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It is shown that with proper values of the effective charge, the hydrogen-like (HL)
wave functions are almost as good as the more sophisticated Hatree–Fock (HF) wave
functions in calculations of the double-differential cross section of Compton scat-
tering within the nonrelativistic impulse approximation (IA). Only a single value
of the optimized effective charge for a given subshell of an atom is required for an
accurate description of Compton spectra in a wide range of experimental conditions
under which IA is a good approximation. That is demonstrated by results obtained
for the K-shell of several atoms and for higher subshells in germanium. It has been
found that a constant value of the optimal effective charge can be used as a criterion
for the validity of IA, which is explained within the existing knowledge of IA. Sim-
ple analytical expressions for HL-Compton profiles have a compact form and are
a much faster way to calculate the cross sections than using extensive tabulations
of HF Compton profiles. These features can be useful in very extensive numerical
calculations of Compton scattering in radiation physics, biomedicine, industry and
in other practical applications.

PACS numbers: 32.80.Cy UDC 539.122

Keywords: photon scattering, Compton profile, impulse approximation, effective charge

1. Introduction

In his article in 1929, DuMond [1] explained spectrum of Compton scattered
photons by bound electrons. He intuitively assumed that electrons are free and
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connected their momentum distribution given by their initial state with the broad-
ening of the Compton line. That connection, later called the impulse approximation
(IA), has made the Compton scattering a valuable tool in studies of electron struc-
tures in atoms, molecules and solids. The double-differential cross section in the
non-relativistic IA may be written as follows [2]

d2σnl

dEdΩ
= r2

0

(

1 + cos2 ϑ
) E

E0

m0

h̄k
Jnl(q), (1)

where r0 is the classical electron radius, ϑ is the scattering angle, E0 and E are the
energies of the incident and scattered photon, m0 is the electron rest mass and h̄k
is the photon momentum transfer. J(q) is the Compton profile defined by

Jnl(q) =

∫ ∫

dpxdpyρ(~p), (2)

where ~p is the momentum of bound electrons in a given (n, l) subshell, ρ(~p) is

electron distribution given by ρ(~p) = |Φnl(~p)|
2
, where Φnl(~p) is obtained by the

Fourier transform of the spatial wave function of the bound electron Ψnlm(r, θ, ϕ) =

Rnl(r)Y
m
l (θ, ϕ) and q = −~k · ~p/p is the projection of the electron momentum in

the direction of the photon momentum transfer h̄~k (taken as z direction).

After DuMond’s discovery, neither rigorous theoretical justification nor limits of
validity of the IA were known for a long time. In 1970, Eisenberger and Platzman
[2] derived the IA from first principles, justifying DuMond’s assumptions. They
also gave a criterion of its validity,

ER/EB ≫ 1, where ER =
h̄2k2

2m0

(3)

is the kinetic energy of the recoil electron and EB the electron binding energy.
Later, some authors [3–5] have expressed the validity of IA in terms of the photon
momentum transfer via dimensionless parameter ka as ka ≫ 1, where a is the Bohr
radius of the orbital of the scattered electron. These two criteria are similar within
the hydrogenic model of atom, since the parameters ER/EB and ka are connected
via the relation

ER

EB

= (ka)
2

(4)

obtained using EB = Ze2/(2a) and Ze2 = h̄2/(am0).

Many authors (Refs. [3–6] and references therein) experimentally checked the
IA in the so-called intermediate momentum transfer regime where ka ≈ 1. Sur-
prisingly, they found reasonable agreement between the IA and experimental data.
These results motivated Surić [7] to revise the criterion for the validity of the IA.
Taking into account some qualitative arguments and comparing calculations of the
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relativistic IA with the exact (within the independent particle model) S-matrix
calculation (Surić et al. [8], Bergstrom et al. [9]), he found that IA was good when

pav

k
≤ 1, (5)

where pav =
√

〈p2
x〉 +

〈

p2
y

〉

+ q2,
〈

p2
x

〉

,
〈

p2
y

〉

are expectation values of squares of

electron momenta in the x and y directions, respectively, and q is given by the
relativistic expression

q =
(E0 − E)m0c

2 − E0E(1 − cos ϑ)

h̄ck
. (6)

Kaliman et al. [10] have made a comparison of the relativistic IA with the S-matrix
calculations and have shown that IA expressed by the triple differential cross section
(additional differential with respect to outgoing-electron angle), which is directly
proportional to the electron momentum distribution ρ(~p), is less accurate and in
that case the criterion (4) takes a more strong form, pav/k ≪ 1. Hence, when
the cross section is proportional only to Compton profile, which is averaging of
the electron momentum distribution over two dimensions, as in double-differential
cross section, IA is much more accurate.

Most calculations of Compton scattering in radiation physics, technological and
biomedical fields (Ref. [11] and references therein) and in studies of the detec-
tor response function [12,13] are based on modelling the electron–photon transport
through matter. These applications demand both reliable and very high-speed com-
putations of Compton scattering. Thus, until recently, only Klein–Nishina formula
for Compton scattering on free electron at rest, and perhaps the incoherent scatter-
ing function, have been used in such computations. Compared to the simple Klein–
Nishina analytical expression, IA is relatively inefficient and impractical even in
its simplest form based on extensive tabulation of Compton profiles calculated by
Hartree–Fock (HF) wave functions (Biggs et al. [14]). However, permanent growth
of the computing power of personal computers has allowed the inclusion of IA in
some sophisticated transport codes [15,16]. Nevertheless, many problems with com-
plicated geometry, especially those involving multiple scattering, are hardly or not
at all treated using the IA at present. Therefore, any simplification of IA would
be helpful in accessing details of Compton scattering caused by the momentum
distribution of bound electrons in numerically extensive applications.

Recently, Pašić and Ilakovac [17–20] have utilized the coincidence technique for
the whole-atom Compton-scattering measurement using a germanium detector as
the scatterer. This new type of experiment gave very clean and reliable results
on Compton spectra on an absolute scale in a wide energy range. The agreement
between the non-relativistic IA and data obtained for values of the incident-photon
energies of 59.5, 86.3 and 105.3 keV, was excellent if relativistic value for q defined
by Eq. (6) was taken and Hartree–Fock wave functions were used. Application of
hydrogen-like (HL) wave functions gave worse results. As shown in Ref. [20], at the
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incident energy of 105 keV, IA using the HL wave functions agreed approximately
as well with the experiment as IA with the HF wave functions, if adjusted values
for the effective charges were used. To check the validity of the method, we apply
the procedure for estimating the optimal values of the effective charge for variable
incident photon energy E0 and scattering angle ϑ, and for subshells of atoms from
hydrogen to kripton (Z = 36) (for these atoms relativistic effects in the Compton
profile can be neglected [14]). The aim is to investigate whether the simplification of
the calculation of the Compton profiles, i.e. the calculation of the double-differential
cross section within the IA, is possible by replacing relatively complicated HF with
simple HL wave functions without loss of accuracy. Previously, Ribberfors [21]
made a simplification of the calculation of the total Compton cross section, while
Ribberfors and Berggren [22] made a simplification of the calculation of the cross
section differential in scattering angle. A result of this investigation is the constancy
of the effective charge with respect to the values of parameters ka and ER/EB for
which the IA is a good approximation. An explanation of that result is given within
the theory of the IA by Eisenberger and Platzman [2].

2. Procedure

The optimal value of the effective charge (Zeff) is derived from a comparison of
the double-differential cross sections d2σ/dEdΩ for fixed values of E0 and angle ϑ,
calculated using the IA (Eq. (1)) with the HF and HL wave functions. These cross
sections are only functions of the energy of scattered photons E. The first step is
the calculation of the double-differential cross section d2σHF/dEdΩ using IA with
HF wave functions for a fixed pair of values (E0, ϑ). The low (E1) and high (E2)
energy limit of the data which will be considered is estimated from the conditions
d2σHF(E1,2)/dEdΩ = ε · d2σmax

HF
/dEdΩ, where ε is an arbitrary number less than

0.1, and d2σmax

HF
/dEdΩ is the maximum value of the cross section for the chosen

pair of values (E0, ϑ). If the value of the cross section is higher than the one at the
kinematic limit E0 − EB, then E2 = E0 − EB.

The second step is fitting of the data set with the cross section function
d2σHL(Zeff , E)/dEdΩ, obtained using the IA with HL wave function, and taking
the effective charge as a free parameter. In other words, the optimal value of the
effective charge is the value for which the function

F (Zeff) =

N
∑

i=1

[

d2σHL(Zeff , Ei)

dEdΩ
−

d2σHF(Ei)

dEdΩ

]2

(7)

has a minimum. Ei = E1 +(i−1) (E2−E1)/(N −1) and N is the number of points
of the fit.

The presented procedure yields useful results if the function F is only a function
of Zeff , for given E0 and ϑ, but not a function of N , and ε. The calculation shows
that the results for Zeff are independent of ε when ε ≤ 0.1, and on N when N ≥ 10.
The calculations presented below were made with ε = 5 · 10−3 and N = 100.
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Redefinitions of the function F (Zeff), like using the differential cross section for the
statistical weight (instead of 1 as used in Eq. (7)) have a small influence on the
results.

3. Results

We show the key features of the results obtained by the calculations made
for the K-shell electrons of 7N, 14Si, 22Ti, 29Cu, 32Ge and 36Kr and for the 2s,
2p, 3s, 3p, 3d and 4s subshells of Ge. The optimal values of Zeff are shown as a
function of incident photon energy E0 and cos ϑ in Fig. 1 for the Si, Cu, Ge and

Fig. 1. Optimal values of Zeff obtained for K-shells of Si, Cu, Ge and Kr shown as
a function of incident photon energy E0 and ϑ. For every plot, about 1000 to 5000
data sets were fitted.

Kr K-shell, as a function of the photon momentum transfer expressed as ka in
Fig. 2, in which the results for N and Ti K-shell are included, and versus ER/EB
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Fig. 2. Optimal values of Zeff shown in Fig. 1, including the results for N and Ti
K-shells, shown as a function of ka. A value of ka corresponds to many different
pairs (E0, ϑ) in the 3D plot.

Fig. 3. Dependence of optimal values Zeff for the 2s to 4s subshells of Ge atom on
ER/EB.
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pašić: a simple and efficient yet accurate calculation of . . .

for higher subshells of Ge atom in Fig. 3, where experimental values for EB are
taken. The validity of the IA is usually expressed via these parameters and that is
the reason for their choice. The parameters are mutually related through Eq. (4)

and k =
√

E2
0

+ Ē2 − 2E0Ē cos ϑ (Ē is the average energy of scattered photon of a
particular data set). The presentation of the results via different parameters reveals
some details.

The results in Figs. 1 – 3 can be divided into tree regions:

1) the large photon momentum transfer, when ka ≫ 1 and ER/EB ≫ 1;

2) the intermediate photon momentum transfer, when ka ≈ 1 and ER/EB ≈ 1;

3) the small photon momentum transfer, when ka ≪ 1 and ER/EB ≪ 1.

One can clearly see that for large photon momentum transfers, the effective
charge is very nearly a constant. These values are shown in Table 1. For the inter-
mediate photon momentum transfers, variations of optimal values of Zeff are seen,
but they are not large, so that Zeff can roughly be considered a constant. For small
photon momentum transfers, the effective charge shows large deviations from the
constant value, which grow as the photon momentum transfer is decreased. The
criteria for the IA validity in the Introduction give a similar behaviour of the IA: it
is a very good approximation in the momentum transfer region (1), can be accepted
in the region (2), breakes down in the region (3). Therefore, the validity of the IA
can be expressed via the constancy of the effective charge: the application of IA
for Compton scattering is valid in a range of input parameters (E0, ϑ) as long as
the effective charge is a constant in that range.

TABLE 1. Constant values of the optimized effective charge obtained for the K-
shells of several elements and for higher subshels of Ge.

K-shell

Element N Si Ti Cu Ge Kr

Zeff 6.55 13.43 21.36 28.31 31.38 35.18

Germanium atoms

Subshell 2s 2p 3s 3p 3d 4s

Zeff 27.23 26.68 18.36 17.98 14.39 6.92

Figure 4 demonstrates several examples of comparison of d2σHF(E)/dEdΩ and
d2σHL(Zeff , E)/dEdΩ using the constant values of Zeff given in Table 1. Compari-
son of many spectra for different subshells of elements at different scattering angles
and incident energies (not shown in the present paper) has shown that the agree-
ment between IA using the HF and HL wave functions is best for the s subshells,
while it gets worse for small values of the cross section and larger values of angular
momentum of the subshells. The agreement is very good in all cases where the cross
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Fig. 4. Values of the double-differential cross section d2σ/dEdΩ calculated using
IA with HF-wave functions (open circles) and with HL wave functions (solid line)
using the values of Zeff from Table 1 for the K-shells of Si, Cu, Kr and Ge, and for
the 2s, 2p and 3d subshells of Ge at several incident energies and scattering angle
ϑ = 180◦.

section can not be neglected, i.e. in the broad vicinity of the Compton peak, if the
peak is kinematically allowed in the spectrum. That region of a spectrum is most
important in practical application, especially for the calculations of whole-atom
Compton scattering. Therefore, presented results lead to the following conclusion:
HL wave functions are almost as good as HF wave functions in the description of
Compton scattering when conditions for the application of IA are fulfilled. However,
the optimal values of Zeff obtained in the procedure do not make the HL wave
functions the same or close to the HF wave functions. It means that these wave
functions are not suitable for other physical situations. For instance, unlike the HF
wave functions, the prediction of the binding energy in the hydrogen model atom
using the values of Zeff is not realistic except perhaps for the K-shell. What we
actually obtained is that values of the HF and HL wave functions averaged over
large values of the electron momentum are close to each other and they are closer
as the region of the averaging is larger. That can be seen from the definition of the
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Compton profile for spherically symmetric wave functions given by

Jnl(q) = 2π

∞
∫

q

p |χnl(p)|
2
dp, (8)

where small values of q represent the energy region of large values of the spectrum,
i.e. the vicinity of the Compton peak, which is given by Jnl(q = 0). (In Eq. (8),
χnl(p) is the Fourier transform of the radial wave function Rnl(r)).

IA with the HL wave functions using optimized values of the Zeff is the sim-
plest yet very realistic description of the double-differential Compton cross section
in conditions of validity of IA. In comparison to the tabulated values of Compton
profiles using the HF wave functions by Biggs et al. [14], the calculation of hydro-
genic Compton profiles is more convenient for several reasons. A complete table of
optimized values of Zeff would be less than a fortieth of the size of the tables of HF-
Compton profiles. Moreover, they give results for a broader range of values of q than
the tabulated values. Finally, numerical calculations of a HL profile, i.e. the HL
double-differential cross section within the IA, are considerable faster. Namely, an
accurate estimation of the cross section using tabulated values of the HF-Compton
profiles in the whole range of tabulated q values requires an application of the
cubic spline interpolation or another accurate interpolation scheme in the log-log
scale. On the other hand, HL-Compton profiles use simple analytical expressions

[23]. For instance, the profile for K-electrons is given by 1/
[

3
(

1 + (ηq)2
)3]

, where
η = 137/Zeff , which is considerable faster to calculate than any accurate interpo-
lation scheme of the tabulated data. However, the efficiency of the calculations of
HL-Compton profiles for higher shells decreases, unlike the interpolation scheme of
tabulated data. Altogether, the benefit is still considerable. For example, without
a loss of accuracy, we accelerate the calculation of double Compton scattering in
germanium by about the factor of three when using the IA with HL wave functions
and new values of the effective charge, instead of the cubic spline interpolation of
HF-Compton profile data. Therefore, the new scheme can be very useful in applica-
tions of the IA with HL wave functions for practical and numerically very extensive
calculations of single and multiple Compton scattering, which require enormous
number evaluations of the cross sections. These applications are important in ra-
diation physics, medicine, studies of environment, diagnostics, radiation detector
investigations, engineering, etc.

We consider now the constancy of optimal values Zeff with respect to the pa-
rameters ka, ER/EB, when IA is valid. But first, we give a short review of IA
following Eisenberger and Platzman paper [2].

In the regime of the validity of IA, the photon energy transfer ω = E0 − E is
large compared to the energy characteristics of an electron in an atom. That results
in a very short time of the photon-electron interaction, t ≈ h̄/ω, which causes that
the electron feels the same potential immediately before and after the interaction.
In this way, the potential a constant, which is canceled in the energy conservation
equation, i.e. the electron energies in the initial and final state are measured relative
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to that constant potential. The connection between the relatively large ω and the
cancellation of the potential of the atomic electron is expressed by the operator
equation [2]

exp

(

−
1

2
[H0, V ] t2

)

= 1, (9)

where H0 is Hamiltonian operator of a free electron and V the atomic potential of
the electron.

The double-differential Compton cross section in IA is only given by the state
of the electron in the atom before its interaction with the photon. The initial
state of the electron is represented by the HL or HF wave functions depending
on the assumption of the atomic potential V . HL wave functions are determined
by V = Zeffe2/r, where the Zeff incorporates interactions of the electron with the
nucleus and other electrons in the atom, assuming averaged Coulomb interaction.
A single value of the effective charge determines the initial electron state for a
given subshell. There are several ways to determine that value. We did it by the
requirement that differences between HL and HF Compton profiles are minimal.

The parameters ka, ER/EB and pav/k are in fact a ratio of the kinematic
quantity k and one of structure factors (1/a,EB, pav) (see Eq. (3)). When these
parameters express the validity of IA, each of them tells the same: the photon
energy transfer ω is large compared to an energy characteristic of the electron in
the atom, which is represented by a structure factor for a particular parameter (ω
and k are proportional which follows from ω = ER and Eq. (3)). That means a
short time of the photon–electron interaction, which leads to cancellation of the
potential of the electron. Therefore, the description of the Compton scattering by a
single value of Zeff for a subshell within the IA is possible, i.e., Zeff is independent
of the values of the parameters.

4. Conclusions

Values of the parameters ka, ER/EB and pav/k for which IA is good charac-
terise the experimental conditions of very short photon–electron interaction in the
Compton scattering. That physical situation leads to the cancellation of the elec-
tron potential in the calculation of the cross sections. Then, the double-differential
Compton cross section is determined only by the initial state of the electron. As-
suming the screened Coulomb potential, it is given by a single value of the effective
charge for a given subbshell of an atom. Our procedure shows that the double-
differential cross section can be equally well described by the HL and HF Compton
profiles in the regime of validity of IA using one value for the effective charge. In
other words, the description of the electron atomic states by HL-wave functions is
good for the purpose of the calculation of a spectrum of Compton scattered pho-
tons within the IA. Calculations of HL-Compton profiles using the new scheme for
arbitrary values of input parameters are easier and faster than the calculations of
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HF-Compton profiles using tabulated values of Biggs et al. [14]. That can be useful
in practical applications, which require a large number of calculations of the cross
section.
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JEDNOSTAVNO I UČINKOVITO A IPAK TOČNO RAČUNANJE
DVOSTRUKIH DIFERENCIJALNIH COMPTONOVIH UDARNIH PRESJEKA

U IMPULSNOJ APROKSIMACIJI

Pokazuje se kako se s odred–enim vrijednostima efektivnog naboja i vodikovih (H)
valnih funkcija postižu dvostruko-diferencijalni presjeci za Comptonovo raspršenje
u nerelativističkoj impulsnoj aproksimaciji (IA) koji su gotovo jednako dobri kao s
profinjenim Hartree-Fockovim (HF) valnim funkcijama. Potrebna je samo jedna po-
voljna vrijednost efektivnog naboja za danu podljusku za točan opis Comptonovih
spektara u širokom području eksperimentalnih uvjeta za koje vrijedi IA. To se
prikazuje rezultatima za K-ljuske vǐse atoma i za vǐse podljuske germanija. Rezul-
tati pokazuju da se stalnost povoljnog efektivnog naboja može uzeti kao uvjet
punovažnosti IA, što se obrazlaže na osnovi poznavanja IA. Jednostavni analitički
izrazi za H-Comptonove profile su sažeti i brži su način računanja udarnih presjeka
nego upotreba velikih tablica za HF-Comptonove profile u tablicama F. Biggsa i
dr., a dobivaju se pouzdani rezultati. Te su odlike pogodne u opsežnim numeričkim
računima Comptonovog raspršenja.
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