Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On permutation trinomials of type $x^{2p^s+r} + x^{p^s+r} + \lambda x^r$

Daniele Bartoli^a, Giovanni Zini^{b,*,1}

^a Department of Mathematics and Computer Science, University of Perugia, Italy ^b Department of Mathematics and Computer Science "Ulisse Dini", University of Florence, Italy

ARTICLE INFO

Article history: Received 18 May 2017 Accepted 23 September 2017 Available online 2 October 2017 Communicated by Gary L. Mullen

MSC: 11T06 05A05

Keywords: Permutation trinomials Exceptional polynomials

1. Introduction

Let p be a prime number, t be a positive integer, \mathbb{F}_{p^t} be the finite field with p^t elements, and f(x) be a polynomial over \mathbb{F}_{p^t} . If $f: x \mapsto f(x)$ is a permutation of \mathbb{F}_{p^t} , then f(x) is

a permutation polynomial (PP) of \mathbb{F}_{p^t} . If f(x) is a PP of $\mathbb{F}_{(p^t)^m}$ for infinitely many m,

https://doi.org/10.1016/j.ffa.2017.09.010

ABSTRACT

We determine all permutation trinomials of type x^{2p^s+r} + $x^{p^s+r} + \lambda x^r$ over the finite field \mathbb{F}_{p^t} when $(2p^s+r)^4 < p^t$. This partially extends a previous result by Bhattacharya and Sarkar in the case p = 2, r = 1.

© 2017 Elsevier Inc. All rights reserved.

Corresponding author.

E-mail addresses: daniele.bartoli@unipg.it (D. Bartoli), gzini@math.unifi.it (G. Zini).

¹ The research of D. Bartoli and G. Zini was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza" – Prot. N. 2012XZE22K_005) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

^{1071-5797/© 2017} Elsevier Inc. All rights reserved.

then f(x) is an exceptional polynomial over \mathbb{F}_{p^t} . If both f(x) and f(x) + x are PPs of \mathbb{F}_{p^t} , then f(x) is a complete permutation polynomial (CPP) of \mathbb{F}_{p^t} .

The study of permutation polynomials over finite fields is motivated not only by their theoretical importance, but also by their remarkable applications to cryptography, combinatorial designs, and coding theory; see for instance [7,9,12]. For a detailed introduction to old and new developments on permutation polynomials, see the survey [6] and the references therein. Permutation polynomials of monomial and binomial type have been intensively investigated, while much less is known on permutation trinomials; see [3,5].

In this note we characterize a certain class of permutation trinomials. Let s and r be non-negative integers. For $\lambda \in \mathbb{F}_{p^t}$, denote by $f_{\lambda}(x)$ the polynomial

$$f_{\lambda}(x) = x^{2p^s + r} + x^{p^s + r} + \lambda x^r \in \mathbb{F}_{p^t}[x],$$

If r = 0, define d = 0. If $r \neq 0$, write $r = p^u v$ with $u \ge 0$ and $p \nmid v$, and define $d = 2p^{s-u} + v$ if $u \le s$, $d = 2 + p^{u-s}v$ if u > s; that is,

$$d = (2p^s + r)/p^m, \quad m := \max\{n \ge 0 \ : \ p^n \mid (2p^s + r), \ p^n \mid (p^s + r), \ p^n \mid r\}.$$

We prove the following result.

Theorem 1.1. Assume that $d^4 < p^t$. Then $f_{\lambda}(x)$ is a PP of \mathbb{F}_{p^t} if and only if one of the following cases holds:

- $p = 2, t \text{ is odd, and } f_{\lambda}(x) = x^3 + x^2 + x \text{ or } f_{\lambda}(x) = x^5 + x^3 + x;$
- $p \equiv 2 \pmod{3}$, t is odd, and $f_{\lambda}(x) = x^3 + x^2 + \frac{1}{3}x$.

The case p = 2 and r = 1 was already considered by Bhattacharya and Sarkar [2], where the result proved for $f_{\lambda}(x)$ was then used to characterize permutation binomials of $\mathbb{F}_{p^{2tp^s}}$ of type $g_b(x) = x^{\frac{p^{2tp^s}-1}{p^t-1}+1} + bx$. Here for p > 2 and r = 1 we go the opposite direction, using the characterization in [1] for permutation binomials of type $g_b(x)$ to deduce the result for $f_{\lambda}(x)$.

Every permutation polynomial of \mathbb{F}_{p^t} with degree less than $(p^t)^{1/4}$ is exceptional over \mathbb{F}_{p^t} ; thus, the condition $d^4 < p^t$ allows us to consider only exceptional polynomials. For r > 1, this leads to the non-existence of permutation trinomials of type $f_{\lambda}(x)$.

2. Proof of Theorem 1.1

Since the maps $x \mapsto x^{p^u}$ and $x \mapsto x^{p^s}$ are permutations of \mathbb{F}_{p^t} , we can assume that u = 0 if $u \leq s$, and s = 0 if u > s.

- Case r = 0. Since $f_{\lambda}(x) = f_{\lambda}(-x-1)$, $f_{\lambda}(x)$ is not a PP of $\mathbb{F}_{p^{t}}$.
- Case r = 1 and p = 2. The claim is proved in [2, Theorem 1.3].

• Case r = 1 and p > 2. Assume first that s = 0, so that $f_{\lambda}(x) = x^3 + x^2 + \lambda x$. By direct computation,

$$\frac{f_{\lambda}(x) - f_{\lambda}(y)}{x - y} = x^2 + xy + y^2 + x + y + \lambda$$

splits into two linear components if and only if $p \neq 3$ and $\lambda = \frac{1}{3}$. In this case

$$\frac{f_{\lambda}(x) - f_{\lambda}(y)}{x - y} = \left(x + \frac{1 + \sqrt{-3}}{2}y + \frac{1}{2} + \frac{\sqrt{-3}}{6}\right) \cdot \left(x + \frac{1 - \sqrt{-3}}{2}y + \frac{1}{2} - \frac{\sqrt{-3}}{6}\right)$$

and the two components are not defined over \mathbb{F}_{p^t} if and only if -3 is a non-square in \mathbb{F}_{p^t} . From [4, Lemma 4.5], this is equivalent to require t odd and $p \equiv 2 \pmod{3}$. Now assume that s > 0. Let $\mu \in \mathbb{F}_{p^t}$ with $\mu^{p^s} = \lambda$, so that $f(x) = x (x^2 + x + \mu)^{p^s}$. Let $b, b^{p^t} \in \mathbb{F}_{p^{2t}}$ be the zeros of $x^2 + x + \mu$; then, for any $x \in \mathbb{F}_{p^t}$,

$$f_{\lambda}(x) = x \left(x+b\right)^{p^{s}} \left(x+b^{p^{t}}\right)^{p^{s}} = x \left(x+b\right)^{\left(p^{t}\right)^{2p^{s}-1} + \left(p^{t}\right)^{2p^{s}-2} + \dots + p^{t}+1}.$$

Suppose that $f_{\lambda}(x)$ is a PP of \mathbb{F}_{p^t} ; in particular, $b \notin \mathbb{F}_{p^t}$. Since $(\deg f_{\lambda}(x))^4 = d^4 < p^t$, $f_{\lambda}(x)$ is an exceptional polynomial over \mathbb{F}_{p^t} from [10, Theorem 8.4.19]. Also, from [1, Proposition 2.4], $f_{\lambda}(x)$ is indecomposable as exceptional polynomial over \mathbb{F}_{p^t} . Hence, from [10, Theorem 8.4.11], $\deg f_{\lambda}(x) = 2p^s + 1$ is a prime not dividing $p^t - 1$. From the Niederreiter–Robinson criterion [11, Lemma 1], the polynomial $x^{\frac{(p^t)2p^s-1}{p^t-1}+1} + bx$ is a PP of $\mathbb{F}_{(p^t)^{2p^s}}$; equivalently, the monomial $b^{-1}x^{\frac{p^{2tp^s}-1}{p^t-1}+1}$ is a CPP of $\mathbb{F}_{p^{2tp^s}}$. Thus, from [1, Theorem 3.1], one of the following cases hold, where ζ is a primitive $(2p^s + 1)$ -th root of unity and $\alpha := \zeta + \zeta^{-1}$, $\beta := \zeta - \zeta^{-1}$:

 $-p^t$ has order $2p^s$ modulo $2p^s + 1$ and b = ζ - 1 up to multiplication by a non-zero element in \mathbb{F}_{p^t} . Since $b \in \mathbb{F}_{p^{2t}} \setminus \mathbb{F}_{p^t}$ and $2p^s + 1$ is prime, we have $(2p^s + 1) \mid (p^t + 1)$. Hence $p^t \equiv -1 \pmod{2p^s + 1}$ has order $2 \neq 2p^s \mod 2p^s + 1$, a contradiction.

- p^t has order $2p^s$ modulo $2p^s + 1$ and $b = e(\alpha - 1)\sqrt{\beta^2(e^2 - 4a)}$ up to multiplication by a non-zero element in \mathbb{F}_{p^t} , for some $e, a \in \mathbb{F}_{p^t}$, $a \neq 0$, such that $e^2 - 4a$ is a square in \mathbb{F}_{p^t} . Since $b \in \mathbb{F}_{p^{2t}} \setminus \mathbb{F}_{p^t}$ we have $\alpha \in \mathbb{F}_{p^t}$, which implies $\zeta^{p^t - 1} = 1$ or $\zeta^{p^t + 1} = 1$. As $2p^s + 1$ is prime and $b \notin \mathbb{F}_{p^t}$, this yields $(2p^s + 1) \mid (p^t + 1)$; hence, p^t has order 2 modulo $2p^s + 1$, a contradiction to s > 0.

- p^t has order p^s modulo $2p^s + 1$ and $b = e(\alpha - 1)\sqrt{\beta^2(e^2 - 4a)}$ up to multiplication by a non-zero element in \mathbb{F}_{p^t} , for some $e, a \in \mathbb{F}_{p^t}$, $a \neq 0$, such that $e^2 - 4a$ is 0 or a non-square in \mathbb{F}_{p^t} . From $b \in \mathbb{F}_{p^{2t}} \setminus \mathbb{F}_{p^t}$ we have $\alpha \in \mathbb{F}_{p^t}$ which implies $\zeta^{p^t-1} = 1$ or $\zeta^{p^t+1} = 1$; hence, p^t has order 1 or 2 modulo $2p^s + 1$, a contradiction to s > 0. Therefore, $f_{\lambda}(x)$ is not a PP of \mathbb{F}_{p^t} .

128

• Case r > 1.

Assume first $u \leq s$, so that we can take u = 0 and $d = 2p^s + r$. Suppose by contradiction that $f_{\lambda}(x)$ is a PP of \mathbb{F}_{p^t} . As $(\deg f_{\lambda}(x))^4 < p^t$, $f_{\lambda}(x)$ is exceptional over \mathbb{F}_{p^t} , see [10, Theorem 8.4.19]. Note that $f_{\lambda}(x)$ has exactly three distinct zeros, one in \mathbb{F}_{p^t} with multiplicity r and two in $\mathbb{F}_{p^{2t}} \setminus \mathbb{F}_{p^t}$ with multiplicity p^s .

- Suppose that f(x) is indecomposable as exceptional polynomial over \mathbb{F}_{p^t} . From [10, Theorem 8.4.10], one of the following cases holds.
 - * $2p^s + r = p^w$ for some $w \ge 1$. In this case

$$f(x) = \left(x^{p^{w-s}} + x^{p^{w-s}-1} + \lambda x^{p^{w-s}-2}\right)^{p^{s}};$$

since $x \mapsto x^{p^s}$ is a permutation of \mathbb{F}_{p^t} , we can assume s = 0. Then

$$\frac{f(x) - f(y)}{x - y} = (x - y)^{p^{w} - 1} + x^{p^{w} - 2} + x^{p^{w} - 3}y + \dots + y^{p^{w} - 2} + \lambda (x^{p^{w} - 3} + x^{p^{w} - 4}y + \dots + y^{p^{w} - 3}).$$
(1)

Let C be the plane curve of degree $p^w - 1$ defined over \mathbb{F}_{p^t} by affine equation $\frac{f(x)-f(y)}{x-y} = 0$. From Equation (1), C has a unique point at infinity P_{∞} . Moreover, C intersects the line x = y at the affine points (0,0) and $(-2\lambda, -2\lambda)$ with multiplicity $p^w - 3$ and 1, respectively; hence, P_{∞} is a simple point for C. This implies that C is absolutely irreducible, a contradiction to the exceptionality of f(x) (see [10, Theorem 8.4.4]).

- * $2p^s + r = \frac{p^a(p^a-1)}{2}$, with $p \in \{2,3\}$ and a > 1 odd; this is not possible, since $p \nmid r$.
- * $2p^s + r$ is coprime with p. From [10, Theorem 8.4.11], one of the following holds: · $f_{\lambda}(x)$ is linear. This is not possible by the assumptions.
 - $f_{\lambda}(x) = x^{2p^s+r}$ where $2p^s+r$ is a prime not dividing $p^t 1$, up to composition with linear functions. Then $f_{\lambda}(x)$ has either one or n distinct roots in $\overline{\mathbb{F}}_{p^t}$, a contradiction.
 - $f_{\lambda}(x) = \ell_1 \circ D_{2p^s+r}(\ell_2(x), a), \text{ where } 2p^s + r \text{ is a prime not dividing } p^{2t} 1, \\ D_{2p^s+r}(x, a) \text{ is a Dickson polynomial with } a \neq 0 \text{ of degree } 2p^s + r, \text{ and } \ell_1, \ell_2 \in \\ \mathbb{F}_{p^t}[x] \text{ are linear permutations. If } (2p^s + r) \nmid (p^{2t} + 1), \text{ then } D_{2p^s+r}(x, a) \text{ is a PP of } \mathbb{F}_{p^{2t}}; \text{ see [10, Theorem 8.4.11]. This is not possible, as } f_{\lambda}(x) \text{ has three distinct zeros in } \mathbb{F}_{p^{2t}}. \text{ Thus, } (2p^s + r) \mid (p^{2t} + 1). \text{ Denote } \ell_1(x) = bx + c. \text{ As } \ell_2 \text{ permutes } \mathbb{F}_{p^{2t}}, \text{ the number of zeros of } f_{\lambda}(x) \text{ in } \mathbb{F}_{p^{2t}} \text{ is equal to the number } Z \text{ of preimages of } -c/b \text{ under } D_{2p^s+r}(x, a); \text{ hence, } Z = 3. \text{ On the other hand, from } [8, \text{ Theorems 3.26 and 3.26'] we have } Z \in \{1, 2p^s + r, \frac{2p^s+r}{2}, \frac{2p^s+r+1}{2}\}. \text{ Then } s = 0 \text{ and } r = 3, \text{ so that } f_{\lambda}(x) = x^5 + x^4 + \lambda x^3 \text{ with } p \neq 5. \text{ We have } D_5(\ell_2(x), a) \text{ cannot have the form } x^5 + x^4 + \lambda x^3 \text{ for any } \ell_1, \ell_2. \end{aligned}$

- Now suppose that $f_{\lambda}(x)$ is a decomposable exceptional polynomial over \mathbb{F}_{p^t} , say $f_{\lambda}(x) = h(k(x))$ for some exceptional polynomials $h, k \in \mathbb{F}_{p^t}[x]$ with $\deg(h), \deg(k) > 1$. The roots of $f_{\lambda}(x)/x^r$ are conjugated under the Frobenius map $x \mapsto x^{p^t}$; hence, the polynomial

$$\frac{f_{\lambda}(-x) - f_{\lambda}(0)}{(-x)^{r}} = \frac{h(k(-x)) - h(k(0))}{(-x)^{r}} = \frac{(k(-x) - k(0))\prod_{i=1}^{\deg(h)-1}(k(-x) - \beta_{i})}{(-x)^{r}}$$

is a power of a unique irreducible factor over \mathbb{F}_{p^t} .

Suppose that k(-x) - k(0) has a monic absolutely irreducible factor different from x and defined over \mathbb{F}_{p^t} . Since the roots of $f_{\lambda}(x)/x^r$ are conjugated under $x \mapsto x^{p^t}$, we have $\beta_i = k(0)$ for all i. Hence, $\frac{f_{\lambda}(-x)-f_{\lambda}(0)}{(-x)^r} = \frac{(k(-x)-k(0))^{\deg(h)}}{(-x)^r}$. Also, $m \cdot \deg(h) = r$, where x^m is the maximum power of x which divides k(-x) - k(0); in particular, $p \nmid \deg(h)$. On the other hand, $f_{\lambda}(x)$ has just two distinct non-zero roots (the ones of $x^2 + x + \mu$ where $\mu^{p^s} = \lambda$) with multiplicity p^s ; hence, $\deg(h) \mid p^s$. This is a contradiction, either to $p \nmid \deg(h)$ or to $\deg(h) > 1$.

Suppose that $k(-x) - k(0) = ax^m$, for some $a \in \mathbb{F}_{p^t}$ and m > 1 with $gcd(m, p^t - 1) = 1$. If $p \mid m$, then $f_{\lambda}(x)$ is invariant under $x \mapsto \gamma x$ when $\gamma \in \mathbb{F}_p$; this is a contradiction to $gcd(2p^s + r, p^s + r) = 1$. Then $p \nmid m$. Let \bar{x} be a non-zero root of $f_{\lambda}(x)$; for any δ with $\delta^m = 1$, $k(\delta \bar{x}) = k(\bar{x})$ and $f_{\lambda}(\delta \bar{x}) = 0$. Thus, the number of distinct non-zero roots of $f_{\lambda}(x)$ is a multiple of m; hence, m = 2. This implies p = 2. Therefore $f_{\lambda}(x) = h(k(0) + ax^2) = h((\ell_0 + \ell_1 x)^2)$ with $\ell_0, \ell_1 \in \mathbb{F}_{p^t}$, so that the polynomial $h(x^2)$ is also exceptional of degree $deg(f_{\lambda})$. Since deg(h) is odd, this is not possible.

We have shown that $f_{\lambda}(x)$ is not a PP of \mathbb{F}_{p^t} under the assumption $u \leq s$. If u > s, then we can take s = 0 so that d = r + 2 and $f_{\lambda}(x) = x^r(x^2 + x + \lambda)$. The same arguments as in the case $u \leq s$ still apply and show that $f_{\lambda}(x)$ is not a PP of \mathbb{F}_{p^t} .

Remark 2.1. Theorem 1.1 yields the characterization also of permutation trinomials of \mathbb{F}_{p^t} of type $g_{\alpha,\beta}(x) = x^{2p^s+r} + \alpha x^{p^s+r} + \beta x^r$, under the assumptions $\alpha \neq 0$ and $d^4 < p^t$ (with *d* defined as in Theorem 1.1).

In fact, let $\gamma \in \mathbb{F}_{p^t}$ satisfy $\gamma^{p^s} = \alpha$. Then $g_{\alpha,\beta}(x)$ is a PP of \mathbb{F}_{p^t} if and only if $\frac{1}{\gamma^{2p^s+r}}g(\gamma x) = f_{\beta/\alpha^2}(x)$ is a PP of \mathbb{F}_{p^t} . Thus, $g_{\alpha,\beta}(x)$ is a PP of \mathbb{F}_{p^t} exactly in the following cases:

- $p = 2, t \text{ is odd}, \text{ and } g_{\alpha,\beta}(x) = x^3 + \alpha x^2 + \alpha^2 x \text{ or } g_{\alpha,\beta}(x) = x^5 + \alpha x^3 + \alpha^2 x \text{ for some } \alpha \in \mathbb{F}_{p^t};$
- $p \equiv 2 \pmod{3}$, t is odd, and $g_{\alpha,\beta}(x) = x^3 + \alpha x^2 + \frac{\alpha^2}{3}x$ for some $\alpha \in \mathbb{F}_{p^t}$.

References

 D. Bartoli, M. Giulietti, L. Quoos, G. Zini, Complete permutation polynomials from exceptional polynomials, J. Number Theory 176 (2017) 46–66.

- [2] S. Bhattacharya, S. Sarkar, On some permutation binomials and trinomials over F_{2ⁿ}, Des. Codes Cryptogr. 82 (2017) 149–160.
- [3] C. Ding, Q. Longjiang, Q. Wang, J. Yuan, P. Yuan, Permutation trinomials over finite fields with even characteristic, SIAM J. Discrete Math. 29 (1) (2015) 79–92.
- [4] M. Giulietti, On plane arcs contained in cubic curves, Finite Fields Appl. 8 (2002) 69–90.
- [5] X.-D. Hou, Determination of a type of permutation trinomials over finite fields. II, Finite Fields Appl. 35 (2015) 16–35.
- [6] X.-D. Hou, Permutation polynomials over finite fields: a survey of recent advances, Finite Fields Appl. 32 (2015) 82–119.
- [7] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields Appl. 13 (1) (2007) 58–70.
- [8] R. Lidl, G.L. Mullen, G. Turnwald, Dickson Polynomials, Pitman Monogr. Surv. Pure Appl. Math., vol. 65, 1993.
- [9] G.L. Mullen, H. Niederreiter, Dickson polynomials over finite fields and complete mappings, Can. Math. Bull. 30 (1) (1987) 19–27.
- [10] G.L. Mullen, D. Panario, Handbook of Finite Fields, Chapman and Hall, 2013.
- [11] H. Niederreiter, K.H. Robinson, Complete mappings of finite fields, J. Aust. Math. Soc. Ser. A 33 (1982) 197–212.
- [12] P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Gangopadhyay, S. Maitra, Investigations on bent and negabent functions via the nega-Hadamard transform, IEEE Trans. Inf. Theory 58 (6) (2012) 4064–4072.