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Abstract: We will describe an FPGA implementation of
PID-controller that uses differential evolution to optimize
the coefficients of the PID controller, which has been im-
plemented in VHDL. The original differential evolution al-
gorithm was improved by ranking based mutation oper-
ation and self-adaptation of mutation and crossover pa-
rameters. Ranking-basedmutationoperation improves the
quality of solution, convergence rate and success of opti-
mization. Due to the self-adaptive control parameters, the
user does not have to estimate the mutation and crossover
rates. Optimization have been performed by calculating
for each generation fitness value by means of trial param-
eters. The final optimal parameters are selected based on
the minimum fitness.

Keywords: Adaptive PID Controllers, Differential evolu-
tion, Field Programmable Gate Array (FPGA), Optimiza-
tion, VHDL, Ranking-based mutation operation, Self-
adaptive control parameters

1 Introduction
Intelligent PID controllers arenowadays implementedalso
with various optimizationmethods. The PID controller has
progressively evolved fromoriginalmechanical pneumatic
systems to microprocessor-based systems. These days it is
also become common to use digital Field Programmable
Gate Array (FPGA) based control systems. The PID con-
troller is used in many different kind of control systems
in almost all fields of life and technology, from process
control, product manufacturing, robotics, automotive sys-
tems, to the space systems.
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Programming of FPGAs is considered challenging.
This is because of several reasons: FPGAs are digital hard-
ware; basic knowledge of digital circuits is needed to un-
derstand and use them. FPGAs are used by programming;
basic knowledge of programming is needed but is not
enough simply because of the parallel nature of circuits
and their modelling languages. This parallelism is usually
totally absent from the general purpose programming lan-
guages like Java. The efficient use of parallel processing by
FPGAs presupposes understanding of pipelining, which is
usually not known by programmers.

In this study we have implemented evolutionary com-
putation based intelligent PID-controller.

Differential evolution algorithm (DE) is a relatively
new optimization method, which was selected due to its
simple presentation. It is ideally suited for numerical op-
timization for the PID controller parameters due to its
simplicity and real-time nature. PID controller optimiza-
tion was implemented in FPGA, for which there is only
marginal experience in reported controller optimizations
in literature.

DE is suitable for accurate minimization of numeri-
cal parameters. FPGA implementation increases efficiency
of PID-controller, is real-time, and diversify functionality,
stability and minimize power consumption.

FPGA is desirable technique tousedue itsmassive par-
allelism. It is programmable hardware that enables e.g.
hardware reconfiguration and massive parallel calcula-
tions and operations.

It is quite difficult and challenging implementing of
Differential Evolution (DE) optimization algorithm to the
FPGA. DE algorithm by nature always uses floating point
coding and needs several random number generations.
Therefore, FPGA implementation of DE required quite a
lot of work with implementing several random number
generators to the FPGA. Floating point coding was mostly
handled with fixed point coding in order to avoid heavy
floating-point arithmetic calculations with FPGA.

In this work the cost function of the delta value, sam-
pling value and derivation term of PID controller was opti-
mized with differential evolution algorithm according the
fitness value with FPGA. Fitness value was calculated in
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each generation from the trial parameters. According to
the fitness value, best control parameterswere selected for
PID-controller. PID-controller was tested in the ModelSim
program first and then the test results was analyzed with
Matlab.

Our main hardware description language (HDL) has
been Very High–Speed Integrated Circuit Hardware De-
scription Language (VHDL) since mid-90s. The reason for
selecting VHDL was its modelling power. Unfortunately,
the full power of VHDL also requires quite much program-
ming skills and work. In real-life FPGA projects, also other
HDL alternatives such as Verilog need to be used.

In chapter 1 we introduce the topic, differential evolu-
tion, PID and FPGA. Chapter 2 introduces our implemen-
tation and FPGA architecture. In chapter 3 we discuss the
testing of the system, and in chapter 4 there are some re-
sults. In chapter 5 there are some discussion about our re-
sults, and also what other people have found out in their
related publications, and system and chapter 6 conclu-
sions.

1.1 Related work

Optimization of differential evolution, structure and activ-
ities of PID-controllers have been studied in many pub-
lications. The most commonly used sources of Survey of
differential evolution algorithm were examined; the orig-
inal differential evolution is was introduced [1]. The ba-
sis of the optimization used in this work was [2] and the
speed and operation and of differential evolution was im-
proved [3]. The basis of studying the PID-control was [4],
fixed-point representation have been studied [5], and PID-
controller tuning based on experimental tuning [6]. Dif-
ferential evolution based PID optimization is also studied
in [7], they used steady-state error, peak overshoot, rise
time and settling time as fitness function. They found out
that DE based controller improves system responses com-
pared to the open loop system, and also reduces the per-
centage overshoot to zero.

Adaptive controllers, like adaptive PID (APID) [8–11]
have been under grooving interests in recent years. Usu-
ally APID utilizes e.g. fuzzy logic based compensator [8–
10, 12], evolutionary computation based parameter opti-
mization [8], or Sliding Mode Control (SMC) scheme [10,
11], or something that combines several techniques [8].
Quite often APID is realized with FPGA technique due its
speed and ability to real time response.

Chan et al. [13] have investigated the module-
embedded PID controller implemented with FPGA. It was
applied to the temperature control system. The controller

functions were divided into modules that can be modified
if needed. The work has focused on ADC converter, PID
controller and PWM generator module, which can be
reused in future applications.

Saad et al. [4] have explored and compared the opti-
mization and design of the PID controller with differential
evolution and genetic algorithms. The PID controller was
tuned both by the Ziegler-Nichols method and by the MSE
and IAEmethod. In their studyMSE and IAEmethodswere
remarkablymore efficient compared to the Ziegler-Nichols
method. The optimization time difference can vary from
several seconds to dozens of seconds depending on the ap-
plication you want to adjust.

Lima et al. [14] have studied the operation of the PID
controller when using a fixed-point presentation in an
FPGAprogram. The performance is compared to a floating-
point presentation, which compares the effect of a fixed-
point presentation with different bit amounts to system
stability. The fixed-point presentation has been evaluated
using word-length analysis techniques. The aim of their
study was to find a compromise on the right bit accuracy
between the floating and the fixed-point presentations.
They found that with a fixed point presentation could save
significant resources in the FPGA circuit such as power
losses and energy consumption and reduce planning time.

There are several other techniques that can be used for
PID design and optimization, but due our history with ap-
plying evolutionary algorithms to several different types of
problems, we decided to use DE method in our FPGA im-
plemented PID experiments. There are some more related
work at chapter 5, where we analyze our results and some
more related work.

In practice we were more interested to implement dif-
ferential evolution to the FPGA than PID. PID was chosen
mainly just to have something that we can optimize with
our DE. Therefore we did not consider whether of not PID
controller system is best to control something, or would
the other controller types better. There are a lot of con-
sideration of how controlling should be done these days,
what new issues and challenges should be considered,
and review of many different type new controller tech-
nigues in [26].

1.2 Differential evolution

Original (DE/rand/bin) method includes to traditional ex-
ploration methods [1]. DE-algorithm is operative and sim-
ple population basednumerical optimizationmethod. The
objective function is sampled in several randomly selected
initialization points in DE optimization. Population struc-
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ture is needed population size (NP), crossover rate (CR),
mutation parameters (F) and number of chromosomes to
match control parameters.

Population is initialized by generating randomly in-
dividuals with 1 to NP chromosomes evenly between 1 to
D. Initialization values are given to individuals manually
in optimization. Difference vector is randomly generated
from individual selection. The weighted difference vector
is formed from the difference vector multiplying by muta-
tion parameter F. Mutation constant is affected step length
of mutation, where in difference vector decreasing also
step length of mutation is decreased in population dwin-
dle. Mutation vector is born from sum of parameter of
difference vector and individual parameter. Finally target
vector is crossed with mutation vector. The crossing was
performed between crossover parameter CR and random
number to each chromosome by generation.

Hereafter, target and trial vectorwas selected based on
the objective function value to place of target vector chro-
mosomes by generation. Selection is done the according
the objective function. Frommutation vector is selected al-
ways at least one chromosome. If target vector is equal to
the trial vector then trial vector is selected to continue in
the genus.

Figure 1 shows the differential evolution algorithm
flow. We select four parents randomly, then we ccalculate
thedifference vector between twoof theparents, andadd it
to the third parent vector multiplied with the mutation co-
efficient weight F. Crossover between this new vector and
the third parent is done with the gene selection probabil-
ity CR. Then we will calculate target function values and
compare the new trial with fourth parent, the more fit will
reach the next generation.

1.3 FPGA

Digital control systems of Field Programmable Gate Arrays
(FPGA) have been more popular nowadays. Fixed-point
numbers can be implemented scaling the floating-point
numbers to integer without fractions in FPGA. The scaling
is simple and fast upon addition, reduction, multiply and
divide. Multiply and division is done by bit shifting. The
integer arithmetic and fixed-point arithmetic are included
and calculations of decimal numbers was done by scaling.
Reduction of power losses and energy consumption and
saving hardware resources can be achieved by using anal-
ysis and word length optimization techniques, and fixed-
point numbers for operationally large systems. Implemen-
tation of PID-controller for FPGA is improved execution of
the real-time controller. Several PID-controllers could easy

Figure 1: The differential evolution algorithm (DE/rand/1/bin)

programming to a single FPGA-circuit when using fixed
point number. Fixed-point numbers decrease also design
and programming time.

Optimization is also great for minimizing the numer-
ical parameters of the PID controller. The FPGA program
is able to increase the efficiency of the PID controller, di-
versify functionality, enhance real-time response, stabil-
ity and minimize power consumption [13]. However, the
use of fixed-point numbers and floating point numbers
in the FPGA makes it difficult to design, as many appli-
cations require different FPGA hardware constructions,
their use require a lot of experience [15]. Fixed-point ar-
chitecture is cheaper and faster than floating-point execu-
tion, but calculating integers and decimal parts requires
time-consuming functions in the FPGA [14]. In addition, in
FPGA, fixed-point calculation can be replaced by scaling
the floating-point numbers into integers. Scaling calcula-
tion is simple and fast in addition and subtraction calcula-
tions, multiplication and division calculations when mul-
tiplication and division occurs by transferring bits as two
potencies [16].

1.4 PID

Digital PID-controller structure can be implemented fixed-
point number for FPGA. Structure of the PID-controller
is implemented on module level. Its digital action based
on the addition, reduction, multiplying and to the delay
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of signal z(-1). PID-controller can be tuned various tuning
method as step response and the oscillation boundary of
Ziegler-Nichols and numerical (IAE, ISE)methods. Step re-
sponse tuning method can be used in delay applications
such as industrial processes usual are. Numerical tuning
method can be used although in the real-time applications
such as fuel feed and ignition control optimization.

Unsigned optimized parameters of 16 bits are im-
ported from DE-optimization architecture to PID-control
system. Unsigned values are adapted signed values for
PID-controller at first, which simplify to digital optimiza-
tion of the controller. Proportional, integral and derivative
terms are calculated separately in different program mod-
ules. Output value of PID-controller is got by summing up
all terms in the end.

Optimization of PID-controller generally based on re-
duction of reference and measuring value or quantity of
generations. Parameters of PID-controller are selected by
comparing the fitness values of different generations. The
cost function is calculated of delta value, sampling value
and derivation term of PID-controller. According to fit-
ness value the best control parameters is selected for PID-
controller.

PID controller tuning canuse application-specific tun-
ing methods. Generally, a discrete PID controller requires
a short sampling interval, which corresponds to the opera-
tion of a continuous-time PID controller. In our case, when
we want to create dynamic and real-time optimized PID
controller, we need several different types ofmodel signals
that used for seeing that the PID tuning is acting correctly
in different kind of control situations.

Figure 2: PID-controller in module level

Figure 2 shows module level of the PID-controller.
P-, I- and D- terms are calculated in the program modules
by adding, subtracting, and delaying values within clock
cycles. The final output value of the controller comes out
from output [17:0]. Bit accuracy of our PID-controller was
36 bits.

2 Implementation
The system was designed with the Development and Edu-
cation board DE2 of Altera Corporation. The system con-
sisted of Nios II processor, audio codec, SDRAM mem-
ory, switches and buttons. Nios II is a soft processor that
can be instantiated on an Altera FPGA board. Nios pro-
cessor was programmed using SOPC Builder of the Quar-
tus II 10.1sp1 software and Nios Software Build Tools (SBT)
10.1sp1, which is an Eclipse-based integrated development
environment (IDE) for Nios-specific C/C++ code. The lat-
ter is an Eclipse-based integrated development environ-
ment (IDE) for Nios-specific C/C++ code. The former is the
built-in SOPC tool of Quartus, but is nowadays considered
a legacy tool because in newer Quartus versions it is re-
placed with more high-performance tool, Qsys.

2.1 The system

The FPGA system was built around Altera’s Nios II proces-
sor. The Nios II system was connected to one user periph-
eral - the audio codec Wolfson WM8731 controller - and to
somepre-designedperipherals: parallel I/O (PIO)modules
for the buttons, switches and light-emitting diodes (LEDs),
Liquid Crystal Display (LCD) controller, on-chip memory
controller and an SDRAM controller. All these modules
used the Avalon Memory-Mapped (MM) interface to com-
municate with the processor. PIOmodules had also the In-
terrupt Sender interface and signals from the audio codec
were exported to the top level using Avalon conduit inter-
face.

2.2 Memories

The application used two memories: the on-chip mem-
ory of the FGPA device and an external SDRAM memory
module. The on-chip memory of the EP2C35 FPGA is orga-
nized in 105 M4K blocks. Each block consists of 4608 bits:
4096 data bits (4Kbits) and 512 parity bits. However, in this
work, we needed only a small on-chip memory, and thus
the size of the on-chip memory was set to be 16 Kbytes.
Communication was performed using 32-bit words. It is
recommended to use this word length when connecting
the on-chip memory to the data master port of the proces-
sor (Altera 2010).

The SDRAMmemorymodule located on theDE2 board
can store 8 MiB of data. It is meant for storing large blocks
of data, for example audio data (Altera 2010). The com-
munication between the system and memory module was
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performed using the pre-designed SDRAM controller pro-
vided by the SOPC Builder. In addition to this, a phase-
locked loop (PLL) was needed to clock the SDRAM mod-
ule. The purpose of the PLL circuit is to generate a clock
signal, which is suitable for the SDRAM. That clock must
be phase-shifted by -3ns from the original clock source, as
described in Altera’s (2008b) tutorial. The ALTPLLmodule
of the SOPC Builder software did not work, but the prob-
lemwas solved by using an ALTPLLmegafunction instead
of ALTPLLNiosmodule. Themegafunctionwas inserted to
the top-level schematic diagram and the inputs and out-
puts were connected to the appropriate pins.

2.3 LCD display

The LCD display was configured to use two lines and 5x7
pixels sized characters. Placing characters to the display
was performed by writing the coordinates of the charac-
ter to the command register and writing ASCII code of the
character to the data register of the LCD device.

2.4 Architecture

The implementation of our PID controller program was
created with the structure model of FPGA, so that the DE
algorithm architecture was created, and PID was placed to
its substructure. The system resources consumed a total
of 11821 logic cells. The resources of the FPGA program is
calculated according to the number of logic elements and
LUT-input use, registers, I/O inputs and outputs and the
multipliers.

Figure 3: The Architecture of the PID-controller

The number of logic elements needed was 5383,
needed LUTs 4713, 1622 registers, 79 I/O’s and total of
20049 internal connections. Total power consumption of
the used resources Altera’s PowerPlay Power Analyzer
gave 119 mW, which is relatively low. Figure 4 shows what

modules there are inside of FPGA in this implementation.
The system for which controlling the FPGA based PID con-
troller is used is outside of the FPGA.

Figure 4: PID-controller in closed loop and what are inside FPGA

In figure 4 FSM module responses to the user com-
mands like controllers stand-by mode, start, shutdown,
optimization etc. User interface module handles the com-
mands user gives, like temperature setup values, system
starting and shotdown. User interface controls FSM state-
machine. ADC-interface sends themeasured signals to PID
calculation. PID-module calculates from themeasurement
values the P, I, and D terms. Stability of PID controller is
controlled with the coefficients of P, I, and D terms. Con-
troller output is connected to input for PWMmodule. PWM
generator module uses comparator and counter in order
to Convert input signal to regular square wave. Counter
value increases in every clock cycle and it is compared
to the value that comes from PID controller. When value
is greater than counter PWM outputs are on, otherwise
closed. Counter is zeroed according the setup when there
is enough clock cycles. The system is used to control heat-
ing.

3 Testing
Testing is an important part of the implementation of the
program. It is also important to divide the program in suit-
ably sizedmodules, so that the testing can be successful as
easily as possible with the testing program. Finally, when
the modules has been tested, they are connected to each
other and the overall system is tested as a whole. The fol-
lowing results has been obtained by collecting snapshots
of the most optimal generations from ModelSim.

The test program created four random individuals, for
which each was given three parameters. The number of
test runs was 24, so in each test run there were twelve ran-
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dom parameters. Some of the random parameters were se-
lectedbasedon themutationand thefitness of preliminary
test runs in order to match the random values ??and the
best fitness values with each other in the testing process.
The rest of the parameters are taken from the simulation
table in corresponding order. The program tried to variate
the individuals’ randomparameters, inwhich it succeeded
quite well.

In the start-up situation of the optimization, before
randommixer module starts, the random variation in val-
ues ??was obtained by starting the random number gener-
ators different time by the help of counters. The actual ran-
dom values ??mixer began to function when optimization
program has started. The early test runs have some prob-
lems, but eventually the randomnumbermixing started to
work when clock pulse timings where set correctly.

We conclude that the random number mixer affect the
frequency of random numbers to reoccur, and different
timing setting increase or reduce the variation of random
number values in the different test runs.

Randomly created individuals were fed to the ranking
module, in which the first calculated fitness value of indi-
viduals by summing the individual’s parameters individ-
ually. After this comparison is performed on individuals,
selecting the largest and second largest specimen per test
run. The ordering of the population by fitness value ads
randomness and identical random values did not occur
among the parameters.

4 Results
The execution time of the PID programwas tested by mea-
suring with the ModelSim. When operated at 500 Hz sam-
pling rate optimizing 50 generations it took 6.562 s. When
testing by using 10 GHz sampling rate (maximum speed) it
took only 0.3281 microsecond. Based on testing the speed
was affected by to the sampling rate and the number of
generations. A test optimization took 3821 clock cycles dur-
ing the fifty-generation,which remained constant in differ-
ent test runs if the generations remains the same.

We also tested 25, 50, 100 generations, the number
of clock cycles needed with different optimization run
lengths were respectively 1398, 3281 and 6010. The exe-
cution time varied linearly between [0.14; 0.60] µs, with
0.0001 µs sampling time, andwith 2 s sampling time [2.80;
12.02] s.

Altera’s Cyclone II PowerPlay Power Analyser EP2C35
gave our optimizing PID controller the key permanent
power consumption 79.95 mW, inputs and outputs’ power

consumption was 39.18mWand the total power consump-
tion was 119.13 mW at 10 GHz clock speed. The power con-
sumption slightly exceeds the information promised by
the Actel for Cyclone III family EP3C16 power consump-
tion, where central ten thousand logic cells permanent
power consumption were claimed to be 42 mW and total
power consumption of 161 mW with 100 MHz clock fre-
quency [17].

Figure 5: The testing of PID controller. Y-axle shows optimized PID-
values in 20 different optimization runs (X-axle)

Figure 5 shows that the best-found PID values vary
widely between different test runs. The system is quite
nondeterministic and it is possible that very different PID
values will work well depending on the situation.

5 Discussion
The variation of the self-adaptive parameters needed for
mutation and a crossover module was relatively small in
the test runs. This was due to clock rate of pseudo ran-
dom generator, which led the random values ??being rel-
atively similar. This caused mutation coefficient to get low
values ??and crossover coefficient to get variation of low
and high values. This problem can be corrected with bet-
ter random number mixer and by expanding the random
generator value range. Despite the aforementioned prob-
lem, mutation and crossover succeeded as expected.

The results are difficult to compare with any of the
other FPGA based PID controllers, since the application
people use these are usually unique. There are papers by
Chang and Juang who have created Fuzzy-PID controller
with FPGA and optimized parameters by real-valued ge-
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Table 1: FPGA DE/PID execution performance numbers

Number of generations Clock cycles Sample time Execution time
25 1398

0.0001 µs
0.1398 µs

50 3281 0.3281 µs
100 6010 0.6010 µs
25 1398

2 ms
2.796 s

50 3281 6.562 s
100 6010 12.020 s

netic algorithms [18]. In addition, [19–24] have imple-
mented PID controller and genetic algorithm (GA) to opti-
mize its parameterswithFPGA.Also there are several other
PID FPGA Implementations [22–24]. All these implemen-
tations are interesting but we cannot really compare our
solution with them.

Aforementionedpapers usually state that there are rel-
atively few FPGA based PID controller research papers.
They also state that the benefits of using FPGA are relia-
bility, flexibility, re-programmability, high speed duemas-
sive parallelism, and low power comsumption [8–11, 23? ].
Also fast time-to-market, and shorter design cycle [9] are
mentioned. Papers [19–22] stated that real-valued GA con-
sumes many FPGA resources. The advantage of FPGA im-
plementation are obviously the speed, design flexibility,
high reliability and short cycle of technical development.

We did not use any other system to run similar tests
as we did with FPGA implementation, therefore we do not
have results of how much faster FPGA based intelligent
and optimizing PID controller was compared to e.g. PC im-
plementation. In paper [23] there is a comparison between
PC and FPGA implementation, but basically they state that
with FPGA it was possible to achieve much higher sam-
pling rate. With PC they used 10ms sampling time, while
with FPGA implementation it could be shorten to 100 µs.
The error ratewas reduced to half due faster sampling rate.
Therefore, FPGAwasonly real-timeplatform in that test. In
paper [12] they stated that in their FPGA PID implementa-
tion control process needed just 19 clock cycles, with 57.4
MHz system frequency that corresponds process speed of
0.33 µs.

In paper [8] there was a comparison between GA op-
timization and Ziegler-Nichols tuning of PIDs. They also
compared GA optimized PID and fuzzy logic controller.
They find out that it is difficult to determine which con-
troller was best, since it depends on uncertainty (noise).
With student test they come conclusion that GA optimized
FLC has the lower error rate.

6 Conclusions
The most valuable contribution of this work was to im-
plement both differential evolution and PID controller to
FPGA. There were not so many DE FPGA implementations
in the literature, so it was a challenge. For doing so, we
needed solve several problems concerning the random
number generators, as well as crossover and mutation op-
erators. Many experimental work and test runs were done
in order to improve model. The eventual implementation
worked relatively well, and we were able to obtain some
results of the how much FPGA resources and power con-
sumption our model and test runs needed. However, there
is not a direct other implementation to compare our results
with. Now that we have DE FPGA implementation we can
also use it for other optimization purposes. In this work
PID controller was used as an optimization subject, but
it can be relatively easily changed since it was realized as
substructure of the DE program.

By testing the PID controller, we obtain graph from
where we can be compare the different aspects of the con-
troller. The difference value was generated randomly by
imitating the real control situation of wheremax error was
set to 5% from the reference value, which was set at 2000.
In the graph, the controller terms can be compared with
the magnitude of the difference value. In the test runs
the difference between the values were increased towards
the end of the optimization. Ratio (P-term) strongly in-
fluencing to the rapid reaction of the controller (control).
The integration part (I-term) remained constant, and the
derivative (D-term) increased with the increasing differ-
ence value. There was a programming error that the con-
troller derivative lacked the factor of two. Increasing in the
factor coefficient would increase the magnitude of deriva-
tive component of the controller and the control, but at the
same time, the control value would become more stable.

Based on the results of different aspects of the pro-
gram can be developed in the future as well as expanding
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and complicated by randomness that increasing the num-
ber of individuals and generations.

This was the first attempt to implementing DE-
optimizedPID to theFPGA. Therewere stillmanyproblems
and limitations in the system. The new version is planned
to be implementedwith SOC-FPGA, where parts of the sys-
tem can be run on a processor and FPGA is used to only
those operations that have highest speed demand.

Acknowledgement: This paper is a short English sum-
mary of Mika Hanhila’s Master’s thesis [25]. Those who are
interested of the topic are advised to read original work (in
Finnish) in order to get more detailed information of the
work done and results.
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