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Optical spectra of molecular aggregates and crystals:
testing approximation schemes†

M. Anzolaa, F. Di Maioloa and A. Painelli∗a

The interplay between exciton delocalization and molecular vibrations profoundly affects optical
spectra of molecular aggregates and crystals. The exciton motion occurs on a similar timescale as
molecular vibrations, leading to a complex and intrinsically non-adiabatic problem that has been
handled over the years introducing several approximation schemes. Here we discuss systems
where intermolecular distances are large enough so that only electrostatic intermolecular interac-
tions enter into play and can be treated in the dipolar approximation. Moreover, we only account
for interactions between transition dipole moments, as relevant to symmetric molecules, with neg-
ligible permanent (multi)polar moments in the ground and low-lying excited states. Translational
symmetry is fully exploited to obtain numerically exact solutions of the relevant Hamiltonian for
systems of comparatively large size. This offers a unique opportunity to assess the reliability of
different approximation schemes. The so-called Heitler-London approximation, only accounting
for the effects of intermolecular interactions among degenerate electronic states, leads to the cel-
ebrated exciton model, widely adopted to describe optical spectra of molecular aggregates and
crystals. We demonstrate that, mainly due to a cancellation of errors, the exciton model approxi-
mates well the position of exciton bands and reasonably well the bandshapes, but it fails to predict
spectral intensities, leading to underestimated intensities in J-aggregates and overestimated in-
tensities in H-aggregates. This general result is validated against an exact sum-rule. Finally, we
address the validity of several approximation schemes adopted to reduce the dimension of the
vibrational basis.

1 Introduction

Molecular materials are characterized by intermolecular forces
much weaker than the chemical bonds inside each individual
molecular unit. In spite of that, in molecular materials inter-
molecular interactions deeply affect optical spectra, that therefore
cannot be calculated as the sum of molecular spectra. Intermolec-
ular charge transfer (CT) was early recognized as a source of im-
pressive spectroscopic phenomena in absorption spectra of molec-
ular materials, both in the visible and near-IR spectral regions,
where so-called CT absorption bands appear1,2. Vibrational spec-
tra are also affected by CT, with the appearance of strong features
due to large charge fluxes driven by molecular vibrations or lattice
modes (phonons).3–6 In molecular materials with intermolecular
distances larger than the sum of Van der Waals radii, electrons
are localized within each molecular unit and CT interactions are
absent. Even in these conditions, electrostatic intermolecular in-

a Department of Chemistry, Life Science and Environmental Sustainability, Università
di Parma, 43124 Parma, Italy.
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 00.0000/00000000.

teractions may have prominent effects, driving resonance energy
transfer among different molecular species7–9 and energy delo-
calization among equivalent (or nearly so) molecules in molecu-
lar crystals and aggregates.10–12

The physics of excitons and of optical spectra in molecular
crystals was first addressed in the seminal works of Craig,13

Davidov14 and Agranovich15. The same physics also applies
to molecular aggregates: the ground-breaking discovery of the
anomalous spectra of cyanine aggregates16 opened the research
field of molecular aggregates, with the seminal theoretical work
of Kasha.17 An enormous body of experimental and theoretical
work can be found in the literature, as extensively reviewed by
Spano.11,12 Current understanding of optical spectra of molecu-
lar aggregates and crystals is mainly based on the so-called ex-
citon model that, only accounting for electrostatic interactions
among degenerate states, leads to a large reduction of the basis
set. Along these lines, analytical solutions have been obtained of
the electronic problem that offer a reliable basis for understand-
ing spectral properties of molecular aggregates and crystals. The
approximations of the exciton model were discussed in the origi-
nal papers14,15 and have been recently addressed in relation with
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aggregates of polarizable molecules with polar18–20 or quadrupo-
lar character.21–24

Molecular vibrations add another layer of complexity to the
physics of molecular aggregates and crystals: the deformation
of the molecular structure upon excitation is responsible for the
Franck-Condon structure of absorption and fluorescence spectra
of isolated molecules in solution, but the shape of absorption and
fluorescence spectra of molecular aggregates often largely devi-
ates from the Franck-Condon behavior,11,25 as first recognized in
the narrow and structurless absorption and emission spectra of
aggregates of cyanine dyes.16 Delocalization energies and vibra-
tional energies are often comparable in molecular aggregates and
the adiabatic approximation must be abandoned. Treating the
electronic and vibrational degrees of freedom on the same foot
is a formidable task. Indeed analytical solutions of the coupled
electronic and vibrational problem are available for an infinite
one-dimensional array of molecules in the exciton approximation
and accounting for a single coupled vibration.25,26 Most often ap-
proximations schemes have been proposed to treat the problem,
whose validity and applicability need a careful discussion.

In this paper we critically review the approximation schemes
for the simplest model of molecular aggregates that, only ad-
dressing intermolecular interactions between transition dipole
moments, applies to aggregates and crystals of non-polar (cen-
trosymmetric) molecules, and, more precisely to molecules whose
permanent dipole moments in the ground and low-lying excited
states are negligible, much as their quadrupolar and higher or-
der moments in the multipolar expansion. Accordingly, the model
does not apply to so-called charge-transfer dyes, i.e. π-conjugated
molecules with electron-donor and acceptor groups. Model for
aggregates of polar18,20 and quadrupolar dyes,22–24,27 have been
proposed recently.

2 The model
We consider a one-dimensional array of equivalent molecules.
Only two electronic states are available per molecule, the ground
|g〉 and the excited state |e〉. The underlying hypothesis is that
higher excited states are located at too large energies to be rel-
evant. This restricts our model to large π-conjugated dyes, hav-
ing the lowest excited state in the visible region of the spectrum,
while higher excited states are in the ultraviolet region. Both the
ground and the excited states have negligible dipolar and multi-
polar moments, so that the only relevant matrix element of the
dipole moment operator is 〈g|µ̂|e〉 = µ0. The magnitude of µ0 is
experimentally accessible from the oscillator strenght of the g→ e
transition measured for the isolated dye in solution:28

fge =
2
3

me

h̄e2 ω0µ
2
0 , (1)

where me is the electron mass, e the electron charge and ω0 the
frequency of the g → e transition. Alternatively, the transition
dipole moment can be obtained from quantum chemical calcu-
lations, with the added value of getting information about the
dipole moment orientation.

A linear electron-vibration coupling model is adopted, intro-
ducing an internal vibrational coordinate q̂i per molecule. The

two electronic states of each molecule are described by two har-
monic potential energy surfaces with the same frequency, ωv, but
displaced minima. The strength of the electron-vibration coupling
is measured by the vibrational relaxation energy, λ , that, being
related to the Huang-Rhys factor, S = (λ/h̄ωv)

2, can be extracted
from the analysis of the absorption or fluorescence bandshape of
the isolated dye in solution.28

In the hypothesis that permanent polar and multipolar mo-
ments are negligible, the only surviving electrostatic intermolec-
ular interactions are driven by transition dipole moments. The
interaction between transition dipoles at i and j sites reads:15

Ji, j =
µ2

0
4πεd3

i j
Di j, (2)

where Di j is a geometrical factor that only depends on the rela-
tive orientation of the transition dipole moments on sites i and
j, while di j is the distance between the two molecular sites (see
also Supporting Information). Finally, ε is the medium dielectric
constant at optical frequencies (the squared refractive index). It
accounts for the polarizability of the surrounding medium and in-
cludes the effects of electronic excitations not explicitly accounted
for in the exciton model. In the following we will address one-
dimensional molecular aggregates with one molecule per unit
cell. To maintain translational symmetry we impose periodic
boundary conditions, locating the N molecular units composing
the aggregate at the vertices of a regular polygon as in Fig. 1, In
these conditions intermolecular interactions only depend on the
intermolecular distance and we define Jm = Ji,i±m. Two extreme
cases will be considered: (a) nearest-neighbor interactions with
J1 = J and Jm = 0 for m > 1; (b) long-range Coulomb interactions
with J1 = J and Jm = J[sin(π/N)/sin(mπ/N)]3 for m > 1. In either
case a single parameter, J, measuring the strength of the nearest-
neighbor interaction, fully defines the model. Positive J (H ag-
gregates, repulsive interactions) describe an aggregate where all
molecular dipoles are aligned in a direction perpendicular to the
plane of the polygon, while negative J (J aggregates, attractive
interactions) correspond to the case where all dipoles are tangen-
tial to the polygon. The translational symmetry guaranteed by the
adopted periodic boundary conditions and the absence of disor-
der are instrumental to reduce the dimension of the Hamiltonian
matrices to be diagonalized, and are therefore very important to
our approach. Of course these idealized conditions apply to large
aggregates or crystals with a highly ordered structure and in the
limit where the exciton correlation lenght is smaller than the ac-
tual dimension of the aggregates.

The Hamiltonian for a linear array of N molecules reads:15

Ĥ = ∑
i

[
E−λ (â†

i + âi)
]

n̂i + h̄ωv ∑
i

(
â†

i âi +
1
2

)

+ ∑
m

Jm(b̂
†
i b̂i+m +h.c.)+∑

m
Jm(b̂

†
i b̂†

i+m +h.c.), (3)

where i and i+m run on the N molecular sites. The operators â†
i ,

âi are the boson operators associated with the harmonic oscilla-
tor on site i. The operator b̂†

i creates an excitation on site i, by
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Fig. 1 A schematic view of a 8-site chain with periodic boundary condi-
tions. In H aggregates the molecular units, represented in the figure as
points, are oriented as to have the transition dipole moments aligned in a
direction perpendicular to the plane of the polygon. In J aggregates the
transition dipole moments are tangential to the polygon.

turning the molecule from state |g〉 to |e〉, while b̂i destroys the
excitation. As discussed by Agranovich,29 these operators obey a
Paulion algebra:

[b̂i, b̂
†
j ] =

{
1−2b̂†

j b̂i, if i = j

0, if i 6= j.
(4)

The first two terms in the above Hamiltonian describe the
molecular problem, where E is the vertical excitation energy of
the molecule in the aggregate. This energy may differ from h̄ω0,
the transition energy in the isolated molecule, due to local field
effects, but we will neglect these corrections in the following, set-
ting E=h̄ω0. The last two terms account for intermolecular in-
teractions: the same interaction Jm is responsible for the hopping
of the excitation from site i to i+m (and viceversa) and for the
simultaneous creation (destruction) of two excitations on sites i
and i+m.

The hopping term mixes states with the same number of exci-
tons, i.e. states having the same diagonal energy, while the last
term in the above Hamiltonian describes the interaction among
states whose energy differs by 2E. Accordingly, the Heitler-
London (HL) approximation is adopted in the common version
of the exciton model (we will refer to it as the standard exciton
model) neglecting all terms in the Hamiltonian mixing states with
a different number of excitons.15 The HL approximation, valid as
long as J interactions are negligible with respect to E, leads to
an enormous reduction of the basis set, since the problem can be
solved inside subspaces with fixed number of excitations. In the
HL approximation the ground state coincides with the vacuum
electronic state |...ggg...〉 times the vacuum vibrational state (i.e.
the state where all molecular oscillators are in the vacuum state)
and the excited state subspace of relevance to linear spectroscopy
only contains the electronic manifold of the N states with a single
exciton.

3 Exact diagonalization approach: calculat-
ing absorption and fluorescence spectra

When the last term in Eq. 3 is non-negligible, it is not possible
to factorize the problem as done in the standard exciton model.

The complete basis can be obtained as the direct product of the
2N electronic states times the vibrational basis, composed of the
direct product of the states relevant to each one of the N harmonic
oscillators. Of course, to make the problem numerically tractable
the infinite vibrational basis must be truncated. In the following
we will truncate the basis imposing a limit Mv to the total number
of vibrational quanta in the aggregate, disregarding all states with
∑i〈â†

i âi〉>Mv. Of course Mv must be large enough as to guarantee
for converged and hence numerically exact results. The overall
dimension of the vibrational basis is

nv =
Mv

∑
ν=0

(
N +ν−1

ν

)
. (5)

The electronic basis, of dimension 2N can be truncated set-
ting a limit to the number of excitons, disregarding states with
∑i〈b̂†

i bi〉 > Me. Again Me must be chosen large enough to guar-
antee for convergence. In spite of the truncation, the dimension
of the basis is too large to calculate optical spectra of aggregates
with dimensions N > 4. To deal with larger systems we exploit
translational symmetry.

In a system with periodic boundary conditions, translational
symmetry guarantees for the conservation of the total (electronic
+ vibrational) wavevector, K. For a linear chain of N equiva-
lent molecules the allowed K values in the first Brillouin zone
are K = 2π

N s, were s is an integer number in the −N
2 < s ≤ N

2
interval. Optical transitions conserve the total wavevector, so
that, starting from the ground state (K = 0), only K = 0 ex-
cited states are reached upon absorption. According to the Kasha
rule, emission always occurs from the lowest singlet excited state
so that for J-aggregates K = 0 to K = 0 transitions are of in-
terest. In H-aggregates the lowest excited states are located at
K = 2π

N max(s) = Kmax so that only transitions from K = Kmax to
K = Kmax are relevant, at least as long as temperature is low
enough as not to populate excited states with different wavevec-
tors.12

We implement the calculation using the bit-representation to
store the basis set. One bit is needed to define the electronic state
(either g or e) of each molecular site. Additional bits are needed
for each molecule, to store the number of vibrational quanta in
the relevant oscillator (we choose our basis with reference to the
undisplaced harmonic oscillator relevant to the g state). Using
three bits per molecule to store the vibrational information, we
account for up to 7 vibrational quanta per molecule. Accordingly,
we store each basis state in the computer memory as an inte-
ger number whose binary code is composed of 4 bits for each
molecule in the aggregate, where the first bit represents the elec-
tronic state (|0〉 ≡ |g〉, |1〉 ≡ |e〉) and the following 3 bits store the
integer number that counts the vibrational quanta. The basis set
is created scrolling through all integer numbers from 0 to 16N−1,
and selecting only the states that comply with the required values
of Me and Mv. Translational symmetry operations are then ap-
plied to the basis states to finally obtain symmetry-adapted linear
combinations. Since the basis is very large, we do not store the
full non-symmetrized basis, but we just store a single representa-
tive state for each symmetry-adapted linear combination together
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with the information concerning its multiplicity. The Hamiltonian
in Eq. 3 is finally written on the symmetrized basis and is diago-
nalized in the K = 0 and K = Kmax subspaces for systems with up
to N = 7 sites.

In a different strategy, as discussed in Ref.30, translational sym-
metry can be implemented by separately finding the wavevector
for the electronic and vibrational states, k and q, respectively, and
then combining the two wavevectors to give states with the re-
quired total wavevector. To this end, we transform the Paulion
operators for creating/destroying an exciton to the Fourier space:

b̂ j =
1√
N ∑

k
e−i jkb̂k, b̂†

j =
1√
N ∑

k
ei jkb̂†

k , (6)

and apply the same transformation to the boson operators that
create/destroy vibrational quanta:

â j =
1√
N ∑

q
e−i jqâq, â†

j =
1√
N ∑

q
ei jqâ†

q. (7)

The Hamiltonian in Eq. 3 is rewritten using the transformed op-
erators as follow:

Ĥ = ∑
k

b̂†
k b̂k

(
E +∑

m
Jmeimk

)
+ h̄ωv ∑

q
â†

qâq

− λ√
N ∑

k,q
(â†

qb̂†
k b̂k+q + â−qb̂†

k b̂k+q)

+
1
2 ∑

k,m
Jm

(
b̂†

k b̂†
−keimk +h.c.

)
. (8)

The non-HL term (last term of the above equation) mixes up elec-
tronic states with different number of excitons and different k,
making the symmetrization procedure cumbersome, so that, for
the complete problem we prefer to go along the lines described
above. In the HL approximation instead, the N electronic states
with a single exciton are easily combined to give N linear com-
binations in the reciprocal space. The total wavevector K is cal-
culated for each state as the sum of the electronic wavevector
plus the vibrational contribution K = k+∑q nqq, where nq counts
the number of vibrational quanta in the vibrational mode with
wavevector q.

The symmetrized Hamiltonian is finally diagonalized in the rel-
evant subspaces to get numerically exact non-adiabatic vibronic
eigenstates that describe the combined electronic and vibrational
motion in the aggregate. To calculate optical spectra we write the
explicit expression for the dipole moment operator of the aggre-
gate, and, considering aligned dipoles as to avoid vectorial sums,
we get:

µ̂ = µ0 ∑
i
(b̂†

i + b̂i) = µ0
√

N(b̂†
k=0 + b̂k=0). (9)

The linear absorption spectrum is finally calculated assigning a
gaussian lineshape to each transition:

σ(ω) ∝ ω ∑
E
|〈E|µ̂|G〉|2e−

1
2
(h̄ωEG−h̄ω)2

σ2 , (10)

where h̄ωEG is the energy of the |G〉 → |E〉 transition.31 We un-

derline that in the standard exciton model, since the vacuum state
|...ggg...〉 is fully decoupled from states with one (or more) exci-
tons, the eigenstates and hence the transition dipole moments are
fully independent of the bare exciton frequency, ω0. However, ab-
sorption spectra acquire a dependence on ω0, or more precisely
on the specific frequency of the electronic transitions, due to the
ω prefactor in the above expression for linear absorbance.

The calculation of fluorescence spectra requires some care to
single the long-lived state out of the excited states manifold. Ac-
cording to the Kasha rule, this state corresponds to the lowest
excited state in the electronically excited manifold (we assume
that temperature is low enough as to have a sizable population
only on the lowest excited state). In the standard exciton model,
since the Hamiltonian is diagonalized in the single-exciton man-
ifold, the fluorescent state is easily recognized as the lowest en-
ergy state in the single-exciton manifold. Depending on the sign
of intermolecular interactions the fluorescent state is found in ei-
ther the K = 0 subspace (J < 0, J-aggregates) or in the K = Kmax

subspace (J > 0, H-aggregates). When relaxing the HL approxi-
mation, the eigenstates also contain the ground state vibrational
manifold11 We therefore recognize the fluorescent state as the
lowest energy state in either the K = 0 or Kmax subspace with a
number of excitons close to 1. The fluorescence spectrum is cal-
culated as follows:31

I(ω) ∝ ω
3
∑
E
|〈E|µ̂|F〉|2e−

1
2
(h̄ωFE−h̄ω)2

σ2 (11)

where |F〉 is the fluorescent state and the sum runs on all eigen-
states (including the ground state) having a lower energy and
being located in the same subspace (either K = 0 or Kmax) as the
fluorescent state. Since in the complete model the eigenstates
also include the vibrational manifold of the ground state, Eq. 11
can be used without further analysis. In the standard exciton
model instead the |E〉 states in the above equation corresponds
to the vibrational eigenstates in the ground state manifold and
must be explicitly written as the product of the electronic ground
state |...ggg...〉 (the zero exciton state, a state with k = 0) times
the q = 0 or q = Kmax states of the harmonic oscillators.

4 Exact results on finite size systems: vali-
dating the Heitler-London approximation

Fig.2 shows selected results for typical model parameters. Specif-
ically, we consider only nearest neighbor interactions (results
for long-range Coulomb interactions can be found in the SI) for
h̄ω0=2 eV and h̄ωv=0.17 eV, corresponding to a system with
an electronic excitation in the visible and a mid-IR vibrational
mode. A medium-large vibrational coupling is considered, set-
ting λ=0.17 eV, corresponding to a monomer spectrum peaking
at the 0-1 vibronic line (results for weaker and stronger coupling
are also shown in the SI). The intermolecular interaction strength
is fixed to |J|=0.255 eV, roughly a tenth of the exciton bare en-
ergy, h̄ω0. We estimate that this J value corresponds, for a typical
oscillator strength f =1 of the monomer, to an intermolecular dis-
tance d ∼ 7 Å. The estimated distance would be reduced account-
ing for the medium dielectric constant ε in Eq. 2. Results in the
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figure are obtained for N=6, truncating the vibrational basis to
Mv=6, and refer to positive J (H-aggregates) in the upper panel
and to negative J (J-aggregates) in the lower panel. Here and in
the following intensity are shown per molecule. In each panel,
the dash-dotted line shows the monomer spectrum and the con-
tinuous curves refer to results obtained truncating the number of
excitons to Me=1-4, as specified in the legend. The first observa-
tion is that results for Me=3 and 4 are superimposed: accounting
for up to 3 excitons leads to nominally exact results.

Results for Me=1 of course coincide with those obtained in the
standard exciton model. Apparently the HL approximation works
very well to estimate the position of the absorption band and rea-
sonably well for the band-shape (small deviations are observed
in H-aggregates), but it fails to reproduce the intensity of the
spectrum. Calculated spectra show a non-monotonous behavior
with increasing Me: while for Me=1 the position of the absorption
band is properly calculated (even if we are off with the intensity),
Me=2 results are off with the frequency, but improve on the inten-
sity. This immediately suggests that the HL approximation (corre-
sponding to Me=1 results in the figure) gives good results for the
band position due to error cancellation. The non-HL term in Eq. 3
in fact mixes states with a number of excitons differing by 2: the
energy of the ground state is lowered due to the non-HL mixing
with two-exciton states by an amount similar to the stabilization
of one-exciton states due to the mixing with the three-exciton
states. Accordingly, the frequency of the observed transition is
marginally affected by the non-HL terms. Of course the transition
frequency calculated for Me=2 is overestimated since it accounts
for the stabilization of the ground state, but not for stabilization
of the excited states.

Fig. 2 Absorption spectra calculated for the complete Hamltonian in Eq.3
only accounting for nearest neighbor interactions. Results are obtained
for N=6, h̄ω0= 2.0 eV, λ=0.17 eV, h̄ωv=0.17 eV and |J|=0.255 eV. The
vibrational basis is truncated setting the maximum number of total vibra-
tional quanta Mv=6. The electronic basis is truncated fixing the maximum
number of excitons Me to a value ranging from 1 to 4. Results for Me=1
coincide with those obtained in the HL approximation. Top and bottom
panels refer to H-aggregates (J > 0) and J-aggregates (J < 0), respec-
tively.

Spectra calculated in the HL approximation overestimate the
intensity of H-aggregates and underestimate the intensity of J-
aggregates. This interesting result deserves some discussion.
Since in the HL approximation the excited states reached upon
absorption are linear combinations of one-exciton states, the total
squared transition dipole moment in an aggregate of N molecules
is equal to the total squared transition dipole moment of N non-
interacting molecules. This immediately points to an internal in-
consistency of the exciton model in its standard implementation.
As it is well known (see also the detailed analysis in the SI), the
total oscillator strength of a system can always be related to a
ground state property:

F = ∑
E

fEG =
2
3

me

h̄e2 ∑
E

ωEGµ
2
EG =− ime

3h̄e2 〈G|[µ̂, v̂]|G〉, (12)

where i is the imaginary unit and the velocity dipole operator, v̂ is
defined as:

ih̄v̂ = [µ̂, Ĥ]. (13)

In the HL approximation the aggregate ground state is the same
as the ground state of N non-interacting monomers, so that the
sum-rule in Eq.12 would impose the conservation of the total os-
cillator strength (per molecule) when going from the monomer to
the aggregate. However, in the HL approximation the total dipole
moment is conserved. Therefore in the standard exciton model
the oscillator strength for J-aggregates (having a red-shifted tran-
sition with respect to the monomer) is underestimated, while it
is overestimated for H-aggregates (having a blue-shifted absorp-
tion).

Of course the sum rule is strictly obeyed in the complete ex-
citon model. Specifically, the commutator in Eq.12 is (see the
derivation in the SI):

[µ̂, v̂] =
1
ih̄

µ
2
0 ∑

i
[h̄ω0−λ (â†

i + âi)](4n̂i−2), (14)

so that

F =
2
3

meµ2
0

h̄2e2
〈G|∑

i
[h̄ω0−λ (â†

i + âi)](1−2n̂i)|G〉. (15)

We explicitly verified that the total oscillator strength calculated
for the complete model as the sum of the oscillator strengths of
the individual transitions coincided with the ground state expec-
tation value in the above equation. The vibrational contribution
in the above expression simply renormalizes the bare exciton fre-
quency, h̄ω0, a marginal correction as the ground state expecta-
tion value of (â†

i + âi) is negligible. Neglecting this correction, the
oscillator strength F in Eq. 15 is made up of two terms: the first
term coincides with the oscillator strength of N non-interacting
molecules (see Eq. 1), while the second term describes the correc-
tion to the oscillator strength due the finite weight in the ground
state of states with a finite exciton number. We stress that the
HL approximation leads in the standard exciton model to sizable
deviations of absorption intensity from exact results already for J
values one order of magnitude smaller than the unperturbed ex-
citon frequency. This very general result must be accounted for
when addressing hypo- and hyperchromism in molecular aggre-
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gates: relaxing the HL approximation in fact naturally explains
hyperchromic effects in J-aggregates and hypochromic effects in
H-aggregates.

Calculated emission spectra for the same systems as in Fig. 2
are shown in Fig. 3 (results for long-range intermolecular inter-
actions and for different values of λ are shown in the SI). The
intensity of the emission for H aggregates is lower than that of
J-aggregates by more than two orders of magnitude (of course
we are referring to the nominal fluorescence intensity, not taking
into account non-radiative deactivation pathways). As it is well
known, the fluorescent state in H-aggregate is in the K = Kmax

subspace and is therefore a dark state. Indeed it acquires a finite
(albeit weak) intensity due to vibronic coupling and, specifically,
due to the presence of K = Kmax states in the vibrational manifold
of the ground state. Because the zero-phonon line is forbidden
by symmetry, the H-aggregate emission is even more red-shifted
than the emission of the J-aggregate. As for the quality of the re-
sults obtained in the HL approximation, the position and shape of
the fluorescence band are well approximated while, in line with
the above discussion, the emission intensity is overestimated for
H-aggregates and underestimated for J-aggregates.

Fig. 3 Emission spectra calculated for the the same system as in Fig.
2. In the upper panel, the monomer emission intensity is rescaled by
a factor of 1/400 in order to maintain it comparable to the very weak
intensity calculated for the H-aggregate.

5 Testing approximation schemes
Exact diagonalization approaches are limited to small aggregates,
up to 7 sites for the complete model and up to 10 sites in the
HL approximation. The electronic basis is comparatively small,
growing with N in the HL approximation and as 2N in the com-
plete model. Indeed the basis blows up because of the vibrational
states: accounting for just three vibrational quanta per site would
multiply by a 3N factor the basis dimension. It is therefore very
important to discuss approximation schemes to cut the basis di-
mension and particularly so for vibrational states. Indeed the HL
electronic basis is already very small, and we already discussed
how the electronic basis in the complete model can be reduced

by fixing a maximum number of excitons (Me = 3 seems to work
pretty well in most cases of interest in this study, even if this
approximation is untenable for clusters of polar and polarizable
dyes18,20).

Recently,20 discussing J-aggregates of polar dyes, we realized
that for largely delocalized excitons only the vibrational modes
in the close proximity of the center of the Brillouin zone are ef-
fectively coupled to the electronic degrees of freedom so that,
instead of accounting for N local harmonic oscillators, reasonable
results are obtained accounting for the single oscillator with q= 0.
This of course leads to an enormous reduction of the basis dimen-
sion. The Hamiltonian in Eq. 8 shows that accounting for just the
q = 0 mode one obtains a similar coupling Hamiltonian as for the
isolated molecule, but with the strength of the coupling reduced
to λ/

√
N. As a result, in this approximation the same bandshape

is calculated for J and H aggregates, as shown in the top panels
of Fig. 4, where we show absorption spectra calculated in the HL
approximation for the same model parameters as in Fig. 2. A
full decoupling of the q = 0 vibrational mode is expected in the
infinite chain limit, but also in these conditions a finite vibronic
structure is observed due to the coupling to modes with finite q12.
Indeed, adding the two nearest modes to the q = 0 mode in the
Brillouin zone (middle panels of Fig. 4) improves the agreement
and adding 2 more modes (for a grand total of 5 delocalized vi-
brations, bottom panels) gives very good results for J aggregates
and an acceptable agreement for H-aggregates. Similar results
are obtained for emission spectra in Fig. 4. Cutting vibrational
modes in the Fourier space works in principle for the complete
as well as for the standard exciton model, but, apart from the
simplest case where only the q = 0 mode is accounted for, the ap-
proach is difficult to implement in the complete model. Moreover
this approximation is expected to work well for largely delocal-
ized excitons. Of course for localized excitons or in the presence
of disorder the approach could only work if many modes (possibly
all) in the reciprocal space are introduced, making the approxi-
mation useless.

A useful and widely adopted approach to the reduction of the
vibrational space is the so-called few-particle approximation.32,33

The two particle approximation (2PA) was validated against exact
diagonalization results in a square lattice34, and, together with
its extended version, the three particle approximation (3PA), was
extensively applied by Spano11,12. Few particle approximations
work in the real space, so that they do not require a symmet-
ric or ordered system, but only apply in the HL approximation
where all relevant basis states have a single exciton. In the 2PA
approximation, the basis is cut imposing a maximum number ne

of vibronic excitations on the electronically excited states (notice
that these vibronic states refer to the displaced harmonic oscilla-
tor as relevant to the electronically excited state). Moreover a
maximum number of vibrational quanta nv can be present in just
a single additional site, different from the site bearing the exci-
ton. In the three particle approximation (3PA), one accounts for
vibrational excitations occurring on up to two sites. Two differ-
ent approximation schemes are possible for both 2PA and 3PA,
a short-range (sr) scheme, where vibrational excitations are only
allowed in the nearest sites of the site bearing the exciton (Fig.
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Fig. 4 Calculated absorption spectra for J and H aggregates (left and
right panels, respectively) calculated in the HL approximation for the
same model parameters as in Fig. 2. Results refer to aggregates of 10
molecules, black lines show numerically exact results, obtained with Mv =

4, magenta lines show results calculated only accounting for the q = 0
mode (top panels), q∈ {− π

5 ,0,
π

5 } (middle panel), q∈ {− 2
5 π,− π

5 ,0,
π

5 ,
2
5 π}

(bottom panels).

6), or a long-range (lr) scheme, where vibrational sites can be
spread all over the aggregate. Of course the 2PA-sr or the 3PA-sr
only apply when the exciton model accounts for nearest neighbor
interactions, while one must resort to lr-schemes when account-
ing for long-range electrostatic interactions. To be specific, the
2PA basis set is:

|ψ2PA〉= |n, ν̃ ,νl〉, l 6= n, (16)

where n marks the site where the exciton resides and ν̃ counts
the number of vibrational quanta in the displaced oscillator asso-
ciated with the same site. The numbers νl 6=n count the vibrational
quanta in the undisplaced harmonic oscillator on site l. In the sr
flavor of 2PA, l = n± 1, while in the lr flavor, l can assume any
value different from n. The diagonal energy of the 2PA states is
easily calculated as h̄ω0 +(ν̃ + νl)h̄ωv. Off diagonal matrix ele-
ments, accounting for the interaction between different sites, are:

〈n, ν̃ ,νl |Ĥ|m, µ̃,µk〉= Jm−n fν̃ ,µn fµ̃,νm ∏
i6=n,m

δνi,µi , (17)

where fν̃ ,µm is the Franck-Condon factor measuring the overlap
between the ν̃ vibronic level of excited state and µ vibrational
level. Finally, the transition dipole moment is calculated as fol-
lows:

µ
trans
i = 〈G|µ̂|ψi〉= ∑

n,ν̃
cn,ν̃ 〈G|µ̂|n, ν̃ ,0〉= ∑

n,ν̃
cn,ν̃ µ0 fν̃ ,0. (18)

Moving to the 3PA, the relevant basis set reads |ψ3PA〉 =
|n, ν̃ ,νl ,νl′〉, l, l′ 6= n. Accordingly, the diagonal energy is h̄ω0 +

(ν̃ + νl + νl′)h̄ων , while the Hamiltonian off-diagonal matrix ele-
ments are:

〈n, ν̃ ,νl ,νl′ |Ĥ|m, µ̃,µk,µk′〉= Jm−n fν̃ ,µn fµ̃,νm ∏
i6=n,m

δνi,µi . (19)

Fig. 5 Emission spectra calculated for the same system as in left panel
of Fig. 4.

Fig. 6 Scheme representing the allowed combination of states allowed in
the sr ansatz. The red oscillator represents the vibronically excited state.

Fig. 7 compares absorption spectra calculated via exact diago-
nalization and with the 2PA-sr and 3PA-sr for an aggregate of 10
molecules, described by the standard exciton model, with increas-
ing strength of nearest-neighbor interactions, J. For J-aggregates
the 2PA and 3PA approximations work pretty well up to medium-
large interactions, but for H-aggregates, having a much more
complex spectral shape, the approximation is poor already for
interactions of medium strength. Similar results hold true for
emission spectra in Fig. 8. Moving to 2PA-lr or 3PA-lr does not
change the picture (see SI), as expected.

The lr extensions of the 2PA and 3PA approaches has to be in-
voked for systems where long-range Coulomb interactions are ac-
counted for. However the 3PA-lr basis is very large, making it im-
possible to deal with aggregates with more than 6 sites. Therefore
Fig. 9 and Fig. 10 compare exact and 2PA-lr results for absorp-
tion and emission spectra, respectively, of 10 site aggregates with
long-range intermolecular interactions.
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Fig. 7 Absorption spectra for aggregates of 10 molecules in the HL ap-
proximation and only accounting for nearest neighbor interactions. Exact
results are compared with results obtained in the 2PA-sr and 3PA-sr ap-
proximations. The maximum number of vibrational quanta is fixed to 6.
Dashed lines refer to the monomer limit. Model parameters are fixed at
h̄ω0 = 2.0 eV, λ = 0.17 eV, h̄ωv = 0.17 eV. In left panels (J-aggregates)
J varies from top to bottom from −0.085eV to −0.17eV, and −0.34eV. In
the right panels (H-aggregates) it varies from top to bottom as 0.085eV,
0.17eV, 0.34eV.

6 Conclusions
Electrostatic intermolecular interactions and molecular vibrations
govern the spectral properties of molecular aggregates and crys-
tals, leading to a complex, intrinsically non-adiabatic problem.
Even in the simplest systems where the high molecular symme-
try and the comparatively large intermolecular distances reduce
intermolecular interaction to the interactions between transition
dipole moments, several approximations are usually adopted to
make the model tractable. In this work a clever use of transla-
tional symmetry allowed us to obtain numerically exact results
for aggregates of sizable dimensions, that were used to validate
several approximation schemes. The first and most important ap-
proximation is the widespread HL approximation that, neglect-
ing the interactions that mix non-degenerate states, leads to the
standard exciton model, as usually adopted for either molecular
crystals or aggregates. The approximation leads, by error cancel-
lation, to a good estimate for the spectral frequency and band-
shape, but it fails to reproduce the spectral intensity. Indeed the
standard exciton model, due to the HL approximation, breaks the
fundamental sum rule for the oscillator strength. Spectral inten-
sities are underestimated by the standard exciton model for J-
aggregates and overestimated for H-aggregates, with effects that,
increasing with the strength of intermolecular interactions, are al-
ready sizable for intermolecular interactions one order of magni-
tude smaller than the molecular excitation energy. Unfortunately,
the dimension of the basis for the complete model is very large
and even if translational symmetry is exploited to reduce the di-
mensions of the matrices to be diagonalized, we were not able to
deal with aggregates composed by more than 6-7 molecules.

If we are not interested in the precise estimate of the spectral
intensity, the HL approximation is fairly safe and considerably re-

Fig. 8 Emission spectra for 2PA-sp, 3PA-sp and exact excitonic models.
Same parameters as in Fig. 7. For H-aggregates (right panels) the in-
tensity of the monomer spectrum is rescaled by a factor 1/50 (panel b),
1/100 (panel d) and 1/1000 (panel f).

Fig. 9 Results for the same systems as in Fig. 7 but accounting for
long-range interactions.

duces the dimension of the problem. Via a clever use of trans-
lational symmetry, we obtained numerically exact results on ag-
gregates with up to 10 molecules. For systems where just nearest
neighbor interactions enter into play, the two and three-particle
approximations, restricted to nearest neighbor particles offer a
convenient way to obtain reliable results for J-aggregates and rea-
sonable results for H-aggregates. If long-range interactions are of
interest, the short range version of the two- and three-particle
approximations must be abandoned and the particles can be lo-
cated at any distance. This leads to extremely large basis for the
three-particle approximation, that becomes more expensive than
the exact diagonalization. However in this case the 2PA already
leads to good results for both J and H-aggregates.

Moving from one-dimension to two-dimensions, as relevant to
many organic crystals where sizable interactions are only found
along preferential directions defining 2D lattices,12,34,35 is an ad-
ditional challenge, mainly because of the need to consider bigger
aggregates. The 2PA and 3PA basis grow quite impressively when
going from 1D to 2D. Instead symmetry can be implemented
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Fig. 10 Emission spectra for 2PA-lr and exact excitonic models. Same
parameters as in Fig. 9. For H-aggregates (right panels) the intensity
of the monomer spectrum is rescaled by a factor 1/50 (panel b), 1/100
(panel d) and 1/1000 (panel f).

quite naturally in 2D systems, leading to basis dimensions that
are the same as for 1D aggregates composed of the same number
of molecules.
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The issue of the non-conservation of the oscillator strength in 
molecular aggregates is solved and several approximation schemes are 
validated.   
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