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We show that the quantum mechanical interpretation of the diffraction of light
on a slit, when a wave function is assigned to a photon, can be used for a direct
experimental study of Heisenberg’s position-momentum and equivalent position-
wave vector uncertainty relation for the photon. Results of an experimental test
of the position-wave vector uncertainty relation, where the wavelength is used as
the input parameter, are given and they very well confirm our approach. The
same experimental results can also be used for a test of the position-momentum
uncertainty relation when the momentum p0 of a photon is known as the input
parameter. We show that a measurement of p0, independent of the knowledge of
the value of the Planck’s constant, is possible. Using that value of p0, a test of
the position-momentum uncertainty relation could be regarded as a method for a
direct measurement of the Planck’s constant. This is discussed, since the diffraction
pattern is also well described by classical electrodynamics in the considered experi-
mental conditions. This approach for testing the Heisenberg’s uncertainty relations
is very simple and consequently suitable as a quantitative exercise in undergradu-
ate experimental courses, as well as a visual and attractive demonstration of the
Heisenberg’s uncertainty principle in courses of quantum mechanics.

PACS numbers: 01.50.Pa, 03.65.-w UDC 530.145, 535.14
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1. Introduction

Diffraction of light due to sources of conventional strength is well described by
classical electrodynamics. In 1909, four years after the concept of photon was in-
troduced, Taylor [1] showed that the diffraction pattern produced by an extremely
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feeble light and using very long exposure has the same structure as the pattern
produced by light of a strong intensity. In such type of experiments, modern de-
tectors at the screen can reveal the discrete nature of the diffraction pattern. From
the standpoint of quantum mechanics [2], it is a process in which one photon inter-
feres (diffracts) with itself. A large number of such events accumulated on a screen
results in the diffraction pattern, which can be observed on a macroscopic scale.

In 1927, Davisson and Germer [3], and independently Thomson [4], were first
to observe the diffraction of electrons. While for the explanation of diffraction of
feeble light, the concept of photon (the particle of the light) was necessary, an
explanation of the electron diffraction required introducing of wave properties for
the electron. In that manner, a basic explanation for the diffraction of electrons
became the same as that of the photon. Also, the diffraction became a common
point of classical wave and particle concept, which unified them into the object
known as a quantum particle. As long as we believe in the wave-particle duality
of the matter, we should believe that the diffraction is a common feature of all
quantum particles.

In well established courses of quantum mechanics (like Feynman’s [5], Messiah’s
[6] and Shiff’s [7]), the diffraction of a quantum particle on a slit has been exploited
for the purpose of a qualitative demonstration of the position-momentum uncer-
tainty relation [8] given by

∆x∆px ≥ h̄/2 , (1)

where ∆x is the uncertainty of the position and ∆px is the uncertainty of the mo-
mentum of the quantum particle in the direction of x-axis (the uncertainties in
relation (1) are defined as root-mean-square deviations of x and px) from their av-
erage values. These are descriptions of basic experiments (idealized experiments),
which are difficult to realize in the in reality. It seems that for many undergradu-
ates, the lack of basic experiments and indirect proofs of the position-momentum
uncertainty relation are not a sufficient for its complete understanding. Thus, some
authors, in their courses of quantum mechanics [9,10], point out at several common
misleading or erroneous statements regarding the position-momentum uncertainty
relation (1). Our opinion is that one of origins of these misunderstandings is a
lack of demonstration and quantitative laboratory exercise about this uncertainty
relation in undergraduate study. Namely, without a suitable, simple and direct
quantitative experiment, an average undergraduate can hardly obtain a complete
feeling about the limitation in simultaneous precise determination of the position
and momentum of a quantum particle as uncertainty relation (1) imposes. The aim
of the present paper is to present and to establish a good demonstration of the
uncertainty relations.

In the following section, we give a simple quantitative description of diffraction
of a photon by assigning to it a wave function with the ordinary meaning as it has
in quantum mechanics. Then, we quantitatively apply formalisms of diffraction of
a wave function well known in quantum mechanics. Our treatment of the photon
is not in the framework of the quantum electrodynamics [11], in which it is hard
to consider the position and momentum of a photon in ordinary fashion as in

74 FIZIKA A (Zagreb) 15 (2006) 2, 73–84
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quantum mechanics of a single particle [12]. For our treatment of the photon, we
find a motivation and justification in the following classic Dirac’s text on quantum
mechanics [2]: “If we are given a beam of roughly monochromatic light, then we
know something about the location and momentum of the associated photons. We
know that each of them is located somewhere in the region of the space through
which the beam is passing and has a momentum in the direction of the beam of
magnitude given in terms of the frequency of the beam by Einstein’s photo-electric
law – momentum equals frequency multiplied by a universal constant.”

From the theoretical treatment that we present in this work follows that a very
simple experimental set up, as that used for the diffraction of the light, provides
a direct quantitative check of the position-momentum and, from the standpoint of
wave–particle duality, the equivalent position–wave vector Heisenberg uncertainty
relation for visible photon. The latter uncertainty relation is given by

∆x∆kx = 1/2 , (2)

where ∆kx is the uncertainty of the wave vector of a photon in the direction of the
x-axis defined by ∆kx = ∆px/h̄. The presented approach is technically very similar
to the mentioned idealized experiments from literature and to recently performed
Heisenberg’s uncertainty experiments using particles with mass (see Ref. [13] and
references therein). However, there is an essential difference: it is an extremely
simple one and, therefore, very suitable in education of physics at the university
level and even in advanced high-school classes.

2. Diffraction of photons

The experimental setup, which we used for the quantitative study of Heisen-
berg’s uncertainty relations for the photon, consists of a laser as a source of visible
photons, an adjustable slit, a simple screen of white paper or white wall and a sim-
ple meter rule, as is schematically shown in Fig. 1. For measuring the slit opening,
an optical micrometer, or pieces of steel with calibrated width or micrometer scale
mounted on the slit can be used. Such a set up in any practical application satisfies
the Fraunhofer’s approximations L ≫ d ≫ λ, where L is the distance slit-screen, d
is a width of the slit opening and λ is the wave length of the laser beam.

Let the laser be positioned in such a way that the axis of the photon beam,
presumed to be the z-axis, falls on the centre of the slit. The laser beam is very
wide compared to the width of the slit and the photons are highly monochromatic.
Therefore, each photon in its way to the slit can be represented by the plane wave
function

Ψ0(x, y, z) = C exp(−ip0z/h̄) , (3)

where C is a normalization constant (its value is not important for our consider-
ation), p0 is the photon momentum in the direction of the z-axis, h̄ = h/2π and h is
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Fig. 1. Experimental
arrangement.

the Planck’s constant. The photons also have definite momenta ∆px = ∆py = 0
in the two perpendicular directions with the values of px = py = 0. Of course,
uncertainties of their position in these directions are indefinite. At the moment of
reaching the slit, the photon wave is suddenly changed (cut) by slit edges and can
be described by the simple normalized wave function2 given by

X(x) =

{

1/
√

d for |x| ≤ d/2 ,
0 for |x| > d/2 .

(4)

That means that photons are uniformly distributed along the x-axis (Fig. 2a) inside
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Fig. 2. a) Absolute square of the photon wave function and b) Momentum distrib-
ution at the slit.

2From now on, we describe the properties of photons only along the x-axis. An arbitrary phase
factor can be omitted in the wave function X(x).
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the slit of width d. The Fourier transformation of the wave function X(x) is the
following wave function in the momentum space

Φ(px) =

√

2h̄

πd

1

px

sin

(

pxd

2h̄

)

. (5)

Its absolute square determines the photon momentum distribution along x-axis in
the slit, as shown in Fig. 2b. As seen at the distant screen (L ≫ d) in the x direc-
tion, the slit looks like a point source of photons with the momentum distribution
|Φ(px)|2. Photons with a momentum px in the slit will travel to the screen in the
direction defined by the angle

α(px) ≈ px

p0

(6)

with respect to the z-axis (α is small since p0 ≫ px). From geometry of the setup
follows that the angle α can also be expressed via the screen coordinate x′ (see
Fig. 1) as

α(px) ≈ x′

L
, (7)

what gives the connection between the momentum px and the screen coordinate x′

x′ = L
px

p0

(8)

Equation (8) means that a photon momentum distribution in the slit is linearly
mapped into the spatial distribution on the screen. In other words, the same number
of photons in a momentum interval dpx around the value px in the slit will be found
on the screen in an interval dx′ around the position x′. Thus, it is valid

|Φ(px)|2dpx = |Ψ(x′)|2dx′ (9)

what gives

|Ψ(x′)|2 =
p0d

hL

(

sin
(

πdp0x
′/(hL)

)

πdp0x′/(hL)

)2

. (10)

Equation (10) defines the diffraction pattern on the screen. A photon detector
placed around the x′ coordinate on the screen with spatial resolution dx′, would
count N |Ψ(x′)|2 photons per unit time, where N is total number of photons per unit
time which reached the screen. When N is a large number, it is more convenient
to express the diffraction pattern via the intensity distribution I(x′) expressed in
W/m. In this sense, the phenomenological description of classical electrodynamics
is valid. Since each photon gives an amount of energy E0 to the screen, which is
connected with momentum p0 via the well known relativistic expression

p0 = E0/c , (11)
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then I(x′) is given by

I(x′) = E0N |Ψ(x′)|2 . (12)

If one takes Einstein’s relation between energy and frequency of a photon, Eq. (12)
becomes identical to the result obtained by classical electrodynamics in Frauen-
hofer’s approximations [14].

3. Heisenberg’s uncertainty relations

The frequently used definition for the uncertainty of an observable based on root-
mean-square deviation is not suitable for a consideration of a wave packet shaped
like the diffraction pattern. In that case, it gives ∆x = d/

√
12, which is very difficult

to measure, and ∆px = ∞3. The meaning of the Heisenberg’s uncertainty relation
(1) does not depend on a definition but only of meaning of the uncertainties. Hence,
it is a matter of definition and convenience which quantity one should choose as a
measure of position and momentum uncertainties. In our case, it is very convenient
to take ∆x = d and ∆px to be equal to the difference between momenta in the first
minimum and in the central maximum of the momentum distribution |Φ(px)|2. For
the first minimum of that distribution, we have

∆px = 2πh̄/d . (13)

Taking this result and ∆x = d, we obtain

∆x∆px = h . (14)

Equation (14) tells us that a photon in the slit can not be in a state of well defined
position and momentum at the same time. This is the well-known Heisenberg’s
position-momentum uncertainty relation for the diffraction pattern [6, 13]. Note
that the obtained constant for the product of the two uncertainties depends on the
definition for the uncertainties.

To experimentally test the uncertainty relation (14), measurements of the un-
certainties ∆x and ∆px are necessary. Obviously, ∆x can be directly determined
by a measurement of the slit opening. But, the uncertainty ∆px can not be directly
determined. For its measurement, we use our result about mapping of the pho-
ton momentum distribution in the slit into the spatial photon distribution on the
screen. That means that the spatial distribution on the screen reveals the photon
momentum distribution in the slit, ∆px. Accordingly, the distance between the first

3There are several formulations of the uncertainty relation with the aim of circumventing the
infinite value of ∆px in the case of the diffraction pattern (see Ref. [15] and references therein). A
very interesting and instructive example is to look at the diffraction pattern as Fisher information
as given in Ref. [15]. In that way, it is possible to obtain the uncertainty relation formally identical
to the classical Heisenberg relation (1) without the problem of infinity. Despite that, the reader
should not confuse these two uncertainty relations. They are different because of different meaning
of p (and ∆p).
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minimum and the central maximum on the screen ∆m/2 (∆m is distance between
the two first minima) gives

∆px ≈ p0α(∆px) = p0

∆m/2

L
. (15)

The momentum p0 of a laser photon appears in Eq. (15) and, consequently,
in the uncertainty relation (14) as an input (external) parameter. Instead of p0,
laser suppliers or manufacturers almost always give a value for the wavelength,
i.e., the wave vector k0 = 2π/λ for a laser photon. Then, the position-momentum
uncertainty relation (14) is transformed into the equivalent position-wave vector
uncertainty relation

∆x∆kx = 2π , (16)

which can be experimentally tested.

When one knows the momentum p0 of a laser photon as the input parameter,
which is obtained without the knowledge of the value for h, the uncertainty relation
(14) can be experimentally checked. That check can also be used as a method for a
direct measurement of the Planck’s constant h. Such a value of the momentum p0

can be obtained via its energy E0 using the relation (10). From the basic definition
of a photon as a quantum of light follows

E0 = P/n (17)

where P is the power and n the number of photons per unit time of the laser
beam. A process of the measurement of P and n, could be done in the following
experimental procedure. The laser beam should be slightly spread by a divergent
lens and its intensity should be lowered, e.g., by crossed linear polarizers until a
very fast counter can normally count photons (n). The power P of such an adjusted
laser beam can be measured using a classical calorimeter such as the isoperibol laser
calorimeter [16], which provides a measurement of a power level of 1 nW and higher.
At 1nW, expected counting rate is about 2 · 109 photons per second in the visible.
That is in range of today’s fast counters (their maximum counting rate is about 1010

counts/s per cm2 of detector area [17]), what makes such a measurement possible.

4. Measurement

We made measurements of the position-wave vector uncertainty relation using a
helium-neon gas laser (supplied by Uniphase, Eindhoven, Netherlands) with output
power of 1 mW, which gave photons of red light with wavelength λ = 632.8 nm
(given by laser supplier), an adjustable slit, that was made of steel with very sharp
edges, and a white paper as a screen. On the slit, a micrometer was mounted which
provided measurement of the slit opening with an accuracy of about 0.001 mm.
The laser beam was slightly divergent, and therefore, we checked dependence of
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results on the distance between the laser and the slit. The results were independent
of the distance, when it was lager then about 3 m. The distance between the slit
and the screen was L = (4.500±0.005) m. We made eleven series of measurements.
The slit width ∆x was changed from 0.1 mm to 0.8 mm in steps of 0.05 mm. The
distance between the first minima ∆m in the photon distribution on the screen was
measured by a simple meter rule, and it ranged from 56.2 mm, when ∆x = 0.1
mm, to 7.0 mm, when ∆x = 0.8 mm. The results for product Prel = ∆x∆kx have
been averaged out and they are shown versus ∆x in Fig. 3. We see that the product
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Fig. 3. Results for the product of uncertainties in position (∆x) and wave vector
(∆kx) in the slit.

Prel is independent of the uncertainty ∆x, what one can expect according to the
relation (16). The average value obtained from the data is

Prel = (6.264 ± 0.006) ,

what is in a very good agreement (within 0.3 %) with the expected value Prel = 2π
indicated by the dashed line in Fig. 3. The high accuracy of the result has been
achieved due to accurate workmanship of the slit and high accuracy in measuring of
the slit width. The accuracy of the experimental points is limited by the accuracy
of the measurement of ∆x at small values and by the accuracy of the measurement
of ∆m at large values of the slit opening.

5. Discussion

We want to emphasize that simplicity is one of the important features of our
study of the uncertainty relations for a photon. First, the given quantum descrip-
tion of photon diffraction is very simple and can be applied to other problems,
which can be as simple to explain using of the concept of photon as using the clas-
sical electrodynamics (for instance radiation pressure, Doppler effect, see Ref. [18]).
Because of its complexity, a quantum electrodynamical approach of the photon in-
terference (diffraction), even in its simple version as in Ref. [11], is not suitable for
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the education of undergraduates. The use of visible photons gives two key benefits:
a very simple experimental set up: eyes are used as instruments (detectors) and
visible photons have an adequate momentum what permits the experiment to be
performed on a suitable scale. An application of photons possessing considerable
smaller momentum would require a huge distance L, On the other hand, an ap-
plication of photons with a much larger momentum or any other kind of particle
possessing mass would need an extremely narrow width of the slit d, and its control
would require sophisticated equipment [13]. For this reason, a simple experiment
of the Heisenberg’s position-momentum uncertainty relation, like presented one,
is not possible using any non-zero rest-mass particles, even the lightest ones, the
electrons.

One could wonder how the Planck’s constant h can be measured using an ex-
periment which is well described by classical electrodynamics. First, we remind
that classical description of diffraction of light is an approximation. It is a phenom-
enological approach valid only for a large number of photons. Real nature of the
diffraction pattern is diffraction of individual photons independently of the number
of photons accumulated on the screen. This apparent paradox is basically caused by
differences between limiting criteria for validity of classical mechanics and classical
electrodynamics. Namely, in our particular example, we describe the photon by a
wave function (probability amplitude), what is a description analogue to that of
any particle (electron, proton etc.) in quantum mechanics and different from that
of the photon in quantum electrodynamics4. A classical mechanical description is
valid whenever the commutativity of dynamical variables can be neglected, i.e.,

[

x, px

]

= i h̄, when h → 0 . (18)

Obviously, the Planck’s constant h can not be neglected in our quantum mechanical
description of individual photons. On the other hand, a description of classical
electrodynamics, as seen from the view point of the quantum electrodynamics, is
trustworthy whenever the commutativity of creation a+ and annihilation operator
a can be ignored [12], i.e.,

[

a, a+
]

= 1 → 0 when n → ∞ . (19)

Thus, the classical electrodynamics is valid when the number of photons n is large
compared to 1, what is very well fulfilled in our experiment (the laser emitted about
1018 photons per second). In conclusion, in the description of a photon by the wave
function, like for any particle in quantum mechanics, the Planck’s constant can
not be neglected even when the classical electrodynamical description is reliable
because of a large number of photons in the beam.

4The basic uncertainty relation in quantum electrodynamics is ∆N∆φ ≥ 1, where ∆N is the
uncertainty in the number of photons and ∆φ is the uncertainty in phase differences between
the plane-wave components. Hence, the momentum uncertainty of the light beam arises from the
uncertainty in the number of photons, i.e., ∆px = ∆Nh̄kx. Taking into account ∆φ = kx∆x, one
can obtain the uncertainty relation which is formally identical to the Heisenberg’s relation (1),
but the uncertainties refer to the light beam (not to a photon) (see Ref. [12]).
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6. Conclusions

A quantum mechanical description of diffraction of light on a slit, when a wave
function is assigned to a photon, provides that the diffraction pattern on the screen
is a consequence of the momentum distribution of photons in the slit. That is used
in a simple direct measurement of Heisenberg’s position–momentum uncertainty
relation, assuming as the input parameter the momentum p0 of a photon, or the
equivalent position–wave vector uncertainty relation, when as the input parameter
the wavelength λ, i.e. wave vector k0, of a photon is known. This approach is very
well confirmed by results of a test of the position–wave vector uncertainty relation
made using a slit with a micrometer, whose opening was changed from 0.1 mm to
0.8 mm, and a laser as a source of photons of wavelength of 632.8 nm. Since the laser
suppliers specify the value of λ (k0), we give a procedure for a measuring of p0, which
does not require the knowledge of the value of Planck’s constant h. The value of p0

permits not only a test of the position–momentum uncertainty relation but also a
direct measurement of the value for h. Although the diffraction pattern is also well
described by the classical electrodynamics in the approximation of large number of
incident photons, a possibility of a measurement of h in such an experiment arises
from the model of photon used and from differences between limiting criteria for
validity of the classical mechanics and the classical electrodynamics. The presented
experiment is as simple as possible since eyes are used as the detector and visible
photons have such adequate momenta that a reasonable distance slit-to-screen and
of the slit opening may be used. The experiment can be used as a quantitative
exercise for both uncertainty relations in experimental courses for undergraduates.
It can also be used as their simple demonstration. Namely, a continuous narrowing
of the slit opening causes a continuous spreading of the diffraction pattern on
the screen and vice versa. That process can be demonstrated to an auditorium if
the laser used has sufficient power. It can be regarded as a visualization of the
Heisenberg’s uncertainty principle if one has in mind the presented consideration.
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JEDNOSTAVNA EKSPERIMENTALNA PROVJERA HEISENBERGOVIH
RELACIJA NEODRED– ENOSTI

Pokazujemo da se kvantno-mehaničko tumačenje ogiba svjetlosti na pukotini, u ko-
jem smo fotonu pridijelili uobičajenu valnu funkciju, može upotrijebiti za izravnu
eksperimentalnu provjeru Heisenbergovih relacija neodred–enosti položaj–impuls
i ekvivalentnih položaj–valni vektor. Rezultati testiranja relacije neodred–eno-
sti položaj–valni vektor, u kojem smo uzeli valnu duljinu lasera kao ulazni para-
metar, dobro potvrd–uju na pristup. Na istovjetan način se može napraviti provjera
relacija neodred–enosti položaj–impuls ako je impuls p0 laserskih fotona poznat kao
ulazni parametar. Dokazujemo da je moguće mjeriti p0 neovisno o poznavanju vri-
jednosti Plankove konstante. S tako dobivenom vrijednošću p0 opisani eksperiment
se može promatrati i kao način mjerenja Plankove konstante. To smo detaljnije po-
jasnili s obzirom da ogibnu sliku u danim eksperimentalnim uvjetima možemo tako-
d–er odlično opisati i klasičnom elektrodinamikom. Opisani eksperimentalni pristup
za provjeru Heisenbergovih relacija neodred–enosti je vrlo jednostavan, te je stoga
pogodan kao vježba u studentskim praktikumima ali i kao vizualno atraktivna
demonstracija na predavanjima iz kvantno-mehaničkih kolegija.
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