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Abstract   Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations 

because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in 

bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, 

high temperature and the presence of specific toxic compounds. It is generally considered that exploring the 

natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains 

and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. 

In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective 

traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably 

large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from 

different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, 

but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific 

traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol 

production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to 

find superior industrial strains that may be used in bioethanol production or can be used as a basis for further 

strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study 

provides a basis for new insights into the relationships between tolerance to different stressors. 

Key words   bioethanol, fermentation, high-throughput, phenotype, Saccharomyces spp., stress tolerance 
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Introduction 

Taxonomic analysis of the microbiota present in spontaneous alcoholic fermentation 

processes, such as the fermentation of fruit juice, beer wort, honey or cocoa, revealed a huge yeast 

diversity, with one yeast species dominating most of the fermentation processes, namely the 

ascomycetous yeast Saccharomyces cerevisiae (Pando Bedriñana et al. 2010; Bokulich et al. 2014; 

Meersman et al. 2013; Pretorius 2000; Steensels et al. 2014). This dominance has been studied 

intensively, and it was established that S. cerevisiae developed several mechanisms that caused a 

selective advantage in sugar-rich, alcoholic fermentation-like environments. For example, the 

Crabtree effect (in which glucose represses respiration) in S. cerevisiae is the basis for the so-called 

“make-accumulate-consume” strategy, where ethanol is first produced to inhibit the growth of other 

microorganisms, and is later consumed when all fermentable sugars are depleted (Thomson 2005). 

Furthermore, its ability to grow in both aerobic and anaerobic conditions and its very high glycolytic 

flux enables it to thrive in all stages of the fermentation process and restrain competing 

microorganisms (Conant and Wolfe 2007; Goddard 2008; Piškur et al. 2006). Interestingly, the 

majority of these “fermentative features” emerged not as a response to a man-made fermentation 

environment, but rather in response to the emergence of angiosperms and fleshy fruits that offered 

a novel carbon resource worth defending by ethanol accumulation (Thomson et al. 2005; 

Voordeckers et al. 2012). However, it is well accepted that human intervention has evolved wild S. 

cerevisiae strains into distinct domesticated variants (Diezmann and Dietrich 2009; Fay and 

Benavides 2005; Steensels and Verstrepen 2014). Examples of traits acquired during domestication 

include increased copper tolerance (Warringer et al. 2011), flavour production (Hyma et al. 2011) and 

fructose fermentation capacity (Novo et al. 2009) for wine strains, or an industrially favorable 

flocculation behavior (Verstrepen et al. 2003) and improved maltose utilization (Voordeckers et al. 

2012) in brewing strains. As a result, there are currently several non-domesticated (”wild”) and 

domesticated (”industrial”) genetic lineages of S. cerevisiae (Liti et al. 2009). These lineages are often 

not strictly genetically or geographically separated. Indeed, recent genome-wide analysis of the S. 

cerevisiae biodiversity revealed that man-mediated dispersal of this species allowed intercrossing  of 

different lineages generated strains with mosaic genomes that inherited traits from both parental 

lineages (Diezmann and Dietrich 2009; Legras et al. 2007; Liti et al. 2009). This peculiar genomic 

structure is not encountered in non-domesticated species, such as the S. paradoxus, which is 

genetically closely related to S. cerevisiae. 

Compared to e.g. beer, bread or wine fermentations, bioethanol production is a relatively 

new man-made fermentation process. The bioethanol environment confronts yeasts with new, very 

specific challenges, which differ greatly from conditions commonly encountered in the traditional 
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food and beverage fermentations. More specifically, the implementation of very high gravity 

fermentation with initial sugar concentrations above 300 g l-1 to increase cost efficiency requires 

osmotolerant and ethanol tolerant yeast strains (Pais et al. 2013; Puligundla et al. 2011; Tao et al. 

2012; Watanabe et al. 2010). Salt tolerance is important in ethanol production with molasses (Basso 

et al. 2011). In second-generation bioethanol production with lignocellulose hydrolysates, typical 

stressors include furfural and 5-hydroxymethylfurfural (5-HMF) originating from the dehydration of 

pentoses and hexoses, respectively, weak acids formed by the degradation of furfural and 5-HMF  

(Almeida et al. 2007; Palmqvist and Hahn-Hägerdal 2000, Taylor et al. 2012), acetic acid due to 

cleavage of acetyl groups from the xylan backbone of the hemicelluloses fraction (Chen et al. 2012), 

phenolic compounds released due to partial breakdown of lignin (Almeida et al. 2011) and heavy 

metal contaminants. Lastly, strains are often subjected to thermal stress during the fermentation 

process, which is caused by the metabolic activity of the yeasts and/or by high environmental 

temperatures (Basso et al. 2011; Kumar et al. 2013). 

Several studies aimed to improve the efficiency of S. cerevisiae strains for first- and second-

generation bioethanol production by targeting one or few specific traits of interest, such as tolerance 

to inhibitors or pentose fermentation, e.g. by quantitative trait locus (QTL) analysis, mutagenesis, 

genome shuffling, metabolic and evolutionary engineering or a combination of these techniques 

(Demeke et al. 2013; Hubmann et al. 2013; Koppram et al. 2012; Kumari and Pramanik 2012; Pais et 

al. 2013; Pinel et al. 2011; Shi et al. 2009; Swinnen et al. 2012; Tao et al. 2012). Moreover, several 

recent studies focus on investigating the potential of wild or other industrial S. cerevisiae strains for 

bioethanol production (Jin et al. 2013; Pereira et al. 2014; Ramos et al. 2013; Wimalasena et al. 

2014). Indeed, in the Brazilian bioethanol production with yeast recycling, regular baker’s yeast 

strains initially used as bioethanol fermentations starters were quickly outcompeted by invading wild 

strains. They dominated and persisted much better in the recycling system than any domesticated 

yeast strain (Basso et al. 2008; da Silva-Filho et al. 2005). This shows the potential of phenotyping the 

natural biodiversity of yeasts to find superior industrial bioethanol strains.  However, many of these 

previously performed studies are limited by the number of targeted traits or by the number of 

studied strains, despite the advent of diverse high-throughput automated phenotypic screening 

platforms. Nevertheless, such information might be crucial for selection of new, multitolerant strains 

that can serve as efficient bioethanol production strains or as good candidates for further 

improvements by, for example, genetic or evolutionary engineering and/or breeding. 

In this study, a comprehensive phenotypic evaluation of a large collection of Saccharomyces 

isolates belonging to different species was performed for six stress tolerance traits important for 

bioethanol production. Studied isolates originated from different habitats and were subjected to 
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increasing stress intensities in order to map the phenotypic diversity among different Saccharomyces 

species and among S. cerevisiae strains from different origins. The most multitolerant strains were 

selected for fermentation experiments mimicking industrial bioethanol production. 

Materials and methods 

Yeast collection 

A large culture collection, consisting of 373 industrial and wild Saccharomyces isolates from 

diverse origins and belonging to S. cerevisiae (279), S. pastorianus (46), S. paradoxus (38) and S. 

bayanus (10), was used in this study (Table 1). Isolates were identified to the species level by 

sequencing the variable D1/D2 domain of the large-subunit (26S) ribosomal RNA gene as described 

by Kurtzman and Robnett (1997). The majority of strains (276) originated from diverse industrial food 

fermentations, such as ale (122, all S. cerevisiae), lager (47, all S. pastorianus except one), wine (71, 

all S. cerevisiae except one S. bayanus), sake (15, all S. cerevisiae), spirit (12, all S. cerevisiae) or 

bakery (9, all S. cerevisiae). Additionally, eight S. cerevisiae strains that are currently applied in 

commercial bioethanol production were included. Further, the collection consisted of 82 wild isolates 

(no S. pastorianus) originating from various natural environments, such as oak bark and spontaneous 

cocoa fermentations, and a number of laboratory yeast strains, including S288c (Mortimer and 

Johnston 1986) and SK1 (Kane and Roth 1974). All isolates were stored at -80 °C in glycerol based 

standard storage medium (2% w/v bacto peptone, 1% w/v yeast extract, 25% v/v glycerol) in 96-well 

microtiter plates. Five strains from different origins were present in each microtiter plate as a control 

for inter-experiment variation. 

Genotyping 

 All isolates were characterized at strain level by interdelta typing according to Legras and 

Krast (2003), employing the primers delta12 (5’-TCAACAATGGAATCCCAAC-3’) and delta21 (5’-

CATCTTAACACCGTATATGA-3’). Genomic DNA was extracted as described previously (Meersman et al. 

2013). PCR amplification was performed in a reaction volume of 20 µl, containing 200 mM of each 

dNTP, 1 µM of each primer, 5 units ExTaq polymerase, 1x ExTaq Buffer (Takara, Otsu, Shiga Japan), 

and 5 ng genomic DNA. Amplification was performed using a C1000 thermal cycler (Biorad, Hercules, 

California USA) according to the following thermal profile: initial denaturation at 95 °C for 3 min, 

followed by 9 cycles of 94 °C for 25 s, 45 °C for 30 s and 72 °C for 90 s, and 21 cycles of 94 °C for 25 s, 

50 °C for 30 s and 72 °C for 90 s. A final elongation step of 10 min at 72 °C was performed. 

Amplification products were separated by agarose gel electrophoresis (7 min, 5 kV) on a QIAxcel 

Advanced System (Qiagen, Venlo, Limburg Netherlands). 
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Test conditions and media preparation 

Unless mentioned otherwise, all materials used for media preparation were purchased from 

Sigma-Aldrich (St. Louis, Missouri USA). All isolates were evaluated for (i) sugar- and/or 

osmotolerance using increasing concentrations of glucose (ranging from 40% to 70% w/v), fructose 

(40% - 70% w/v) and sorbitol (30% - 55% w/v), (ii) halotolerance using increasing concentrations of 

NaCl (500 mM - 3000 mM), KCl (1000 mM - 4000 mM) and LiCl (10 mM - 600 mM), (iii) ethanol 

tolerance using increasing concentrations of ethanol (5% - 15% v/v), (iv) furan derivative tolerance 

using increasing concentrations of 5-HMF (2 g l-1 - 7 g l-1), and (v) metal tolerance using increasing 

concentrations of ZnCl2 (1 mM – 10 mM), CuSO4 (0.1 mM – 2 mM) and CdSO4 (0.25 mM – 3 mM). 

Concentrations were selected based on Saccharomyces tolerance limits described in literature and 

can be found in Table S1 (Supplementary Information). For all trait evaluations, YPD agar plates (1.5% 

w/v agar (Invitrogen, Carlsbad, California USA); 2% w/v bacto peptone (Becton Dickinson, East 

Rutherford, New Jersey USA); 1% w/v yeast extract (LabM, Heywood, Lancashire UK) and 2% w/v 

glucose) were used, supplemented with the test compound. Additionally, isolates were incubated on 

YPD agar without test compound as a control. Further, isolates were tested for thermotolerance (24 

°C - 41 °C) on this medium. Carbon and nitrogen sources were autoclaved separately to avoid 

Maillard reactions, and mixed when the temperature dropped to about 50 °C. Ethanol and 5-HMF 

were also added after autoclaving. 

Phenotypic screening 

In order to maximize throughput and reproducibility, a high-density array robot (ROTOR HDA, 

Singer Instruments, Roadwater, Somerset UK) was used to produce and replicate high-density arrays 

of the yeast collection on the different test media. More specifically, first, the 96-well microtiter 

plates containing the stored isolates were thawed and spotted on YPD agar and incubated at 30 °C 

for 48 h. Next, 96-well plates containing 150 µl of standard YPD medium (2% w/v Bacto peptone; 1% 

w/v yeast extract, and 2% w/v glucose) in each well were inoculated with the isolates using the robot 

and incubated overnight at 30 °C on a microplate shaking platform (Heidolph, Schwabach, Bavaria 

Germany) at 900 rpm. In case of screening for ethanol tolerance, isolates were precultured for 48 h 

in YPD medium with 2% ethanol (v/v) for preconditioning. Then, the optical density at 600 nm (OD600) 

of all wells was measured using a microplate reader (Molecular Devices, Sunnyvale, California USA). 

Subsequently, cell density was manually adjusted to OD600≈0.2 in a second 96-well microtiter plate 

using sterile deionized water in order to standardize the starting cell concentration for all isolates. 

This plate was used as the source plate for spotting the test media. After spotting, all plates were 

sealed using parafilm and incubated at 30 °C (except for the thermotolerance assays). After five days 
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of incubation all plates were scanned using a high definition scanner (Seiko Epson, Nagano, Japan). 

An example of the obtained pictures can be found in Supplementary Material Fig. S2. 

Data analysis 

 For each isolate, a phenotypic profile was obtained by assessment of the colony size on the 

different test media relative to the growth on the control medium (YPD agar), containing no test 

compounds. For that purpose, scanned images were processed using ImageJ (Abramoff et al. 2004), 

combined with the ScreenMill software (Dittmar et al. 2010) especially developed for this purpose. 

Relative growth was calculated as the growth at a certain trait concentration (“test condition”) 

relative to the growth on the control medium. Growth under a test condition is only considered 

when the relative growth exceeds 5% of the growth on the control medium. The relative growth was 

further processed by an inverse hyperbolic sine transformation, followed by conversion into Z-scores, 

which is a statistical measurement of a score's relationship to the mean in a group of scores: 

�-����� =
(� − )

�
 

with X = transformed relative growth for a particular strain under a particular test condition; µ = 

mean transformed relative growth for all isolates for a particular test condition; σ = standard 

deviation of transformed values for all isolates for a particular test condition. 

Both genotypic and phenotypic profiles obtained were processed using BioNumerics (Applied 

Maths, Sint-Martens-Latem, Belgium). Clustering of the isolates based on genotype was established 

using a combination of the Dice coefficient (for generating the similarity matrix) and the Unweighted 

Pair Group Method with Arithmetic Mean (UPGMA) clustering algorithm. Clustering of the isolates 

based on phenotype was performed using the Pearson coefficient (for generating the similarity 

matrix) and the UPGMA algorithm. The equality of overall phenotypic variation among different 

species and between domesticated and non-domesticated isolates was estimated by calculating the 

coefficient of variation among isolates at different reference concentrations followed by student’s 

two tailed paired t-test to check for any statistically significant difference (p value < 0.05). 

Maximal tolerance limits were defined for each species, and for origin of isolation by the 

stress concentrations at which at least 10% of the strains showed >5% relative growth. Additionally, 

for each trait a “reference concentration” was determined (Supplementary Material Table S2) as the 

concentration where approximately 50% of the investigated isolates managed to grow and showed 

the highest coefficient of variation. These reference concentrations should therefore be the best 

concentrations to position isolates in comparison with the whole isolates set. Spearman correlation 

coefficients were calculated among reference concentrations for each tested trait using SAS software 

(SAS 9.3, SAS Institute, USA). Further, results were visualized by density plots (“bean plots”) using R 
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for each reference concentration (R Development Core Team, 2013). The pairwise Wilcoxon test for 

equality of means, combined with the Holm correction for multiple testing, and the Levene’s test for 

equality of variances were performed using R in order to detect significant differences between 

different isolation origins or between different species. These tests take into account the difference 

in the number of isolates among groups.  

Fermentation assays 

Seven strains with the best overall performance at high concentrations of glucose, 5-HMF, 

ethanol and at high temperature were selected and considered multitolerant. For these strains, 

fermentation experiments at 33% glucose (w/v) were performed to determine their fermentation 

potential in simulated 1st generation high-gravity bioethanol production medium. Next, the two most 

promising strains (Y312 and Y232) were selected for fermentations in an artificial medium with 12% 

w/v glucose and an inhibitor cocktail containing 1.02 g l-1 5-HMF, 0.33 g l-1 furfural, 1.9 g l-1 acetic 

acid, 0.36 g l-1 formic acid, 0.7 g l-1 levulinic acid and 0.033 g l-1 vanillin, mimicking the inhibitor 

concentrations in lignocellulose hydrolysates (Koppram et al. 2012). Similar fermentations were also 

performed without inhibitors. Fermentation parameters were compared with those of commercial 

bioethanol production strains (Ethanol Red and CAT1). The CO2 production rate (g l-1 h-1) was 

calculated using cubic spline fitting function (Prism 6.04, Graph Pad Software, San Diego California, 

USA). Lab strain S288c and ale strain Y1 were used as references for strains performing weakly in our 

high-throughput phenotypic evaluation. Strains were precultured overnight in 3 ml control medium 

containing 2% glucose at 30 °C. Subsequently, 50 ml YP medium containing 10% glucose was 

inoculated with the strains at a starting OD600 of 0.75 and incubated at 30 °C, 200 rpm for two days 

until stationary phase. Next, OD600 of the precultures was measured and fermentation tubes were 

inoculated at a final OD600 of 2.5 (for 33% glucose) or 0.75 (for artificial fermentation medium 

mimicking the inhibitor concentrations in lignocellulose hydrolysates) in a total volume of 80 ml. 

Semi-anaerobic batch fermentation were performed in cylindrical glass tubes with a rubber stopper 

containing a cotton plugged glass pipe to release CO2. The fermentations were continuously stirred at 

120 rpm. This system has been used frequently to mimic the industrial fermentation conditions 

(Demeke et al. 2013; Hubmann et al. 2013). The weight loss of the tubes due to CO2 release was used 

to follow the course of fermentation. Fermentations were performed in duplicate. At the end of the 

fermentation (when the CO2 production rate dropped below 0.01 g l-1 h-1), 1 ml samples of the 

fermentation medium were taken, centrifuged and the concentration of ethanol was determined in 

the supernatant using high performance liquid chromatography (HPLC, Waters isocratic Breeze, ion 

exchange column WAT010290; Demeke et al. 2013). Column temperature was maintained at 75 °C. 5 
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mM H2SO4 was used as eluent with a flow rate of 1 ml min-1. A refractive index detector (Waters 

2410, Waters, Milford, Massachusetts USA) was used to quantify the compounds of interest. 

Results 

Genetic and phenotypic diversity within the Saccharomyces isolates collection 

Genotyping by PCR-based fingerprinting (interdelta analysis) showed that this collection 

consists of genetically very diverse isolates. Interestingly, S. cerevisiae did not show clearly 

distinguishable clusters of isolates from different origins (Supplementary Material Fig. S1) except for 

a separate cluster of ale isolates. Isolates from other origins did not cluster clearly, which is indicative 

of a broad genetic diversity within the collection. The color gradient in the phenotypic clustering in 

Fig. 1 shows the tolerance of each S. cerevisiae isolate to a given stress concentration, with green 

being most tolerant and red as least tolerant. The variation in color and color intensities within each 

column in Fig. 1 demonstrates the vast phenotypic diversity for each of the tested stress 

concentrations among S. cerevisiae isolates. Relative growth of all isolates on all parameters is given 

in Supplementary Material Table S3. No significant difference in the overall phenotypic diversity was 

observed between the species S. paradoxus and S. cerevisiae (student’s two tailed paired t-test, 

p=0.62). However, for specific traits the diversity of the S. paradoxus isolates was significantly 

(Levene’s test for equality of variances,  p<0.05) lower than that of the S. cerevisiae strains, e.g. 

under osmostress (39% difference in coefficient of variance), NaCl stress (27%), KCl stress (55%), Cd 

stress (71%), while the diversity of the S. cerevisiae isolates was significantly lower than that of the S. 

paradoxus isolates for LiCl stress (30%), ethanol stress (17%), thermal stress (77%) and Cu stress 

(49%). Additionally, the overall phenotypic diversity among the non-domesticated (wild) S. cerevisiae 

isolates was found to be 6% less than the domesticated S. cerevisiae isolates. 

Comparison of stress tolerance between different Saccharomyces species 

 A significant and very high correlation (r=0.78-0.85, Table 3) between tolerance to the three 

different osmolytes used in this study (glucose, fructose and sorbitol) was observed. Therefore, only 

osmotolerance in glucose medium will be discussed henceforward. S. pastorianus was the least 

tolerant to all stress factors compared to the other species (Table 1 and Fig. 2) and in particular for 

osmostress, ethanol stress and 5-HMF stress. S. paradoxus generally grew better compared to the 

other species in high osmolyte concentrations, e.g. 76% of the isolates (29 isolates) managed to grow 

in 48% glucose (w/v) (reference concentration), compared to only 13% (6 strains) of S. pastorianus, 

55% (153 isolates) of S. cerevisiae and 60% (6 strains) of S. bayanus isolates. Similarly, significant 

differences were noticed in the KCl tolerance assay (Fig. 2 and Table S4A), in which 97% (37) of S. 

paradoxus isolates exhibited growth at the reference concentration compared to 26% (12) of
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Fig. 1: UPGMA phenotypic clustering using the Pearson coefficient of the relative growth of the Saccharomyces cerevisiae 

isolates for all stress conditions investigated in this study. Isolates from different origins are marked in different colors (see 

figure for color legend). High tolerance is marked as green, while low tolerance is marked with red. The variation in color 

and color intensities demonstrates the vast phenotypic diversity for each of the tested stress concentrations among S. 

cerevisiae isolates. 
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S. pastorianus, 40% of S. bayanus (4) and 75% (209) of S. cerevisiae. Interestingly, osmotolerance and 

KCl tolerance were correlated (r=0.42), while only a weak positive correlation (r=0.14-0.15) was 

identified with other salt stressors, i.e. NaCl and LiCl, which however were highly correlated with 

each other(r=0.72) (Table 2). S. cerevisiae and S. bayanus were both significantly more tolerant to 

ethanol compared to S. paradoxus and S. pastorianus (Fig. 2 and Table S4A), with isolates tolerating 

up to 14% ethanol (v/v), whereas the latter species was limited to 12% ethanol (v/v) (Table 1). On 

average, 5-HMF tolerance was similar among all species except S. pastorianus of which almost all 

strains were inhibited at the reference concentration (3 g l-1). In contrast, even at 4 g l-1 5-HMF, nearly 

50% of the S. cerevisiae isolates showed growth and 12 isolates managed to grow up to 7 g l-1 5-HMF. 

In case of metal tolerance, trends were dependent on the metal tested. Tolerance to Zn was similar 

among species with growth observed up to 6 mM for S. cerevisiae, S. paradoxus and S. pastorianus. 

In case of Cd, S. paradoxus showed significantly higher tolerance compared to the other species, 

whereas S. bayanus was significantly more tolerant to Cu stress (Fig. 2). Interestingly, at low Zn and 

Cu concentrations, a large number of isolates showed better growth than on the control plate. For 

example, at 0.1 mM CuSO4 and 0.1 mM ZnCl2, 77% and 52% of the isolates, respectively, showed 

better growth compared to the control condition. Finally, S. cerevisiae was significantly more 

thermotolerant than S. paradoxus and S. pastorianus with 62% of the isolates (173 isolates) growing 

at 39 °C compared to only 5% (2) and 15% (7), respectively (Fig. 2).  

Comparison of stress tolerance between Saccharomyces cerevisiae isolates from different origins 

In terms of osmotolerance, the majority of isolates showed considerable growth inhibition 

(on average 70% inhibition of the growth) at 40% glucose (w/v) (the lowest concentration tested). In 

general, isolates from ale, bakery and sake were less tolerant to high sugar concentrations compared 

to isolates from other origins (Fig. 3). For example, bioethanol, wine, spirits and wild isolates showed 

significantly higher osmotolerance at the reference concentration (48% glucose, w/v) compared to 

ale strains (Fig. 3 and Table S4B). In particular, seven wild isolates and one bioethanol isolate were 

exceptionally osmotolerant and showed considerable growth up to 55% glucose (w/v) (Table 1). 

Wild isolates appeared to be significantly more tolerant to KCl than sake, ale and wine strains 

(Fig. 3 and Supplementary Material Table S4B). Although not observed for the selected reference 

concentration (1500 mM KCl; Fig. 3), bakery, bioethanol and spirits strains were also moderately KCl 

tolerant with nearly 50% of the strains that managed to grow at 2000 mM KCl (respectively 5, 5 and 4 

strains). Isolates from different origins were on average equally tolerant to LiCl except for sake 

strains that were significantly more tolerant compared to ale strains (Fig. 3). In addition, bakery 

strains showed the highest tolerance to LiCl with on average 78% of the isolates (7 strains) that 

managed to grow in the presence of 100 mM LiCl. 
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Fig. 2: Beanplots illustrating the relative growth (Y-axis) of strains of different Saccharomyces species in our collection under 

reference concentrations for each trait with V1: S. cerevisiae, V2: S. paradoxus, V3: S. bayanus, V4: S. pastorianus. The black 

line represents the average relative growth for each group, the dotted line that among all groups. The shape of the bean 

represents the distribution. Above each plot, the percentage of the number of strains growing at the reference 

concentrations with relative growth >5% is indicated and within bracket the average relative growth (%) of strains growing 

in the presence of the reference concentrations.  
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Fig. 3: Beanplots illustrating the relative growth of Saccharomyces cerevisiae strains coming from different origins in the 

presence of the reference concentrations, with V1: Ale, V2: Bakery, V3: Bioethanol, V4: Sake, V5: Wine, V6: Spirit, V7: Wild, 

V8: Lab. Above each plot, the percentage of the number of strains growing in the presence of the reference concentrations 

with relative growth >5% is indicated and within brackets the average relative growth of strains growing in the presence of 

the reference concentrations. 
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Table 1: Overview of the number of isolates and tolerance limits(a) of different Saccharomyces species and for different origins of S. cerevisiae isolates in this 

study.  

 No of isolates Glucose  

w/v% 

Fructose 

 w/v% 

Sorbitol 

 w/v% 

NaCl 

 mM 

KCl 

 mM 

LiCl 

 mM 

Ethanol 

 v/v% 

Temp 

 °C 

HMF 

 g l
-1 

ZnCl2 

 mM 

CdSO4 

 mM 

CuSO4 

 mM 

Species 

S. cerevisiae 279 50 50 48 1500 2000 200 14 39 5 6 0.5 0.2 

S. paradoxus 38 50 50 50 1000 2000 100 12 37 5 6 1 0.1 

S. pastorianus 46 50 48 44 1500 1500 100 12 39 2 6 0.5 0.1 

S. bayanus 10 48 48 46 1500 1500 200 14 39 5 5 0.5 0.1 

Origin of S. cerevisiae isolates 

Ale 122 48 48 46 1000 2000 200 12 39 4 7 0.5 0.1 

Wild 41 55 55 50 1500 2000 200 13 39 7 6 0.5 0.1 

Wine 64 50 50 46 1500 1500 200 14 39 5 5 0.5 0.2 

Sake 15 48 48 48 1000 1500 200 14 39 4 6 0.25 0.2 

Spirits 12 50 50 50 1000 2000 100 13 39 5 6 0.5 <0.1 

Bakery 9 50 50 50 1500 2000 200 12 39 5 5 0.5 0.2 

Bioethanol 8 55 55 50 1000 2000 50 14 39 6 6 0.5 0.1 

Control and Industrial strains profiles 

S288C 48 48 44 1000 2000 200 12 39 <2 3.5 0.25 0.1 

SK1 46 <40 40 <500 1500 <10 10 39 <2 5 0.5 <0.1 

Ethanol Red 50 50 50 1000 2000 50 14 39 5 3.5 0.5 <0.1 

CAT1 50 55 50 1000 2000 50 13 39 2 3.5 0.25 <0.1 

(a) Tolerance limit is defined as the tested concentration of each trait at which at least 10% of the isolates exhibited >5% growth. 
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Table 3: Overview of the tolerance limit, growth (at reference concentrations) and fermentation parameters in 33% glucose of the selected multitolerant 

strains obtained in this study, two industrial bioethanol strains and two selected non-multitolerant strains. 

Strain name Origin Osmotolerance Ethanol Tolerance HMF Tolerance Thermotolerance Fermentation 

Tolerance 

limit (%) 

Growth 

at 48% 

Glucose 

(%) 

Tolerance 

limit (%) 

Growth at 

12% 

EtOH(%) 

Tolerance 

limit (g l
-1

) 

Growth 

at 3 g l
-1

 

HMF (%) 

Tolerance 

limit (°C) 

Growth 

at 39°C 

(%) 

Theoretical 

Yield (%) 

Time 

to 

reach 

Vmax 

(h) 

C50   

(h)
(a) 

Y745 Wild 50 32.4 14 63.5 7 66.2 41 116.9 83 18.33 40.51 

Y313 Wild 50 24.5 12 25.9 7 91.7 39 85.3 86 20.26 40.51 

Y314 Wild 50 22.4 13 61.6 7 77.4 39 161.5 83 24.12 40.51 

Y312 Wild 50 25.5 13 59.9 7 75.1 39 158.6 84 22.19 38.58 

Y310 Wine 50 21.7 14 45.6 < 2 0 39 95.3 86 18.33 36.65 

Y224 Wine 50 28.4 14 52.3 4 36 39 43.8 85 20.26 32.79 

Y232 Wine 50 28.1 14 51.7 4 66.8 37 0 85 18.33 30.86 

             

CAT1 Bioethanol 50 27.6 13 56.8 2 0 39 40.6 88 18.33 30.86 

Ethanol Red Bioethanol 50 24.1 14 21.9 5 128.7 39 150.3 91 18.33 32.79 

             

s288c Lab 48 9.4 12 12.5 < 2 0 39 27.2 78 18.33 63.67 

Y1 Ale < 40 0 10 0 < 2 0 39 38.5 61 31.83 79.1 

(a) C50: Time to consume 50% of the initial sugar content 
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Ale strains were significantly less tolerant to 12% ethanol (v/v), while bioethanol strains 

performed significantly better than the average ethanol tolerance levels of isolates from other 

origins (Fig. 3). Isolates from all other origins showed no significant difference in ethanol tolerance, 

however, a large variation of tolerance is observed within each origin, especially for wild isolates (Fig. 

3). Some wild isolates even managed to grow at very high ethanol concentrations (14%). On average, 

ale strains were also significantly less tolerant to 5-HMF compared to bioethanol, wine, spirit and 

wild isolates (Fig. 3). A large variation was seen among wild isolates (Fig. 3). Most wine, bioethanol 

and wild isolates were still able to grow at 4 g l-1 5-HMF (91% (58), 88% (7) and 83% (34) 

respectively). Twelve isolates, of which eight were wild isolates, managed to grow even at 7 g l-1 5-

HMF.  

In order to determine metal tolerance three metals were selected, i.e. Zn, Cd and Cu. Results show 

that no correlation (Table 2) exists between tolerance to Cu and the two other metals (r=0.02-0.04), 

whereas a weak correlation was observed between tolerance to Cd and Zn (r=0.29). On average, no 

significant difference in tolerance to the reference concentration of Zn was observed among all 

origins (Fig. 3). Nevertheless, ale, wild and sake isolates represented most of the isolates (89%) still 

able to grow at 6 mM and four ale strains were able to grow up to 8 mM. Similarly, no significant 

differences in average tolerance to Cd were observed among the isolates from different origins. From 

1 mM onwards, growth of all, except five wild isolates, was inhibited. We identified two S. cerevisiae 

wild isolates that can tolerate up to 2 mM of CdSO4. Results showed that wine strains were most 

tolerant to 0.1 mM of Cu with 73% (47) of the strains that managed to grow and showed significantly 

higher Cu tolerance compared to ale, sake, spirit and wild isolates (Fig. 3). Surprisingly, 67% (6) of the 

bakery strains also showed considerably high Cu tolerance. We identified 12 S. cerevisiae strains that 

managed to grow up to 0.3 mM Cu concentration, from which six originate from the winery 

environment.  
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Table 2: Correlations(a) between different reference concentrations(b) for the S. cerevisiae isolates.  

Glucose 
48% 

Fructose 
48% 

Sorbitol 
44% 

NaCl 
1000 mM 

KCl 1500 
mM 

LiCl 50 
mM 

ET12% T 39°C HMF 3 g l
-1 ZnCl2 

5mM 
CdSO4 
0.5mM 

CuSO4 
0.1mM 

Glucose 
48% 

0.84 0.78 0.14 0.42 0.15 0.56 0.41 0.47 -0.01 0.22 0.10 

 

Fructose 
48% 

0.85 0.18 0.52 0.13 0.47 0.38 0.37 0.00 0.16 0.06 

  

Sorbitol 
44% 

0.14 0.52 0.10 0.45 0.38 0.34 0.08 0.19 0.02 

   

NaCl 
1000 mM 

0.21 0.72 0.31 0.27 -0.01 -0.23 -0.09 0.11 

    

KCl 1500 
mM 

0.22 0.34 0.30 0.21 0.07 0.16 -0.09 

     

LiCl 50 
mM 

0.34 0.30 0.05 -0.32 -0.08 0.05 

      

ET12% 
0.58 0.40 -0.16 0.18 0.21 

       

T 39°C 
0.36 -0.16 0.21 0.08 

        

HMF 3 g l-1 0.05 0.40 0.18 

         

ZnCl2 
5mM 

0.29 0.02 

          

CdSO4 

0.5mM 
0.04 

           

CuSO4 

0.1mM 

           
 

(a) All significant trait correlations (p <0.05) are indicated with black font color. Correlations that are 
not significant are indicated with red font color. Cells with larger correlation values are colored blue, 
while cells with smaller values are colored green to yellow. Cells with the smallest value are colored 
red. 
(b) 

concentration at which approximately 50% of the investigated strains managed to grow and 
showed the highest coefficient of variation (Supplementary Material Table S2). 

 

 

 

 

 

 

  



17 
 

Potential of selected multitolerant Saccharomyces cerevisiae strains in first and second-generation 

bioethanol fermentations 

To validate the potential of the obtained dataset for selection of industrially applicable 

Saccharomyces strains, two proof-of-principle experiments, aiming at the identification of strains 

suitable for first and/or second generation bioethanol production were conducted. Fermentation 

assays in simulated 1st generation high gravity bioethanol production medium allowed us to compare 

the ethanol productivity and fermentation efficiency of the seven selected multitolerant strains 

(Table 3). Ethanol Red yielded most ethanol and produced 91% of the theoretical ethanol yield, 

followed by CAT1 which produced 88% of the theoretical yield. The ethanol yields of the selected 

multitolerant strains were comparable (83%-86% of the theoretical ethanol yield). However, strains 

Y312 and Y232 were the fastest in consuming 50% of the starting sugar concentration among the 

tested wild and wine strains, respectively (Table 3). These two strains were therefore subjected to a 

fermentation mimicking a second-generation bioethanol fermentation of lignocellulose hydrolysate 

containing multiple inhibitors and 12% glucose (w/v) (Fig. 4A). In these conditions, the industrial 

bioethanol strain CAT1 needed nearly 47 h to consume 50% of the sugars, while Ethanol Red and 

Y232 were significantly faster (23 h and 25 h, respectively). Strain Y312 was also significantly faster 

than CAT1, but slower than Ethanol Red and Y232. The HPLC analysis after completion of the 

fermentation indicated that the ethanol yield was nearly 100% of the theoretical yield for all four 

strains (Table 4). No significant differences were found between these strains in terms of 

fermentation performance in 12% glucose without inhibitors (Fig. 4B). 

Discussion 

In this study, a broad collection of genetically diverse Saccharomyces yeasts, belonging to 

four different species (namely S. cerevisiae, S. paradoxus, S. pastorianus, and S. bayanus) and 

originating from different industrial and natural habitats, was phenotyped on six selective traits 

relevant for bioethanol production, including osmotic, thermal, ethanol, salt, heavy metal and 5-HMF 

stress. Our results demonstrate a remarkably large phenotypic diversity among different 

Saccharomyces species and among S. cerevisiae isolates from different origins, extending the results 

of Kvitek et al. (2008), Skelly et al. (2013), and Warringer et al. (2011).  

Hyperosmotic stress tolerance of S. cerevisiae and the molecular basis behind it has been 

investigated extensively. In hyperosmostress tolerance studies, Saccharomyces yeasts have been 

generally subjected to hypertonic growth conditions using glucose or sorbitol as the solute (Tokuoka 

1993; Tedrick et al. 2004; Dudley et al. 2005; Watanabe et al. 2010). Additionally, in a few cases, 

osmostress tolerance has also been evaluated using NaCl or KCl as the solute (Babazadeh et al. 2013;  
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Fig. 4: Panel A: Fermentation efficiency of multitolerant yeast strains at 12% (w/v) glucose with inhibitor cocktail containing 

1.02 g l-1 5-HMF, 0.33 g l-1 furfural, 1.9 g l-1 acetic acid, 0.36 g l-1 formic acid, 0.7 g l-1 levulinic acid and 0.033 g l-1 vanillin. 

Panel B: Fermentation efficiency of multitolerant yeast strains in the absence of inhibitors.  CAT 1 (●), Ethanol Red (○), 

S288c (�), Y312 (�), Y232 (�), Y1 (�). 
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Table 4: Fermentation performance of multitolerant strains Y232 and Y312, bioethanol strains CAT1 

and Ethanol Red and sensitive strains S288c and Y1 in fermentations with 12% glucose (w/v) in the 

presence and absence of the inhibitor cocktail(a).  

 

12% glucose 12% glucose + Inhibitor 

Ethanol 
yield/ 100g 

of sugar 

Theoretical 
Yield (%) 

Time to 
reach 
Vmax 

(h) 

C50  
(h)(b) 

Ethanol 
yield/ 100g 

of sugar 

Theoretica
l Yield (%) 

Time to 
reach 
Vmax 

(h) 

C50  
(h)(b) 

CAT1 49.33 96 13.07 13.35 48.58 95 50.11 48.68 

Ethanol Red 49.02 96 12.49 13.35 51.48 101 23.39 22.91 

Y232 50.46 99 13.07 13.35 50.17 98 25.30 24.81 

Y312 50.44 99 13.65 14.52 48.29 94 31.02 34.36 

S288c 51.37 100 14.81 17.42 49.52 97 63.48 63.95 

Y1 48.23 94 17.71 23.23 2.10 4 21.48 NA 

(a) 1.02 g l
-1 

5-HMF, 0.33 g l
-1

 furfural, 1.9 g l
-1

 acetic acid, 0.36 g l
-1 

formic acid, 0.7 g l
-1 

levulinic acid and 0.033 g l
-1

 vanillin 
(b) 

C50= Time to consume 50% of the initial sugar content 

 

Pastor et al. 2009; Yoshikawa et al. 2009). Interestingly, the genome expression study of Causton et 

al. (2001) demonstrated remarkable similarity in yeast response between high salt and high sorbitol 

concentration and therefore suggested that the change in yeast gene expression under high salt 

concentration is due to the change in osmotic conditions. However, in our study sugar tolerance 

poorly correlated with NaCl and LiCl tolerance and only moderately with KCl tolerance. This suggests 

that tolerance to these solutes might be driven by (partially) different mechanisms. In line with this 

hypothesis, it has been shown that stress due to high NaCl, LiCl or KCl concentrations is not primarily 

due to hyperosmotic stress, but rather to the toxicity of high intracellular cation concentrations 

(Mulet et al. 1999). In line with previous studies (Mulet et al. 1999; Pastor et al. 2009) we also 

observed that the thresholds of intracellular toxicity for these monovalent cations differ from one 

another where Li+ has been identified as the most potent stressor followed by Na+ and K+. 

In general, S. pastorianus was the least tolerant Saccharomyces species tested, especially for 

osmotic, ethanol and 5-HMF stress. This might be partly explained by the fact that S. pastorianus is 

mainly used in and adapted to low temperatures in mild lager beer fermentation conditions 

(Baerends et al. 2009; Peris et al. 2011; Sanchez et al. 2012), while tests here were performed at 30 

°C. Despite having considerably higher genetic diversity, S. paradoxus is often reported to have less 

phenotypic diversity in comparison to its domesticated relative S. cerevisiae (Liti et al. 2009; 

Warringer et al. 2011). Contrary to these studies, the S. paradoxus isolates tested in this study (38 

isolates) did not show any overall significant difference in phenotypic diversity compared to the S. 
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cerevisiae isolates. Differences in the stressors evaluated, the evaluation method and the strain 

collections studied might explain this discrepancy between the present study and the previous 

studies. However, when we consider individual traits, we found that for some traits, S. paradoxus 

isolates have significantly lower phenotypic diversity compared to S. cerevisiae isolates. However, it 

has to be emphasized that in this study the S. cerevisiae isolates set was considerably larger than that 

of S. paradoxus.  

Both S. paradoxus and S. bayanus have been reported previously as less tolerant to ethanol 

(Arroyo-López et al. 2010) and less thermotolerant (Gonçalves et al. 2011) compared to S. cerevisiae. 

In agreement with these findings, S. cerevisiae performed significantly better than S. paradoxus also 

in this study. However, S. bayanus performed as well as S. cerevisiae in both ethanol and thermal 

stress conditions. This might be explained by the fact that S. bayanus strains in this collection mainly 

originated from wine fermentations (seven strains out of ten). This might introduce a bias for the 

high temperature and especially the ethanol tolerance. 

Within the domesticated S. cerevisiae isolates, our results showed that ale strains showed 

significantly higher phenotypic diversity than isolates from other origins (except sake). This may be 

explained by the pervasive poly- and aneuploidy of ale beer strains (Legras et al. 2007; Querol and 

Bond 2009), that may confer phenotypic plasticity under different environmental conditions (Comai 

2005). The phenotypic diversity of sake strains was as wide as that of ale strains (p=0.374). This is 

caused by the fact that the sake strains investigated are mostly either sensitive or very tolerant to 

the different environmental conditions assayed in this study, which is in line with the findings of 

Kvitek et al. (2008). 

Within the set of S. cerevisiae isolates, phenotypic variability among the non-domesticated S. 

cerevisiae isolates was found to be more or less similar to that of the domesticated S. cerevisiae. 

Interestingly, S. cerevisiae strains from wine and bioethanol production as well as the wild isolates 

investigated, generally showed considerable tolerance to most of the traits (Fig. 3). On the contrary, 

ale beer strains appeared to be the least tolerant to the conditions tested. Moreover, the 

performances of wild S. cerevisiae isolates were often equally good or sometimes even significantly 

better compared to the isolates from domesticated origins (wine, sake, bakery, spirit and ale). This 

suggests that domestication events specific for these origins did not contribute any improvements 

over these traits during the course of centuries-long evolution. This agrees with the hypothesis that 

domestication events do not greatly influence the phenotypic diversity among the S. cerevisiae 

population (Liti et al. 2009). Treu et al. (2014) also suggested that domestication events are not 

always crucial as they showed that many wild vineyard isolates own appropriate phenotypic 

characteristics for wine fermentation. As an exception, results showed that 73% of wine isolates 
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were tolerant to 0.1 mM of Cu. Kvitek et al. (2008) suggested that Cu tolerance might have evolved in 

wine isolates through positive selection as copper is traditionally used in the vineyards and orchards 

as antimicrobial agent. Warringer et al. (2011) demonstrated a strong association of the sake lineage 

with a copy number variation of the copper binding metallothionein CUP1 gene, which could explain 

the high Cu tolerance of sake strains, a result confirmed in this study. Interestingly, also baker’s 

yeasts were found to be exceptionally tolerant to copper. Since these strains are traditionally not 

associated with high copper stress, this peculiar phenotype might be explained by the historical 

origin of baker’s yeast. It was recently proposed that most modern baker’s yeast strains result from 

an allotetroploidization event between an ale and a wine yeast (Randez-Gilet al. 2013). Therefore, 

genetic inheritance of the wine strain’s high copper tolerance could explain this phenotype.  

In addition to this phenotypic variability analysis this dataset allows selection of multitolerant 

strains suited for bioethanol production. Not surprisingly currently used bioethanol strains were in 

general considerably tolerant to multiple stress factors (osmotolerance, ethanol tolerance, 

thermotolerance, 5-HMF tolerance). However, we also identified multitolerant isolates from other 

origins that sometimes even outperformed the bioethanol strains for certain traits. Therefore, we 

hypothesized that these multitolerant strains coming from other origins might have great potential 

for commercial bioethanol production. In order to validate this hypothesis two proof-of-principle 

fermentation experiments were conducted. The first experiment at 33% glucose indicated that in 

terms of ethanol yield, all the tested multitolerant strains performed nearly as well as industrial 

strain CAT1. However, Ethanol Red outcompeted all other strains and was clearly superior in 

conditions mimicking first-generation bioethanol production. Nevertheless, in a second fermentation 

mimicking the harsh conditions in lignocellulose hydrolysates by addition of fermentation inhibitors, 

the strain Y232 (originating from wine) showed to be as efficient as Ethanol Red and better than 

CAT1. The wild strain Y312 also outperformed CAT1.  

Together, this large-scale and high-throughput phenotypic analysis yielded a multi-purpose 

database, providing novel insights in general inter- and intra-species phenotypic diversity of 

Saccharomyces yeasts. Additionally, it provides a basis for new insights into the relationships 

between tolerance to different stressors. Our results also illustrate the potential of phenotypically 

evaluating the natural biodiversity of yeasts to find superior industrial strains that may be used in 

bioethanol production. In addition, it may provide excellent candidates for further strain 

improvement through genetic engineering, experimental evolution, or breeding. 
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