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Abstract

This thesis addresses a problem arising in large and expensive experiments
where incomplete data come in abundance but statistical analyses require
collection of additional information, which is costly. Out of practical and
economical considerations, it is necessary to restrict the analysis to a subset of
the original database, which inevitably will cause a loss of valuable information;
thus, choosing this subset in a manner that captures as much of the available
information as possible is essential.

Using finite population sampling methodology, we address the issue of appro-
priate subset selection. We show how sample selection may be optimised to
maximise precision in estimating various parameters and quantities of interest,
and extend the existing finite population sampling methodology to an adap-
tive, sequential sampling framework, where information required for sample
scheme optimisation may be updated iteratively as more data is collected. The
implications of model misspecification are discussed, and the robustness of
the finite population sampling methodology against model misspecification is
highlighted.

The proposed methods are illustrated and evaluated on two problems: on
subset selection for optimal prediction in active learning (Paper I), and on
optimal control sampling for analysis of safety critical events in naturalistic
driving studies (Paper II). It is demonstrated that the use of optimised sample
selection may reduce the number of records for which complete information
needs to be collected by as much as 50%, compared to conventional methods
and uniform random sampling.

Keywords: active learning; naturalistic driving; optimal design; probability
sampling; sampling weighing; sequential sampling.
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1 Introduction

With the advances of modern technology, data are currently being generated at
greater volume than ever before. The impact of this progression can hardly pass
unnoticed in our private and social lives, and may be recognised in nearly all
fields of scientific research. Indeed, these new data sources do, by application
of appropriate scientific methods, offer opportunities to gain insights and
knowledge in a way that previously could not be imagined. Yet, the complexity
of many of these new data sources and the sheer amount of data being collected
introduces new challenges of statistical data analysis, requiring development of
new statistical methods and adaptation of existing methods to novel problem
settings.

A common theme for the papers included in this thesis is the application of
statistical methods from the field of survey sampling, much of which was
developed many decades ago, to modern problems within the fields of ma-
chine learning and traffic safety research. The survey sampling methodology
was initially developed for the purpose of performing descriptive analyses of
finite populations where complete enumeration was infeasible, e.g. for produc-
ing national official statistics regarding population, labour market, business
etc. As will be demonstrated in this thesis, the finite population sampling
methodology offers a promising approach for the analysis of large and complex
databases also in modern problems where data reduction through subsampling
is inevitable.

The specific problem we consider arises from large and expensive experiments
with mixed data sources, where some measurements are cheap and easy to
obtain for a very large number of subjects or instances, while others are ex-
pensive to measure and thus are observable only for a small subset of a large
population or database. This problem may be encountered in a wide range
of applications, including medical studies, where medical screening may be
affordable for a large number of subjects but intervention may be feasible only
for a smaller number; bioinformatics, where modern sequencing techniques
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2 1. Introduction

enable collection of large scale genomic data at relatively low cost, but where
in depth analysis may require expensive laboratory experiments; naturalistic
driving studies, where vehicle data is recorded continuously for all driving
sessions in a large fleet of vehicles, but the analysis requires manual annotation
of video sequences; and machine learning problems such as image recognition
and classification, where some variables stored in a database may be collected
at large volumes and low cost, e.g. matrix representations of digital images,
while others may require human annotation prior to analysis, e.g. what those
images actually depict.

To put the stated problem into context, we consider in Paper II a naturalistic
driving study, where data is collected automatically for all driving sessions
in a large fleet of vehicles. These automatic recordings include, among oth-
ers, vehicle data such as speed and direction; environmental conditions, lane
position, location and surrounding traffic recorded by radar, video and other
external instrumentation; and video recordings of driver’s face, pedal, and
eye movements. From these data, we are interested in the impact of various
driver and driving characteristics on the risk of a safety critical event such
as a rear-end collision. Typically, some of the explanatory variables and/or
the response variable require annotation of video sequences before statistical
analysis can be conducted, which often is affordable only for a fraction of the
driving sessions in the database. However, auxiliary information in terms of
automatic recordings of vehicle manoeuvres etc. is readily available for all
instances in the database. Using such information, it is possible to optimise the
selection of which instances to annotate with regards to detection of potential
associations between driving behaviour and a consecutive safety critical event.

Another example, further considered in Paper I, is found in the field of ac-
tive learning; an algorithmic framework where a semi-supervised learning
algorithm iterates between data collection and model fitting by repeatedly
querying the label of new instances from a large pool or stream of unlabelled
observations, in order to derive a prediction model for an outcome of interest.
In active learning problems, the variables used as predictors are known for
all instances in a large database, but the outcomes require annotation or other
means of manual investigation, which is costly, and are thus observable for
a limited number of instances only. Again, this offers an opportunity to use
available data in order to optimise sample selection, in this case to minimise
prediction error.

Using finite population sampling methodology, we address the issue of ap-
propriate subset selection from large databases where collection of complete
information is unfeasible and subsampling is inevitable. We show how sam-
ple selection may be optimised to maximise precision in estimating various
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parameters and quantities of interest, by making use of information readily
available for all records in the database, without compromising the validity of
the statistical analysis and conclusions drawn from the collected sample.
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2 Background: Sampling from
a finite universe

Consider a finite index set D consisting of N elements i = 1, . . . , N . Associated
with each element is a data vector (xi, yi, zi) that characterises each member
i ∈ D. We may think of D as a database, where a collection of N records
(xi, yi, zi) are stored or indirectly made accessible. In the terms of survey
sampling, the index set D is commonly referred to as a finite population or a
finite universe (Särndal et al., 2003).

The variables X , Y and Z stored in the database D are distinguished by their
role in the statistical analyses, where X are explanatory variables, covariates or
predictors, Y is an outcome or response variable, and Z are additional auxiliary
variables that are co-stored in the database but not necessarily of interest in the
statistical analyses. It is assumed that some variables V , including the auxiliary
variables Z and possibly also some components of (X,Y ), are readily observed
for all records in the database. However, some components of (X,Y ), which
we denote by U , require additional effort, associated with a high cost, to be
fully observed. Thus, the variables U may be observed only for a subset S ⊂ D.

We are interested in estimating a parameter θ of a statistical model fθ(y|x),
describing the dependency of the outcome Y on the covariates X , with the
purpose of either describing the relationship between these variables or ob-
taining a predictive model fθ̂(y|x) for the records in the current database or
for future observations. In addition, we assume the existence of an auxiliary
model gη(u|v), describing the distribution of the unobserved variables U given
the observed variables V , which may be utilised for sample selection. The use
of the auxiliary model for sample selection will be discussed in Chapter 3.1.2,
and the model gη(u|v) will not be considered further in this section.

For the purpose of estimating the parameter θ of the model fθ(y|x), we con-
sider a twice-differentiable loss function `(y,x,θ), describing the loss associ-
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6 2. Background: Sampling from a finite universe

ated with the prediction derived from the pair (x,θ) when the true outcome is
y, and denote by `i(θ) = `(yi,xi,θ) the loss associated with an instance i ∈ D
for a specific parameter value θ. Also, we let

`0(θ) =
∑
i∈D

`i(θ) (2.1)

denote the population loss as a function of θ, and let θ0 denote the correspond-
ing optimal parameter in the sense that

θ0 = arg min
θ

`0(θ) . (2.2)

As described above, we assume that some components of (X,Y ) are expensive
or difficult to measure and may be observed only for a subset S ⊂ D. Con-
sequently, `0(θ) and θ0 can not be computed and subsampling is inevitable.
We consider the situation where this subset is selected according to a random
mechanism where each instance i ∈ D has a strictly positive probability of
being sampled, denoted as probability sampling (Särndal et al., 2003). We
introduce the random variable Qi as the number of times an instance i is se-
lected, assuming that sampling may be with replacement, and let νi := E[Qi]
denote the corresponding mean. Thus, the sampling mechanism is fully charac-
terised by the multivariate distribution ofQ := (Q1, . . . , QN ). As an example,
we may consider sampling according to independent Bernoulli(πi) trials, a
process known as Poisson sampling (Särndal et al., 2003). In this case, the
Qi’s are binary random variables with means νi = πi, and the subsample S
consists of all instances having Qi = 1; this is a random set with expected
size n := E[|S|] = E[

∑
i∈D Qi] =

∑
i∈D πi. Sampling may alternatively be con-

ducted according to a Multinomial(n, π1, . . . , πN ) distribution, having size n,
means νi = nπi and non-zero covariances Cov(Qi, Qj) = −nπiπj . Thus, Pois-
son sampling and Multinomial sampling are both examples of unequal proba-
bility sampling designs, the former being a random-size without-replacement
design, and the latter a fixed-size with-replacement design. See e.g. Särndal
et al. (2003) and Tillé (2006) for additional details on these and other probability
sampling designs.

Consider now a specific probability sample S ⊂ D, and suppose that complete
records (xi, yi) have been observed for the elements i ∈ S of the selected
sample. Since different elements can have different sampling probabilities,
ordinary maximum likelihood estimation or empirical risk minimisation, which
assumes an i.i.d sample, is generally not applicable. Instead, we consider a
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sampling-weighted estimator θ̂π , defined as

θ̂π := arg min
θ

ˆ̀
π(θ) , (2.3)

ˆ̀
π(θ) :=

∑
i∈S

wi`i(θ) , (2.4)

where the sampling weights wi may be taken as wi = Qi/νi. With this choice
of weights, the sum (2.4) is known as a Horvitz-Thompson estimator (Horvitz
and Thompson, 1952) of the population loss `0(θ) if sampling is without re-
placement, and as a Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943) for
sampling with replacement. In either case, it follows that E[wi] = E[Qi]/νi = 1,
and hence that ˆ̀

π(θ) is an unbiased estimator of the population loss `0(θ).

Under general regularity conditions, including conditions on the statistical
model and parameter space that enable Taylor expansions around the op-
timal parameter, and additionally some conditions on the sampling design
that govern the asymptotic properties of the Horvitz-Thompson or Hansen-
Hurwitz estimator, it holds that θ̂π is asymptotically normal and consistent as
an estimator of θ0, with asymptotic covariance matrix

Var
(
θ̂π − θ0

)
= H(θ0)−1Varπ

(
∇θ

ˆ̀
π(θ0)

)
H(θ0)−1 + o(n−1) , (2.5)

where n is the size of the subsample S, H(θ) is the Hessian matrix of the
population loss `0(θ), and Varπ(∇θ

ˆ̀
π(θ0) denotes the covariance matrix, with

respect to the sample selection mechanism, of the gradient of the weighted loss
ˆ̀
π(θ), evaluated at θ = θ0. Explicitly, we can write

Varπ

(
∇θ

ˆ̀
π(θ0)

)
=
∑
i∈D

Var(Qi)

ν2i
sis

T
i +

∑
i,j∈D
i 6=j

Cov(Qi, Qj)

νiνj
sis

T
j , (2.6)

where si = si(yi,xi,θ0) := ∇θ`i(θ0) is the gradient of the loss pertaining to
instance i evaluated at θ = θ0; see Binder (1983).

An important special case in the statistical literature arises when we take `(θ)
as the logarithmic loss, i.e. take `(y,x,θ) = − log fθ(y|x). In this, case, `0(θ) is
the negative of the log-likelihood based on the entire database D, θ0 is the max-
imum likelihood estimator of θ from the database D, −H(θ0) is the observed
Fisher information matrix pertaining to the database D. The estimator θ̂π,
defined by (2.3) and (2.4), is in this setting also known as a weighted maximum
likelihood estimator or pseudo maximum likelihood estimator (Skinner, 1989).

The inferential framework outlined above is commonly referred to as design-
based (Särndal et al., 2003), as opposed to the model-based inference proce-
dures otherwise commonly employed. While in both cases we may consider
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a statistical model fθ(y|x), the two paradigms differ in their view on the ran-
dom processes involved, and consequently on the assumptions needed for
the corresponding inferences to be valid. From a model-based perspective,
we think of the unknown responses as random variables {Yi}i∈D, following
some unknown probability distribution. Consequently, the statistical prop-
erties of estimators derived from model-based procedures are induced from
the assumptions made by the model fθ(y|x), and the validity of such infer-
ence hinge on the correctness of these assumptions. From a design-based
perspective, on the other hand, all randomness is ascribed to the sample selec-
tion mechanism, and the outcomes {yi}i∈D are treated as fixed but possibly
unknown constants; variation simply arises by random sampling from the
database D. Consequently, the statistical properties of estimators derived from
design-based procedures are induced by the sampling design, which is under
direct control of the investigator, and is, with respect to inference regarding
the finite population parameter θ0, free of modelling assumptions. Thus, the
design-based approach possesses a desirable property in terms of robustness
against model misspecification; see e.g. Pfeffermann (1993) and the discussion
in Chapter 3.3.

While the model-based and design-based paradigms may seem incompatible
given the discussion above, the two approaches to inference may in fact be
combined; this is particularly useful in applications that require subsampling,
but where interest is of analytic rather than descriptive nature, i.e. when one is
interested in the underlying data generating mechanism rather than in the finite
population parameter θ0. This is sometimes referred to as a ’super-population
viewpoint’ for finite population sampling (Hartley and Sielken, 1975), where
the super-population represents a hypothetical infinite population from which
the database D is assumed to have been drawn. We can also recognise this as a
two phase sampling procedure, where the database D is generated and some
variables are observed in an initial phase, and a subset is selected for which
complete data is collected in the second phase. Considering the joint model-
and design-based inference regarding the true parameter θ∗, it holds under
regular conditions that govern the convergence of model-based estimators in
the law of the model and the convergence of design-based estimators in the
law of the sampling design, that the estimator θ̂π is asymptotically normal and
consistent as an estimator of the true parameter θ∗, with asymptotic covariance
matrix

Var(θ̂π − θ∗) = Var(θ0) + ED[Var(θ̂π − θ0|D)] + o(n−1) ,

where Var(θ0) is the variance of θ0 = θ0(D) as an estimator of θ∗ using the
complete data D, and ED[·] denotes the expectation with respect to the data
generating mechanism, i.e. over all the potential datasets D (Rubin-Bleuer and
Schiopu Kratina, 2005; Fuller, 2009, Chapter 6.5). Thus, the first term accounts



9

for between-database variation, while the second term accounts for additional
variation due to subsequent subsampling fromD. In the papers included in this
thesis, the design-based perspective is dominant in Paper I, while in Paper II
we consider a two-phase sampling scenario where our interest is to understand
the underlying data generating mechanism.
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3 Methodological considerations
and contributions

In this chapter, we present the contributions of our work and the solution we
propose to the problem of subset selection from large databases for which
complete data is affordable only for a limited subset. First, we derive optimal
sampling schemes for a general class of optimality criteria, and show how
these may be implemented by use of available auxiliary information. We then
present an extension of the sampling methodology described in the previous
chapter to a sequential subsampling framework, where the information re-
quired for sample scheme optimisation may be updated iteratively as more
data is collected. The chapter is concluded by a discussion on the implications
of model misspecification, i.e. when there is a mismatch between the data
generating mechanism and the analytic model on which inference is based, on
statistical modelling in general and on the proposed inferential framework in
particular.

3.1 Optimal sampling schemes

Considering the variance formulas (2.5) and (2.6) of the weighted estimator θ̂π ,
we note that the variance depends on the sampling design in a rather simple
manner, apart from potential complications from the covariances Cov(Qi, Qj).
Thus, for certain sampling designs, it is possible to formulate optimality criteria
in terms of the variances of linear combinations of the model parameter θ as
convex optimisation problems for which explicit solutions may be obtained.
In the terminology of optimal design theory, this class of optimality criteria is
referred to as L-optimality, and includes, as a special case, optimisation with
respect to the average variance of an estimator of a parameter vector, known

11



12 3. Methodological considerations and contributions

as A-optimality (Atkinson and Donev, 1992). Using linearisation techniques,
the results may be extended also to smooth non-linear functions of θ, enabling
optimisation with respect to a wide range of commonly used statistics.

In what follows, we restrict the presentation to sampling according to inde-
pendent Bernoulli(πi) trials, i.e. Poisson sampling, or according to a Multi-
nomial(n,π) distribution, taking π as the vector (π1, . . . , πN ). We let ||v||
denote the Euclidean norm of a vector v, i.e. ||v|| =

√
vTv, and consider, to

begin with, a linear combination aTθ = a1θ1 + a2θ2 + . . . apθp of the model
parameters θ = (θ1, . . . , θp), where a is a vector of linear coefficients. For
instance, in the context of regression modelling, such a linear combination
may describe the effect of a single covariate on the outcome Y , or the effect
associated with a simultaneous change in multiple covariates.

Using Poisson sampling, the asymptotic variance of the sampling-weighted
estimator aT θ̂π of such a linear combination is given by

Var(aT θ̂π − aTθ0) = aTH(θ0)−1

(∑
i∈D

1− πi
πi

sis
T
i

)
H(θ0)−1a+ o(n−1) ,

following from the fact that Var(Qi) = πi(1 − πi) and Cov(Qi, Qj) = 0. Simi-
larly, the variance of aT θ̂π under multinomial sampling is given by

Var(aTk θ̂π − aTk θ0) =

aTH(θ0)−1
1

n

∑
i∈D

1− πi
πi

sis
T
i −

∑
i,j∈D
i 6=j

πiπj
πiπj

sis
T
j

H(θ0)−1a+ o(n−1) ,

following from the fact that νi := E[Qi] = nπi, Var(Qi) = nπi(1 − πi) and
Cov(Qi, Qj) = −nπiπj . In either case, we note that the variance can be written
as

Var(aTk θ̂π − aTk θ0) =
∑
i∈D

ci
πi

+ k + o(n−1) ,

where
ci = c(θ0) = ||aTH(θ0)−1si||2 (3.1)

and k is a constant not depending on π. It follows that the optimal sampling
scheme in terms of minimising this variance is obtained by choosing

πi ∝
√
ci , (3.2)

which in the case of Poisson sampling should be normalised so that
∑
i∈D πi

equals the desired sample size, and for Multinomial sampling so that
∑
i∈D πi =
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1. For Poisson sampling, however, this may result in sampling probabilities
greater than one, a situation that is handled in Algorithm 1 in Appendix A of
Paper II. For a proof of the optimality of these sampling schemes, we refer to
Appendix B of Paper II.

More generally, consider a collection of parameter combinations captured by
an (r x p) matrix L, where each row aTk of L defines a linear combination as
described above. Thus, the matrixLmay be defined to capture several relevant
evaluations and comparisons of interest. Using the sum of variances of the
linear combinations specified by the matrix L as optimality criterion, the result
in Equation (3.1) and (3.2) generalises to

ci = ||LH(θ0)−1si||2 . (3.3)

In the survey sampling literature, it is a well known fact that optimal preci-
sion of the Hansen-Hurwitz and Horvitz-Thompson estimators of a simple
population characteristic, such as a total or mean, is achieved by assigning
probabilities proportional to the size of the characteristic of interest, denoted as
PPS sampling (Hansen and Hurwitz, 1943; Horvitz and Thompson, 1952; Särn-
dal et al., 2003). Similarly, we may interpret the sampling design obtained from
taking πi according to (3.2) as a PPS sampling design, where ’size’ is measured
in terms of the influence on estimating the linear combinations {aTk θ}rk=1, as
measured by ||LH(θ0)−1si||.

The proposed sampling strategy also has some interesting connections to
leverage sampling (Ma et al., 2014; Ma and Sun, 2015; Ma et al., 2015) and robust
inference (Huber and Ronchetti, 2009), the former being based on the the idea
that influential data points should be oversampled, as these anyway would
drive most of the fit, and the latter being based on the idea that influential
data points should be down-weighted to reduce variance. By use of PPS
sampling and inverse probability weighing, variance reduction is achieved by
simultaneous oversampling and down-weighing of influential data points.

3.1.1 Non-linear optimality criteria

Using linearisation techniques, we can apply the same procedure as above to
optimisation with respect to non-linear optimality criteria, provided that these
can be expressed in terms of smooth functions of the parameter θ. Specifically,
consider a differentiable function h : R→ R with derivative h′. Using the the
Delta method (DasGupta, 2008), the asymptotic variance of h(aT θ̂π) may be
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expressed in terms of the variance of θ̂π as

Var
(
h(aT θ̂π)− h(aTθ0)

)
= aTh′(aTθ0)Var(θ̂π − θ0)h′(aTθ0)a+ o(n−1) ,

provided that the first term of the right hand side is greater than zero. Hence,
minimising the average variance of h(aT1 θ̂π), . . ., h(aTr θ̂π) translates into a
linear optimality criterion, taking L as the matrix with rows h′(aTk θ0)aTk .

We note that many commonly used statistics may be described in terms of
smooth non-linear functions of the parameter θ and thus fit into the presented
framework, including e.g. the coefficient of determination for linear regression
models, and estimates of odds ratios, absolute risks and relative risks in binary
logistic regression.

As another example, further considered in Paper I, the use of linearisation
techniques enables sample scheme optimisation with respect to prediction vari-
ance from a wide range of parametric statistical models. Specifically, suppose
that the expectation of Y , under the model fθ(y|x), can be expressed in terms
of a twice differentiable function µ : R → R as Eθ[Y |x] = µ(xTθ). This is
commonly the case for e.g. generalised linear models (McCullagh and Nelder,
1989), which include, among others, linear regression, where µ(x) = x; logistic
regression, where µ(x) = (1 + e−x)−1; and log-linear Poisson regression, where
µ(x) = ex. Given a number of input data points xi, one may optimise the sam-
pling procedure to minimise the variance of the predictions µ(xTi θ̂π), which
corresponds to minimising the mean squared error of the predictions. Thus,
the sampling probabilities may be optimised to directly target the prediction
error, which is a highly relevant target in predictive modelling.

3.1.2 Utilising auxiliary information

In practice, however, the optimal sampling scheme (3.2) can not be computed
as it depends on unknown and unobserved quantities, namely on X and Y , of
which at least some components are unknown, and on the unknown optimal
parameter θ0, both through H(θ0)−1 and si = si(yi,xi,θ0). Here, H(θ0)−1

may or may not, depending on the model fθ(y|x), be a function solely of θ0
and {xi}i∈P , as is the case for e.g. generalised linear models (GLMs) with
canonical link function, or additionally of {yi}i∈P , as is the case for e.g. GLMs
with non-canonical link function (McCullagh and Nelder, 1989). Additionally,
using non-linear optimality criteria, the optimality criterion itself depends on
the optimal parameter through {h′(aTk θ0)}rk=1. Nevertheless, the arguments
above prove the existence of an optimal sampling scheme; the endeavour
in practical applications should thus be to find good approximations to this
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unknown optimum. Indeed, the availability of auxiliary information stored in
the database D provides an opportunity to find such approximations.

Recall there are two types of variables stored in the database D: those that are
readily observed for all instances in the database, denoted by V , and those
that are affordable to observe only for a subset S ⊂ D, which we denote by
U . Thus, the former class of measurements are known for all instances in D
prior to subsampling. Additionally, we assume the existence of an auxiliary
model gη(u|v), which may be utilised for sample selection as follows. In order
to approximate the optimal sampling scheme (3.2), we replace the unknown
quantity ci in (3.2) by its expectation E[ci] = Eη∗ [c(Yi,Xi,θ

∗)|η∗] under the
auxiliary model gη∗(u|v) (Algorithm 1), where θ∗ and η∗ are two guesses of the
parameter values for the corresponding models (Algorithm 1). Such guesses
may be obtained using e.g. prior knowledge, existing data and simulations,
or, as described in the next section, by sequential subsampling that enables
iterative updating of the models fθ(y|x) and gη(u|v) as more data is collected.

In general, the expectation E[ci] may not be possible to evaluate analytically,
and numerical methodologies, such as Monte Carlo integration (Fishman, 1996),
may have to be employed. In this case, complete data {(x∗i , y∗i )}i∈D can be
simulated according to the auxiliary model gη∗(y,x|v), and the average of
c∗i = c∗i (y

∗
i , x
∗
i ,θ
∗) used as an estimate of E[ci].

As an example, we consider in Paper II a naturalistic driving study in which
data is collected for all driving sessions in a large fleet of vehicles during a
specific period of time. Vehicle data such as speed, direction and acceleration
etc. is automatically measured and stored. Additionally, the database contains
video recordings of the driver’s face, pedal and eyes movements, and of exter-
nal conditions and surrounding traffic. Here, the variables that require video
annotation are time consuming to obtain and may thus be observed only for a
subset of the instances in the database; these variables are contained in the col-
lection U , and may include e.g. driver glancing behaviour and secondary tasks
such as texting on the phone. Variables that do not require video annotation, on
the other hand, are readily available for all instances in the database, including
e.g. continuous measurements of vehicle speed and distance to surrounding
vehicles. Such automatically measured variables are included in the collection
V , and may be utilised to optimise the selection of which driving instances to
annotate.

Another example, further considered in Paper I, arises in pool-based active
learning, where the predictors X are known for all instances in a database, but
the responses Y require annotation or other means of manual investigation and
hence are observable only for a subset. Here, we have that V = X and U = Y ,
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and the auxiliary model gη(u|v) coincides with the prediction model fθ(y|x).

Returning to the discussion on model-based and design-based inference that
concluded the preceding chapter, we point out that the sampling procedure and
inferential framework we consider here is model-assisted but not necessarily
model-based. By this, we mean that decisions made in the design-stage are
assisted by an auxiliary model gη(u|v), used to determine an appropriate
sampling scheme, but inferences may be solely design-based and do not rely
on the correctness of the auxiliary model or the parameter guesses θ∗ and
η∗. Indeed, all the decisions made in the design stage are fully captured by
the chosen sampling design, which within the finite population sampling
framework outlined in the previous section is allowed to be chosen by any
means. Thus, the use of auxiliary information assisted sampling designs, and
the correctness of the assumptions made in the design stage, is solely a matter
of statistical efficiency but not of statistical and scientific validity.

Algorithm 1 Auxiliary variable assisted sampling schemes

Let θ∗ and η∗ be guessed values of the parameters of the models fθ(y|x) and gη(u|v).

1: Compute
c∗i = Eη∗ [c(Yi,Xi,θ

∗)|η∗] for all i ∈ D .

2: Compute
π(i) ∝

√
c∗i for all i ∈ D .

normalised so that∑
i∈D

πi = 1 using Multinomial sampling, and

∑
i∈D

πi = n using of Poisson sampling.†

† A procedure that handles the case when this produces sampling probabilities πi > 1
is provided in Algorithm 1 in the appendix of Paper II.

3.2 Sequential subsampling

So far, we have considered non-adaptive designs, where a sampling design is
fixed a priori and sampling is terminated after a sample S has been selected.
However, from an optimal design perspective, this induces rather strong re-
quirements on the availability of prior information for implementation of the
optimal sampling schemes described in the previous section. If such informa-
tion is limited or unavailable, it may be desirable to perform sampling in two
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or several steps, iteratively gathering more information that can be used for
optimisation of consecutive sampling steps. Thus, it is of practical interest to
develop a sequential and adaptive sampling procedure, where the sampling
schemes are allowed to depend on the data observed so far, and on the current
estimates of the models fθ(y|x) and gη(u|v) in particular.

Sequential sampling has already achieved some attention in the machine learn-
ing community with the emergence of active learning, an algorithmic frame-
work where a semi-supervised learning algorithm iterates between data col-
lection and model fitting by repeatedly querying the value of the response
variable Y of new instances sampled from a large pool or stream of unlabelled
instances (Settles, 2012). However, this framework is not only restrictive in the
amount of information available, requiring all components of X to be known
prior to instance selection, but imposes rather strong modelling assumptions
and relies heavily on the correctness of the assumed model; see e.g. Shimodaira
(2000); Sugiyama (2006); Bach (2007); Sugiyama and Nakajima (2009) and the
discussion in Chapter 3.3. Instead, incorporating active instance selection with
finite population sampling methodology, estimators and algorithms with good
statistical properties under less restrictive assumptions may be derived.

As it turns out, extending the inferential framework previously described to
sequential subsampling from D follows immediately upon the introduction
of some additional notation. First, we let Qt(i) denote the number of times in-
stance i ∈ D is queried in iteration t, let νt(i) = E[Qt(i)] denote the expectation
of Qt(i), let nt =

∑
i νt(i) denote the expected size of the queried sample, and

let St be the collection of sampled elements up to and including iteration t. As
before, estimation may be conducted by minimising a weighted loss, defining
a sampling-weighted estimator θ̂t of θ as

θ̂t := arg min
θ

ˆ̀(t)(θ) ,

ˆ̀(t)(θ) :=
∑
i∈St

wt(i)`i(θ) ,

where the sampling weights may be taken as

wt(i) =

t∑
s=1

Qs(i)

νs(i)
bs,t , i ∈ D ,

and where b1,t, . . . , bt,t is a collection of non-negative batch-weights summing
up to one. An algorithmic description of such a procedure is provided in
Algorithm 2.
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Algorithm 2 Sequential subsampling from a finite universe

Start with an empty sample S0.

1: for iteration t = 1, . . . , T do
2: Select a batch of instances at random from D.
3: Query the values of (xi, yi) of the selected instances and add the corresponding

indices to St.
4: Compute batch-weights

bs,t =
ms∑t
r=1mr

, s = 1, . . . , t ,

where mt is the number of instances that are not trivially selected, i.e. excluding
instances selected with probability 1.

5: Compute sampling weights

wt(i) =

t∑
s=1

Qs(i)

νs(i)
bs,t for all i ∈ St .

6: Update the model fθ(y|x) by choosing

θ̂t = argmin
θ

∑
i∈St

wt(i)`i(θ) .

7: Update the auxiliary model gη(u|v) by choosing

η̂t = argmax
η

∑
i∈St

wt(i) log gη(ui|vi) .

8: end for

An important feature of this sequential subsampling framework is the al-
lowance of the sampling design employed in the current iteration to depend
on data observed in the previous iterations, and on the current parameter
estimates θ̂t−1 and η̂t−1 in particular. As such, it reduces the need for prior
information otherwise required for sample scheme optimisation, since such
information may be obtained sequentially as new data is collected.

Similarly to our previous suggestions, sampling scheme optimisation for se-
quential sampling may be conducted according to Algorithm 1 in Chapter 3.1,
taking θ∗ = θ̂t−1 and η∗ = η̂t−1. We may motivate this result in two slightly
different ways, both following by arguments analogous to those presented in
the previous section. Namely that choosing πt(i) ∝ ci minimises the average
variance of the linear combinations of θ̂t specified by the coefficient matrix L
conditioned on the previous sampling steps, or, that choosing πt(i) ∝ ci min-
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imises the total variance across all sampling steps if we take π1, . . . ,πt as fixed
a priori. In either case, the covariances between sampling steps are ignored.
Consequently, it might be possible to achieve further variance reduction by
exploiting between-subsample covariances; this is, however, a topic for further
research.

Another topic for further research is the conditions for asymptotic normality
and consistency of θ̂t, and further to derive expressions of and estimators
for the asymptotic variance of θ̂t under adaptively chosen sampling designs.
Although not formally proven, we expect similar results to those obtained for
θ̂π to hold also for θ̂t; a presumption justified by e.g. Binder (1983) and Yuan
and Jennrich (1998), following from the fact that ˆ̀(t)(θ) is an unbiased estimator
of the population loss `0(θ). Thus, an estimator derived from the estimated loss
ˆ̀(t)(θ) would, under regular conditions, enjoy standard asymptotic properties
such as asymptotic normality and consistency; what remains is to account for
the between-subsample covariances that arise when the sampling schemes are
adaptively chosen based on observed data.

3.3 Robustness against model misspecification

In any modelling task, it is crucial to evaluate the plausibility of the assumed
model and consider the implications of potential modelling errors and erro-
neous assumptions, and, as it turns out, and even more so when the investigator
or prediction algorithm directly influences data collection based on observed
data, as in the applications considered in this thesis. Using traditional experi-
mental design theory and model-based inference, it is, in such circumstances,
fully possible to obtain a model that agrees well with observed data but that
anyway provides an inaccurate description of the relationships between the
variables of interest, and that consequently suffers from poor generalisability
and lacks practical use. We provide such an example below.

3.3.1 The optimal design dilemma

Consider a scenario where we are given datapoints {(xi, yi)}Ni=1 indirectly
stored in a databaseD, where X and Y are two continuous variables. However,
measuring the values of Y is affordable only for a a subset S of size n � N .
Knowing only the values of X , we wonder if we can choose this subset in some
optimal way. At this stage, a number of assumptions must be made. It is known
already that the response variable is continuous. With no prior knowledge, one
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might further assume that the two variables are linearly related with constant
error variance σ2. Thus, linear regression would be a natural candidate for
modelling the relationship between X and Y . Under these assumptions, we
know that the variance of the least squares estimator β̂1 of the slope β1 is given
by

Var(β̂1) =
σ2∑

i∈S(xi − x̄S)2
,

where x̄S is the sample mean of xi’s in the subset S . Hence, the optimal design
in terms of minimising the variance of β̂1 is obtained by choosing S so that∑
i∈S(xi − x̄S)2 is maximised, i.e. choosing the most extreme data points in

terms of the values of xi.

We now consider an application of the above mentioned strategy for subset
selection in two hypothetical scenarios depicted in Figure 3.1. The first scenario
is an example where the true relationship between X and Y indeed is linear,
and the second where the true model is quadratic. In both cases, the model
seems to fit the data in the labelled subset very well, with no apparent devi-
ations from the specified assumptions of linearity and homoscedasticity. In
the second case, however, the fitted model produces disastrous predictions for
the responses yi in the underlying dataset D. Moreover, even though adding
a quadratic term in theory would remove the bias, resorting to a quadratic
model after subset selection is not only discouraged by the observed data
but does not improve predictive performance either (Figure 3.2). Thus, using
optimal design theory to deterministically select a subset from a large pool of
instances, we may not be able to verify nor falsify the assumptions based on
which the ’optimal’ subset was chosen. Furthermore, the problems induced by
deterministic subset selection for misspecified models are present not only in
simple linear regression models but for inference and prediction problems in
general, and do not necessarily vanish with increasing sample sizes; see e.g.
Shimodaira (2000); Sugiyama (2006); Bach (2007) and Sugiyama and Nakajima
(2009).
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Figure 3.1: Deterministic subset selection of n = 30 instances from a pool of N = 500
instances, optimised to minimise the variance of the estimator of the slope of a linear
model. The y-values are observed only for the labelled sample (black), and remain
unknown for the unlabelled data points (gray). A: the true model is linear. B: the true
model is quadratic. The model seems to fit the data in the labelled subset very well in
both cases, but has poor predictive performance when the model is misspecified.
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Quadratic

Figure 3.2: Deterministic subset selection of n = 30 instances (black) from a pool of
N = 500 instances (gray), optimised to minimise the variance of the estimator of the
slope of a linear model. Resorting to a quadratic model (red dotted line) after subset
selection does not improve predictive performance.
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3.3.2 The design-based approach

In this thesis, we have presented an alternative to subset selection that uses a
random mechanism for sample selection that overcomes the deficiencies with
model-based inference for misspecified models under dataset shift demon-
strated above. Using random sampling and inverse probability weighing, we
may actually control the selection mechanism and properly account for the
induced selection bias, producing valid inference for the underlying database
even under the realistic assumption of model misspecification. Indeed, robust-
ness against model misspecification has been highlighted as one of the main
strengths of sampling-weighted inference (Pfeffermann, 1993).

Returning to the example above, by the theory presented in Section 3.1 we
obtain that the optimal sampling scheme for estimating the slope β1 of a linear
model, using random sampling with inverse probability weighting, is to choose
πi ∝ |xi − x̄|, where x̄ is the sample mean of the xi’s in the entire database
D. Applying this sampling scheme to the datasets depicted in Figure 3.1, we
obtain, on repeated subsampling, the results presented in Figure 3.3. In the
first scenario, where the model is correctly specified, random sampling and
deterministic selection produce similar results, although random sampling nat-
urally introduces additional variation in estimating the regression line (Figure
3.1 A and 3.3 A). In the second case where the model is misspecified (Figure
3.1 B and 3.3 B), the results differ dramatically. In particular, random sampling
produces substantially more accurate predictions than the ones obtained by
deterministic instance selection, the reason being that the sampling-weighted
estimator still estimates a well defined quantity, namely the ’best’ linear ap-
proximation of the true relationship between X and Y , where ’best’ is defined
as the model we would obtain if all the data in D were used. Furthermore, by
use of random sampling it is possible to detect and adjust for modelling errors,
so that accurate models may be developed (Figure 3.4).
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Linear fit on subsample Optimal linear fit

Figure 3.3: Estimated regression lines for 15 randomly selected samples of n = 30
instances from a pool of N = 500 instances, optimised to minimise the variance of the
sampling-weighted least squares estimator of the slope of a linear model. A: the true
model is linear. B: the true model is quadratic. In both cases, the sampling-weighted
estimator consistently estimates the regression line that would have been obtained if
the entire database had been used.
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Quadratic fit on subsample
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Figure 3.4: Estimated regression lines for 15 randomly selected samples of n = 30
instances from a pool of N = 500 instances, optimised to minimise the variance of the
sampling-weighted least squares estimator of the slope of a linear model. Correcting
for modelling errors of the linear fit by adding a quadratic term produces consistent
estimates of the true model from which the data was generated.
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3.3.3 Design-based inference and robustness against model
misspecification

With the above example in mind, we repeat once again some of the key proper-
ties of the proposed inferential procedure. First, we recall that θ̂π is a consistent
estimator of the finite population parameter θ0 under general regularity condi-
tions (Binder, 1983). Although not formally proven, we expect the same to hold
also for θ̂t; see e.g. Yuan and Jennrich (1998) and the discussion concluding
Chapter 3.2. Here, we may think of θ0 as the best approximation within the
family fθ(y|x) of the true relationship between X and Y , in the sense that it
minimises the population loss `0(θ); clearly, we do not expect to do better than
this based on a subset S ⊂ D.

In contrast to model-based inference, where the validity of inferences drawn
from a collected sample hinge on the correctness of the modelling assumptions,
inference from θ̂π and θ̂t regarding the finite population parameter θ0 are
solely design-based. Thus, the statistical properties of these estimators are
determined completely by the sampling design, which is under direct control of
the investigator, and is, with respect to inference regarding θ0, free of modelling
assumptions. In particular, θ̂π and θ̂t remain consistent for θ0 even under the
realistic assumption of model misspecification, i.e when there are discrepancies
between the analytic model fθ(y|x) and the true data generating mechanism.

As another interesting feature, we note that the optimal sampling schemes
given by Equation (3.1) – (3.3) in Section 3.1 also are design-based and don’t
depend on the correctness of the assumed model. That is, irrespective whether
the model fθ(y|x) is correct or not, there exists an optimal sampling scheme
in the sense that the asymptotic average variance of a collection of linear
combinations of θ̂π and θ̂t is minimised. However, the true optimal sampling
scheme depends on unmeasured variables and additionally on the unknown
optimal parameter θ0, and will, in any realistic application, remain unknown.
Thus, in practical problems and applications, effort should be spent on finding
good approximations to this unknown optimum.
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4.1 Paper I

Introduction

We consider a statistical learning problem of estimating a parameter θ of a
statistical model fθ(y|x) from a subset of a random sample (xi, yi), i = 1, . . . , N ,
with the aim of obtaining a predictive model fθ̂(y|x). The predictors xi are
known for all members of the initial sample, but the outcomes yi are observable
only for a smaller subset. We consider the task of optimal sampling for selection
of the subset for which the responses Y will be observed.

Active learning

We present an active learning algorithm that sequentially samples new in-
stances at random from a large pool of available instances, updating the current
estimate θ̂t of the parameter θ by minimisation of a sampling-weighted loss
function. Our active learning algorithm extends the finite population sampling
methodology to a sequential sampling framework that iteratively samples
new instances, and extends existing unbiased active learning algorithms from
selecting one instance at a time to randomised batch-sampling.

Optimal sampling schemes

We consider a twice differentiable loss function and a general class of regular
statistical models, for which the expectation of Yi given xi can be expressed
in terms of a differentiable function µ : R → R as Eθ[Yi|xi] = µ(xTi θ). We

25
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show that both the mean squared error of the predictions {µ(xTi θ̂t)}Ni=1 and
the variance of the total loss `0(θ̂t) admits asymptotic expansions of the form

k1

t∑
s=1

N∑
i=1

ci(θ0)

πs(i)
+ k2 + o(n−1) ,

where k1 and k2 are constants not depending on the vectors π1, . . . ,πt of
sampling probabilities, and ci(θ0) are quadratic expressions depending on
{(xi, yi)}Ni=1 and θ0. Moreover, the first term of the above expression is min-
imised by choosing sampling probabilities according to

πs(i) ∝
√
ci(θ0) ,

normalised so that
∑N
i=1 πs(i) = 1.

We further propose approximation of the optimal sampling schemes by re-
placing the unknown optimal coefficients ci(θ0) with their corresponding
expectations, evaluated at the current parameter estimate θ̂t, and show that the
resulting sampling schemes have a close connection to to statistical leverage,
a commonly used influence measure in generalised linear regression mod-
elling (Pregibon, 1981). Practically speaking, this means that optimal predictive
performance is achieved by oversampling highly influential instances, and
by oversampling data points with a large influence on the predictions per-
taining to uncertain instances in particular. For classification problems, this
corresponds to oversampling instances that are influential for detection of the
decision boundary.

Results

An empirical evaluation of the proposed active sampling schemes demon-
strated improved predictive performance, both compared to simple random
sampling and to various instance selection procedures previously suggested in
the literature (Figure 4.1).
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Figure 4.1: Performance of five different sampling schemes for on two benchmark
datasets, using schemes sampling optimised to minimise the mean squared error (MSE)
of the predictions, sampling proportional to the square root of the statistical leverage
score, probabilistic uncertainty sampling (Chu et al., 2011; Ganti and Gray, 2012), deter-
ministic uncertainty sampling (Lewis and Gale, 1994), and uniform random sampling.
The gray solid line represents the misclassification rate using the entire dataset for
training.

Conclusions

We have derived optimal sampling schemes for unbiased active learning, in
the sense that the variance of the total loss and the mean squared error of the
predictions are minimised. Our empirical results demonstrate better predictive
performance than competing methods on a number of benchmark datasets. In
contrast, deterministic uncertainty sampling (Lewis and Gale, 1994) always
performed worse than simple random sampling, as did uncertainty-based
random sampling in one of the examples. To conclude, our study shows
that sample selection in unbiased active learning should not target the most
uncertain instances, as previously have been suggested (Chu et al., 2011; Ganti
and Gray, 2012), but the most influential ones.
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4.2 Paper II

Introduction

A huge challenge in the analysis of naturalistic driving data is making efficient
use of the overwhelming amounts of information stored in naturalistic driving
study (NDS) databases. The great cost associated with video annotation often
required for statistical analyses implies that data analysis must be restricted
to a limited subset of the original database. Thus, choosing this subset in
a manner that captures as much of the available information as possible is
essential. In this paper, we show how sample selection may be optimised using
information readily available in the database through automatic recordings of
vehicle manoeuvre data. The methodology is consequently illustrated using
data collected in Sweden as part of the European large scale field operational
test (euroFOT) study (Kessler et al., 2012).

Methods

We consider a traffic situation involving two vehicles, the vehicle taking part in
the NDS study (the index car) and a front car. The two are driving at similar
speeds, when the front car brakes. This scenario describes a situation where
a potential safety critical event (SCE) can occur, namely a rear-end collision.
Of interest is the question of whether the glancing behaviour of the driver of
the index car, namely whether he/she looks at the car in front when braking is
initiated, and the speed of the vehicles and time gap between the two cars at
this initiation, have an impact on the likelihood that a safety critical event will
occur.

To answer this question, we consider a logistic regression model

logit P (Y = 1|X) = θ0 + θ1Time gap + θ2Speed+ θ3Glance

+ θ4Glance ∗ Time gap ,
(4.1)

where Y is a binary variable indicating whether a safety critical event occurred
in a specific driving instance or not, Time gap is the distance between the
vehicles measured in seconds, and Glance is a binary indicator whether the
driver is having eyes-off-road at brake light.
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Optimal sampling schemes

Considering a cohort of 49 SCEs and 500 non-SCEs and the logistic regres-
sion model (4.1), we used auxiliary information readily available in the NDS
database to compute optimal sampling schemes with respect to various linear
optimality criteria. Generally, controls at high anticipated risk of SCE were
oversampled, i.e controls driving at high speed, small time gap, and with a high
predicted tendency of glancing off road. Relatively large sampling probabilities
were also assigned to controls at moderate to mild risk, constituting a subset to
which the characteristics of the cases and high risk controls may be contrasted.
Controls at low risk tended to be selected with low probability, as these are
anticipated to contribute with little information with regards to safety.

Results

Poisson sampling optimised for a specific linear combination of parameters
generally resulted in an increased precision of the corresponding parameter
estimates, as compared to simple random sampling, and the gain in precision
increased with the size of the control sample. With n = 50 controls, the
standard deviation (SD) of the estimator for the effect of time gap was reduced
by 12% using instance selection optimised for this particular parameter. The
corresponding information loss, measured as increase in SD compared to
analysing the entire database, was 74%. At n = 200, the results were improved
further to an SD reduction of 31% compared to SRS. In this case, using 40%
of the database resulted in only 24% loss of information. Similar results were
observed also for optimisation with respect to the effect of vehicle speed. On
the contrary, only limited auxiliary information for glancing was available, and
linear combinations involving glancing were consequently poorly estimated,
particularly at small sample sizes.

Conclusions

We have presented an inferential framework for the analysis of large NDS
databases in which complete data collection is costly, and shown how instance
selection in naturalistic driving data may be optimised by the use of auxil-
iary information readily available for all instances in an NDS database. We
have illustrated through a case study how such sampling designs may be
implemented in practice, and demonstrated that a substantial gain in statistical
efficiency may be achieved when good auxiliary information and proxies for
the variables on interest are available.
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