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ARTICLE INFO ABSTRACT

Keywords: This study explores life cycle environmental impacts of city buses, depending on the: (1) degree
LCA of electrification; (2) electricity supply mix, for chargeable options; and (3) choice of diesel or
City hydrogenated vegetable oil (HVO), a biodiesel, for options with combustion engine. It is a case
Bus study, which uses industry data to investigate the impact on climate change, a key driver for
E;::r?; electrification, and a wider set of impacts, for average operation in Sweden, the European Union
Vehicle and the United States of America. The results show that non-chargeable hybrid electric vehicles
Plug-in provide clear climate change mitigation potential compared to conventional buses, regardless of
HVO the available fuel being diesel or HVO. When fueling with HVO, plug-in hybrid and all-electric
Diesel buses provide further benefits for grid intensities below 200 g CO, eq./kWh. For diesel, the all-
Public transport electric option is preferable up to 750 g CO, eq./kWh. This is the case despite batteries and other

electric powertrain parts causing an increase of CO, emissions from vehicle production.
However, material processing to make common parts, i.e. chassis, frame and body, dominates the
production load for all models. Consequently, city buses differ from passenger cars, where the
battery packs play a larger role. In regard to other airborne pollutants, the all-electric bus has the
best potential to reduce impacts overall, but the results depend on the amount of fossil fuels and
combustion processes in the electricity production. For toxic emissions and resource use, the
extraction of metals and fossil fuels calls for attention.

1. Introduction
1.1. Background

Electromobility is gradually becoming more and more important for road transportation, in the interest of climate change mi-
tigation, reduced local air pollution and decreased dependence on foreign oil. This trend has created focus on the environmental
impacts of electrifying vehicles, and triggered a large number of life cycle assessment (LCA) studies to investigate electrically pro-
pelled passenger cars (Nordelof et al., 2014). In contrast, heavy road vehicles, for example public transportation buses operated in
cities, have until recently drawn less attention in LCA literature (Nordelof et al., 2014), despite being highly applicable for elec-
trification and possessing a suitable business case (Sushandoyo and Magnusson, 2014). However, a growing number of bus studies
focus on different fuel types, including hydrogen in fuel cells and various biofuels, as well as the production of electricity for charging,
by assessing the energy carrier life cycle from well-to-wheels (WTW) (Ercan et al., 2016; Frey et al., 2007; Kliucininkas et al., 2012;
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Lajunen and Lipman, 2016; Ma et al., 2017; Ou et al., 2010; Xu et al., 2015; Zhou et al., 2016). Several other studies apply more
complete LCA, i.e. they cover the life cycle of the vehicle equipment and the WTW stage, e.g. comparing electrically chargeable buses
with those driven by diesel or hydrogen fuel cells (Cooney et al., 2013; Garcia Sanchez et al., 2013; Harris et al., 2018; Ribau et al.,
2014).

One study, by Ercan and Tatari (2015), investigates how environmental impacts differ between a conventional bus running on
diesel or biodiesel compared to a range of other fuel options, including a non-chargeable diesel hybrid and a chargeable battery
electric bus. Their study combines national and sector economic input-output data with manufacturing process information speci-
fically for biodiesel and traction batteries, using model data from the Argonne National Laboratory (2018), in a setup referred to as a
hybrid-LCA. The results indicate clear climate impact benefits from both hybridization and full electrification of buses, but also point
to a strong dependence on the underlying electricity grid mix (Ercan and Tatari, 2015), this being in line with earlier general results
for chargeable vehicles (Nordelof et al., 2014).

Xylia et al. (2019) also study the use of different types of biodiesel in bus fleets and compare these with the operation of
chargeable all-electric buses, but exclude hybrid and plug-in hybrid vehicles. Scope covers the WTW life cycle of the energy carriers
but only with the battery for the equipment life cycle (see for example Nordelof et al. (2014) for explanation of terms), under the
assumption that these two parts are the dominating contributors to the total environmental impacts of the bus life cycle. An opti-
mization model is then used to locate suitable charging points and to estimate linked carbon dioxide emissions for several im-
plementation scenarios (Xylia et al., 2019).

However, many relevant questions coupled to city bus electromobility remain to be explored. For example, until now no studies in
the research literature examine the combination of using biofuel in vehicles with different degrees of electrification (including plug-in
hybrid vehicles) for the same city bus application or take a full spectrum of impacts categories into account, for example toxic
emissions and metal depletion caused by resource extraction. Several previous articles point out the general lack of data for bus
design, operation and manufacturing (Cooney et al., 2013; Ercan and Tatari, 2015; Garcia Sanchez et al., 2013). Likewise, Harris
et al. (2018) concludes that there is a need for additional process-based LCA studies (i.e. not using the hybrid-LCA setup) covering the
full vehicle equipment life cycle, while remarking these are missing partly due to difficulties in acquiring component composition and
manufacturing data.

1.2. The aim and content of the article

In response to existing gaps in the research field, this paper’s aim is to report a cohesive LCA case study that uses industry data to
investigate the environmental impacts of different city buses of the same model series for public transportation in cities. These bus
options differ depending on (1) the degree of electrification, (2) the electricity supply mix for charging, and (3) the choice of liquid
fuel for the alternative drive mode — diesel or hydrogenated vegetable oil (HVO), a type of biodiesel attracting growing interest for
public transportation applications and promising environmental performance (Arvidsson et al., 2011; Xylia and Silveira, 2017). The
study is based on data from an existing bus line (no. 55) in Gothenburg, Sweden, with vehicle content, manufacturing, maintenance
and operation data provided by Volvo Bus Corporation and the local bus operator, Keolis Sverige AB.

Following the introduction, this paper presents: the details of the study’s goal and scope definition; a description of the inventory
analysis; impact assessment results and a discussion on robustness; and conclusions phrased as answers to the research questions of
the study. A supplementary report (SR) is coupled to this article, presenting more detailed technical descriptions, schematics and
tables linked to the inventory analysis, as well as figures complementary to the presentation of the results and different types of
sensitivity analysis. All figures or tables denoted with an “S” refer to the SR.

2. Methods, goal and scope
2.1. Goal definition

The goal of the presented study is to assess the life cycle environmental impacts of city buses used for public transportation. Three
main questions were researched:

(1) How do the environmental impacts of city buses depend on their degree of electrification?

(2) How do the environmental impacts of electrically chargeable city buses depend on the production of the electricity used for
charging?

(3) How do the environmental impacts of electrical operation compare with combustion of HVO instead of diesel?
The overall aim of the study is to create a knowledge base intended for use in the procurement of vehicles, electricity and fuels

and strategic planning of public transportation, and for further development of bus powertrain technology. The main target group
consists of local and regional public transportation agencies and companies.

2.2. Objects of study and functional unit
Four different vehicles were compared in the study:
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(1) all electric powertrain; charging only; referred to as the “electric” bus

(2) plug-in hybrid electric (vehicle) powertrain; charging combined with refueling; “PHEV” bus
(3) hybrid electric (vehicle) powertrain; refueling only; “HEV” bus

(4) diesel engine powertrain; refueling only; “conventional” bus

Data for Volvo’s 7900 model series was used (Volvo Bus Corporation, 2011, 2016a,b,c). All refueling (buses 2-4) considers two
fuel alternatives — diesel or HVO — with equivalent emissions and performance when used in the internal combustion engine (of Euro
6 emission standard) (Volvo Lastvagnar, 2013). The chargeable buses (1-2) are combined with different electricity production
average grid mixes: for Sweden, the European Union (EU) and the United States of America (USA). All in all, the different bus
versions, the fuel alternatives and the selected charging electricity mixes, combine into 13 examined options.

The functional unit of the study is person X km, corresponding to the city bus task of transporting people on a specific line. There
are differences in the capacity for maximum number of passengers between the bus models due to deviating component packaging
and total mass (see Section A.1 of the SR), but the main assumption throughout the study is that this variation makes no difference to
the ability to fulfil the designated transportation work. Accordingly, e.g. fuel- and electricity consumption for each bus was gathered
to calculate average operation on the line, expressed per passenger. Further, the effect of maximum ridership for each bus type was
examined in a sensitivity analysis (see Section D.2.2 of the SR). Energy usage includes the ability to maintain an equivalent on-board
temperature year-round, i.e. the electric and PHEV options use dedicated fuel heaters during winter time, while the conventional and
HEV versions make use of excess heat from the engine. In the electric buses a small amount of HVO is used, and in the PHEV buses the
same fuel as used for propulsion is used for heating.

2.3. Technical, temporal and geographical system boundaries

The LCA study is attributional and comparative, i.e. it models and evaluates the potential impacts of operating different technical
options in an existing system. Accordingly, the study is based on average data, unless specified otherwise. Foreground bus data,
including vehicle design and composition, component and vehicle manufacturing, driving, and maintenance, was provided by the
Volvo Bus Corporation. Other stages in the life cycle of the different bus options include the extraction and production of materials,
generation of electricity, production of fuel, and treatment of materials consequent to "End-of-Life” (EoL). These stages constitute the
background system for which general inventory data from Ecoinvent v.3.3 was used (Wernet et al., 2016), complemented with
updated information about the production of HVO from different feedstock (Killmén et al., 2019). This version of the Ecoinvent
database was released in 2016. In terms of geography, the background data generally represents global averages, or European
averages where global averages were not available (see Table S3 in Section C.1 of the SR). Specific electricity grid mixes were linked
to the sites of the foreground manufacturing data, as described briefly in the following paragraph, and with more details in Section
3.2 and chapter B of the SR.

For the manufacture of subsystems and components, and assembly of complete buses, the Volvo foreground data refers to specific
production sites in Europe. Electric motor and battery manufacturing were assumed to take place at suppliers in Germany and the
USA respectively. The bus operation stage was assessed more broadly for geographical representation. For climate change, the full
range of carbon intensity in electricity production was examined. Average grid mixes for the EU and the USA were assessed for all
selected impact categories. Additionally, the Swedish electricity grid mix provides an example of charging using a very low share of
fossil energy.

Other operating data is based on conditions in Sweden. Data for the amount of electricity used for charging, fuel consumption and
number of passengers is based on an existing high-traffic, inner city bus line. Furthermore, the feedstock mix used in the production of
HVO was based on average Swedish data for fuels sold during 2016 (Swedish Energy Agency, 2017), see Table S12 in Section C.3 of
the SR. In 2016, as a result of a rapid expansion in the use of HVO, Sweden consumed more than 20% of global production, this in
turn primarily deriving from other European countries and the USA (Grenea, 2017; REN21, 2017; Swedish Energy Agency, 2017),
making it the best available estimate of the global average in terms of HVO feedstock. For this reason, we argue that this operating
data is representative regarding the use of HVO in public transportation in cities in both the EU and the USA.

Finally, the EoL was modeled with reference to the disposal of vehicles and recycling of materials in Sweden. The life span of
buses in operation is 12 years for all bus options, according to Volvo. Transports of materials and subcomponents are included in the
background Ecoinvent data and were added to the foreground system by means of specific modeling of the distances and transport
modes corresponding to the routes between supplier sites and the bus assembly facility (see Table S9 in Section C.2 of the SR).

2.4. Selection of life cycle impact assessment methods

Nine impact categories of high relevance to environmental problems relating to traffic and vehicles were included in the life cycle
impact assessment (LCIA): climate change (GWP 100), acidification, eutrophication (marine end compartment), human toxicity
(carcinogenic and non-carcinogenic), particulate matter, photochemical ozone formation, and abiotic resource use (two methods for
mineral and non-renewable elements). Eight of these categories were assessed with midpoint characterization methods recommended
by ILCD (International Reference Life Cycle Data System) (JRC-IES, 2011), with characterization factors according to JRC-IES (2013),
with the exception of abiotic resource depletion (ADP) for which updated factors by CML (CML, 2016; Guinée et al., 2002) were used.
The analysis of resource use includes EPS (Environmental Priority Strategies) (Steen, 2015), this being a broader endpoint LCIA
method, and methodologically complementary to ADP.
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Land use was not included among the selected LCIA methods, despite HVO being a biofuel. The reason being that biological waste
is the primary feedstock and, unlike cultivation the of crops, it is not directly linked to land use. Consequently, suitable inventory data
for land use was lacking.

3. Inventory analysis
3.1. Vehicle specifications and operation data

The data for material composition of the different bus options derives from existing bus models in Volvo’s 7900 series. All bus
options studied were modeled on the same chassis, frame and body, using data from the fully electric bus version (which has the
largest passenger capacity), whereas data for powertrains (including all subsystems) and batteries was gathered for each specific
variant. Mass data was available for all parts, although some component material compositions were lacking. This included printed
circuit boards (PCBs) in the various electronics and permanent magnets of the electric motors, where generic data from Nordelof et al.
(2017, 2018) was used. All internal combustion engines meet Euro 6 emission standards and all high voltage batteries are of lithium
iron phosphate (LFP) type. For more details, see Section A.1 and chapters B and C of the SR. Composition and manufacturing data for
the batteries was provided by Volvo but originate from Volvo suppliers. These primary datasets were found to be in line with other
datasets for non-giga-scale battery production (Ellingsen et al., 2017).

More thorough technical information about the buses can be found in Section A.1 of the SR. Fig. S1 illustrates mass distribution
between major vehicle sub-segments for all model versions and Fig. S2 shows the distribution of different materials in the vehicles.
Table S1 specifies power and electrical storage capacities, and total masses of all bus options.

Minor shifts of the interior design between options, linked to the variation in maximum passenger capacity (see Section 2.2), were
disregarded. The average passenger count per kilometer was calculated to be 16 based on bus line statistics (Keolis, 2017; Lund,
2017). The line is 7.6 km long and has 11 stops in each direction, with charging stations at both ends. The buses run at an average
speed of 18 km/h, for 65,000 km per year. Thus, the total transport work over a total bus life equals 12.5 million person-km. Further
details about the bus line is provided in Section A.2 of the SR.

The amount of energy required by each bus option when operating on the line, i.e. the average amount of charging electricity and
the fuel consumption, was provided by Volvo, based on a combination of direct measurements and calculations (for the options not
currently running on the line). This includes the energy necessary to maintain the same temperature in the passenger compartment in
all weather conditions. The diesel fuel includes a low blend of 7% biodiesel (rape methyl ester). The study also takes urea for exhaust
after-treatment and energy losses in the charger stations into account, but not the chargers in terms of equipment. Thus, the data for
the tank-to-wheels (TTW) stage, i.e. “charger-to-wheels” for the chargeable options, is case-study specific. For upstream production
and distribution of electricity, diesel and HVO - referred to as the well-to-tank (WTT) part of the WTW life cycle for these energy
carriers — generic background data was used, as described in the previous methodology chapter.

For regulated tailpipe exhaust emissions, the limits of EU emission standards (Euro 6) were used for both HVO and diesel. This
implies a worst-case approach in both cases, taken to avoid underestimating the exhaust emissions by using certification data that
typically is very low as it is collected under ideal laboratory conditions. In fact, and similarly for both fuels, the difference between
Volvo certification data and the Euro 6 emissions limits is specifically large for carbon monoxide (CO), hydrocarbons and particles,
but also clearly different for nitrogen oxides (NO,). This is an indication that real-world tailpipe emissions might be lower than the
study reports in these cases. The same certification data also specifies that HVO may have lower emissions of sulfur dioxide and
hydrocarbons than diesel, but higher emissions of CO.

Section B.2 of the SR describes WTT and TTW data in more detail, for example the underlying composition of the HVO. Table S2
reports fuel and electricity use for all options.

3.2. Life cycle inventory for vehicle equipment from raw materials to End-of-Life

In analogy with the WTW life cycle data for the energy carriers, the inventory for the life cycle of the vehicle equipment can
largely be divided into case-study specific data from Volvo for the foreground system, and more general database records for the
background system. The latter includes raw material extraction, material processing, EoL treatment procedures and energy supply for
various processes throughout the life cycles, e.g. from electricity or natural gas.

The foreground system covers component and bus manufacturing, maintenance and use of the vehicle (see Section 3.1). The data
for material inputs, energy use and waste from Volvo’s production facilities is from 2016. However, for production steps where
primary data was not judged to provide sufficient detail, complementary sources were used: for casting, forging, curing and forming
procedures (Nordelof and Tillman, 2018; Wernet et al., 2016); for the manufacturing of electronics (Nordelof, 2018; Nordelof and
Alatalo, 2017); and for the production of magnets and electric motors (Nordelof et al., 2019; Nordelof et al., 2017; Nordelof and
Tillman, 2018). Likewise, data for lithium-ion battery production was obtained from Volvo’s supplier and reported as stemming from
2015. Recycling of production waste was taken into account for steel, aluminum and copper.

All maintenance procedures are based on Volvo’s documentation for service and preventive repairs, including replacements of the
high-voltage batteries. For the electric bus, all battery packs are replaced once, and for HEV and PHEV options they are replaced
twice during the 12-year life.

EoL modeling was conducted in accordance with the LCA cut-off approach (Atherton, 2007; Frischknecht, 2010), and covers all
waste handling procedures required to recover three main material fractions: aluminum, copper, and ferrous metals (iron and steel
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alloys). Using this method, there is no allocation of burden to the recycled materials (i.e. downstream products). Instead, raw material
input to upstream component and vehicle production has a recycled content (carrying no load from its previous use, except for
upgrading) (Wernet et al., 2016). However, an exception from this approach was made for energy recovery from incineration of a
fraction of miscellaneous materials (including electronics, plastics, rubber, wood and textiles). Some of these resulting emissions were
allocated to waste incineration by-products, i.e. by crediting for emissions otherwise generated by electricity from municipal waste
incineration and heat for district heating, using average data from Sweden (see Table S13 in Section C.4 of the SR for more details).
This modeling choice was made to avoid double counting of emissions from energy recovery in municipal waste incineration, which
otherwise would be included in both the upstream electricity production and the EOL stage.

Other specific recovery processes were modeled for certain parts, such as catalysts and batteries. For the lithium-ion batteries,
disassembled cells were modeled to go through a pyrometallurgical recovery process (Dunn et al., 2014). All residual pack materials
are treated and sorted in fractions in the same way as all other bus parts. Section B.4 of the SR provides complete details of EoL
modeling.

As a last note on inventory modeling, and presentation of results, it is important to mention that the model is set up in such a way
that when material losses occur in a specific life cycle stage, then that same life cycle stage carries the load of all upstream processes
required to balance the waste flows. For example, the maintenance stage includes the load caused by extraction of both the materials
and production required to make new components when older components are replaced and scrapped. Similarly, the “component and
full vehicle manufacturing” stage is ascribed the full upstream burden of wasted materials. As a consequence, the “material extraction
and processing” step covers only the materials ending up in the bus at the factory gate.

4. Results and discussion
4.1. Climate change

The total results for greenhouse gas emissions, expressed as CO, equivalents per person x km, are presented in Fig. 1 for all bus
options, as a function of greenhouse gas intensity in the electricity supplied. Next, Fig. 2 shows bus equipment life cycle only (i.e. the
four bus types with the operating phase excluded). For the total results (Fig. 1), all electrified and HVO options show clear benefits
compared to the conventional diesel bus. A significant impact reduction is already achieved with the HEV diesel. And it can be noted
that the conventional HVO bus causes significantly lower emissions than the HEV and PHEV diesel options. More specifically, the
WTT stage, i.e. the production of HVO, causes higher emissions than the production of diesel, but in turn emissions are much lower
from the vehicle TTW stage, because CO, emitted from combustion of HVO is biogenic. This is illustrated in Fig. S4 (of the SR), and
can be read in Table 1 (which reports the results for all impact categories), showing the contribution to climate impact per life cycle
stage for all options when charging takes place by means of the average electricity grid mixes in Sweden, the EU and the USA.
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Fig. 1. Total results per vehicle option for the climate change impact category, presented as a function of grid mix greenhouse gas intensity
(measured in CO, equivalents) of the electricity supplied for charging.
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Fig. 2. Vehicle life cycle results and contribution to climate change impacts from different parts of the bus (equipment only, i.e. bus operation and
WTW life cycle of fuels and electricity for charging are excluded).

Parenthetically, TTW results for HVO illustrate that fuel combustion causes N,O and CH,4 emissions, which translate into noticeable
amounts of CO, equivalents.

In Fig. 1, there are two zones marked in red indicating intersections of special interest. The first is positioned at a grid intensity of
around 200 g CO, eq./kWh. Below this intersection, where the Swedish mix can be found, electric buses come out best among all
options. Up to this point there is also a benefit of operating chargeable PHEVs compared to HEVs, even when fueled with HVO. On the
other hand, above this value, the HEV HVO option comes out as the lowest CO, emitting alternative. As an analogy, for grid
intensities above 750 g CO, eq./kWh, i.e. to the right of the upper zone marked in red and higher than the average mix both in the EU
and the USA, both chargeable options emit more than the HEV diesel bus. Similarly, ranging up to around 600 g CO, eq./kWh, total
emissions decline with an increasing level of electrification, from the HEV option to the PHEV, and decline further still to the fully
electric bus.

Fig. 2 focuses on a different trend, namely that an increasing level of electrification implies higher CO, emissions embedded in the
vehicle life cycle (i.e. when the WTW life cycle of the energy carrier is excluded). Especially the batteries, but also the (other) electric
powertrain parts contribute to this increase of emissions compared to the conventional vehicle. However, the chassis, frame and body
dominate the vehicle life cycle load for all models. Fig. S4 also adds that emissions relating to these common subparts derive mainly
from material processing, particularly steelmaking. Li-ion batteries contribute most in the vehicle maintenance stage owing to
scheduled replacements.

Clearly, with an increasing level of electrification, the combined effects of higher emissions from the vehicle life cycle and lowered
impact during operation, implies an increased relative importance of the production stages. For example, for a conventional diesel
bus the usage phase accounts for about 90% of climate impact. For an all-electric bus charged from the Swedish grid mix, the
corresponding figure is 30%, albeit out of a much lower total.

Finally, the EoL stage causes a roughly equal climate load for all vehicle options in terms of absolute numbers. This load relates to
energy required for disassembly and separation of all bus parts, and the preparation of materials for recycling. All the energy benefits
of recycling are accounted for upstream, in material processing, since secondary materials were modeled to be included in the raw
material supply.

4.2. Acidification, eutrophication and air pollution

At first glance in Table 1 results for acidification (Fig. S5 of the SR), eutrophication (Fig. S6), particle emissions (Fig. S7) and
photochemical smog (Fig. S8) send a mixed message about benefits of electrification and HVO utilization. Firstly, when charging with
the Swedish electricity mix, there is a trend of decreasing total impacts with an increasing level of electrification, while there are
small increases in vehicle life cycle load for all the LCIA methods, in line with results of global warming impact. But in contrast to
climate change category, impacts and reductions with increasing electrification are now roughly the same for the HVO and diesel
options. In fact, in the eutrophication category, using HVO has a worse effect than diesel. Secondly, for options charging with
electricity mixes from the EU and the USA, results diverge from the global warming pattern in the acidification and particles impact
categories. Here, the HEV options have lowest emissions and the trend then points to increasing impact according to the level of
electrification in both diesel and HVO use. The eutrophication category also shows a break of the pattern for diesel use in combi-
nation with the EU and USA electricity mixes, but in this case the hybrid options are preferable compared to the all-electric and
conventional ones.

Looking closer, it is noticeable that the extent to which various life cycle stages depend on combustion processes is a main driver
of emissions influencing all these impact categories, regardless if this involves large scale firing of coal in power plants to produce
electricity or the burning of diesel or HVO in an onboard engine. NO, is the key emission type for all but the particles impact
category, where it nevertheless remains important. NO, is generated in all types of combustion involving air. Further contributions to
NOy derive from nitrogen contained in the fuels. Similarly, the presence of sulfur in fossil fuels leads to the generation of acidic sulfur
dioxide during combustion. As pointed out in the discussion around certification data and Euro-6 emissions limits (see Section 3.1),
real driving emissions of NOy can be expected to be lower than the emission data used in this study, implying that TTW impact may be
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overestimated in terms of impacts caused by air pollution. A change in TTW results, i.e. if certification data for the tailpipe emissions
was used instead, would not alter the overall results for most impact categories, except in the case of photochemical smog. In this
category, lower emissions of NO, and CO could result in a shift, owing to PHEV or HEV being more favorable options.

Combustion in vehicles and power plants, along with extraction and processing of metals and fuels, cause particulate emissions.
Fuel combustion leads to indirect formation of particles by reactions in the atmosphere involving sulfur dioxide, NOy, ammonia and
non-methane volatile organic compounds (often referred to as VOCs) (Johansson et al., 2003). However, for all chargeable vehicles
relying on the US electricity mix, direct emissions of dust particles from fossil fuel use in electricity production dominate results (see
Fig. S7).

The occurrence of photochemical smog is another version of secondary pollutant creation (Fig. S8). At times of little wind,
sunlight causes NOy and VOCs to react to form ozone, which has adverse health effects at ground level. However, air pollution,
including particles and smog along with the direct effects of NO,, carbon monoxide etc., is most critical when taking place during
vehicle operation in densely populated areas with large exposure to many people. This implies benefits for the electric options not
depicted in the results, typically in cases when LCIA results are high or increasing, compared to diesel or HVO use. The reason being
that emissions are shifted from the operation stage to other life cycle stages, with less human exposure.

Finally, one clear exception from the otherwise large dependence on airborne emissions in the results, is the high potential for
eutrophication caused by HVO production. This is mainly a result of nitrate emissions in water from the use of crops.

4.3. Toxicity

Results for carcinogenic human toxicity, an LCIA category for potential health effects in terms of cancer, are reported in Table 1
and shown in Fig. S9. Other, non-carcinogenic, aspects of toxic emissions were also investigated in the study (Fig. S10). In both cases,
differing from the previously reported LCIA categories, the operation of the vehicle (i.e. the TTW stage of the use phase) contributes
negligibly to all options. Instead, toxic emissions, into both air and water, typically occur during the extraction of resources and
during different steps of material production and fossil fuel processing. For example, the handling and treatment of mining waste can
lead to leakage of toxic substances into ground water and rivers, and eventually the sources of fresh water used by humans.

Accordingly, results in Fig. S9 link largely to emissions of heavy metals such as chromium, cadmium and arsenic, mainly into
water. The same heavy metals are also significant in the non-carcinogenic category. But while chromium influence is less, for example
lead is more important. Cast iron and various steel grade production, especially stainless steel, for chassis, frames and bus bodies,
contribute to a substantial part of life cycle impact in toxicity categories, especially in material extraction and processing phases.
Similarly, mining and production of copper generate notable heavy metal emissions.

Clearly, result patterns reveal that toxic impacts are strongly dependent on the electricity supply for the chargeable options, and
the underlying amount of fossil fuel use. The highest impacts are linked to the US and the EU grid mixes. Unsurprisingly, extraction,
processing and combustion of fossil fuels are major sources of heavy metal emissions.

An important note on toxicity indicators is that they are coupled to a large degree of uncertainty, and the precision of char-
acterization factors varies between two to three orders of magnitude (Finnveden et al., 2009; Rosenbaum et al., 2008). These impact
categories relate to both the inherent toxicity of the emitted substances and the potential for humans and ecosystems being exposed to
harmful effects. Consequently, and more than for other LCIA methods, it is useful to interpret these results as an aggregated reporting
of relevant emissions, rather than a clear contribution to human health challenges. For example, there is a distinct difference between
the carcinogenic (Fig. S9) and the non-carcinogenic (Fig. S10) impact categories of the EoL stage. This is explained by emissions of
zinc into water during the treatment of used tires. A high level of zinc intake is toxic for humans, although an essential nutrient at
lower intake (Linderholm, 2017). The high ranking of zinc illustrates the one-sided outcome of the LCIA method, while real-world
effects can be much more complex.

4.4. Resource use

As mentioned, the analysis of resource use was conducted using two different methods: at midpoint for potential abiotic resource
depletion (CML, 2016; Guinée et al., 2002), and at endpoint with the EPS indicator, but only for use of non-renewable elements
(Steen, 2015). In the ADP result (Table 1 and Fig. S11 of the SR), conventional buses operating on diesel and HVO had lower impact
than electrified options, and there is a small trend towards larger resource depletion with an increasing degree of electrification. Gold,
silver and copper are available in all electronics and provide contributions for all options. In particular, the PCBs of power electronics,
in battery management systems and in junction boxes contain gold, with clear effect in results on both material production and
maintenance for options pertaining to electric powertrains. Relatively large amounts of gold are used in the PCB for the air pur-
ification units in all vehicles, influencing results for the maintenance stage. Molybdenum in steel alloys is another important con-
tributor to all options. Copper use, for example in the electric traction motor, wires and PCBs, provides additional contributions to all
electrically powered alternatives. It is worth mentioning that the lithium in the battery cells makes no significant contribution to the
results of this LCIA method. Lastly, regarding ADP results for conventional buses, the lead-acid battery plays an important role due to
the use of silver and lead and the extraction of cadmium, which is co-mined with lead.

In the EPS method (Fig. S12) the pattern differs compared to ADP results. Instead of indicating an increasing depletion of
resources with an increasing level of electrification, EPS allots the highest load to hybrid alternatives and lowest load to the all-
electric. Largely, many emissions caused by material production and maintenance mentioned previously in connection to ADP,
explain the EPS results, even though the valuation of specific resources is different. The main explanation for divergence of patterns is
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that the EPS method clearly values the use and loss of expensive and scarce metals in the catalytic converters of the exhaust gas
treatment systems, i.e. platinum, rhodium and palladium, in all vehicles with internal combustion engines, more highly than does the
CML method. Although these metals are subject to dedicated recycling back to use in the same type of application (Andersson et al.,
2017), because of their economic value, high shares of their upstream raw material input still originate from virgin resources.

5. Conclusions
5.1. Main findings

The study shows that although there is no direct correlation between the degree of electrification and the environmental impact of
city buses, there is a link. Another way to express this is that questions 1, 2 and 3 stated in the goal definition of the article, are cross-
dependent. One answer to question 1, i.e. if the environmental impact decreases or increases according to the degree of elec-
trification, is that there is variation between the LCIA categories and that the electricity for charging (question 2) and the selection of
fuel (question 3) to complement and compare with electricity, are decisive parameters. One clear conclusion is, however, that when
the electrified bus is powered by low carbon electricity, like the Swedish mix, impacts related to air emissions decrease according to
the degree of electrification.

When comparing options for the results of the vehicle equipment life cycle, most LCIA categories show that a higher degree of
electrification is coupled to a growing environmental load. This is in line with LCA studies for other vehicle types (Nordeldf et al.,
2014), although the overall shift upwards is relatively small for buses. In addition, the shift is small compared to variations in impact
caused by charging and fueling.

In the climate change impact category — which is especially interesting as climate change mitigation is a key driving force for
electrification - it can be noticed that the use of HEVs is beneficial, regardless of whether the complementary available fuel is diesel
or HVO. Benefits of additional electrification with charging depend on the relationship between the emission profile of the available
electricity mix and accessible fuel options. When diesel is the fuel option for a fleet of hybrid vehicles, both PHEVs and all-electric
buses will reduce emissions further for operation in the majority of countries in the EU, and on average in the USA. Then again, if a
fuel such as HVO is available for the bus fleet, i.e. a low emission biofuel based on waste products, then the conditions for achieving
benefits by using chargeable vehicles become much more stringent, and from a climate mitigation perspective is motivated only in
places with a relatively low grid mix carbon intensity (below 200 g CO, eq./kWh). The two final important conclusions from the
assessment of the climate change category are: all options based on electric propulsion or HVO present clear savings compared with
the conventional diesel bus, and it is the all-electric vehicle which has the largest potential to reduce emissions among all options,
despite it having the heaviest vehicle equipment life cycle burden.

For regional environmental impacts caused by airborne emissions, i.e. acidification and eutrophication, as well as local air
pollution, it is again the all-electric options which have the best potential to reduce impacts of emissions overall, but the link to the
degree of electrification of the buses, the charging electricity and the choice of (reference) fuel is more complicated to summarize.
Instead, the amount of energy conversion based on combustion overall throughout the life cycle, and the share of fossil fuels used to
feed those processes, determine the outcome for these impact categories. However, a clear health benefit provided by electrification,
even when a relatively large share of the of the life cycle energy derives from the burning of fossil fuels, is that people are less exposed
to high concentrations of air pollutants in city centers.

As regards both toxicity and the use of resources, there is a shift in the division of burden between different life cycle stages. The
actual operation is of little interest to these impact categories, and instead the extraction of metals and fossil fuels now comes into
focus. Toxic emissions of heavy metals to ground and fresh water expand when a larger and broader spectrum of materials and metal
alloys are in demand for electrified vehicles, but the decisive parameter when ranking between options is the matter of fossil fuel use
in electricity production. Two common solutions to reduce toxic emissions in all the options investigated would be to (1) enforce
stricter regulation of emissions from the excavation, refinement and waste handling in mining operations and (2) increase the use of
recycled materials.

Results for the assessment of resources diverge for LCIA methods used, but both approaches agree that hybrid vehicles suffer from
the fact that they demand advanced materials with high value elements from virgin sources, both in the electric powertrain and in
internal combustion engine exhaust gas treatment components.

Another answer to the question of how city buses impact the environment according to their degree of electrification (question 1),
is that material and component production required for electric powertrains and batteries contributes clearly to the difference
between technical options in most impact categories, but that this difference is small compared to the production of common
components. Instead, chassis, frame and body are the dominating factors behind the material extraction and processing life cycle
stage. This was further verified in a sensitivity analysis, where the number of battery replacements made during the maintenance
stage were varied for the all-electric, PHEV and HEV buses (see Tables S15-517 in Section D.2 of the SR), causing only minor
variation in results for all impact categories. In this aspect, buses in public transport clearly differ from passenger cars, where the
production of electric powertrain parts, and in particular the battery pack, adds a much greater contribution to overall environmental
impact of the vehicle (Hawkins et al., 2012; Nordelof et al., 2014). Even when equipment life cycles for buses outweigh the use phase
as a whole, the environmental impact of the use phase (the WTW stage) usually determines which option offers the lowest impact.

Finally, it can be observed that additional sensitivity analyses carried out to analyze the effect on the result when using the
maximum number of passengers for each bus option, instead of the same average amount (by comparing Table 1 with Table S18 of
the SR), further improves the results of Electric (largest capacity) and HEV options (second largest capacity). In contrast, the case for
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PHEV options is weakened in several impact categories, e.g. for climate change, where PHEV diesel options charged with US elec-
tricity now only reduce impacts by 13%, compared to 27% in the original setup. Most importantly, apart from these shifts for the
PHEVSs, the main findings of the study remain the same also when accounting for maximum ridership.

5.2. Concluding remarks on strategies for reduced environmental impact of bus fleets

Combined with other relevant groundwork, the LCA study presented could serve as a source of information for strategic planning
of public transportation and in the procurement of bus fleets. However, for such use, it can be valuable to provide an additional
discussion, in order to set results and conclusions in a broader context. Obviously, any effort to minimize the total environmental
burden over the life cycle of a city bus implies prioritizing between different types of impact. Each case will depend on the specific
vehicle design available, the electricity possible to procure and the feedstock and production route for available biofuels. In this
context, it is important to emphasize that the data for HVO and electricity supply presented in this study indicates different trends.

Looking at HVO, in addition to containing biogenic carbon, which is key for climate change category, the relatively low impact
across several categories is due to waste currently constituting most of the feedstock for its production. However, as an example, data
from the Swedish Energy Agency (2017) indicates that when demand for HVO surmounts available waste resources, the use of food
crops will increase. In turn, this entails a risk of a general increase of emissions caused by HVO production, e.g. if more palm oil is
included as feedstock than the amount this study allows for. Generally, it can be argued this is true for most biofuels made from
recovered waste flows, biogas being one such example.

On the other hand, regarding the supply of electricity for charging in both the EU and the USA, trends point towards a less
emission-intensive electricity production, due to the ongoing shift from coal to natural gas, and the continued expansion of renewable
energy generation such as solar and wind power (IEA, 2017). Assuming this trend will continue implies that the options contained in
this study, which are propelled by grid electricity in the EU or USA, will lower their impact over time in most LCIA categories.

In a situation where electricity available for charging offers a load corresponding to or above the average electricity in both EU
and USA, and where biofuels such as HVO are manufactured mainly from residues and waste, a hybrid vehicle using this biofuel can
be the preferable option. As concluded above, ongoing trends point towards a continued reduction of emissions over time for
chargeable electric buses on these markets, whereas an increase in biofuel demand might shift the environmental load upwards,
strengthening the case for PHEVs and all-electric buses.
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