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1. Introduction

Let p be a prime number, ¢ be a positive integer, F¢ be the finite field with p* elements,
and f(x) be a polynomial over F:. If f :  + f(z) is a permutation of Fy:, then f(x) is
a permutation polynomial (PP) of Fy.. If f(z) is a PP of F(,¢m for infinitely many m,
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then f(z) is an exceptional polynomial over Fy:. If both f(z) and f(z) 4+ x are PPs of
Fpe, then f(x) is a complete permutation polynomial (CPP) of F ..

The study of permutation polynomials over finite fields is motivated not only by their
theoretical importance, but also by their remarkable applications to cryptography, com-
binatorial designs, and coding theory; see for instance [7,9,12]. For a detailed introduction
to old and new developments on permutation polynomials, see the survey [6] and the
references therein. Permutation polynomials of monomial and binomial type have been
intensively investigated, while much less is known on permutation trinomials; see [3,5].

In this note we characterize a certain class of permutation trinomials. Let s and r be
non-negative integers. For A € F):, denote by f(z) the polynomial

falz) = 2P+ 4 2P T L AT e Fpe [].

If r = 0, define d = 0. If r # 0, write r = p*v with v > 0 and p { v, and define
d=2p" " +ovifu<s, d=24+p“ v if u > s; that is,

d=2p°+7)/p", m:=max{n =0 : p"|(2p°+7r), p" | (p°+7), p" [ r}.
We prove the following result.

Theorem 1.1. Assume that d* < p'. Then fx(z) is a PP of F: if and only if one of the
following cases holds:

e p=2,tis odd, and fr(x) = 23+ 2%+ 2 or fr(x) = 2° + 23 + 2;
« p=2 (mod 3), t is odd, and fx(z) = 2° + 2% + Jx.

The case p = 2 and r = 1 was already considered by Bhattacharya and Sarkar [2],

where the result proved for f)(x) was then used to characterize permutation binomials
2tpS _ 4

of Fp2eps of type gp(z) = 2 #1 ' 4 by, Here for p > 2 and r =1 we go the opposite
direction, using the characterization in [1] for permutation binomials of type gy(x) to
deduce the result for fy(x).

Every permutation polynomial of F, with degree less than (pt)l/ 4 is exceptional
over IF,.; thus, the condition d* < pt allows us to consider only exceptional polynomials.
For r > 1, this leads to the non-existence of permutation trinomials of type fi(z).

2. Proof of Theorem 1.1

Since the maps x — xP" and z — zP° are permutations of F,:, we can assume that
u=0ifu<s,and s =0if u > s.

o Case r =0. Since fy(z) = fa(—x — 1), fr(x) is not a PP of .
e Case r =1 and p = 2. The claim is proved in [2, Theorem 1.3].
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Case r =1 and p > 2.
Assume first that s = 0, so that fy(z) = 2® + 2% + Az. By direct computation,

(@) = frly)
z—y

=2 +ay+y*+rt+y+ A
splits into two linear components if and only if p # 3 and A = % In this case

@) = fiily) 1+v=3 1 /=3 1-v=3 1 =3
e s e e =)

and the two components are not defined over I, if and only if —3 is a non-square
in F,¢. From [4, Lemma 4.5, this is equivalent to require ¢t odd and p =2 (mod 3).

Now assume that s > 0. Let p € F,» with uP" =\, so that f(z) ==z (m2 +x + u)p .
Let b, W' e Fp2: be the zeros of 2% + x + p; then, for any x € Fpe,

fa@) =z (@ + b (@ + ) = a4 p)@)" OV

Suppose that fy(z) is a PP of F,; in particular, b ¢ F . Since (deg fi(z))* = d* < p?,
fa(z) is an exceptional polynomial over Fy+ from [10, Theorem 8.4.19]. Also, from [1,
Proposition 2.4], fi(z) is indecomposable as exceptional polynomial over F:. Hence,
from [10, Theorem 8.4.11], deg fx(z) = 2p* + 1 is a prime not dividing p* — 1. From

ty2pS _

the Niederreiter—Robinson criterion [11, Lemma 1], the polynomial = »*-1 1" + b
2tpS _ ¢

is a PP of F(,:)20+; equivalently, the monomial b1z »-1 T is a CPP of Fp2eps .

Thus, from [1, Theorem 3.1], one of the following cases hold, where ¢ is a primitive

(2p* + 1)-th root of unity and a:= ¢+ ¢, B:=( - (1

— p' has order 2p® modulo 2p* + 1 and b = ¢ — 1 up to multiplication by a non-zero
element in F:. Since b € Fpz: \Fye and 2p®+1 is prime, we have (2p°+1) | (p*+1).
Hence p* = —1 (mod 2p® + 1) has order 2 # 2p® modulo 2p® + 1, a contradiction.

— p' has order 2p® modulo 2p*+1 and b = e(a—1)+/3%(e2 — 4a) up to multiplication
by a non-zero element in Fy:, for some e,a € Fp:, a # 0, such that €2 —4ais a
square in Fp:. Since b € Fp2e \ Fpr we have a € Fp:, which implies (ptl =1or
(Pl =1. As 2p° + 1 is prime and b ¢ F,:, this yields (2p* + 1) | (p* + 1); hence,
p? has order 2 modulo 2p® + 1, a contradiction to s > 0.

— p! has order p* modulo 2p* +1 and b = e(a—1)/32%(e? — 4a) up to multiplication
by a non-zero element in F,, for some e,a € Fpt, a # 0, such that €2 —4ais 0 or
a non-square in Fpe. From b € Fp2: \ F+ we have a € ;e which implies (jpt_l =1
or (P'+1 = 1; hence, p' has order 1 or 2 modulo 2p® + 1, a contradiction to s > 0.

Therefore, fy(z) is not a PP of .
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e Caser > 1.
Assume first u < s, so that we can take v = 0 and d = 2p® + r. Suppose by
contradiction that fy(z) is a PP of Fyr. As (deg fi(z))* < p', fa(z) is exceptional
over Fp¢, see [10, Theorem 8.4.19]. Note that fy(x) has exactly three distinct zeros,
one in Fp,r with multiplicity r and two in Fp2¢ \ F),r with multiplicity p®.
— Suppose that f(z) is indecomposable as exceptional polynomial over F,:. From
[10, Theorem 8.4.10], one of the following cases holds.
x 2p® +r = p* for some w > 1. In this case

s

+ )\x”w—S*Q)p ;

w—s_1

f@) = (a7 +ab

. S . .
since x — xP is a permutation of F,:, we can assume s = 0. Then

f(x) — f)
T -y
=@ -y’ T T Py ey
F AP T P Ty P ), (1)

Let C be the plane curve of degree p* — 1 defined over F,: by affine equation

%@Jj(y) = 0. From Equation (1), C has a unique point at infinity P.,. Moreover,

C intersects the line © = y at the affine points (0,0) and (—2X,—2)) with

multiplicity p — 3 and 1, respectively; hence, P, is a simple point for C. This

implies that C is absolutely irreducible, a contradiction to the exceptionality of

f(z) (see [10, Theorem 8.4.4]).

x 205 + 1 = pa(pig_l), with p € {2,3} and a > 1 odd; this is not possible, since
pir.
* 2p° +r is coprime with p. From [10, Theorem 8.4.11], one of the following holds:

- fa(x) is linear. This is not possible by the assumptions.

- fa(x) = 22" where 2p® +7 is a prime not dividing p* — 1, up to composition
with linear functions. Then f)(z) has either one or n distinct roots in F, a
contradiction.

-« fa(z) = €1 0 Dops 4 (€2(x),a), where 2p® + r is a prime not dividing p* — 1,
Dspsir(x,a) is a Dickson polynomial with a # 0 of degree 2p®+r, and ¢y, {2 €
F,¢[z] are linear permutations. If (2p* + 1)t (p?* + 1), then Dopsy,(2,a) is a
PP of Fp2t; see [10, Theorem 8.4.11]. This is not possible, as fi(z) has three
distinct zeros in Fp2:. Thus, (2p° +7) | (p?* +1). Denote ¢1(z) = bz +c. As lo
permutes [Fp,2¢, the number of zeros of fy(x) in Fp2: is equal to the number Z of
preimages of —¢/b under Doy, (2, a); hence, Z = 3. On the other hand, from
[8, Theorems 3.26 and 3.26'] we have Z € {1,2p® + r, L;T, %TT'H} Then
s =0and 7 = 3, so that fy(x) = 2°+2*+\z3 with p # 5. We have Ds(z,a) =
2% —5ax3 4+ 5a’z; by direct inspection, the polynomial 1 0 D5 (¢ (), a) cannot
have the form z° + z* + \z3 for any 1, 45.
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— Now suppose that fy(z) is a decomposable exceptional polynomial over F:,
say fia(xz) = h(k(z)) for some exceptional polynomials h,k € Fp[z] with
deg(h),deg(k) > 1. The roots of fy(z)/z" are conjugated under the Frobenius
map x — mpt; hence, the polynomial

A=2) = £A(0)  h(k(=2)) = h(k(0))  (k(—2) — k(0) TT{8™ " (k(=2) - )

(=) (=) B (—z)"
is a power of a unique irreducible factor over F:.
Suppose that k(—z) — k(0) has a monic absolutely irreducible factor different

from = and defined over F,:. Since the roots of fy(z)/z" are conjugated under
()= fa(0) _ (k(=a)—k(0)®E™ 4

(—z

z — 27", we have 3; = k(0) for all i. Hence,
m -deg(h) = r, where 2™ is the maximum power of z which divides k(—z) — k(0);
in particular, p { deg(h). On the other hand, f\(z) has just two distinct non-zero
roots (the ones of 22+ +p where p?* = \) with multiplicity p®; hence, deg(h) | p°.
This is a contradiction, either to p { deg(h) or to deg(h) > 1.
Suppose that k(—z) — k(0) = az™, for some a € F,: and m > 1 with ged(m, p* —
1) = 1. If p | m, then f,(z) is invariant under  — vz when v € Fp; this is a
contradiction to ged(2p® + r,p® + r) = 1. Then p 4 m. Let & be a non-zero root
of fa(z); for any o with 6™ =1, k(dz) = k(x) and f(dz) = 0. Thus, the number
of distinct non-zero roots of fj(z) is a multiple of m; hence, m = 2. This implies
p = 2. Therefore fy(x) = h(k(0) + az?®) = h((ly + ¢12)?) with £y, €1 € Fpe, so that
the polynomial h(z?) is also exceptional of degree deg(fy). Since deg(h) is odd,
this is not possible.

We have shown that fy(z) is not a PP of F): under the assumption u <s. If u > s,

then we can take s = 0 so that d = r + 2 and f\(z) = 2"(2% +  + \). The same

arguments as in the case u < s still apply and show that f(z) is not a PP of F.

Remark 2.1. Theorem 1.1 yields the characterization also of permutation trinomials of
F,¢ of type gap(z) = 22"+ 4+ azP"+7 + B2", under the assumptions a # 0 and d* < p
(with d defined as in Theorem 1.1).

In fact, let v € F,¢ satisfy 4?" = a. Then ga,p(x) is a PP of Fp: if and only if
ﬁg(vx) = fa/a2(x) is a PP of Fp:. Thus, gop(x) is a PP of F,: exactly in the
following cases:

e p=2,tisodd, and g, g(x) = 2° + az? + a®z or ga p(x) = 2° + az® + o’z for some
[eAS Fpt;
2
e p=2 (mod 3), tis odd, and go g(z) = 2° 4+ ax® + %z for some a € Fp:.
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