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Abstract

Recent advances in the understanding of basic pathological
mechanisms in various neurological diseases depend directly
on the development of novel bioanalytical technologies that
allow sensitive and specific chemical imaging at high
resolution in cells and tissues. Mass spectrometry-based
molecular imaging (IMS) has gained increasing popularity in
biomedical research for mapping the spatial distribution of
molecular species in situ. The technology allows for compre-
hensive, untargeted delineation of in situ distribution profiles
of metabolites, lipids, peptides and proteins. A major advan-
tage of IMS over conventional histochemical techniques is its
superior molecular specificity. Imaging mass spectrometry

has therefore great potential for probing molecular regula-
tions in CNS-derived tissues and cells for understanding
neurodegenerative disease mechanism. The goal of this
review is to familiarize the reader with the experimental
workflow, instrumental developments and methodological
challenges as well as to give a concise overview of the
major advances and recent developments and applications of
IMS-based protein and peptide profiling with particular focus
on neurodegenerative diseases.
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Background

Many neurodegenerative diseases including Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s dis-
ease, Amyotrophic lateral sclerosis (ALS), and multiples
sclerosis are characterized by progressive neuronal degener-
ation and accumulation of misfolded proteins into intra and/
or extra cellular neurotoxic deposits (Taylor et al. 2002).
However, the exact molecular mechanisms that account for
neurodegeneration and protein pathology in these diseases
are still not resolved, which in turn significantly hampers the
development of curative treatment strategies. One factor
contributing to the limited understanding of the underlying
molecular mechanisms in neurodegenerative diseases is the
paucity of biochemical tools that feature the necessary
sensitivity, specificity, spatial- and temporal resolution,
respectively, in order to delineate molecular mechanisms at
cellular length scales. In this respect, chemical imaging
techniques are essential bioanalytical tools to gain in-depth
understanding of molecular changes at the subcellular level.
For probing spatial changes of distinct molecular targets
in vivo and in situ, different biochemical imaging technolo-
gies can be employed. This includes primarily immunohis-
tochemistry (IHC) and in situ hybridization but also the use
of chemical probes (Aslund er al. 2009), nanoparticles
(Smith and Gambhir 2017), proximity ligation/extension
(Gomes et al. 2016) as well as spectroscopic methods (Evans
et al. 2005; Schmid ef al. 2013). However, a major
challenge lies on obtaining suitable spatial resolution while
maintaining high molecular specificity and selectivity as well
as high sensitivity.

The advent of novel ionization techniques for mass
spectrometry that facilitate soft ionization of large biomo-
lecules, including matrix-assisted laser desorption ionization
(MALDI) (Karas and Hillenkamp 1988; Tanaka et al.
1988) and electrospray ionization (ESI) (Fenn et al. 1989)
paved the way for mass spectrometry (MS) to become the
method of choice for protein and peptide characterization
giving rise to an entire novel research field, proteomics
(Aebersold and Mann 2003), corresponding to the charac-
terization of all proteins in a biological sample at a distinct
condition and place in time. Mass spectrometry-based
proteomics of dissected tissues is a valuable tool for
sensitive in situ identification and quantitation of proteins
and endogenous peptides, including, e.g., neuropeptides
(Svensson et al. 2003). However, a major limitation in
tissue proteomics remains with respect to delineating spatial
resolution of analyte localization, as spatial information
within the respective tissue compartment is not obtained.
Given the complexity of the human nervous system, spatial
information on protein and peptide distributions is of
significant interest in order to resolve ongoing molecular
mechanisms. Moreover, neuroactive peptide species are
involved in numerous neuronal signaling processes and
their localization is, therefore, of essential relevance for
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identifying their distinct role in the respective signaling
pathways.

Imaging mass spectrometry

Imaging mass spectrometry (IMS) has been demonstrated to
be a powerful approach for probing spatial distributions of
molecular species in situ. Unlike other, more established,
biochemical imaging techniques, IMS allows for label-free
analysis without any a priori knowledge of the potential
target species. Although IMS analyses are by nature
untargeted, the sample preparation can be tailored for
different classes of target molecules of interests. The most
prominent IMS techniques include MALDI-based IMS, time
of flight secondary ion mass spectrometry (ToF-SIMS)
imaging and desorption electrospray ionization IMS (DESI).
In MALDI IMS, commonly a UV laser is used for ion
desorption and ionization from tissue sections that have been
pre-coated with a UV-light absorbing matrix (Spengler et al.
1994; Caprioli et al. 1997). In ToF-SIMS, molecular species
are desorbed and ionized using a focused beam of primary
ions (Fletcher et al. 2011); while DESI is based on focusing
an electrospray onto the sample surface allowing IMS data
acquisition at atmospheric pressure (Takats ef al. 2004).

The different ionization methods employed in IMS are
characterized by complementary strengths and limitations,
which concerns mainly the spatial resolution, mass accuracy
and mass resolution, chemical specificity, selectivity as well
as molecular mass range (McDonnell and Heeren 2007).

The common IMS procedure involves the sequential
acquisition of mass spectrometry experiments in sifu in a
pre-defined raster pattern or array, termed microprobe mode
(Spengler et al. 1994) (Fig. 1). Alternatively, efforts have
been demonstrated to perform IMS in microscopy mode,
where a wide field of view is desorbed by an unfocused
projectile following transfer and visualization of the desorbed
ions using electromagnetic lenses (Luxembourg et al. 2004).
Both methods allow then to generate spatial intensity
distribution maps of a distinct molecular species over the
analyzed mass spectrometry analysis array (Fig. 1c).

For assessing the performance and suitability of IMS for
analysis of different molecular species in different tissues and
with different biological context, typically two parameters
are considered primarily: (i) spatial resolution and (ii)
molecular mass range. Both parameters depend on the
desorption method including the size of the probe and the
mass detector architecture as well as importantly the sample
preparation.

Spatial resolution of an IMS method is commonly
interchangeably used with pixel resolution, defined by the
point-to-point distance of each spot where an MS experiment
is acquired according to the pre-defined acquisition pattern.
However, this is only true for discontinuous microprobe
mode experiment (McDonnell and Heeren 2007). In contrast,
continuous IMS methodologies have been presented, where
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the probe is continuously sampling while the sample stage is
moved at constant speed (Simmons 2008; Spraggins and
Caprioli 2011). Moreover, the actual spatial resolution
corresponds rather to the size of the probe and the ability
to desorb the sample from two adjacent spots without
interfering signal. A further special case of microprobe
imaging MS, that potentially complicates the definition of
spatial resolution, is oversampling, where the pixel resolution
is smaller than the size of the probe (Jurchen et al. 2005;
Wiegelmann et al. 2016). This illustrates that the resolution
terminology as used, e.g., for optical imaging cannot directly
be adopted to IMS. For convenience in this review, the term
‘spatial resolution’ will be used hereafter when discussing the
lateral resolution of intensity distribution data generated by
IMS.

IMS provides high molecular specificity afforded by mass
spectrometry, allowing comprehensive image analysis of a
multitude of lipids, peptide and proteins in complex biolog-
ical tissues (for other comprehensive reviews see: Cornett
et al. 2007; Seeley and Caprioli 2008; McDonnell and
Heeren 2007; Norris and Caprioli 2013). Using IMS allows
the identification of chemical profiles associated with
histological features and regions of interest (ROI). IMS and
in particular MALDI IMS have therefore over the last 10—
15 years become a more and more recognized technology for
probing histochemical changes associated with disease
pathology, primarily in cancer research (Schwamborn and
Caprioli 2010b; McDonnell et al. 2017). Moreover, IMS has
become a valued technique in drug development to study

Fig. 1 Principle  of  imaging mass
spectrometry  (MALDI-IMS). (a) Tissue
sections are collected, mounted on a
target for imaging mass spectrometry and,
in case of MALDI IMS, pre-coated with a
matrix  (indicated in yellow), before
systematic scanning with a laser probe. (b)
One mass spectrum is acquired for every x;
y; coordinate of the scanned tissue section.
(c) Single ion images are generated by

m/z mapping the intensity of an individual ion
signal (m/z;rel.Int) over the whole tissue
section.

effects of pharmacotherapy, drug safety as well as for
studying pharmacokinetics and drug metabolisms (Nilsson
et al. 2015; Goodwin et al. 2016).

MALDI imaging MS is of particular relevance for protein
and peptide analysis as it is to date the only IMS technique
that has been demonstrated for robust in situ neuropro-
teomics and neuropeptidomics in single nerve cells (Kruse
and Sweedler 2003; Rubakhin er al. 2003), invertebrate
tissue (Hummon ef al. 2006; Chen et al. 2010; Ye et al.
2013) as well as within rodent and human CNS tissue in a
neurological disease context (Pierson er al. 2005; Monroe
et al. 2008; Hanrieder et al. 2013b, 2015). It is, however,
important to mention that there are of course very exciting
developments, using other IMS modalities such as metal
enhanced SIMS for neuropeptide imaging (Altelaar et al.
2006), the use of novel gas cluster ion sources for ToF-
SIMS-based peptide detection as well as a DESI MS-based
method for protein imaging (Feider et al. 2016) that all hold
great promise for future applications.

Still, given the prominent role of MALDI IMS for imaging
of neuropeptides and neuroproteins, the present review is
focused on MALDI IMS. Herein, different concepts and
challenges with respect to sample collection, tissue prepara-
tion, data acquisition and analysis as well as molecular
validation are discussed. Finally, an overview of MALDI
IMS applications for probing spatial protein and peptide
regulations is provided with focus on applications to
neurodegenerative disease pathology including Parkinson’s
disease and in particular Alzheimer’s disease. There is a
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number of recent reviews that focus on the more method-
ological parts of the technique as well as applications in other
clinical disciplines (Dreisewerd 2014; Aichler and Walch
2015; Bodzon-Kulakowska and Suder 2016; Baker et al.
2017; Schwamborn et al. 2017; Vaysse et al. 2017). While
the general aim of this review is to give a full picture of
current developments, the authors apologize if not every
study within the field is included.

MALDI imaging MS

During the 1990s, Bernhard Spengler and Richard Caprioli
demonstrated the application of MALDI for spatial analysis
of proteins and peptides in biological tissues (Spengler et al.
1994; Caprioli et al. 1997). In MALDI, as well as in ESI,
molecular ions of large, intact biomolecules such as lipids,
peptides and proteins can be transferred into the gas phase
with minimal in source fragmentation as compared to other
ionization techniques available before. In source fragmenta-
tion has, however, still to be considered as labile protein side
groups such as various post translational modifications as
well as sugar residues of glycolipids can dissociate during the
laser desorption/ionization process. In conventional MALDI
imaging, a UV light absorbing crystalline matrix is co-
crystallized together with the sample, which facilitates
desorption and ionization of intact large biomolecules upon
irradiation with a UV laser beam (Karas and Hillenkamp
1988) (Fig. 1). Similarly, MALDI efforts using IR lasers and
IR absorbing matrices have been presented that allow
detection and imaging of intact proteins (Dreisewerd et al.
2007a,b).

MALDI is a quick, sensitive and robust technique that
features a large molecular mass range and has been
demonstrated for detection of large protein complexes up
to 1MDa in weight (Wenzel et al. 2005). While this has
not been entirely realized for in situ detection, MALDI
imaging of large proteins up to ~ 70 kDa in weight has
been demonstrated, although this required instrument
modifications with a high mass detector (van Remoortere
et al. 2010).

In contrast, the detection of smaller low-molecular weight
molecules (< 500 Da) such as drugs, metabolites and
neurotransmitters is challenging as the mass signals gener-
ated by the matrix interfere with those species. Several,
elegant solutions to overcome this issue have been presented,
including surface activated laser desorption/ionization
(Northen et al. 2007) without any organic matrices as well
as other strategies, including use of a stable isotope modified
matrix or MS/MS methodologies and most elegantly by
in situ derivatization as demonstrated for neurotransmitters in
PD (Shariatgorji et al. 2014).

In MALDI IMS, a spatial resolution of 5-10 pm is
typically achieved and was even demonstrated down to
1.4um, using a specially designed source setup (Kompauer
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et al. 2017) or 1um using a transmission geometry source
setup (Zavalin et al. 2015).

The spatial resolution of MALDI IMS is restricted by
multiple parameters such as the focus of the laser, if not
running in oversampling mode, as well as the size of the
matrix crystals. In addition, lateral diffusion effects that can
occur during the various sample preparation steps impact
spatial resolution significantly (Spengler and Hubert 2002;
Jurchen et al. 2005; Rompp et al. 2010; Kompauer et al.
2017). Furthermore, for each IMS experiment, practical
consideration when choosing the spatial resolution need to be
given to how many samples and what size of tissue areas are
analyzed as high spatial resolution implies longer acquisition
time and lower sample throughput.

In preparation to designing an imaging MS-based strategy
for in situ detection of peptides and proteins, various
parameters with respect to sample preparation have to be
considered that will have significant impact on sensitivity,
sample stability and data reproducibility, spatial resolution,
molecular mass range of the target species and sample
throughput.

Particular attention has been put on all parts of the sample
preparation workflow for MALDI IMS that involves every
step from tissue retrieval, tissue section collection, sample
fixation and clean up followed by matrix application. All of
these steps have therefore to be adjusted and optimized for
each tissue type and most importantly, the molecular targets
of interest.

Sample preparation for MALDI imaging of proteins and
peptides

Sample collection

For all IMS experiments, tissue retrieval from animal- or
human sources, as well as tissue storage, are most critical for
data quality. Both chemically fixed tissue, such as formalin-
fixed paraffin-embedded, and fresh-frozen tissue, can be
analyzed with IMS, though fresh-frozen tissue is most
commonly used. This is mainly due the fact that chemical
perfusion and fixation strategies are not easily compatible
with mass spectrometry-based analyses as these polymeric
fixation and embedding agents, such as paraformaldehyde
(PFA) and paraffin, do interfere with the MS detection. Still,
elegant solutions to overcome these obstacles have been
proposed, including in situ trypsination following paraffin
removal and antigen retrieval (Gustafsson et al. 2010;
Meding et al. 2013). Furthermore, recent developments
show successful detection of lipids and peptides (Pietrowska
et al. 2016) and even metabolites (Buck et al. 2015; Urban
et al. 2018) in formalin-fixed and paraffin-embedded spec-
imen which is opening up tremendous opportunities for
MALDI imaging-based histology studies on large patholog-
ical sample sizes that are available in tissue banks (Gorzolka
and Walch 2014; Longuespee et al. 2014).
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Yet, use of fresh-frozen tissue for molecular analysis of
ex vivo tissue samples is still most common for IMS. Here,
rapid freezing, leading to formation of amorphous, vitreous
solid state of water, rather than the crystalline form, is crucial
for preservation of protein integrity at cellular and subcel-
lular, and general tissue morphology, which is otherwise
compromised by cell wall rapture. Such instant ‘snap-
freezing’ or ‘flash-freezing’, is typically carried out by
submersion of freshly dissected tissue in liquid nitrogen. This
maximizes the surface area of tissue that is in contact with
the coolant and offers in principle the fastest rate of cooling.
However, formation of a vapor barrier at the surface of warm
tissue can result in uneven freezing. Therefore, liquid
nitrogen cooled-, and sometimes dry ice cooled, isopentane
is also used, in particular for larger specimens, such as whole
rodent brains. Since postmortem delays of more than 3 min,
result in severe degradation of neuropeptides (Goodwin et al.
2008), tissue isolation and freezing should be performed
rapidly. Protein degradation, can be minimized using ex vivo
heat stabilization strategies for protease inactivation (Good-
win et al. 2010). This, however, affects the morphology of
the sample, making it less suitable for spatial molecular
analysis. Cryosections from fresh-frozen tissues can then be
collected on a cryostat microtome at —15 to —20°C and
thaw-mounted within the cryostat onto metal targets or
special glass slides with a conductive coating. Here,
challenges arise from freeze damages caused by ice forma-
tion through condensation unless the tissues are dried directly
before storage.(Hanrieder et al. 2012a).

Tissue section preparation

Following sample collection, tissue sections need to be
prepared through appropriate sample clean up, such as
washing, and application of the matrix. Here, the selection
of appropriate washing protocols of the tissue sections is a
critical step. Several washing steps using organic solvent/
aqueous solutions can be used in order to remove compo-
nents that could interfere with the MS analysis and to
enhance the signal quality of the analytes of interest. For
lipid analysis, washing steps with organic solvents are
omitted as these can result in delipidation. However,
recently a cleanup protocol based on ammonium acetate
was demonstrated for efficient desalting prior to lipid
imaging resulting in enhanced signals for various lipid
species (Wang et al. 2011). For imaging of drugs, neu-
ropeptides and proteins advanced multistep washing proto-
cols are typically employed prior to matrix application.
These consist of pH optimized organic and aqueous washes,
that aim to precipitate the peptides and proteins, remove
lipids, and wash off salts that could interfere with the signal
(Seeley et al. 2008; Hanrieder et al. 2012a; Shariatgorji
et al. 2012). Several washing protocols have been evaluated
for enhancing protein signals in MALDI imaging. Here,
stepwise washing with gradient alcohol was found to give

the most significant improvement in signal quality (Seeley
et al. 2008; Martin-Lorenzo et al. 2014).

Matrix application

For applying the matrix onto the tissue section, different
approaches can be used such as nebulizer-based methods or
micro-spotting with a chemical printer. Each method has its
own strengths and limitations. While manual application with
an airbrush nebulizer is the most straightforward and cost-
effective solution, it is severely hampered by its lack in
reproducibility as well its susceptibility to sample diffusion
as well as limited extraction efficiency. However, commer-
cially available nebulizer-based solutions (ImagePrep, Bru-
ker Daltonics, Bremen, Germany; TM sprayer, HTX
Technologies Carrboro, NC, USA; SunCollect, Sunchrome,
Napa, CA, USA), as well as open access solutions
(iMatrixSpray, (Stoeckli et al. 2014)), can help to overcome
these challenges with respect to reproducibility as well as
extraction efficiency. A further, even more controlled matrix
application technique involves deposition of pL-droplets of
the matrix solution, (micro-spotting). For this approach, a
chemical inkjet printer can be employed (e.g., ChiP;
Shimadzu, Kyoto, Japan) or alternatively, a pneumatic
vertical spotter (Portrait; Labcite, Sunnyvale, CA, USA)
can be used (Aerni et al. 2006; Baluya et al. 2007), although
both setups are discontinued by their manufacturers. Due to
the accurate and repetitive deposition of matrix droplets,
challenges with lateral analyte diffusion as observed for
nebulizer approaches are overcome (Aerni et al. 2006). In
addition, these matrix micro-spotting technologies are supe-
rior in terms of sensitivity and reproducibility due to
enhanced extraction, allowing in situ quantification of low
abundant neuropeptides (Hanrieder e al. 2011). This is,
however, at significantly lower spatial resolution due to the
size of these micro-spots typically ranging in between 150
and 200 pm. Finally, an elegant methodology based on
sublimation and recrystallization for protein imaging has
been presented allowing straightforward and cost effective
matrix application along with protein imaging at a high
spatial resolution (Yang and Caprioli 2011).

A large variety of different matrices have been reported for
MALDI IMS, where different matrices display preferential
ionization properties for different kinds of analytes (for
review see e.g., Norris and Caprioli 2013; Schwartz et al.
2003). Hence, the choice of matrix depends largely on the
targeted substance. Matrix application method development
aims to overcome distinct challenges of MALDI sample
preparation with respect to crystal size, extraction efficiency,
interfering matrix cluster, mass range as well as, most
importantly, signal quality and reproducibility.

For protein and peptide analysis, the most prominently
used matrices are 2,5-dihydroxy-benzoic acid (DHB) (Stru-
pat et al. 1991; Schwartz et al. 2003), sinapinic acid (SA)
(Beavis and Chait 1989), 2,5-dihydroxy acetophenone (2,5-
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DHA) (Zavalin et al. 2015) and 4-hydroxy-alpha-cyano-
cinnaminic acid (HCCA) (Beavis et al. 1992). DHB-based
MALDI IMS was demonstrated as a reliable approach for
reproducible and sensitive neuropeptide imaging, using the
micro-spotting approach (Hanrieder er al. 2012a). Further,
HCCA and 2,5-DHA have been demonstrated as convenient
approaches for MALDI IMS of peptides and small proteins.
HCCA has limitations for larger protein species and displays
extensive cluster formation, convoluting the lower mass
range (< 700 Da), which in turn impacts detection of smaller
compounds including small neuropeptides such as, e.g., Leu-
enkephalin. 2,5-DHA and SA on the other hand allow
detection of larger protein species;, though 2,5-DHA is less
stable in vacuum than SA, thereby limiting the overall
acquisition time and throughput, respectively.

Finally, a common feature for all matrices that impacts
spatial resolution and hence requires attentive optimization is
the crystal size. This is mainly related to formation of too
large droplets, i.e., too wet matrix application. In addition,
some matrices like DHB form larger crystals than others.
However, optimal solvent systems along with optimized
parameters of currently used nebulizer setups allow to control
for this issue. In addition, rather dry matrix application
methods, including dry coating and sublimation result in a
very small crystal size (Hankin et al. 2007; Puolitaival et al.
2008; Goodwin et al. 2011; Murphy et al. 2011; Thomas
et al. 2012). While this allows for IMS at high spatial
resolution, there are limitations as these methods typically
show less efficient analyte extraction and limited suitability
for protein imaging. Moreover, there are limitations with
respect to analysis time and sample throughput as the
matrices used are less stable in high vacuum. One solution to
overcome the sensitivity issues includes sublimation along
with matrix recrystallization, which was demonstrated to
give significantly enhanced signal intensity for protein
imaging (Yang and Caprioli 2011).

In summary, the different properties of the various
matrices have to be taken into consideration, when designing
the IMS experiments. Further, the solvents used in the matrix
solution have to be optimized with respect to organic and
hydrophilic solvent content along with acid and base
additives to achieve the correct pH value allowing optimal
extraction of the target species along with good solubility of
the matrix compounds. Here, mixtures of water with
acetonitrile, methanol, and ethanol are commonly used along
with acetic acid, formic acid or tri-fluoro acetic acid and
ammonium -bicarbonate, -acetate or -formate buffers for
adjusting the pH value.

IMS data acquisition

Acquisition of IMS data involves the in situ desorption and
ionization of molecular targets followed by ion separation and
detection in a mass analyzer that allows to determine the mass
to charge (m/z) ratio for the molecular targets of interest. As
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MALDI is a discontinuous, pulsed ion source, ToF mass
analyzers are most commonly used for ion separation and
detection as these analyzers operate in a pulsed fashion as well
and can therefore easily be implemented with the laser source.
ToF analyzers, especially in conjunction with MALDI
sources, provide high sensitivity, a large mass range and high
acquisition speed at very good mass resolution and mass
accuracy, respectively. The dominance of ToF analyzers for
MALDI IMS is, however, changing as recent developments in
source design and ion optics paved the way for other MALDI
IMS architectures including hyphenation to FT (Fourier
Transform) mass analyzers including orbitraps (Landgraf
et al. 2009; Rompp et al. 2010) as well as Fourier transform
ion cyclotron resonance iontraps (FTICR) (Taban et al. 2007;
Spraggins et al. 2015; Dilillo et al. 2017; Prentice et al.
2018). These platforms feature tremendous improvements
with respect to mass resolution and mass accuracy as well as
MS/MS capabilities. This allows to retrieve amino acid
sequence information of individual peptide and protein species
in situ as well as for characterization of fatty acid patterns of
lipids as recently presented with a very powerful approach for
automated, in parallel MS/MS imaging (Ellis et al. 2018). Due
to their high resolving power, FT mass analyzers are
preferentially used within the pharmaceutical industry, where
drugs are characterized by their intact mass and isotope pattern
as reviewed in detail elsewhere (Prideaux and Stoeckli 2012).
Beyond the development of FT analyzers other ToF-based
architectures have become a recognized alternative. This
includes MALDI qToF systems (Waters Synapt, Wilmslow,
UK) that allow for ion mobility of desorbed ions prior to ToF-
based detection. This can increase sensitivity and facilitate
separation of isoforms and isobaric species, as well as provide
structural information and enhance protein identification
(Stauber et al. 2010). Other ToF-based systems include the
spiralToF (Jeol, Peabody, MA, USA) that allows high mass
resolution imaging (Muller e al. 2017) as well as the MALDI
ion trap—ToF (Shimadzu Axima, Kyoto, Japan), which
facilitates MSn fragmentation and enhanced structural char-
acterization, respectively (Shimma et al. 2008).

For state of the art MALDI imaging experiments, decisive
factors involve sensitivity, selectivity and specificity at high
spatial resolution and sample throughput. Commonly, these
parameters do influence each other diametrically, such as that
high spatial resolution results in limitations with respect to
sensitivity and sample throughput. Consideration has there-
fore to be put on choosing a fair tradeoff in between these
factors depending on the type of sample and study design for
exploratory/pilot studies, mechanistic investigations or large-
scale (pre)-clinical screenings.

Validation of IMS protein and peptide data

While IMS is s a very powerful approach for comprehensive
visualization of multiple proteins and peptides in situ,
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complementary strategies for validation of the putatively
identified peptides/proteins are needed. This includes vali-
dation and verification of both the putatively assigned peak
identities that show potentially relevant spatial localizations
as well as biological validation of the histopathological
context. Mass peak indentity validation is particularly
relevant in IMS of intact proteins that are acquired in linear
mode, where the mass accuracy and resolution of the ToF
analyzer do not permit unambiguous identification based on
the accurate mass. Further, one needs to take into consid-
eration potential sources of bias inherent to the methodology,
such as, for instance, suppression effects, which could result
in false positive findings and wrong interpretation. For
validating both, peak identity and potential histological
context, mass spectrometry-based approaches are commonly
used for in situ and off tissue characterization. Further,
immunohistochemistry (IHC) as well as histological staining,
are commonly employed as these provide both some
orthogonal identity validation as well as spatial validation
of the histological context for the peak localizations (Chau-
rand et al. 2004; Schwamborn and Caprioli 2010a).

Mass spectrometry-based identification

In IMS experiments of intact peptides and proteins, the
individual species can be putatively annotated on the basis of
the accurate m/z values and comparison to literature values.
For protein and peptide identification, initial in sifu validation
of IMS data can commonly involve IHC analyses on the
same or consecutive tissue sections as described in detail
below. This approach can, however, be challenging, espe-
cially in cases of truncated protein isoforms, as the
availability of the antibodies and their ability to differentiate
between different isoforms can be limited. Given its molec-
ular specificity, mass spectrometry-based tools are the
methods of choice for protein identification and validation.
The preliminary assignment of identified proteins is typically
complemented with detailed analysis of the protein or
peptide sequences. Here, a top-down fragmentation, directly
on tissue, would in principle be the most convenient solution
as this can verify protein/peptide identity and distribution
directly in situ. However, in situ top down analysis is very
challenging when it comes to identification of larger intact
proteins, as post-source decay (PSD)-based MS/MS of
proteins can lead to in-source fragmentation due to the
increased laser energies used to generate metastable parent
ions. Some efforts to overcome this issue have been
presented by integrating an ESI source following laser
desorption (laser ablation-electrospray ionization; LAESI) in
order to generate multiply charged protein ions, which does
provide a potential for further advancement of in situ
fragmentation strategies (Kiss ef al. 2014). A further,
powerful strategy for in situ protein identification that can
be implemented in the MALDI imaging experimental setup
includes subsequent in situ digestion (Groseclose et al.

2007). Here, the MALDI IMS experiment of intact proteins
is followed by application of an endoprotease solution (e.g.,
trypsin) onto the tissue sample, which is followed by imaging
and fragmentation of the corresponding proteolytic peptides.
The identified peptide species can then confirm the identity
of the putatively assigned protein by showing the same
spatial distribution pattern (Groseclose et al. 2007). This
approach is a straightforward method to validate protein
identities in situ but requires that the corresponding protein
and its proteolytic degradation products have been well
characterized before. Further, some concerns may arise with
respect to lateral diffusion effects due to wet application and
incubation with the enzyme solution, which may impact
spatial resolution. This can, however, be mitigated by
optimizing the instrumental settings. A further limitation
when performing in situ MS/MS of proteolytic peptides is the
number of fragmentation experiments (about n= 3) that can
be performed in situ within a distinct area. This limitation
applies primarily with ToF/ToF setups, using post-source
decay due to sample and matrix consumption as a conse-
quence of higher laser energies that are needed for fragmen-
tation. Another, commonly used approach for molecular
identification is targeted isolation of histological features,
using laser microdissection or diligent manual tissue dissec-
tion followed by multidimensional proteomics analysis of
tissue extracts (Andersson et al. 2008; Hanrieder et al.
2012a; Carlred et al. 2016).

Similarly, mass spectrometry-based analysis can be per-
formed for endogenous peptide identification hence referred
to as peptidomics. This approach is similar to proteomics but
omits the endoprotease degradation step and involves
typically a pre-fractionation strategy for peptide isolation
such as mass cut-off filters (Skold et al. 2002; Svensson
et al. 2003). For peptidomics, the most critical steps involve
sample collection, peptide extraction, peptide fractionation
and data analysis (Skold et al. 2002; Svensson et al. 2003;
Hanrieder er al. 2012b). As mentioned above, fast tissue
collection and snap-freezing are essential to avoid peptide
degradation (Svensson et al. 2007; Goodwin et al. 2008).
Here, the tissue homogenate solution is spiked with an
internal standard, to account for technical variation intro-
duced during the sample preparation (extraction, purification
and prefractionation). Peptide separation and characterization
is then performed with proteomic workflows, including one-
or two-dimensional liquid chromatography coupled to ESI-
MS/MS (Skold er al. 2002; Svensson et al. 2003). A
particular challenge in peptidomics is the identification from
MS/MS data as protein databases cannot be employed. This
can be overcome by elaborate manual annotation of the MS/
MS spectra and sequence homology analysis or by compar-
ing to specifically designed peptide databases that contain
numerous known neuropeptide sequences and in silico-
generated or experimental peptide fragmentation data (Falth
et al. 2006, 2007a,b).
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Histological staining and immunohistochemistry

It is of great importance to put the comprehensive molecular
information as provided by MALDI imaging in a pathohis-
tological context. Here, histological assessments using either
histological stains or epitope specific antibodies can be
performed either on the adjacent section or on the on the
same section that the MALDI imaging experiment was or
will be performed on. Consecutive tissue staining is appro-
priate when looking at gross morphological features, such as
for instance differences in brain white and gray matter, that
are present across the tissue. No prior exposure to the
MALDI imaging preparations enable use of both non-
specific histological stains as well as epitope-directed
antibodies (Walch ef al. 2008). This approach is, however,
not appropriate when looking at small features, such as
protein inclusions or single cell layers, as these will simply
be lost between sections. As a consequence, staining on the
same tissue section is preferred.

Staining on the same tissue section can be executed either
prior or after the MS analysis. Histological analysis prior to
MALDI imaging offers great advantage for guided, spatially
targeted IMS experiments that are less time consuming. For
staining prior to IMS, one has to take into consideration a
potential impact of the staining on the overall protein pattern
(localization), protein signal intensity and the quality of the
obtained spectrum (Chaurand et al. 2004). Therefore, appro-
priate controls need to be used when aiming to establish new
histology-guided MALDI imagining protocols. Several sim-
ple histological stains, including alcohol-based Methylene
Blue as well as water-based Cresyl Violet and Terry’s
Polychrome, have been demonstrated to be MALDI imaging
compatible (Chaurand et al. 2004). On the other hand,
commonly used hematoxylin and eosin (H&E) staining has
been shown to severely impact mass spectra quality by
interfering with protein signal (Nakanishi er al. 2005; Xu
et al. 2016). Still, H&E staining is typically performed in the
majority of MALDI imaging studies, but is done after mass
spectra acquisition (Deutskens ef al. 2011). While these
histological staining approaches are suitable for gross
evaluation of cell and tissue architecture, they are limited
by their specificity.

In the context of neurodegenerative diseases, the use of
conformation-specific antibodies, or antibodies directed
towards large, non-easily ionized proteins, are often of
interest. Antibody-based staining is, however, more elab-
orate than the histological stains mentioned above due to
use of, for example protein-based blocking. IHC can
therefore not be performed prior to MALDI imaging. On
the other hand, IHC following IMS acquisition can also be
hampered due to laser-induced tissue distortion, and
associated epitope degradation (Vogel and Venugopalan
2003; Russo et al. 2013; Kaya et al. 2017c).

Recently, some interesting approaches have been devel-
oped for correlative optical/microscopy and MALDI-based
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imaging. Here, Lavenant ef al. (2013) described an integra-
tive IMS/IHC approach, using a targeted, multiplex IMS
assay based on photo-cleavable mass-tags bound to primary
antibodies. Still, while the method in principle enables
indirect visualization of any predefined target, it is limited by
its interference of non-targeted endogenous proteins. Further,
Kaya et al. (2017¢c) demonstrated a comprehensive imaging
paradigm that employs a MALDI matrix that requires only
low laser fluences for ionization and in turn facilitates
histology compatible MALDI IMS of lipids as well as for
subsequent fluorescent, immunohistological imaging on the
same tissue sample. While this approach is well suited for
IMS of lipids, comprehensive analysis of peptides and
proteins is more challenging as desorption and ionization of
protein and peptides require higher laser fluences leading to
tissue distortion effects (Kaya et al. 2017c). Therefore, a
suitable matrix is required that is easy to ionize and requires
lower laser energies. Moreover, the introduction of washing
protocols prior to protein and peptide analysis, as described
above, need optimization as these influences downstream
IHC staining significantly.

For lipid imaging data, biological validation with subse-
quent IHC can be complemented with consecutive protein and
peptide imaging MS on the same section. Here, repeated
matrix deposition and trimodal IMS analysis (IMS3) has been
demonstrated to reveal amyloid beta (AP) plaque pathology-
associated anionic- and cationic lipid accumulations along
with the distinct A peptide patterns in a transgenic AD mouse
model. This approach overcomes the need for antibody-based
confirmation of AP peptide species that co-localize with the
IMS identified lipid species and indeed provides even superior
specificity and comprehensiveness compared to IHC staining
experiments (Kaya et al. 2017a, 2018).

Data analysis

Given the immense complexity of IMS data sets, a
cornerstone of the IMS workflow is the application of
appropriate tools for data analysis. Here, multiple multi-
variate analysis (MVA) tools, can be employed to probe
IMS data sets for unbiased segmentation (Deininger et al.
2008; Henderson et al. 2009; Graham and Castner 2012;
Hanrieder et al. 2013a). In essence, this approach treats
every pixel spectrum as individual sample in multivariate
space and uses multivariate statistics to identify the most
prominent variation and co-variation, respectively, that is
then captured in the respective factor of the analysis. From
the corresponding loading values, the variables, i.e., mass
peaks and their intensity that contribute most to the
variation captured in the factor are retrieved.

Similarly, cluster analysis tries to identify similarities that
allow to group pixel spectra based on similar traits that
essentially relate to similar peak patterns. With this approach,
chemical differences and similarities can be identified across
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the imaged tissue region. The aim is then to correlate
chemical patterns retrieved by the statistics to anatomical
features and ROI for subsequent, targeted, comparative
statistical analysis of ROI spectral data. Multivariate data
analysis methods have shown to be powerful tools for
unsupervised data mining for exploratory purposes, and for
supervised classification as applied in biomarker discovery
(Bonnel et al. 2011; Alexandrov 2012). Principal component
analysis (PCA) (Fonville ef al. 2012), hierarchical cluster
analysis (Maccarrone et al. 2017) and non-negative matrix
factorization (NMF) (Jones et al. 2012) have been applied.
However, many studies report combinations of MVA
methods such as PCA and hierarchical cluster analysis (De
Sio et al. 2015) PCA and maximum autocorrelation factor
analysis (MAF) (Hanrieder er al. 2013a) or PCA, NMF,
MAF, and probabilistic latent semantic analysis (PLSA)
(Race et al. 2016). Race et al. (2016) highlight in their
communication how a combination of multivariate statistical
tools in a complementary fashion aid interpretation of
MALDI MS images of sagittal sections of rat brain.
Moreover, correlation analysis has been applied on MALDI
image data (Fulop er al. 2016), in order to correlate
information between MALDI and complementary imaging
experiments such as Raman imaging (Bocklitz er al. 2013;
Masyuko et al. 2013).

The analysis of IMS data usually requires preprocessing of
the raw spectral data in order to reduce experimental variance
within the data set and, thereby, prepare them for subsequent
statistical analysis. Except for additional spatial coordinates,
spectral image data do not differ much from single measure-
ment data and thus, similar preprocessing procedures can be
applied. The most important spectra processing steps include
baseline correction, intensity normalization, smoothing,
recalibration and alignment of spectra (Norris et al. 2007).
Here, recalibration and alignment is of particular importance
when subjecting the data to MV A methods for data analysis.
For processing, visualization and evaluation of IMS data, a
number of commercial software and freeware packages have

Table 1 Commercial MALDI IMS software packages

been developed. Table 1 summarizes commercially available
IMS software packages and their distinct features for data
analysis. Many of the available freeware/open access IMS
software packages are toolboxes for MATLAB (Mathworks
Inc., Natick, MA, USA) or packages for R (R Foundation for
Statistical Computing, Vienna, Austria) and are listed in
detail in Table 2. All of these software packages and
toolboxes enable qualitative IMS analysis through visualiza-
tion functions. Spectral data preprocessing algorithms are
included to various degrees and some have been developed
for quantitative IMS analysis (MALDIquant, msIQuant,
Quantinetix). A number of packages exhibit capacities for
multivariate analysis of image data, in various extent (e.g.,
Cardinal, massPix, MIA_Toolbox, SCILS Lab, SpectralAnal-
ysis). Qualitative comparative analyses of IMS data com-
monly include overlaying or blending together single ion
images. Often, imaging data obtained with other techniques
are registered and overlaid with MS images. Integrative
interpretation across the modalities is, however, largely left to
human judgment. An elegant solution of this included image
fusion that combines the information from two modalities
through predictive integration to generate images with
superior information (Van de Plas er al. 2015). The fusion
process applies partial least square (PLS) regression modeling
linking variations between the modalities to then produce
cross-modality estimations (Juan 2018; Prentice et al. 2018).
In this way, MALDI IMS and optical imaging data can be
fused to obtain predictions of ion distributions in tissues at the
(higher) microscopy resolution and image sharpening,
respectively. Van de Plas et al. (2015) demonstrated MALDI
IMS/microscopy fusion on various tissue sections. Beside
IMS data, fusion can be performed on data from various
imaging techniques, such as FT infrared spectroscopy
(FTIR), Raman, fluorescence, among others, and is an
excellent way to exploit their complementary information,
circumvent their limitations, and furthermore open doors to
new biological understanding (Tarolli er al. 2014; Piqueras
Solsona et al. 2017).

Software Features Vendor Release year
fleximaging 2D visualization of ion distribution Burker Daltonics 2005
HD Imaging Visualization of IMS data, comparative analysis, multimodal IMS, image Waters Corp. 2011
registration of multimodal IMS data
ImageQuest Visualization of imaging data in 2D and 3D Thermo Fisher Scientific 2007
MALDIVision IMS data visualization in 2D and 3D, comparative analysis, image registration Premier Biosoft 2012
(optical image to IMS data)
MIA_Toolbox Comprehensive multivariate statistical analysis of IMS data Eigenvector Research, Inc. 2005
Quantinetix IMS data visualization and quantitative analysis Imabiotech 2012
SCiLS Lab IMS data visualization in 2D and 3D, comparative analysis, correlation analysis,  Bruker Daltonics 2013

classification modeling, spatial segmentation with annotation
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Table 2 Freeware/open access software packages for MALDI IMS

Release

Software Features year References

Biomap Processing and visualization of IMS data and further imaging modalities 1996 Rausch and Stoeckli (2000)

Cardinal R package, IMS data visualization, spectral data preprocessing, PCA, PLS-DA, 2015 Bemis et al. (2015)
classification, spatial segmentation

DataCube Explorer  Visualization and qualitative analysis of IMS data 2013 Klinkert et al. (2014)

MALDIQuant R package, IMS data visualization, spectral data preprocessing, quantitative 2012 Gibb and Strimmer (2012)
analysis

massPix R package, IMS data visualization, putative lipid annotation, classification, PCA, 2017 Bond et al. (2017)
k-means clustering

Mirion Visualization and automatic processing of MS image data 2013 Paschke et al. (2013)

mslQuant Qualitative and quantitative analysis of IMS data, spectral preprocessing, 2016 Kallback et al. (2016)
calibration, analysis of very large data sets (>~ 50GB)

MSiReader MATLAB tool, reading of various IMS data file formats, visualization of IMS data, 2013 Robichaud et al. (2013)
spectral preprocessing

Omnispect MATLAB tool for visualization and qualitative analysis of IMS data 2013 Parry et al. (2013)

OpenMSiI Web-based tool for the visualization, qualitative analysis and management of 2013 Rubel et al. (2013)
IMS data

rMSI R package for IMS data visualization and qualitative analysis 2017 Rafols et al. (2017)

SpectralAnalysis MATLAB tool, visualization and qualitative analysis of IMS data, spectral 2016 Race et al. (2016)
preprocessing, PCA, NMF, MAF, PLSA

SpectViewer IMS data visualization, assistance to data interpretation, classification, image 2014 Marie-France et al. (2014)

registration and overlay

IMS, imaging mass spectrometry; MALDI, matrix-assisted laser desorption/ionization; MS, mass spectrometry; NMF, non-negative matrix
factorization; PCA, principal component analysis; PLSA, probabilistic latent semantic analysis.

MALDI IMS applications to investigate CNS disease
pathology

Imaging MS offers the possibility to in detail investigate
components of various biomolecular pathways underlying
many neurodegenerative diseases. This is particularly rele-
vant for MALDI IMS, which allows to probe spatial
concentration changes of peptides and small proteins. Indeed,
misfolding and aggregation into potential neurotoxic deposits
is a seminal histopathological occurrence for many major
neurodegenerative diseases. This includes formation of alpha
synuclein (aSyn) containing inclusions, Lewy bodies, in
Parkinson’s disease; Huntingtin in Huntington’s disease;
TDP43 in ALS and most prominently beta-amyloid plaques
and hyperphosphorylated Tau tangles in Alzheimer’s disease
(Taylor et al. 2002). Moreover, several neurodegenerative as
well as psychiatric disorders are accompanied by interference
in neuropeptide mediated signaling circuits. Hence, MALDI
IMS is a very well-suited approach to interrogate neuropep-
tide and protein dynamics in situ to further our mechanistic
understanding of these diseases.

Parkinson's disease

Indeed, previously, MALDI IMS was successfully employed
to delineate neuropeptide mediated motor control signaling
circuits in PD and L-DOPA pharmacotherapy-induced

dyskinesia (Hanrieder er al. 2011, 2012a; Ljungdahl et al.
2011) These motor circuits are mediated by opioid peptides
(dynorphins and enkephalins) and a striatal increase of
prodynorphin (PDyn) mRNA has previously been associated
with LID. The distinct PDyn processing products could not
be characterized, using conventional techniques such as IHC
due to lack of specific antibodies, which is a common
challenge in in situ neuropeptide analysis. This specificity
issue is particularly relevant to opioid peptides that differ in
only a few C-terminal amino acids, which compromises the
reliability of immunohistochemistry results significantly. In
contrast, neuropeptide detection with mass spectrometry
provides significant advantages with respect to molecular
specificity, comprehensive detection (multiplexing) as well
as throughput. A major consideration for IMS is the use of
appropriate control experiments to account for the inherent
inter and intra sample biological variation as well as technical
reproducibility introduced due to sample preparation arte-
facts and ion suppression issues. One possibility to account
for these variations is to use hemispheric disease models such
as the unilateral nigrostriatal lesion with 6-hydroxy-dopa-
mine model of PD (Ungerstedt 1968). As PD pathology in
these animals develops only in one hemisphere the other
hemisphere can serve as an optimal internal control for
normalization. With this approach, spatial changes in secre-
tion of PDyn derived opioid peptides were investigated in
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LID in experimental PD (Hanrieder et al. 2011; Ljungdahl
et al. 2011).

This revealed a significant increase for two dynorphin
peptides, including dynorphin B and alpha neoendorphin, in
the dorsal lateral striatum in high dyskinetic animals but not
for low dyskinetic animals along with a strong positive
correlation of both dynorphin species with LID severity.
Further, this study revealed a selective metabolization of
dynorphin peptides to des-tyrosinated species in the striatum
of LID rats that could not have been delineated in situ using
other imaging technologies, which further highlights the
significant superiority of IMS with respect to its molecular
specificity. Furthermore, this study described a brain struc-
ture specific in vivo metabolization of these dynorphin
peptides where the N-terminal tyrosine was removed which
was in addition associated with LID (Hanrieder er al. 2011;
Ljungdahl et al. 2011). Interestingly, these des-tyrosine
opioids can bind to other receptors pointing to other LID-
associated signaling mechanisms (Walker et al. 1982). This
further highlights the potential of MALDI IMS for neu-
ropeptide imaging, as this in vivo metabolization cannot be
detected with antibody-based techniques.

Further, MALDI IMS was demonstrated for to probing
protein regulations in 6-hydroxy-dopamine PD mice, where
ubiquitin (Ubc), and neurofilament M an axonal protein were
found to be downregulated in PD rat brain, indicating axonal
dysfunction as well as impaired protein turnover (Stauber
et al. 2008). MALDI IMS has further been successfully
applied for protein imaging in another neurotoxin-induced
animal model of PD where IMS was employed to study
striatal protein localization in 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine injected rats. Here, MALDI imaging
revealed a striatal decrease of the neuronal calmodulin
binding protein Pepl9, which suggests that altered calcium
homeostasis might be associated with neuronal cell death in
this model (Skold et al. 2006). More recently, the Andrén lab
reported groundbreaking data, where MALDI IMS was used
to delineate brain wide neurotransmitter and amino acid
regulations in experimental PD models in rats and monkeys
(Shariatgorji et al. 2014). While not strictly protein centric,
the data provide significant insight into brain structure-
specific neurotransmitter concentration changes and metab-
olization in neurodegenerative disease pathology as well as
in response to pharmacotherapeutic interventions.

Alzheimer's disease

Given the distinct use of MALDI IMS for comprehensive,
in situ peptide imaging, the technology is a particular
powerful tool to probe beta-amyloid (AB) peptide dynamics
in Alzheimer’s disease. Using this approach, AP truncations
in individual plaques have been characterized in amyloid
precursor protein (APP23) transgenic mice (Stoeckli et al.
2002; Seeley and Caprioli 2008). The authors reported a
significantly higher content of AP1-40 than APB1-42.

Similarly, our group reported a comprehensive study on
profiling brain-wide AP profiles in transgenic animals
carrying the Swedish and Arctic mutation of APP
(tgArcSwe) (Fig. 2a—f) (Carlred et al. 2016). In this study,
we employed a multivariate image analysis approach to
outline pathological features that constitute AP plaque
pathology and reveal the associated A profiles in individual
deposits with different areas of the brain. Moreover, other
plaque-associated proteins were identified within the same
experiment, including microglial derived macrophage inhi-
bitory factor (Carlred er al. 2016).

In another study on a triple-transgenic animal model of AD
(3xtg), MALDI IMS revealed an AD pathology-associated
decrease of neurogranin (Esteve et al. 2017). This is of
particular interest, as the synaptic protein neurogranin, has
been demonstrated to be a potential biomarker reflecting AD
pathology-associated neurodegeneration in CSF (Kvartsberg
et al. 2015). Finally, working on 5xFAD mice, Schwartz
et al. (2015) reported intriguing results on enhancing low
abundant AP signals such as AB1-22 and AB1-26 using
optimized parameters for random projections PCA-based
multivariate image analysis.

The potential for probing AP pathology in human AD
tissue was recently demonstrated by two groups, where
amyloid peptide profiles of individual plaques were delin-
eated (Kelley et al. 2016a,b; Kakuda er al. 2017) (Fig. 2). In
a recent study, Kakuda er al. demonstrated that Af1-42 and
APB1-43 were selectively accumulated in senile plaques. In
contrast, C-terminal truncated AP species (APl-x; with
x = 36-41) preferentially localized to leptomeningeal blood
vessels (pia mater and arachnoid). Moreover, they delineated
depositions of N-terminally truncated AB40/42, including
pyroglutamate of Glu-3 (AB3pE-4x), where AB40 peptides
(AB1-40 and AB3pE-40) deposited to leptomeningeal ves-
sels and AB1-42 and AB3pE-42 characteristically localized
to senile plaques in the cerebral parenchyma (Fig. 3g—n). In
addition, it was demonstrated that one C-terminal changes of
a single amino acid between AB1-42 and AB1-41 results in
significant distribution changes presumably due to the
difference in the self-aggregation propensity of different C-
terminal AP species. These differences in aggregation
propensity are attributable to alterations in the peptides’
hydrophobicity. In the light of this, neuronal lipids have been
implicated in mediating AP aggregation dynamics via
hydrophobic interactions, particularly as APP is a membrane
protein with large hydrophobic transmembrane domains that
encapsulates the AP sequence. Moreover, the E4 allele of the
gene encoding the lipid transporter protein apolipoprotein E
represents the most significant genetic risk factor to develop
sporadic AD. Elucidating its potential role of plaque
pathology-associated lipid species has, therefore, gained
great attention in AD research. Indeed, our group has
demonstrated multiple efforts to delineate plaque pathology-
associated lipid species using MALDI Imaging (Kaya et al.
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Fig. 2 MALDI Imaging of Amyloid Peptides in transgenic Alzheimer’s
disease (AD) mice. IMS experiments were performed for characterizing
the plaque pathology in 18-month old transgenic AD mice (tgAP-
PArcSwe). (a) Image analysis using hierarchical cluster analysis
(bisecting k-means) delineates histological features resembling plaque
pathology (yellow, green). (b-d) Inspection of the corresponding
variables in the clusters that cause this difference, reveals major Af
species. (d) The IMS staining experiments were complemented with
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AB 3pE-42

AB 3pE-42

immunohistochemistry toward AB on the same section to verify the Ap
identity of these plaques in general (e: scale 1 mm; f: 200 pm). (g—n)
MALDI imaging of AP pathology human AD. Spatial patterns of Ap1-40/
42 and N-term. AB3—4x pyro-glutamate (3pE-AB40/42) were detected
at a 100 um (g-j) and 20 um resolution (k-n). AB1-40 and 3pE-AB40
showed preferential deposition to leptomeningeal blood vessels and
arterioles (g, h, k, and I). In contrast, AB1-42 and N3pE-Af42 localized
primarily to senile plaques in the cerebral parenchyma (i, j, m and n).
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Cer(d18:1/18:0)

LPC (16:0)

Fig. 3 Trimodal MALDI imaging of AB plaque pathology. Hippocampal
amyloid plague-associated lipids in dual polarity and peptides (a) on a
coronal mice brain tissue section of transgenic Alzheimer's disease
mice (tgArcSwe) were revealed by multimodal MALDI IMS. (b) The
hippocampal region analyzed with 10 um spatial resolution. (c) lon
images of lipids: ceramides (Cer d18:1/18:0, m/z 564.6),

2017a,b,c). Moreover, in order to elucidate the interaction of
lipid and A structures in situ, we expanded the MALDI IMS
toolbox toward multimodal, three-step, imaging MS of both
lipids and proteins on the same imaging array on the same
tissue section based on the histology compatible setup
introduced for multiplexed IMS and IHC experiments (Kaya
et al. 2017a,c). The resulting trimodal MALDI IMS dataset
revealed lipid and AP peptide correlates such as several
sphingolipids, phosphoinositols and lysophosphatidic acids
that have all been previously mechanistically implicated in
AD pathology (Kaya et al. 2017a) (Fig. 3). Along the same
track, a recent work established the association of lipids in
AP polymorphism. Here, lipid imaging of diffuse cored AP
plaques identified, that these morphologically heterogenous
AP deposits, displayed different lipid patterns. This in turn
was tied to changes in AB1-40 levels (Michno et al. 2018).

Other neurodegenerative and psychiatric disorders
Beyond the most prevalent neurodegenerative diseases (AD
and PD), imaging MS was successfully demonstrated for

PI (38:4) ST (24:0)

LPC (18:0) PC (32:0)

phosphatidylinositols (38:4, m/z 885.6), sulfatides (ST 24:0, m/z
890.6) in negative polarity (green) and (d) lysophosphatidylcholines
(LPC 16:0, m/z 496.3, LPC 18:0, m/z 524.3) and posphatidylcholines
(PC 32:0, m/z 734.6) in positive (red) polarity with (e) subsequent
amyloid-p (AB1-37, m/z 4002.7, AB1-38, m/z 4060.3, AB1-40, m/z
4257.6) peptide (blue) ion images in the same imaging region.

probing in situ protein changes in other neurodegenerative
disorders including Huntington’s disease; ALS and multiples
sclerosis as well as psychiatric diseases. Here, MALDI IMS
identified thymosin beta 4 to be specifically located to
chronic active, demyelinated or only partly remyelinated
multiples sclerosis lesions in white matter, suggesting a
prominent role of thymosin beta 4 in migration and
recruitment of immune cells underlying the autoimmune
mechanisms leading to demyelination (Maccarrone et al.
2017). Further, MALDI imaging was used to probe hunt-
ingtin (Htt) aggregation dynamics in a mouse model of
Huntington’s disease upon treatment with a 23aa sequence of
Htt (p42), previously shown to inhibit Htt aggregation
(Arribat et al. 2014).

In context of ALS, MALDI Imaging enabled probing
protein distributions in post mortem spinal cord tissue from
ALS patients. (Hanrieder et al. 2012a) Here, an ALS-
associated decrease of C-terminally truncated ubiquitin
(Ubc 1-74; Ubc -G75G76) in the ventral horn, which could
indicate changes in local protein turnover associated with
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ALS pathology, was identified. Again, this highlights the
potential of MALDI IMS over other immunohistochemical
techniques to distinguish between various peptide isoform.
Other studies reported the use of MALDI IMS to probe brain
wide protein changes in response to exposure with environ-
mental neurotoxins that have been associated with neurode-
generative disease pathology. Here, Karlsson et al. studied
hippocampal- and striatal changes in adult rats following
neonatal exposure to the cyanobacterial toxin beta-methyla-
mino-L-alanine (BMAA) (Karlsson et al. 2012, 2014). This
toxin has previously been associated with the over repre-
sented development of ALS and PD like pathology in
exposed populations and neonatal BMAA was found to
induce neurodegeneration and formation of protein lesions in
the CAl region in the adult hippocampus of rats that were
exposed to a high dose of BMAA neonatally (Karlsson et al.
2012). Using MALDI IMS in this model, the authors
identified a BMAA-associated decrease in striatal myelin
basic protein levels, presumably indicating denervation
(Karlsson et al. 2014). Moreover, a selective increase of
S100beta and histones was observed in the CA1 of BMAA
animals indicating astrogliosis, while neurogranin was
decreased in the CA1 and DG most likely reflecting axonal
degeneration (Karlsson et al. 2012).

In addition to probe neurodegenerative disease pathology,
the potential of MALDI IMS for neuropeptide and protein
imaging is of value for studying molecular changes associ-
ated with psychiatric diseases. For instance, MALDI IMS
was employed to characterize neuropeptide signaling circuits
in addiction (Hishimoto et al. 2016). Here, substance P and
proenkephalin projections were investigated upon nicotine
administration, which revealed correlating changes in pro-
cessing of the associated neuropeptide species. Similarly,
MALDI IMS was successfully employed to probe neuropep-
tide changes in cocaine-sensitized rats (Uys et al. 2010).
Here, the secretogranin II derived neuroactive peptide
secretoneurin was identified to be increased in the nucleus
accumbens upon cocaine administration. This is of interest as
secretoneurin-modulated dopamine release and has been
implicated in cocaine-induced mechanism of reward seeking
(Schmidt et al. 2006).

Final discussion and perspectives

The majority of neurodegenerative diseases are associated
with changes in protein dynamics, resulting in progressive
accumulation of misfolded proteins into intra and/or extra
cellular aggregates (Taylor et al. 2002). To delineate the
molecular mechanism underlying these pathochemical alter-
ations is often limited by the lack of biochemical tools that
simultaneously offer the sensitivity and specificity, while
maintaining the necessary spatial- and temporal resolution.
This is particularly of interests when potential targets are
unknown, or when differential production and enzymatic
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processing of proteins and peptides might underlie the
aggregation properties of these species, and their role in
different stages of the pathology and disease.

Here, IMS and MALDI IMS in particular have on multiple
occasions been demonstrated to delineate spatial information
of protein and peptide distributions in pathological brain. As
discussed in detail in the previous section, MALDI IMS has
revealed selective production and processing of neuropep-
tides and proteins associated with different neurodegenera-
tive mechanisms. For instance, MALDI IMS has provided
novel insight in accumulation patterns of different A
peptide truncations in plaques from different brain regions,
linking the differential AP peptide pattern to brain-wide
disease progression. Further, while not strictly AP peptide
centric, multimodal lipid- and protein IMS identified spatial
lipid correlates associated with AP plaque pathology in AD.

MS imaging has made major advances within the last years
with respect to performance, robustness and accessibility. As
a result, the technique is becoming more and more applicable
for biomedical and clinical research. Continuous improve-
ments within instrumental design, robust sample preparation
and advanced data analysis, facilitating implementation and
comprehensive interrogation of multimodal imaging datasets,
have been major factor driving this implementation. More-
over, a newly formed consortium of key leaders within
imaging MS has released publishing guidelines for reporting
IMS data, which makes the research findings from IMS more
reliable and standardized. (McDonnell et al. 2015). Despite
these developments, the final breakthrough of IMS in
biological- and clinical research as well as in clinical routine
is still imminent. This relates to two major challenges for
introducing IMS to research and clinical settings. These
challenges comprise a) full control of the whole IMS setup
and sample preparation workflow from sample collection to
data analysis and b) appropriate design of IMS-based studies
with specialized hypotheses to test. The consequences arising
from the first issue are to a greater extend outlined in the
different chapters above. In sum, challenges concerning
biological and technical variations are inherent to IMS-based
experiments due to sample preparation and ion suppression
effects. Hence, only full control of all aspect of the entire
IMS workflow along with appropriate control experiments
facilitates collection of high quality- and reproducible - data
that allow for correct biological interpretation. This elutes
directly into the second challenge, to address biologically
relevant hypotheses beyond the assumption that ‘there is a
change’ in molecular composition likely associated with the
disease pathology under investigation. Given the inherent
technical challenges of IMS and suppression effects in
particular, such changes can be artefacts of sample prepara-
tion as well as due to concomitant histological factors such as
a strong hemoglobin signal associated with vascular struc-
tures resulting in suppression of other localized proteins.
While this calls for appropriate controls as to account for
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these artifacts, it further highlights the need to tailor the IMS
approach after the biological hypothesis in question. The
different IMS modalities, with their complementary applica-
tion profile, can be employed to target distinct chemical
species and to elucidate their role in corresponding biomech-
anisms, as discussed above. When used appropriately, along
with a well-defined and controlled study design, IMS can
serve as a powerful technology to probe biological mecha-
nisms and to further our mechanistic understanding of
neurodegenerative disease pathology. Moreover, identifica-
tion and validation of mechanistically implied novel molec-
ular species can inform the development of pathology-
associated biofluid- and imaging-based biomarkers for
neurodegenerative diseases that have great relevance for
monitoring neurodegenerative pathology, both, in clinical
routine as well as for the development of pharmacotherapy
approaches.

In summary, IMS is a powerful tool that can provide
essential novel insight complementary to established micro-
scopic techniques and highlight the protein and peptide
dynamics crucial in progressing neuropathology.
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