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Millimeter-Wave Downlink Positioning with a
Single-Antenna Receiver

Alessio Fascista, Student Member, IEEE, Angelo Coluccia, Senior Member, IEEE, Henk Wymeersch, Member,
IEEE, and Gonzalo Seco-Granados, Senior Member, IEEE

Abstract—The paper addresses the problem of determining
the unknown position of a mobile station for a mmWave
MISO system. This setup is motivated by the fact that massive
arrays will be initially implemented only on 5G base stations,
likely leaving mobile stations with one antenna. The maximum
likelihood solution to this problem is devised based on the time
of flight and angle of departure of received downlink signals.
While positioning in the uplink would rely on angle of arrival, it
presents scalability limitations that are avoided in the downlink.
To circumvent the multidimensional optimization of the optimal
joint estimator, we propose two novel approaches amenable to
practical implementation thanks to their reduced complexity.
A thorough analysis, which includes the derivation of relevant
Cramér-Rao lower bounds, shows that it is possible to achieve
quasi-optimal performance even in presence of few transmissions,
low SNRs, and multipath propagation effects.

Index Terms—mmWave, positioning, massive MIMO, MISO,
5G cellular networks, angle of departure (AOD), beamforming

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) and massive multiple-
input multiple-output (MIMO) technologies are cur-

rently regarded as strong candidates for next-generation wire-
less systems, including vehicular and 5G cellular networks.
Indeed, such technologies not only are key enabler of high
data rates and spectral efficiency [1]–[5], but also they are
promising tools for precise localization thanks to their high
temporal resolution and high directivity [6]–[10].

The theoretical localization performance achievable using
mmWave MIMO have been recently investigated in [11]–
[13]. In [13], the Cramér-Rao Lower bound (CRLB) on the
position and rotation angle estimates obtained using mmWave
from a single transmitter has been derived. Furthermore, a
novel position and rotation estimation algorithm based on
compressed sensing that attains the CRLB for average to high
signal-to-noise ratio (SNR) is proposed. In [11], fundamental
limits of position and orientation estimation for uplink and
downlink in 3D-space were presented. Authors in [12] have
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shown that non-line-of-sight (NLOS) components can also
be exploited to gain additional information for position and
orientation estimation.

A few papers have proposed more sophisticated localization
schemes, trying to take advantage of the peculiarities of
mmWave and (massive) MIMO technologies. In [14], a 3D
indoor positioning scheme based on hybrid received signal
strength (RSS) and Angle-Of-Arrival (AOA), which employs
only a single base station (BS) has been presented. A hypothe-
sis testing localization approach is proposed in [15] exploiting
the concept of channel sparsity. A low-complexity AOA-based
approach with signal subspace reconstruction is devised in
[16] to localize incoherently distributed sources. An extended
Kalman filter (EKF) tracking algorithm that jointly exploits
AOA and time of flight (TOF) from uplink reference signals
has been proposed in [17]. In [18], a direct position estimation
algorithm is derived. It is based on a compressed sensing
framework that exploits some channel properties to identify
NLOS signal paths, leading to superior performance compared
to other approaches. Authors in [19] addressed the problem of
positioning based on joint TOF, Angle-of-Departure (AOD),
and AOA estimation and investigated the impact of errors in
delays and phase shifters. A hybrid time-difference-of-arrival
(TDOA), AOA, and AOD localization scheme is presented
in [20] based on linearization of a set of local constraints,
while in [21] positioning is addressed using a Gaussian process
regressor based on a fingerprinting technique operating on a
vector of RSS measurements.

It is worth noticing that almost all the aforementioned
approaches heavily rely on the adoption of (possibly large)
multi-antenna systems at both transmitter and receiver sides.
Although this setup allows for efficient channel estimation by
employing high directional beamforming to compensate severe
path loss [22], it requires that commercial massive MIMO
implementations for mobile stations (MSs) (e.g., smartphones)
will be available in the very near term [23]. However, as recent
research showed, it is reasonable to expect that MSs will likely
have one (or very few) antennas, while massive arrays will be
initially implemented only at the BSs side [24], [25].

In this work, we address the problem of estimating the
unknown MS position under a multiple-input single-output
(MISO) system setup. The processing is done exclusively on-
board at the MS by exploiting the known signals transmit-
ted by a single BS, without any increase in the bandwidth
consumption, and requiring an antenna array only on the
BS (as opposed to MIMO scenarios). While conventional
localization schemes that exploit angular information mainly
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focus on AOA estimation, the proposed approach uses the
AOD of received downlink signals. The underlying idea in
the estimation of the AOD with a single antenna receiver
is the exploitation of the fact that the different transmitted
beams are received with different amplitude (magnitude and
phase) depending on the direction on which the receiver is
seen from the transmitter. If a single beam is transmitted, the
estimation of the AOD is not possible because the received
signal amplitude depends on the beam pattern but also on the
unknown channel amplitude. Conversely, when more beams
are transmitted, AOD estimation is possible because the ratio
between the received amplitudes from different beams depends
on the beam patterns, not on the channel gain, and hence on
the direction from which the MS is reached. Note that the
beams with different spatial patterns (obtained by precoding
through the beamforming matrix) can be transmitted exploiting
the different degrees of diversity in the system. That is, beams
can be transmitted sequentially (time division), or at different
subcarriers (frequency division). Our results also indicate that
in the mmWave MISO setup accurate positioning is possible
even using a single omnidirectional antenna at the MS, a
foreseen scenario for the very near future, before full-fledged
MIMO technologies will be available. This approach has
several advantages.

First of all, the uplink channel is used only for preliminary
synchronization of the receiver; then, several subsequent posi-
tion estimate updates can be performed by exploiting the sole
downlink channel (instead of performing AOA estimation at
the BS side using the uplink channel). In doing so, there is
an important saving of uplink bandwidth and energy on the
MS, which is known to be much more resource-constrained
compared to BSs. It is worth highlighting that future 5G net-
works envision the presence of a massive number of low-power
devices (in addition to smartphones) that need to transmit data
to the BS under the internet-of-things (IoT) paradigm, which
is expected to overload the uplink (medium access) channel;
at the same time, position estimates need to be provided
at high rate in some emerging applications that are driving
the 5G revolution (e.g., for safety). In such a scenario, thus,
saving energy and uplink resources while achieving high-rate
positioning is of key importance. An additional advantage of
performing downlink positioning on MSs is that it distributes
the localization task, thus avoiding the BS to take such a
burden for all terminals (as conversely required by uplink
positioning), especially because the number of connected de-
vices is exponentially growing, as mentioned. In other words,
downlink positioning allows multiple (potentially unlimited)
terminals to be localized by opportunistically exploiting a
single transmission from the BS (e.g., a broadcast control
channel) with no overhead for the system.

The paper provides two kinds of contributions. First, we
thoroughly analyze the problem from a theoretical perspective,
deriving the exact solution to the Maximum Likelihood (ML)
estimation problem and complementing the CRLB-analysis
available in the literature [11] with a precise assessment of
the achievable performance under the considered MISO setup.
As a second contribution, we design two novel and practical
estimators with reduced complexity. In particular:

• a first estimator based on an unstructured transformation
of the likelihood function is proposed, which provides
an approximate solution to the exact ML problem while
avoiding the burden of multidimensional optimization
methods;

• a second estimation approach based on the method of
moments is devised for the case of sufficient amount of
received data, which results in a closed-form estimator of
the TOF and hence further reduces the complexity to a
single one-dimensional search.

While unstructured approximations have been proposed in
the literature for joint AOA and delay estimation [26]–[28], to
the best of our knowledge this is the first work in which such
an approach is applied to joint AOD and delay estimation.
The numerical analysis, carried out by simulating the charac-
teristics of mmWave wireless channels, demonstrates that the
proposed estimators can achieve almost the same performance
of the exact ML estimator and are able to cope with the
different operating conditions at play in typical mmWave
channels.

It is worth highlighting that in the MISO setup addressed
in this paper, unlike the MIMO case, the LOS must be
present to make the localization problem solvable. Indeed, in
mmWave MIMO systems all the NLOS paths can be separately
estimated and exploited for localization [12], [13], while this is
not possible in our setup since the MS has only one antenna.
However, it should be emphasized that LOS propagation is
the typical assumed scenario for mmWave communications,
since the latter can unleash their potential of high directivity
and high temporal resolution only in presence of a LOS path.
Indeed, mmWave links are highly susceptible to blockages,
even caused by the human body itself, as opposed to lower
frequencies [29]. As part of an effort to overcome such issues,
the mmWave research community is recently steering towards
the concept of multi-connectivity [30]–[32]. Basically, this
feature allows a MS to maintain multiple possible LOS paths
to different BSs so that drops in one link can be overcome
by switching data paths. Since the goal of this paper is to
investigate the potential benefits of exploiting the peculiar
characteristics of mmWave downlink signals, we assume the
MS is operating in environments where at least one LOS
path to a (non-obstructed) BS is present; in this respect,
multi-connectivity provides a further justification. However, to
evaluate how the performance degrade in presence of NLOS
propagation (but still assuming a direct LOS path is present),
in Sec. V-C we will investigate also scenarios where NLOS
paths are present; we anticipate that these results show that
the proposed algorithms are still effective.

The remaining of the paper is organized as follows. In
Sec. II we introduce the system model and describe the
reference scenario. In Sec. III we formulate the ML estimation
problem and illustrate in details the design and derivation of
the proposed low-complexity estimators. Then, in Sec. IV,
we derive the fundamental lower bounds on the estimation
uncertainty under the considered MISO setup. In Sec. V we
analyze the performance, also in comparison with the uplink
channel, by means of Monte Carlo simulations in different
realistic scenarios. We conclude the paper in Sec. VI.
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II. SYSTEM MODEL

We consider, as a reference scenario, a MISO system
with a BS equipped with NBS antennas and a MS equipped
with a single antenna operating at a carrier frequency fc
(corresponding to wavelength λc) and bandwidth B. Without
loss of generality, the location of the BS is taken in the origin,
while we denote by p = [px py]T the unknown MS position.

A. Transmitter Model

We consider the transmission of orthogonal frequency divi-
sion multiplexing (OFDM) signals, where the BS, implement-
ing a hybrid analog/digital precoder at the transmitting side,
communicates with the MS. Particularly, we assume that G
signals are transmitted sequentially, where the g-th transmis-
sion comprises M simultaneously transmitted symbols1 for
each subcarrier n = 0, . . . , N − 1, i.e.,

xg[n] = [x1[n] · · · xM [n]]
T ∈ CM×1 n = 0, . . . , N − 1,

(1)
and Pt = E

[
‖xg[n]‖2

]
the transmitted power with E[ · ]

denoting the expectation operator. The symbols are first pre-
coded and then transformed to the time-domain using N -
point Inverse Fast Fourier Transform (IFFT). A cyclic prefix
(CP) of length TCP = DTs is added before applying the
radio-frequency (RF) precoding, where D is the length of
CP in symbols and Ts = 1/B denotes the sampling period.
Hereafter, we assume that TCP exceeds the delay spread of the
channel.

The transmitted signal over subcarrier n at time g can be
expressed as F g[n]xg[n], with F g[n] ∈ CNBS×M denoting
the beamforming matrix applied at the transmitting side. To
lower the hardware complexity, in this work we adopt a hybrid
beamforming architecture. In particular, assuming that MRF

BS
RF chains are available at the BS, the beamforming matrix
F g[n] can be expressed as

F g[n] = FRFF
g
BB[n] (2)

where FRF ∈ CNBS×MRF
BS is implemented using analog phase

shifters with entries of the form ejφm,n , where {φm,n} are
given phases, and F gBB[n] ∈ CMRF

BS×M is the digital beam-
former. Furthermore, we impose a total power constraint
‖FRFF

g
BB[n]‖F = 1 [33]. Considering the angular sparsity of

the mmWave channels, one usually needs less beams than
antenna elements, i.e., M ≤ NBS [34], [35]. It should be
noticed that our work does not assume any specific choice
of the beamformer matrices, hence in principle any possible
value for F g[n] can be considered. Under this conservative
assumption, beamformers are not required to be specifically
designed for the localization task, but can simply be the same
employed by the BS for communication purposes.

1Antenna beams employed for localization purposes should take into
account the presence of users in unknown locations. For this reason, they are
typically designed wide enough to cover the uncertainty region about users
positions with at least two overlapping beams, irrespective of the number of
antenna elements available at the BS side.

Fig. 1: Geometry of the considered scenario.

B. Channel Model

We assume that a direct Line-Of-Sight (LOS) link exists
between the BS and the MS, and that additional NLOS paths
due to local scatterers or reflectors may also be present.
Moreover, we assume that both MS and BS are synchronized
to the same clock2. The different position-related parameters
of the channel are depicted in Fig. 1. These parameters include
θk and τk, denoting the AOD and TOF related to the k-th path,
respectively. In the following, k = 0 corresponds to the LOS
link and k > 0 denotes the NLOS paths. Considering K + 1
paths and a constant channel during the transmission of the G
signals, the 1 ×NBS complex channel vector associated with
subcarrier n can be expressed as

hT[n] = ΓT[n]AH
BS (3)

where we have exploited the fact that λn = c/
(

n
NTS

+ fc

)
≈

λc ∀n (with c denoting the speed of light), i.e., the typical
narrowband condition. Under this model, the array response
matrix is given by

ABS = [aBS(θ0), . . . ,aBS(θK)] (4)

and

Γ[n] =
√
NBS ×


α0e

−j2πnτ0
NTs

...

αKe
−j2πnτK
NTs

 (5)

where αk = hk/
√
ρ
k
, with ρk the path loss and hk denoting

the complex channel gain of the k-th path, respectively. The
structure of the antenna steering vectors aBS(θk) ∈ CNBS×1

depends on the specific geometry of the considered array.
Without loss of generality, in the following we consider a
Uniform Linear Array (ULA) without mutual antenna coupling

2We rely on the commonly used synchronization assumption e.g., [8],
[36]–[38], which is customary for the sake of decoupling the effect of delay
estimation errors from other sources of time-related performance degradation.
We recognize that in practice synchronization errors must be taken into
account. This can be done by assuming that a preliminary synchronization
step has been performed using, e.g., a two-way synchronization protocol [39],
[40].
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and with isotropic antennas, whose steering vector can be
expressed as

aBS(θ) =
1√
NBS

[
1 ej

2π
λc
d sin θ · · · ej(NBS−1) 2π

λc
d sin θ

]T
(6)

where d = λc
2 denotes the ULA interelement spacing.

C. Received Signal Model

The received signal related to the n-th subcarrier and
transmission g, after CP removal and Fast Fourier Transform
(FFT), is given by

yg[n] = hT[n]F g[n]xg[n] + νg[n] (7)

where νg[n] is the additive circularly complex Gaussian noise
with zero mean and variance σ2. The ultimate goal of this
work is to estimate the unknown MS position p from the set
of all received signals

Y =

 y1[0] · · · yG[0]
...

. . .
...

y1[N − 1] · · · yG[N − 1]

 . (8)

To this aim, we focus on the estimation of the LOS position-
related parameters θ0 and τ0. Based on such estimates, the
unknown MS position p can be determined by recalling that
the TOF defines a circle centered in the BS and with radius
d0 = cτ0 from the MS, according to

p2x + p2y = d20 (9)

while the AOD is related to the unknown MS position as

θ0 = atan2(py, px) (10)

where the function atan2(y, x) is the four-quadrant inverse
tangent. Solving (9)–(10) and replacing the actual values with
the estimated ones readily provides an estimate of the MS
position according to

p̂ = d̂0 [cos θ̂0 sin θ̂0]T. (11)

Fundamental lower bounds on the estimation uncertainty will
be derived to evaluate the performance.

III. ANGLE OF DEPARTURE (AOD) AND TIME OF FLIGHT
(TOF) ESTIMATION

In this section, we derive novel algorithms for the estimation
of the LOS channel parameters θ0 and τ0 in presence of the
nuisance parameters α0 and σ2.

A. Joint Maximum Likelihood Estimation

To formulate the estimation problem, we exploit the fact
that, under typical mmWave assumptions, all the paths are
resolvable in either the time or space domains, and the mul-
tipath components are likely uncorrelated with the LOS [11].

Since we are interested in estimating the sole LOS position-
related parameters3, NLOS paths can be omitted from (3) and
the multipath parameter estimation can be then reduced to a
problem of single-path estimation, that is, the channel vector
given in (3) can be re-defined as

hT[n] =
√
NBSα e

−j2πnτ
NTS aHBS(θ) (12)

where only LOS path is considered from now on. To ease
the notation, we introduce α

def
= α0, τ def

= τ0, and θ
def
= θ0.

Consequently, each received signal yg[n], 1 ≤ g ≤ G, 0 ≤
n ≤ N − 1, can be statistically characterized as

yg[n] ∼ CN (
√
NBSαh̄

T[n]F g[n]xg[n], σ2) (13)

where h̄T[n] = e
−j2πnτ
NTS aHBS(θ) and all the parameters are

treated as deterministic unknowns, except the transmitted
symbols xg[n] and the beamforming matrix F g[n], which are
assumed known to the receiver. More precisely, the whole set
of unknowns in Y can be arranged as

ϕ = [θ τ ψT]T (14)

where θ and τ represent the sole parameters of interest, while
ψ = [σ2 α]T denotes the vector of nuisance parameters. The
ML estimator of θ and τ is given by

(θ̂, τ̂) = arg max
(θ,τ)

[
max
ψ

L(θ, τ,ψ)

]
(15)

where L(θ, τ,ψ)
def
= log f(Y |θ, τ,ψ) and f( ·) denotes the

probability density function of the observations Y given ψ
and both θ and τ . From (15) it follows that

L(θ, τ,ψ) = −NG log(πσ2)

− 1

2σ2

G∑
g=1

‖yg −
√
NBSαw

g‖2 (16)

where we have denoted by

yg =

 yg[0]
...

yg[N − 1]

 (17)

the g-th column of the observation matrix Y , and

wg =

 h̄T[0]F g[0]xg[0]
...

h̄T[N − 1]F g[N − 1]xg[N − 1]

 . (18)

We start by observing that the resolution of the ML esti-
mation problem is invariant to the knowledge of σ2; in fact,
if such a parameter were unknown, it could be estimated as
σ̂2 = 1

NG

∑G
g=1 ‖yg−

√
NBSαw

g‖2, leading to the same value
of the compressed likelihood as for known σ2, i.e.

L̃(θ, τ, α) =

G∑
g=1

‖yg −
√
NBSαw

g‖2 (19)

3The problem of MS localization in presence of NLOS paths requires to also
estimate the parameters related to the multipath propagation and hence leads
to a different problem. In this work, we instead estimate the LOS parameters
only, assuming that only the LOS is received in order to derive relatively
simple expressions of the estimators, and subsequently evaluate the robustness
of the estimator in the presence of NLOS.
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where L̃(θ, τ, α) is the compressed negative log-likelihood
function, and the ML estimator of θ and τ reduces to

(θ̂, τ̂) = arg min
(θ,τ)

[
min
α
L̃(θ, τ, α)

]
. (20)

It is a simple matter to observe that the minimization of (19)
with respect to α ∈ C is solved by

α̂ =
1√
NBS

∑G
g=1(wg)Hyg∑G
g=1 ‖wg‖2

. (21)

Substituting this maximizing value back in (19) leads to

L̃(θ, τ) =

G∑
g=1

∥∥∥∥∥yg −
(∑G

i=1(wi(θ, τ))Hyi∑G
i=1 ‖wi(θ, τ)‖2

)
wg(θ, τ)

∥∥∥∥∥
2

(22)
where we highlight the dependency of w on both τ and
θ. As it can be noticed, the function in (22) cannot be
expressed in terms of any projection matrix; furthermore, it
is highly non-linear in both the unknown θ and τ and does
not admit a closed-form solution. A possible approach to
solve the estimation problem could be based on the adoption
of a numerical search algorithm4; more precisely, a two-
dimensional grid search can be used for a direct minimization
of L̃(θ, τ). To overcome the burden of a multidimensional
minimization, in the following we derive two novel suboptimal
methods to estimate the TOF τ . In so doing, we can put such
an estimated value back in (22) and then solve for the unknown
θ in the ML problem by resorting to a simple one-dimensional
search.

It is worth remarking that since our approach focuses on the
estimation of LOS channel parameters, the NLOS paths are not
included in the model at the design stage, hence they are never
exploited to gain additional position information. Although
their number is limited thanks to the sparsity of the mmWave
channel, in the simulation analysis conducted in Sec. V, we
will investigate the sensitivity of the proposed algorithms
to multipath effects according to the LOS-to-multipath ratio
(LMR), the latter defined as the ratio between the power of
the LOS component and the sum of powers of the NLOS
multipath components.

B. Unstructured ML-based TOF Estimation

In this subsection, we propose a novel method for the
estimation of the TOF τ . For the sake of exposition, we
initially consider the case of single transmission, that is,
G = 1. Stacking the observations y[n] from (7), we obtain

y =
√
NBSαD(τ)X̄a∗BS(θ) + ν (23)

where

D(τ) =

1
. . .

e
−j2π(N−1)τ

NTs

 (24)

4Iterative search algorithms like the steepest descent algorithm or the Gauss-
Newton method cannot be easily applied since the objective function given
in (22) exhibits several local minima.

and

X̄ =

 (F [0]x[0])T

...
(F [N − 1]x[N − 1])T

 . (25)

To formulate the estimation problem, we make use of an
unstructured model for the array steering vector instead of the
one parameterized by the AOD, i.e., we introduce the generic
vector b =

√
NBSαa

∗
BS(θ). Under this model, (23) can be

equivalently rewritten as

y = D(τ)X̄b+ ν. (26)

As it can be noticed, the above expression is no longer an
explicit function of θ, but depends only on the TOF τ . Starting
from this new model and generalizing to arbitrary values of
G ≥ 1, a ML-based estimator of τ , referred to as Unstructured
ML (UML), can be derived as

τ̂UML = arg min
τ

[
min
b

G∑
g=1

‖yg −D(τ)X̄gb‖2
]

(27)

where X̄g, g = 1, . . . , G, are known matrices which depend
on the transmitted sequences and b ∈ CNBS×1 is treated as an
unknown nuisance vector. It is not difficult to show that the
inner minimization of (27) is solved by

b̂(τ) = X̄−1G

G∑
g=1

(X̄g)HDH(τ)yg (28)

where X̄G
def
=
∑G
g=1(X̄g)HX̄g and the existence of X̄−1G only

requires N ≥ NBS. Substituting this maximizing value back
in (27) finally yields

τ̂UML = arg min
τ

G∑
g=1

‖yg −D(τ)X̄gb̂(τ)‖2 (29)

which can be solved by resorting to a simple one-dimensional
search over the space of τ . Putting the above estimate τ̂UML
back in (22) and solving for the unknown θ readily provides
an approximate solution to the original ML problem, but at
the reduced cost of two one-dimensional searches.

C. Moment-based TOF Estimation

In this section, we further investigate the problem of esti-
mating the unknown τ when a sufficient number of transmis-
sions G is available. We start by observing that the elements
in (7) can be equivalently re-arranged as

y[n] =
[
y1[n] · · · yG[n]

]T ∈ CG×1 (30)

X[n] =
[
F 1[n]x1[n] · · ·FG[n]xG[n]

]
∈ CNBS×G (31)

ν[n] =
[
ν1[n] · · · νG[n]

]T ∈ CG×1 ∀n = 0, . . . , N − 1.
(32)

We can now express the collected observations as

y[n] =
√
NBSα

(
h̄T[n]X[n]

)T
+ ν[n] n = 0, . . . , N − 1.

(33)
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If we assume that G ≥ NBS, the known matrices X[n] have
full row-rank, so that the following transformation can be
applied

yT[n]X[n]+︸ ︷︷ ︸
ỹT
n∈C1×NBS

=
√
NBSαh̄

T[n] + νT
nX

+
n︸ ︷︷ ︸

ν̃T
n∈C1×NBS

(34)

where X[n]+ = X[n]H(X[n]X[n]H)−1 denotes the Moore-
Penrose right pseudo-inverse matrix. It can be observed that
these new transformed observations are ruled by

ỹT
n ∼ CNNBS(

√
NBSαh̄

T[n], σ2Cn) n = 0, . . . , N−1 (35)

where Cn = (X[n]+)HX[n]+. It is worth noting that,
differently from (33), the elements of each vector ỹT

n are now
correlated. Starting from these new observables, we can further
define

zn = ỹT
nỹ
∗
n+1 n = 0, . . . , N − 2 (36)

where each zn is obtained by multiplying two consecutive
ỹT
n, with overlap. This transformation reduces the number of

available observations only by one (to N − 1).
For the new set of data z = [z0 · · · zN−1]T, by exploiting

the independence of the (transformed) noise vectors, it follows
(hereafter we omit the dependency on θ for simplicity)

E[zn] = NBS|α|2h̄T[n]h̄∗[n+ 1]

= NBS|α|2e
j2πτ
NTs aHBSaBS = NBS|α|2e

j2πτ
NTs . (37)

Remarkably, this new expression does not depend on the
unknown AOD θ, but it is solely parameterized as function
of the TOF τ . Therefore, one can build a method-of-moment
(MM) estimator from this expression

τ̂MM =
NTs
2π

arg

{
1

N − 2

N−2∑
n=0

zn

}
(38)

which results in a closed-form estimator of τ . By analyzing
the transformed observables zn in (36), we can derive a
useful analogy with the classical frequency estimation theory.
Similarly to the Kay’s method presented in [41], the approach
proposed in (38) exploits a one-lag sample autocorrelation
function to provide a suboptimal estimator of τ . Nonethe-
less, even though this method could provide good estimation
performance, an additional improvement can be obtained by
considering higher lags in the sample autocorrelation function,
as shown in [42]. Based on this result, we derive a more
general multi-lag extension of the estimator in (38) as

τ̂MM(L) =
NTs

2πq(L)

L∑
`=1

` arg

{
1

N − `− 1

N−`−1∑
n=0

ỹT
nỹ
∗
n+`

}
(39)

with L < N denoting the number of different lags adopted
and q(L) =

∑L
`=1 `

2 = L(L+1)(2L+1)
6 . As it can be observed,

this new estimator weights the argument of the sample auto-
correlation function by the lag `. Moreover, notice that (39)
with L = 1 is equivalent to the one-lag estimator derived
in (38). Plugging the estimate τ̂MM in the ML estimator (22)
and solving for θ yields a novel approximate solution to the
ML problem, which remarkably only requires a single one-
dimensional search.

Fig. 2: Averaged runtimes of the proposed estimators.

D. Complexity Analysis

Asymptotically speaking, we observe that the complexity in
performing the two-dimensional minimization in (22) is on the
order of O(P 2), where P denotes the number of evaluation
points per dimension, while the two proposed suboptimal
approaches only require O(P ). However, to perform a precise
comparison of the actual complexity for finite values of P , we
have recorded the runtimes of the estimators executed on the
same hardware platform. To conduct the simulation analysis,
we consider a grid of P = 150 evaluation points and assume
G = 10. The average runtimes of the estimators normalized by
the average runtime of the MM are given in Fig. 2. As it could
be expected, the ML 2D requires by far the longest runtime
due to the multidimensional search required for solving (22).
On the other hand, the MM has the smallest computational
complexity among all the estimators thanks to the closed-form
estimation of τ performed through (39). The complexity of the
UML is only about 3 times larger than that of the MM and,
remarkably, is about 10 times lesser than that of the ML 2D.

To complete the analysis, we investigate the trend of the
computational complexity as a function of the number of grid
points P . Fig. 3 shows the average runtimes for four different
values of P , normalized by the average runtime of the MM
computed for P = 150. In agreement with the asymptotic
analysis, we observe that both the MM and UML show a
roughly linear trend over P , although with different slopes.
On the other hand, the ML 2D exhibits a superlinear trend,
with considerably longer runtimes compared with those of the
MM and UML, and a complexity which becomes prohibitive
as P increases.

IV. MULTIPLE-INPUT SINGLE-OUTPUT (MISO):
FUNDAMENTAL BOUNDS

In this section, we derive the Fisher Information Matrix
(FIM) and the CRLB for the problem of MS position es-
timation. We start by deriving the bounds on the channel
parameters, namely, TOF τ , AOD θ, and path gain α. Then,
we transform these bounds into the position domain.
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Fig. 3: Runtimes as function of the number of grid points.

A. FIM Derivation for Channel Parameters

Let the noise-free observation at subcarrier n, transmission
g be

mg[n] =
√
NBSα exp

(
−j2πnτ
NTs

)
aH(θ)sg[n]

where sg[n] = F g[n]xg[n], α = h/
√
ρ

def
= r exp(jφ) with

r and φ modulus and phase of the complex amplitude α,
respectively. Let γ ∈ R4×1 denotes the vector of the unknown
channel parameters

γ = [r φ τ θ]T (40)

where we assume without loss of generality that the noise
variance σ2 is known5. Defining γ̂ as an unbiased estimator
of γ, it is well-known that the mean squared error (MSE) is
lower bounded as [43]

EY |γ
[
(γ̂ − γ)(γ̂ − γ)T] � J−1γ (41)

where EY |γ [ · ] denotes the expectation parameterized as func-
tion of the unknown vector γ and Jγ is the 4×4 FIM defined
as [44]

Jγ = EY |γ
[
−∂

2 log f(Y |γ)

∂γ∂γT

]
=

2

σ2

G∑
g=1

N−1∑
n=0

<
{
∇mg[n]∇Hmg[n]

}
(42)

where f(Y |γ) is the conditional likelihood function of Y
given γ, while ∇mg[n] is the gradient of m with respect to
γ given by

∇mg[n] =



√
NBS exp(jφ) exp

(
−j2πnτ
NTs

)
aH(θ)sg[n]

j
√
NBSα exp

(
−j2πnτ
NTs

)
aH(θ)sg[n]

−j2πn
NTs

√
NBSα exp

(
−j2πnτ
NTs

)
aH(θ)sg[n]

−j2π
λc

d cos θ
√
NBSα exp

(
−j2πnτ
NTs

)
aH(θ)Bsg[n]


with <{·} denoting the real-part operator and B =
diag[0 1 · · · (NBS − 1)], where diag( ·) construct a diagonal

5We recall that if σ2 were unknown, it could be estimated using the
equation provided above (19).

matrix with its entries. We can show that for the matrix
Jγ to be non-singular when G = 1, we need at least
two subcarriers and send different pilot sequences on each
subcarrier. Similarly, when N = 1, we need at least two
transmissions with different pilot sequences. Further details
are found in the Appendix.

B. FIM Derivation for Position

In this section, we derive the FIM in the position domain
by applying a transformation of variables from the vector of
channel parameters γ to the vector of location parameters

η = [r φ px py]T. (43)

The FIM of η is obtained by means of the 4×4 transformation
matrix T as

Jη = TJγT
T (44)

where

T
def
=
∂γT

∂η
=


∂r/∂r ∂φ/∂r ∂τ/∂r ∂θ/∂r
∂r/∂φ ∂φ/∂φ ∂τ/∂φ ∂θ/∂φ
∂r/∂px ∂φ/∂px ∂τ/∂px ∂θ/∂px
∂r/∂py ∂φ/∂py ∂τ/∂py ∂θ/∂py

 .
(45)

The entries of the matrix T can be obtained from the relations
between the parameters in γ and η, as expressed in (9)–(10).
More precisely, we have

∂r/∂r = ∂φ/∂φ = 1,

∂τ/∂px =
px

c(p2x + p2y)−
1
2

, ∂τ/∂py =
py

c(p2x + p2y)−
1
2

,

∂θ/∂px =
−py/p2x

1 + (py/px)2
, ∂θ/∂py =

1/px
1 + (py/px)2

,

and the rest of the entries in T are zero.

C. Bounds on Position Estimation Error

The position error bound (PEB) can be readily derived by
inverting the FIM Jη given in (44), then adding the diagonal
entries of the lower right 2 × 2 sub-matrix, and taking the
square root as

PEB =
√

[(Jη)−1]3,3 + [(Jη)−1]4,4 (46)

where the operator [ · ]j,j denotes the selection of the j-th
diagonal entry of J−1η .

V. SIMULATION MODEL AND RESULTS

In this section, we present simulation results to evaluate the
performance of the proposed estimators in comparison with
the two-dimensional ML, as well as the theoretical bounds
derived based on the FIM analysis conducted in Sec. IV.
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A. Reference scenario

We consider a scenario representative of outdoor localiza-
tion in a small open area with maximum distance between BS
and MS of 20 meters. The BS is located at known position
[3 0]T [m] of the considered Cartesian reference system and is
equipped with NBS = 10 antennas, while the MS is initially
placed at p = [5 15]T [m]. As concerns the transmitted signal,
we assume a carrier frequency fc = 60 GHz, a bandwidth
B = 40 MHz, a transmitted power Pt = 1 W (30 dBm,
a typical value for local area BS [45]), and a number of
subcarriers N = 20 [46]. The number of simultaneously
transmitted beams is M = 1 and we vary the number of
sequentially transmitted signals G between 1 and 20.

The channel path loss ρ is computed according to [47], [48].
For the specific case of the LOS link, we obtain

1/ρ = µ2(d0)

(
λc

4πd0

)2

(47)

where µ2(d0) denotes the atmospheric attenuation at a distance
d0 and the last term is the free space path loss at a distance d0.
Following [1], the atmospheric attenuation µ2(d0) is set to 16
dB/Km. As to the complex channel gain, it can be expressed
in terms of h = aejϕ with a =

√
Pt the amplitude and ϕ the

related phase, respectively.
To complete the analysis, we show the performance achiev-

able in the uplink channel and compare them with the ones
obtained in the downlink. Notice that, in the uplink case,
the model of the received signal is different from the one
provided in (7) since an antenna array should be considered
at the receiver side. As a result, the localization will be based
on the estimation of the AOA, as typical in many existing
approaches, while we recall that the present contribution
focuses on leveraging AOD information. Therefore, in the
following we will consider the proper modified expressions
for the theoretical bounds, as derived in the literature [11].

As anticipated in Sec. III-A, we also investigate the per-
formance of the proposed estimators in presence of multipath
propagation. Notice that, in this case, the estimation perfor-
mance is evaluated in a simulation environment that is not
matched to the design assumption of the proposed algorithms.
More precisely, it is assumed that, in addition to the direct LOS
link, two different NLOS paths are present at the receiver side.
Assuming that only one dominant reflector is present in each
NLOS path [48], we can compute the path loss ρk for the k-th
NLOS link with path length dk according to

1/ρk = σ2
0P0(dk)

(
λc

4πdk

)2

(48)

where P0(dk) = (γrdk)2e−γrdk denotes the Poisson distri-
bution of the environment geometry with density γr, and
k = 1, 2. According to [48], we consider a density γr = 1/7
and set the average reflection loss for the first-order reflection
σ2
0 to 10 dB with the root-mean-square (RMS) deviation equal

to 4 dB. To analyze the sensitivity of the proposed estimators
to multipath effects, we consider the following definition of
LMR:

LMR =
PLOS∑2
k=1 P

k
NLOS

=
1/ρ

1/ρ1 + 1/ρ2
(49)
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Fig. 4: RMSEs of the estimated d, θ, and p versus CRLBs as function
of the transmissions G for SNR = 5 dB in LOS condition.

where PLOS is the power associated to the LOS path, while
P kNLOS is the power of the k-th multipath component.

The elements of the analog beamformers FRF are generated
as uniform random values on the unit circle. Since we are not
dealing with the design of beamformers, in the analysis we
assume a number of RF chains equal to 10, but the proposed
techniques are general and can be particularized to any specific
design of beamformers. As concerns the sequences x̄g[n] =
FgBB[n]xg[n], they are computed as complex exponential terms
ejφn,g having random phases uniformly distributed in [0, 2π)
along different subcarriers n and different transmissions g,
respectively. Finally, we define the SNR in dB as

SNR def
= 10 log10

(
Pt

ρN0B

)
(50)

where log10( ·) denotes the base-10 logarithm and N0B is
the receiver noise figure, i.e., N0B = kBT0B, kB being
the Boltzmann constant and T0 the standard thermal noise
temperature.

We consider the Root Mean Squared Error (RMSE) as
metric to assess the algorithms performance, estimated based
on 1000 Monte Carlo trials.

B. AOD, TOF and Position Estimation in LOS

In this section, we assess the performance of the proposed
algorithms assuming only the LOS component is present.

In Fig. 4 we depict the RMSE of the estimated values of
d = cτ , θ and p as function of the number of transmissions
G for SNR = 5 dB, compared against the theoretical bounds
derived based on the FIM analysis in Sec. IV. More precisely,
the values of

√
CRLB( ·) are obtained similarly to the PEB

defined in (46), i.e., by inverting the FIM Jγ from (42),
choosing the corresponding diagonal entries and taking the
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square root. For comparison, we have also added the perfor-
mance of the two-dimensional ML estimator in (22). For the
implementation of the MM algorithm, we compared the one-
lag based estimator in (38) with the multi-lag extension in
(39), assuming a number of lags L = 2. We observed that
both estimators exhibit almost the same performance in the
considered scenario.

As it can be seen from Fig. 4, the UML algorithm converges
to the corresponding bounds for almost all the considered
values of transmissions G. Remarkably, it exhibits very good
estimation performance even in case of G = 1, achieving the
same accuracy as the two-dimensional ML estimator, but at a
significantly reduced computational cost.

Starting from a sufficient number of transmissions G = 10
— which we recall is the limit condition for defining the
right pseudoinverse X+

i required in (34) — we can observe
that the performance of the MM estimator is worse than
that of the UML, but still acceptable in terms of achieved
accuracy. As the solid (magenta) curves show, the RMSE of
d̂ exhibits a small gap with respect to the theoretical lower
bound, which however starts to decrease as more transmissions
G are available, thanks to an increasingly accurate estimation
of the first-order moment in (37). On the other hand, the RMSE
of θ̂ approaches the theoretical bounds for G ≥ 15. As the
bottom plot in Fig. 4 shows, this results in an overall position
error which is always below 60 cm and tends to decrease
as G increases, achieving performance very close to the one
provided by the UML, but at the lower cost of a single one-
dimensional search.

It is worth noticing that the total transmitted energy is not
fixed and independent of the number of transmissions G, but
increases with G. Thus, the RMSE decreases with 1/

√
G due

to the availability of more data in the estimation process. Just
to give a concrete example, in the interval G ∈ [10, 20] the
RMSE drops by a factor of 1/

√
2, that is, it decreases since

the transmitted energy grows with G (in the specific case, it
doubles).

Fig. 5 shows the evolution of the RMSEs of d, θ and
p with respect to different values of the received SNR for
the challenging case of G = 1 in both uplink and downlink
channels. It is worth noting that, in this case, the pseudoinverse
matrix X+

i in (34) is not defined and hence the MM estimator
cannot be implemented. By comparing the obtained results, it
can be seen that a higher estimation accuracy is achieved in
the uplink channel. This behavior can be linked to the fact that,
in the uplink channel, a NBS-dimensional vector of samples is
available for each subcarrier, thus resulting in better estimation
conditions with respect to the downlink channel, as confirmed
by the smaller values of the bounds (dashed-dot red curves).

Interestingly, the proposed UML estimator performs well
even for very low values of the received SNR, which is a
typical operating condition in mmWave systems before beam-
forming stage. On the other hand, it should be noticed that
the UML attains the theoretical bounds also in the downlink
channel, starting from values of SNR of about 10 dB.

In addition to a direct comparison on the achievable per-
formance, there are several aspects that should be jointly
considered when comparing uplink and downlink localization

SNR (in dB)
0 5 10 15 20 25

R
M
S
E
(d̂
)
[m

]

10−2

10−1

100

101 UML - Downlink
UML - Uplink
√

CRLB(d) - Downlink
√

CRLB(d) - Uplink

SNR (in dB)
0 5 10 15 20 25

R
M
S
E
(θ̂
)
[r
ad

]

10−4

10−3

10−2

10−1
UML - Downlink
UML - Uplink
√

CRLB(θ) - Downlink
√

CRLB(θ) - Uplink

SNR (in dB)
0 5 10 15 20 25

R
M
S
E
(p̂

)
[m

]

10−2

10−1

100

101 UML - Downlink
UML - Uplink
√

CRLB(p) - Downlink
√

CRLB(p) - Uplink

Fig. 5: RMSEs of the estimated d, θ, and p versus CRLBs as function
of the SNR for G = 1 in LOS condition for both uplink and downlink
channels.

from a system perspective. More precisely, it should be
observed that, in general, the power budget in the uplink
is lower than that experienced in the downlink, which in
turn results in much lower values of the SNR. Furthermore,
localization exploiting the uplink channel would require that
proper resource allocation techniques are implemented at the
BSs. The main drawback of such techniques consists in the
fact that the maximum number of served users is usually fixed
during the deployment phase and cannot be easily updated
over time. Moreover, the storage of sensitive data (positions
of users) raises a number of additional issues concerning
legal aspects related to both privacy and data protection.
Conversely, the downlink channel is characterized by better
SNR conditions and allows multiple (potentially unlimited)
users to be localized by exploiting broadcast signals. In doing
so, the additional issues related to both resource allocation and
data protection are completely avoided. We however remark
that an exhaustive comparison between downlink and uplink
localization should include other aspects that are beyond the
scope of the present contribution.

C. AOD, TOF and Position Estimation in LOS + NLOS

In this section, we evaluate the algorithms performance
assuming that, in addition to the direct LOS path, two NLOS
paths due to multipath propagation are also present. To an-
alyze how the positions of the reflectors impact the ultimate
performance of the proposed algorithms, we investigate the
following two different scenarios:
• In a first setup, we keep fixed the positions of BS and MS

and assume the two reflectors are placed at [0 7]T [m] and
[10 6]T [m], respectively. Under this scenario, the AOD
related to the LOS path is equal to θ0 = 77◦ and the
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TOF τ0 is such that the distance between the BS and MS
d0 = cτ0 = 15.1 meters. As concerns the NLOS channel
parameters, the two AODs are θ1 = 41◦ and θ2 = 113◦,
while the related delays are such that d1 = d1,1 + d1,2 =
cτ1 = 19.5 meters and d2 = d2,1 + d2,2 = cτ2 = 17
meters, respectively;

• In a second setup, we move the MS closer to the second
reflector, that is, we set p = [10 8]T [m]. In this case,
θ0 = 48◦ while the TOF τ0 is such that d0 = 10.6 meters.
Clearly, the AODs of the two NLOS paths remain the
same while the related delays change according to the
variation in the MS position, that is, they are such that
d1 = 11.2 meters and d2 = 17.7 meters, respectively.

As it can be noticed, the first scenario corresponds to a more
favorable case where LOS and NLOS paths are well-separated
in both time and space domains. Conversely, the second setup
is more challenging since both θ0 and τ0 are very close to
θ2 and τ2, hence the LOS link cannot be easily distinguished
from the NLOS path generated by the second reflector.

1) Well-separated paths: In Fig. 6a we report the RMSEs
of d, θ and p as function of different levels of LMR for
G = 10 and SNR = 15 dB assuming the LOS and NLOS
paths are well-separated. As it could be expected, the obtained
performance is worse than that in LOS-only (depicted as
dashed curves for reference), especially for non-negligible
levels of multipath power. Nevertheless, a high level of po-
sition accuracy can still be achieved for mid to high values of
LMR, with the UML algorithm exhibiting the same estimation
performance of the more computationally demanding ML
2D. The localization capability of the MM algorithm is also
interesting, at least for non-severe multipath, as confirmed by
the solid (magenta) curves.

2) Closely-spaced paths: In Fig. 6b we report the RMSEs
of d, θ and p for the same values of the parameters assumed
in the previous case, but in the more challenging scenario
where the LOS link cannot be easily distinguished from the
NLOS path generated by the second reflector. Interestingly,
the obtained results reveals that the proposed approaches can
correctly cope also with the presence of NLOS paths that
are very close (in both time and space) to the LOS link,
with a slight degradation of the achieved performance only
for small values of the LMR. These results show that the
proposed algorithms are effective also in presence of multipath
propagation.

VI. CONCLUSION

We have addressed the problem of determining the unknown
MS position in a mmWave MISO system based on the AOD of
received downlink signals. Such a setup has several attractive
properties compared to the more conventional uplink case;
in particular, AOD can be conveniently estimated using a
single receive antenna, thus providing an efficient way for
locating a receiver while avoiding the complexity of large
arrays. We have performed a thorough theoretical analysis,
providing the exact solution to the ML estimation problem
and deriving the fundamental lower bounds on the estimation
uncertainty for both channel and position parameters. To

circumvent the need for multidimensional optimization of
the joint ML estimator, we proposed two novel estimators
more amenable to practical implementation. The performance
assessment demonstrated that different accuracy/complexity
trade-offs exist; however, remarkably, it is possible to achieve
almost the same performance of the exact ML estimator, at a
fraction of its computational burden, even in presence of few
transmissions, low SNRs, and multipath propagation effects.
Our work shows that low-complexity estimation of delay and
AOD is indeed possible with a single receive antenna, provided
at least two distinct (either in time or frequency) signals are
sent by a multi-antenna transmitter.

APPENDIX

Necessary conditions for non-singular FIM

For clarity, we drop τ from the unknowns and consider the
case G = 1 (allowing us to drop the index g), and introduce

ζ[n] = aH(θ)s[n]

ξ[n] = aH(θ)Bs[n],

from which we create length N vectors

ζ = STa∗(θ) (51)

ξ = STBa∗(θ), (52)

where S has as columns the N pilots s[n]. The FIM is then
given by (up to irrelevant constants)

Jγ ∝
N−1∑
n=0

<{∇m[n]∇Hm[n]} (53)

∇m[n] ∝ [ζ[n], jrζ[n], − jκπ cos θrξ[n]]
T (54)

where κ = 2d cos θ/λc. Substitution of (54) into (53) yields

Jγ ∝

 ζHζ 0 rκ=(ξHζ)
0 r2ζHζ r2κ<(ξHζ)

rκ=(ξHζ) r2κ<(ξHζ) r2κ2ξHξ


where ={·} denotes the imaginary-part operator. This matrix
is full-rank if and only if its determinant is non-zero. Com-
puting the determinant, we find that all terms are proportional
to ζHζr4κ2, so that

detJγ = 0 ⇐⇒ ζHζξHξ − (<(ξHζ))2 − (=(ξHζ))2 = 0

⇐⇒ ‖ζ‖2‖ξ‖2 = |ξHζ|2.

From the Cauchy-Schwarz inequality for complex numbers, it
then follows that the FIM is singular if and only if ζ and ξ
are parallel, i.e., there exists a u ∈ C so that ξ = uζ. It then
follows immediately that:
• when N = 1, ζ and ξ become scalars, which are

necessarily parallel and thus Jγ is singular;
• when N > 1, a necessary and sufficient condition for a

non-singular Jγ is that the columns of S are not parallel.
Thus, a necessary and sufficient condition for a non-singular
FIM with a single transmission (G = 1) is that we use at least
N = 2 subcarriers and that the pilots across those subcarriers
are different (non parallel). It can similarly be shown that when
N = 1, we must use at least two transmissions with different
pilots.
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(a) Well-separated paths.
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Fig. 6: RMSEs of the estimated d, θ, and p as function of the LMR for G = 10 and SNR = 15 dB for (a) well-separated and (b) closely-spaced
paths. The dashed-curves represent LOS performance for reference.
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Universitat Autònoma de Barcelona, where he has been Vice Dean of the
Engineering School since 2011 and he is currently a Professor. His research
interests include satellite and terrestrial localization systems. Since 2018, he
has been serving as a member of the Sensor Array and Multichannel Technical
Committee of the IEEE Signal Processing Society. He was a recipient of the
2013 ICREA Academia Award.


