patients. However, these analyses 

have been performed with FISH and have not taken into account the KRAS status of the tumours. 

(Cappuzzo et al. 2008; Park et al. 2011). In the study by Molinari et al. (2009), the EGFR FISH 

pattern remained stable between the primary and metastatic tumour during the anti-EGFR 

treatment of the KRAS wt patients (Molinari et al. 2009).   

In study IV, EGFR GCN was observed to decrease between the primary and recurrent tumours 

among the anti-EGFR treated patients but not among patients receiving other treatment regimens 

after primary surgery. None of the patients whose recurrent tumour showed EGFR GCN increase 

≥ 1.0 were treated with anti-EGFR antibodies before obtaining the sample from the recurrent 

tumour. Similarly, the shift from primary tumours with EGFR GCN ≥ 4.0 to recurrent tumours 

with GCN < 4.0 occurred more often among the anti-EGFR-treated patients. EGFR GCN 

increase between the primary and metastatic tumour was only observed in patients not treated with 

anti-EGFR antibodies also in the study by Molinari et al. (2009).  

The association between anti-EGFR treatment and GCN decrease became more evident when 

analysing only patients with distant metastases. This observation may be related to the phenomenon 

that cancer cells are known to accumulate molecular changes in order to acquire metastatic 

capability, whereas local recurrences tend to remain genetically similar to the primary tumour 

(Hanahan & Weinberg 2011; Vakiani et al. 2017). In contrast, some evidence shows that primary 

sporadic colorectal tumours might have more similar mutational profiles to their liver metastases 

than primary tumours with CIMP or Lynch syndrome –associated features (Hühns et al. 2018). This 

implies that discrepancies between the primary and metastatic tumour might result rather from the 

genetic properties of the primary tumour than from the metastatic process itself.  

The tendency to EGFR GCN decrease during anti-EGFR therapy is interesting given the predictive 

value of EGFR GCN ≥ 4.0 in the primary tumour with regard to anti-EGFR antibodies (Ålgars et 

al. 2011; Ålgars et al. 2014; Ålgars et al. 2017). The specific mechanism for this predictive association 

is unknown, whereas the constantly active RAS–RAF–MAPK signalling pathway in RAS mutated 

tumours is known to be responsible for the resistance to anti-EGFR therapies (Ciardiello et al. 

2008).  In study IV, the positive predictors, KRAS wt and EGFR GCN ≥ 4.0, tended to occur in 

the same tumours, which has also been observed by others (Personeni et al. 2008; Sanchez-Vega et 

al. 2018). Higher EGFR GCN was also more often detected in lymph node positive (stage III) than 

in lymph-node negative (stage I – II) tumours. Thus, increased EGFR GCN might indicate 

tumours with higher invasive potential, which is in accordance with the known cancer promoting 

effects of EGFR signalling (Ciardiello & Tortora 2008), and could further underline those patients 

who especially might benefit from the anti-EGFR treatment.  

One explanation for the observed EGFR GCN decrease in study IV could be that a selective 

pressure exerted by the antibody treatment leads to the survival of cancer cells with smaller GCN. 

In general, this kind of selective pressure has been proposed as one of the mechanisms that leads to 

the survival of cancer cell subclones with genetic properties protecting them against the antibody 

and thus results in acquired resistance (Misale et al. 2014). Acquired resistance to anti-EGFR 
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therapies is known to occur in a substantial proportion of patients, and several studies have been 

conducted in order to unravel the mechanisms contributing to this process (Diaz et al. 2012; Misale 

et al. 2012; Misale et al. 2014; Bertotti et al. 2015; Bronte et al. 2015). Amplifications of RTK genes 

such as HER2 and MET, KRAS mutations and amplifications as well as NRAS and BRAF 

mutations have been observed to associate with acquired anti-EGFR antibody resistance (Yonesaka 

et al. 2011; Bardelli et al. 2013; Pietrantonio et al. 2017). 

Whether EGFR GCN decrease during anti-EGFR therapy has any effect on clinical treatment 

response could not be properly examined in study IV due to the limited number of patients. It 

could be hypothesised that the exposure to anti-EGFR antibodies could result in decreased EGFR 

GCN and thereby contribute to acquired treatment resistance. However, potential effects of EGFR 

GCN change on acquired resistance during disease progression have not been reported. The few 

studies reporting any findings regarding EGFR GCN change in relation to anti-EGFR treatment 

response have had too small a study population to yield clinically useful information (Molinari et al. 

2009).  

Potential weaknesses of study IV include the relatively small number of primary – metastatic 

tumour pairs and especially the limited number of patients treated with anti-EGFR antibodies 

between sampling the primary and metastatic tumours. In addition, the heterogeneity in the 

locations of the metastatic tumours and in the administered therapies as well as the usage of biopsy 

material for the EGFR GCN analyses may also add some uncertainty in the interpretation of the 

results. 

Cancer genomes are not only complex but also diverse even among tumours arising from the same 

cell type. This inter-tumour heterogeneity can make it difficult to predict how an individual tumour 

will progress over time or respond to different therapies. (Eifert et al. 2012). Nevertheless, the large-

scale characterisation studies, combined with histological data, have been able to elucidate different 

carcinogenic mechanisms, untangle various signalling pathways underlying the malignant processes, 

and provide some information about the prognosis and suitable treatments for individual patients 

(Liu et al. 2018).  

Most of the data collected and analysed, for example by the TCGA project, is from primary 

tumours. Subsequent large-scale projects, such as the Cancer Moonshot Initiative and the Human 

Tumor Atlas Network, aim to characterise not only metastatic tumours but also premalignant 

neoplasms, and they will also conduct analyses regarding treatment sensitivity and resistance (Ding 

et al. 2018). In order to yield clinically useful applications, forthcoming studies also need to address 

the difficulties related to interpreting the findings from various genome-wide analyses as well as 

from an enormous amount of studies examining the significance of single proteins or mutations. It 

needs to be determined whether any recurring individual alteration is functionally important to the 

tumour (driver vs passenger mutations, for example) and if so, whether the alteration is required 

only during carcinogenesis or even in the fully developed tumour (Eifert et al. 2012). 
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To address this problem with data overload, several different approaches have been developed that 

utilise different computational and screening methods as well as techniques based on genome-wide 

comparisons. However, more advanced methods will be required to characterise individual tumours 

in order to acknowledge the complex interactions between different molecules as well as the 

influence on carcinogenesis exerted by the tumour microenvironment or gut microbes. (Eifert et al. 

2012). It has been suggested that transcriptome-based, rather than mutation-based, analyses might 

provide more functionally relevant information by allowing for acknowledging also the effects of 

various signals from the tumour surroundings (Bijlsma et al. 2017). Furthermore, an important 

source of information is the medical records, the integration of which with the biological data 

derived from tumour samples is a task suitable for organisations such as the different biobanks. 

Regardless, the unique properties of cancer cells will still continue to challenge the attempts to 

eradication, and it may be that in the future the management of at least some cancer types will 

concentrate on tumour containment rather than total annihilation. 
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7 CONCLUSIONS 

Based on the studies included in this thesis, the following conclusions can be made: 

1. EGFR amplifications in oesophagogastric cancers are concentrated in the intestinal-type 

tumours in which they are not uncommon. Amplified EGFR also associates with decreased 

survival of these patients. Including EGFR GCN analysis in prospective trials warrants 

further consideration as it could be used to identify patients with adverse prognosis and to 

improve the specificity of patient selection when investigating anti-EGFR therapies in the 

treatment of intestinal-type oesophagogastric adenocarcinomas.   

2. Oesophagogastric adenocarcinomas can be classified into biologically and clinically relevant 

subgroups by straightforward methods based on the Laurén classification together with 

immunohistochemistry and in situ hybridisation. In future clinical trials, the application of 

new classification algorithms combining both histological and molecular information will be 

necessary in order to improve the clinical benefit obtained from new targeted therapies. 

3. Low CIP2A protein expression level in post-treatment tumours is associated with a 

favourable response to long‐course (C)RT in rectal cancer patients. In support of the 

finding, suppression of CIP2A expression by siRNA increases the radiosensitivity of 

colorectal cancer cells in vitro.  Low CIP2A expression level might also prognosticate 

increased survival of patients after long-course (C)RT.  

4. EGFR GCN tends to decrease between the primary and recurrent tumours among those 

colorectal cancer patients who have been treated with anti-EGFR antibodies after primary 

surgery. In contrast, among patients not exposed to anti-EGFR treatment, EGFR GCN of 

the recurrent tumour tends to stay stable or even increase in comparison to the EGFR 

GCN of the primary tumour. High EGFR GCN is associated with KRAS wt status and 

lymph node positivity (stage III) in primary colorectal tumours.  

The biomarkers examined in this thesis have established functions as key participants in diverse 

intracellular signalling and regulatory pathways involved in the pathogenesis of malignant tumours, 

and some of them are used as predictive biomarkers in their special fields of application. As it 

becomes increasingly evident that even a particular type of cancer located in a specific organ and 

with defined histological features may behave and respond to cancer treatments in divergent ways 

in different patients, the molecular characterisation of tumours becomes ever more important. The 

challenge is and will be to distinguish the functionally meaningful information among all the data 

acquired from both the small-scale studies examining single biomarkers and the large-scale studies 

analysing hundreds or thousands of tumour samples and to convert it into clinically relevant 

knowledge.
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