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1. Introduction

Let p be a prime number, t be a positive integer, Fpt be the finite field with pt elements, 
and f(x) be a polynomial over Fpt . If f : x �→ f(x) is a permutation of Fpt , then f(x) is 
a permutation polynomial (PP) of Fpt . If f(x) is a PP of F(pt)m for infinitely many m, 
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then f(x) is an exceptional polynomial over Fpt . If both f(x) and f(x) + x are PPs of 
Fpt , then f(x) is a complete permutation polynomial (CPP) of Fpt .

The study of permutation polynomials over finite fields is motivated not only by their 
theoretical importance, but also by their remarkable applications to cryptography, com-
binatorial designs, and coding theory; see for instance [7,9,12]. For a detailed introduction 
to old and new developments on permutation polynomials, see the survey [6] and the 
references therein. Permutation polynomials of monomial and binomial type have been 
intensively investigated, while much less is known on permutation trinomials; see [3,5].

In this note we characterize a certain class of permutation trinomials. Let s and r be 
non-negative integers. For λ ∈ Fpt , denote by fλ(x) the polynomial

fλ(x) = x2ps+r + xps+r + λxr ∈ Fpt [x].

If r = 0, define d = 0. If r �= 0, write r = puv with u ≥ 0 and p � v, and define 
d = 2ps−u + v if u ≤ s, d = 2 + pu−sv if u > s; that is,

d = (2ps + r)/pm, m := max{n ≥ 0 : pn | (2ps + r), pn | (ps + r), pn | r}.

We prove the following result.

Theorem 1.1. Assume that d4 < pt. Then fλ(x) is a PP of Fpt if and only if one of the 
following cases holds:

• p = 2, t is odd, and fλ(x) = x3 + x2 + x or fλ(x) = x5 + x3 + x;
• p ≡ 2 (mod 3), t is odd, and fλ(x) = x3 + x2 + 1

3x.

The case p = 2 and r = 1 was already considered by Bhattacharya and Sarkar [2], 
where the result proved for fλ(x) was then used to characterize permutation binomials 

of Fp2tps of type gb(x) = x
p2tps−1

pt−1 +1 + bx. Here for p > 2 and r = 1 we go the opposite 
direction, using the characterization in [1] for permutation binomials of type gb(x) to 
deduce the result for fλ(x).

Every permutation polynomial of Fpt with degree less than (pt)1/4 is exceptional 
over Fpt ; thus, the condition d4 < pt allows us to consider only exceptional polynomials. 
For r > 1, this leads to the non-existence of permutation trinomials of type fλ(x).

2. Proof of Theorem 1.1

Since the maps x �→ xpu and x �→ xps are permutations of Fpt , we can assume that 
u = 0 if u ≤ s, and s = 0 if u > s.

• Case r = 0. Since fλ(x) = fλ(−x − 1), fλ(x) is not a PP of Fpt .
• Case r = 1 and p = 2. The claim is proved in [2, Theorem 1.3].
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• Case r = 1 and p > 2.
Assume first that s = 0, so that fλ(x) = x3 + x2 + λx. By direct computation,

fλ(x) − fλ(y)
x− y

= x2 + xy + y2 + x + y + λ

splits into two linear components if and only if p �= 3 and λ = 1
3 . In this case

fλ(x) − fλ(y)
x− y

=
(
x + 1 +

√
−3

2 y + 1
2 +

√
−3
6

)
·
(
x + 1 −

√
−3

2 y + 1
2 −

√
−3
6

)

and the two components are not defined over Fpt if and only if −3 is a non-square 
in Fpt . From [4, Lemma 4.5], this is equivalent to require t odd and p ≡ 2 (mod 3).
Now assume that s > 0. Let μ ∈ Fpt with μps = λ, so that f(x) = x 

(
x2 + x + μ

)ps

. 
Let b, bpt ∈ Fp2t be the zeros of x2 + x + μ; then, for any x ∈ Fpt ,

fλ(x) = x (x + b)p
s

(x + bp
t

)p
s

= x (x + b)(p
t)2p

s−1+(pt)2p
s−2+···+pt+1

.

Suppose that fλ(x) is a PP of Fpt ; in particular, b /∈ Fpt . Since (deg fλ(x))4 = d4 < pt, 
fλ(x) is an exceptional polynomial over Fpt from [10, Theorem 8.4.19]. Also, from [1, 
Proposition 2.4], fλ(x) is indecomposable as exceptional polynomial over Fpt . Hence, 
from [10, Theorem 8.4.11], deg fλ(x) = 2ps + 1 is a prime not dividing pt − 1. From 

the Niederreiter–Robinson criterion [11, Lemma 1], the polynomial x
(pt)2p

s
−1

pt−1 +1 + bx

is a PP of F(pt)2ps ; equivalently, the monomial b−1x
p2tps−1

pt−1 +1 is a CPP of Fp2tps . 
Thus, from [1, Theorem 3.1], one of the following cases hold, where ζ is a primitive 
(2ps + 1)-th root of unity and α := ζ + ζ−1, β := ζ − ζ−1:
– pt has order 2ps modulo 2ps + 1 and b = ζ − 1 up to multiplication by a non-zero 

element in Fpt . Since b ∈ Fp2t \Fpt and 2ps+1 is prime, we have (2ps+1) | (pt+1). 
Hence pt ≡ −1 (mod 2ps + 1) has order 2 �= 2ps modulo 2ps + 1, a contradiction.

– pt has order 2ps modulo 2ps+1 and b = e(α−1)
√
β2(e2 − 4a) up to multiplication 

by a non-zero element in Fpt , for some e, a ∈ Fpt , a �= 0, such that e2 − 4a is a 
square in Fpt . Since b ∈ Fp2t \ Fpt we have α ∈ Fpt , which implies ζpt−1 = 1 or 
ζp

t+1 = 1. As 2ps + 1 is prime and b /∈ Fpt , this yields (2ps + 1) | (pt + 1); hence, 
pt has order 2 modulo 2ps + 1, a contradiction to s > 0.

– pt has order ps modulo 2ps +1 and b = e(α−1)
√

β2(e2 − 4a) up to multiplication 
by a non-zero element in Fpt , for some e, a ∈ Fpt , a �= 0, such that e2 − 4a is 0 or 
a non-square in Fpt . From b ∈ Fp2t \ Fpt we have α ∈ Fpt which implies ζpt−1 = 1
or ζpt+1 = 1; hence, pt has order 1 or 2 modulo 2ps + 1, a contradiction to s > 0.

Therefore, fλ(x) is not a PP of Fpt .
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• Case r > 1.
Assume first u ≤ s, so that we can take u = 0 and d = 2ps + r. Suppose by 
contradiction that fλ(x) is a PP of Fpt . As (deg fλ(x))4 < pt, fλ(x) is exceptional 
over Fpt , see [10, Theorem 8.4.19]. Note that fλ(x) has exactly three distinct zeros, 
one in Fpt with multiplicity r and two in Fp2t \ Fpt with multiplicity ps.
– Suppose that f(x) is indecomposable as exceptional polynomial over Fpt . From 

[10, Theorem 8.4.10], one of the following cases holds.
∗ 2ps + r = pw for some w ≥ 1. In this case

f(x) =
(
xpw−s

+ xpw−s−1 + λxpw−s−2
)ps

;

since x �→ xps is a permutation of Fpt , we can assume s = 0. Then

f(x) − f(y)
x− y

= (x− y)p
w−1 + xpw−2 + xpw−3y + · · · + yp

w−2

+ λ(xpw−3 + xpw−4y + · · · + yp
w−3). (1)

Let C be the plane curve of degree pw − 1 defined over Fpt by affine equation 
f(x)−f(y)

x−y = 0. From Equation (1), C has a unique point at infinity P∞. Moreover, 
C intersects the line x = y at the affine points (0, 0) and (−2λ, −2λ) with 
multiplicity pw − 3 and 1, respectively; hence, P∞ is a simple point for C. This 
implies that C is absolutely irreducible, a contradiction to the exceptionality of 
f(x) (see [10, Theorem 8.4.4]).

∗ 2ps + r = pa(pa−1)
2 , with p ∈ {2, 3} and a > 1 odd; this is not possible, since 

p � r.
∗ 2ps +r is coprime with p. From [10, Theorem 8.4.11], one of the following holds:

· fλ(x) is linear. This is not possible by the assumptions.
· fλ(x) = x2ps+r where 2ps+r is a prime not dividing pt−1, up to composition 

with linear functions. Then fλ(x) has either one or n distinct roots in Fpt , a 
contradiction.

· fλ(x) = �1 ◦D2ps+r(�2(x), a), where 2ps + r is a prime not dividing p2t − 1, 
D2ps+r(x, a) is a Dickson polynomial with a �= 0 of degree 2ps+r, and �1, �2 ∈
Fpt [x] are linear permutations. If (2ps + r) � (p2t + 1), then D2ps+r(x, a) is a 
PP of Fp2t ; see [10, Theorem 8.4.11]. This is not possible, as fλ(x) has three 
distinct zeros in Fp2t . Thus, (2ps + r) | (p2t +1). Denote �1(x) = bx + c. As �2
permutes Fp2t , the number of zeros of fλ(x) in Fp2t is equal to the number Z of 
preimages of −c/b under D2ps+r(x, a); hence, Z = 3. On the other hand, from 
[8, Theorems 3.26 and 3.26′] we have Z ∈ {1, 2ps + r, 2p

s+r
2 , 2p

s+r+1
2 }. Then 

s = 0 and r = 3, so that fλ(x) = x5+x4+λx3 with p �= 5. We have D5(x, a) =
x5−5ax3 +5a2x; by direct inspection, the polynomial �1◦D5(�2(x), a) cannot 
have the form x5 + x4 + λx3 for any �1, �2.
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– Now suppose that fλ(x) is a decomposable exceptional polynomial over Fpt , 
say fλ(x) = h(k(x)) for some exceptional polynomials h, k ∈ Fpt [x] with 
deg(h), deg(k) > 1. The roots of fλ(x)/xr are conjugated under the Frobenius 
map x �→ xpt ; hence, the polynomial

fλ(−x) − fλ(0)
(−x)r = h(k(−x)) − h(k(0))

(−x)r =
(k(−x) − k(0))

∏deg(h)−1
i=1 (k(−x) − βi)

(−x)r

is a power of a unique irreducible factor over Fpt .
Suppose that k(−x) − k(0) has a monic absolutely irreducible factor different 
from x and defined over Fpt . Since the roots of fλ(x)/xr are conjugated under 
x �→ xpt , we have βi = k(0) for all i. Hence, fλ(−x)−fλ(0)

(−x)r = (k(−x)−k(0))deg(h)

(−x)r . Also, 
m · deg(h) = r, where xm is the maximum power of x which divides k(−x) − k(0); 
in particular, p � deg(h). On the other hand, fλ(x) has just two distinct non-zero 
roots (the ones of x2+x +μ where μps = λ) with multiplicity ps; hence, deg(h) | ps. 
This is a contradiction, either to p � deg(h) or to deg(h) > 1.
Suppose that k(−x) − k(0) = axm, for some a ∈ Fpt and m > 1 with gcd(m, pt −
1) = 1. If p | m, then fλ(x) is invariant under x �→ γx when γ ∈ Fp; this is a 
contradiction to gcd(2ps + r, ps + r) = 1. Then p � m. Let x̄ be a non-zero root 
of fλ(x); for any δ with δm = 1, k(δx̄) = k(x̄) and fλ(δx̄) = 0. Thus, the number 
of distinct non-zero roots of fλ(x) is a multiple of m; hence, m = 2. This implies 
p = 2. Therefore fλ(x) = h(k(0) + ax2) = h((�0 + �1x)2) with �0, �1 ∈ Fpt , so that 
the polynomial h(x2) is also exceptional of degree deg(fλ). Since deg(h) is odd, 
this is not possible.

We have shown that fλ(x) is not a PP of Fpt under the assumption u ≤ s. If u > s, 
then we can take s = 0 so that d = r + 2 and fλ(x) = xr(x2 + x + λ). The same 
arguments as in the case u ≤ s still apply and show that fλ(x) is not a PP of Fpt .

Remark 2.1. Theorem 1.1 yields the characterization also of permutation trinomials of 
Fpt of type gα,β(x) = x2ps+r + αxps+r + βxr, under the assumptions α �= 0 and d4 < pt

(with d defined as in Theorem 1.1).
In fact, let γ ∈ Fpt satisfy γps = α. Then gα,β(x) is a PP of Fpt if and only if 
1

γ2ps+r g(γx) = fβ/α2(x) is a PP of Fpt . Thus, gα,β(x) is a PP of Fpt exactly in the 
following cases:

• p = 2, t is odd, and gα,β(x) = x3 +αx2 +α2x or gα,β(x) = x5 +αx3 +α2x for some 
α ∈ Fpt ;

• p ≡ 2 (mod 3), t is odd, and gα,β(x) = x3 + αx2 + α2

3 x for some α ∈ Fpt .
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