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Abstract. Complete (k, 4)-arcs in projective Galois planes are the geo-
metric counterpart of linear non-extendible codes of length k, dimension
3 and Singleton defect 2. A class of infinite families of complete (k, 4)-arcs
in PG(2, q) is constructed, for q a power of an odd prime p ≡ 3 (mod 4),
p > 3. The order of magnitude of k is smaller than q. This property
significantly distinguishes the complete (k, 4)-arcs of this paper from the
previously known infinite families, whose size exceeds q − 6

√
q.
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1. Introduction

A (k, s)-arc in PG(2, q), the projective Galois plane over the finite field Fq

with q elements, is a set of k points no (s + 1) of which are collinear and such
that there exist s collinear points. A general introduction to (k, s)-arcs can
be found in the monograph [10, Chapt. 12], as well as in the survey paper
[13, Sect. 5]. A natural problem in this context is the construction of infinite
families of complete (k, s)-arcs, that is, arcs that are maximal with respect
to set theoretical inclusion. From the standpoint of Coding Theory, complete
(k, s)-arcs correspond to linear [k, 3, k − s]q-codes which cannot be extended
to a code with the same minimum distance.

In the case s = 2, the theory is well developed and quite rich of constructions;
see e.g. [1–3,9,12,13,18,19] and the references therein, as well as [10, Chapt. 8-
10]. On the other hand, for most s > 2, the only known infinite families either
consist of the set of Fq-rational points of some irreducible curve of degree s
(see [7,14,20] for s = 3, as well as [6] for s > 3), or arise from the theory of 2-
character sets in PG(2, q) (see Sects. 12.2 and 12.3 in [10], as well as the more
recent work [8]). For s = 3 smaller complete (k, 3)-arcs have been recently
constructed in [4]; they consist of a subset of Fq-rational points of a curve of
degree 4.
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In this paper we provide a new class of infinite families of complete (k, 4)-arcs
in PG(2, q). Our main result is the following.

Theorem 1.1. Let σ be a non-square power of a prime p > 3, with p ≡ 3
(mod 4). Define

τ(σ) =

⎧
⎨

⎩

p+4i−10
5 if σ = p ≥ 29, σ ≡ i ∈ {1, 2, 3, 4} (mod 5),

2
√

σ
p + p − 2 if σ ≥ p3.

Then, for each power q of σ with q ≥ 580644σ8, there exists a complete (k, 4)-
arc in PG(2, q) of size

k ≤ τ(σ)
σ

q + 8.

A lower bound for the minimum size of a complete (k, 4)-arc in PG(2, q) is√
12(q + 1); see [11]. The order of magnitude of the (k, 4)-arcs constructed in

Theorem 1.1 is significantly smaller than that of the previously known families.
In fact, complete (k, 4)-arcs arising from quartic curves have at least q+1−6

√
q

points.

On the other hand, the size of the arcs of Theorem 1.1 is asymptotically smaller
than q. For example, if σ = p3 with p > 83, then q = σ9 can be chosen and
the bound on k is roughly q25/27.

The points of the (k, 4)-arcs constructed in this paper belong, with at most 8
exceptions, to the set of Fq-rational points of the quintic curve Q with equation
Y = X5. It should be noted that for this reason they share at most 28 points
with an irreducible quartic. The proof of their completeness is based on a
classical idea going back to Segre [16] and Lombardo-Radice [15]. In order to
show that the 4-secants of the (k, 4)-arc cover a point P off the quintic curve Q,
we construct an algebraic curve HP defined over Fq describing the collinearity
of four points of the arc and P , and then prove that HP has an absolutely
irreducible component defined over Fq; the Hasse–Weil bound guarantees the
existence of a suitable Fq-rational point in HP . Finally we deduce that P is
collinear with four points in the arc. The main difficulty here is that HP is not
a plane curve, but a curve embedded in the 4-dimensional space; see Eq. (6).
This is why the theory and the language of Function Fields have been used in
order to show that HP possesses an absolutely irreducible component defined
over Fq.

The paper is organized as follows. In Sect. 2 we summarize the notions and the
results from the theory of Function Fields that will be used in the paper. In
Sect.3 we show how it is possible to construct complete (k, 4)-arcs from quartic
curves, with k ≥ q − 6

√
q + 1. In Sect. 4, we construct a (q/σ, 4)-arc Ke lying

on Q; it is associated to an additive subgroup M with index σ in Fq. We show
in Sect. 5 that under the conditions of Theorem 1.1, the 4-secants of Ke covers
almost all points of PG(2, q)\Q. To this end, we thoroughly investigate the
curve HP and its function field. A 5-independent subset in the factor group
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Fq/M is constructed in Sect. 6. This allows us to show in Sect. 7 how to cover
the points of Q, for q large enough, by joining more copies of Ke.

2. Preliminaries from Function Field theory

We recall that a function field over a perfect field L is an extension F of L such
that F is a finite algebraic extension of L(α), with α transcendental over L.
For basic definitions on function fields we refer to [17]. In particular, the (full)
constant field of F is the set of elements of F that are algebraic over L.

If F
′ is a finite extension of F, then a place P ′ of F

′ is said to be lying over a
place P of F if P ⊂ P ′. This holds precisely when P = P ′ ∩ F. In this paper,
e(P ′|P ) will denote the ramification index of P ′ over P . A finite extension F

′

of a function field F is said to be unramified if e(P ′|P ) = 1 for every P ′ place
of F

′ and every P place of F with P ′ lying over P . Throughout the paper, we
will refer to the following results.

Theorem 2.1 [17, Cor. 3.7.4]. Consider an algebraic function field F with con-
stant field L containing a primitive n-th root of unity (n > 1 and n relatively
prime to the characteristic of L). Let u ∈ F be such that there is a place Q of
F with gcd(vQ(u), n) = 1. Let F

′ = F(y) with yn = u. Then

1. Φ(T ) = Tn − u is the minimal polynomial of y over F. The extension
F

′ : F is Galois of degree n and the Galois group of F
′ : F is cyclic;

2.

e(P ′|P ) =
n

rP
where rP := GCD(n, vP (u)) > 0 ;

3. L is the constant field of F
′;

4. let g′ (resp. g) be the genus of F
′ (resp. F), then

g′ = 1 + n(g − 1) +
1
2

∑

P∈P(F)

(n − rP ) deg P.

Theorem 2.2 [17, Th. 3.7.10]. Consider an algebraic function field F with con-
stant field L of characteristic p > 0, and an additive separable polynomials
a(T ) ∈ L[T ] of degree pn with all its roots in L. Let u ∈ F. Suppose that for
each place P of F there is an element z ∈ F (depending on P ) such that either

vP (u − a(z)) ≥ 0

or

vP (u − a(z)) = −m with m > 0 and p 	 |m.

Define mP := −1 in the former case and mp := m in the latter case. Let
F

′ = F(y) be the extension with a(y) = u. If there exists at least one place Q
such that mQ > 0, then

1. the extension F
′ : F is Galois of degree pn and the Galois group of F

′ : F is
isomorphic to the additive group {α ∈ L : a(α) = 0};
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2. L is the constant field of F
′;

3. each place P in F with mP = −1 is unramified in F
′ : F;

4. each place P in F with mP > 0 is totally ramified in F
′ : F;

5. let g′ (resp. g) be the genus of F
′ (resp. F), then

g′ = png +
pn − 1

2

⎛

⎝−2 +
∑

P∈P(F)

(mp + 1) deg P

⎞

⎠ .

An extension such as F
′ in Theorem 2.1 or 2.2 is said to be a Kummer extension

or a generalized Artin–Schreier extension of F, respectively.

Denote by Fq the finite field with q elements and let K be the algebraic closure
of Fq. A curve C in some affine or projective space over K is said to be defined
over Fq if the ideal of C is generated by polynomials with coefficients in Fq.
Let K(C) denote the function field of C. The subfield Fq(C) of K(C) consists of
the rational functions on C defined over Fq. The extension K(C) : Fq(C) is a
constant field extension (see [17, Sect. 3.6]). In particular, Fq-rational places
of Fq(C) can be viewed as the restrictions to Fq(C) of places of K(C) that are
fixed by the Frobenius map on K(C). The center of an Fq-rational place is an
Fq-rational point of C; conversely, if P is a simple Fq-rational point of C, then
the only place centered at P is Fq-rational.

We now recall the well-known Hasse–Weil bound.

Theorem 2.3 (Hasse–Weil bound, [17, Theorem 5.2.3]). The number Nq of
Fq-rational places of a function field F with constant field Fq and genus g
satisfies

|Nq − (q + 1)| ≤ 2g
√

q.

In order to apply the Hasse–Weil bound, the following lemma will be useful.

Lemma 2.4. Let F = Fq(β1, . . . , βn) be a function field with constant field Fq.
Suppose that f ∈ F[T ] is a polynomial which is irreducible over K(β1, . . . , βn)
[T ]. Then, for a root z of f , the field Fq is the constant field of Fq(β1, . . . , βn)(z).

Proof. Let Fq′ be the constant field of Fq(β1, . . . , βn)(z). Then

Fq(β1, . . . , βn) ⊆ Fq′(β1, . . . , βn) ⊆ Fq′(β1, . . . , βn)(z) = Fq(β1, . . . , βn)(z).

Clearly f is irreducible over Fq′(β1, . . . , βn); then [Fq′(β1, . . . , βn)(z) :
Fq′(β1, . . . , βn)] = deg(f) = [Fq(β1, . . . , βn)(z) : Fq(β1, . . . , βn)], and hence
[Fq′(β1, . . . , βn) : Fq(β1, . . . , βn)] = 1. This implies Fq′ = Fq. �

3. (k, 4)-arcs from quartic curves

An absolutely irreducible quartic curve is always a (k, 4)-arc. By the Hasse–
Weil bound the size of such arc is lower bounded by q−6

√
q+1. In the following

we show how to construct a complete (k, 4)-arc starting from a particular
quartic curve.
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Throughout this section, q is a power of a prime p > 3, and C = {(x, x4) | x ∈
Fq} is the set of the Fq-rational affine points of the plane curve with equation
Y = X4.

The following proposition shows the collinearity conditions of four points of C
and one point of AG(2, q)\C.

Proposition 3.1 [4, Propositions 2 and 4]. Four distinct points A = (u, u4),
B = (v, v4), C = (w,w4), D = (t, t4) of C and P = (a, b) ∈ AG(2, q)\C are
collinear if and only if

⎧
⎨

⎩

u + v + w + t = 0
w2 + (u + v)w + u2 + uv + v2 = 0
a(u2 + v2)(u + v) − uv(u2 + uv + v2) − b = 0

. (1)

Proposition 3.2. Let a, b ∈ Fq with b 	= a4. The equation �1(u, v) = 0, where

�1(u, v) = a(u2 + v2)(u + v) − uv(u2 + uv + v2) − b, (2)

defines a function field E1 = Fq(u, v) with genus at most 3 whose field of
constants is Fq.

Proof. Let E1 be the plane quartic curve with affine equation �1(U, V ) = 0,
with �1 as in (2). If b = 0 then (0, 0, 1) is an ordinary triple point and no lines
through it are contained in E1. Therefore E1 is absolutely irreducible. If b 	= 0
then it is easily seen that E1 is nonsingular and therefore irreducible and of
genus 3.

Since E1 is the function field Fq(E1) of E1, the thesis follows. �
Proposition 3.3. Let a, b ∈ Fq with b 	= a4. The equation

w2 + (u + v)w + u2 + uv + v2 = 0 (3)

defines an extension E2 = E1(w) with genus at most 9 whose field of constants
is Fq.

Proof. By the substitution ψ = w + (u + v)/2, we have E2 = E1(ψ). By
straightforward computation,

ψ2 = −1
4

(
3u2 + 2uv + 3v2

)
= −3

4
(u − α1v) (u − α2v) ,

where α1, α2 are the two distinct solutions of 3T 2 + 2T + 3 = 0. By the
assumptions on a, b and the characteristic p, it is easily seen that the poly-
nomial �1(α1V, V ) is not a square in Fq[V ]. Then ψ2 has at least one zero in
Fq(u, v) with odd multiplicity, and hence ψ2 is not a square in Fq(u, v). There-
fore, by Theorem 2.1, Fq(u, v, w) : Fq(u, v) is a Galois extension of degree 2;
by Lemma 2.4, Fq is the field of constants of E2 = Fq(u, v, w). Since ψ2 has
at most 8 zeros in Fq(u, v) with odd multiplicity, the genus of E2 is at most
1 + 2(3 − 1) + 8/2 = 9. �
Let E3 = Fq(u, v, w, t), with u + v + w + t = 0. Since E3 = E2, we have shown
that E3 is a function field with genus at most 9 and field of constants Fq.
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Theorem 3.4. Assume that q ≥ 431. Then there exists a complete (q+2, 4)-arc
A in PG(2, q) containing C.

Proof. Let a, b ∈ Fq with b 	= a4. We count the number of poles and zeros of
u − v, u − w, u − t, v − w, v − t, and w − t in Fq(u, v, w, t) = Fq(u, v, w). The
poles lie over the four unramified places of Fq(u, v) centered at the ideal points
of E1. Since [Fq(u, v, w, t) : Fq(u, v)] = 2, the number of poles of u − v, u − w,
u − t, v − w, v − t, and w − t in Fq(u, v, w, t) is 8. Since the zero divisor and
the pole divisor of u − v have the same degree [17, Th. 1.4.11], the number of
zeros of u − v in Fq(u, v, w, t) is at most 8; the same holds for u − w, u − t,
v − w, v − t, and w − t.

Therefore, if the number Nq of Fq-rational places of E2 is greater than 8+6·8 =
56, then there exists an Fq-rational place Q of E3 such that P = (a, b) ∈
AG(2, q)\C is collinear with four distinct points

(
u(Q), u(Q)4

)
,
(
v(Q), v(Q)4

)
,

(
w(Q), w(Q)4

)
,
(
t(Q), t(Q)4

)
of C. By Theorem 2.3,

Nq ≥ q + 1 − 2g(E3)
√

q ≥ q + 1 − 18
√

q.

The hypothesis q ≥ 431 implies Nq > 56.

We proved that C is a (q, 4)-arc which covers all the points of PG(2, q), except
at most the ideal line.

Consider now an ideal point (1, a, 0), with a 	= 0. This point is collinear with
four distinct points of C if and only if there exist u, v, w, t ∈ Fq pairwise distinct
such that

⎧
⎨

⎩

u + v + w + t = 0
w2 + (u + v)w + u2 + uv + v2 = 0
u3 + u2v + uv2 + v3 = a

.

Arguing as above we can easily prove that for each a ∈ F
∗
q , q ≥ 431, the

previous conditions are satisfied and therefore the point (1, a, 0) is covered by
C. Also, the points (0, 1, 0) and (1, 0, 0) are not collinear with four distinct
points of C. This shows that there exists a complete (k, 4)-arc in PG(2, q) of
size q + 2 containing C. �

4. (k, 4)-arcs from quintic curves

Throughout the rest of paper, p is an odd prime with p > 5 and p ≡ 3 (mod 4),
σ = ph′

with h′ odd, q = ph with h > h′, h′ | h , and K = Fq is the algebraic
closure of Fq .

Let

Q = {(x, x5) | x ∈ Fq}
be the set of the Fq-rational affine points of the plane curve with equation
Y = X5. The following propositions show the collinearity condition of three
and four points on the quartic Q.
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Proposition 4.1. Let A = (u, u5), B = (v, v5), C = (w,w5), D = (t, t5) be four
distinct points of Q. They are collinear if and only if

{
w3 + w2(u + v) + w(u2 + uv + v2) + (u + v)(u2 + v2) = 0
t2 + t(u + v + w) + u2 + v2 + w2 + uv + uw + vw = 0 .

Proof. A,B,C,D are collinear if and only if

det

⎛

⎝
u u5 1

v − u v5 − u5 0
w − u w5 − u5 0

⎞

⎠ = det

⎛

⎝
u u5 1

v − u v5 − u5 0
t − u t5 − u5 0

⎞

⎠ = 0,

that is

{
(v − u)(w − u)(w − v)[w3 + w2(u + v) + w(u2 + uv + v2) + (u + v)(u2 + v2)] = 0
(v − u)(t − u)(t − v)[t3 + t2(u + v) + t(u2 + uv + v2) + (u + v)(u2 + v2)]=0

.

As A,B,C,D are distinct, the assertion follows. �
Proposition 4.2. Let A = (u, u5), B = (v, v5), C = (w,w5), D = (t, t5),
E = (r, r5) be five distinct points of Q. They are collinear if and only if

⎧
⎨

⎩

w3 + w2(u + v) + w(u2 + uv + v2) + (u + v)(u2 + v2) = 0
t2 + t(u + v + w) + u2 + v2 + w2 + uv + uw + vw = 0
u + v + w + t + r = 0

.

Proof. By Proposition 4.1, the points A,B,C,D,E are collinear if and only if
⎧
⎨

⎩

w3 + w2(u + v) + w(u2 + uv + v2) + (u + v)(u2 + v2) = 0
t2 + t(u + v + w) + u2 + v2 + w2 + uv + uw + vw = 0
r2 + r(u + v + w) + u2 + v2 + w2 + uv + uw + vw = 0

.

Since r 	= t, the assertion follows. �
Next we construct a (k, 4)-arc contained in Q from a coset of an additive
subgroup of Fq. Let

M := {(aσ − a) | a ∈ Fq}, (4)

and

Ke := {(v, v5) | v ∈ M + e}, (5)

with e /∈ M .

Proposition 4.3. No five points of Ke are collinear.

Proof. By Proposition 4.2, if five distinct points (ai + e, (ai + e)5), ai ∈ M ,
i = 1, . . . , 5, are collinear then
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a1 + e + a2 + e + a3 + e + a4 + e + a5 + e = 0, hence
−5e = a1 + a2 + a3 + a4 + a5 ∈ M.

Since p 	= 5 and M is closed under addition by elements of Fσ, then e ∈ M , a
contradiction. �

5. Points off Q are covered by Ke

Consider a point P = (a, b) ∈ AG(2, q)\Q. Arguing as in Proposition 4.2 we
can prove the following.

Proposition 5.1. Four distinct points A = (u, u5), B = (v, v5), C = (w,w5),
C = (t, t5) of Q and P = (a, b) ∈ AG(2, q)\Q are collinear if and only if

⎧
⎨

⎩

w3 + w2(u + v) + w(u2 + uv + v2) + (u + v)(u2 + v2) = 0
t2 + t(u + v + w) + u2 + v2 + w2 + uv + uw + vw = 0
b + uv(u2 + v2)(u + v) − a(u4 + u3v + u2v2 + uv3 + v4) = 0

.

Proof. The first two equations are the collinearity conditions for A,B,C,D,
whereas the third is the collinearity condition for A,B, P , since

det

⎛

⎝
u u5 1
v v5 1
a b 1

⎞

⎠ = (v − u)
[
b + uv(u2 + v2)(u + v)

−a(u4 + u3v + u2v2 + uv3 + v4)
]
.

�
In particular, if the points of Q have the form A = (u + e, (u + e)5), B =
(v+e, (v+e)5), C = (w+e, (w+e)5), D = (t+e, (t+e)5), then the conditions
in Proposition 5.1 read

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w3 + w2(u + v + 5e) + w
[
u2 + uv + v2 + 5e(u + v) + 10e2

]

+ (u + v)(u2 + v2) + 5e(u2 + uv + v2) + 9e2(u + v) + 7e3 = 0

t2 + t(u + v + w + 5e) + u2 + v2 + w2 + uv + uw + vw
+ e [3(u + v + w) + 2(uv + uw + vw)] + 10e2 = 0

b + (u + e)(v + e)(u + v + 2e)
[
u2 + v2 + 2e(u + v) + e2

]

−a
[
u4 + u3v + u2v2 + uv3 + v4 + 5e(u + v)(u2 + v2)

+10e2(u2 + uv + v2) + 9e3(u + v) + 4e4
]

= 0

.

Therefore, the following result holds.

Corollary 5.2. A point P = (a, b) ∈ AG(2, q)\Q is collinear with four distinct
points of Ke if and only if there exists an Fq-rational affine point (x, y, z, r),
with xσ − x, yσ − y, zσ − z, rσ − r pairwise distinct, lying on the curve HP

with equations
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HP :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Zσ − Z)3 + (Zσ − Z)2(Xσ − X + Y σ − Y + 5e)
+ (Zσ−Z)

[
(Xσ−X)2+(Xσ−X)(Y σ−Y )+(Y σ−Y )2+5e(Xσ−X+Y σ−Y )+10e2]

+(Xσ − X + Y σ − Y )
[
(Xσ − X)2 + (Y σ − Y )2

]

+5e
[
(Xσ−X)2+(Xσ−X)(Y σ−Y )+(Y σ−Y )2

]
+9e2(Xσ−X+Y σ−Y )+7e3 = 0

(Rσ − R)2 + (Rσ − R)(Xσ − X + Y σ − Y + Zσ − Z + 5e) + (Xσ − X)2 + (Y σ − Y )2

+(Zσ − Z)2 + (Xσ − X)(Y σ − Y ) + (Xσ − X)(Zσ − Z) + (Y σ − Y )(Zσ − Z)
+ e

[
3(Xσ − X + Y σ − Y + Zσ − Z)

+ 2((Xσ − X)(Y σ − Y ) + (Xσ − X)(Zσ − Z) + (Y σ − Y )(Zσ − Z))
]
+ 10e2 = 0

b + (Xσ − X + e)(Y σ − Y + e)(Xσ − X + Y σ − Y + 2e)
·[(Xσ − X)2 + (Y σ − Y )2 + 2e(Xσ − X + Y σ − Y ) + e2]

− a
[
(Xσ − X)4 + (Xσ − X)3(Y σ − Y ) + (Xσ − X)2(Y σ − Y )2 + (Xσ − X)(Y σ − Y )3

+(Y σ−Y )4+5e(Xσ−X+Y σ−Y )
[
(Xσ−X)2+(Y σ−Y )2

]

+10e2((Xσ−X)2+(Xσ−X)(Y σ−Y )+(Y σ−Y )2)+9e3(Xσ−X+Y σ−Y )+4e4
]
= 0

.

(6)

Consider the following sequence of function fields:

σ

2

σ

3

σ

σ

F7 = F6(r) : rσ − r = t

F6 = F5(t) :

t2 + t(xσ − x + yσ − y + zσ − z + 5e) + (xσ − x)2 + (yσ − y)2

+(zσ − z)2

+(xσ − x)(yσ − y) + (xσ − x)(zσ − z) + (yσ − y)(zσ − z)
+ e

[
3(xσ − x + yσ − y + zσ − z)

+ 2((xσ − x)(yσ − y) + (xσ − x)(zσ − z) + (yσ − y)(zσ − z))
]

+10e2 = 0

F5 = F4(z) : zσ − z = w

F4 = F3(w) :

w3 + w2(xσ − x + yσ − y + 5e)
+ w

[
(xσ − x)2 + (xσ − x)(yσ − y) + (yσ − y)2 + 5e(xσ − x + yσ − y)

+10e2
]

+ (xσ − x + yσ − y)((xσ − x)2 + (yσ − y)2)
+ 5e((xσ − x)2 + (xσ − x)(yσ − y) + (yσ − y)2) + 9e2(xσ − x + yσ − y)
+7e3 = 0

F3 = F2(y) : yσ − y = v

F2 = F1(x) : xσ − x = u

F1 = Fq(u, v) :
b + (u + e)(v + e)(u + v + 2e)

[
u2 + v2 + 2e(u + v) + e2

]

− a
[
u4 + u3v + u2v2 + uv3 + v4 + 5e(u + v)(u2 + v2)
+ 10e2(u2 + uv + v2) + 9e3(u + v) + 4e4

]
= 0

We are going to show that each extension Fi : Fi−1 is well-defined and that
the field of constants of each function field Fi is Fq. We will also estimate the
genus gi of Fi. Finally, by using the Hasse–Weil bound, we will show that if q
is large enough with respect to σ, then F7 has a large number of Fq-rational
places. By the equations defining F7, this implies that the curve HP possesses
a large number of Fq-rational points.
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We will first show that F1 is a function field with genus 6 whose field of
constants is Fq. Equivalently, the plane quintic curve H1 with affine equation
G1(U, V ) = 0, where

G1(U, V ) = b + (U + e)(V + e)(U + V + 2e)
[
U2 + V 2 + 2e(U + V ) + e2

]

−a
[
U4 + U3V + U2V 2 + UV 3 + V 4 + 5e(U + V )(U2 + V 2)

+10e2(U2 + UV + V 2) + 9e3(U + V ) + 4e4
]
,

is absolutely irreducible and has genus 6.

Proposition 5.3. Let a, b ∈ Fq with b 	= 0 and b 	= a5. Then H1 is absolutely
irreducible and has genus 6.

Proof. The ideal points of H1 are P1 = (1, 0, 0), Q1 = (0, 1, 0), and Ri
1 =

(1, ξi, 0), i = 1, 2, 3, with ξ a primitive 4-th root of unity; being distinct, they
are simple points. We have

∂UG1(U, V ) = (V − (a − e))
(
4(U + e)3 + 3(U + e)2(V + e) + 2(U + e)(V + e)2 + (V + e)3

)
,

∂V G1(U, V ) = (U − (a − e))
(
(U + e)3 + 2(U + e)2(V + e) + 3(U + e)(V + e)2 + 4(V + e)3

)
.

Since b 	= a5, no points (U, V ) ∈ H1 have either U = a−e or V = a−e. Also, the
resultant of ∂UG1(U, V )/ (V − (a − e)) and ∂V G1(U, V )/ (U − (a − e)) with
respect to U is 2000(V + e)9 and 2000(U + e)9, respectively. Since p > 5,
∂UG1(U, V ) = ∂V G1(U, V ) = 0 if and only if (U, V ) = (−e,−e), which is not
a point of H1 as b 	= 0. Therefore, H1 is non-singular; hence, H1 is absolutely
irreducible and has genus 6. �
Proposition 5.4. Let a, b ∈ Fq with b 	= 0, b 	= a5, and a 	= e. The equation
xσ − x = u defines an extension F2 = F1(x) with genus g2 = 9σ − 3 whose
field of constants is Fq.

Proof. By Proposition 5.3, H1 is a non-singular curve such that F1 = Fq(H1).
Thus, places of K(u, v) can be identified with points of H1. The tangent lines
at the ideal points of H1 are

�P1 : V = a − e, �Q2 : U = a − e, �Ri
1

: V − ξiU = (ξi − 1)(a + 4e)/4.

Here, the assumption a 	= e assures that U = 0 and V = 0 are not tangent
lines at the ideal points of H1; hence,

vP1(u) = vRi
1
(u) = −1, vQ1(u) = 0,

vQ1(v) = vRi
1
(v) = −1, vP1(v) = 0. (7)

Consider the function field K(u, v)(x) = K(v, x) defined by u = xσ − x. Also,
for each place centered at an affine point and for Q1 there exists ρ ∈ K(u, v)
such that the valuation of u − (ρσ − ρ) at that place is non-negative; in fact,
it is sufficient to consider ρ = 0. Hence, we can apply Theorem 2.2, so that
K(x, v) : K(u, v) is a Galois extension and [K(x, v) : K(u, v)] = σ. Moreover
P1 and Ri

1, i = 1, 2, 3, are the only totally ramified places; all other places
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are unramified. By Lemma 2.4, Fq is the constant field of F2 = Fq(x, v). The
genus is given by

g2 = σg1 +
σ − 1

2

⎛

⎝−2 +
∑

P∈P(K(u,v))

(mP + 1) deg P

⎞

⎠

= 6σ +
σ − 1

2
(−2 + 4(1 + 1)) = 9σ − 3.

�
Denote by P2, Ri

2 the places of K(x, v) lying over P1, Ri
1, respectively. Also,

let Q1
2, . . . , Q

σ
2 be the places lying over Q1.

Proposition 5.5. Let a, b ∈ Fq with b 	= 0, b 	= a5, a 	= e, and a 	= −4e.
The equation yσ − y = v defines an extension F3 = F2(y) with genus g3 ≤
10σ2 − 3σ − 1 whose field of constants is Fq.

Proof. In K(x, v) we have

vP2(v) = 0, vQi
2
(v) = −1, vRi

2
(v) = −σ.

The element v − ξiu ∈ K(u, v) satisfies vRi
2
(v − ξiu) = 0. Let ki ∈ K be such

that kσ
i = ξi, and consider ρi = kix; then,

v − (ρσ
i − ρi) = v − ξixσ + kix = v − ξixσ

+ξix − ξix + kix = v − ξiu + (ki − ξi)x.

For i = 2, ξ2 = −1 and k2 = −1; hence, vR2
2
(v − (ρσ

2 − ρ2)) = 0. For i ∈ {1, 3},
we have that ki 	= ξi by the assumption 4 � (σ−1); hence, vRi

2
((ki −ξi)x) = −1

and vRi
2
(v−(ρσ

i −ρi)) = −1. For the places centered at affine points, at P2, and
at Qi

2, it is sufficient to choose ρ = 0. Then, by Theorem 2.2, K(x, y) : K(x, v)
is a Galois extension with [K(x, y) : K(x, v)] = σ and

g3 = σg2 +
σ − 1

2

⎛

⎝−2 +
∑

P∈P(K(x,v))

(mP + 1) deg P

⎞

⎠

≤ σ(9σ − 3) +
σ − 1

2
(−2 + (σ + 2)(1 + 1)) = 10σ2 − 3σ − 1.

Finally, by Lemma 2.4, Fq is the constant field of F3 = Fq(x, y). �
In the extension K(x, y) : K(x, v) the unique totally ramified places are
Q1

2, . . . , Q
σ
2 , R1

2, and R3
2; let Q1

3, . . . , Q
σ
3 , R1

3, and R3
3 be the places lying over

them. All other places are unramified; denote by P i
3 and R2,i

3 , i = 1, . . . , σ, the
places lying over P2 and R2

2, respectively.

Now we investigate an auxiliary function field.

Lemma 5.6. Let a, b ∈ Fq, with b 	= 0 and b 	= a5. The equations
⎧
⎨

⎩

η2 = − 4μ3+5μ+5
4μ

64μ6λ5 − 64aμ6λ4 + 80μ4λ5 − 80aμ4λ4

+76μ2λ5 + 180aμ2λ4 − 256bμ2 − 25λ5 + 25aλ4 = 0
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define a function field Fq(μ, λ, η) with genus at most 53, whose field of constants
is Fq.

Proof. We divide the proof in three steps.

1. We show that the equation C(ρ, λ) = 0, with

C(ρ, λ) = 64ρ3λ5 − 64aρ3λ4 + 80ρ2λ5

−80aρ2λ4 + 76ρλ5 + 180aρλ4 − 256bρ − 25λ5 + 25aλ4,

defines a function field Fq(ρ, λ) of genus at most 8, whose field of constants
is Fq.
Let P∞ = (1, 0, 0) and Q∞ = (0, 1, 0) be the ideal points of the curve
C : C(R,L) = 0. The point P∞ is singular with multiplicity 5; the tangent
lines at P∞ are L = 0 with multiplicity 4 and L = a. The point Q∞
is singular with multiplicity 3; the tangent lines at Q∞ have equation
R = 1/4, R = −3/4 +

√
−1, and R = −3/4 −

√
−1. The affine points of

C are non-singular.
The curve C has no linear components. In fact, assume by contradiction
that the line � is a component of C. If P∞ ∈ �, then � has equation
L = k; hence, either k = 0 or k = a, which implies either 256b = 0 or
256(a5 − b) = 0, against the assumptions. If Q∞ ∈ �, then � has equation
R = k; hence, either 256b = 0, or k = 0 and 25 = 0, impossible.
The curve C has no proper components of degree higher than one. In
fact, assume by contradiction that C splits into two proper components
Ci and C8−i, where Ci, C8.i have degree i, 8 − i; also, the product of the
leading terms of Ci and C8−i equals 64ρ3λ5. By comparing the coefficients
of Ci · C8−i and C for each i ∈ {2, 3, 4}, we get b = 0, a contradiction.
Therefore, C is absolutely irreducible. As C has two singular points of
multiplicity 5 and 3, the genus of C is at most 8. The thesis follows,
since Fq(ρ, λ) is the function field of C, and Fq is the field of constants of
Fq(ρ, λ) by Lemma 2.4.

2. We show that the equation μ2 = ρ defines a Kummer extension Fq(μ, λ) =
Fq(ρ, λ)(μ) with genus at most 18, whose field of constants is Fq.
The function ρ has two zeros in K(ρ, λ), namely the simple zero Aa cen-
tered at (0, a) and the zero A0 with multiplicity 4 centered at (0, 0).
Hence, ρ is not a square in K(ρ, λ). Also, there are at least two places
and at most six places of K(ρ, λ) at which ρ has odd multiplicity; namely,
the place Aa and between one and five places lying over the pole P∞
of ρ in K(ρ). Then, by Theorem 2.1, the genus of Fq(μ, λ) is at most
1 + 2(8 − 1) + 6/2 = 18. By Lemma 2.4, Fq is the field of constants of
Fq(μ, λ).

3. We show that the equation η2 = − 4μ3+5μ+5
4μ defines a Kummer extension

Fq(μ, λ, η) = Fq(μ, λ)(η) with genus at most 53, whose field of constants
is Fq.
Let Aa be the place of K(μ.λ) lying over Aa; then vAa

(η2) = −1. There-
fore, K(μ, λ, η) : K(μ, λ) is a Kummer extension, and Aa is ramified
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in K(μ, λ, η) : K(μ, λ). There are exactly five places of K(μ, λ) lying
over P∞; they are ramified in K(μ, λ, η) : K(μ, λ). Let μ1, μ2, μ3 be
the three distinct solutions in μ of the equation 4μ3 + 5μ + 5 = 0. For
i = 1, 2, 3, there are at most 10 places of K(μ, λ, η) which are ramified in
K(μ, λ, η) : K(μ, λ) and lie over the zero of ρ − μ2

i in K(ρ).
All other places are unramified in K(μ, λ, η) : K(μ, λ). Then, by Theorem
2.1, the genus of Fq(μ, λ, η) is at most 1 + 2(18 − 1) + 36/2 = 53. By
Lemma 2.4, Fq is the field of constants of Fq(μ, λ, η).

�
Proposition 5.7. Let a, b ∈ Fq, with b 	= 0 and b 	= a5. The equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b + (u + e)(v + e)(u + v + 2e)
[
u2 + v2 + 2e(u + v) + e2

]

− a
[
u4 + u3v + u2v2 + uv3 + v4 + 5e(u + v)(u2 + v2)

+10e2(u2 + uv + v2) + 9e3(u + v) + 4e4
]

= 0

w3 + w2(u + v + 5e) + w
[
u2 + uv + v2 + 5e(u + v) + 10e2

]

+ (u + v)(u2 + v2) + 5e(u2 + uv + v2) + 9e2(u + v) + 7e3 = 0

(8)

define a function field Fq(u, v, w) with genus at most 53, whose field of con-
stants is Fq.

Proof. Let X be the space curve with affine equations C1(U, V,W ) = 0 and
C2(U, V,W ) = 0, where

C1(U, V,W ) = b + UV
(
U3 + U2V + UV 2 + V 3

)

−a
(
U4 + U3V + U2V 2 + UV 3 + V 4

)
,

C2(U, V,W ) = W 3 + W 2(U + V ) + W
(
U2 + UV + V 2

)

+
(
U3 + U2V + UV 2 + V 3

)
.

Denote by u, v, w the coordinate functions of X . Now consider the morphism

ϕ : (U, V,W, T ) �→ (M,L,E, T ) = (U/W + V/W + 1/2,W,U/W − V/W, T ).

Then X is Fq-birationally equivalent to the curve Y = ϕ(X ) with affine equa-
tions

Y :

⎧
⎪⎨

⎪⎩

L3
(
E2 + 4M3+5M+5

4M

)
= 0

64M6L5 − 64aM6L4 + 80M4L5 − 80aM4L4

+76M2L5 + 180aM2L4 − 256bM2 − 25L5 + 25aL4 = 0
.

Since Y has no points (M,L,E, T ) with L = 0, equivalent equations for Y are

Y :

⎧
⎨

⎩

E2 = − 4M3+5M+5
4M

64M6L5 − 64aM6L4 + 80M4L5 − 80aM4L4

+76M2L5 + 180aM2L4 − 256bM2 − 25L5 + 25aL4 = 0
.

By Lemma 5.6, X is absolutely irreducible and has genus at most 53; also, the
function field Fq(u, v, w) of X has constant field Fq. Let u = u + e, v = v + e,
and w = w + e. Then Fq(u, v, w) = Fq(u, v, w) and u, v, w satisfy the Eq. (8).
This yields the thesis. �
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The function field F4 is the compositum of Fq(u, v, w) and F3. The extension
F4 : F1 has degree [Fq(u, v, w) : F1] · [F3 : F1] = 3σ2, since 3 and σ2 are
coprime. Also, Fq is the field of constants of F4.

For i = 1, . . . , σ, we have by the Eq. (8) that in the extension F4 : F3 there
are three distinct places P i,j

4 (j = 1, 2, 3) lying over P i
3. Also, there are three

distinct places Ri,j
4,2 and R�,j

4 (�, j = 1, 2, 3) lying over R2,i
3 and R�

3, respectively;
let Ri,1

4,2 be the place centered at the point (X,Y, 0, 0) with W = 0.

Proposition 5.8. Let a, b ∈ Fq with b 	= 0, b 	= a5, a 	= e, and a 	= −4e.
The equation zσ − z = w defines an extension F5 = F4(z) with genus g5 ≤
100σ3 − 24σ2 − 6σ + 1 whose field of constants is Fq.

Proof. Let P1 be the place of K(u, v) centered at (1, 0, 0). In the extension
K(u, v, w) : K(u, v) there are three distinct places lying over P1, namely the
places P̃ i

2 centered at (1, 0, ξi, 0), i = 1, 2, 3. Consider the place P̃ 1
2 . Then

vP̃ 1
2
(u) = vP̃ 1

2
(w) = −1, and w = ξu + Φ for some Φ ∈ K(u, v, w) with

vP̃ 1
2
(Φ) ≥ 0. Since σ ≡ 3 (mod 4), we have ξ /∈ Fσ; hence, there exists k ∈ K

with kσ = ξ and k 	= ξ. Let ρ = kx; then

w − (ρσ − ρ) = ξ(xσ − x) + Φ − kσxσ + kx

= (ξ − kσ)xσ + (k − ξ)x + Φ = (k − ξ)x + Φ.

Choose i and j such that P i,j
4 lies over P̃ 1

2 . Then

vP i,j
4

(Φ) = e(P i,j
4 | P̃ 1

2 ) · vP̃ 1
2
(Φ) ≥ 0 , vP i,j

4
(x) = e(P i,j

4 | P i
3) · vP i

3
(x) = −1.

Therefore,
vP i,j

4
(w − (ρσ − ρ)) = −1. (9)

Now we prove that

γ w 	= ζp − ζ for all ζ ∈ K(x, y, w), γ ∈ Fσ.

On the contrary, assume γ w = ζp − ζ with ζ ∈ K(x, y, w), γ ∈ Fσ. From (9),

−1 = vP i,j
4

(γw − (γρσ − γρ)) = vP i,j
4

(γw − (ασ − α)),

with α = γρ ∈ K(x, y, w). Since

ασ − α =
(
ασ/p + ασ/p2

+ · · · + α
)p

−
(
ασ/p + ασ/p2

+ · · · + α
)

,

we have

vP i,j
4

((ζ − β)p − (ζ − β)) = vP i,j
4

(ζp − ζ − (βp − β)) = −1,

where β = ασ/p + ασ/p2
+ · · · + α ∈ K(u, v, w). But this is clearly impossible,

since the valuation of ((ζ − β)p − (ζ − β)) must be either non-negative or a
multiple of p. Then we can apply Lemma 1.3 in [5] to conclude that T σ −T −w
is irreducible over K(x, y, w), and K(x, y, z) : K(x, y, w) is an Artin–Schreier
extension of degree σ. Also, by Lemma 2.4, Fq is the constant field of Fq(x, y, z).
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Finally, we give a bound on g5. By Castelnuovo’s Inequality (see Theorem
3.11.3 in [17]),

g5 ≤ [F5 : F3] · g3 + [F5 : Fq(u, v, z)] · g(Fq(u, v, z))
+ ([F5 : F3] − 1) · ([F5 : Fq(u, v, z)] − 1) .

We have

[F5 : F3] = [F5 : F4] · [F4 : F3] = 3σ , g3 ≤ 10σ2 − 3σ − 1.

Since
{
x, x2, . . . , xσ

}
is a basis of Fq(x, v, z) over Fq(u, v, z) and

{
y, y2, . . . , yσ

}

is a basis of F5 over Fq(x, v, z), we have that
{
xiyj | i, j = 1, . . . , σ

}
is a basis

of F5 over Fq(u, v, z) and

[F5 : Fq(u, v, z)] = σ2.

By direct computations with the Eq. (8), the places P1, Q1, Ri
1 (i = 1, 2, 3) of

K(u, v) are not ramified in K(u, v, w) : K(u, v). Hence,

vP̃ j
2
(w) = vQ̃j

2
(w) = vR̃i,j

2
(w) = −1 , for j = 1, 2, 3 ,

where P̃ j
2 , Q̃j

2, R̃i,j
2 are the places of K(u, v, w) lying over P1, Q1, Ri

1, respec-
tively. The valuation of w at any other place of K(u, v, w) is non-negative.
Then, by Theorem 2.2, K(u, v, z) : K(u, v, w) is a generalized Artin–Schreier
extension of degree σ, and

g(K(u, v, z)) = σ g(K(u, v, w)) +
σ − 1

2

⎛

⎝−2 +
∑

P∈P(K(u,v,w))

(mP + 1) deg P

⎞

⎠

≤ 53σ +
σ − 1

2
(−2 + 15(1 + 1)) = 67σ − 14.

Therefore g(Fq(u, v, z)) ≤ 67σ − 14, and

g5 ≤ 3σ(10σ2 − 3σ − 1) + σ2(67σ − 14)
+(3σ − 1)(σ2 − 1) = 100σ3 − 24σ2 − 6σ + 1.

�
The places R�,j

4 and Ri,1
4,2 are zeros of w, hence they are not ramified in the

Artin–Schreier extension F5 : F4 (see [17, Prop. 3.7.8]), whereas P i,j
4 is totally

ramified. Denote by P i,j
5 , Rj,1

5,�, . . . , R
j,σ
5,� , and Ri,1,1

5,2 , . . . , Ri,1,σ
5,2 the places of F5

lying over P i,j
4 , R�,j

4 , and Ri,1
4,2, respectively.

Proposition 5.9. Let a, b ∈ Fq with b 	= 0 and b 	= a5. The equation

t2 + t(u + v + w + 5e) + u2 + v2 + w2 + uv + uw + vw

+ e [3(u + v + w) + 2(uv + uw + vw)] + 10e2 = 0 (10)

defines an extension Fq(u, v, w, t) = Fq(u, v, w)(t) with genus at most 150
whose field of constants is Fq.
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Proof. Let K(u, v, w) be the function field defined by C1(u, v, w) = 0 and
C2(u, v, w) = 0, where

C1(u, v, w) = b + uv(u3 + u2v + uv2 + v3) − a(u4 + u3v + u2v2 + uv3 + v4),
C2(u, v, w) = w3 + w2(u + v) + w(u2 + uv + v2) + (u3 + u2v + uv2 + v3).

As shown in the proof of Proposition 5.7, K(u, v, w) has genus at most 53 and
constant field Fq. Let

t
2 = −3u2 + 3v2 + 3w2 + 2uv + 2uw + 2vw

4
. (11)

The zeros of t
2 are centered at common roots of the polynomials C1(U, V ,W ),

C2(U, V ,W ), and

C3(U, V ,W ) = 3U
2

+ 3V
2

+ 3W
2

+ 2UV + 2UW + 2V W.

The resultant of C2 and C3 with respect to W is

C4(U, V ) = 16U
6

+ 24U
5
V + 35U

4
V

2
+ 50U

3
V

3
+ 35U

2
V

4
+ 24UV

5
+ 16V

6
,

which is homogeneous in U and V ; hence, C5 = C4/V
6

is an univariate poly-
nomial of degree 6 in the indeterminate Ũ = U/V . The discriminant of C5

with respect to Ũ is −219510 	= 0, then C4(U, V ) splits into six distinct linear
components L1, . . . , L6 passing through O = (0, 0). For each i = 1, . . . , 6, C1

and Li have at least one common zero Zi with odd multiplicity, and Zi 	= O.
Let D be the discriminant of C3 with respect to W . The resultant of D and C4

with respect to V is 22854U
12

; hence, Zi is a simple zero of C3. Therefore, the
Eq. (11) defines a Kummer extension K(u, v, w, t) = K(u, v, w)(t), and there
are at most 6 · 5 · 3 = 90 zeros of t

2 with odd multiplicity. By Theorem 2.1,

g(K(u, v, w, t)) ≤ 1 + 2(53 − 1) +
1
2

· 90 = 150.

Also, by Lemma 2.4, Fq is the constant field of Fq(u, v, w, t). By the substitu-
tion

u = u+e, v = v+e, w = w+e, t = t+e+
1
2

((u+e)+(v+e)+(w+e)) ,

we have Fq(u, v, w, t) = Fq(u, v, w, t); also, u, v, w, t satisfy Eqs. (8) and (10).
The thesis follows. �
The function field F6 is the compositum of Fq(u, v, w, t) and F5. The extension
F6 : F1 has degree 6σ3, since 6 and σ3 are coprime. Also, Fq is the field of
constants of F6.

Proposition 5.10. Suppose that
√

2e − 1 /∈ Fσ, and let a, b ∈ Fq with b 	= 0,
b 	= a5, a 	= e, and a 	= −4e. The equation rσ − r = t defines an extension
F7 = F6(r) with genus g7 ≤ 381σ4 − 78σ3 − 12σ2 + 1 whose field of constants
is Fq.

Proof. Let R̃2,1
2 be the place of K(u, v, w) centered at (1,−1, 0, 0). By Eq. (10),

R̃2,1
2 is not ramified in K(u, v, w, t) : K(u, v, w); denote by R̃1,1

3,2 the place of
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K(u, v, w, t) lying over R̃2,1
2 and centered at (1,−1, 0, η, 0), where η2 = 2e − 1.

Similarly, Ri,1,j
5,2 is not ramified in K(x, y, z, t) : K(x, y, z); denote by Ri,1,j

6,2,1

the place of K(x, y, z, t) lying over Ri,1,j
5,2 and centered at the ideal point

(X,Y,Z, η, 0) with T = η. Note that the assumption q ≥ σ2 allows to choose
e such that e /∈ M (with M as in (4)) and η /∈ Fσ.

Consider the place R̃1,1
3,2. Then vR̃1,1

3,2
(u) = vR̃1,1

3,2
(t) = −1, and t = ηu + Φ for

some K(u, v, w, t) with vR̃1,1
3,2

(Φ) ≥ 0. Let k ∈ K with kσ = η and k 	= η, and
let ρ = kx; then

t − (ρσ − ρ) = η(xσ − x) + Φ − kσxσ

+ kx = (η − kσ)xσ + (k − η)x + Φ = (k − η)x + Φ.

The place Ri,1,j
6,2,1 lies over R̃1,1

3,2 and Ri,1,j
5,2 , and

vRi,1,j
6,2,1

(Φ) = e(Ri,1,j
6,2,1 | R̃1,1

3,2) · vR̃1,1
3,2

(Φ) ≥ 0,

vRi,1,j
6,2,1

(x) = e(Ri,1,j
6,2,1 | Ri,1,j

5,2 ) · vRi,1,j
5,2

(x) = −1.

Therefore,

vRi,1,j
6,2,1

(t − (ρσ − ρ)) = −1.

Arguing as in the proof of Proposition 5.8, it is easily proved that γ t 	= ζp−ζ for
all ζ ∈ K(x, y, t) and γ ∈ Fσ. Then we can apply Lemma 1.3 in [5] to conclude
that T σ −T −t is irreducible over K(x, y, t), and K(x, y, z, r) : K(x, y, z, t) is an
Artin–Schreier extension of degree σ. Also, by Lemma 2.4, Fq is the constant
field of Fq(x, y, z). Finally, we give a bound on g7. By Castelnuovo’s Inequality
(see Theorem 3.11.3 in [17]),

g7 ≤ [F7 : F5] · g5 + [F7 : Fq(u, v, w, r)] · g(Fq(u, v, w, r))
+ ([F7 : F5] − 1) · ([F7 : Fq(u, v, w, r)] − 1) .

We have

[F7 : F5] = [F7 : F6] · [F6 : F5] = 2σ , g5 ≤ 100σ3 − 24σ2 − 6σ + 1.

Since
{
x, x2, . . . , xσ

}
is a basis of Fq(x, v, w, r) over Fq(u, v, w, r),

{
y, y2, . . . , yσ

}

is a basis of Fq(x, y, w, r) over Fq(x, v, w, r), and
{
z, z2, . . . , zσ

}
is a basis

of F7 over Fq(x, y, w, r), we have that a basis of F7 over Fq(u, v, w, r) is{
xiyjz� | i, j, � = 1, . . . , σ

}
; hence,

[F7 : Fq(u, v, w, r)] = σ3.

Consider a place P̃ ∈ {P j
2 , Q̃j

2, R̃
i,j
2 | i, j = 1, 2, 3} of K(u, v, w), and a place P

of K(u, v, w, t) lying over P̃ . Then vP (t) ∈ {−1,−2}; hence, vP (t) is negative
and coprime with σ. The valuation of t at any other place of K(u, v, w, t) is
non-negative. Then, by Theorem 2.2, K(u, v, w, r) : K(u, v, w, t) is a generalized
Artin–Schreier extension of degree σ, with at most 2 · 15 ramified places, and
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g(K(u, v, w, r)) = σ g(K(u, v, w, t))

+
σ − 1

2

⎛

⎝−2 +
∑

P∈P(K(u,v,w,t))

(mP + 1) deg P

⎞

⎠

≤ 150σ +
σ − 1

2
(−2 + 30(1 + 1)) = 179σ − 29.

Therefore g(Fq(u, v, z)) ≤ 179σ − 29, and

g7 ≤ 2σ(100σ3 − 24σ2 − 6σ + 1) + σ3(179σ − 29) + (2σ − 1)(σ3 − 1)
= 381σ4 − 78σ3 − 12σ2 + 1.

�
Theorem 5.11. Let Ke as in (5), with e such that

√
2e − 1 /∈ Fσ. If q ≥

580644σ8 then Ke is a 4-arc covering all points of AG(2, q)\Q except possibly
those lying on the line Y = 0 .

Proof. Let P = (a, b) ∈ AG(2, q)\Q and assume that a 	= t, a 	= −4e, and
b 	= 0. We start by counting the number Z1 of poles of xσ − x, yσ − y, zσ − z,
and rσ − r in K(x, y, z, r). Clearly, Z1 is the number of places lying over P1,
Q1, R1

1, R2
1, or R3

1 in K(x, y, z, r) : K(u, v), hence over P i,j
5 , Qi,j

5 , Rj,i
5,�, or

Ri,j,k
5,2 in K(x, y, z, r) : K(x, y, z) (i, k = 1, . . . , σ, � = 1, 3, j = 1, 2, 3). Since

[K(x, y, z, r) : K(x, y, z)] = 2σ, we have by [17, Thm. 3.1.11] that

Z1 ≤ 2σ(3σ + 3σ + 6σ + 3σ2) = 6σ3 + 24σ2.

Now count the number Z2 of zeros of (xσ −x)−(yσ −y) in K(x, y, z, r). Clearly
a place is a zero of (xσ − x) − (yσ − y) = (x − y)σ − (x − y) if and only if it is
a zero of x − y − λ for some λ ∈ Fσ, then

Z2 ≤
∑

λ∈Fσ

deg(x − y − λ)0

=
∑

λ∈Fσ

deg(x − y − λ)∞.

The poles of x − y − λ are the places lying over P i,j
5 , Qi,j

5 , Rj,i
5,�, and Ri,j,k

5,2 .
Then, by [17, Thm. 3.1.11],

deg(x − y − λ)∞ = (12σ + 3σ2) · [K(x, y, z, r) : K(x, y, z)]
= 6σ3 + 24σ2 for all λ ∈ Fσ ;

hence, Z2 ≤ 6σ4 + 24σ3. Also, Z2 equals the number of zeros of (xσ − x) −
(zσ − z), (xσ − x) − (rσ − r), (yσ − y) − (zσ − z), (yσ − y) − (rσ − r), and
(zσ − z) − (rσ − r) in K(x, y, z, r).

Therefore, if the number Nq of Fq-rational places of F7 is greater than

6σ3 + 24σ2 + 6(6σ4 + 24σ3) = 36σ4 + 150σ3 + 24σ2 ,

then there exists an Fq-rational place P of F7 such that (x(P ), y(P ), z(P ), r(P ))
is a well-defined affine point of H with x(P )σ − x(P ), y(P )σ − y(P ), z(P )σ −
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z(P ), r(P )σ − r(P ) pairwise distinct. By theorem 2.3 we have

Nq ≥ q + 1 − 2g7
√

q ≥ q + 1 − 2(381σ4 − 78σ3 − 12σ2 + 1)
√

q.

From q ≥ 580644σ8 it follows that

q + 1 − 2(381σ4 − 78σ3 − 12σ2 + 1)
√

q ≥ 36σ4 + 150σ3 + 24σ2 + 1 ,

and hence, by Corollary 5.2, the point P is collinear with four distinct points
in Ke.

Assume now that P = (e, b) or P = (−4e, b) with b 	= 0. Let e′ ∈ M + e with
e′ 	= e, and consider the curve H′

P obtained by replacing e with e′ in Eq. (6).
Arguing as above Ke′ covers the point P . Clearly Ke′ = Ke, and the assertion
follows. �

6. Constructions of 5-independent subsets

We now want to construct complete (k, 4)-arcs from union of cosets Kt; to this
end, we will use the notion of a 5-independent subset of an elementary abelian
p-group.

Definition 6.1. Let G be a finite abelian group and let E be a subset of G. If

y1 + y2 + y3 + y4 + y5 	= 0 for all y1, y2, y3, y4, y5 ∈ E ,

then E is said to be a 5-independent subset of G. An element g ∈ G is covered
by E if either g ∈ E or

there exist y1, y2, y3, y4 ∈ E such that y1 + y2 + y3 + y4 + g = 0.

In the remaining part of the section we construct 5-independent subsets of the
abelian group Z

h′
p , for h′ an odd integer and p ≥ 7. We distinguish the cases

h′ = 1 and h′ ≥ 3. For a subset S of a group G, let s∧S denote the s-fold
sumset of S, that is,

s∧S = {y1 + . . . + ys | y1, . . . , ys ∈ S}.

In the following, let [a, b] denote the set of elements in Zp represented by
integers x with a ≤ x ≤ b.

Proposition 6.2. Let p ≥ 25 + i be an integer, with p ≡ i mod 5, i = 1, 2, 3, 4.
Then

E = {−1, 1, 3} ∪
[

5,
p − i

5

]

is a 5-independent subset of Zp covering

Zp\
{

p − i

5
+ j

∣
∣
∣ 1 ≤ j ≤ i − 1

}

.
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Proof. The sum of five elements of E∗ = {1, 3}∪
[
5, p−i

5

]
is contained in {5, 7}∪

[9, p − i] and therefore is different from 0. An easy check shows that if one or
more of the five elements is −1, then it is not possible to obtain 0.

Then

4∧E = {−4} ∪ (−3 + E∗) ∪ (−2 + 2∧E∗) ∪ (−1 + 3∧E∗) ∪ 4∧E∗ =

{−4} ∪ {−2, 0} ∪
[

2,
p − i − 15

5

]

∪ {0, 2} ∪
[

4,
2p − 2i − 10

5

]

∪ {2, 4} ∪
[

6,
3p − 3i − 5

5

]

∪ {4, 6} ∪
[

8,
4p − 4i

5

]

=

{−4, −2, 0} ∪
[

2,
4p − 4i

5

]

for p > 25 + i, and 4∧T = {−4,−2, 0, 2} ∪
[
4, 4p−4i

5

]
for p = 25 + i. Hence, the

set of covered elements off E is

−4∧E = {0, 2, 4} ∪
[
p + 4i

5
, p − 2

]

.

The noncovered elements are
{

p − i

5
+ j

∣
∣
∣ 1 ≤ j ≤ i − 1

}

.

�
We now consider the case G = Z

h′
p for h′ ≥ 3. Clearly, G can be written as

G = A × B × C, with A = Zp , B = C = Z

h′−1
2

p . Let

E = E1 ∪ E2 ∪ E3, (12)

where E1 = {(a, 1, 1) | a ∈ A\{−4}}, E2 = {(1, b, 1) | b ∈ B\ {−4}},
E3 = {(1, 1, c) | c ∈ C\ {−4}}. Here, 1 and −4 are viewed as elements of the
additive group of the finite field F

p
h′−1

2
, which is isomorphic to A, B, and C.

Proposition 6.3. Let h′ ≥ 3, p > 5, and let E be as in (12). Then E is a 5-
independent subset of Z

h′
p of size 2p

h′−1
2 + p− 5 not covering three elements of

Z
h′
p .

Proof. Consider five elements e1, e2, e3, e4, e5 ∈ E . If e1, e2, e3, e4, e5 belong
either to the same Ei or to exactly two distinct Ei’s, then they all share 1 in
one of the coordinates, and therefore e1 + e2 + e3 + e4 + e5 	= (0, 0, 0) holds.

Assume then that e1, e2, e3, e4, e5 belong to all the three Ei’s. This means that
there exists a Ei containing exactly one element ej . Since a, b, c are different
from −4, their sum cannot be equal to (0, 0, 0). This proves that E is a 5-
independent subset of Z

h′
p . Now, let e = (x, y, z) ∈ Z

h′
p \E with y, z 	= 1. Then

there exist α, β ∈ A both different from −4 such that α + β + 2 + x = 0.
Therefore

(x, y, z) + (α, 1, 1) + (β, 1, 1) + (1,−y − 3, 1) + (1, 1,−z − 3) = (0, 0, 0),
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and hence e is covered by E . The same holds for e = (x, y, z) ∈ Z
h′
p \E

with x, y 	= 1 or x, z 	= 1. The only noncovered elements are (−4, 1, 1),
(1,−4, 1), (1, 1,−4). �

7. Construction of (k, 4)-arcs from union of cosets of M

We fix three (not necessarily distinct) subsets Ke1 , Ke2 , and Ke3 , defined as
in (5), and a point P = (t, t5) in Q\ (Ke1 ∪ Ke2 ∪ Ke3). Clearly P belongs to
some subset KeP

for some eP ∈ Fq.

Let A1 = (xσ −x+e1, (xσ −x+e1)5) ∈ Ke1 , A2 = (yσ −y+e2, (yσ −y+e2)5) ∈
Ke2 , and A3 = (zσ − z + e3, (zσ − z + e3)5) ∈ Ke3 . By Proposition 4.1, the four
points P , A1, A2, and A3 are collinear if and only if
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t3 + t2 (xσ − x + e1 + yσ − y + e2)
+t

(
(xσ − x + e1)

2 + (xσ − x + e1)(y
σ − y + e2) + (yσ − y + e2)

2
)

+ (xσ − x + e1 + yσ − y + e2)
(
(xσ − x + e1)

2 + (yσ − y + e2)
2
)

= 0

(zσ − z + e3)
2 + (zσ − z + e3) (xσ − x + e1 + yσ − y + e2 + t) + (xσ − x + e1)

2

+ (yσ − y + e2)
2 + t2 + (xσ − x + e1)(y

σ − y + e2)
+(xσ − x + e1)t + (yσ − y + e2)t = 0.

.

(13)

Consider the following sequence of function fields:

σ

2

σ

σ

L5 = L4(z) : zσ − z = w

L4 = L3(w) :
(w + e3)

2 + (w + e3) (xσ − x + e1 + yσ − y + e2 + t)
+ (xσ − x + e1)

2 + (yσ − y + e2)
2 + t2

+ (xσ − x + e1)(y
σ − y + e2) + (xσ − x + e1)t + (yσ − y + e2)t = 0

L3 = L2(y) : yσ − y = v

L2 = L1(x) : xσ − x = u

L1 = Fq(u, v) : t3 + t2 (u + e1 + v + e2) + t
(
(u + e1)

2 + (u + e1)(v + e2) + (v + e2)
2
)

+ (u + e1 + v + e2)
(
(u + e1)

2 + (v + e2)
2
)

= 0

We are going to show that each extension Li : Li−1 is well-defined and that
the field of constants of each Li is Fq. We will also estimate the genus of Li.
Finally, by using the Hasse–Weil bound, we will show that if q is large enough,
then L5 has a large number of Fq-rational places, so that Eq. (13) have a
suitable solution.
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Proposition 7.1. The equation f1(u, v) = 0, where

f1(u, v) = t3 + t2 (u + e1 + v + e2)
+t

(
(u + e1)2 + (u + e1)(v + e2) + (v + e2)2

)

+ (u + e1 + v + e2)
(
(u + e1)2 + (v + e2)2

)
,

(14)

defines a function field L1 = Fq(u, v) with genus 1 whose field of constants is
Fq.

Proof. Let Γ1 be the plane curve with equation f1(U, V ) = 0, whose function
field over Fq is L1. The curve Γ1 has three distinct ideal points; hence, they
are simple points. Since

∂Uf1(U, V ) = 3(U + e1)2 + 2(U + e1)(V + e2)
+(V + e2)2 + 2t(U + e1) + t(V + e2) + t2 ,

∂V f1(U, V ) = (U + e1)2 + 2(U + e1)(V + e2) + 3(V + e2)2

+t(U + e1) + 2t(V + e2) + t2 ,

we have by direct computation that Γ1 has no singular affine points; here we
use that t 	= 0, p > 5, and σ ≡ 3 (mod 4). Therefore, Γ1 is non-singular. Then
Γ1 is absolutely irreducible with genus 1. By Lemma 2.4, Fq is the constant
field of L1. The thesis follows. �
Let ξ be a primitive 4-th root of unity. For i = 1, 2, 3, denote by P i

1 the point
of K(u, v) centered at the ideal point (1, ξi, 0) of Γ1.

Proposition 7.2. The equation xσ − x = u defines an extension L2 = L1(x)
with genus g2 = 3σ − 2 whose field of constants is Fq.

Proof. The rational function u has valuation −1 at P i
1 (i = 1, 2, 3), and non-

negative valuation at the places centered at the affine points of Γ1. Then, by
Theorem 2.2, K(x, v) : K(u, v) is a Galois extension with [K(x, v) : K(u, v)] =
σ. Moreover, P 1

1 , P 2
1 , and P 3

1 are the unique totally ramified places, and

g2 = σ · 1 +
σ − 1

2
(−2 + 3(1 + 1)) = 3σ − 2.

By Lemma 2.4, Fq is the constant field of L2 = Fq(x, v). �
For i = 1, 2, 3, denote by P i

2 the unique place of K(x, v) lying over P i
1.

Proposition 7.3. The equation yσ − y = u defines an extension L3 = L2(y)
with genus g3 = 3σ2 − 2 whose field of constants is Fq.

Proof. For i ∈ {1, 2, 3}, we have vP i
2
(v − ξiu) ≥ 0. Let ki ∈ K be such that

kσ
i = ξi, and consider ρi = kix; then,

v − (ρσ
i − ρi) = v − ξixσ + kix = v − ξixσ

+ξix − ξix + kix = v − ξiu +
(
ki − ξi

)
x.

For i = 2, we have ξ2 = −1 = k2; hence, vP 2
2
(v − (ρσ

i − ρi)) ≥ 0. For i ∈ {1, 3},
we have ki 	= ξi since 4 � (σ−1); hence, vP i

2
((ki −ξi)x) = −1 and vP i

2
(v−(ρσ

i −
ρi)) = −1. For the places centered at affine points, it is sufficient to choose
ρ = 0. Then, by Theorem 2.2, K(x, y) : K(x, v) is a Galois extension with
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[K(x, y) : K(x, v)] = σ. Moreover, P 1
2 and P 3

2 are the unique totally ramified
places, and

g3 = σ(3σ − 2) +
σ − 1

2
(−2 + 2(1 + 1)) = 3σ2 − σ − 1.

Finally, by Lemma 2.4, Fq is the constant field of L3 = Fq(x, y). �
For i ∈ {1, 3}, denote by P i

3 the unique place of K(x, y) lying over P i
2. Also,

denote by P 2,1
3 , . . . , P 2,σ

3 the places lying over P 2
2 .

Proposition 7.4. The equation

(w + e3)
2 + (w + e3) (u + e1 + v + e2 + t) + (u + e1)

2 + (v + e2)
2

+ t2 + (u + e1)(v + e2) + (u + e1)t + (v + e2)t = 0 (15)

defines an extension Fq(u, v, w) of Fq(u, v) with genus at most 4 whose field
of constants is Fq.

Proof. After the substitution θ = w + e3 + (u + e1 + v + e2 + t)/2, we have

θ2 = Θ(u, v) = − 1
4

[
3(u + e1)2 + 3(v + e2)2 + 3t2

+ 2(u + e1)(v + e2) + 2(u + e1)t + 2(v + e2)t
]
.

The poles of w and θ in K(u, v) are P 1
1 , P 2

1 , and P 3
1 ; θ2 has valuation 2 at

each of them. Hence, the number of zeros of θ2 in K(u, v) is at most 6. Let
D1(U, V ) be the discriminant of Θ(U, V ) with respect to U . Let R ∈ K be the
resultant of D1(U, V ) and f1(U, V ) with respect to V , where f1(u, v) is defined
in (14). By direct computation, R 	= 0. Since f1(U, V ) has odd degree, this
implies that θ has a zero in K(u, v) with odd multiplicity. Then, by Theorem
2.1, K(u, v, θ) : K(u, v) is a Galois extension with [K(u, v, θ) : K(u, v)] = 2.
Moreover, the unique totally ramified places are the zeros of θ2 in K(u, v) with
odd multiplicity, and

g(Fq(u, v, w)) = g(Fq(u, v, θ)) ≤ 1 + 2(1 − 1) +
1
2

· 6 = 4.

Finally, by Lemma 2.4, Fq is the constant field of Fq(u, v, w). �
The function field L4 is the compositum of Fq(u, v, w) and L3. The extension
L4 : L1 has degree [Fq(u, v, w) : L1] · [L3 : L1] = 2σ2, since 2 and σ2 are
coprime. Also, Fq is the field of constants of L4.

For i = 1, 2, 3 and j = 1, 2, denote by Q̃j
i the place of K(u, v, w) lying over Pi,

and by Qj
i the place of L4 lying over Q̃j

i . The places Q̃1
2, Q̃2

2 are centered at
the points (1,−1, ξ, 0), (1,−1,−ξ, 0).

Proposition 7.5. The equation zσ − z = w defines an extension L5 = L4(z)
with genus g5 ≤ 21σ3 − 9σ2 − 6σ + 1 whose field of constants is Fq.

Proof. We have vQ̃1
2
(u) = vQ̃1

2
(w) = −1, and w = ξu+Φ for some Φ ∈ K(u, v, w)

with vQ̃1
2
(Φ) ≥ 0. Since σ ≡ 3 (mod 4), we have ξ /∈ Fσ; hence, there exists

k ∈ K with k ∈ σ and k 	= σ. Let ρ = kx; then w − (ρσ − ρ) = (k − ξ)x + Φ.
Since vQ1

2
(Φ) = e(Q1

2 | Q̃1
2) ·vQ̃1

2
(Φ) ≥ 0 and vQ1

2
(x) = e(Q1

2 | P2) ·vP2(x) = −1,
vQ1

2
(w − (ρσ −ρ)) = −1. Arguing as in the proof of Proposition 5.8, it is easily
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proved that γ t 	= ζp − ζ for all ζ ∈ K(x, y, t) and γ ∈ Fσ. Then we can apply
Lemma 1.3 in [5] to conclude that T σ − T − w is irreducible over K(x, y, t),
and K(x, y, z) : K(x, y, w) is an Artin–Schreier extension of degree σ. Also, by
Lemma 2.4, Fq is the constant field of Fq(x, y, z). Finally, we give a bound on
g5. By Castelnuovo’s Inequality (see Theorem 3.11.3 in [17]),

g5 ≤ [L5 : L3] · g3 + [L5 : Fq(u, v, z)] · g(Fq(u, v, z))
+ ([L5 : L3] − 1) · ([L5 : Fq(u, v, z)] − 1) .

We have [L5 : L3] = [L5 : L4] · [L4 : L3] = 3σ and g3 = 3σ2 − σ − 1.

Since
{
x, x2, . . . , xσ

}
is a basis of Fq(x, v, z) over Fq(u, v, z) and

{
y, y2, . . . , yσ

}

is a basis of L5 over Fq(x, v, z), we have that a basis of L5 over Fq(u, v, z) is{
xiyj | i, j = 1, . . . , σ

}
; hence, [L5 : Fq(u, v, z)] = σ2.

For i = 1, 2, 3, the place Pi does not ramify in K(u, v, w) : K(u, v); hence,
by (15), w has valuation −1 at the places Q̃j

i over Pi, whereas w has non-
negative valuation at any other place of K(u, v, w). Then, by Theorem 2.2,
K(u, v, z) : K(u, v, w) is a Galois extension with [K(u, v, z) : K(u, v, w)] = σ
and

g(K(u, v, z)) = σ · 4 +
σ − 1

2
(−2 + 6(1 + 1)) = 9σ − 5.

Therefore,

g5 ≤ 3σ(3σ2 − σ − 1) + σ2(9σ − 5) + (3σ − 1)(σ2 − 1) = 21σ3 − 9σ2 − 6σ + 1.

�
Proposition 7.6. Assume that q ≥ 1764σ6. Then P is collinear with three
distinct points A1 ∈ Ke1 , A2 ∈ Ke2 , and A3 ∈ Ke3 .

Proof. We are going to show that there exist x0, y0, z0 ∈ Fq such that (13)
holds for x = x0, y = y0, z = z0, and xσ

0 − x0, yσ
0 − y0, zσ

0 − z0 are pairwise
distinct. We start by counting the number Z1 of poles of xσ − x, yσ − y, and
zσ − z in K(x, y, z). This is the number of places of K(x, y, z) lying over P 1

3 ,
P 3
3 , P 2,1

3 , . . . , P 2,σ
3 ; hence, Z1 ≤ [K(x, y, z) : K(x, y)] · (σ +2) = 2σ2 +4σ. Next

we estimate the number Z2 of zeros of (xσ −x)− (yσ − y) = (x− y)σ − (x− y)
in L5, hence the number of zeros of x − y − λ for some λ ∈ Fσ. We have

Z2 ≤
∑

λ∈Fσ
deg(x − y − λ)0 =

∑
λ∈Fσ

deg(x − y − λ)∞
= |{P 1

1 , P 2
1 , P 3

1 }| · [L5 : L1] = 6σ3.

By the same argument, also (xσ − x) − (zσ − z) and (yσ − y) − (zσ − z) have
at most 6σ3 zeros in L5.

Therefore, if the number Nq of Fq-rational places of L5 is greater than 18σ3 +
2σ2 + 4σ, then there exists an Fq-rational place A of L5 such that the point
(x0, y0, z0) = (x(A), y(A), z(A)) is well defined and xσ

0 − x0, yσ
0 − y0, zσ

0 − z0
are pairwise distinct. By Theorem 2.3,

Nq ≥ q + 1 − 2g5
√

q ≥ q + 1 − 2
(
21σ3 − 9σ2 − 6σ + 1

) √
q.

The hypothesis q ≥ 1764σ6 implies Nq ≥ 18σ3 + 2σ2 + 4σ + 1. �
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Proposition 7.7. Assume that q ≥ 1764σ6. Then P is collinear with four dis-
tinct points A1 ∈ Ke1 , A2 ∈ Ke2 , A3 ∈ Ke3 , and A4 ∈ Ke4 .

Proof. By Proposition 7.6, P is collinear with three distinct points A1 ∈ Ke1 ,
A2 ∈ Ke2 , and A3 ∈ Ke3 . The line through A1, A2, A3, and P can be a
tangent line to the curve Q. Note that there are at most five tangent lines
through P to Q; in fact, imposing that P lies on the tangent to Q at (X,X5)
gives an equation in X of degree 5. Therefore, we need at least six distinct
triples {A1, A2, A3} such that A1, A2, A3 are collinear with P . Arguing as
in the proof of Proposition 7.6, it is sufficient to require that the number of
Fq-rational places of L5 is greater than 5 · 18σ3 + 2σ2 + 4σ = 90σ3 + 2σ2 + 4σ.
This is implied by Theorem 2.3. �
Henceforth, E denotes a 5-independent subset of Fq/M , for M as in (4). Let

KE =
⋃

M+e∈E
Ke. (16)

Proposition 7.8. The set KE is a (k, 4)-arc.

Proof. By Proposition 4.2, the sum of the first coordinate of 5 collinear points
on Q is equal to 0. This is impossible if the points belong to KE , since E is a
5-independent subset of Fq/M . �
Proposition 7.9. Assume that q ≥ 1764σ6. Let Cov(E) be the set of all the
elements of Fq/M covered by E as 5-independent subset. Then the points in

⋃

M+e∈Cov(E)
Ke

are covered by KE .

Proof. Let P ∈ KeP
with M + eP ∈ Cov(E). Then there exist M + e1,M +

e2,M+e3,M+e4 in E such that eP +e1+e2+e3+e4 ∈ M . Also, by Proposition
7.7, there exists four distinct points P1 ∈ Ke1 , P2 ∈ Ke2 , P3 ∈ Ke3 , and P4 ∈ Q
which are collinear with P . Let e′

4 be such that P4 ∈ Ke′
4
. By Proposition 4.2,

eP + e1 + e2 + e3 + e′
4 ∈ M . Then M + e4 = M + e′

4, that is, Ke4 = Ke′
4
. Hence,

P1, P2, P3, P4 ∈ KE and the assertion is proved. �
Theorem 7.10. Let E be a 5-independent subset of Fq/M of size n, not covering
at most m elements of Fq/M , and let KE be as in (16). Assume q ≥ 580644σ8.
Then there exists a complete (k, 4)-arc K with KE ⊂ K ⊂ Q of size at most

(n + m)
q

σ
+ 8.

Proof. Fix a coset M + e in E . By Theorem 5.11, all the points of PG(2, q)\Q
are covered by a Ke plus at most eight points covering the lines Y = 0 and
T = 0. By Proposition 7.9, there are at most m q

σ affine points of Q not covered
by KE . This shows that there exists a complete (k, 4)-arc K containing KE of
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size at most

|KE | + m
q

σ
+ 8 = (n + m)

q

σ
+ 8.

�
We are finally in a position to prove Theorem 1.1. Identify the additive groups
Z

h′
p and Fq/M . From Propositions 6.2 and 6.3 the following values of n and m

occur in Theorem 7.10:

• For σ = p, p ≥ 29, p ≡ i ∈ {1, 2, 3, 4} (mod 5),

n =
p − 5 − i

5
and m = i − 1;

• for σ ≥ p3,

n = 2p
h′−1

2 + p − 5 and m = 3.

References

[1] Anbar, N., Giulietti, M.: Bicovering arcs and small complete caps from elliptic
curves. J. Algebr. Comb. 38, 371–392 (2013)

[2] Anbar, N., Bartoli, D., Giulietti, M., Platoni, I.: Small complete caps from sin-
gular cubics. J. Comb. Des. 22(10), 409–424 (2014)

[3] Anbar, N., Bartoli, D., Giulietti, M., Platoni, I.: Small complete caps from sin-
gular cubics, II. J. Algebr. Comb. 41, 185–216 (2015)

[4] Bartoli, D., Giulietti, M., Zini, G.: Complete (k,3)-arcs from quartic curves. Des.
Codes Cryptogr. 79(3), 487–505 (2016)

[5] Garcia, A., Stichtenoth, H.: Elementary abelian p-extensions of algebraic func-
tion fields. Manuscr. Math. 72, 67–79 (1991)

[6] Giulietti, M., Pambianco, F., Torres, F., Ughi, E.: On complete arcs arising from
plane curves. Des. Codes Cryptogr. 25, 237–246 (2002)

[7] Giulietti, M., Pasticci, F.: On the completeness of certain n-tracks arising from
elliptic curves. Finite Fields Appl. 13(4), 988–1000 (2007)

[8] Hamilton, N., Penttila, T.: Sets of type (a, b) from subgroups of ΓL(1, pR). J.
Algebr. Comb. 13, 67–76 (2001)

[9] Hirschfeld, J.W.P.: Algebraic Curves, Arcs, and Caps over Finite Fields.
Quaderni del Dipartimento di Matematica dell’Università del Salento, Lecce
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