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Abstract: The objective of this study is to analyze and fore-
see potential outliers in pulp and handsheet properties for
larger data sets. Themethod is divided into two parts com-
prising a generalized Extreme Studentized Deviate (ESD)
procedure for laboratory data followed by an analysis of
the findings using a multivariable model based on inter-
nal variables (i. e. process variables like consistency and
fiber residence time inside the refiner) as predictors. The
process data used in this has been obtained from CD-82
refiners and from a laboratory test program perspective,
the test series were extensive. In the procedure more than
290 samples were analyzed to get a stable outlier detec-
tion. Note, this set was obtained from pulp at one specific
operating condition. When comparing such “secured data
sets” with process data it is shown that an extended pro-
cedure must be performed to get data sets which cover
different operating points. Here 100 pulp samples at dif-
ferent process conditions were analyzed. It is shown that
only about 60 percent of all tensile index measurements
were accepted in the procedure which indicates the need
to oversample when performing extensive trials to get reli-
able pulp andhandsheet properties in TMPandCTMPpro-
cesses.

Keywords: CTMP; energy efficiency; fiber residence time;
modeling; pulp and handsheet properties; pulp consis-
tency; temperature profile; tensile index; TMP.

Introduction

Forgacs (1963) reflectedon thenecessity of linking the vari-
ations in the mechanical pulping process variables to the
composition of particle shapes and sizes in the pulp. He
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stated that “Ideally, the measurements made on the pulp
should be such that they can be interpreted in terms of the
mechanical pulping operation, andat the same timebe used
to predict the paper or board making potential of the pulp.”
However, the laboratory test procedures have been dis-
cussed for decades and due to tedious and complex proce-
dures the analyses of pulpandhandsheet properties some-
time tend to be based on too few samples. This makes it
difficult to verify data sets statistically even though many
robust techniques such as modified Z-score, adjusted Box-
plot, sample kurtosis and the Shapiro-Wilk W test (Bar-
nett and Lewis 1994) can be natural tools when improv-
ing measurement quality. To tackle such a problem, mod-
ified detection algorithms based on a generalized Extreme
Studentized Deviate (ESD) procedure can be used (Rosner
1983). This method was primarily used for environmen-
tal pollution monitoring to avoid the problem of masking
(Gilbert 1987).

To maximize insight into a data set and detect discor-
dant outliers and anomalies in laboratory samples it is be-
lieved that the ESD approach can be an important add-on
to the normal test procedures when analyzing pulp and
handsheet properties. To show how to use the methodol-
ogy, we focus on one property, tensile index, and analyze
seven handsheets including three sampling strips each for
fourteen different operating points which yields a set of
about three hundred samples to analyze.

Even though reliable laboratory data sets are available
it is still a challenge, from a process dynamics perspective,
to link such data to process information from computers,
on-line pulp sampling devices etc.

Traditionally, external variables (such as specific en-
ergy, dilution water added to the refiners, disc clearance
measurements etc.) have been used for process follow-up
and estimation of pulp and handsheet properties (Härkö-
nen et al. 2000, Strand 1996, Sabourin et al. 2001, Härkö-
nen et al. 2003, Strand and Grace 2014, Nelsson 2016). One
challenge when using external variables as predictors is
that the process non-linearities are not handled in an ap-
propriate way. To cope with that soft sensors, describing
physical phenomena in the refining zone, have been de-
veloped during the last decade (Karlström and Eriksson
2014a, 2014b, 2014c, 2014d). The soft sensors can be seen
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as internal variables (such as fiber residence time, consis-
tency profile, forces on bars, distributed defibration, ther-
modynamic work etc.) which are difficult to measure di-
rectly in the process. Typically, such soft sensors are non-
linear and have become important for advanced process
optimization. Specifically, consistency and fiber residence
time have been candidates for such activities for some
years, as they provide a link to e. g. tensile index, mean
fiber length and Somerville shives (Karlström et al. 2015,
2016a, 2016b).

The next challenge is to find soft sensors for other
pulp and handsheet properties as well. This has been a
key issue for decades but, due to difficulties in assuring the
laboratory measurements’ relation to process conditions,
the efforts continue. Better process models are assumed
to be important when handling that problem, although
this also causes a data deluge in mill-wide systems. This
means that it is essential to handle both laboratory data
(obtained from pulp samples provided at non-equidistant
sampling intervals) on the same time frame as the process
variables from the distributed controllers (which are nor-
mally equidistantly oversampled). These challenges are
relatively easy to handle using modern technology. An-
other and perhaps more challenging task is to understand
which laboratory data should be combined with the pro-
cess data and which data we can assume to be outliers in
this context.

This contribution focuses on a methodology to find
and validate laboratory test results from eighteen pulp
and handsheet properties. The main idea in applying the
methodology on many properties is to understand the
weaknesses and limitations in the measurement proce-
dures and howmany samples we need to get “statistically
assured” laboratory test results and process data.

Materials and methods
In this paper, two consecutive steps are introduced 1) to
handle detect outliers in laboratory samples in order to
provide reliable data to 2) to select pulp and handsheet
property candidates for process modeling purposes.

Detection of outliers in laboratory samples

To show the outlier detection principals, samples for ana-
lyzing tensile index are used in this section. Assume that
the dynamic variations in the process, during each pulp
sampling, can be considered as small and that the ob-
tained average of each pulp sample (fourteen samples in

our case) is representative for the process conditions dur-
ing each sampling interval. By preparing handsheets from
each pulp sample this means that possible outliers are re-
lated to the handsheets and not necessarily to the varia-
tions in the process. Suppose that seven handsheets are
prepared. From each handsheet, three strips are provided
for analysis according to Figure 1.

Figure 1: A schematic drawing of three strips obtained from each of
the seven handsheets.

Thismeans thatmainly three different approaches can
be formulated when analysing the tensile index

Case A: τij = θij/μ̄
Case B: τij = θij/(

1
l ∑

l
k=1 μk)

Case C: τij = θij/μkj

}}}
}}}
}

(1)

where θ is the tensile strength while the denominator in
Case A is the average basis weight for handsheets, i. e. one
measure for the complete batch of handsheets. For Case
B the denominator can be seen as themost logical average
basis weight to use for each handsheet. Case C covers each
tensile index sampled from each handsheet.

Thus, for the samples j = 1, . . . ,m we have to consider
i = 1, . . . , 3l tensile strength (θ) measurements.1 Introduce
n = 3l, i. e. in our case nm = 294 elements to analyze in
the vector. In our example x = [x1, . . . , xnm, ] and when the
generalized ESD is applied on the data series the multiple
discordant outliers can be recursively identified if the dy-
namic process variations between the pulp sampling inter-
vals are handled carefully. This statement will be further
penetrated in the next section but we need to describe the
basic outlier detection procedure first.

Sort the nm observed values in the vector x from the
mean x̄ in ascending order and calculate statistics for up
to nm − 1 outliers, i. e. i = 1 : nm − 1.

Ri = max
i
{
|xi − x̄|

s
} (2)

1 For clarifications the example comprisesm = 14 pulp samples, l = 7
handsheets and three strips.
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where the denominator s represents the standard
deviation. The recursive process is continued until
R1,R2, . . . ,Rnm have been computed.

Compare each Ri with the critical value λi for a pre-
specified significance level α, defined as

λi =
(nm − i)tnm−i−1,p

√(nm − i − 1 + t2nm−i−1,p)(nm − i + 1)
(3)

where tnm−i−1,p is the inverse of Student’s t-cumulative dis-
tribution function with nm − i − 1 degrees of freedom and
the percentile values of the t-distribution

p = 1 − α
2(nm − i + 1)

(4)

where α is the significance level, see further EPA (2006). By
this definition, the critical value λi represents decision cut-
point to labelwhether an observation is a potential outlier,
see Barnett and Lewis (1994).

The null hypothesis (i. e. no outliers) can be rejected if
|Ri > λi|which results in i extreme values classified as out-
liers, EPA (2006). This process is continued until i = nm− 1
and we can conclude that there are a certain number of
outliers, or until all the tests have been performed and
none were found to be significant. In other words, if none
of the tests are significant, i. e. Ri < λi, then there are no
outliers in x and the null hypothesis holds. Note, this pro-
cedure is not linked to possible outliers in a dynamic per-
spective, i. e. laboratory samples related to process vari-
ations. Therefore, it is necessary to develop it further to
be useful in a broader perspective which will be discussed
later in this paper.

Selection procedure for reliable pulp and
handsheet property candidates for process
modeling

As the process data are oversampled (every second) with
respect to pulp sampling (equidistantly for 3 minutes), it
is wise to maintain the high-frequency information to get
a possibility to illustrate the process noise and its impact
on the pulp property variations. However, it is unknown
whether the measured laboratory samples of the pulp and
handsheet properties are reliable in a dynamic perspec-
tive as rapid process changes or natural fluctuations are
not available. Therefore, it is necessary to strengthen the
hypothesis that the dependent variables that are selected
can be predicted.

Consider that there arem different test series to study
and that each test series comprises i different pulp sam-

ples. As the process data are recorded every second during
the time interval for each batch of the pulp sample, both
vectorxmi

including internal and/or external variables and
the sampling rate are known and thereby also the number
of samples, N . By estimating the mean values of the inter-
nal and external variables for each time interval, a com-
mon timeframe for the analysis of the pulp and handsheet
property fmi

is obtained.

x̄mi
=

1
N

N
∑
j=1

xjmi
; fmi
= ̄fmi

(5)

As seen in Equation 5, the pulp and handsheet property is
only defined as an averaged measure during the sampling
interval and most likely is non-linearly dependent on the
process conditions. This means that it is natural to model
the selected pulp and handsheet property as a collection
of piece-wise linear functions of the form

̂fm(x̄m) = θm1x̄m1 + ⋅ ⋅ ⋅ + θmk x̄mk + bm ∀m = 1, 2, . . . , q (6)

where {θm1, . . . , θmk} represents the parameter vector and k
the number of predictors (Lowe and Zohdy (2010)).

The number of linear regions into which the non-
linear function is broken up is represented by q. By us-
ing the parameters in Equation 6, the pulp property is as-
sumed to be predictable for sampling rates related to the
internal and external variables i. e. ̂fm(x̄m) → ̂fm(t) and
this extension of course requires minimized process fluc-
tuations during the sampling interval.

In the work reported here, the test was performed over
a limited period (three days), see Figure 18, and it is as-
sumed that the test series can be modelled by one piece-
wise linear function, i. e. q = 1.

A refinement using the adjusted R2 will be included to
set a penalty for the number of predictors in the model,
i. e.

adj.R2 = 1 − (∑(f − ̂f )2/∑(f − ̄f )2)(n − 1)/(n − d − 1) (7)

where ∑(f − ̂f )2 represents the sum of the squared resid-
uals from the regression2 and ∑(f − ̄f )2 the sum of the
squared differences from the mean of the dependent vari-
able, while n is the number of observations and d is the
degree of the polynomial, see further Draper and Smith
(1998).

Compare two test series (1) and (2) of the same
dependent variable using the Kolmogorov-Smirnov test
(Stephens (1974)) to determine if the test series differ sig-

2 Here the notation refers to ̂f = ̂f1(x̄1).
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nificantly3 as each element i in the test series is related to
the same pulp sample in the blow-line.

Real non-zero values are considered, and the compar-
ison is made to find all pulp or handsheet properties fi(1)
and fi(2) that fulfill the relation

!!!!fi(1) − fi(2)
!!!! < c where i = {1, . . . ,Ψ } (8)

Constraint c is related to the accepted variation in the labo-
ratory equipment and the number of samples required for
further analysis.

The procedure results in a reduced vector fj where j =
{1, . . . , 2ψ} and ψ is the length of fj(1) and fj(2). All other
pulp or handsheet properties are saved separately for later
use. Select different combinations of predictors according
to Equation 6 and perform a polynomial fit of the models
m using the 2ψ accepted samples.

To provide the initial models, a low constraint is in-
troduced on the adj.R2 ≥ 0.3. This constraint is normally
not acceptable in modeling procedures but in this step we
want to find enough data for further analysis.

Note, when selecting the permitted residuals between
two sets the elements to be compared can be out of range
and still be selected as candidates for analysis if they are
both outliers. To reduce that risk, each sample can be
tested iteratively by estimating the adj.R2 for the remain-
ing 2ψ − k samples. If the model is improved, the rejected
k samples are left for further analysis.

The bestmodel fulfilling the constraint will be used by
estimating the dependent variables ̂fjm . A vector of the dif-
ferences is created between measured and estimated vari-
ables of all 2ψ − k samples. Find the smallest and largest
elements multiplied by r, i. e. the coefficient of multiple
correlation, anduse these scalars as constraints.4 Estimate
the dependent variables ̂flm based on the data rejected and
define the differences ξl = fl − ̂flm . If the elements of ξl are
within the constraints, i. e.

min(fj − ̂fjm ) ≤ ξl/r ≤ max(fj − ̂fjm ) (9)

and l = {1, . . . , 2(Ψ −ψ)+ k}, the corresponding measures fl
are accepted for further analysis.

3 The Kolmogorov-Smirnov test has the advantage of making no as-
sumption about the distribution of data and this can be seen as a
first check of the measurement accuracy. These test series comprise
all measurements obtained from Test A and Test B.
4 The introduction of r can be seen as an extra penalty between zero
and one. A higher value close to one indicates a better predictability.
A poor predictability tends to introduce a large interval for the ele-
ments of ξl in Equation 9 if r is not introduced. The coefficient of mul-
tiple correlation (Draper andSmith (1998)) is the square root of the co-
efficient of determination R2 in the linear regressionmodel described
by Equation 6 which includes an intercept.

If the assumptions introduced above are incorrect for
the given data set, the methods will likely give erroneous
results. This means that more laboratory measurements
should be performed and analyzed before changing the
data in the test series studied.

However, if it is not accepted to re-run the tedious lab-
oratory testing it is still possible to improve the models
by ranking the absolute differences between themeasured
and estimatedproperties in ascending order. Thereby, new
models of the pulp and handsheet properties can be de-
rived and validated. In this step the samples rejected are
also tested to find other acceptable measures.5

The selection of predictors has been discussed in sev-
eral articles and the reader is referred to Karlström et al.
(2015, 2016a, 2016b) formoredetails. In this paper, only in-
ternal variables like consistency and fiber residence time
will be considered as they outperform the external vari-
ables as independent variables (predictors) when making
polynomial fits of pulp andhandsheet properties, see Karl-
ström and Hill (2017a, 2017b, 2017c).

Results and discussion
When analyzing pulp and handsheet properties from TMP
and CTMP processes it is well known that the spread in
accuracy can deviate considerably. In this example, the
TMP process accuracy in pulp and handsheet measure-
ments is slightly better compared with samples obtained
from CTMP processes for board making. This is a conse-
quence of different energy inputs used in the processes,
i. e. how the fiber development is performed.

It is also interesting to compare e. g. tensile index ver-
sus specific energy from CTMP and TMP, as illustrated in
Figure 2. In the TMP samples the accuracy in measure-
mentswas considerably better comparedwith Test A andB
(CTMP), which varied quitemuch, whichwill be discussed
inmore details below. Note that in both cases, CD-82 refin-
ers were used, see further Karlström et al. (2016a, 2016b)
and Karlström and Hill (2017a, 2017b, 2017c).

To detect outliers in laboratory samples we start with
data for tensile indexmeasurements, obtained froma TMP
process. As indicated above discordant outliers can be de-
tected by two consecutive sequences where the first itera-
tion is a rudimentary check by visualizing the measured
pulp properties from each handsheet. Measures far from
the mean value are automatically rejected, see Figure 3.

5 This cross-check can be skipped if the lower and upper constraints
are defined symmetrically.
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Figure 2: Tensile index versus specific energy for typical CTMP and
TMP operations.

Figure 3: Tensile index estimated for Case A. Outliers detected by
visual inspection.

Detection of outliers in laboratory samples

In our example 3nm = 291 elements in the sample vector
are acceptable for further analysis.6

To find out if the selected variables are acceptable for
further analysis a second iteration based on the modified
generalized ESD procedure, Equation 1–Equation 4 can be
applied.

The assumption that the pulp property measure-
ments, excluding the suspected outliers, are approxi-
mately normal distributed is appropriate when the vector
size is greater than or equal to 25 Rosner (1983). In the pulp
and paper industry, this required vector size can be a prob-
lem due to tedious laboratory tests.7 Therefore, other com-
plementary methods where the sampling vectors are ex-

6 In this example the vector size of n is reduced to n�.
7 Moreover, the normal procedure is that only one average value of
each sample is provided when comparing laboratory data with pro-
cess data. This means that important information about pulp prop-
erty variations can be lost.

tended must be added to get a reliable set of data. In our
example the condition is thereby fulfilled if we can handle
the process dynamics when extending the vector size by
adding newmeasurements from other sampling intervals.
However, most often such procedures result in situations
where themean values obtained fromeach sampling inter-
val can differ considerably see Figure 4. If these deviations
are caused by uncertain test procedures it is important to
handle the data set with care.

Figure 4: Tensile index for Case A for the entire data series when all
outliers caused by measurement errors have been rejected (1st itera-
tion).

Obviously as seen in Figure 4, the standard deviation
differs quite much for each sample as well as for Case A–
Case C in Table 1.Which case to choose as a standardwhen
analyzing tensile index is hard to pre-specify as themeans
for all samples are almost equal.

We can conclude that the number of samples in each
sample is ≤21 which means that the generalized ESD most
likely does not approach a normal distribution. Moreover,
as seen in Equation 2 and Equation 3 the outlier criterion
Rj ≥ λi differs from the discretized Rj ≥ λj. To overcome
such problems we introduce a procedure where the mean
of each sample is extracted from each measurement. This
is shown in Figure 5 for Case A and Case C. The discrep-
ancies between the two cases are small and we can expect
that Case B, which is in between the two cases in Table 1,
has similar characteristics.

In Figure 5, it is also shown that several potential
outliers can exist depending on the chosen significance
level α.

Following the procedure outlined in Appendix A, out-
liers can be detected in samples of pulp and handsheet
properties. When the deviations in the mean values are
caused by variable process conditions it is even more rel-
evant to introduce the procedure above. A good check-
point is to see if the distributions tend to be skew. When
the skewness is far from zero this indicates that some of
the tensile index measurements are in the lower region of
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acceptable measures. Nevertheless, the key questions are
whether or not it is acceptable with a deviation in tensile
index of ±3Nm/g and if it is acceptable to use measure-
ments with such spread for modeling purposes, i. e. link
the results to different types of process dynamic evalua-
tions.

Table 1: Standard deviation in tensile index (Nm/g) for Case A,
Case B and Case C for all samples studied.8

Sample Case A Case B Case C

1 2.90 2.88 2.46
2 0.82 0.81 0.69
3 1.59 1.57 1.44
4 2.00 2.00 2.31
5 8.25 8.14 7.39
6 1.67 1.65 1.58
7 0.76 0.76 0.77
8 1.37 1.36 1.39
9 1.83 1.81 2.07

10 0.96 0.95 0.87
11 0.68 0.68 0.68
12 1.91 1.89 2.71
13 1.03 1.03 1.29
14 2.51 2.47 2.52

Mean 2.02 2.00 2.01

Figure 5: Detrended tensile index for Case A and Case C after the 1st

iteration. Each sample is detrended individually.

Selection procedure for reliable pulp and
handsheet property candidates for process
modeling

Even though, an appropriate generalized ESD-procedure
is used to detect outliers it is not guaranteed that the labo-
ratory data will be useful in a dynamic perspective. This

8 For details about the cases studied, see the introduction to the sec-
tion “Materials and methods”.

is best illustrated by studying the time plot for specific
energy where the time for pulp samples are included. As
seen in Figure 6 the specific energy and most likely also
the pulp and handsheet properties can vary considerably
during the sampling. This is of course a challenge when it
comes to validation of pulp and handsheet properties in a
dynamic perspective.

Harrell et al. (1985) and FreedmanandPee (1989),who
presented a general guideline for the minimum number of
events per variable (EPV) in multivariate analysis, demon-
strated that overfitting was inflated when the ratio of the
number of variables to the number of observations was
greater than 1/4, which corresponds to an EPV ≥ 4. Peduzzi
et al. (1996) suggested increasing that number to at least
ten events per variable analyzed to maintain the validity
of the final model. This analysis was based on data from a
cardiac trial with good quality data, and, in our situation,
this recommendationwould result in at least 50 samples if
five predictors are used.

Draper and Smith (1998) suggested the use of an EPV
of 10 as a good choice but in industrial (especially in pulp
and paper industry) applications, this is usually not pos-
sible due to tedious laboratory analysis and uncertainties
in the measurements which limits the number of reliable
samples.

Figure 6: Specific energy and pulp sampling occasions versus time.

Vittinghoff and McCulloch (2007) conducted a large
simulation study of other influences on confidence inter-
val coverage relative bias and other model performance
measures and found a range of circumstances in which
coverage andbiaswerewithin acceptable levels despite an
EPV less than 10. In short, they concluded that the “one in
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ten” rule can be relaxed and, in this paper, it is assumed
that reliable models can be derived using an EPV ≈ 4 if it
is possible to confirm that some of the measurements ob-
tained during the major step changes in production, plate
gap and dilution water feed rate in Figure 18 (Appendix B)
are covered.

In summary, the methodology for large data sets is
based on three different steps using double tests of each
sample and it is always appropriate to be critical of the re-
sults if too few laboratory samples are available relative to
the number of predictors analyzed in the model. This is
central in this section and the idea is to extract the labo-
ratory measurements which are possible to link to process
data. Thereafter the data selected is ranked before train-
ing and verifying the models according to the procedure
outlined by Karlström and Hill (2017a, 2017b, 2017c).

The idea so far, has been to extract the laboratorymea-
surements which are possible to link to process data. Orig-
inally, 160 pulp samples9 were included in the proposed
test series, although only about 100 tensile indexmeasure-
ments were analyzed.

In this paper, the measurements will be ranked by us-
ing the absolute difference between the measured prop-
erty and the estimated property. This is illustrated in Ta-
ble 2, which gives the accepted measurements of tensile
index. As seen in Table 2, about 60% of the pulp samples
are accepted if selecting a constraint of ±2Nm/g according
to EPV= 4. The original data selection is shown in the right
column, i. e. the modeling and hold-out sets. The original
data selection is shown in the right column, i. e. the mod-
eling and hold-out sets together with some of the rejected
samples obtained as a result of the asymmetry in the up-
per and lower constraints in Equation 9. If such rearranged
measurements are used, it is possible to analyze a new set
of “accepted” data at different adj. R2 according to the pro-
cedure outlined above, see Table 3.

As stated by Karlström and Hill (2017a, 2017b, 2017c),
only internal variables like consistency andfiber residence
time are necessary to consider as independent variables
whenmaking polynomial fits of pulp and handsheet prop-
erties. Thereby, Equation 6 can be expressed as

τ = 40.3− 2.192CFZ + 1.025CCD − 16.51ηFZ + 200.98ηCD (10)

where τ corresponds to the tensile index estimation in a
CD-82 refiner. The independent variables C and η repre-
sents the consistencies and fiber residence times in the flat
zone and conical zones {FZ,CD} respectively. For details,
see Karlström and Hill (2017a, 2017b, 2017c).

9 Eighty pulp samples in Test A and Test B, respectively.

Figure 7:Measured tensile index versus estimates tensile index.

Figure 8: Normalized properties to show where samples for tensile
index are taken.

In this paper, we choose to focus on three figures sum-
marizing findings for estimated and measured values for
tensile indices.

In Figure 7, it is obvious that the model can estimate
the tensile index within ±2Nm/g. It is also important to
confirm that the major dynamics in the predictors are cov-
ered by the step changes, see Figure 8. Finally, to get an
understanding of the process fluctuations in the estima-
tion of the tensile index it is wise to also include a time
plot, see Figure 9.

Thus, to use the tensile index model in on-line appli-
cations it is important to verify it over long periods and
different process conditions. The reason is of course that



296 | A. Karlström et al.: On the modeling of tensile index from larger data sets

Table 2: Tensile index ranking based on the absolute difference between measured and estimated values.

Tensile index (ranking)
abs (measured-estimated) TI (Nm/g) Sample # at LAB Corresponding test series

0.02 15.45 27 27 Validation set Test B
0.07 16.34 51 54 Validation set Test A
0.07 18.57 79 84 Validation set Test B
0.09 15.58 5 5 Validation set Test B
0.12 16.79 75 80 Validation set Test B
0.13 15.60 24 24 Set for polynomial fit Test B
0.21 16.84 45 48 Validation set Test B
0.21 15.26 72 77 Validation set Test B
0.28 17.65 68 71 Validation set Test A
0.29 14.76 54 601 Validation set Test B
0.31 15.78 24 24 Set for polynomial fit Test A
045 15.94 25 25 Validation set Test B
048 16.87 25 25 Validation set Test A
049 11.88 66 69 Validation set Test A
0.51 15.91 26 26 Validation set Test B
0.54 13.64 65 68 Validation set Test A
0.57 18.13 14 14 Validation set Test B
0.57 17.95 21 21 Validation set Test B
0.58 18.03 39 40 Set for polynomial fit Test A
0.60 20.62 13 13 Validation set Test B
0.62 18.67 78 83 Validation set Test B
0.62 17.81 15 15 Set for polynomial fit Test A
0.64 19.09 9 9 Set for polynomial fit Test A
0.68 16.99 1 1 Set for polynomial fit Test B
071 17.89 15 15 Set for polynomial fit Test B
0.71 17.55 3 3 Validation set Test B
075 19.19 9 9 Set for polynomial fit Test B
075 15.27 58 61 Set for polynomial fit Test A
076 18.20 39 40 Set for polynomial fit Test B
076 15.41 62 65 Validation set Test A
077 17.86 79 84 Validation set Test A
078 15.09 55 602 Validation set Test B
0.82 16.60 19 19 Set for polynomial fit Test A
0.87 16.98 42 44 Validation set Test A
0.89 15.13 58 61 Set for polynomial fit Test B
0.89 12.61 53 59 Set for polynomial fit Test B
0.90 13.75 62 65 Validation set Test B
0.90 13.41 55 602 Validation set Test A
0.91 17.99 32 334 Validation set Test B
0.95 18.79 71 75 Validation set Test B
0.95 12.55 53 59 Set for polynomial fit Test A
0.99 16.68 1 1 Set for polynomial fit Test A
0.99 17.62 45 48 Validation set Test A
1.04 15.77 56 603 Set for polynomial fit Test A
1.05 18.98 68 71 Validation set Test B
1.10 14.13 60 63 Validation set Test A
1.11 15.84 56 603 Set for polynomial fit Test B
1.14 14.34 72 77 Validation set Test A
1.15 16.92 19 19 Set for polynomial fit Test B
1.27 15.64 75 80 Validation set Test A
1.28 18.05 80 85 Validation set Test A
1.38 16.72 4 4 Validation set Test A
143 17.63 33 34 Validation set Test A
1.51 15.86 21 21 Validation set Test A
1.58 17.61 11 11 Validation set Test A
1.65 15.86 2 2 Set for polynomial fit Test A
173 15.87 35 36 Validation set Test B
176 16.94 14 14 Validation set Test A
1.82 15.70 2 2 Set for polynomial fit Test B
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Table 3: Final tensile index ranking based on the absolute difference between measured and estimated values.

Tensile index (Rejected in the 1st ranking)
abs (measured-estimated) TI (Nm/g) Sample # at LAB Corresponding test series

1.25 7.65 74 79 Rejected samples from Test A
1.47 545 28 32 Rejected samples from Test B
1.51 6.92 26 26 Rejected samples from Test A
1.69 7.17 5 5 Rejected samples from Test A
1.70 8.10 51 54 Rejected samples from Test B
1.78 6.17 57 604 Rejected samples from Test A
1.94 9.11 73 78 Rejected samples from Test B
1.96 5.13 32 334 Rejected samples from Test A
2.00 7.19 11 11 Rejected samples from Test B
2.03 7.45 27 27 Rejected samples from Test A

2.104 5.81 42 44 Rejected samples from Test B
2.19 4.57 66 69 Rejected samples from Test B
2.24 7.77 13 13 Rejected samples from Test A
2.26 7.19 52 55 Rejected samples from Test A
2.39 6.78 57 604 Rejected samples from Test B
2.57 8.38 17 17 Rejected samples from Test B
2.70 4.90 35 36 Rejected samples from Test A
2.71 5.00 64 67 Rejected samples from Test B
2.77 5.87 65 68 Rejected samples from Test B
2.82 1.66 54 601 Rejected samples from Test A
2.84 6.44 78 83 Rejected samples from Test A
2.90 6.88 28 32 Rejected samples from Test A
3.00 7.95 17 17 Rejected samples from Test A
3.00 2.23 60 63 Rejected samples from Test B
3.10 1.97 76 81 Rejected samples from Test B
3.12 4.72 71 75 Rejected samples from Test A
3.15 3.25 74 79 Rejected samples from Test B
3.36 5.70 33 34 Rejected samples from Test B
3.39 8.46 76 81 Rejected samples from Test A
3.58 4.16 23 23 Rejected samples from Test B
3.84 4.42 3 3 Rejected samples from Test A
3.98 5.35 80 85 Rejected samples from Test B
4.01 3.16 73 78 Rejected samples from Test A
4.23 4.70 69 73 Rejected samples from Test A
4.39 3.35 23 23 Rejected samples from Test A
5.06 8.10 7 7 Rejected samples from Test A
5.10 2.99 4 4 Rejected samples from Test B
5.19 2.52 64 67 Rejected samples from Test A
5.31 5.78 69 73 Rejected samples from Test B
5.55 7.61 7 7 Rejected samples from Test B
5.78 0.71 52 55 Rejected samples from Test B

11.98 6.95 77 82 Rejected samples from Test B
12.88 6.04 77 82 Rejected samples from Test A

themodel parameters derived can changewhen using e. g.
other refining segments, production levels etc.

It is finally, interesting to note that the models can be
used in other processes based on CD-82 refiners as well.
This statement was confirmed by implementing themodel
(with another intercept of course) in a TMP process, see
Karlström et al. (2018).

Concluding remarks

The main purpose of this study is to investigate outliers in
laboratory data. It is shown that a generalized ESD pro-
cedure can be used. It is also seen that the significance
levels do not affect the number of outliers. However, it is
questionable if traditional laboratory measurement pro-
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Figure 9: Estimated and measured (TestA and TestB) tensile index.

cedures provide insight enough regarding the accuracy in
each measure in the data series. In this paper it is stressed
that enough samplesmust be collected and analyzed to get
an acceptable significant level in each measure.

Using temperature profile measurements, it is possi-
ble to derive hidden physical phenomena that are impos-
sible to measure inside the refining zones. Such measures
are typical internal variables and, in this study, we use
the consistency from each refining zone and the fiber resi-
dence time in each refining zone.

A procedure, including data selection and rearrange-
ment of data before modeling and validation, is intro-
duced in this paper to cope with larger data sets.

The internal variables perform a stable fit and repro-
duce the properties studied.

It is an understatement that non-linearities exist in
the refining process. It is shown that models using inter-
nal variables as predictors can improve the model accu-
racy considerably. This makes it more interesting to fur-
ther study the internal variables. It is interesting to see
that ranked accepted measurements obtained from the
methodology outlined in this paper give a possibility to im-
prove the analysis of the data if enough data from different
process operating points are considered.

Finally, it is indicated that tensile index can be op-
timized by changing the consistency and fiber residence
time. The collinearities in the predictors however requires
on-line implementation of the extended entropy model
derived by Karlström and Eriksson (2014a, 2014b, 2014c,
2014d) to get reliable estimates of the consistency andfiber
residence time when changing dilution water flow rates
and plate gaps.
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Appendix A. Detection of outliers
Theoutliers detectedby the generalizedESDprocedure are
given in Table A.1 and it is seen that the significance levels
do not affect the number of outliers detected.

However, do we actually have insight enough regard-
ing the accuracy in each measure in the data series or do
we set the significant levels based on traditions?

Is the spread in tensile index, as given in Figure 5,
maybe too large?

Consider an example where α = 0.05 and 0.1, i. e. by
tradition we are assumed to be 95% and 90% confident
that we have no outliers. This means that we on before-
hand assume that we can be wrongwith a probability 0.05
and 0.1.

When using the generalized ESD procedure however,
the percentile values of the t-distribution is not only de-
pendent on the selected significance level but also on the
degrees of freedom (nm − 1) we have in the data set.10 For
example, if α = 0.05, the lower and upper percentile in

Table A.1: Indices for the outliers detected in the second iteration
using the generalized ESD procedure.

α = 0.05 α = 0.1
Indices Outliers detected Indices Outliers detected
Case A Case C Case A Case C

87 87 87 87
93 93 93 93
96 96 96 96
99 99 99 99

271 181 271 181
271 271

10 It is also notable that Equation 4 describes a two-sided outlier dis-
tribution. To describe one-sided outlier problemswe substitute α/2 by
α in the value of p.
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Equation 4 will be {99.17, 99.99}. This is indeed a conser-
vative setting and the use of the traditional concept with
a pre-specified significance level can to some extent be-
come misleading in the analysis. This is best illustrated
by setting the significance level (or whatever we call it in
this specific case11) to 0.9 and 0.99 which yields a com-
pletely different picture as seen in Table A.2 and we can
conclude that this results in a less conservative limitwhich
stretch out the definition of outlier detection procedures.
This is also seen in Figure 10 where the histograms for R,
λ(α = 0.05) and λ(α = 0.99) are given. Another way to il-
lustrate this is to plot the sorted data for R, λ(α = 0.05) and
λ(α = 0.99) see Figure 11.

Note, λ(p = 0.998) has been included in Figure 11 as
well and can be seen as an alternative outlier setting at a
constant percentile value in the t-distribution. In summary
we can see that both Figure 10 and Figure 11 visualize the
intercepts for Rj ≥ λi clearly together with the potential
outliers.

It is also interesting to see that no difference was de-
tected between Case A and Case B in Table A.2, while the

Table A.2: Indices for the outliers for all three cases detected in the
second iteration using the generalized ESD procedure.

α = 0.9 α = 0.99
Indices Outliers detected Indices Outliers detected
Case A Case B Case C Case A Case B Case C

21 21 5 21 21 5
42 42 18 42 42 18
63 63 42 63 63 42
87 87 75 87 87 45
90 90 80 90 90 75
93 93 87 93 93 80
95 95 93 95 95 87
96 96 95 96 96 90
99 99 96 99 99 93

167 167 99 167 167 95
181 181 129 181 181 96
271 271 161 271 271 99

167 129
233 161
234 167
239 233
249 234
264 239
271 249

264
271

11 Note, to reach the limit of p, i. e. [0, 100], α ≈ 6. These conse-
quences relate to extreme situations which most often are ignored in
the research literature as knowledge about the data set often is as-
sumed to be secured.

Figure 10: Histogram for R, λ(α = 0.05) and λ(α = 0.99) in Case C for
the detrended tensile index (data).

Figure 11: R, λ(α = 0.05) and λ(α = 0.99) in Case C for the detrended
tensile index (data).

number of detected outliers is doubled for Case C. This
is most likely a consequence of how the use of average
basis weight in Case A and Case B smooth out the varia-
tions while in Case C the basis weight for each handsheet
is used.

The use of the measure defined in Case C causes a risk
for a larger spread in the data set. However, which case to
use in the analysis is not obvious as the tensile strength
and basis weight are expected to be inherently correlated
at the same time as we are looking for possible outliers
necessary to analyze further. Nevertheless, to illustrate the
methodology we will use Case C as a reference below.

The outlier detection procedure can be illustrated in a
number of different ways and in Figure 12, Case C (2nd it-
eration) is compared for two levels α = 0.05 and 0.99. The
upper and lower limits are changed marginally when the
confidence reduces which is also seen in Figure 13.

From a laboratory perspective, the lower limits are of
certain interest and therefore it is tempting to analyse the
distribution to see howmany outliers we get in this region.
In Figure 14, the number of expected outliers are given ver-
sus the significance level for Case C.

The two cases in Figure 12 approach a normal distribu-
tion. This statement is strengthened by the normal proba-
bility plot and the histogram for Case C (α = 0.05) in Fig-
ure 15 and Figure 16, respectively.



300 | A. Karlström et al.: On the modeling of tensile index from larger data sets

Figure 12: Detrended tensile index for Case C after the 2nd iteration
for different significance levels.

Figure 13: Upper and lower limits for the detrended tensile index
versus α.

Figure 14: Number of detected outliers versus α.

As seen in Figure 15, the interval between the 25th

and 75th percentiles indicates a tensile index distribution
of about +/−0.8. Moreover, in Figure 16 the distribution
is somewhat skew to the left (skewness is about −0.42)
while the kurtosis is about 2.9. In other words, the kurto-
sis indicates that we approach a normal distribution as the
peakedness of the distribution approach 3 (which is the
value for a strictly normal distribution) at the same time
as the number of tensile index values in the lower region
of acceptable measures is higher than expected.

For symmetric distributions the skewness is zero but
in our example, the skewness is far from zero when α =
0.05 which indicates that some of the tensile index mea-
surements are in the lower region of acceptable measures.

Figure 15: Probability versus the detrended tensile index (data) for
α = 0.05.

Figure 16: Histogram for Case C for the detrended tensile index
(data) when α = 0.05.

Figure 17: A schematic drawing of a CD refiner. The vertical flat zone
(FZ) is directly linked to the conical zone (CD) via an expanding
point.

If α = 0.99 the skewness is reduced significantly to −0.29
as expected but this also means that the number of out-
liers to be analyzed increase furthermore as indicated in
Figure 10 and Figure 14.

It is obvious that the lower tails in Figure 15 and Fig-
ure 16 are interesting to study further as they relates to the
tensile strength in the paper which is considered to be as
high as possible.
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Figure 18: Step changes performed in the external variables dilution water (upper left), production (upper right) and plate gap (middle left);
response in motor load including time for each test point (middle right). Responses in the internal variables consistency and residence time
(lower figures).
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Appendix B. Step changes in
internal variables and responses in
internal variables

Data from a full-scale CTMP production line (CD82-refiner)
have been used, see Figure 17. In both the flat zone (FZ)
and the conical zone (CD), sensor arrayswith eight sensors
havebeenmounted tomeasure the entire temperature pro-
files. The temperature measurements can be seen as inter-
nal variables that are measured together with traditional
process variables, such as production rate, dilution water
flows, plate gaps and motor load (external variables), and
vary considerably when changes are made in process con-
ditions and the refining segment pattern.

Both internal and external variables are used in the
extended entropy model (Karlström and Eriksson (2014a,
2014b, 2014c, 2014d)), which can be used for estimation
of e. g. the consistency profile and the fiber residence time
in the FZ and CD zones (Karlström and Hill (2017a, 2017b,
2017c).

The test was performed according to Figure 18, and
the time for each test point was well-documented. From a
laboratory test program perspective, the test program was
extensive and covered 80 test points where pulp samples
were taken from the blow-line valve over a period of 3min-
utes each. As seen in Figure 18, the test was performed us-
ing three distinct sets of pulp samples with different chip
mixtures (TEST1; 100%sawmill, TEST2; 65%sawmill and
35% roundwood and TEST3; 100% roundwood) following
the same step changes in the manipulated variables: di-
lution water feed rate, production and plate gap. Besides
recording the time12 for pulp sampling, ten grab samples
were taken to get a reliable and synchronized mean value
of each pulp sample. The pulp samples were then homog-
enized carefully and double tested. In total, 2 × 51 samples
were analyzed.

The process sampling rate was 1 second, which re-
sulted in a sampling matrix for this test of the size 300 ×
260000.

The original idea of using internal variables instead
of external variables to find proper piece-wise linear mod-
els was to cope with non-linearities in the process, see
Karlström et al. (2015, 2016a, 2016b). By using informa-
tion from the estimated consistency profile and the fiber
residence time it was shown that the internal variables

12 When matching laboratory variables to a set of process variables,
it is essential to record the time for pulp sampling and the sampling
interval.

outperformed the external variables as independent vari-
ables (predictors) when making polynomial fits of pulp
and handsheet properties.

Fully understanding the relationships in refining zone
conditions, when the external variables are changed, is a
challenge. For instance, an increased production rate will
result in a reduced residence time while an increased di-
lution water feed rate has a limited effect on the residence
time. On the other hand, when the plate gap is increased,
the residence timewill be reduced.Moreover, an increased
dilution water feed rate in the FZ will reduce the consis-
tency in the FZ and CD while an increased plate gap in
FZ has a minor impact on the consistency, see Figure 18.
Hence, when the plate gap in the CD zone is changed,
the consistency is not affected linearly. This is most likely
a consequence of the non-negligible changes in the fiber
pad.

In Figure 18, three test series are available for analysis,
where each test series comprises double tested pulp sam-
ples which means that the procedure outlined above for
small data sets is not suitable.
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