

UNIVERSITY OF VAASA

THE SCHOOL OF TECHNOLOGY AND INNOVATION

SOFTWARE ENGINEERING

Laura Mustonen

TESTING AND IMPROVING A CONTINUOUS REQUIREMENTS RISK

PROFILING METHOD

A Case Study on Agile Software Projects

Master’s thesis for the degree of Master of Science in Technology submitted for

inspection, Helsinki, 30th of March 2018.

Supervisor Jouni Lampinen

Instructor Tero Vartiainen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/233002046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

TABLE OF CONTENTS

1	 INTRODUCTION 9	
1.1	 Background of the study 9	
1.2	 Objectives of the study 10	
1.3	 Key concepts and limitations of the study 11	
1.4	 Structure of the study 12	

2	 AGILE SOFTWARE DEVELOPMENT 13	
2.1	 Adoption of agile software development models 13	
2.2	 Common approaches to agile software development 17	

2.2.1	 Extreme Programming 18	
2.2.2	 Scrum 20	
2.2.3	 Lean software development and Kanban 22	

2.3	 Common practices related with agile software development 25	
2.3.1	 Continuous Integration 26	
2.3.2	 Continuous Delivery 27	
2.3.3	 DevOps 28	

3	 REQUIREMENTS ENGINEERING IN SOFTWARE DEVELOPMENT 31	
3.1	 The purpose of software requirements 31	
3.2	 Requirements process in software engineering 32	
3.3	 Approaches and techniques for requirements engineering 34	

3.3.1	 Discovering requirements 35	
3.3.2	 Experimenting with requirements 35	
3.3.3	 Prioritizing requirements 35	
3.3.4	 Specifying requirements 36	

3.4	 Common challenges of requirements engineering and management 36	

4	 MANAGING RISK IN SOFTWARE PROJECTS 38	
4.1	 What is software project risk and risk management? 39	
4.2	 Six dimensions of software project risk 40	
4.3	 Focus on software project requirements risk 43	

4.3.1	 Identifying and categorizing the requirements risk 44	
4.3.2	 Resolving requirements risk 46	

4.4	 Risk management methods and tools 47	
4.5	 Introducing the Continuous Requirements Risk Profiling Method 48	

5	 RESEARCH PROCESS AND METHODS 55	

2

5.1	 Interpretive case studies 55	
5.2	 Theme-centered interview as a research method 56	
5.3	 Qualitative data analysis based on themes 58	
5.4	 Validity and reliability of the study 60	
5.5	 Designing the study 61	

5.5.1	 Description of the case company 61	
5.5.2	 Purpose of the interviews 62	
5.5.3	 Applied assessment criteria 62	
5.5.4	 Planning and validation of the data collection method 64	
5.5.5	 Structure of the interviews 65	

6	 TESTING AND IMPROVING THE CONTINUOUS REQUIREMENTS RISK
PROFILING METHOD 67	

6.1	 Conducting the theme-centered interviews 67	
6.2	 Thematic analysis for interview data 69	

6.2.1	 Coding applied to dataset and identified themes 70	
6.2.2	 Thematic map of interview data 71	

6.3	 Analyzing the method feasibility in agile software development projects 72	
6.3.1	 Theme 1: Managing requirements risk in agile software projects 73	
6.3.2	 Theme 2: Experiences on requirements risk in agile software projects
 76	
6.3.3	 Theme 3: Assessment of the method completeness, accuracy and
understandability 80	
6.3.4	 Theme 4: Assessment of the method usefulness and feasibility 84	

6.4	 Proposing improved Continuous Requirements Risk Profiling method 87	
6.4.1	 Tailoring method instructions to case company environment 87	
6.4.2	 Additions and changes to checklist risk items 88	
6.4.3	 Improvements to risk profiling table 92	
6.4.4	 Introducing the tailored requirements technique toolbox 94	

7	 DISCUSSION 96	

8	 CONCLUSIONS 99	

REFERENCES 101	

APPENDIX A 105	

APPENDIX B 109	

3

TERMS AND ABBREVIATIONS

Agile Software development approach

CI Continuous Integration

CD Continuous Delivery

DevOps Development and Operations

Kanban “Signboard”, task visualization tool

Lean Organizational strategy

MIS Management Information Systems

Scrum Product development process framework

TDD Test-Driven Development

XP Extreme Programming

4

LIST OF TABLES

Table 1 Summary of Twelve Principles of Agile Software introduced by Beck et al.
(2001) as part of The Agile Manifesto. 14	

Table 2 Comparison of four characteristics in traditional and agile methods by Cao &
Ramesh (2007: 41–42). 16	

Table 3 Summary of XP Practices presented by Beck (1999: 71). 19	

Table 4 Seven lean principles applicable to software development presented by
Poppendieck & Cusumano (2012: 28–30). 23	

Table 5 Six main benefits of adopting Continuous Delivery in large publishing company
observed by Chen (2015: 52–53). 28	

Table 6 Requirements activities presented by Hickey & Davis (2004: 67). 33	

Table 7 The four qualities usually causing software engineering problems (Brooks 1986:
11–12). 37	

Table 8 Summarizing six dimensions of software project risk presented by Wallace et al.
(2004: 117). 41	

Table 9 Summary of requirements risk categories introduced by Mathiassen et al. (2007)
and later complemented by Tuunanen et al. (2015: 4027). 44	

Table 10 Requirements development technique types (Mathiassen et al. 2007: 576). 46	

Table 11 Summary of four types of risk management models and their characteristics
identified and synthesized by Iversen et al. (2004) and later analyzed by Mathiassen et al.
(2004: 35–36). 47	

Table 12 Six software project key risk drivers presented by Tiwana & Keil (2004: 75).
 48	

Table 13 The initial risk resolution pattern presented by Tuunanen et al. (2016). 50	

Table 14 The initial requirements phase checklist by Tuunanen et al. (2015). 51	

Table 15 The initial design phase checklist by Tuunanen et al. (2015). 51	

Table 16 The initial implementation phase checklist by Tuunanen et al. (2015). 52	

Table 17 The initial risk-profiling table by Tuunanen et al. (2015). 53	

Table 18 Six steps of thematic analysis presented by Braun & Clarke (2006: 87). 59	

5

Table 19 Assessment criteria adapted from MIS Success Measures presented by DeLone
& McLean (1992: 84–85). 63	

Table 20 . The planned structure for the theme-centered interviews. 65	

Table 21 Summary of interviewed professionals and their background information. 68	

Table 22 Coding applied to dataset and identified themes. 70	

Table 23 Conducting risk analysis using the Continuous Requirements Risk Profiling
method and applying the risk resolution pattern adapted from Tuunanen et al. (2016)
tailored to case company context. 88	

Table 24 Additions suggested to requirements risk checklists. 89	

Table 25 Requirements phase checklist initially presented by Tuunanen et al. (2016) and
improved by feedback collected in this study, additions and changes bolded. 90	

Table 26 Design phase checklist initially presented by Tuunanen et al. (2016) and
improved by feedback collected in this study, additions and changes bolded. 90	

Table 27 Implementation phase checklist initially presented by Tuunanen et al. (2016)
and improved by feedback collected in this study, additions and changes bolded. 91	

Table 28 The changes suggested to presented relative impacts of risk items. 92	

Table 29 Indicative risk impact levels initially presented by Tuunanen et al. (2016) and
improved by feedback collected in this study, additions and changes bolded. 93	

Table 30 Requirements risk resolution technique list and categorization, adapted from
Mathiassen et al. (2007: 594–596) and filtered based on the results to specify the most
well-known techniques among the interviewed professionals. 94	

Table 31 The initial requirements risk resolution techniques list and categorization
adapted from Mathiassen et al. (2007: 594–596) by Tuunanen et al. (2016). 109	

6

LIST OF FIGURES

Figure 1 Visualization of the differences between waterfall, iterative and Extreme
Programming approaches by Beck (1999: 70). 18	

Figure 2 Generic DevOps production and delivery process presented by Ebert et al. (2016:
95). 30	

Figure 3 The relationships between presented project characteristics and different types
of risk revealed by Wallace et al. (2004: 121). 42	

Figure 4 Applying continuous requirements risk profiling and management in continuous
development (Tuunanen et al. 2015: 4020). 49	

Figure 5 Theme interview process presented by Hirsjärvi & Hurme (2000: 67). 58	

Figure 6 The final thematic map illustrating conducted thematic analysis on interview
data, reviewed for correspondence and consistency of themes. 72	

7

VAASAN YLIOPISTO
Teknillinen tiedekunta
Tekijä: Laura Mustonen
Diplomityön nimi: Testing Feasibility of a Continuous Requirements

Risk Profiling Method – A Case Study on Agile
Software Projects

Valvojan nimi: Jouni Lampinen
Ohjaajan nimi: Tero Vartiainen
Tutkinto: Tieto- ja tietoliikennetekniikan koulutusohjelma
Pääaine: Ohjelmistotekniikka
Opintojen aloitusvuosi: 2012
Tutkielman valmistumisvuosi: 2018 Sivumäärä: 114
TIIVISTELMÄ:

Onnistunut vaatimusmäärittely on yksi avaintekijä koko ohjelmistoprojektin menestyk-
selle, ja näin myös vaatimuksiin liittyvien riskien tunnistaminen ja hallitseminen ovat tär-
keä osa laadukkaiden ohjelmistojen tuottamista. Tästä huolimatta vaatimusmäärittelyn
riskienhallintaan kehitettyjä malleja on vähän, eikä kirjallisuudesta juurikaan löydy tu-
loksia mallien hyödynnettävyydestä ohjelmistoteollisuudessa. Tässä diplomityössä testa-
taan yhden vaatimusmäärittelyn riskienhallintaan kehitetyn menetelmän soveltuvuutta
ketterissä ohjelmistoprojekteissa, sekä ehdotetaan parannettua versiota mallista. Testat-
tava menetelmä käsittää riskien tunnistamisen, priorisoinnin ja riskeihin puuttumisen eri-
laisten ratkaisumallien avulla. Tutkielman tavoitteena on saada tietoa kokevatko kette-
rissä ohjelmistoprojekteissa työskentelevät ammattilaiset menetelmän käyttökelpoiseksi
ja hyödylliseksi, sekä kuinka mallia tulisi parantaa, jotta se voitaisiin ottaa käyttöön case-
yrityksessä.

Työ toteutettiin tulkitsevana tapaustutkimuksena, jossa samasta yrityksestä tarkasteltiin
useampaa tutkimuksen kohderyhmään sopivaa projektia. Tutkimuksen tiedonkeruumene-
telmänä toimivat puolistrukturoidut teemahaastattelut, joissa menetelmää arvioitiin to-
teuttamalla kullekin käsitellylle projektille mallin mukainen riskianalyysi. Haastatelluilta
asiantuntijoilta edellytettiin osallistumista ketteriä ohjelmistokehitysmenetelmiä käyttä-
vän projektin vaatimusmäärittelyntyöhön. Haastatteluilla kerätty kvalitatiivinen data ana-
lysoitiin käyttäen temaattista analyysia.

Tutkimuksen tuloksista havaittiin, että malli auttoi asiantuntijoita tunnistamaan eri tyyp-
pisiä vaatimusmäärittelyyn liittyviä riskejä ja priorisoimaan niitä yleisellä tasolla. Asian-
tuntijat kokivat mallin käytön hyödylliseksi ja sopivan niihin ketteriin ohjelmistoprojek-
teihin joissa he työskentelivät. Mallin tarjoamia riskien ratkaisuehdotuksia tulisi kuiten-
kin kehittää edelleen. Keskeisimpinä suosituksina tutkimukseen on mallin kehittäminen
ratkaisuehdotuksien osalta, sekä käytäntöön vaatimusriskeinhallintaan liittyvän tiedon
edelleen kerääminen ja jakaminen vastaavien työkalujen kautta.

AVAINSANAT: Vaatimusmäärittely, Ketterä ohjelmistokehitys, Ohjelmistoprojektin

riskienhallinta

8

UNIVERSITY OF VAASA
Faculty of technology
Author: Laura Mustonen
Topic of the Thesis: Testing Feasibility of a Continuous Requirements

Risk Profiling Method – A Case Study on Agile
Software Projects

Supervisor: Jouni Lampinen
Instructor: Tero Vartiainen
Degree: Degree Programme in Software Engineering
Major: Software Technology
Year of Entering the University: 2012
Year of Completing the Thesis: 2018 Pages: 114
ABSTRACT:

As requirements play key role in the success of a software development project, identify-
ing and mitigating requirements related risks becomes an important factor in improving
software quality. Still, only few methods are offered for that purpose and little results of
the feasibility of such methods in industry are reported. In this thesis, feasibility of one
requirements risk management methodology was tested in agile software projects and an
improved version of the method proposed. The tested method consists of identifying, pri-
oritizing and resolving risks using predefined checklists, patterns and techniques. The
objectives of the study were to gain knowledge do professionals working in agile software
projects find the method feasible, are such methods found useful and how the method
should be improved so that it could be taken into use in the case company.

The study was conducted as an interpretive case study which covered several agile soft-
ware projects from the case company. The primary data collection method for the study
were semi-structured theme-centered interviews, in which the method was tested and
evaluated by conducting a requirements risk analysis for each of the case projects. The
key selection criteria for the interviewees was participation to requirements work and use
of some agile software development methodology. The collected qualitative interview
data was analyzed using thematic analysis.

Based on the results of this study, it was observed that the tested method helped profes-
sionals to identify different type of requirements risks and to prioritize those on high level.
The interviewed professionals found the tested method useful and feasible in the agile
software projects they were currently working with. However, it was also observed that
the resolution proposals provided by the method would still need further development.
For researchers, the study provided empirical evidence on the feasibility of the method
and several suggestions for further research. For professionals working in industry, the
study provided one empirically validated method for managing requirements risk, and
encouragement for collecting the existing requirements risk management knowledge and
sharing it with corresponding methods and tools.

KEYWORDS: Requirements engineering, Agile software development, Risk manage-

ment

9

1 INTRODUCTION

This study is a Master’s thesis for a degree in Software Engineering, and examines the

topics and theoretical concepts related software requirements risk management in agile

software projects. In the study, we seek to provide new information and aspects to the

research topic by testing feasibility of one recently proposed requirements risk manage-

ment framework, referred here as the Continuous Requirements Risk Profiling method.

As the requirements risk management framework has not yet been adopted by industry

professionals, it still relies mainly on theoretical knowledge and lacks empirical valida-

tion by its targeted user group: industry professionals working with requirements engi-

neering and management in agile software projects. The goal of this study is to fill this

gap by testing and using the Continuous Requirements Risk Profiling method in case

company with a group of experienced industry professionals. In this chapter, following is

discussed in more detail: the background and motivation of the study and choosing re-

search topic, the objectives for testing the method, the key concepts and limitations of the

study and structure of the rest of this report.

1.1 Background of the study

Theoretical background of the research topic is related to previous research done by Ma-

thiassen, Saarinen, Tuunanen & Rossi in A Contingency Model for Requirements Devel-

opment (2007), which introduced a framework for identifying, categorizing and mitigat-

ing requirements risk. Tuunanen, Vartiainen, Ebrahim & Liang (2015) later presented the

Continuous Requirements Risk Profiling Method basing on the theoretical knowledge by

Mathiassen et al. (2007) and transforming it into a risk management method correspond-

ing the needs of industry professionals working in agile software projects. Continuous

Requirements Risk Profiling Method presents tools for continuous risk identification, pri-

oritization and resolution through the software development lifecycle. The method targets

specially to meet the needs of software projects using agile methodologies or employing

DevOps practices, but is agnostic for the chosen development methodology (Tuunanen et

al. 2015). As there are not any reported results about the method use this far, this study

10

targets to provide such by reviewing, testing and validating the method in case company

context.

Motivation for the study topic comes from both previous research and practice. In previ-

ous research, Tuunanen et al. (2015) have pointed the absence of a model for requirements

risk profiling and prioritization, which would be feasible in iterative and agile software

development projects. From industry professionals’ point of view, the lack of such tools

and methods also had been acknowledged in the case company of this study. The profes-

sionals working with requirements management and risk management in case company

pointed out that there were no such tools available and sometimes it was difficult to pri-

oritize the requirements related risks. Using agile development approaches and practices

such as DevOps, Continuous Integration or Continuous Delivery models for software

projects is also increasing trend and for example Cao & Ramesh (2007) present that the

group of agile methods have already gained a lot of attention. These agile methods rely

on continuous and iterative workflows, which sets its own requirements to the techniques

used in requirements management (Tuunanen et al. 2015).

1.2 Objectives of the study

The main objective of the study is to test the Continuous Requirements Risk Profiling

method introduced by Tuunanen et al. (2015) in software projects using agile develop-

ment practices and collect feedback and insights from industry about the feasibility and

usefulness of the method. Based on the collected empirical evidence, also a validated and

improved version of the method will be proposed to be used in the case company. By

presenting this one empirically validated view of the method, we hope to help both pro-

fessionals working in industry to manage requirement risk in agile software projects and

researchers in developing the model and finding future research topics on this area. The

main research questions of this study are:

1. Does the developed continuous requirements risk profiling method fit the needs

of agile software development projects?

11

2. Would the developed continuous requirements risk profiling method help industry

professionals to identify such project characteristics that are seen as risks for the

project success?

3. How the continuous requirements risk profiling method should be improved, so

that industry professionals would find it easy to use and useful in their everyday

work?

In this study, we try to seek answers to the research questions by testing the Continuous

Requirements Risk Profiling method with several agile software development projects in

case company context. We do this by conducting requirements risk management inter-

view sessions with professionals, where we assess a risk profile for one specific project

and evaluate the method. In later parts of the study, we then analyze the interview results

with qualitative methods, such as thematic analysis, and evaluate the results.

1.3 Key concepts and limitations of the study

Key concepts of this study are requirements engineering and management, agile software

development, and risk management.

As the Continuous Requirements Risk Profiling method is developed specially to meet the

needs of agile software projects and projects employing DevOps practices, the case projects

examined in this study are limited to those. Conducting the study in case company context

also sets some limitations to the repeatability of the study and generalizability of the re-

sults. Factors possibly affecting to the results are for example the business domain and

environment the case company is operating in, and the type of the software solutions that

are developed in examined projects. Even though the results will represent several differ-

ent types of projects that fit defined characteristics, the results might be hard to generalize

to apply all agile software projects.

12

1.4 Structure of the study

The rest of the study consists of seven main chapters, which are structured as follows.

This first chapter introduced the background, objectives, key concepts, limitations and

overall structure of the study. The second chapter introduces the reader to agile software

development methodologies and some widely adopted agile practices, to give better un-

derstanding of the context of this study. The third chapter is focused on requirements

engineering in software development, and gives the reader basic understanding of the

purpose of software requirements, the requirements process and activities, and some com-

mon ways of doing requirements engineering. The fourth chapter discusses about the

overall concepts of risk management, giving later more focused view on requirement risk

management. In addition, the Continuous Requirements Prioritization method, tested in

the empirical part of the study, is introduced in the end of fourth chapter. The fifth chapter

describes the design of the study, including the research process and methods used for

testing and improving the Continuous Requirements Prioritization Method. The sixth

chapter describes how the study was conducted and the results analyzed. The seventh

chapter presents the conclusions made based on the empirical results of the study.

13

2 AGILE SOFTWARE DEVELOPMENT

This chapter introduces the past and present of agile in software development. We discuss

why and when the adoption of agile software development methods happened in industry,

introduce some widely adopted approaches to agile software development to give better

understanding of the environment and context of this study. In addition, software engi-

neering concepts such as DevOps, Continuous Integration and Continuous Delivery are

discussed, as those are common technical principles often related to practicing agile soft-

ware development methods.

The agile methods seek to respond the challenges of the ever-changing environments, and

share common characteristics like short development iterations, frequent system releases,

on-site customer participation, use of peer review techniques and simple and incremental

designs (Cao & Ramesh 2007: 41–42). The recent research shows that agile software

development methods and principles have become the preferred choice in variety of soft-

ware organizations, despite the organizational size. Even though many of the organiza-

tions involved in agile software development do not promote to directly follow certain

agile methodology, researchers have found that many of the principles base on popular

methodologies such as Scrum and Extreme Programming. (Ramesh, Cao & Baskerville

2010: 449–450, 454, 474.)

2.1 Adoption of agile software development models

The wider acknowledging of agile software development dates back to change of 90’s

and 00’s. The Agile Manifesto (Beck, Beedle, Bennekum, Cockburn, Cunningham,

Fowler, Grenning, Highsmith, Hunt, Jeffries, Kern, Marick, Martin, Mellor, Schwaber,

Sutherland & Thomas), often referred as declaration of agile software development phi-

losophy and values, was published in 2001 by a group of software professionals. This

group of software professionals had been looking for alternative ways to do software to

then popular approaches and for example, Beck (1999) had already presented an agile

approach called Extreme Programming before the actual manifesto was published. The

14

manifesto states, that when searching for better ways to do software compared to tradi-

tional strictly planned approach, the authors have come to value following:

“Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.” (Beck et al. 2001.)

The manifesto is supplemented with The Twelve Principles of Agile Software, which de-

scribes the working principles that had led to the values presented in manifesto. The prin-

ciples also highlight embracing change, delivering early and frequently, the importance

of open and effective communication both with clients and inside development team and

focusing on the essential work, leaving invaluable work undone (Beck et al. 2001). These

twelve principles by Beck et al. (2001) are summarized in table 1.

Table 1 Summary of Twelve Principles of Agile Software introduced by Beck et al.
(2001) as part of The Agile Manifesto.

1. Change is customer’s competitive advantage. Changes to requirements should
be accepted even after the system is put to development.

2. Providing working deliveries of software frequently, preferring short intervals
between deliveries.

3. Collaboration between the business and development must be daily and work
throughout the project.

4. Most important part of the project are motivated individuals, and providing
them the circumstances to get the work done.

5. Preferring face-to-face conversations for communication over formal meetings.
6. Progress is measured in terms of working software.
7. Development should be made on pace that is sustainable also on long-term.
8. Paying attention on good design and technical excellence improve agility.
9. The highest priority in agile development is satisfying the customer by deliver-

ing valuable software early and continuously.
10. Focusing only on essential work.
11. Self-organizing teams create the best solutions.
12. The team targets to continuous improvement and reflects its way of working

regularly.

15

As Agile Manifesto and Twelve Principles of Agile Software presented, accepting and

responding to change is a fundamental part of agile. For gaining some deeper understand-

ing about agile, it is also important to comprehend where the need for agile methodologies

has originated, and where such principles are likely to be effective. Some researchers have

searched explanations from organizational theory and examining the environments where

agile methods are usually applied. Cao & Ramesh (2007) present that rapidly changing

environment, often observed in a software project through highly volatile requirements,

is one of the most important reasons behind introducing agile software development ap-

proaches. (Cao & Ramesh 2007: 41–42, 47.)

Cao & Ramesh characterize rapidly changing environments with tight schedules and

evolving requirements that can become obsolete even before project completion (2007:

41). The effect of this kind of environments and need to response to change should not

come as a surprise, as already Brooks (1986) argued that changeability is one of the core

qualities of software. Brooks (1986) stated that this change can be seen also as an inevi-

table and inherent part of software, as well as the complex environments the software

systems are operated. As in some cases the software might be the only part that can be

mold at any cost, it is the one to be molded. (Brooks 1986: 10–12.)

When examining the general differences between traditional methods, such as waterfall,

and agile methods, these could be explained based on four characteristics: environment,

values, beliefs and implementation of practices (Cao & Ramesh 2007: 41–42). These

characteristics are explained more detailed in table 2.

16

Table 2 Comparison of four characteristics in traditional and agile methods by Cao &
Ramesh (2007: 41–42).

Environment Traditional methods fit to more stable environments where quality is
the major concern, as agile methods excel in dynamic environments
where requirements and technology are volatile and time to market
is critical.

Values

Traditional methods trust on planning, control, predictability and
high assurance, as agile methods promote collaboration, interaction
and adaptability based on “Manifesto for Agile Software Develop-
ment” (Beck et al. 2001).

Beliefs Traditional methods believe in having a complete and accurate spec-
ification and controlling change, as agile methods believe that re-
quirements are created throughout the development and change is
unavoidable.

Implementation
of practices

Traditional and agile often implement the same software develop-
ment practices in different ways. For example, releases are much
more frequent in agile methods compared to traditional methods.

Despite the popularity, the agile methods have also been criticized as a set of ad-hoc

practices that have been created to solve the practical problems occurring in rapidly

changing environments. Thus, Cao & Ramesh (2007) examined whether the practices of

agile software development methods had correspondence to the research streams in or-

ganizational theory applicable to the context. They present that even though agile devel-

opment methods might seem to be evolved from a set of common best practices as an

answer to this kind of challenging environments, there is also consistency between the

organizational theories and agile methods. Correspondence was found in “Dynamic Ca-

pabilities theory” which helps to explain why to use agility, “Coordination theory”

which explains the call for transformed coordination mechanisms in agile environments

and “Double-Loop Learning theory” which reasons the emphasis on continuous learning

in agile approaches. (Cao & Ramesh 2007: 41, 46–47). This gives also theoretical verifi-

cation for the validity of otherwise practitioner-led adoption of agile principles and meth-

odologies.

17

What would make the results presented by Cao & Ramesh (2007) interesting for someone

who is implementing agile software development in practice is that the found correspond-

ence could help to understand the validity and applicability of the agile development

methodologies. Thus, it is suggested that rather than focusing only to the question if agile

methods have anything actually new in them, it would be more valuable to understand

the conditions under which certain agile practices could be applicable and effective. (Cao

& Ramesh 2007: 46–47). Therefore, as there is many different kinds of agile methodolo-

gies and practices to choose from, the choice of certain methodology should be justifiable.

In next chapter, some common approaches to agile software development are presented.

2.2 Common approaches to agile software development

From traditional software development methodologies point of view, once the implemen-

tation has been started, change in requirements is seen as expensive and unwanted (Beck

1999: 70). As a reflection to agile thinking and the willingness to take advantage of the

changes affecting to software development process, several different approaches and

methodologies to agile software development have emerged. In this subchapter, some of

the most widely adopted methodologies are discussed in more detail, including Extreme

Programming (abbreviated as XP), Scrum, Lean software development and Kanban. Of

the discussed agile software development methodologies, Scrum is the most important

for understanding the environment where the study is conducted.

Extreme Programming (XP) was the first one of the agile approaches to become popular,

and was more focused on introducing technical practices that help to improve agility, such

as Test-Driven Development (TDD) and Continuous Integration (CI). Scrum is a software

development approach that replaces the traditional project management with develop-

ment iterations of two to four weeks. Despite the popularity, Scrum mainly project man-

agement centered and does not claim to be a full methodology including all the technical

practices needed in agile software development. Both Scrum and XP rely on defining

certain rules and roles that guide the software development process. Kanban has roots in

manufacturing industry and Lean ideology, but of the presented three approaches, Kanban

18

is the most recently adopted one in software development. Lean is a more organization-

wide approach for optimizing and improving value streams and workflows, as Kanban is

a visualization tool for previous. (Poppendieck & Cusumano 2012: 30–31.)

2.2.1 Extreme Programming

One of the agile development approaches willing to welcome change to the software de-

velopment process is Extreme Programming (XP). Beck describes in his article “Embrac-

ing change with Extreme Programming” (1999) that XP turns the regular software pro-

cess sideways, doing analysis, design, implementation, and testing little by little through-

out the development. (Beck 1999: 70–71). Visualized in Figure 1, the XP way is com-

pared to the traditional waterfall approach to perform software development activities in

one sequence, and to iterative approach where software development activities are di-

vided into several iterations.

Figure 1 Visualization of the differences between waterfall, iterative and Extreme Pro-
gramming approaches by Beck (1999: 70).

19

In XP system requirements are referred as stories, which summarize the overall analysis

of the system. Each of the created stories should be business-oriented, estimable and test-

able. For each system release the customer may select stories which he finds the most

valuable, being also informed about the cost of each story and the team’s measured im-

plementation speed. XP approaches the requirements analysis from perspective that you

can never explore all of the requirements, if you never implement any. Thus, the first

analysis phase is recommended to be kept as compact as possible. (Beck 1999: 71–72.)

Beck (1999) summarizes the XP ideology into thirteen major XP practices including Plan-

ning game, Small releases, Metaphor, Simple design, Test, Refactoring, Pair program-

ming, Continuous integration, Collective ownership, On-site customer, 40-hour week,

Open workspace and Just rules. These practices are presented in more detail in table 3.

Table 3 Summary of XP Practices presented by Beck (1999: 71).

Planning game Programmers provide implementation cost estimates for stories,
based on which the customer chooses scopes and timings for each
release.

Small releases Releases are made often and the system is put into production
before solving the full problem.

Metaphor Metaphors are used in communicating the shape of the system
between customer and programmers.

Simple design At all times, the design is kept in its simplest form that solves the
problem, and does not contain duplicity.

Tests Programmers are responsible of creating unit tests for the code.
Customer is responsible of the functional tests for the stories
implemented in each iteration.

Refactoring The design of the system is refactored over time, and each
improvement must keep all previously implemented tests running.

Pair
programming

All production code is a result of pair programming, which means
two programmers working on same workstation.

20

Continuous
integration

All new code is integrated to the existing system as soon as
possible, and changes are not accepted unless the build and tests
pass.

Collective
ownership

No one own certain code, any programmer should improve any part
of the system when seeing a chance for it.

On-site
customer

Customer has a full-time representative working with the team.

40-hour week No one is allowed to work overtime on two following weeks, and
overtime is seen as a sign of deeper problems that need to be solved.

Open workspace Team works in one open room, where the pair programmers work
in the center.

Just rules Every team member must accept the rules, but the team can also
change the rules whenever they feel it is required.

2.2.2 Scrum

Scrum is product development framework, defined in “The Definitive Guide to Scrum:

The Rules of the Game” developed and sustained by Schwaber & Sutherland (2016). It

has gained a lot of attention in software industry since 2001 and has become a popular

alternative for traditional project management (Poppendieck & Cusumano 2012: 30). The

Scrum framework includes definitions for values, team roles, events, artifacts and lan-

guage, such as definition of “Done” that should be used and agreed when practicing

Scrum. The Scrum framework has been used in product development since the early

1990s. The ideology of Scrum has foundations on empirical process control theory, which

builds on transparency, inspection and adaption. To add risk control and predictability,

Scrum uses an iterative, incremental development approach. (Schwaber & Sutherland

2016.)

The self-organizing and cross-functional Scrum teams consists of people with roles of

Product Owner, Scrum Master and development team members. The product owner is

responsible of the value delivered by the developed product, and managed the product

21

requirements that are put into the form of a product backlog. Scrum defines that product

owner must a one person, and the whole organization must respect the decisions made

the product owner. The scrum master is servant-leader for the whole Scrum team, and

works to help the team to maximize the created value. Scrum master helps the team to

work agile, finds ways to remove possible obstacles and facilitates the Scrum events. The

development team is the group of professionals who work on the increment developed in

each iteration. The development team organizes and manages their own work, and should

optimally consist between three to nine team members. (Schwaber & Sutherland 2016.)

The defined Scrum events are for purposes of inspection and adaption, and target to min-

imize the need for any additional meetings. These events are Sprint, Sprint planning,

Daily Scrum, Sprint Review and Sprint Retrospective, which each have a defined maxi-

mum duration. Most important is sprint, which stands for the maximum one-month length

iteration when a new product increment is developed. Within a sprint no changes a done

to the sprint or quality goals, which also means that the requirements should not be

changed. Doing the work on short-enough sprints aims to limit the risk related to each

increment to the length of the sprint. In extreme cases, if environment changes so much

that the sprint goal and requirements do not make sense anymore, the sprint may be can-

celled. Besides the development work, each sprint contains the Sprint planning, Daily

Scrum, Sprint Review and Sprint Retrospective events. (Schwaber & Sutherland 2016.)

Sprint planning is for planning and agreeing the work that will be done in the upcoming

iteration. The input comes from product backlog items, to which the development team

gives work estimates. Daily scrum is a brief daily meeting, where the development team

discusses the work that was done on previous day, what they are going to do next and

have any problems arose. Sprint review is an informal meeting, where the developed in-

crement is presented to the whole scrum team and stakeholders to collect feedback. Sprint

retrospective is meeting at the end of each sprint where scrum team review their ways of

working, and plan actions how to improve. (Schwaber & Sutherland 2016.)

22

The scrum artifacts Product Backlog and Sprint Backlog target to maximize the transpar-

ency of key information. Product backlog contains all product requirements, created, de-

scribed and ordered by the product owner. It is never complete, and contains all possible

requirements, functionalities, features, changes or fixes needed to the product in future

releases. Changes for example in business requirements, technology or environment can

cause changes to product backlog items. Sprint backlog defines the subset of product

backlog items selected to specific sprint and the plan how an increment that implements

selected items can be delivered. Increment is the useable and deliverable version of prod-

uct completed at the end of each sprint. (Schwaber & Sutherland 2016.)

The rules defined in Scrum methodology differ from rules in XP for example on their

strictness: The Scrum framework is immutable. Even though in XP everyone must follow

certain rules, the team can change the rules as Beck (1999) stated in the “Just rules” prin-

ciple. According to Schwaber & Sutherland (2016), as long as you want to call something

Scrum, you may not implement the methodology only partially or change the rules. How-

ever, they state than Scrum can be used as a container for other software development

practices. Being capable to only partially implement Scrum is a common pitfall, and

among industry professionals that kind of incomplete implementations are referred as

“Scrum-but” (Rinko-Gay 2013).

2.2.3 Lean software development and Kanban

Ebert, Abrahamsson & Oza (2012) analyze the roots and use of lean in software engi-

neering in article “Lean Software Development”. Lean development could be summarized

as a product development paradigm, first introduced in manufacturing, which has a com-

prehensive focus to create value for the customer, eliminate waste, optimize the value

streams, empower people, and continuous improvement. These five elements also build

the lean product development cycle, which is an iterative cycle consisting of previous

activities. Ebert et al. present that the idea of lean development is in line with an old

wisdom in software development, according to which most features do not add value, but

instead add unnecessary cost and complexity. (Ebert et al. 2012: 21–23.)

23

In past decade, the adoption of agile and lean principles to make also software develop-

ment more efficient has been increasing. In software industry, the move towards lean

started with agile programming methods. (Ebert et al. 2012). We can notice previous also

from the previously introductions to Scrum and XP, often the agile principles are more

focused on software teams or software projects than enterprise-level. Ebert et al. (2012)

argue that such focus can lead to short-term improvements, but might result as a negative

impact to the overall software life-cycle costs. They present that in the beginning lean

software development was much connected to agile, but lately more diversity has been

introduced. Even though all lean principles such as mathematical production models do

not fit to software development, there is still a lot the software development organizations

can learn from. (Ebert et al. 2012: 22–24.)

To apply lean manufacturing management principles to product development and soft-

ware engineering, Poppendieck & Cusumano (2012) present that lean should be viewed

as a set of principles rather than practices. They argue that this kind of approach makes

the ideology more applicable to different environments and use cases, and can lead to

process and quality improvements like when applied in manufacturing. Following previ-

ous ideology, they also describe seven principles that can be used to get started with lean

software development. These are to optimize the whole, eliminate waste, build quality in,

learn constantly, deliver fast, engage everyone and keep getting better. (Poppendieck &

Cusumano 2012: 28). Previous principles are explained more detailed in table 4.

Table 4 Seven lean principles applicable to software development presented by
Poppendieck & Cusumano (2012: 28–30).

Optimize the whole Deep understanding of the customer’s needs and values, and
how those can be solved with software are the foundation of
lean software development. Furthermore, the value of software
does not only come in the implementation, but also design and
deployment are necessary for achieving the value.

Eliminate waste Lean treats as waste anything that does not add customer value
or increase knowledge on how the value can be delivered more

24

effectively. In software development, these are for example un-
needed features, lost knowledge, handovers, half-finished work,
multitasking and time spent debugging and fixing defects.

Build quality in As the waste has often its roots in large amounts of half-fin-
ished work, boundaries between functions and the loss of
knowledge and time caused by previous boundaries. Thus, pre-
vious should be avoided and continuously integrating small
units into larger software systems favored.

Learn constantly Development is about creating knowledge and embodying the
created knowledge into a product. In lean, this can be ap-
proached in two ways: either by delaying the most expensive-
to-change decision as long as possible, or by delivering first
version fast and learning from customer feedback.

Deliver fast Lean environments favor frequent production releases, often
occurring weekly, daily or continuously. Releasing software
frequently moves the idea of software development from a pro-
ject towards a flow system.

Engage everyone When software development is viewed a flow process, the or-
ganizational structure should be reminiscent of line business
units containing also supporting functions, instead of one sepa-
rate IT-department.

Keep getting better According to lean thinking, every process should be improved
continuously. Thus, adoption of popular agile practices should
be viewed as a starting point and those practices improved con-
tinuously to fit best the problem in hand.

Poppendieck and Cusumano (2012) argue that they see same kind of orientation also in

other popular agile software development methodologies, such as Extreme Programming

(XP) and Scrum. The emphasis on previous methodologies and lean is on reducing wasted

time and labor, focusing on creating value to customer. However, they point out that the

main difference between lean and agile software development methodologies lies in the

fact that lean is a more complete and organization wide approach than for example XP or

Scrum. As lean is a more product oriented approach, Poppendieck & Cusumano (2012)

25

argue that it also provides better support integrating for example user experience and

product design teams, or other supporting functions to software development. While agile

methodologies apply only to software teams, lean gives organization wide guidance for

choosing development practices appropriate to individual contexts and situations. (Pop-

pendieck & Cusumano 2012: 27, 30–32.)

Kanban is one tool for presenting workflows, tasks and value streams in lean. In agile

software development, Kanban “signboard” is often used to visualize software develop-

ment and production operations. Ahmad, Markkula & Ovio (2013) point out that at least

from the research literature point of view, the Kanban approach is one of the most recently

adapted methods in agile software development. In recent years, the popularity of Kanban

as a part of agile software development practices has increased and Ahmad et al. (2013)

describe that the movement is mainly practitioner led. Use of Kanban can help the teams

to for example limit the work in progress according to their capacity, visualize problems

in development process and to maintain a steady flow of tasks. (Ahmad, Markkula &

Ovio 2013: 9–10.)

2.3 Common practices related with agile software development

Besides previous project-oriented agile software methodologies, providing guidance for

the overall workflow, also some technical practices have become popular in agile soft-

ware development. Here we present some common technical practices that are closely

related to the topic of this study and important for understanding the environment where

the study was conducted. These practices are Continuous Integration (CI), Continuous

Delivery (CD) and DevOps. Projects employing DevOps practices were another target

group in this study for testing the Continuous Requirements Risk Profiling method, but

no projects fully implementing the DevOps practices were found from the case company.

Continuous Integration (CI) is an agile software development practice, where the software

development team integrates their code frequently. CI usually employs automated builds

26

and automated tests for verifying the changes made to code base. (Fowler 2006). Contin-

uous Delivery (CD) takes CI still a step further, and covers the delivery of software too.

CD extends the automation to so that a new system could be delivered to production after

every change in the code base. (Chen 2015: 50). DevOps targets to a shift that integrates

the development, delivery and operations in software development organizations.

DevOps employs a high degree of automation to all phases of software development pro-

cess to reach its goal. (Ebert, Gallardo, Hernantes & Serrano 2016).

2.3.1 Continuous Integration

According to Fowler (2006) Continuous Integration (often referred with abbreviation CI)

is “a software development practice where members of a team integrate their work fre-

quently, usually at least daily”. Originating from one of twelve Extreme Programming

practices, Continuous Integration aims to change the traditional perception of integrating

software as a long and unpredictable process. Continuous Integration relies on extensive

automation, including automated builds with automated tests verifying each integration.

This type of verification targets to detecting errors or conflicts caused by the code changes

as quickly as possible, avoiding later major rework. (Fowler 2006.)

Fowler (2006) explains that at its simplest, Continuous Integration practice does not re-

quire any particular tooling, but use of Continuous Integration server is often found use-

ful. Continuous Integration is more implementation related practice, which defines com-

mon ways of working. According to Fowler (2006), some of them are maintaining a single

source code repository, a high degree of automated tests, automated build process and as

a result of following, always having a working, tested stable piece of software which

could be deployed. (Fowler 2006.)

In addition, if approaching testing from a point of view that tests are written before the

code (for example Test Driven Development, TDD), the tests help the team also with

exploring the system design, not only with error detection. When it comes to system re-

quirements and their verification, Continuous Integration approach targets to ensure that

everyone involved with the project should have access to the latest state of the system, in

27

a form of a built executable that can be run. This makes it easier to adjust the require-

ments: if the people first see something that is not quite right, they can more easily state

how the system needs to be changed. (Fowler 2006.)

2.3.2 Continuous Delivery

Continuous Delivery (often referred with abbreviation CD) extends Continuous Integra-

tion like practices to cover also the delivery of the software. For example, Chen (2015)

describes Continuous Delivery as “software engineering approach, in which team keeps

producing valuable software in short cycles and ensure that the software can be reliably

released at any time”. Chen explains that according to Continuous Delivery advocates,

taking this approach would let organizations to bring service or product improvements to

in reliable, rapid and effective manner, which leads to competitive advantage in rapidly

changing environments. Based on his experiences of applying CD in practice he agrees

with the possible advantage, but points out that adopting Continuous Delivery can be very

challenging too. (Chen 2015: 50–51.)

When examining Continuous Delivery from requirements point of view, Chen presents

that release models with only some releases each year artificially delay features that have

been completed early in the release cycle. Based on his experience of delivering only few

releases a year, receiving early feedback of the features was not possible and there was

also a loss of value those features could have generated. In Continuous Delivery also user

acceptance testing, which ensures that the system meets users’ requirements, is done con-

tinuously throughout the development cycle and early feedback of new features should

be available. (Chen 2015: 50–51.)

Despite the challenges to get started with Continuous Delivery, Chen presents that adopt-

ing the Continuous Delivery practices in his current organization has created them six

main benefits. He characterizes these benefits as accelerated time to market, building the

right product, improved productivity and efficiency, reliable releases, improved product

quality and improved customer satisfaction. (Chen 2015: 52–53). Each of the observed

benefits are presented in more detail in table 5.

28

Table 5 Six main benefits of adopting Continuous Delivery in large publishing company
observed by Chen (2015: 52–53).

Accelerated time to market When release frequency increased, it resulted also
that cycle time from a requirement to market
decreased from months to days.

Building the right product Frequent releases have helped the development team
to obtain user feedback faster, which helps them to
be more confident that they are building the right
product.

Improved productivity and
efficiency

Chen thinks that efforts previously required to
release activities and error fixing can be now used to
more valuable purposes.

Reliable releases Operational risk related to a release had reduced
significantly, as majority of bigger problems have
been discovered already during development.

Improved product quality Chen states that the number of open bugs for the
application have decreased almost 90%, and
customers report almost none of them.

Improved customer
satisfaction

Former tensions between teams caused by quality
and release issues have relieved after introducing
Continuous Delivery.

As the previous six benefits presented by Chen (2015) are based on his own observations

and experiences related to adopting and implementing Continuous Delivery, those might

not be applicable in all organizations. However, also DevOps employs Continuous De-

livery in its production and delivery process.

2.3.3 DevOps

Ebert, Gallardo, Hernantes & Serrano (2016) describe DevOps (compound of abbrevia-

tions from Development and Operations) as an organizational cultural shift that integrates

development, delivery and operations, targeting to flexible, fast development, fluid con-

nection between teams and provisioning business processes. They present that the idea of

29

DevOps is to, instead of heavy and artificial process concepts, to make organizations fo-

cus on continuous delivery of small upgrades. As DevOps targets to high quality deliver-

ies with short cycle times, Ebert et al. (2016) emphasize that high degree of automation

and tools are mandatory in achieving this goal. They categorize commonly used DevOps

tools covering areas such as build, continuous integration, deployment, logging and mon-

itoring. (Ebert et al. 2016: 94, 96.)

Basing on examples like Google and Amazon, Ebert et al. (2016) present that achieved

system cycle time of the can be even minutes, depending of the deployment model and

constraints defined by the environment. They point out that tailored to the environment

and product architecture, DevOps ideology is applicable to various different delivery

models. However, they admit that same technology and models that work for example to

web services do not apply to embedded software or safety critical systems. (Ebert et al.

2016: 94.)

Generic DevOps production and delivery process consists of requirements engineering,

development, build management and deployment management. Requirements engineer-

ing owns the responsibility for feature mapping and dependency management. Develop-

ment is done in feature teams and it employs Continuous Delivery practices. Both build

and deployment management are also highly automated. (Ebert et al. 2016). This generic

DevOps production and delivery process is presented in figure 2, visualizing also the re-

lations between different operations.

30

Figure 2 Generic DevOps production and delivery process presented by Ebert et al.
(2016: 95).

As a conclusion, Ebert et al. (2016) argue that typically mutual understanding, starting

from system requirements reaching to maintenance or product evolution, achieved with

DevOps will improve the cycle time and reduce costs. These benefits result from fewer

requirements changes, focused quality assurance and faster delivery cycles. When exam-

ining DevOps from system requirements point of view, also DevOps seems to offer the

team early feedback of developed features and a possibility to adjust the requirements on

fly. (Ebert et al. 2016: 99–100.)

31

3 REQUIREMENTS ENGINEERING IN SOFTWARE
DEVELOPMENT

This chapter focuses on the theoretical background of requirements engineering in soft-

ware development. Here we discuss about the purpose of engineering software require-

ments, the requirements process and activities, and some common ways of doing require-

ments engineering. By this, we seek to answer questions such as why software require-

ments are made and when requirements are defined. Also keeping our eye on the risk

management perspective of this study, some common pitfalls on requirements engineer-

ing and building software are discussed. In this study, software requirement is defined

according Hickey and Davis (2004: 72) as any externally observable characteristic of a

desired system, which means the higher-level blueprint for the software building process.

3.1 The purpose of software requirements

Software engineering was initially defined by Boehm (1976: 1226) as the practical appli-

cation of scientific knowledge to design and build software, and the required documenta-

tion to develop, operate and maintain the software. This documentation, defining the sys-

tem requirements, specifying what the software should do and how it should behave, is

one of the most essential parts of software engineering (Brooks 1986). However, defining

the right system requirements is also one of the most error-prone and demanding tasks,

or as Brooks (1986) has said: “The hard thing about building software is deciding what

one wants to say, not saying it”. Brooks (1986) explored the essence and common mis-

takes related to software development in “No Silver Bullet - The Essence and Accidents

of Software Engineering” (1986) and even several decades his arguments have a valid

point: the essence and accidents of software engineering are often related to the same

factors, which are complexity and building the right thing. (Brooks 1986: 10–12). Also,

Hickey & Davis (2004: 66) refer to Brooks (1986) as they emphasize the importance of

requirements elicitation, and argue that poor requirements elicitation will most likely

cause the final project to fail.

32

As the system level requirements define a basis and purpose for all later software devel-

opment efforts, the importance of requirements engineering should not be underesti-

mated. Brooks (1986) emphasizes that the most important function a software builder can

perform to the client is iterative elicitation and refinement of system requirements. The

software builder should also admit the fact that usually the client does not know what he

wants, and extensive iteration of the design and requirements should be allowed. (Brooks

1986: 16–18). Admitting the same fact, client being unsure what kind of software system

is actually needed, was also discussed in previous chapter with agile software develop-

ment methods. For example, Fowler (2006) reasoned Continuous Integration practice by

stating that if people first see a version that is not exactly what they want, it is easier to

define how the system needs to be changed.

If following Brooks’ arguments, the requirements engineering process and requirements

specifications cannot rely only to the hopes placed upon test automation and other tech-

nological salvations on saving work and improving software quality. Brooks states, that

for example even the most perfect test automation can only verify that the program is

implemented according to its specification. Thus, the most essential and meaningful part

in building software is to create a consistent and complete specification. Once such spec-

ification exists, much of the later programming work is just debugging the specification.

(Brooks 1986: 11, 13, 16–18.)

3.2 Requirements process in software engineering

In this chapter, a generic description of a software engineering requirements process is

discussed, as discovering, analyzing and defining the software system requirements is

much more than just writing the requirements specification. As we already discussed why

requirements engineering is done, in the context of our study it is still essential to under-

stand when and how the software requirements are defined. Hickey & Davis (2004) point

out, that no matter whether the software development approach is traditional with well-

defined series of phases or iterative with repeated cycles of development activities, the

33

requirements will change throughout system development. According the traditional ap-

proach, the requirements activities should be performed at the beginning of the develop-

ment process. In reality to keep on track with the ever-changing user needs, the require-

ments activities must be performed regularly. When using an iterative or agile develop-

ment approach, the requirements activities should be performed at the beginning of each

iteration. Despite the time point when performed, the requirements activities are a very

essential for gaining the needed understanding of user needs and for the overall success

of the software development effort. Thus, Hickey & Davis (2004) point out that under-

standing how the requirements process activities are performed is an important first step

for improving any part of the process in industry. (Hickey & Davis 2004: 66–68.)

We view the requirements process according to definition of Hickey & Davis (2004) as

series of five activities: elicitation, analysis, triage, specification and verification. When

doing requirements work in reality, previous five requirement activities are performed in

parallel and their proportions change over time in the requirements process. (Hickey &

Davis 2004: 67). The five requirements activities are described in table 6.

Table 6 Requirements activities presented by Hickey & Davis (2004: 67).

Elicitation Learning and discovering the customers’, stakeholders’ and users’
needs

Analysis Forming a list of candidate requirements and creating models of re-
quirements by analyzing the knowledge elicited from stakeholders

Triage Addressing subsets of requirements to specific releases of systems

Specification Documenting the wanted features and external behavior of the system

Verification Verifying the requirements consistency, completeness and reasona-
bleness

The initial and often most critical activity in requirements process is elicitation, which

targets to discovering the actual needs of the customers, stakeholders and user groups for

whom the software system will be built. There is not only one way to do requirements

34

elicitation. Usually the analyst doing elicitation uses some technique, consciously or sub-

consciously, which could be at its simplest a discussion with stakeholders. Hickey & Da-

vis (2004) present that the technique selection is driven by multiple factors: problem,

solution, project environment characteristics and the state of the requirements. Common

pitfalls related to elicitation technique selection are usually related to lack of experience

of the analyst performing requirements elicitation. (Hickey & Davis 2004: 67–68.)

Based on previous observations, Hickey & Davis (2004) present four reasons why, alone

or as a combination of previous reasons, the analyst usually selects the used elicitation

technique. First, the selected technique might be the only one the analyst knows. Second,

the selected technique is the analyst’s favorite, no matter what is the situation. Third, the

analyst follows a particular methodology, which suggests the used techniques. Fourth, the

analyst understands that the selected technique is likely to be effective in the specific

situation. Hickey & Davis also suggest, that if the elicitation technique is selected based

on the fourth reason, it is most likely to provide best results of the elicitation. (Hickey &

Davis 2004: 68–69.)

3.3 Approaches and techniques for requirements engineering

According to definition by Hickey and Davis (2004: 74), the term technique refers to a

description of what to do, and it can also include suggested ways of doing it and suggested

tools and notations to use. From the point of view of our study, suggesting the use of

different requirements techniques is fundamental part of Continuous Requirements Risk

Profiling method, when requirements risk is mitigated and resolved. The method applies

the categorization presented by Mathiassen et al. (2007: 576), which divides the tech-

niques into four groups: discovery techniques, experimentation techniques, prioritization

techniques and specification techniques. In the tested method, previous categories are also

mapped to certain risk categories for resolving the requirements risk.

35

3.3.1 Discovering requirements

Discovering the possible requirements is a natural and necessary starting point in require-

ments engineering. Discovering the requirements does not mean only getting a list of the

wanted system features, but also understanding why those features would be needed. The

discovery techniques emphasize the initial uncovering of requirements and focus on in-

teractions with customers and would-be users. Many of these techniques target on creat-

ing a rich understanding of the user needs, finding out the motivation behind described

needs and uncovering also such requirements that users find hard to describe. (Mathiassen

& Tuunanen 2011: 41). Some techniques that can be used for requirements discovery

listed by Mathiassen et al. (2007: 576) are for example: Brainstorming, Focus groups,

Requirements workshops and Use cases.

3.3.2 Experimenting with requirements

When experimenting with requirements, user reactions and knowledge can be used to

shape requirements by employing designs of the software artifact. The experimentation

techniques focus on creating some model of the software artifact, presenting it to the au-

dience and then learning and improving based on the feedback. These techniques can help

to stabilize the requirements and to understand better the context where the system is

going to be used. (Mathiassen & Tuunanen 2011: 41). Some techniques that can be used

for requirements experimentation listed by Mathiassen et al. (2007: 577) are for example:

Participatory design, Requirements prototyping, Testing and User-interface prototyping.

3.3.3 Prioritizing requirements

Requirements prioritization refers to the part of requirements engineering process, where

the different project stakeholders analyze and negotiate which of the identified require-

ments should be chosen for implementation. Usually some metric is applied to the prior-

itization process to compare and decide which of the requirements are most valuable for

36

the designed system. Tuunanen and Kuo (2015) have recognized at least five different

metrics for prioritizing the requirements: resources, performance, adaption, design and

usability. The resource-based view considers factors such as cost, time, technologies and

skills when prioritizing the requirements. (Tuunanen & Kuo 2015: 296–297.)

Even though some metric drives prioritization process, it is good to keep in mind that

different people can prioritize the same requirements differently. Tuunanen and Kuo

(2015) point out that different preferences, related for example to cultural factors, are not

taken into account by most of the available requirements prioritization techniques. These

cultural differences could be worth considering especially in cases when the software is

developed to global markets with wide range of end-users. (Tuunanen & Kuo 2015: 296,

307.) Some techniques that can be used for requirements prioritization listed by Mathi-

assen et al. (2007: 576) are for example: Card sorting. Contextual design, Critical success

factors and Quality function deployment.

3.3.4 Specifying requirements

Specifying the requirements aims to document the customers’ and users’ needs into either

textual or graphical format. The specification techniques are documentation-centric, and

used for creating the result we know as “requirements specification”. Specification tech-

niques also aim to bring suitable level of abstraction for the requirements, so that those

can be communicated with and understood by different stakeholders and developers. (Ma-

thiassen & Tuunanen 2011: 41). Some techniques that can be used for requirements spec-

ification listed by Mathiassen et al. (2007: 577) are for example: Data flow diagrams,

Entity-relationship modeling and State charts.

3.4 Common challenges of requirements engineering and management

According to Brooks (1986) similar kind of concepts have and most probably will lead

also to the accidents of software engineering. Important part of building software is fash-

ioning complex conceptual constructions, and on the other hand also various different

37

kind of problems emerge from this complexity. In his opinion, four inherent software

qualities causing many of the software engineering challenges are complexity, conform-

ity, changeability and invisibility. (Brooks 1986: 11–12). Previous qualities are explained

more detail in Table 7.

Table 7 The four qualities usually causing software engineering problems (Brooks
1986: 11–12).

Complexity Various software engineering problems come from the inherent
complexity and the way this complexity increases nonlinearly with
software size. Besides technical problems, also management prob-
lems may emerge.

Conformity Much of the complexity comes when the software must conform to
other interfaces. Conformation to other interfaces creates such com-
plexity that cannot be simplified by any redesign of the software
system itself.

Changeability Software systems are always embedded in diverse and complex cul-
tural environments consisting of applications, laws, users and ma-
chines. As this environment changes continuously, it also inevitably
forces changes upon the software system.

Invisibility Reality of software is invisible, hard or even impossible to visualize,
and not inherently embedded in space. The visualizations we try to
create upon software are not univocal, and the same software struc-
ture can be visualized in numerous different ways. This already
complicates the design process within one mind, but turns into even
bigger problem when the structures need to be communicated with
several minds across various stakeholders and development teams.

Correspondence to software complexity, software conformity various interface, environ-
ment changeability and software invisibility can be also seen in the in the Continuous
Requirement Risk Profiling method. Thus, it could be hypnotized that also some of the
requirements related risks and problems can originate from unsuccessful handling of pre-
vious problematic software qualities.

38

4 MANAGING RISK IN SOFTWARE PROJECTS

Over the decades that software systems have been built in hopes of business advantage

and profits, also it has become clear that not all of the software projects are success stories.

In this chapter, we discuss about the factors that can make the software development ef-

fort a failure and how to manage these risks. To gain a comprehensive understanding of

the phenomenon, we seek to explain what software project risk and risk management

actually is, why it is important and how the software projects could get started in identi-

fying and managing different kind of risks.

Tiwana & Keil (2004) argue that most failing software projects have one common cause

behind them, which is that the delivered system does not fit the actual problem. They also

argue that good software is easy to recognize once one comes across it: good software

solves the problem it was intended to and does what the users expect. Underperforming

and failing software projects do not only cause headache and missed deadlines, but Ti-

wana & Keil (2004) also present measures that these projects result big financial loss to

participating companies each year. (Tiwana & Keil 2004: 73–74). One recent example

from Finland gaining a lot media attention has been medical company Oriola, facing

losses worth millions of euros after switching into new information system (Kauppalehti

2017). Wallace et al. (2004) too emphasize that as the investments on software systems

continue all the time, managing risk related to those projects should be also concerned.

Various different models, methodologies and tools have been developed to help the in-

dustry professionals to identify and manage these different types of risk related to soft-

ware projects. A generic categorization of such tools is presented in the fourth subchapter.

One such tools is also the Continuous Requirements Risk Profiling method introduced by

Tuunanen et al. (2015), targeting to help industry professionals to identify the requirement

related risk in their software projects. Continuous Requirements Risk Profiling method is

introduced in the last subchapter.

39

4.1 What is software project risk and risk management?

Saarinen & Vepsäläinen (1993) present that software project risk can be summarized into

two basic concepts: complexity and uncertainty. These are often related to factors such

as size, stability and structure of the built software, difficulties to define the requirements,

and participants’ skills and previous knowledge of the technology. (Saarinen &

Vepsäläinen 1993: 283–284). As the circumstances under which software systems are

built have evolved over the decades, also new factors leading to different risk have been

presented in research. One example is developing software for wide audience end-user,

when the actual end-users might be hard to reach or unknown (Tuunanen 2003: 45–46).

Another example is developing software in geographically distributing and large project

teams, which can introduce problems such as language barriers, limited face-to-face in-

teraction and time-zone differences (Persson, Mathiassen, Boeg, Madsen & Steinson

2009: 508).

In the context of software projects, Wallace, Keil & Rai (2004) define risk as a “set of

factors or conditions that can pose a serious threat to the successful completion of a soft-

ware project”. Often once identified, the goal is that these factors or conditions are man-

aged, mitigated and their possible effects minimized. Consequently, risk management is

described as managerial purpose to affect previous conditions. However, if understanding

and managing software project risk fails, several kinds of problems can arise in the pro-

ject. These problems can be for example unfulfilled user requirements, exceeded budgets

and timelines and building systems that will not be used or that will not deliver value to

its users. (Wallace et al. 2004: 115–116.)

Tiwana & Keil (2004) point out that even though not all events can be controlled, many

of the common risks software projects face could be assessed and managed. They empha-

size that for success, it is important to think software as a medium of knowledge rather

than a product. When viewing software project risk from that perspective, the first thing

to focus on would be successfully translating customer needs into system requirements

and specifications. (Tiwana & Keil 2004: 73–74). Based on previous research, also Wal-

lace et al. (2004) show that identifying and analyzing the threats is necessary so that some

40

actions reducing the risk can be taken. They argue that offering the project managers

better information about the software project risk could help them to formulate risk man-

agement strategies aiming to mitigate the sources of most high risk. (Wallace et al. 2004:

116–117). Tuunanen et al. (2015: 4020) present that to manage the risk related to a soft-

ware project the task that needs to be performed is assessing the project risk exposure.

4.2 Six dimensions of software project risk

As a target to offer the project managers better information about the possible dimensions

and likely patterns of software project to help them formulate risk management strategies

to mitigate the risks, Wallace et al. (2004) have created a categorization of the dimensions

of software project risk. The six dimensions of software project risk defined by Wallace

et al. (2004) are team risk, organizational environment risk, requirements risk, planning

and control risk, user risk and complexity risk. (Wallace et al. 2004: 117). These dimen-

sions with related characteristics are presented more detailed in table 8.

41

Table 8 Summarizing six dimensions of software project risk presented by Wallace et
al. (2004: 117).

Team risk Factors associated with the project team and its members,

which can increase the uncertainty about the outcome of the

project: team member changes, lack of sufficient knowledge

among team members, cooperation or communication

problems.

Organizational

environment risk

Uncertainty surrounding the organizational environment where

the project takes place: unfavorable organizational politics,

instability or missing organizational support.

Requirements risk Uncertainty related to the system requirements: frequent

changes in requirements or incorrect, unusable or ambiguous

requirements.

Planning and

control risk

Uncertainty caused by poor project planning and control:

unrealistic schedules and budgets, excessive schedule pressure

or lack of visible milestones to estimate progress.

User risk Uncertainty coming from lack of user involvement or

communication during system development: users’ unfavorable

attitudes towards new system of lack of cooperation.

Complexity risk Risk caused by the inherent complexity and difficulty to

undertake the software project: use of unfamiliar technologies,

high complexity of the processes being automated or many

dependencies to existing or external systems.

Wallace et al. (2004) present that project characteristics such as project scope, the degree

on the project is strategic and possible outsourcing of software development efforts, also

have their own impact to the risk level. These three characteristics, besides several other

characteristics which were left out of the scope of their study, are presented to lead to

different dimensions of risk. Wallace et al. (2004) present that the characteristics related

to strategic orientation of the project are likely to lead to project complexity risks, char-

42

acteristics related to scope of the project can lead to all risk dimensions, and characteris-

tics related to degree of outsourcing can lead to team risk and planning and control risk.

(Wallace et al. 2004: 120–122). The relationships between presented project characteris-

tics and different types of risk revealed by Wallace et al. (2004) are presented in figure 3.

Figure 3 The relationships between presented project characteristics and different types
of risk revealed by Wallace et al. (2004: 121).

Basing on the empirical evidence of their study, Wallace et al. (2004) also argue that the

most notable risks in high-risk projects are often different to the ones observed from me-

dium risk and low risk projects. Their results show that for high-risk projects, the most

notable are requirements risk, planning and control risk, and organizational environment

risk. For low risk projects, complexity risk is the most notable one. From requirements

risk management point of view, the previous results suggest that in high-risk projects

managing requirements related risk is important for controlling the overall risk level.

(Wallace et al. 2004: 120, 122.)

43

4.3 Focus on software project requirements risk

In this subchapter software project requirements risk, one of the six dimensions of soft-

ware project risk by Wallace et al. (2004), is discussed in more detail. The introduced

view of requirement risk is based on the publication “A Contingency Model for Require-

ments Development” by Mathiassen et al. (2007), which also serves as the theoretical

framework for the method tested in our study.

When it comes to software project requirements development, Mathiassen & Tuunanen

(2011) present that a typical starting point for the requirements process can be just an

informal presentation of vague ideas. For later success of the development project, it is

then highly important these vague ideas evolve into formalized requirements, which serve

as a guideline for the system design and implementation. Mathiassen & Tuunanen (2011)

also point out that in past decade IT projects have took a step into direction where the

system’s users might be either unknown or out of direct reach, which brings its own chal-

lenges to requirements management. This can be the situation when developing for ex-

ample a new kind of mass-market software. In both cases, acknowledging and managing

the requirement related risks is an important success factor. (Mathiassen & Tuunanen

2011: 40.)

When considering how to mitigate the requirement related risks, Mathiassen & Tuunanen

(2011) suggest to first approach requirements risk management with three preparative

steps:

1. Identifying the risk types

2. Organizing a toolbox

3. Integrating risk management practices

The first step and initial step is identifying the risk types (Mathiassen & Tuunanen 2011).

As stated already before, identifying and recognizing possible risk factors is the initial

step for managing any type of risk (Wallace et al. 2004). The second step is organizing a

44

toolbox the risks can be mitigated with. The third and final step is integrating risk man-

agement practices to work together with requirement risk management. (Mathiassen &

Tuunanen 2011: 40–42.)

4.3.1 Identifying and categorizing the requirements risk

The starting point for risk analysis and management is to identify the requirements risk

types that characterize the concerned project(s). Initially Mathiassen, Tuunanen, Saarinen

& Rossi (2007) suggested dividing requirements risk into three types: identity, volatility

and complexity. Later Tuunanen et al. (2015: 4027) presented fourth complementary cat-

egory, requirements integrity risk. These categories contain also some similar character-

istics, and Mathiassen et al. (2007) present that both identity and complexity risks imply

elements of poorly understood requirements. Summary of four requirements risk catego-

ries is presented in table 9. (Mathiassen et al. 2007: 574.)

Table 9 Summary of requirements risk categories introduced by Mathiassen et al.
(2007) and later complemented by Tuunanen et al. (2015: 4027).

Requirements identity

risk

Requirements availability: if exposed, indicates that

requirements are unknown or indistinguishable.

Requirements

integrity risk

(Tuunanen et al. 2015)

Requirements completeness and accuracy: if exposed,

indicates that there are difficulties to understand the origin

and relations between identified requirements.

Requirements

volatility risk

Requirements stability: if exposed, indicates that

requirements change easily as a result of environmental

changes or individual learning.

Requirements

complexity risk

Requirements understandability: if exposed, indicates that

requirements are hard to understand, specify or

communicate.

Requirements identity risk is likely to be discovered in situations when there is commu-

nication gap between the software system developers and the future users. The risk is

45

related to the poor availability of the requirements, and thus a high requirements identity

risk indicates that the actual system requirements are indistinguishable or not known by

the developers. Mathiassen et al. (2007) present that this risk reflects the distance between

the developers and the users: this distance can be physical, cultural or conceptual. The

distance is likely to appear for example in situations when mass-market software is de-

veloped, and the actual end-users are unreachable or unknown. (Mathiassen et al. 2007:

574–575.)

Requirements volatility risk refers to the instability of the requirements: such uncertainty

appears when the requirements change easily because of environmental dynamics. Ma-

thiassen et al. (2007) presented that these dynamics are related to the stakeholders’ indi-

vidual learning during the software development process, driven either by changes in in-

ternal or external conditions. Mathiassen et al. (2007) highlight that the literature presents

that requirements process is often dialectic and defining the requirements often reveals

new options for the stakeholders. In addition, the users’ needs usually are not self-evident

for the developers. (Mathiassen et al. 2007: 574–575.)

Requirements complexity risk is related to the understandability and the ease of commu-

nication of the requirements. Uncertainty related to requirements complexity appears

when the requirements are difficult to communicate, specify and understand. This is one

of the inherent features of software, stated also by Brooks (1986). Tuunanen et al. (2007)

present from literature that additional sources for complexity may appear from the re-

quirements process, when many and possibly conflicting stakeholders’ views about one

software system are put together. (Mathiassen et al. 2007: 574–575.)

Requirements integrity risk was later added by Tuunanen et al. (2015) based on the em-

pirical verification of the theoretical model. Requirements integrity refers to the com-

pleteness and accuracy of the elicited requirements. High requirements integrity risk re-

fers to problems in understanding where the requirements have originated. (Tuunanen et

al. 2015: 4027.)

46

4.3.2 Resolving requirements risk

The second step towards effective requirements risk management is to organize an appro-

priate set of tools that can be used for mitigating the risks. To summarize, once the re-

quirements risks have been identified, resolving the risks means improving the current

requirements from those aspects that could pose a risk for the software project. Tech-

niques and tools are the same that can be used when the requirements are initially defined,

now those are just applied to improve the requirements in such way that mitigates possible

risks. Mathiassen & Tuunanen (2011) present that most probably some suitable tech-

niques are already in use, but they suggest evaluating each technique’s effectiveness to

the risk types and complementing the toolbox on based on what is missing. (Mathiassen

& Tuunanen 2011: 41). The four categories of requirements techniques by Mathiassen et

al. (2007) were already discussed more detailed in chapter 3.3, and are summarized here

in Table 10.

Table 10 Requirements development technique types (Mathiassen et al. 2007: 576).

Requirements
discovery

User- and customer-centric. Facilitate identification, learning
and prediction of the user needs.

Requirements
prioritization

Resource-centric. Target on analysis, assessment and selection
between already identified requirements.

Requirements
experimentation

Software- and solution-centric. Use user reactions and
knowledge to shape requirements by employing designs of the
software artifact.

Requirements
specification

Documentation-centric. Use abstraction and graphical or
textual representations to provide explicit and agreed upon
requirements for further development.

47

4.4 Risk management methods and tools

Several researchers emphasize the importance of software development professionals’

risk management related knowledge behind successful risk management. Tiwana & Keil

(2004) argue that only such risks that have not been taken into account and are unmanaged

will have the power to surprise during the project execution. They believe that if the pro-

ject managers understand the factors that drive risk and which of them can be influenced,

the project managers could better accept the ones that cannot be changed and also have

the courage to manage the risks that are in their control. (Tiwana & Keil 2004: 77.) For

these purposes of identifying and influencing the factors related to risk, various different

kinds of risk management tools have been developed. Table 11 presents a generic classi-

fication for available risk management tool types synthetized by Iversen et al. (2004) and

later analyzed by Mathiassen, Saarinen, Tuunanen & Rossi (2004: 35–36).

Table 11 Summary of four types of risk management models and their characteristics
identified and synthesized by Iversen et al. (2004) and later analyzed by Mathiassen et
al. (2004: 35–36).

Risk lists Present a prioritized list of potential risk items, but no resolution
actions are suggested.

Risk-action lists Present a prioritized list of potential risk items and suggest one or
more resolution actions to mitigate each exposed risk item.

Risk-strategy
models

A contingency model, mapping synthesized common risk profiles
to synthesized common resolution action patterns.

Risk-strategy
analysis models

A stepwise process identifying potential risk items, linking them to
resolution actions, and forming an overall risk management
strategy.

To gain a better overall understanding of the available risk management tools, we use

“The One Minute Risk Assessment Tool” by Tiwana & Keil (2004) as an example of tool

for managing the overall software project risk. In their tool, Tiwana & Keil (2004) classify

two kinds of knowledge, which they see as essential for building any kind of software

48

system: technical knowledge and customer knowledge. To develop the tool, they exam-

ined six key risk drivers from previous two categories which determine how well that

essential knowledge can be embodied. The categories with related risk drivers are pre-

sented in table 12.

Table 12 Six software project key risk drivers presented by Tiwana & Keil (2004: 75).

Embedded knowledge Lack of customer involvement

Dissimilarity to previous projects (technical)

Requirements volatility

Execution coordination

Use of an inappropriate methodology

Lack of formal project management practices

Project complexity (coordination)

Based on the result of their study which examined 720 different software projects, Tiwana

& Keil (2004) assigned weights to each risk driver based on their likely relative impact

on the project outcome. Thus, at its simplest form, by examining six key risk drivers the

industry professionals could make a rough estimate on their project risk level from low

to high risk. (Tiwana & Keil 2004: 75–77.) The tool by Tiwana & Keil (2004) could be

categorized to represent a risk list among all risk management tools, which only repre-

sents an assumption of the potential risk level and does not provide any solution pro-

posals.

4.5 Introducing the Continuous Requirements Risk Profiling Method

The Continuous Requirements Risk Profiling Method tested in following parts of this

study has been developed by Tuunanen, Vartiainen, Ebrahim & Liang (2015) and the

development process has been presented this far in conference publication “Continuous

Requirements Risk Profiling in Information Systems Development”. The presentation of

the method as it is tested and examined with the industry professionals in this study is

49

still unpublished and referenced here as Tuunanen et al. (2016). The method was initially

developed by using design science research as a research method, and the study was con-

ducted in cooperation with the Project Management Institute of New Zealand. In this

phase industry experts were involved in the development of initial method by focus

groups interviews and a Delphi survey. (Tuunanen et al. 2015: 4019.)

Tuunanen et al. (2015) got motivation for developing the method of gap they had noticed

between how the literature views risk management and how the increasingly popular con-

tinuous and agile software development approaches that move from release to release. In

the developed method targets to take into account the iterative and repeated nature of

requirements, design and implementation phases that appears for example in agile and

lean software development approaches. Tuunanen et al. (2015) present from literature

that for the risk management to be effective with iterative software development ap-

proaches, it needs to be iterative too as presented in Figure 4. As requirements have a

crucial role in the potential success software development efforts (Boehm 1976: 1227),

Tuunanen et al. (2015) argue that requirements risk should be also the driver for the whole

software project risk. (Tuunanen et al. 2015: 4019–4022.)

The developed method focuses on requirements risk and is based on the previously intro-

duced theoretical model by Mathiassen et al. (2007). In their study, Tuunanen et al. (2015)

Figure 4 Applying continuous requirements risk profiling and management in
continuous development (Tuunanen et al. 2015: 4020).

50

took the first step in developing the Mathiassen et al. (2007)’s conceptual and literature-

based framework into a method that could provide assistance for industry professionals.

First Tuunanen et al. (2015) validated the theoretical framework with inputs received

from focus group interviews conducted with industry professionals. In this first part of

their study, they found a positive match between the risk categories presented in literature

and the types of risks professionals face in practice. According to Mathiassen’s presenta-

tion, the method classifies the requirement risk in three categories: requirements identity,

requirements volatility and requirements integrity. Tuunanen et al. (2015) found also one

additional category that was added to the method, requirements integrity. The focus group

interviews resulted the initial checklist items, later refined, reviewed and complemented

in the expert panels in Delphi study rounds. The two Delphi study rounds were used for

defining the phases each risk item would be most likely to affect to and the indicative risk

impact levels presented in the risk-profiling table. The risk items were organized accord-

ing to the panel’s suggestions after a reasonable agreement had been achieved. (Tuunanen

et al. 2015: 4021–4025.)

Table 13 The initial risk resolution pattern presented by Tuunanen et al. (2016).

1. Identify risks with checklists for each ISD phase. Nominal process starts with

requirements phase and continue to design and implementation phases.

2. Assess project risk profile by recognizing individual requirements risks

affecting the project. Use the indicative impact levels to prioritize requirements

risks.

3. Intervene with Requirements Risk Resolution Techniques according to the

risk resolution rules in following order using the appropriate techniques:

- If identity risks are high, put high emphasis on discovery techniques.

- If integrity risks are high, put high emphasis on prioritization techniques.

- If volatility risks are high, put high emphasis on experimentation techniques.

- If complexity risks are high, put high emphasis on specification techniques.

- If three or more risk items are high, follow the above sequence of applying
techniques (from 1 to 4).

51

For the first step of Continuous Requirements Risk Profiling method, “Identify risks”,

Tuunanen et al. (2015) provided three checklists, presented in tables below: Require-

ments phase checklist (Table 14), Design phase checklist (Table 15) and Implementation

phase checklist (Table 16). For the second step, “Assess project risk profile”, Tuunanen

et al. (2015) provide a risk-profiling table (Table 17), presenting the suggested indica-

tive impact for each risk item in specific development cycle phase.

Table 14 The initial requirements phase checklist by Tuunanen et al. (2015).

Risk Risk Type Project is/can be exposed?

Absence of Project Sponsor Identity

Access to Clients (Proximity to Source) Complexity

Ambiguous Requirements Identity

Change in Business Strategy and Direc-
tion

Volatility

Change in External Regulations Volatility

Client Commitment Identity

Constrained Users’ Knowledge Complexity

Fixed Budget and Timelines Integrity

Incorrect Stakeholder Identity

Misunderstood Business Needs Identity

Underestimation of Change Magnitude Volatility

Unrated Requirements Volatility

Any other risks that could affect design and implementation

Table 15 The initial design phase checklist by Tuunanen et al. (2015).

Risk Risk Type Project is/can be exposed?

Ambiguous Requirements Identity

52

Change in External Regulations Volatility

Client Commitment Identity

Compliance with External Regulations Identity

Conflicting Requirements Integrity

Missing Requirements Identity

Delivering What the Client Requires Identity

Emerging Requirements Dependency Volatility

Fixed Budget and Timelines Integrity

Knowledge Gap between Coworkers Complexity

Lack of Collaboration Complexity

Technology Changes Volatility

Underestimation of Change Magnitude Volatility

Unrated Requirements Volatility

Any unresolved risks from requirements and risks that could affect implementation

Table 16 The initial implementation phase checklist by Tuunanen et al. (2015).

Risk Risk Type Project is/can be exposed?

Ambiguous Requirements Identity

Change in External Regulations Volatility

Client Commitment Identity

Fixed Budget and Timelines Integrity

Hostile Users Identity

Project Team Member Turnover Volatility

Unrated Requirements Volatility

Underestimation of Change Magnitude Volatility

Any unresolved risk items from design and requirements

53

Table 17 The initial risk-profiling table by Tuunanen et al. (2015).

Requirements
Phase Specific
Risks

Impact Design Phase
Specific Risks

Impact Implementation
Phase Specific
Risks

Impact

Absence of
project Sponsor

High Missing
requirements

High Hostile users Medium

Access to
clients
(proximity to
source)

High Delivering what
the client
requires

High Project team
member
turnover

Medium

Incorrect
Stakeholder

High Compliance
with external
regulations

Medium

Misunderstood
business needs

High Conflicting
requirements

Medium

Change in
business
strategy and
direction

Medium Emerging
requirements
dependency

Medium

Constrained by
users’
knowledge

Low Knowledge gap
between
coworkers

Medium

Lack of
collaboration

Medium

Technology
changes

Low

Risks Affecting All Phases

Ambiguous
requirements

High Ambiguous
requirements

High Ambiguous
Requirements

High

Unrated
requirements

High Unrated
requirements

High Unrated
Requirements

High

Client
commitment

High Client
commitment

High Client
Commitment

High

54

Change in
external
regulations

Medium Change in
external
regulations

Medium Change in
external
regulations

Medium

Underestimation
of change
magnitude

Medium Underestimation
of change
magnitude

Medium Underestimation
of change
magnitude

Medium

Fixed Budget
and Timelines

Medium Fixed budget
and time lines

Medium Fixed budget
and timelines

Medium

For the third step, “Intervene with Requirements Risk Resolution Techniques”, Tuunanen

et al. (2016) adapted the risk resolution techniques listing and categorization from Mathi-

assen et al. (2007) to provide suggestions how the identified and prioritized requirements

risks could be resolved. The listing contains full results of related literature review and is

provided as appendix of this study. Some examples of the techniques were already pre-

sented in chapter 3. The Continuous Requirements Risk Profiling method in the previ-

ously des, is tested and improved in the later parts of this study.

55

5 RESEARCH PROCESS AND METHODS

In this chapter, the theoretical background of the used research process and methods is

introduced. First using interpretive case studies in information systems research is dis-

cussed. As an outside observer researcher role was chosen for the case study, it suggests

that the main data collection method for the study is likely to be interviews. Thus, we next

introduce theme-centered interviews as a data collection method. As the data, we want to

collect in our study is mainly qualitative, we discuss about qualitative data analysis based

on themes. After presenting the possible research process and methods, we evaluate the

validity and reliability of the study conducted with the presented approach. Finally, the

design of the study for testing and improving the Continuous Requirements Risk Profiling

method is presented.

5.1 Interpretive case studies

The interpretive case study approach presented in this research bases on the publication

“Interpretive case studies in IS research: Nature and method” by Walsham (1995), which

describes how case studies can be used for examining the software development related

issues. Walsham (1995) states that the social issues related to software development has

led to adoption of empirical methods to examine the related human meanings and inter-

pretations. Common tool for this are interpretive case studies, where the researcher col-

lects observations from the field over longer period. These interpretive case studies have

their philosophical basis on ethnographic research tradition related to organizational re-

search. (Walsham 1995: 74–75.)

Theory serves usually as the initial framework for the study, but the researcher should

avoid seeing only what the theory suggests and explore also potential new issues. The

role of the researcher in these studies can be either outside observer or involved re-

searcher. Researcher with outside observer role maintains some distance to the people in

field organization, and conducts the research by influencing the research domain only by

sharing concepts and interpretations with the related people. Involved researcher will be

56

a member of the group or organization who actively participates the issues related to re-

search domain. The choice of role should be consciously made in an explicit and well-

reasoned way. The choice should be also reported with the results. (Walsham 1995: 76–

77.)

For an outside observer researcher, an interview is usually the primary source of data as

that is the best way to access the interviewees’ interpretations on the research topic. Also

for the involved researcher, interviews will provide a valuable way to examine the fellow

participants’ interpretations in detail. Directing the interviews too closely should be

avoided to achieve a rich set of data for the interpretations, and the interviews recorded

to extract useful set of data from those. Besides the right interview technique, access to

people’s thoughts, interpretations and views also requires good social skills from the re-

searcher. (Walsham 1995: 77.)

Reporting the interpretive case study should be done in enough detail and some credibility

achieved, as the study reports interpretations of people’s experiences. Reporting should

cover description of research sites, reason of choice, number of interviewed people and

their professional position, possible other data sources and the period of time when re-

search was conducted. When employing the interpretive case study approach, the limita-

tions related to generalizability of the results should be concerned. The results of such

study are explanations of particular phenomena, related to specific settings. Despite the

criticism that results and interpretations cannot be generalized directly to be applicable to

all contexts, those may valuable in future also in other contexts and organizations. (Wal-

sham 1995: 78–79.)

5.2 Theme-centered interview as a research method

In our interpretive case study, the outside observer role was a likely choice for conducting

the research. This suggests that the main data collection method is interview, described

in more detail in this chapter.

57

Interview in its basic form, is interaction between the interviewer and interviewee. Inter-

view has different objectives than an informal conversation: An interview aims to collect

reliable information related to certain topic. In research interviews, the collected infor-

mation is later used for solving some practical research problem, after analyzing and sum-

marizing it with scientific methods. Typically, research interview is characterized by fea-

tures such as planning some parts of the interactions beforehand, the researcher's previous

knowledge on the topic, the interview situation is guided and by the interviewer and con-

fidentiality between the interviewer and interviewee. (Hirsjärvi & Hurme 2000: 42–43.)

Hirsjärvi & Hurme (2000) present an interview method called theme-centered interview

(teemahaastattelu) in their publication “Tutkimushaastattelu: Teemahaastattelun teoria

ja käytäntö”. Theme-centered interview is an approach to conducting semi-structured (of-

ten also referred as semi-standardized) interviews. In general, semi-structured interviews

refer to research interviews, which have some standardized parts of viewpoints that are

same in all conducted interviews, but otherwise the interviewer uses communication to

tailor the interview depending of the situation. In semi-structured interview, the standard-

ized part can be for example the types of the questions or the topics to be discussed about.

(Hirsjärvi & Hurme 2000: 47–48.)

The concept of a theme-centered interview focuses on each interviewee’s individual

thoughts, experiences and beliefs. The method highlights how the interviewees experi-

ence the situation and what kind of interpretations they make based on it. Theme-centered

interview itself does not force the results to be analyzed either with qualitative or quanti-

tative approach. The most fundamental idea in theme-centered interview is that instead

of presenting standardized set of detailed questions, the interview proceeds based on some

central themes. Hirsjärvi and Hurme (2000) present that this separates the interview from

the interviewer’s control, and presents the voice of the interviewees. The approach con-

siders the people’s interpretations of situations. Besides the interpretations, the meanings

associated with things and phenomena are in fundamental role. The open communication

and interaction facilitated in a theme-centered interview is presented as an important fac-

tor for discovering previous factors. (Hirsjärvi & Hurme 2000: 48.)

58

Generic process for conducting theme-centered interviews according to Hirsjärvi &

Hurme (2000) is presented in figure 5. Theme-centered interview process covers prepa-

rations such as designing the study, actual interviews and analysis of the collected inter-

view data.

5.3 Qualitative data analysis based on themes

Thematic analysis is a qualitative method that helps to identify, analyze and report pat-

terns, referred as themes, within data. When applied, it minimally describes and organizes

the analyzed data set. Despite the variety of qualitative methods is vast, thematic analysis

is presented as a foundational method for qualitative analysis. (Braun & Clarke 2006: 78–

80). The same approach, less rigorously defined, is referenced for example as thematizing

by Hirsjärvi & Hurme (2000: 173). According to Braun & Clarke (2006), qualitative

methods can be positioned into two categories based on their dependence or independence

of certain theory and epistemology. Thematic analysis represents the approaches that are

independent of theory and epistemology, and is thus applicable to wide variety of prob-

lems. Thematic analysis is described as easily accessible also for researchers having less

experience in qualitative research, as thematic analysis does not require such detailed

theoretical and technological knowledge as other qualitative approaches. (Braun & Clarke

2006: 77–79.)

Braun & Clarke (2006) presented also a six-step guide for performing thematic analysis

in a defined and organized way. The steps with their description are presented below in

table 18.

Figure 5 Theme interview process presented by Hirsjärvi & Hurme (2000: 67).

59

Table 18 Six steps of thematic analysis presented by Braun & Clarke (2006: 87).

Step Description

Familiarize with
the data set

Transcribing, reading and re-reading the interviews.

Initial coding Finding interesting features across the data set and labeling
them with codes, collating related data together.

Searching for
themes

Gather similar or related codes together into candidate themes.
Theme should represent shared meaning.

Review candidate
themes

Reviewing the themes in relation to the coded features and the
full data set. Form a thematic map of the reviewed themes.

Define and name
themes

Refining theme features and meanings, creating distinct naming
and description of each theme.

Reporting the
analysis

Forming a report of the analysis, presenting the results with
example extracts of each theme and showing how these extracts
and themes relate back to the research questions and literature.

Besides performing the steps for qualitative analysis steps, certain questions related to the

analysis need to be considered and reported explicitly. These are how theme is defined,

whether the analysis describes the whole data set or some certain aspect, is the analysis

inductive or theoretical, are the themes semantic or latent, and if some epistemology is

applied. (Braun & Clarke 2006: 81–85.)

For less rigorously defined thematizing approach, Hirsjärvi & Hurme (2000) present that

if the data has been collected based on theme interviews, it can be also analyzed based on

themes applying several different qualitative analysis techniques. Thematizing also starts

by transcribing, classifying and coding the data set. Hirsjärvi & Hurme (2000) present

three approaches for coding and classifying the transcribed data set, based on the tools

that available for the research. Classification can be done either by using computer and a

text analysis software, using computer without a specific software, or by performing the

60

analysis by hand using cards. In the case when analyzing the data with computer without

a specific analysis software, Hirsjärvi & Hurme (2000) suggest addressing classes to the

transcribed data set and formulating those into themes with functionalities available in

regular text editors. From classified data, different kind of approach might be needed if

the themes will be identified among all of the interviewees or separately from each inter-

view. (Hirsjärvi & Hurme 2000: 141, 147, 172–173.)

Also in thematizing, the analysis consists of describing the data set, coding and classify-

ing, finding associations and finally reporting the results of the analysis. Codes and clas-

ses applied to the data set create the framework, based on which the actual interpretations

of the data set can be made. The classes should have both conceptual and empirical justi-

fication. Finding associations within the data set means discovering recurring patterns,

rules and similarities either between the interviews or within one interview. Usually some

deviation within the results is found as well. Thematizing can be complemented with

other qualitative analysis tactics, such as counting or assigning data to scales. Counting

refers to simply counting how many times certain factor, feature or phenomenon appears

in the data set. Assigning data to scales refers to using for example nominal or ordinal

scales to compare the observations of the data set based on certain feature. (Hirsjärvi &

Hurme 2000: 143, 147–149, 172–176.)

5.4 Validity and reliability of the study

As discussed earlier, especially the limitations related to generalizability and repeatability

of the results should be concerned if an interpretive case study approach is chosen (Wal-

sham 1995: 79). The interpretive case study approach sets limitations to the applicability

and repeatability of the results, and the results mainly apply to the context where the study

was conducted. However, we find this approach with previously described research meth-

ods suitable for providing one aspect on feasibility of Continuous Requirements Risk

Profiling method in agile software projects and collecting valuable feedback from profes-

sionals working in industry. This also allows us to provide an improved version of the

61

model suitable to the case company environment and settings, and thus provide an em-

pirically validated and valuable tool for managing requirements risk in industry.

Another aspect related to the validity and reliability of the study concerns using interviews

as primary data collection method. As the interviews are analyzed with qualitative meth-

ods and the analysis is mainly interpretive, the limitations should be noted when consid-

ering the repeatability of the study. When taking into account the case company environ-

ment the interviews are likely to be in both Finnish and English as the interviewees will

represent several different nationalities, and some parts of the interview data needs to be

translated by the author for the analysis process. Thus, possible errors on translating and

interpreting the interviewees’ original thoughts should be also considered.

5.5 Designing the study

This subchapter describes how the study was designed, which assessment criteria was

used as a basis of the interview questions, how the interview questions were validated to

be suitable for the planned study and what kind of structure was planned for the inter-

views.

The study was conducted during summer and autumn 2017. Some preparations and base

study related to the topic and thesis seminars were done already on autumn 2016, but the

actual literature review took place on spring 2017, interviews on summer 2017 and anal-

ysis on autumn 2017. The interviews were conducted when author was working in the

case company.

5.5.1 Description of the case company

The case company of this study is a medium-sized software company based in Finland,

which offers various types of software development services, mainly focusing on soft-

ware project subcontracting. The case company’s professionals have wide technological

62

expertise. Interviewees participating to this study represented a comprehensive range of

the different types and sizes of projects, implemented to several domains. Agile project

management practices are used widely across the case company, and the organizational

structure could be described as lean and flat.

5.5.2 Purpose of the interviews

The objective for the research interviews conducted is to collect feedback and insights

about the continuous requirements risk profiling method from industry professionals

working in agile and DevOps software projects. The interview questions are designed to

collect empirical data that could provide answers to the research questions, which means

that how well the developed method works in practical company environment, do the

industry professionals find the method useful and how the method could be improved to

better correspond their needs. The interviews are carried out as theme-centered interviews

and results analyzed with qualitative methods.

5.5.3 Applied assessment criteria

Assessment criteria for the method are applied from MIS Success Measures presented by

DeLone & McLean (Information Systems Success: Quest for the Dependent Variable,

1992). In this case, the MIS Success Measures are applied to assess the Continuous Re-

quirements Risk Profiling method. Of the original set of MIS Success Measures presented

by DeLone & McLean (1992: 84–85), the ones that were best applicable for evaluating

the method were chosen. The chosen MIS Success Measures were then used to derive and

formulate the interview themes and suggested interview questions, so that the questions

aim to seek answers about the method quality, method information quality, method infor-

mation use, user satisfaction, individual level impact of the method use and possible pro-

ject level impact of the method use. The selected MIS Success Measures and how they

are applied as assessment criteria for the Continuous Requirements Risk Profiling method

are presented in table 19.

63

Table 19 Assessment criteria adapted from MIS Success Measures presented by
DeLone & McLean (1992: 84–85).

Category Appliance in this
study

Chosen criteria

System
Quality

The method should be
applicable and benefi-
cial in practical project
work

Efficiency: ease of use, ease of learning,
method usefulness
Flexibility: applicability to different kind of
projects, possibility to modify the model

Information
Quality

The method should
give useful infor-
mation about the re-
quirements risks

Understandability (content): the method is
easy to understand and presented using lan-
guage that is familiar for the professionals
working in industry
Completeness and accuracy: the information
in method is complete and accurate enough

Information
Use

The method should
support the infor-
mation use together
with other systems

Report acceptance: the method is compatible
to the reports/information already available
Motivation and voluntariness to use: industry
professionals feel motivated and voluntary to
adopt the method as a part of their tool set

User Satis-
faction

The method should
meet its user’s needs
and expectations

Information satisfaction (needed vs. re-
ceived): information provided by method
meets the users’ needs and expectations
Decision-making satisfaction: the infor-
mation provided by the method are complete
and accurate enough to support decision mak-
ing

Individual
Impact

The method should
provide the needed
support for project
personnel managing
requirements risk

Accurate interpretation: the method suggests
accurate interpretations of the project situa-
tion
Decision effectiveness: the interpretations
suggested by the method are correct and
would contribute to project decision making

Organiza-
tional Im-
pact

The method should
improve project deci-
sion-making and even-
tually IS success

Overall project productivity gains: the
method use could have positive impact to
project team productivity
Improved outputs and decision-making: the
method use could result as improved outputs
of the requirements process, and eventually
improve project success due to improved re-
quirements risk control

64

From these criteria, we see that our data collection method can give input to mainly cri-

teria 1–5. Criterion 6 is harder to measure, as organizational level impact can be estimated

only on project, not on company level. Also on project level, our interviews can capture

only one perspective of the possible project level impact. Questions related to criterion 6

are also presented in this plan as a part of interview theme 4, but should be considered in

each interview if those are applicable and could give reliable results in particular situation.

5.5.4 Planning and validation of the data collection method

Before starting the study in the case company, both the study design and interview ques-

tions were validated with research group representatives and with a case company repre-

sentative. These validations targeted to make sure that the interview questions were un-

derstandable, would collect enough empirical evidence for the purposes of this study, and

to find out if the professionals working in the case company are likely to be familiar with

our research topic.

First, the interview structure and questions were validated with the instructors Tuunanen

and Vartiainen. The purpose of this validation step was to make sure, that the data collec-

tion method could provide information that is feasible in answering the research ques-

tions. After the approval of Tuunanen and Vartiainen, the interview structure and ques-

tions were validated with the case company representative. The purpose of this validation

step was to make sure that the planned interviews were applicable to the organizational

settings and environment of the case company. During this validation step, it was noted

that the industry professionals working in case company were unlikely to be familiar with

the theoretical framework of our study. Thus, a theoretical introduction was added to the

beginning of the interviews to lead the conversation to the right topic and to gain the best

benefit of the interviews for the both parties.

For the theme-centered interviews conducted for this study, a qualitative approach was

chosen. The central themes to be discussed in the interviews were closely related to the

65

research questions. The themes chosen to interviews were getting familiar with the con-

text and background of the case project to be discussed about, applying the tested method

in case project, assessing the method completeness, accuracy and understandability, and

assessing the method feasibility to project use and usefulness. Differing of some theme

interview approaches, the interview questions were also formulated before the interviews.

However, all the questions were not mandatory and were used more to facilitate the in-

teraction. The interview was usually tailored to the situation, and some additional ques-

tions were presented to the interviewees based on their answers.

5.5.5 Structure of the interviews

The structure of the interviews was formulated around the concept of theme-centered in-

terviews, taking into account structure of the tested Continuous Requirements Risk Pro-

filing method and the applied assessment criteria. In addition, the needed introduction to

the theoretical framework, discovered in second validation step of the data collection

method, was added to the beginning of the interview structure. The planned structure for

the theme-centered interviews is presented in table 20.

Table 20 . The planned structure for the theme-centered interviews.

Introduction of the study
Introduction to requirements risk management method background
Theme 1: Introducing the interviewee and the case project requirements
Theme 2: Assessing and prioritizing case project risk profile using the method
Theme 3: Discussion about method completeness, accuracy and understandability
Theme 4: Discussion about method usefulness and feasibility to project use
Summary and ending

During the introduction part, the interviewer and research topic was introduced to the

interviewee. In addition, the common interview practices were described and the inter-

viewee was made conscious about the purpose of the interview: testing feasibility of the

developed Continuous Requirements Risk Profiling and prioritization method in a case

project.

66

Before starting the actual interview, some theoretical background related to the research

topic was presented to the interviewee. When testing the interview questions with a case

company representative, it was noticed that presenting the theoretical background for the

interviewee would help to lead the conversation to right direction. Introduced theory is

the “Six dimensions of software project risk” by Wallace et al. (2004), requirements risk

categories and linking to resolution techniques first identified by Mathiassen et al. (2007)

and later complemented by Tuunanen et al. (2015).

After presenting the theoretical framework, the idea of Continuous Requirements Risk

Profiling presented by Tuunanen et al. (2015) is discussed on higher level and the order

of applying the method will be presented to the interviewee. After introducing how the

method works, it is discussed how the testing is going to be done in the case project based

on the interview agenda and what kind of answers are expected in each part. Interview

themes 2, 3 and 4 are focused on testing and evaluating the model, first by assessing and

prioritizing case project risk profile using the method. After conducting a risk analysis

for the case project using the method, the interviewees are asked about method complete-

ness, accuracy, understandability, usefulness and feasibility in project use. These themes

are closely linked to MIS Success Measures by DeLone & McLean (1992) and target to

get answer if the interviewees think that the method is feasible for their purposes.

The full interview questions used in theme-centered interviews can be found as Appendix

A of this study.

67

6 TESTING AND IMPROVING THE CONTINUOUS

REQUIREMENTS RISK PROFILING METHOD

The research was conducted as an interpretive case study, where the method was tested

with several agile projects from same case company. When testing the method in selected

projects, semi-structured theme-centered interviews were used as the primary data col-

lection method. The collected qualitative data was analyzed with thematic analysis, to

provide a comprehensive description of industry professionals’ opinions, views and ex-

periences about testing the Continuous Requirements Risk Profiling method. The results

from the research were reflected against the tested model, existing literature and other

research on the same topic.

6.1 Conducting the theme-centered interviews

The theme-centered interviews were conducted during July and August 2017. The poten-

tial interviewees were first discovered within the company based on two criteria: the use

of agile or DevOps methodology in their project, and role related to requirements elicita-

tion, specification, management and/or project management. After the discovery, the po-

tential interviewees were contacted directly by email. The interview invitation described

the topic, motivation and purpose of the study, asking if they were interested in the topic

and willing to participate. All nine contacted potential interviewees accepted the invita-

tion. The interviewed professionals were currently working with at least one project that

used some agile development model and were working in roles such as project manager,

product manager, system architect, technical lead or customer representative. Background

information of the interviewees is summarized in table 21.

68

Table 21 Summary of interviewed professionals and their background information.

Interviewee

pseudonym

Role Industry experience

Interviewee 1 Senior Project Manager Over 20 years

Interviewee 2 Senior Project Manager Around 15 years

Interviewee 3 Project Manager and Senior Developer Over 15 years

Interviewee 4 Systems Architect Over 10 years

Interviewee 5 Customer Representative Over 10 years

Interviewee 6 Technical lead and Developer Around 10 years

Interviewee 7 Project Manager and Developer Over 10 years

Interviewee 8 Developer and Junior Systems Architect Around 5 years

Interviewee 9 Project Manager and Technical Sales Over 15 years

The projects that were used as examples in the interviews had Scrum as the working

methodology, complemented with some other agile working practices such as Continuous

Integration. One of the projects was partially customer led, but in all other projects, the

project management was done in the case company. The interviewed professionals had

industry experience from five to more than 20 years, majority of them more than 10 years.

All of the interviews were held as a video conference. Most of the professionals were

interviewed individually, but to two of the interviews the professionals wanted to partic-

ipate together with a colleague working in the same project. We allowed this, as the in-

terviewed professionals understandably had busy schedules and this kind of discussion

was seen beneficial for the projects. The audio of the interviews was recorded upon the

approval of interviewed professionals and transcribed for thematic analysis. In the cases

when interview language was Finnish, the transcribed data was translated to English dur-

ing the analysis and the translated interview extracts are presented in this report. For an-

onymity and confidentiality of the interviews, only the interviewee role and approximate

industry experience is reported with the extracts included in the study. The extracts are

used to represent the themes and phenomena related to the overall data set, not individual

opinions or experiences with clients.

69

6.2 Thematic analysis for interview data

Thematic analysis was used for analyzing the data collected with theme-centered inter-

views. The previously presented more structured, six-step approach described by Braun

& Clarke (2006) was applied. Taking into account the nature and settings of this study as

master’s thesis, no specific text analysis program was used for coding and creating the

thematic map. The data was coded using spreadsheets and thematic map with a free web-

based diagramming tool draw.io.

In the first step, the interviews were listened, transcribed, read and checked for corre-

spondence of the recordings. In the second step, initial codes were applied to the tran-

scribed interview data and the data related to same codes was collated. A code was used

to represents the meanings of certain subset of data, for example “Feedback on method

checklist vocabulary”. In the third step, candidate themes were searched from the coded

data. A theme was used to represent the shared meanings of related codes, and identified

candidate themes were for example “Managing requirements in agile software projects”

and “Factors affecting to the completeness, understandability and accuracy of the

method”. As the interviews were conducted as theme-centered interviews, some of the

themes were closely related to the interview themes, as Hirsjärvi & Hurme (2000) sug-

gested. The discovered themes were also closely related to our research questions: the

feasibility of the method, and how the method could be improved from the point of view

of professionals working in industry. In addition, a rich collection of examples of identi-

fied, mitigated or realized requirements risks was extracted from the interview data for

the use of the case company.

In fourth step, the found candidate themes were reviewed for representativeness for both

the included codes and full data set, and possible overlapping between themes were con-

sidered. At the end of this step, a thematic map illustrating themes was created. This the-

matic map is presented in figure 6. In fifth step, the reviewed themes were revised, re-

named and described. The sixth and final step was producing the reporting the results

with the justification and interview extracts vividly describing each theme. The report is

presented in next chapter.

70

6.2.1 Coding applied to dataset and identified themes

Table 22 Coding applied to dataset and identified themes.

Theme Sub-themes and related coding
Theme 1: Managing
risk in agile software
projects

Subtheme: Context
Code: Interviewee background general description
Code: Interviewee role
Code: Interviewee experience
Code: Project background
Code: Project type
Code: Project description
Code: Example of using the checklists
Code: Use of requirements techniques

Theme 2: Lessons
learned on
requirements risk

Code: Identified risk
Code: Example of identified risk
Code: Example of relative impact of a risk
Code: Example on resolving requirements risk

Theme 3: Factors
affecting to method
completeness,
accuracy and
understandability

Code: Feedback on checklist
Code: Improvement/ change to checklists
Code: Change to vocabulary
Code: Addition to checklists
Code: Relative impact in risk profiling table too high
Code: Relative impact in risk profiling table too low
Code: Feedback on risk profiling table presentation
Code: Feedback on method completeness
Code: Feedback on method accuracy
Code: Feedback on method understandability
Code: Open feedback related to method features

Theme 4: Factors
affecting to method
usefulness and
feasibility in project
use

Code: Opinion on usefulness of measuring relative impact
Code: Feedback on risk resolution pattern
Code: Suggested order
Code: Example on resolving the risk pattern
Code: Feedback on techniques
Code: Improvement / change to risk resolution techniques
Code: Used risk resolution techniques
Code: Additions to resolution techniques
Code: Feedback on method usefulness in agile projects
Code: Feedback on method feasibility in agile projects

71

6.2.2 Thematic map of interview data

Based on the thematic analysis on interview data, four main themes were formulated to

describe the patterns found in the interviews. The main themes discussed were named as

“Managing risk in agile software projects”, “Examples of requirements risk”, “Factors

affecting to method completeness, accuracy and understandability” and “Factors affect-

ing to method usefulness and feasibility in project use”. Each main theme contained sev-

eral subthemes that represented the recurring patterns in related discussion.

For example, the discussion on “Theme 1: Managing requirements risk in agile software

projects” contained subthemes describing the iterative approach to the activities, depend-

ence of project characteristics, justifying the importance of requirements, different per-

ceptions on responsibility and roles in risk analysis, and factors related to communicating

about requirements risk management topic with customers. “Theme 2: Examples on re-

quirements risk in agile software projects” contained subthemes describing discussion

about identified requirements risk, typical realized requirements risk in agile software

projects, successfully mitigated requirements risk and discussion about some risk items

that were seen controversial. In the controversial risk items subtheme was debate whether

the items were actual risks or just inherent qualities of software, which need to be ac-

cepted on reasonable level.

Themes 3 and 4 were closely related to the corresponding interview themes. Theme 3,

“Factors affecting to method completeness, accuracy and understandability” described

the discussion related to assessment of the method completeness, accuracy and under-

standability. This theme included several proposals what could be added to the method,

how to improve the method so that it could provide more accurate interpretations of the

situations faced in industry and how to make the method more understandable in terms

of language and presentation.

Theme 4, “Factors affecting to method usefulness and feasibility in agile software pro-

jects” described the assessment and discussion of the method usefulness and feasibility

72

in case company’s agile software projects. Subthemes described for example which fea-

tures in the method are useful and which not, and would the method be feasible in the

case projects and why, and the interviewed professionals’ motivation to use the method

in their future projects. The final thematic map is presented in figure 6 and the more de-

tailed analysis of each thee is presented in next chapter.

6.3 Analyzing the method feasibility in agile software development projects

This subchapter presents the analysis of the collected data set describing the results of

testing a Continuous Requirements Risk Profiling method in interviews with industry

professionals working in agile software projects. Overall, the interviewed professionals

thought that identifying and managing requirements related risk was an important topic.

Figure 6 The final thematic map illustrating conducted thematic analysis on interview
data, reviewed for correspondence and consistency of themes.

73

There was a nearly perfect agreement between the interviewed professionals that identi-

fying the requirement risk is meaningful for the project success, and they were willing

and motivated to use at least some parts of the tested method in future. All of the inter-

viewees also gave some improvement proposals to the vocabulary of the checklists and

the way the questions used for identifying requirements risks were formed. Presenting an

improved version of the method, improving the method usability and making the risk

items consistent among the checklists, was the most important prerequisite for adopting

the method to project use in the case company.

6.3.1 Theme 1: Managing requirements risk in agile software projects

One of the identified themes concerned how the professionals working with agile projects

in industry viewed managing requirements risk, and what kind of related observations

they had made. Topics related to this theme contained justification and explanations for

the importance of requirements, describing the iterative approach to the activities, de-

pendence of project characteristics, different perceptions on responsibility and roles in

risk analysis, and factors related to communicating about requirements risk management

topic with customers.

When starting the discussion about requirements related risk, many of the interviewees

brought up the importance of requirements engineering in the whole software develop-

ment process. They also pointed out, that sometimes it was hard to explain the importance

of requirement specification to the customers. Many of the interviewees then suggested

that the prioritized requirements risk profile could work also as a medium on communi-

cation with the customer. A simple enough way to visualize the risk related to some soft-

ware project related decision, consciously or unconsciously made, was seen very wel-

come and possibly useful by the interviewees.

“The benefit of requirements engineering is hard to explain and reason to
some customers, even though it the only initial step you could buy from any
software company and then go with that product [requirements specification]

74

to order the actual implementation quite okay from any other software com-
pany. That if the requirements specification is well-made, it is really valuable
also onwards.”

Interviewee, Senior System Architect

One source of requirement related problems and risks was described to be associated with

customer’s lack of understanding about the requirements and software development pro-

cess, and risks related to it. The interviewees described that resolving many of the re-

quirement risks needed also the customer’s participation and were not something that they

could resolve only by their actions, so bridging this knowledge gap would be an important

factor for successful requirements risk management and mitigation. In addition, when we

take into account the agile philosophy and values presented in Agile Manifesto (Beck et

al. 2001), individuals and interactions should be favored over processes and tools.

Also related to the problems of explaining the importance of extensive enough require-

ments work, many interviewees pointed out that sometimes it is hard to get the customers

understand that building software is also creative work, and a good piece of software

fulfilling the users’ needs cannot be delivered like industry products. This observation

has theoretical background from Brooks (1986), who stated that software construction is

a creative process. The observation also enforces the view that software is more a me-

dium of knowledge than a product (Tiwana & Keil 2004: 74), and requirements engineer-

ing is a very essential part of successful construction process:

“A software project is on a border of industrial work and creative work. It is
not a pure industrial project, and it is not so easy to automate the software
making process, it needs the creativity as well. It’s kind of a mix of art and
industry, that’s the challenge.”

Interviewee, Project Manager with over 15 year’s industry experience

Workflows related to agile software development were also discussed, and how the

phases of software development might be implemented differently between the projects.

One noteworthy observation concerned the way method divides the identifying of the risk

into three different phases, even though in some agile approaches the requirements, de-

sign and implementation activities can be done little by little, or even in parallel – that

75

would be the for example in XP (Beck 1999). Three of the nine interviewees brought up

that in their case projects the design and requirements phases were done in parallel, and

not as separate phases. They felt that in those cases it would be most convenient to merge

the requirements phase checklist and the design phase checklist into one, or otherwise

tailor the method:

“The initial design and the architecture was in the beginning, and it was a
like a skeleton for everything else.”

Interviewee, System Architect and Customer Representative

When discussing about providing indicative impact levels for each of the risk item, there

was some opinions that the listing of relative impacts could not be valid, but majority of

the interviewed professional thought that it could give valuable support to the decision-

making related to risk management. Overall, the individual interpretations of the situa-

tions and situation-based decision-making was highlighted by several interviewees, espe-

cially by the ones who worked in more technically oriented roles. One of the opinions

against too formally defined guidance to risk impact levels used previous arguments:

“Somehow, I think that this kind of listing is just impossible, or that it [the
relative impact of each risk item] depends so much of the project, client or
even involved people. The first thought is that this can’t work [in all cases].”

Interviewee, Technical Lead

The interviewees’ opinions about providing guidance to requirements techniques divided

mainly into two categories: some of the interviewees were against of using formally de-

fined techniques, and some of the interviewees thought it was positive if some new tech-

niques would be introduced. Those interviewees though that the requirements technique

listing would be beneficial especially for less experienced project managers. The inter-

viewed professional’s whose opinions were against of the use the formally defined tech-

niques justified their opinion by arguing that use of such formally defined techniques

would add unnecessary work and factors to the requirements process:

“But of course, the list contains all kinds of thinking techniques, but I have to
say that I’ve never been a great fan of those, that kind of specified thinking
techniques. Based on my experience it is better if this kind of processes go

76

with their own pace, as using this kind techniques just adds quite a lot of
overhead to that.”

Interviewee, Senior System Architect

“I’m not that familiar with this theory, so it’s hard to present only names. But
yes, I know very many ways to do the requirements. What I usually do to dis-
cover the requirements, is that I have certain templates and tools that I use,
and then I have the experience. ... And usually I try to make requirements
specification [as early as possible]. When you specify the requirements to
some document, it work also as a mean of communication to make sure that
the client understands, and as a reference when starting to do changes.”

Interviewee, Senior Project Manager and Technical Sales

Justification for these opinions can be found for example from the agile values (Beck et

al. 2001).

6.3.2 Theme 2: Experiences on requirements risk in agile software projects

Overall, the interviews gave strong empirical evidence that the requirement risk items

presented in checklists are valid and seen as risks among the interviewed professionals.

The most experienced project managers pointed out that they identified all checklist items

as valid risks, and there was not a single risk they had not seen to realize during their

industry career. In the interviews, professionals told various vivid and valuable examples

of the requirements risks which had identified or which had realized in the case projects.

It speaks also for the validity of the risk items in the checklists, as industry professionals

often face such risks in their projects:

“I think we didn’t say for any [of the risk item] that this isn’t not a risk or
would not belong here.”

Interviewee, Senior Project Manager

Some of the presented requirements risk items provoked also conflicting opinions among

the interviewees. One of such items was for example “Absence of project sponsor” as

some of the interviewees argued it to be a showstopper risk, and some of the interviewees

were not sure if the risk item is relevant at all and will it affect to the project. This was an

77

interesting observation, and one possible explanation could relate to the interviewee back-

ground and role in the project: interviewees with developer or architect role were less

concerned about this risk item, as the interviewees with project manager or technical sales

role thought this was a high risk. On the other hand, previous observation can be also

related to some factors in the case company settings and environment.

“I think some of these risks aren’t even high impact risks, but they are show-
stoppers. A risk can be high and you can mitigate it, but for example that
missing project sponsor, it is a showstopper. You don’t have anyone, who
would like to pay for it.”

Interviewee, Project Manager and Technical Sales

The showstopper risks usually belonged to the requirements identity category, which also

argues for the importance of mitigating the requirements identity risks first.

Another controversial risk item was “Ambiguous requirements”, which was identified

and usually successfully mitigated in nearly all of the case projects. The more experienced

professionals viewed such requirements as something that cannot be avoided at least in

the earlier phases of the project:

“Have you ever seen a software project that doesn’t have [ambiguous re-
quirements]? I would like to see that. Yes, we have had those.”

Interviewee, Senior Project Manager and Technical Sales

When discussing about the possible impact the risk, the opinions were again divided into

two categories. One part of the interviewees found it as a high risk, but the other part

presented that certain level of ambiguity needs to be tolerated and it might be even bene-

ficial for the system design, if ambiguous requirements are refined before development

phase:

“Well, I think that most of the requirements are usually on high level. Be-
cause, of course, not everyone has the technical depth to know how to do that
from the implementation point of view. And it’s kind of our job, to figure it
out.”

Interviewee, System Architect and Customer Representative

78

Missing requirements were suggested to often have same kind of root cause as ambiguous

requirements. Several interviewees stated that based on their experience, missing require-

ments are usually related to the assumptions that something is already self-evident. Thus,

if the other party does not specific enough either technical or business domain knowledge,

it is hard to realize that a requirement is missing. Still missing requirements were seen as

problematic, but something that cannot be completely avoided either:

“There are always some requirements that are missing, but that is because
you cannot exactly specify everything to the last detail. You cannot know eve-
rything up to the last detail in requirements, because then they stop being
requirements and became a technical specification. And that is probably only
reason, why they are missing. Because for some of the people some require-
ments are already technical, and for some of them they are not.”

Interviewee, System Architect and Customer Representative

Risk related to missing requirements was identified especially in those cases, when the

projects were related to developing new features to existing software systems. Several

interviewees also suggested that this could be taken into account also as its own require-

ment risk item, “Legacy concerns”:

“Yes, probably there was missing quite many [requirements]. Or there were
quite many things the customer assumed that we know. Or that we should
know, because here is this old system as a basis. And those are quite chal-
lenging [situations], when you start checking afterwards, that yes there has
been this kind of requirements for the 20 years old system, why it is not im-
plemented in this new one.”

Interviewee, Developer and Junior System Architect

In line with the agile ideology presented by Beck et al. (2001), also the interviewed pro-

fessionals viewed change and change on requirements as an inherent part of software

development. However, it seemed that agile was not always understood by everyone,

which could be problematic:

“Often the customer believes that after you have once written the require-
ment, you don’t need to change it that much. But in reality, that is just the
starting point.”

Interviewee, System Architect

79

The interviewed professionals described that fixed budget and timelines with agile meth-

odologies were a common but also unavoidable risk. Almost all of the interviewees

pointed out, that it was a potential risk in their project at least in one of the phases. Espe-

cially if other requirements risks were high, the professionals argued that fixed budget

and timeline was a major threat. For example, emerging requirements dependency was

described as one of the factors that can later change the initial estimates:

“Yeah of course that happens. … Things happened that when doing the esti-
mation, we thought that this is scope A and this is scope B. But when doing
the actual design, we figured out that oops, we have to do a couple from the
other as well.”

Interviewee, System Architect and Customer Representative

The interviewed professionals argued that based on their experience, missing stakehold-

ers were more common source of requirements risk than incorrect stakeholders. Several

professionals suggested that missing stakeholders should be added to the checklists, and

they justified their opinion with descriptions of cases where missing stakeholders had

caused major changes in later phases of the project:

“It more the missing [stakeholders], which we have come across. For exam-
ple, in one project we have changed almost everything as stakeholder from
sales department joined [the project team] too late. And of course, it then
affects to the costs, schedules and overall satisfaction.”

Interviewee, Senior Project Manager

When discussing about lack of collaboration, several project managers described it to be

“a typical realized risk”. It was presented that sometimes despite the efforts to collaborate

the team dynamics just do not work. Several reasons behind this typical problem were

discussed and from the stories it was observed that besides requirements risk, this item is

also interrelated to other Wallace et al. (2004)’s risk dimensions such as team risk or

organizational environment risk:

“Maybe some people just get stuck. Usually it is one person doing some kind
of design, and then tries to collaborate with others, but sometimes it just does
not work. Some people just get closed inside a box for a week, and then they
come out of the box and you find out that “Whoops, there are some problems”
and then we need to get closed for a one week more.”

Interviewee, Architect and Customer Representative

80

Unrated requirements were described to be a problem especially from the point of view

of work estimates and project schedules. Related to unrated requirements, adding such

risk items as “Unmeasurable requirements” and “Lack of context in requirements” was

proposed. In some cases, unrated requirements could also lead to missing requirements:

“In requirements specification, it is said with one sentence that it shall pro-
duce the output of a certain calculation. The one sentence indicates that well
it is only one calculation. But when we start to evaluate it in more detail it
actually contains over 50 components, which properties we first need to cal-
culate. And that means that we had really underestimated the needed work.”

Interviewee, Senior Project Manager

Most of the interviewees thought that technology changes would be at least medium im-

pact risk. One observation was that compared to project managers, developers assessed

technology changes to have much higher impact to the project. Still, most of the inter-

viewees viewed technology changes as something that:

“Technology changes are usually done so, that there is some backwards com-
patibility. That if something changes, it is not so radical. ... Often the tech-
nology changes to better, it does not change to worse. And it means that the
client gets a better solution.”

Interviewee, Senior Project Manager and Technical Sales

6.3.3 Theme 3: Assessment of the method completeness, accuracy and understanda-
bility

All of the interviewees gave some improvement proposals to the vocabulary of the check-

lists and the way the questions were formed. The most common and important from the

perspective of the tool usability was making the risk items consistent among the check-

lists. In the method suggested by Tuunanen et al. (2016) some of the risk items were

presented negatively and some positively. When testing the method with interviewees it

was noticed that it is most convenient to present all checklist items as possible risks, so

that answering “yes” means that a possible risk is identified:

81

“It is hard to formulate the answer... Because now this is not a yes or no
question. Like do you have access to clients, then the answer would be yes, if
missing access to clients then no, but it would be even more confusing”

Interviewee, Project Manager and Developer

In addition, different people understood some of the risk items differently. For example,

“Delivering what the client requires” was suggested to be changed to “Unmet customer

requirements” to clarify the situation.

Besides the previous improvement proposals, the method’s checklists were found easy to

learn and use, and many interviewees presented that checklists would be their preferred

format to identify possible risks. There was a nearly perfect agreement among the inter-

viewees that on the part identifying the requirements related risk method provided infor-

mation that is complete, accurate and useful. Most of the interviewees presented that the

method already had a comprehensive listing of possible requirements related risks, but

also some additions to the checklists were presented. The less experienced industry pro-

fessionals felt those useful for learning about possible requirement risks and adapting the

overall idea. The more experienced industry professionals felt that the checklists were

useful as those were seen as fast and efficient way to identify risks and plan further risk

management.

Also analyzing the possible relative impacts with an improved version of the risk profiling

table was found easy to learn and use with slight disagreement among couple of inter-

viewees. On the contrary, almost all of the interviewees presented that intervening and

resolving the risk with provided risk resolution pattern and tools would not be easy to

learn and take into use. It was observed that the part of the method that suggests tech-

niques to mitigate the risks was not as complete, accurate and useful as the other parts of

the method, and would still need development. The resolution technique table was de-

scribed inaccessible, hard to understand and overloaded with unexplained information:

“This list is way too long, it is unusable.”

Interviewee, Customer Representative

82

There was a nearly perfect agreement among the interviewees that the requirements risks

identified by the method were meaningful when thinking about the overall project suc-

cess. Some of the interviewees had a strong opinion, that it should be necessary to think

about the presented requirement risk items in every project. The importance of identifying

the risks as early as possible was also highlighted. The most experienced project managers

also pointed out, that if these risks are not identified, those cannot be mitigated either.

Generally, they had the experience that once the risk is identified and communicated to

the customer, also the customer is committed to resolve the risk for the good of both

parties.

The interviewees agreed that the requirement risks presented in the method checklists

were such risks that they had identified also with current risk management practices, but

most of the interviewees felt that the risks were specified and categorized in the tested

method. The most experienced project managers argued that they had actually seen all of

the listed risks realize in a way or another, and presented that identifying those is very

important. The checklists were also seen as a good way to identify and categorize require-

ment risk. The interviewees, who had less experience from risk management, felt that it

was hard to identify all these risks without checklists, if one has not already experienced

each risk realizing in some previous project:

"When you read these [risk items] from a checklist, you probably recognize
things in different way as you do not know yet how to make it based on expe-
rience."

Interviewee, Developer and Junior Systems Architect

When discussing about the requirements risks that had been already identified in the ex-

amined projects, most of the interviewees presented that the method itself did not intro-

duce such risks that they had not identified in the case project. However, several inter-

viewed professionals also mentioned that previous was most probably due the fact that

almost all of the case projects were already in implementation phase. The interviewees

hypothesized, that if the method had been applied already in the requirements or design

83

phase, most probably there would have been some new risks identified. Several inter-

viewees had also faced situations where they had identified some requirement risk, but

felt that the risk was out of the scope they could affect and resolve.

Based on the overall results related to requirements techniques it was observed that most

of the techniques were unfamiliar to the interviewees. In general, each interviewee was

familiar on average six to eight techniques of the total 85 techniques presented in the

table. The requirements techniques that at least one interviewee mentioned to be familiar

with were brainstorming, card sorting, data-flow diagrams, focus groups, prototyping,

testing, workshops, mockups, use cases, interviews, state charts, business process analy-

sis, quality function deployment, user interface prototyping, laddering interviews and de-

riving requirements from existing system. Besides the formal techniques, interviewees

mentioned to use practices such as maintaining the statuses of requirements, finding out

the background of each requirement, common sense and asking the question why.

“I am not that familiar with this theory, so it is hard to present only names.
But yes, I know very many ways to do the requirements. … I have certain
templates and tools that I use, and then I have the experience. … When you
specify the requirements to some document, it work also as a mean of com-
munication to make sure that the client understands, and as a reference when
starting to do changes.”

Interviewee, Senior Project Manager and Technical Sales

It should be noted that the unfamiliarity with the technique names and their theoretical

background might have affected to the interview results. As most of the techniques were

unknown, those would have needed some explanation before the interviewees could even

evaluate if the technique was feasible in their project and unfortunately, the interview

schedules did not allow detailed discussions on each of the techniques. There were also

several comments, that the interviewees were not aware that all the techniques presented

in the table were such techniques that could be used on their own. The current presentation

in requirements risk resolution techniques table was described as too long, unusable, frus-

trating and overloaded with unexplained information. These reactions could be explained

by the previously presented factors related to overall attitudes towards formally defined

requirements techniques and unfamiliarity with most of the listed techniques.

84

To make the risk resolution table feasible in the case company, a new tailored require-

ments technique toolbox will be proposed. The core set of included techniques will be

selected from the techniques that the industry professionals mentioned in the interviews

and had already found feasible in their projects. The already familiar techniques will be

complemented with some new techniques that could be feasible in the case company. The

techniques included in the toolbox should be also introduced shortly, so that the industry

professionals could easily take the techniques into use.

6.3.4 Theme 4: Assessment of the method usefulness and feasibility

Several interviewees argued that often the risks related to requirements originate from

false presumptions, that the customer is familiar with software development process and

the developer is familiar with the customer’s operations and environment. In addition,

many of the items on the checklists were seen to reflect this. When discussing about the

presumption, one of the interviewed senior project managers emphasized the importance

of requirements risk management discussion and getting rid of self-evidences:

“We have to get rid of the idea that some things are self-evident. Those must
not be seen as self-evident.”

Interviewee, Project Manager

There was a substantial agreement among the interviewees that the tested method itself

did not bring anything completely new to the requirements risk management in agile soft-

ware project, but the checklists were seen as a useful tool for identifying possible require-

ments risks. In addition, the learning value and the information provided by the method

was described as “thought provoking” for both experienced and new project managers.

There was a nearly perfect agreement between the interviewees that the checklists could

be easily applicable to the workflow of those agile software projects they were currently

working in. The interviewed professionals described that they would use the method as

project management tool for identifying risk, but also as a medium of communication to

provoke discussion with the project team and the client participating to the requirements

work.

85

However, the interviewed professionals were not sure if the method would provide

enough support for planning the risk management actions in real situations. The inter-

viewees pointed out that the method itself did not provide complete and clear enough

suggestions for risk resolution actions. Thus, this one of the parts in method that would

still need development. The risk resolution pattern was received well among the inter-

viewees, but the list of linked requirements techniques for resolving each type of require-

ments risk got more critique. There was a moderate agreement among the interviewees

that the proposed risk resolution pattern was accurate, and all interviewees agreed that

identity risks are the ones that need to be resolved first. The interviewed professionals

who disagreed with the proposed risk resolution pattern presented that after resolving the

identity risks the next three requirements risk types cannot be put in order, the order would

need to be changed or that the order depends of some other project characteristics:

“I think the steps two, three and four... You cannot put them into just one
order. … Depending of the project, I would discuss with the stakeholder or
client which one we should resolve first.”

Interviewee, Project Manager and Technical Sales

Most of the interviewees could not provide opinions if using the method could improve

the project level decision-making and overall outputs, which was expected already when

designing the study. There was uncertainty in the answers as the actual impacts could not

be predicted, but the interviewed professionals presented that some improvement could

be possible. One opinion was that it could improve the overall requirements process, if

both the development team and customer would commit in using this method and review-

ing the risk reports before continuing to next project phase. Some interviewees also pre-

sented that identifying the requirements related risks earlier could have positive impact

on the overall project success. They based their arguments on the experiences from pre-

vious projects, and presented that identifying the risks and discussing of those both inter-

nally within the project team and externally with the customer often had positive impact

to the overall success. The same interviewees also had experiences that the customer had

improved their way of working based on the risk analysis feedback.

86

Overall, all of the nine interviewed professionals presented that they would like to use

some parts of the Continuous Requirements Risk Profiling method in future. There were

several suggestions how the method could be taken into use in the case company. Inter-

viewed industry professionals presented that the method should not be too strictly and

formally defined so that it could be tailored to fit as many projects as possible, but the

industry professionals hoped that more corresponding tools would be available for use:

“I would say that this all is very useful when thinking about our projects. …
We do have the knowledge, but it would be good to also concretize and main-
tain it.”

Interviewee, Project Manager

Still, there was conflicting opinions should risk analysis be compulsory or voluntary.

Around half of the interviewees thought that it could be determined in the quality manual

that projects need to do risk analysis. At the same time, other half of the interviewees

preferred that the use of risk analysis should be rather voluntarily than forced, depending

of each project’s individual situation. Several interviewees also suggested that when ap-

plying the method, the project team and customer could be involved in the risk manage-

ment and informed about the results. One of the suggestions was creating a small printable

leaflet of the method to make it always visible and accessible. This kind of approach could

fit also to the agile working practices of the projects, and would not add unnecessary

processes to project work. Another suggested agile approach to continuous requirements

risk profiling was “checklist without checks”:

“One thing that I like about checklists, is that they give you an idea what you
should be thinking about in requirements. The problem with the checklists is
though, that you are forced to fill them. So, I would skip that part of actually
filling in the checklists.”

Interviewee, Customer Representative

87

6.4 Proposing improved Continuous Requirements Risk Profiling method

Based on the results of this study, also an improved and tailored version of Continuous

Requirement Risk Profiling method was suggested for the use of the interviewed profes-

sionals working in case company. The improvements were based on industry profession-

als’ needs and were chosen among all suggestions applying following criteria:

1) Strong empirical justification: More than one of the interviewees request the

same improvement to the method.

2) Or empirical justification with theoretical justification: Evidence could be

found from the existing literature that the single observation is valid.

6.4.1 Tailoring method instructions to case company environment

Based on the interviewee results, the industry professionals were willing to adopt the

method, but did not want it to be too formally defined how the method should be used.

Thus, the instructions for conducting risk analysis with method were tailored to take into

account agile environment and the ways of working in case company. The tailored

method instructions are presented in table 23. The original method instructions according

to Tuunanen et al. (2016) were presented in table 13.

88

Table 23 Conducting risk analysis using the Continuous Requirements Risk Profiling
method and applying the risk resolution pattern adapted from Tuunanen et al. (2016)
tailored to case company context.

Step 1: Identify risks with checklists in each requirements, design and implementation
phase. If some of the phases are parallel or overlapping, merge the checklists.

Step 2: Assess project risk profile by considering individual requirements risk factors
possibly affecting the project. The indicative impact levels can be used as a guideline
for prioritizing requirements risks, but pay attention also to project characteristics that
might affect to the indicate impact levels.

Step 3: Intervene with Requirements Risk Resolution Techniques according to the
risk resolution pattern. Suggestions of some common requirements techniques are pre-
sented in the toolbox.

1. If identity risks are high, put high emphasis on discovery techniques.
2. If integrity risks are high, put high emphasis on prioritization techniques.
3. If volatility risks are high, put high emphasis on experimentation and specifica-

tion techniques.
4. If complexity risks are high, put high emphasis on specification and experimen-

tation techniques.

After resolving possible identity risks, it is suggested to consider if some of the follow-
ing risks (2 to 4) has significantly higher relative impact to the project. If so, apply the
pattern by resolving the highest risk first.

6.4.2 Additions and changes to checklist risk items

The interviewed professionals also suggested several additions to the method checklists.

As presented also in the previous chapters, majority of the interviewed professionals

stated that they were not familiar with the theoretical framework and the definition of

requirements risk. Thus, besides the main selection criteria, the suggestions were also

89

checked for correspondence to definition of the requirements risk by Wallace et al.

(2004). All of the suggested additions checklists are presented in table 24.

Table 24 Additions suggested to requirements risk checklists.

Legacy concerns not taken into account in requirements

Essential requirements not formulated or agreed before starting the project

Architect (or technical) support not available for requirements work

Lack of understanding of software project dynamics and process

Lack of context on requirements

Unmeasurable requirements

Requirements understood differently among project team and stakeholders

Changes in requirements not taken into account in budget and timelines

Lack of third party commitment and co-operation

Customer lacking resources for requirements work

Changes on the source of requirements

Unclear timelines

Project team members experience not taken into account in work estimates

Some of the suggested additions were not actual requirement risks, as they directly related

more to team dynamics or project management. The additions that belonged to the re-

quirements risk category were Legacy concerns not taken into account in requirements,

Architect support not available for requirements work, Lack of context on requirements,

Unmeasurable requirements, Lack of third-party commitment and co-operation and

Changes on the source of requirements. The interviewees were satisfied with the overall

design of the checklists, but some changes were requested to the vocabulary used in of

the checklists. The changes concerned some individual terms and the way in which some

risk items were positively and others negatively formed. The checklists with previous

additions and changes are presented below in tables 25, 26 and 27, added and changed

items highlighted with bold notation.

90

Table 25 Requirements phase checklist initially presented by Tuunanen et al. (2016) and
improved by feedback collected in this study, additions and changes bolded.

Risk Risk Type Project is/can be exposed?
Project Financing Unknown or Miss-
ing

Identity

No Access to Clients (Distance to
Original Source of Requirements)

Complexity

Ambiguous Requirements Identity
Architect or Other Technical Sup-
port Unavailable

Complexity

Change in Client’s Business Strategy
and Direction

Volatility

Change in External Regulations Volatility
Change in the Source of Require-
ments

Identity

Missing Client Commitment Identity
Constrained Users’ Knowledge Complexity
Fixed Budget and Timelines Integrity
Incorrect or Missing Stakeholders Identity
Lack of Context in Requirements Identity
Legacy concerns Integrity
Misunderstood Business Needs Identity
Underestimation of Change Magnitude Volatility
Unmeasurable Requirements Identity
Unrated Requirements Volatility
Any other risks that could affect design and implementation

Table 26 Design phase checklist initially presented by Tuunanen et al. (2016) and
improved by feedback collected in this study, additions and changes bolded.

Risk Risk Type Project is/can be exposed?
Ambiguous Requirements Identity
Change in External Regulations Volatility
Missing Client Commitment Identity
Conflict with External Regulations Identity
Conflicting Requirements Integrity

91

Risk Risk Type Project is/can be exposed?
Missing Requirements Identity
Unmet Customer Requirements (Una-
ble to Deliver What the Client Requires)

Identity

Emerging Requirements Dependency Volatility
Fixed Budget and Timelines Integrity
Knowledge Gap between Coworkers Complexity
Lack of Collaboration Complexity
Lack of Third-party Commitment
and Co-operation

Integrity

Legacy Concerns Integrity
Technology Changes Volatility
Underestimation of Change Magnitude Volatility
Unrated Requirements Volatility
Unmeasurable Requirements Identity
Any unresolved risks from requirements and risks that could affect implementation

Table 27 Implementation phase checklist initially presented by Tuunanen et al. (2016)
and improved by feedback collected in this study, additions and changes bolded.

Risk Risk Type Project is/can be exposed?
Ambiguous Requirements Identity
Change in External Regulations Volatility
Missing Client Commitment Identity
Fixed Budget and Timelines Integrity
Hostile Users Identity
Lack of third-party commitment and
co-operation

Integrity

Legacy Concerns Integrity
Project Team Member Changes Volatility
Underestimation of Change Magnitude Volatility
Unrated Requirements Volatility
Unmeasurable requirements Identity
Any unresolved risk items from design and requirements

92

6.4.3 Improvements to risk profiling table

Improvements suggested to risk profiling tables were related to both presentation and the

estimated relative impacts of each risk item. Different ways to present the information

with less duplication were introduced. The most often suggested were either splitting the

risk profiling table into three parts, corresponding to the checklists, or presenting the risk

profiling table in four parts, where the fourth table would present the risks affecting to all

phases. Some of the interviewees also suggested that the risks affecting to all phases most

probably did not have same impact on all phases, thus it was observed that there was

already less duplication as the impact depended of the phase. The changes suggested to

presented relative impacts of each risk item are listed in table 28.

Table 28 The changes suggested to presented relative impacts of risk items.

Risk item Original impact Suggested impact
Ambiguous requirements High (all) Medium (requirements,

design), High (implemen-
tation)

Constrained by user’s knowledge Low Medium
Fixed budget and timelines Medium High
Hostile users Medium Low
Knowledge gap between coworkers Medium High
Technology changes Low Medium
Underestimation of change magnitude Medium (all) Medium (requirements,

design), High (implemen-
tation)

The changes concerned the indicative impacts of risk items Ambiguous requirements,

Constrained by user’s knowledge, Fixed budget and timelines, Knowledge gap between

coworkers, Technology changes and Underestimation of change magnitude. The risk pro-

filing tables with following changes are presented below in table 29, added and changed

items highlighted with bold notation.

93

Table 29 Indicative risk impact levels initially presented by Tuunanen et al. (2016) and
improved by feedback collected in this study, additions and changes bolded.

Requirements
Phase Specific
Risks

Impact Design Phase
Specific Risks

Impact Implementation
Phase Specific
Risks

Impact

Incorrect or Missing
Stakeholders

High Missing require-
ments

High Hostile users Low

Misunderstood busi-
ness needs

High Knowledge gap
between cowork-
ers

High Lack of third-party
commitment and
co-operation

Medium

No access to clients High Unmet Customer
Requirements

High

Project Financing
Unknown or Missing

High Conflict with ex-
ternal regulations

Medium

Architect or Other
Technical Support
Unavailable

Medium Conflicting re-
quirements

Medium

Change in Client’s
Business Strategy
and Direction

Medium Emerging require-
ments depend-
ency

Medium Project Team
Member Changes

Medium

Constrained by us-
ers’ knowledge

Medium Lack of third-
party commitment
and co-operation

Medium

Lack of collabo-
ration

Medium

Technology
changes

Medium

Risks Affecting All Phases
Ambiguous require-
ments

Medium Ambiguous re-
quirements

Medium Ambiguous Re-
quirements

High

Fixed budget and
timelines

High Fixed budget and
time lines

High Fixed budget and
timelines

High

Missing client com-
mitment

High Missing client
commitment

High Missing client
commitment

High

Unrated require-
ments

High Unrated require-
ments

High Unrated require-
ments

High

Change in external
regulations

Medium Change in exter-
nal regulations

Medium Change in external
regulations

Medium

Legacy concerns Medium Legacy concerns Medium Legacy concerns Medium
Underestimation of
change magnitude

Medium Underestimation
of change magni-
tude

Medium Underestimation of
change magnitude

High

Unmeasurable re-
quirements

Medium Unmeasurable re-
quirements

Medium Unmeasurable re-
quirements

Medium

94

6.4.4 Introducing the tailored requirements technique toolbox

As Mathiassen and Tuunanen also suggested in their article “Managing Requirements

Risk in IT Projects” (2011), organizing a balanced toolbox that fits the organizations

needs is the final preparation step when starting the requirements risk management.

Based on the empirical data collected from the case company industry professionals, we

organized the initial toolbox from techniques that were already familiar and in use within

the company. The selection criterion for the techniques included in the toolbox was, that

at least one of the interviewees was previously familiar with the technique. The used

techniques were distributed quite evenly between categories. Table 30 presents the tai-

lored requirements techniques toolbox, modified from full listing which Tuunanen et al.

(2016) had originally adapted from Mathiassen et al. (2007). The original, full list by

Mathiassen et al. (2007) can be found as Appendix B of this study.

Table 30 Requirements risk resolution technique list and categorization, adapted from
Mathiassen et al. (2007: 594–596) and filtered based on the results to specify the most
well-known techniques among the interviewed professionals.

Name Specification Experimentation Discovery Prioritization

Brainstorming *

Card sorting * *

Contextual design * * *

Cooperative prototyping *

Defining critical success

factors
 * *

Data flow diagram *

Deriving requirements from

existing system
 *

Entity-relationship modeling *

Focus group *

Laddering Interviews *

Open interview *

Participatory design * *

95

Process analysis *

Prototyping *

Quality function deployment * *

Requirements prototyping *

Requirements workshops *

State charts *

Structured walkthroughs *

Testing * *

Use cases *

User group *

User-interface prototyping * *

96

7 DISCUSSION

In this study, a software project risk management tool Continuous Requirements Risk

Profiling method was examined, tested and improved employing the input and experience

of industry professionals working in agile software projects. The research answered two

research calls. First, the call by Tuunanen et al. (2015: 4026–4027) to assess the feasibility

of proposed Continuous Requirements Risk Profiling method in real life agile software

projects. Second, the request by Mathiassen et al. (2007: 583) to assess the usefulness of

presented requirements engineering techniques in different contexts and use cases, now

as a part of tested Continuous Requirements Risk Profiling method. The main research

questions for which this study sought answers were:

1. Does the developed continuous requirements risk profiling method fit the needs

of agile software development projects?

2. Would the developed continuous requirements risk profiling method help industry

professionals to identify such project characteristics that are seen as risks for the

project success?

3. How the continuous requirements risk profiling method should be improved, so

that the industry professionals would find it easy to use and useful in their every-

day work?

The answers for previous research questions were sought by conducting a case study and

collecting data with theme-centered interviews with professionals working in industry.

With each interviewee, the method was applied to one case project that the interviewee

could choose freely. The requirements for the project were that it used some kind of agile

methodology and the interviewee was participating in the requirements work in that spe-

cific project. The collected qualitative data was analyzed with thematic analysis, resulting

four main themes across the data set. The conducted study provided answers to all of the

previous research questions.

For the question if the developed Continuous Requirements Risk Profiling method fit the

needs of agile software development projects, the results of the study indicated that at

97

least in the case company tested method did fit the needs of agile software development

for identifying requirements related risks. Industry professionals found that the method

would fit well to the workflows of agile projects and most parts of the method were per-

ceived as easy to learn and use. Still after the ideology and values behind agile software

development approaches (Beck 1999, Beck et al. 2001, Poppendieck & Cusumano 2012),

the professionals did not want to adopt too heavy or rigorously defined methods.

When thinking about answers to the questions that would the developed continuous re-

quirements risk profiling method help industry professionals to identify such project char-

acteristics that are seen as risks for the project success, the answers were promising at

least in the case company context. The continuous requirements risk profiling method

helped the interviewed professionals to identify several project characteristics that they

agreed to be risks for the project success. The characteristics discussed in the method

proposed by Tuunanen et al. (2016) could have posed a serious threat for project success

if not mitigated and had often needed managerial intervention. On the other hand, some

of the characteristics method suggested as possible requirements risks were seen as inte-

gral and unavoidable part of software development (Brooks 1987, Ramesh et al. 2010)

that cannot be avoided at least in rapidly changing environments and agile software de-

velopment.

For the third question about how the continuous requirements risk profiling method

should be improved that the industry professionals would find it easy to use and useful in

their everyday work this study provided many proposals. Still, the answers to this ques-

tion are probably more opinionated and tied to the case company environment. One im-

proved and tailored version of the continuous requirements risk profiling method was

proposed as a part of this study. At least in the case company environment, the industry

professionals favored a less strictly defined version of the method that could be easily

adapted to different kind of projects and situations. This follows also the initial idea that

Mathiassen et al. (2007: 570) had when building the theoretical framework: the synthe-

tized theoretical framework should be simple, yet comprehensive enough to understand

the possible requirements development risks and techniques. The checklists were found

easy to use and useful for identifying the risks, and only some additions to risk items were

98

requested. The risk profiling table and requirements techniques listing needed still more

development, and the interviewed professionals requested changes both to the contents

and presentation. It seemed that for industry and agile software development context,

more simplified presentation would be preferred.

The main contributions to theory of this study were to provide validation for the existing

theory in practice, provide improvement proposals to the theory based method from prac-

tice and industry professionals, and provide a set of examples how industry professional

view and manage requirements related risk in agile software projects. The main contribu-

tion to practice was introducing the theory and method to industry professionals within

the case company, and providing an empirically validated and improved version of the

method to the use of professionals working in the case company. As a main limitation, it

should be noted that the study was conducted as an interpretive case study. Thus, the

results are related to the environment and organizational setting of the case company and

might not apply directly to other contexts or to all agile software projects.

99

8 CONCLUSIONS

The results of this study show that identifying and managing requirements risk is still an

important topic in the field of software engineering, and the industry professionals are

motivated to adopt new methods and knowledge to better understand and identify require-

ments risk. The theoretical background for such methods exists, but the theory and sug-

gested methods are not itself familiar for the professionals working in industry. The re-

sults show that managing requirements risk in industry is often driven mainly by previous

professional experience. However, also the interviewed professionals point out that this

can lead to incomplete interpretations of the risks and related phenomena.

Based on the results the tested Continuous Requirements Prioritization method was fea-

sible with small improvements for identifying requirements related risk in the agile soft-

ware development projects examined in case company. The interviewed professionals

working in industry found the method useful for detecting and prioritizing several kinds

of requirements management related risks, and the checklists provided by the method

contained a complete and accurate enough overview of possible requirement related risks.

The interviewed professionals found the model useful especially for less experienced pro-

ject managers. Still even the more experienced project managers found the model thought

provoking and a useful tool in the rapidly changing environment they were working in.

All of the interviewed industry professionals working in agile software development pro-

jects agreed that the presented model was feasible with the current working practices and

applicable to the workflow.

The interviewed professionals suggested improvements to the method regarding the used

vocabulary, additions to the checklists, changes to the presentation and indicative impact

levels presented in the risk profiling table. Also based on the results it was clear, that the

overall risk resolution suggestions should be designed more carefully to be beneficial for

the industry professionals working with agile software development. There was an agree-

ment between the interviewed professionals regarding most of the suggested improve-

ments.

100

For practice and professionals working in industry, it is expected that already providing

such methods and knowledge to industry professionals will already help project managers

to pay more attention to requirements related risks. The results suggest that the tested

method can provide support for identifying and prioritizing the risks on high level, but

the more precise prioritization and finding resolutions to the risks was seen to require also

practical experience and consideration of the project specific characteristics. The results

prove that the model could be taken into use in case company with previously presented

modifications, and the model would be feasible in majority of agile software projects run

in case company. Based on the observations made from the interview results, it was clear

that it would be beneficial to make everyone more aware of the available tools, and em-

bodying the existing knowledge into methods or “lessons learned” knowledge is viewed

valuable. The results suggested that in case of agile software projects, the learning value

professionals working in industry could get from the method was seen more important

than formally applying the method on defined intervals.

For researches, the results of this case study suggest that the overall results of the feasi-

bility of the method are expected to be positive. Improvements suggested to the presen-

tation, additions to checklists and further development of the resolutions are some sug-

gestions that could make the method easier to adopt by industry professionals. Evaluating

and testing of this improved model is suggested to make these findings more generaliza-

ble. The researchers can also notice from other similar studies that the needs of agile

software projects might be different, and most probably one model will not suit all pro-

jects and teams.

101

REFERENCES

Ahmad, M., Markkula J. & Ovio M. (2013). Kanban in software development: A

Systematic literature review. 2013 39th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA), Sept. 2013, pp. 9–16.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), pp.

70–77.

Beck, K. & Beedle, M. & Bennekum, A. & Cockburn, A. & Cunningham, W. & Fowler,

M. & Grenning, J. & Highsmith, J. & Hunt, A. & Jeffries, R. & Kern, J. & Marick,

B. & Martin, R. C. & Mellor, S. & Schwaber, K. & Sutherland, J. & Thomas, D.

(2001). Manifesto for Agile Software Development. [Web article]. Agile Alliance.

Available: http://Agiloemanifesto.org. Accessed August 14th, 2017.

Boehm, B. (1976). Software Engineering. Computers, IEEE Transactions on, C-25(12),

pp. 1226–1241.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative

Research in Psychology (3:2), pp. 77–101.

Brooks, F. P. (1987). No Silver Bullet Essence and Accidents of Software Engineering.

Computer, 20(4), pp. 10–19.

Cao, L. & Ramesh, B. (2007). Agile Software Development: Ad Hoc Practices or Sound

Principles? IT Pro, 9(2) March / April, pp. 41–47.

Chen, L. 2015. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software

(32:2), pp. 50–54.

102

DeLone W. H. & McLean E. R. (1992). Information System Success: The Quest for the

Dependent Variable. Information System Research 3:1, 60–95.

Ebert, C., G. Gallardo, J. Hernantes & N. Serrano (2016). DevOps. IEEE Software, 33(3),

pp. 94–100.

Ebert, C., P. Abrahamsson & N. Oza (2012). Lean Software Development. IEEE

Software, 29(5), pp. 22–25.

Fowler, M. (2006). Continuous Integration. [Web article]. Available:

http://martinfowler.com/articles/continuousIntegration.html. Accessed January

9th, 2017.

Hickey, A. M. & Davis, A. (2004). A Unified Model of Requirements Elicitation. Journal

of Management Information Systems, (20:4), pp. 65–84.

Hirsjärvi, S. & Hurme, H. (2000). Tutkimushaastattelu: Teemahaastattelun teoria ja

käytäntö. Helsinki: Helsinki University Press. ISBN: 951-570-458-8. 213 p.

Iversen, J. H., L. Mathiassen & P. A: Nielsen (2004). Managing Risk in Software Process

Improvement: An Action Research Approach. MIS Quarterly (28)3, pp. 395–433.

Kauppalehti (2017). Lääkesotkusta voi tulla Oriolalle pitkä lasku – päivittäin yli sata

hätätilausta. [Web article.] Alma Media. [Accessed January 20th, 2018.]

Available: https://www.kauppalehti.fi/uutiset/laakesotkusta-voi-tulla-oriolalle-

pitka-lasku--paivittain-yli-sata-hatatilausta/WdHMTi65?_ga=2.214112404.

287771892.1518954981-1966970483.1518954981.

Mathiassen, L., Saarinen, T., Tuunanen, T. & Rossi, M. (2007). A Contingency Model

for Requirements Development. Journal of Association of Information Systems,

(8:11) November, pp. 569–597.

103

Mathiassen, L., Saarinen, T., Tuunanen, T. & Rossi, M. (2008). Managing Requirements

Engineering Risks: an Analysis and Synthesis of the Literature. All Sprouts

Content. 82 p.

Mathiassen, L. & Tuunanen, T. (2011). Managing Requirements Risks in IT Projects. IT

Professional, 13(6), pp. 40–47.

Napier, N., Mathiassen, L. & Johnson, R.D (2009). Combining Perceptions and

Prescriptions in Requirements Engineering Process Assessment: An Industrial

Case Study. IEEE Transactions on Software Engineering, 35(5), pp. 593–606.

Persson, J. S., Mathiassen, L., Boeg, J., Madsen, T. S., & Steinson, F. (2009). Managing

risks in distributed software projects: an integrative framework. IEEE Transactions

on Engineering Management, (56: 3), pp. 508–532.

Poppendieck, M & Cusumano M. A. (2012). Lean Software Development: A Tutorial.

IEEE Software, 29(5), pp. 26–32.

Ramesh, B., L. Cao & R. Baskerville (2010). Agile requirements engineering practices

and challenges: An empirical study. Information Systems Journal, 20(5), pp. 449–

480.

Rinko-Gay, B. (2013). You May Be a Scrum-But. [Web article]. Scrum Alliance.

[Accessed 16.7.2017]. Available: https://www.scrumalliance.org/community/

articles/2013/february/you-may-be-a-scrum-but.

Saarinen, T., & Vepsäläinen, A. (1993). Managing the risks of information systems

implementation. European Journal of Information Systems, (2:4), pp 283–295.

Schwaber, K. & Sutherland, J. (2016). The Definitive Guide to Scrum: The Rules of the

Game. The Scrum Guide. [Web article]. Scrum Alliance. [Accessed 30.9.2017].

Available: https://www.scrumalliance.org/why-scrum/scrum-guide.

104

Tiwana, A. & Keil, M. (2004) The One Minute Risk Assessment Tool. Communications

of the ACM, (47) 11, pp. 73 –77.

Tuunanen, T. (2003). A New Perspective on Requirements elicitation methods. JITTA:

Journal of Information Technology Theory and Application, 5(3), pp. 45–62.

Tuunanen, T. & Kuo, I-T. (2015). The effect of culture on requirements: A value-based

view of prioritization. European Journal of Information Systems, 24(3), pp. 295–

313.

Tuunanen, T., T. Vartiainen, M. Ebrahim & M. Liang (2015). Continuous Requirements

Risk Profiling in Information Systems Development. 48th Hawaii International

Conference on System Sciences (HICSS), 2015, Jan. 2015, pp. 4019–4028.

Tuunanen T. (2016). Development of Requirements Risk Prioritization Method.

Unpublished journal article. 29 p.

Wallace, L., Keil M. & Rai A. (2004). Understanding Software Project Risk: A Cluster

Analysis. Information & Management 42, no. 1 (2004), pp. 115–125.

Walsham, G. (1995). Interpretive case studies in IS research: Nature and

method. European Journal of Information Systems, 4(2), pp. 74–81.

105

APPENDIX A

Interview themes and questions

Introduction
Introducing the interviewer and research topic. Describing the interview practices and
what is on the agenda: testing feasibility of the developed continuous requirements risk
profiling and prioritization method in a case project.
Q: The interview will take around one to maximum one and a half hours, is it still a
suitable schedule for you?
Q: Would you give your permission to record the interview for further analysis?
Q: Do you have any questions related to the interview practices?
Q: Please introduce yourself and tell little about your current role in this project

Next, the theoretical background is presented to the interviewee. When testing the inter-
view questions with a case company representative, it was noticed that presenting the
theoretical background for the interviewee would help to lead the conversation to right
direction. Introduced theory is the “Six dimensions of software project risk” by Wallace
et al. (2004), requirements risk categories and linking to resolution techniques first iden-
tified by Mathiassen et al. (2007) and later complemented by Tuunanen et al. (2015).
After that the idea of continuous requirements risk profiling and management presented
by Tuunanen et al. (2015) is discussed on higher level and the order of applying the
method will be presented to the interviewee. After that it is discussed how the testing is
going to be done in the case project based on the interview agenda and what kind of
answers are expected in each part.

Introduction to the case project requirements
Requesting general introduction of the case project and its high-level user stories/use
cases/requirements.
Q: Which user group(s) needs user stories/use cases/features are related?
Q: Which project stakeholder’s work or operations are affected by the implementation of
these user stories/use cases/features?
Q: Depending of the project size, do you want to test the model by assessing the whole
project or certain one or two user stories/use cases/features from it?

106

Theme 1: Introducing the interviewee and the case project user stories/use cases/require-
ments

Requesting general introduction of the case project and its high-level user stories/use
cases/requirements.
Q: Which user group(s) needs user stories/use cases/requirements are related?
Q: Which project stakeholders’ work or operations are affected by the implementation of
these user stories/use cases/requirements?
Q: Depending of the project size, do you want to test the model by assessing the whole
project or certain one or two user stories/use cases/features from it?

Presented interview structure was:
Identifying the risks

Requirements phase checklist
 Design phase checklist
 Implementation phase checklist
Assessing the risk profile
 Project risk profiling table
Prioritizing the risks and reviewing presented risk resolution patterns
 Risk resolution patterns
Reviewing the suggested risk resolution techniques
 Risk resolution techniques
Common wrap-up about applying the method

4.4. Theme 2: Assessing and prioritizing case project risk profile using the method

Identifying the risks
Each project phase (requirements, design and implementation) has its own checklist,
which takes into account the impact of the risk driver in specific project phase.
Please go through each row from relevant checklists and assess does the presented risk
driver actualize in the case project. Answer with one of following options: Yes / No /
Cannot estimate / Not relevant (Why?)

107

Q: Do the method checklists seem complete?
Q: Is the presentation accurate enough or would something need further explanation?

Assessing the risk profile
Next, we are going to assess project risk profile using the provided risk profiling tables,
which prioritize the risks based on their impact and category.
Q: Is the presented risk profile reasonable for the examined project?
Q: Is the presentation of the risk profile easy to use and compatible to the reporting and
current risk management practices in your project?
Q: Are the method presented in language that is familiar to you or is there some terms
that you would not use yourself?

Prioritizing the risks and reviewing presented risk resolution patterns

Based on the project risk profile, we are next going to use risk resolution pattern table to
assess which risks should be mitigated first.
Q: Do you think that the risk levels of different type of requirements in suggested resolu-
tion patterns are accurate (the resolution pattern order)?
Q: Do you think that the decision made based on the suggested resolution pattern would
be correct and work in your project?

Reviewing the suggested risk resolution techniques
First asking own insights from the interviewee and then going through the risk resolution
techniques provided for each type of risk.
Q: What kind of resolution techniques you would apply to the risks based on your own
expertise?
Q: Introducing the risk resolution techniques table: are these techniques familiar to you?
Q: How many of the presented techniques you have used?
Q: Taking into account the project phase and used developed methodology, do you think
that applying the suggested techniques would be possible?

Common discussion about applying the method
Q: Do you find the method easy to learn and use?
Q: Does this method provide you such information that is complete, accurate and useful
in project decision making and in your everyday work?

108

Theme 3: Completeness, accuracy and understandability of the results

Q: Do you think that risks that can be identified with the method are meaningful when
thinking about overall project success?
Q: Have you identified corresponding risks earlier with your current risk management
practices?
Q: Did the model bring up some new requirements risks that have not been identified with
current risk management practices?
Q: Have you identified some other requirements risks in your project, which were not
taken into account by the method?

Theme 4: Method feasibility to project use and usefulness of the results

Q: Do you think the method would be easily applicable to your current project?
Q: Could you plan needed requirements risk management actions by using the method?
Q: Would you estimate that using the method would improve the overall outputs or deci-
sion-making of requirements process?
Q: Would you estimate that using the method would have positive impact to your project
team’s productivity and/or overall project success?
Q: Do you think you are going to use the presented method in your project in future? If
not, why?

Summary and ending

Q: Do you still have some thoughts or ideas you would like to share or discuss about?
Q: Would you have any additional feedback of the model or greetings to the research
team?

109

APPENDIX B

Requirements resolution technique listing and categorization presented in the initial Con-
tinuous Requirements Risk Prioritization

Table 31 The initial requirements risk resolution techniques list and categorization
adapted from Mathiassen et al. (2007: 594–596) by Tuunanen et al. (2016).

Name Specification Experimentation Discovery Prioritization

Affinity technique *

Aspect mining in re-
quirements specifi-
cation

 *

Attributed goal-ori-
ented analysis

* *

Behavior analysis * *

Box structure speci-
fication and design

*

Brainstorming *

Business infor-
mation analysis and
integration tech-
nique

* *

Business process
planning (BSP)

* * *

Card sorting * *

Cognitive mapping *

Contextual design * * *

Cooperative proto-
typing

 *

CREV * *

CREWS * *

110

Critical success fac-
tors

 * *

Data flow diagram *

Decision analysis *

Delphi method * *

Deriving require-
ments from existing
system

 *

Domain specific
modeling

*

EasyWinWin * *

Email/bulletin board *

Ends/means analysis *

Entity-relationship
modeling

*

Facilitated team *

Focus group *

Future analysis *

Goal modeling ori-
ented requirements
elicitation

* *

Goal oriented ap-
proach

* *

Group support sys-
tems and strategic
business objectives

 * *

Guided brainstorm-
ing

 *

Human, social and
organizational re-
quirements elicita-
tion

 *

111

Inquiry cycle model
– structure and de-
scribe requirements
discussions

* *

Joint application de-
sign

 * *

KAOS *

Laddering *

Lyee *

Machine rule induc-
tion

*

Marketing and sales *

MIS intermediary * *

Multidimensional
data models

*

Multidimensional
scaling

*

Nominal group tech-
nique

 * *

Normative analysis *

Object oriented Z *

Open interview *

Open systems task
analysis

 *

Participatory design * *

Petri nets *

Petri nets combined
with use cases

* *

Precision model *

Prime-CREWS * *

112

Process analysis *

Protocol analysis *

Prototyping *

Quality function de-
ployment

* *

Repertoire grids *

Requirements gener-
ation model

 *

Requirements proto-
typing

 *

Requirements work-
shops

 *

Rich pictures * *

Scenario-based re-
quirements elicita-
tion

* *

Semantic maps *

Socio-technical
analysis

 *

State charts *

Strategic business
objectives

 * *

Strategy set analysis *

Structured group
elicitation method

 *

Structured interview *

Structured
walkthroughs

 *

Support line *

Surveys *

113

Teach-back inter-
view

 *

Testing * *

Text analysis *

Trade show * *

Usability lab *

Use cases *

Use of video in re-
quirements elicita-
tion

 *

User group *

User-interface proto-
typing

 * *

Variance analysis *

VDM ++,VDM-SL *

Warnier-Orr dia-
grams

*

Z *

