On permutation trinomials of type
 $x^{2 p^{s}+r}+x^{p^{s}+r}+\lambda x^{r}$

Daniele Bartoli ${ }^{\text {a }}$, Giovanni Zini ${ }^{\text {b,*,1 }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, University of Perugia, Italy
${ }^{\text {b }}$ Department of Mathematics and Computer Science "Ulisse Dini", University of Florence, Italy

A R T I C L E I N F O

Article history:

Received 18 May 2017
Accepted 23 September 2017
Available online 2 October 2017
Communicated by Gary L. Mullen
MSC:
11 T06
05A05

Keywords:

Permutation trinomials
Exceptional polynomials

A B S T R A C T
We determine all permutation trinomials of type $x^{2 p^{s}+r}+$ $x^{p^{s}+r}+\lambda x^{r}$ over the finite field $\mathbb{F}_{p^{t}}$ when $\left(2 p^{s}+r\right)^{4}<p^{t}$. This partially extends a previous result by Bhattacharya and Sarkar in the case $p=2, r=1$.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let p be a prime number, t be a positive integer, $\mathbb{F}_{p^{t}}$ be the finite field with p^{t} elements, and $f(x)$ be a polynomial over $\mathbb{F}_{p^{t}}$. If $f: x \mapsto f(x)$ is a permutation of $\mathbb{F}_{p^{t}}$, then $f(x)$ is a permutation polynomial (PP) of $\mathbb{F}_{p^{t}}$. If $f(x)$ is a PP of $\mathbb{F}_{\left(p^{t}\right)^{m}}$ for infinitely many m,

[^0]then $f(x)$ is an exceptional polynomial over $\mathbb{F}_{p^{t}}$. If both $f(x)$ and $f(x)+x$ are PPs of $\mathbb{F}_{p^{t}}$, then $f(x)$ is a complete permutation polynomial (CPP) of $\mathbb{F}_{p^{t}}$.

The study of permutation polynomials over finite fields is motivated not only by their theoretical importance, but also by their remarkable applications to cryptography, combinatorial designs, and coding theory; see for instance [7,9,12]. For a detailed introduction to old and new developments on permutation polynomials, see the survey [6] and the references therein. Permutation polynomials of monomial and binomial type have been intensively investigated, while much less is known on permutation trinomials; see [3,5].

In this note we characterize a certain class of permutation trinomials. Let s and r be non-negative integers. For $\lambda \in \mathbb{F}_{p^{t}}$, denote by $f_{\lambda}(x)$ the polynomial

$$
f_{\lambda}(x)=x^{2 p^{s}+r}+x^{p^{s}+r}+\lambda x^{r} \in \mathbb{F}_{p^{t}}[x] .
$$

If $r=0$, define $d=0$. If $r \neq 0$, write $r=p^{u} v$ with $u \geq 0$ and $p \nmid v$, and define $d=2 p^{s-u}+v$ if $u \leq s, d=2+p^{u-s} v$ if $u>s$; that is,

$$
d=\left(2 p^{s}+r\right) / p^{m}, \quad m:=\max \left\{n \geq 0: p^{n}\left|\left(2 p^{s}+r\right), p^{n}\right|\left(p^{s}+r\right), p^{n} \mid r\right\} .
$$

We prove the following result.
Theorem 1.1. Assume that $d^{4}<p^{t}$. Then $f_{\lambda}(x)$ is a PP of $\mathbb{F}_{p^{t}}$ if and only if one of the following cases holds:

- $p=2, t$ is odd, and $f_{\lambda}(x)=x^{3}+x^{2}+x$ or $f_{\lambda}(x)=x^{5}+x^{3}+x$;
- $p \equiv 2(\bmod 3), t$ is odd, and $f_{\lambda}(x)=x^{3}+x^{2}+\frac{1}{3} x$.

The case $p=2$ and $r=1$ was already considered by Bhattacharya and Sarkar [2], where the result proved for $f_{\lambda}(x)$ was then used to characterize permutation binomials of $\mathbb{F}_{p^{2 t p^{s}}}$ of type $g_{b}(x)=x^{\frac{p^{2 t p^{s}}-1}{p^{t}-1}+1}+b x$. Here for $p>2$ and $r=1$ we go the opposite direction, using the characterization in [1] for permutation binomials of type $g_{b}(x)$ to deduce the result for $f_{\lambda}(x)$.

Every permutation polynomial of $\mathbb{F}_{p^{t}}$ with degree less than $\left(p^{t}\right)^{1 / 4}$ is exceptional over $\mathbb{F}_{p^{t}}$; thus, the condition $d^{4}<p^{t}$ allows us to consider only exceptional polynomials. For $r>1$, this leads to the non-existence of permutation trinomials of type $f_{\lambda}(x)$.

2. Proof of Theorem 1.1

Since the maps $x \mapsto x^{p^{u}}$ and $x \mapsto x^{p^{s}}$ are permutations of $\mathbb{F}_{p^{t}}$, we can assume that $u=0$ if $u \leq s$, and $s=0$ if $u>s$.

- Case $r=0$. Since $f_{\lambda}(x)=f_{\lambda}(-x-1), f_{\lambda}(x)$ is not a PP of $\mathbb{F}_{p^{t}}$.
- Case $r=1$ and $p=2$. The claim is proved in [2, Theorem 1.3].
- Case $r=1$ and $p>2$.

Assume first that $s=0$, so that $f_{\lambda}(x)=x^{3}+x^{2}+\lambda x$. By direct computation,

$$
\frac{f_{\lambda}(x)-f_{\lambda}(y)}{x-y}=x^{2}+x y+y^{2}+x+y+\lambda
$$

splits into two linear components if and only if $p \neq 3$ and $\lambda=\frac{1}{3}$. In this case

$$
\frac{f_{\lambda}(x)-f_{\lambda}(y)}{x-y}=\left(x+\frac{1+\sqrt{-3}}{2} y+\frac{1}{2}+\frac{\sqrt{-3}}{6}\right) \cdot\left(x+\frac{1-\sqrt{-3}}{2} y+\frac{1}{2}-\frac{\sqrt{-3}}{6}\right)
$$

and the two components are not defined over $\mathbb{F}_{p^{t}}$ if and only if -3 is a non-square in $\mathbb{F}_{p^{t}}$. From [4, Lemma 4.5], this is equivalent to require t odd and $p \equiv 2(\bmod 3)$. Now assume that $s>0$. Let $\mu \in \mathbb{F}_{p^{t}}$ with $\mu^{p^{s}}=\lambda$, so that $f(x)=x\left(x^{2}+x+\mu\right)^{p^{s}}$. Let $b, b^{p^{t}} \in \mathbb{F}_{p^{2 t}}$ be the zeros of $x^{2}+x+\mu$; then, for any $x \in \mathbb{F}_{p^{t}}$,

$$
f_{\lambda}(x)=x(x+b)^{p^{s}}\left(x+b^{p^{t}}\right)^{p^{s}}=x(x+b)^{\left(p^{t}\right)^{2 p^{s}-1}+\left(p^{t}\right)^{2 p^{s}-2}+\cdots+p^{t}+1} .
$$

Suppose that $f_{\lambda}(x)$ is a PP of $\mathbb{F}_{p^{t}}$; in particular, $b \notin \mathbb{F}_{p^{t}}$. Since $\left(\operatorname{deg} f_{\lambda}(x)\right)^{4}=d^{4}<p^{t}$, $f_{\lambda}(x)$ is an exceptional polynomial over $\mathbb{F}_{p^{t}}$ from [10, Theorem 8.4.19]. Also, from [1, Proposition 2.4], $f_{\lambda}(x)$ is indecomposable as exceptional polynomial over $\mathbb{F}_{p^{t}}$. Hence, from [10, Theorem 8.4.11] $\operatorname{deg} f_{\lambda}(x)=2 p^{s}+1$ is a prime not dividing $p^{t}-1$. From the Niederreiter-Robinson criterion [11, Lemma 1], the polynomial $x^{\frac{\left(p^{t}\right)^{2 p^{s}}-1}{p^{t}-1}+1}+b x$ is a PP of $\mathbb{F}_{\left(p^{t}\right)^{2 p^{s}}}$; equivalently, the monomial $b^{-1} x^{\frac{p^{2 t p^{s}-1}}{p^{t}-1}+1}$ is a CPP of $\mathbb{F}_{p^{2 t p^{s}}}$. Thus, from [1, Theorem 3.1], one of the following cases hold, where ζ is a primitive $\left(2 p^{s}+1\right)$-th root of unity and $\alpha:=\zeta+\zeta^{-1}, \beta:=\zeta-\zeta^{-1}$:

- p^{t} has order $2 p^{s}$ modulo $2 p^{s}+1$ and $b=\zeta-1$ up to multiplication by a non-zero element in $\mathbb{F}_{p^{t}}$. Since $b \in \mathbb{F}_{p^{2 t}} \backslash \mathbb{F}_{p^{t}}$ and $2 p^{s}+1$ is prime, we have $\left(2 p^{s}+1\right) \mid\left(p^{t}+1\right)$. Hence $p^{t} \equiv-1\left(\bmod 2 p^{s}+1\right)$ has order $2 \neq 2 p^{s}$ modulo $2 p^{s}+1$, a contradiction. - p^{t} has order $2 p^{s}$ modulo $2 p^{s}+1$ and $b=e(\alpha-1) \sqrt{\beta^{2}\left(e^{2}-4 a\right)}$ up to multiplication by a non-zero element in $\mathbb{F}_{p^{t}}$, for some $e, a \in \mathbb{F}_{p^{t}}, a \neq 0$, such that $e^{2}-4 a$ is a square in $\mathbb{F}_{p^{t}}$. Since $b \in \mathbb{F}_{p^{2 t}} \backslash \mathbb{F}_{p^{t}}$ we have $\alpha \in \mathbb{F}_{p^{t}}$, which implies $\zeta^{p^{t}-1}=1$ or $\zeta^{p^{t}+1}=1$. As $2 p^{s}+1$ is prime and $b \notin \mathbb{F}_{p^{t}}$, this yields $\left(2 p^{s}+1\right) \mid\left(p^{t}+1\right)$; hence, p^{t} has order 2 modulo $2 p^{s}+1$, a contradiction to $s>0$.
- p^{t} has order p^{s} modulo $2 p^{s}+1$ and $b=e(\alpha-1) \sqrt{\beta^{2}\left(e^{2}-4 a\right)}$ up to multiplication by a non-zero element in $\mathbb{F}_{p^{t}}$, for some $e, a \in \mathbb{F}_{p^{t}}, a \neq 0$, such that $e^{2}-4 a$ is 0 or a non-square in $\mathbb{F}_{p^{t}}$. From $b \in \mathbb{F}_{p^{2 t}} \backslash \mathbb{F}_{p^{t}}$ we have $\alpha \in \mathbb{F}_{p^{t}}$ which implies $\zeta^{p^{t}-1}=1$ or $\zeta^{p^{t}+1}=1$; hence, p^{t} has order 1 or 2 modulo $2 p^{s}+1$, a contradiction to $s>0$. Therefore, $f_{\lambda}(x)$ is not a PP of $\mathbb{F}_{p^{t}}$.
- Case $r>1$.

Assume first $u \leq s$, so that we can take $u=0$ and $d=2 p^{s}+r$. Suppose by contradiction that $f_{\lambda}(x)$ is a PP of $\mathbb{F}_{p^{t}}$. As $\left(\operatorname{deg} f_{\lambda}(x)\right)^{4}<p^{t}, f_{\lambda}(x)$ is exceptional over $\mathbb{F}_{p^{t}}$, see [10, Theorem 8.4.19]. Note that $f_{\lambda}(x)$ has exactly three distinct zeros, one in $\mathbb{F}_{p^{t}}$ with multiplicity r and two in $\mathbb{F}_{p^{2 t}} \backslash \mathbb{F}_{p^{t}}$ with multiplicity p^{s}.

- Suppose that $f(x)$ is indecomposable as exceptional polynomial over $\mathbb{F}_{p^{t}}$. From [10, Theorem 8.4.10], one of the following cases holds. * $2 p^{s}+r=p^{w}$ for some $w \geq 1$. In this case

$$
f(x)=\left(x^{p^{w-s}}+x^{p^{w-s}-1}+\lambda x^{p^{w-s}-2}\right)^{p^{s}}
$$

since $x \mapsto x^{p^{s}}$ is a permutation of $\mathbb{F}_{p^{t}}$, we can assume $s=0$. Then

$$
\begin{align*}
& \frac{f(x)-f(y)}{x-y} \\
& \quad=(x-y)^{p^{w}-1}+x^{p^{w}-2}+x^{p^{w}-3} y+\cdots+y^{p^{w}-2} \\
& \quad+\lambda\left(x^{p^{w}-3}+x^{p^{w}-4} y+\cdots+y^{p^{w}-3}\right) . \tag{1}
\end{align*}
$$

Let \mathcal{C} be the plane curve of degree $p^{w}-1$ defined over $\mathbb{F}_{p^{t}}$ by affine equation $\frac{f(x)-f(y)}{x-y}=0$. From Equation (1), \mathcal{C} has a unique point at infinity P_{∞}. Moreover, \mathcal{C} intersects the line $x=y$ at the affine points $(0,0)$ and $(-2 \lambda,-2 \lambda)$ with multiplicity $p^{w}-3$ and 1 , respectively; hence, P_{∞} is a simple point for \mathcal{C}. This implies that \mathcal{C} is absolutely irreducible, a contradiction to the exceptionality of $f(x)$ (see [10, Theorem 8.4.4]).

* $2 p^{s}+r=\frac{p^{a}\left(p^{a}-1\right)}{2}$, with $p \in\{2,3\}$ and $a>1$ odd; this is not possible, since $p \nmid r$.
* $2 p^{s}+r$ is coprime with p. From [10, Theorem 8.4.11], one of the following holds:
- $f_{\lambda}(x)$ is linear. This is not possible by the assumptions.
- $f_{\lambda}(x)=x^{2 p^{s}+r}$ where $2 p^{s}+r$ is a prime not dividing $p^{t}-1$, up to composition with linear functions. Then $f_{\lambda}(x)$ has either one or n distinct roots in $\overline{\mathbb{F}}_{p^{t}}$, a contradiction.
- $f_{\lambda}(x)=\ell_{1} \circ D_{2 p^{s}+r}\left(\ell_{2}(x), a\right)$, where $2 p^{s}+r$ is a prime not dividing $p^{2 t}-1$, $D_{2 p^{s}+r}(x, a)$ is a Dickson polynomial with $a \neq 0$ of degree $2 p^{s}+r$, and $\ell_{1}, \ell_{2} \in$ $\mathbb{F}_{p^{t}}[x]$ are linear permutations. If $\left(2 p^{s}+r\right) \nmid\left(p^{2 t}+1\right)$, then $D_{2 p^{s}+r}(x, a)$ is a PP of $\mathbb{F}_{p^{2 t}}$; see [10, Theorem 8.4.11]. This is not possible, as $f_{\lambda}(x)$ has three distinct zeros in $\mathbb{F}_{p^{2 t}}$. Thus, $\left(2 p^{s}+r\right) \mid\left(p^{2 t}+1\right)$. Denote $\ell_{1}(x)=b x+c$. As ℓ_{2} permutes $\mathbb{F}_{p^{2 t}}$, the number of zeros of $f_{\lambda}(x)$ in $\mathbb{F}_{p^{2 t}}$ is equal to the number Z of preimages of $-c / b$ under $D_{2 p^{s}+r}(x, a)$; hence, $Z=3$. On the other hand, from [8, Theorems 3.26 and $\left.3.26^{\prime}\right]$ we have $Z \in\left\{1,2 p^{s}+r, \frac{2 p^{s}+r}{2}, \frac{2 p^{s}+r+1}{2}\right\}$. Then $s=0$ and $r=3$, so that $f_{\lambda}(x)=x^{5}+x^{4}+\lambda x^{3}$ with $p \neq 5$. We have $D_{5}(x, a)=$ $x^{5}-5 a x^{3}+5 a^{2} x$; by direct inspection, the polynomial $\ell_{1} \circ D_{5}\left(\ell_{2}(x), a\right)$ cannot have the form $x^{5}+x^{4}+\lambda x^{3}$ for any ℓ_{1}, ℓ_{2}.
- Now suppose that $f_{\lambda}(x)$ is a decomposable exceptional polynomial over $\mathbb{F}_{p^{t}}$, say $f_{\lambda}(x)=h(k(x))$ for some exceptional polynomials $h, k \in \mathbb{F}_{p^{t}}[x]$ with $\operatorname{deg}(h), \operatorname{deg}(k)>1$. The roots of $f_{\lambda}(x) / x^{r}$ are conjugated under the Frobenius map $x \mapsto x^{p^{t}}$; hence, the polynomial

$$
\frac{f_{\lambda}(-x)-f_{\lambda}(0)}{(-x)^{r}}=\frac{h(k(-x))-h(k(0))}{(-x)^{r}}=\frac{(k(-x)-k(0)) \prod_{i=1}^{\operatorname{deg}(h)-1}\left(k(-x)-\beta_{i}\right)}{(-x)^{r}}
$$

is a power of a unique irreducible factor over $\mathbb{F}_{p^{t}}$.
Suppose that $k(-x)-k(0)$ has a monic absolutely irreducible factor different from x and defined over $\mathbb{F}_{p^{t}}$. Since the roots of $f_{\lambda}(x) / x^{r}$ are conjugated under $x \mapsto x^{p^{t}}$, we have $\beta_{i}=k(0)$ for all i. Hence, $\frac{f_{\lambda}(-x)-f_{\lambda}(0)}{(-x)^{r}}=\frac{(k(-x)-k(0))^{\operatorname{deg}(h)}}{(-x)^{r}}$. Also, $m \cdot \operatorname{deg}(h)=r$, where x^{m} is the maximum power of x which divides $k(-x)-k(0)$; in particular, $p \nmid \operatorname{deg}(h)$. On the other hand, $f_{\lambda}(x)$ has just two distinct non-zero roots (the ones of $x^{2}+x+\mu$ where $\mu^{p^{s}}=\lambda$) with multiplicity p^{s}; hence, $\operatorname{deg}(h) \mid p^{s}$. This is a contradiction, either to $p \nmid \operatorname{deg}(h)$ or to $\operatorname{deg}(h)>1$.
Suppose that $k(-x)-k(0)=a x^{m}$, for some $a \in \mathbb{F}_{p^{t}}$ and $m>1$ with $\operatorname{gcd}\left(m, p^{t}-\right.$ $1)=1$. If $p \mid m$, then $f_{\lambda}(x)$ is invariant under $x \mapsto \gamma x$ when $\gamma \in \mathbb{F}_{p}$; this is a contradiction to $\operatorname{gcd}\left(2 p^{s}+r, p^{s}+r\right)=1$. Then $p \nmid m$. Let \bar{x} be a non-zero root of $f_{\lambda}(x)$; for any δ with $\delta^{m}=1, k(\delta \bar{x})=k(\bar{x})$ and $f_{\lambda}(\delta \bar{x})=0$. Thus, the number of distinct non-zero roots of $f_{\lambda}(x)$ is a multiple of m; hence, $m=2$. This implies $p=2$. Therefore $f_{\lambda}(x)=h\left(k(0)+a x^{2}\right)=h\left(\left(\ell_{0}+\ell_{1} x\right)^{2}\right)$ with $\ell_{0}, \ell_{1} \in \mathbb{F}_{p^{t}}$, so that the polynomial $h\left(x^{2}\right)$ is also exceptional of $\operatorname{degree} \operatorname{deg}\left(f_{\lambda}\right)$. Since $\operatorname{deg}(h)$ is odd, this is not possible.
We have shown that $f_{\lambda}(x)$ is not a PP of $\mathbb{F}_{p^{t}}$ under the assumption $u \leq s$. If $u>s$, then we can take $s=0$ so that $d=r+2$ and $f_{\lambda}(x)=x^{r}\left(x^{2}+x+\lambda\right)$. The same arguments as in the case $u \leq s$ still apply and show that $f_{\lambda}(x)$ is not a PP of $\mathbb{F}_{p^{t}}$.

Remark 2.1. Theorem 1.1 yields the characterization also of permutation trinomials of $\mathbb{F}_{p^{t}}$ of type $g_{\alpha, \beta}(x)=x^{2 p^{s}+r}+\alpha x^{p^{s}+r}+\beta x^{r}$, under the assumptions $\alpha \neq 0$ and $d^{4}<p^{t}$ (with d defined as in Theorem 1.1).

In fact, let $\gamma \in \mathbb{F}_{p^{t}}$ satisfy $\gamma^{p^{s}}=\alpha$. Then $g_{\alpha, \beta}(x)$ is a PP of $\mathbb{F}_{p^{t}}$ if and only if $\frac{1}{\gamma^{2 p^{s}+r}} g(\gamma x)=f_{\beta / \alpha^{2}}(x)$ is a PP of $\mathbb{F}_{p^{t}}$. Thus, $g_{\alpha, \beta}(x)$ is a PP of $\mathbb{F}_{p^{t}}$ exactly in the following cases:

- $p=2, t$ is odd, and $g_{\alpha, \beta}(x)=x^{3}+\alpha x^{2}+\alpha^{2} x$ or $g_{\alpha, \beta}(x)=x^{5}+\alpha x^{3}+\alpha^{2} x$ for some $\alpha \in \mathbb{F}_{p^{t}}$;
- $p \equiv 2(\bmod 3), t$ is odd, and $g_{\alpha, \beta}(x)=x^{3}+\alpha x^{2}+\frac{\alpha^{2}}{3} x$ for some $\alpha \in \mathbb{F}_{p^{t}}$.

References

[1] D. Bartoli, M. Giulietti, L. Quoos, G. Zini, Complete permutation polynomials from exceptional polynomials, J. Number Theory 176 (2017) 46-66.
[2] S. Bhattacharya, S. Sarkar, On some permutation binomials and trinomials over $\mathbb{F}_{2^{n}}$, Des. Codes Cryptogr. 82 (2017) 149-160.
[3] C. Ding, Q. Longjiang, Q. Wang, J. Yuan, P. Yuan, Permutation trinomials over finite fields with even characteristic, SIAM J. Discrete Math. 29 (1) (2015) 79-92.
[4] M. Giulietti, On plane arcs contained in cubic curves, Finite Fields Appl. 8 (2002) 69-90.
[5] X.-D. Hou, Determination of a type of permutation trinomials over finite fields. II, Finite Fields Appl. 35 (2015) 16-35.
[6] X.-D. Hou, Permutation polynomials over finite fields: a survey of recent advances, Finite Fields Appl. 32 (2015) 82-119.
[7] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields Appl. 13 (1) (2007) 58-70.
[8] R. Lidl, G.L. Mullen, G. Turnwald, Dickson Polynomials, Pitman Monogr. Surv. Pure Appl. Math., vol. 65, 1993.
[9] G.L. Mullen, H. Niederreiter, Dickson polynomials over finite fields and complete mappings, Can. Math. Bull. 30 (1) (1987) 19-27.
[10] G.L. Mullen, D. Panario, Handbook of Finite Fields, Chapman and Hall, 2013.
[11] H. Niederreiter, K.H. Robinson, Complete mappings of finite fields, J. Aust. Math. Soc. Ser. A 33 (1982) 197-212.
[12] P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Gangopadhyay, S. Maitra, Investigations on bent and negabent functions via the nega-Hadamard transform, IEEE Trans. Inf. Theory 58 (6) (2012) 4064-4072.

[^0]: * Corresponding author.

 E-mail addresses: daniele.bartoli@unipg.it (D. Bartoli), gzini@math.unifi.it (G. Zini).
 ${ }^{1}$ The research of D. Bartoli and G. Zini was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza" - Prot. N. 2012XZE22K_005) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

