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Let Fq be the finite field of order q = ph with p > 2 prime and 
h > 1, and let Fq̄ be a subfield of Fq . From any two q̄-linearized 
polynomials L1, L2 ∈ Fq[T ] of degree q, we construct an 
ordinary curve X(L1,L2) of genus g = (q − 1)2 which is a 
generalized Artin–Schreier cover of the projective line P1. The 
automorphism group of X(L1,L2) over the algebraic closure Fq

of Fq contains a semidirect product Σ � Γ of an elementary 
abelian p-group Σ of order q2 by a cyclic group Γ of order q̄−1. 
We show that for L1 �= L2, Σ � Γ is the full automorphism 
group Aut(X(L1,L2)) over Fq ; for L1 = L2 there exists an extra 
involution and Aut(X(L1,L1)) = Σ � Δ with a dihedral group 
Δ of order 2(q̄ − 1) containing Γ. Two different choices of 
the pair {L1, L2} may produce birationally isomorphic curves, 
even for L1 = L2. We prove that any curve of genus (q − 1)2
whose Fq-automorphism group contains an elementary abelian 
subgroup of order q2 is birationally equivalent to X(L1,L2) for 
some separable q̄-linearized polynomials L1, L2 of degree q. 
We produce an analogous characterization in the special case 
L1 = L2. This extends a result on the Artin–Mumford curves, 
due to Arakelian and Korchmáros [1].
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1. Introduction

The Artin–Mumford curve Mc of genus (p − 1)2 defined over a field F of odd charac-
teristic p is the nonsingular model of the plane curve with affine equation

(Xp −X)(Y p − Y ) = c, c ∈ F
∗. (1)

Artin–Mumford curves, especially over non-Archimedean valued fields of positive char-
acteristic, have been investigated in several papers; see [3,2], and [4]. By a result of 
Cornelissen, Kato and Kontogeorgis [2] valid over any non-Archimedean valued field 
(F, | · |) of positive characteristic, if |c| < 1 then AutF(Mc) is the semidirect product

(Cp × Cp) �Dp−1, (2)

where Cp is a cyclic group of order p and Dp−1 is a dihedral group of order 2(p − 1). 
This result holds over any algebraically closed field; see [11].

The interesting question whether the genus (p − 1)2 together with an automorphism 
group as in (2) characterize the Artin–Mumford curve has been solved so far only for 
curves defined over Fp; see [1].

A natural generalization of Artin–Mumford curves arises when the polynomials Xp−X

and Y p − Y in (1) are replaced by separable linearized polynomials L1, L2 of equal 
degree. Our aim is to investigate such generalized Artin–Mumford curves, especially 
their automorphism groups. To present our results, we need some notation that will also 
be used throughout the paper.

For an odd prime p and powers q̄ = pn and q = q̄m, Fp, Fq̄, Fq are the finite fields 
of order p, q̄, q; K is the algebraic closure of Fp; L1(T ), L2(T ) ∈ K[T ] are separable 
polynomials of degree q which are q̄-linearized. We admit that one, but not both, is 
q̄k-linearized, for some k ≥ 2. With this notation, the generalized Artin–Mumford curve
X(L1,L2) is the nonsingular model of the plane curve with affine equation

X(L1,L2) : L1(X) · L2(Y ) = 1. (3)

The family of generalized Artin–Mumford curves is denoted by:

Sq|q̄ =
{
X(L1,L2) | L1(T ), L2(T ) ∈ K[T ], deg(L1) = deg(L2) = q, L1, L2 are separable,

q̄-linearized, not both q̄k-linearized for any k ≥ 2
}
.

An interesting feature of a generalized Artin–Mumford curve X(L1,L2) is that its genus 
only depends on q, namely g(X(L1,L2)) = (q − 1)2. Also, X(L1,L2) is an ordinary curve, 
that is, its genus and p-rank are equal. A complete description of the automorphism 
group of any generalized Artin–Mumford curve is given in the following two theorems.
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Theorem 1.1. The full automorphism group of X(L,L) is the semidirect product

Σ � Δ, (4)

where

• Σ = {τα,β : (X, Y ) �→ (X + α, Y + β) | L(α) = L(β) = 0} is an elementary abelian 
p-group of order q2;

• Δ = 〈θ, ξ〉 is a dihedral group of order 2(q̄− 1), where θ : (X, Y ) �→ (λX, λ−1Y ) with 
λ a primitive (q̄ − 1)-th root of unity, and ξ : (X, Y ) �→ (Y, X).

Theorem 1.2. If L1 �= L2, the full automorphism group of X(L1,L2) is the semidirect 
product

Σ � Γ, (5)

where

• Σ = {τα,β : (X, Y ) �→ (X +α, Y + β) | L1(α) = L2(β) = 0} is an elementary abelian 
p-group of order q2;

• Γ = 〈θ〉 is a cyclic group of order q̄ − 1, where θ : (X, Y ) �→ (λX, λ−1Y ) with λ a 
primitive (q̄ − 1)-th root of unity.

For q̄ = q, the size of Aut(X(L1,L2)) is approximately 2(g(X(L1,L2)) + 1)3/2. Since the 
groups given in Theorems 1.1 and 1.2 are solvable, X(L1,L2) attains, up to the constant, 
the bound given in [8].

Our main result is that Aut(X(L1,L2)) together with g(X(L1,L2)) characterize the curves 
in Sq|q̄. This result can be viewed as a generalization of [1, Theorem 1.1] on Artin–
Mumford curves.

Theorem 1.3. Let X be a (projective, non-singular, geometrically irreducible, algebraic) 
curve of genus g = (q − 1)2 defined over K. If Aut(X ) contains an elementary abelian 
subgroup Eq2 of order q2, then X is birationally equivalent over K to some X(L1,L2) ∈
Sq|q̄, where q̄ is the largest power of p such that Aut(X ) contains a cyclic subgroup Cq̄−1

of order q̄ − 1.

In the case L1 = L2, the assumption on the genus can be weakened under a stronger 
assumption on the automorphism group, as follows.

Theorem 1.4. Let X be a curve of genus g ≤ (q− 1)2 defined over K. If Aut(X ) contains 
a semidirect product Eq2 × (C2 × C2) (where Eq2 is elementary abelian of order q2 and 
C2×C2 is a Klein four-group), then X is birationally equivalent over K to some X(L,L) ∈
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Sq|q̄, where q̄ is the largest power of p such that Aut(X ) contains a cyclic subgroup Cq̄−1

of order q̄ − 1.

In Section 2, preliminary results on automorphism groups of ordinary curves and 
curves of even genus are collected. In Section 3, we give the proofs of Theorems 1.1
and 1.2, doing so we also show the relevant properties of generalized Artin–Mumford 
curves; see Lemma 3.1. The proof of Theorems 1.3 and 1.4 is given in Section 4 where 
additional classification results of independent interest are found, as well. Here we only 
mention that Theorem 4.2 gives the following characterization.

Theorem 1.5. Let Y be a curve of genus q−1 defined over K whose automorphism group 
Aut(Y) contains an elementary abelian subgroup Eq of order q. Then one of the following 
holds.

(I) Y is birationally equivalent over K to the curve YL,a with affine equation

L(y) = ax + 1
x
,

for some a ∈ K
∗ and L(T ) ∈ K[T ] a separable p-linearized polynomial of degree q. 

For the curve YL,a the following properties hold:
(i) YL,a is ordinary and hyperelliptic;
(ii) YL,a has exactly 2q Weierstrass places, which are the fixed places of the hyper-

elliptic involution μ.
(iii) The full automorphism group Aut(YL) of YL,a has order 4q and is a direct 

product Dih(Eq) × 〈μ〉.
(II) p �= 3 and Y is birationally equivalent over K to the curve ZL̃,b with affine equation

L̃(y) = x3 + bx,

for some a ∈ K and L̃(T ) ∈ K[T ] a separable p-linearized polynomial of degree q. 
For the curve ZL̃,b the following properties hold:
(i) ZL̃,b has zero p-rank;
(ii) Aut(ZL̃,b) contains a generalized dihedral subgroup Dih(Eq) = Eq � 〈ν〉.

Theorem 1.5 provides a generalization of [12, Proposition (2.2) and Corollary (2.3)].
Our proof uses function field theory, especially the Hurwitz genus formula and the 

Deuring–Shafarevich formula, together with deeper results on finite groups, especially 
the classification theorem on finite non-abelian simple groups whose Sylow 2-subgroups 
are dihedral or semidihedral. In doing so we adopt the approach worked out by Giulietti 
and Korchmáros in [5].
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2. Background and preliminary results

We keep the notation used in Introduction. Also, X is a (projective, non-singular, 
geometrically irreducible, algebraic) curve of genus g ≥ 2 defined over K, K(X ) is the 
function field of X , and Aut(X ) is its full automorphism group over K.

For a subgroup G of Aut(X ), let X̄ denote a non-singular model of K(X )G, that is, 
a curve with function field K(X )G, where K(X )G consists of all elements of K(X ) fixed 
by every element in G. Usually, X̄ is called the quotient curve of X by G and denoted 
by X/G. The field extension K(X )|K(X )G is Galois of degree |G|.

Let Φ be the cover of X|X̄ where X̄ = X/G. A place P of K(X ) is a ramification 
place of G if the stabilizer GP of P in G is nontrivial; the ramification index eP is |GP |. 
The G-orbit of P in K(X ) is the subset o = {R | R = g(P ), g ∈ G} of the set of the 
places of K(X ), and it is long if |o| = |G|, otherwise o is short. For a place Q̄, the G-orbit 
o lying over Q̄ consists of all places P of K(X ) such that Φ(P ) = Q̄. If P ∈ o then 
|o| = |G|/|GP | and hence P is a ramification place if and only if o is a short G-orbit. If 
every non-trivial element in G is fixed–point-free on the set of the places of K(X ), the 
cover Φ is unramified. For a non-negative integer i, the i-th ramification group of X at 
P is denoted by G(i)

P and defined to be

G
(i)
P = {α ∈ GP | vP (α(t) − t) ≥ i + 1},

where t is a local parameter at P ; see [10]. Here G(0)
P = GP .

Let ḡ be the genus of the quotient curve X̄ = X/G. The Hurwitz genus formula [6, 
Theorem 7.27] gives the following equation

2g− 2 = |G|(2ḡ− 2) +
∑
P∈X

dP , (6)

where the different dP at P is given by

dP =
∑
i≥0

(|G(i)
P | − 1), (7)

see [6, Theorem 11.70]. Let γ and γ̄ be the p-ranks of X and X̄ respectively. The Deuring–
Shafarevich formula [6, Theorem 11.62] states that

γ − 1 = |G|(γ̄ − 1) +
k∑

i=1
(|G| − 
i) (8)

where 
1, . . . , 
k are the sizes of the short orbits of G.
A subgroup G of Aut(X ) is tame if gcd(p, |G|) = 1, otherwise G is non-tame. The 

stabilizer GP of a place P ∈ X in G is a semidirect product GP = QP � U where the 
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normal subgroup QP is a p-group while the complement U is a tame cyclic group; see 
[6, Theorem 11.49].

The following result is due to Nakajima; see [9, Theorems 1, 2 and 3] and [6, Lemma 
11.75].

Theorem 2.1. Let X be a curve with g(X ) ≥ 2 defined over an algebraically closed field of 
characteristic p ≥ 3, and H be a Sylow p-subgroup of Aut(X ). Then the following hold.

(I) When γ(X ) ≥ 2, we have

|H| ≤ p

p− 2(γ(X ) − 1) ≤ p

p− 2(g(X ) − 1).

(II) If X is ordinary (i.e. g(X ) = γ(X )) and G ≤ Aut(X ), then G(2)
P = {1} and G(1)

P

is elementary abelian, for every P ∈ X .
(III) If X is ordinary then |Aut(X )| ≤ 84(g(X ) − 1)g(X ).
(IV) If γ(X ) = 1 then H is cyclic.

The following results are due to Giulietti and Korchmáros; see [5].

Lemma 2.2. ([5, Lemma 4.1]) Let H be a solvable automorphism group of an algebraic 
curve X of genus g(X ) ≥ 2 containing a normal d-subgroup Q of odd order such that |Q|
and [H : Q] are coprime. Suppose that a complement U of Q in H is abelian, and that 
NH(U) ∩Q = {1}. If

|H| ≥ 30(g(X ) − 1), (9)

then d = p and U is cyclic.

The odd core O(G) of a group G is its maximal normal subgroup of odd order. If 
O(G) is trivial, then G is an odd core-free group.

Lemma 2.3. ([5, Lemma 6.11]) Let X be a curve of even genus, and G be an odd core-free 
automorphism group of X with a non-abelian simple minimal normal subgroup M . Up 
to isomorphism, one of the following cases occurs for some prime d and odd k:

(i) M = PSL(2, dk) ≤ G ≤ PΓL(2, dk) with dk ≥ 5;
(ii) M = PSL(3, dk) ≤ G ≤ PΓL(3, dk) with dk ≡ 3 (mod 4);
(iii) M = PSU(3, dk) ≤ G ≤ PΓU(3, dk) with dk ≡ 1 (mod 4);
(iv) M = G = A7, the alternating group on 7 letters;
(v) M = G = M11, the Mathieu group on 11 letters.

Lemma 2.4. ([5, Lemma 6.3]) If X is a curve of even genus then Aut(X ) has no elemen-
tary abelian 2-subgroup of order 8.
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Lemma 2.5. ([5, Lemma 6.4]) Let X be a curve of even genus and G ≤ Aut(X ). If G has 
a minimal normal subgroup of order 2 then G = O(G) �S2, where S2 is Sylow 2-subgroup 
of G, unless S2 is a generalized quaternion group.

For a positive integer d, Cd stands for a cyclic group of order d, Dd for a dihedral 
group of order 2d, Ed for an elementary abelian group of order d, and Dih(Ed) for a 
generalized dihedral group Ed � C2 of order 2d.

3. The automorphism group of X(L1,L2)

Lemma 3.1. For the curve X(L1,L2) as in (3), X∞ = (1 : 0 : 0) and Y∞ = (0 : 1 : 0), the 
following properties hold:

i) X∞ and Y∞ are q-fold ordinary points;
ii) X(L1,L2) is ordinary with g(X(L1,L2)) = γ(X(L1,L2)) = (q − 1)2;
iii) If L1 �= L2, Aut(X(L1,L2)) contains the subgroup Σ � Γ defined in (5);
iv) If L1 = L2 = L, Aut(X(L,L)) contains the subgroup Σ � Δ defined in (4);
v) In both cases iii) and iv), the group Σ is a Sylow p-subgroup of Aut(X(L1,L2)).
vi) The quotient curves X(L1,L2)/Σx and X(L1,L2)/Σy are rational curves, where Σx =

{τα,β ∈ Σ | β = 0} and Σy = {τα,β ∈ Σ | α = 0}.

Proof. Let P̄x=αi
, with L1(αi) = 0, be the q distinct zeros and P̄x=∞ be the unique pole 

of L(x) in K(x). Then

vP̄x=αi
(1/L1(x)) = −1, vP̄x=∞(1/L1(x)) = q,

and 1/L1(x) has valuation zero at any other place of K(x). Thus, the function field 
K(X(L1,L2)) = K(x, y) with L1(x) · L2(y) = 1, is a generalized Artin–Schreier extension 
of K(x) of degree q; see [10, Proposition 3.7.10]. The places P̄x=αi

are totally ramified 
while any other place is unramified. The genus of X(L1,L2) is given by

g(X(L1,L2)) = q · g(K(x)) + q − 1
2 · (−2 + 2q) = (q − 1)2.

The places Px=αi
lying over P̄x=αi

, i = 1, . . . , q, are the poles of y and they are centered 
at Y∞. The unique zero of y is place Px=∞ lying over P̄x=∞. Analogously, x has q distinct 
poles Py=βi

, with L2(βi) = 0, which are simple and centered at X∞, and a unique 
zero Py=∞. Note that Px=∞ = Py=0 and Py=∞ = Px=0. Let Σ = {τα,β : (X, Y ) �→
(X + α, Y + β) | L1(α) = L2(β) = 0}. By direct computation Σ is an elementary 
abelian p-subgroup of Aut(X(L1,L2)) of order q2. From Theorem 2.1(I), Σ is a Sylow 
p-subgroup of Aut(X(L1,L2)). Thus the Galois group of K(x, y)|K(x) is contained in Σ
up to conjugation, and hence K(x, y)Σ is rational. By direct computation Σ has at least 
two short orbits of length q, namely



M. Montanucci, G. Zini / Journal of Algebra 485 (2017) 310–331 317
Ωx = {Py=β | L2(β) = 0}, Ωy = {Px=α | L1(α) = 0}.

From the Deuring–Shafarevich formula (8) applied to the extension K(x, y)|K(x, y)Σ,

q2 − 2q = g(X(L1,L2)) − 1 ≥ γ(X(L1,L2)) − 1 ≥ q2(0 − 1) + 2(q2 − q) = q2 − 2q.

Therefore the curve X(L1,L2) is ordinary. By direct checking, if L1 �= L2, then Σ and Γ are 
subgroups of Aut(X(L1,L2)), Γ normalizes Σ, and Γ ∩ Σ = {1}. Analogously, if L1 = L2, 
then Σ and Δ are subgroups of Aut(X(L1,L2)), Δ normalizes Σ, and Δ ∩ Σ = {1}.

In order to prove vi), set η = L1(x). Then K(η, y) ⊆ K(X(L1,L2))Σx . Since 
[K(X(L1,L2)) : K(η, y)] ≤ q, this implies K(X(L1,L2))Σx = K(η, y) and

X(L1,L2)/Σx : L2(y) = 1
η
.

This shows that X(L1,L2)/Σx is rational, and the same holds for X(L1,L2)/Σy. �
The following result follows from the proof of Lemma 3.1.

Corollary 3.2. The group Σ has exactly two short orbits Ωx and Ωy, both of length q. 
Namely,

Ωx = {Py=β | L2(β) = 0}, Ωy = {Px=α | L1(α) = 0}.

Moreover K(x, y)Σ is rational and the principal divisors of the coordinate functions are 
given by

(x) = q Py=0 −
∑

P∈Ωy

P, (y) = q Px=0 −
∑

P∈Ωx

P.

Lemma 3.3. Let C be a cyclic subgroup of Aut(X(L1,L2)) containing Γ = 〈θ〉, where 
θ : (X, Y ) �→ (λX, λ−1Y ) with λ a primitive (q̄ − 1)-th root of unity. Suppose that C is 
contained in the normalizer N of Σ in Aut(X(L1,L2)). Then C = Γ.

Proof. First of all we observe that C ∩ Σ = {1}. In fact by direct checking Γ does not 
commute with any non-trivial p-element τα,β ∈ Σ. From Lemma 3.1 v), C is tame. Since 
C ≤ N , C is isomorphic to an automorphism group C̄ of X(L1,L2)/Σ. Denote by Γ̄ the 
subgroup of PGL(2, K) which is isomorphic to Γ. Moreover, from Corollary 3.2, C acts 
on Ωx ∪ Ωy, and C̄ ≤ PGL(2, K) as X(L1,L2)/Σ is rational. From [7, Hauptsatz 8.27]
both C̄ and Γ̄ fix exactly two places on X(L1,L2)/Σ which are then the two places P̄x

and P̄y lying under Ωx and Ωy respectively. Hence, from Corollary 3.2, C fixes the pole 
divisors of x and y. From the Orbit stabilizer theorem C fixes at least one place in Ωx

and one place in Ωy. By direct computation Γ fixes Px=0 ∈ Ωy and Py=0 ∈ Ωx, acting 
semiregularly on Ωx \ {Py=0} and Ωy \ {Px=0}. Thus, C fixes Py=0 and Px=0 and hence 
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the zero divisors of x and y are preserved by C from Corollary 3.2. This implies that 
the generator c of C has the form c : (x, y) �→ (γx, δy), for some γ, δ ∈ K. By direct 
computation γ q̄−1 = δq̄−1 = 1, and so C = Γ. �
Corollary 3.4. Let C be a cyclic subgroup of the normalizer N of Σ in Aut(X(L1,L2)) such 
that (q̄ − 1) | |C| and |C| | (q − 1). Then C = Γ.

3.1. Proof of Theorem 1.1

In this section, L1 = L2 = L and we refer to Σ and Δ as defined in Theorem 1.1. For 
q = p Theorem 1.1 was proved in [1, Theorem 1.1]. Thus, we suppose that q > p.

Lemma 3.5. The normalizer N of Σ in Aut(X(L,L)) is N = Σ � Δ.

Proof. From Corollary 3.2, N̄ = N/Σ is a tame subgroup of PGL(2, K) containing a 
dihedral group Δ̄ which is isomorphic to Δ = Γ � 〈ξ〉, where Γ = 〈θ〉. Now we show 
that there are no involutions in N \ (Σ � Δ). Let ι ∈ N be an involution and let ῑ
be the induced involution in PGL(2, K). Denote by P̄x and P̄y the places lying under 
Ωx and Ωy respectively. From [7, Hauptsatz 8.27] there exists a unique involution in 
PGL(2, K) fixing P̄x and P̄y, and it is induced by θ(q̄−1)/2. Thus, if ι /∈ Γ then ι switches 
Ωx and Ωy. From Corollary 3.2, ι maps x to a(y + α) and y to b(x + β) where a, b ∈ K

and L(α) = L(β) = 0. Since the order of ι is equal to 2, we have that α = β = 0 and 
α = β ∈ {−1, 1}. Hence, ι = ξ or ι = θ(q̄−1)/2 · ξ, and so ι ∈ Δ. From [7, Hauptsatz 8.27], 
one of the following holds:

(1) N̄ is isomorphic either to A4 or S4 or A5.
(2) N̄ is isomorphic to a dihedral group Dd of order 2d.

Suppose N̄ ∼= A4. If q̄ �= 3, Δ̄ is not contained in N̄ . If q̄ = 3 then N̄ is not tame, 
a contradiction.

Suppose N̄ ∼= S4. In this case q̄ = 3, which is impossible as N̄ is tame, or q̄ = 5, which 
is impossible as N̄ contains more than the 5 involutions contained in Δ̄ ∼= D8.

Suppose that N̄ ∼= A5. Then as before q̄ = 3 which is not possible.
Therefore, case (2) occurs. From Lemma 3.3, d = q̄ − 1 and the claim follows. �
In order to prove that Aut(X(L,L)) = N , several cases are distinguished according to 

the structure of the minimal normal subgroups of Aut(X(L,L)). Recall that every finite 
group admits a minimal normal subgroup, which is either elementary abelian or a direct 
product of isomorphic simple groups.

Lemma 3.6. If Aut(X(L,L)) has a minimal normal subgroup Edk which is an elemen-
tary abelian d-group, then Aut(X(L,L)) admits an elementary abelian minimal normal 
subgroup M which is a p-group.
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Proof. Assume that d �= p. Since Σ normalizes Edk and gcd(d, p) = 1, we have H =
〈Σ, Edk〉 = Edk �Σ. From Lemma 2.2, either |Edk �Σ| < 30(g(X(L,L)) − 1) or NH(Σ) ∩
Edk = Edh �= {1} with 0 < h ≤ k.

• Assume that NH(Σ) ∩ Edk = Edh �= {1} with 0 < h ≤ k. From Lemma 3.5, 
Edh ≤ Δ up to conjugation and hence dh = 4 or h = 1. If dh = 4, then 
Edh = Edk = 〈ξ〉 × 〈θ q̄−1

2 〉 from Lemma 2.4. By direct checking Edk does not 
commute with Σ, a contradiction. Hence Edh = Cd ≤ Cq̄−1. If d = 2 then 
Aut(X(L,L)) = O(Aut(X(L,L))) � S2 by Lemma 2.5. Thus O(Aut(X(L,L))) contains a 
minimal normal subgroup of Aut(X(L,L)), and we can assume d to be odd. Assume 
that d �= p is odd. Since Cd ≤ Γ and Edk is abelian, we have that Edk fixes Py=0 and 
Px=0, and acts on Ωx\{Py=0} and Ωy\{Px=0}. Arguing as in the proof of Lemma 3.3, 
Edk ≤ Γ. Hence Edk = Cd which cannot commute with Σ, a contradiction.

• Assume that |Edk � Σ| < 30(g(X(L,L)) − 1). By direct computation dk < 30. Since 
no subgroup of Σ commutes with Edk we have that Σ is isomorphic to a subgroup 
of GL(k, d). If dk �= 27 then GL(k, d) has no elementary abelian subgroup of odd 
square order. If dk = 27 then d = p = 3, a contradiction. �

Remark 3.7. We have shown in Lemma 3.6 that Aut(X(L,L)) does not admit elementary 
abelian normal d-subgroups for d �= p odd. If Aut(X(L,L)) admits an elementary abelian 
normal 2-subgroup then it also admits a minimal normal p-subgroup.

Proposition 3.8. If Aut(X(L,L)) admits an elementary abelian minimal normal sub-
group M , then Aut(X(L,L)) = Σ � Δ.

Proof. From Lemma 3.6, we can assume that M ≤ Σ. Let Σ̃ be a Sylow p-subgroup 
of Aut(X(L,L)). Then M ⊆ Σ ∩ Σ̃. For any ταβ ∈ M and σ ∈ Aut(X(L,L)), we have 
σ(ταβ) = τα′β′ for some α′, β′. Therefore σ acts on the poles of x and on the poles of y, 
that is, σ acts on Ωy and on Ωx. Suppose by contradiction that there exists ω in Σ \ Σ̃
fixing a place P ∈ Ωx ∪ Ωy. Then Aut(X(L,L)) admits a Sylow p-subgroup Σ̄ containing 
ω and the stabilizer Σ̃P of P in Σ̃. Thus the order of Σ̄P is strictly greater than the 
order of Σ̃P , a contradiction. This proves that ΣP = Σ̃P for all P ∈ Ωx ∪Ωy, and hence 
Σ = Σ̃. The claim follows from Lemma 3.5. �
Proposition 3.9. Aut(X(L,L)) admits an elementary abelian minimal normal subgroup.

Proof. Suppose by contradiction that Aut(X(L,L)) admits no elementary abelian minimal 
normal subgroup. Thus, Aut(X(L,L)) is odd-core free. In fact if O(Aut(X(L,L))) �= {1}
then O(Aut(X(L,L))) contains a minimal normal subgroup which is then elementary 
abelian by the Feit–Thompson theorem. From Lemma 2.3 one of the following cases 
occurs:
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(i) M := PSL(2, dk) � Aut(X(L,L)) ≤ PΓL(2, dk). In this case Σ/(Σ ∩M) is isomorphic 
to a subgroup of PΓL(2, dk)/PSL(2, dk). Since [PGL(2, dk) : PSL(2, dk)] = 2 and 
PΓL(2, dk)/PGL(2, dk) is cyclic of order k, we have that Σ/(Σ ∩ M) is cyclic. 
Then either Σ/(Σ ∩ M) = {1} or Σ/(Σ ∩ M) = Cp. When r is an odd prime, 
the Sylow r-subgroups of PSL(2, dk) are cyclic unless r = d. Since q > p, this 
implies that d = p and either dk = q2 or dk = q2/p. In both cases, arguing as in 
the proof of Proposition 3.8, we have that any element of Aut(X(L,L)) normalizing 
Σ ∩M normalizes the whole group Σ. Therefore from [7, Hauptsatz 8.27] Aut(X(L,L))
contains a cyclic group of order q2 − 1 or q2/p − 1 normalizing Σ, a contradiction 
to Lemma 3.5.

(ii) M := PSL(3, dk) � Aut(X(L,L)) ≤ PΓL(3, dk). We have [PGL(3, dk) :
PSL(3, dk)] ∈ {1, 3} and PΓL(3, dk)/PGL(3, dk) is cyclic of order k. Hence 
Σ/(Σ ∩M) is cyclic. Then either Σ/(Σ ∩M) = {1} or Σ/(Σ ∩M) = Cp. If d = p then 
a contradiction is obtained since a Sylow d-subgroup of PSL(3, dk) is not abelian. 
If either gcd(3, dk − 1) = 1, or gcd(3, dk − 1) = 3 and p �= 3, then a contradiction 
follows from Lemma 2.1. Suppose that gcd(3, dk − 1) = 3 and p = 3. In this case a 
contradiction is obtained because the Sylow 3-subgroup of M is not abelian (see [7, 
Satz 7.2]), and hence cannot be contained in Σ.

(iii) M := PSU(3, dk) � Aut(X(L,L)) ≤ PΓU(3, dk). We have [PGL(3, dk) :
PSL(3, dk)] ∈ {1, 3} and PΓL(3, dk)/PGL(3, dk) is cyclic of order k. Hence 
Σ/(Σ ∩M) is cyclic. Then either Σ/(Σ ∩M) = {1} or Σ/(Σ ∩M) = Cp. If d = p then 
a contradiction is obtained since a Sylow d-subgroup of PSL(3, dk) is not abelian. 
If either gcd(3, dk + 1) = 1, or gcd(3, dk + 1) = 3 and p �= 3, then a contradiction 
follows from Lemma 2.1. Suppose that gcd(3, dk + 1) = 3 and p = 3. In this case a 
contradiction is obtained because the Sylow 3-subgroup of M is not abelian (see [6, 
Theorem A.10 Case (iii)]), and hence cannot be contained in Σ.

(iv) Aut(X(L,L)) = A7. Since |A7| = 23 ·32 ·5 ·7, we have q = 3 = p, which is impossible.
(v) Aut(X(L,L)) = M11. Since |M11| = 24 · 32 · 5 · 11, we have q = 3 = p, which is 

impossible. �
From Propositions 3.8 and 3.9, Theorem 1.1 follows.

3.2. Proof of Theorem 1.2

In this section, L1 �= L2 and we refer to Σ and Γ as defined in Theorem 1.2.

Lemma 3.10. The normalizer N of Σ in Aut(X(L1,L2)) is N = Σ � Γ.

Proof. From Corollary 3.2, N̄ = N/Σ is a tame subgroup of PGL(2, K) containing a 
cyclic group Γ̄ which is isomorphic to Γ. Arguing as in the proof of Lemma 3.5, N has 
no involution other than θ(q̄−1)/2, because by direct checking ξ : (x, y) �→ (y, x) is not in 
Aut(X(L1,L2)). From [7, Hauptsatz 8.27], one of the following holds:
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(1) N̄ is isomorphic either to A4 or S4 or A5.
(2) N̄ is isomorphic to a cyclic group Cd.

Arguing as in the proof of Lemma 3.5, Case (1) is not possible because N̄ is tame and 
it contains only one involution. Therefore, case (2) occurs. From Lemma 3.3, d = q̄ − 1
and the claim follows. �

The proofs of the following results are analogous to the ones of Lemma 3.6, Proposi-
tion 3.8, and Proposition 3.9, and are omitted.

Lemma 3.11. If Aut(X(L1,L2)) has a minimal normal subgroup Edk which is an elemen-
tary abelian d-group, then Aut(X(L1,L2)) admits an elementary abelian minimal normal 
subgroup M which is a p-group.

Proposition 3.12. If Aut(X(L1,L2)) admits an elementary abelian minimal normal sub-
group, then Aut(X(L1,L2)) = Σ � Γ.

Proposition 3.13. Aut(X(L1,L2)) admits an elementary abelian minimal normal subgroup.

From Propositions 3.12 and 3.13, Theorem 1.2 follows.

4. Curves with automorphism group containing Eq2

We need the following result on curves admitting Eq2 as an automorphism group.

Proposition 4.1. For a curve X defined over K, assume that one of the following holds.

(A) X has genus g ≤ (q − 1)2 and the automorphism group Aut(X ) has a subgroup 
H = Eq2 � (C2 × C2).

(B) X has genus g = (q − 1)2 and the automorphism group Aut(X ) has a subgroup 
H = Eq2 .

Let {Mi}i be the set of subgroups of Eq2 of order q. Then the following hold.

(1) X is an ordinary curve of genus (q − 1)2;
(2) Up to relabeling the indices, the cover X | X/Mi is unramified for each i �= 1, 2;
(3) Eq2 has only two short orbits Ω1 and Ω2 on X , each of size q. The places of Ωi share 

the same stabilizer Mi for i ∈ {1, 2}, and M1 �= M2. Moreover, X/M1 and X/M2
are rational.

Proof. Let g and γ, ḡ and γ̄, be the genus and p-rank of X , X̄ := X/Eq2 respectively. 
Also, denote by k ∈ N the number of short orbits of Eq2 on X , by Ωi (1 ≤ i ≤ k) the i-th 
short orbit of Eq2 , by 
i ∈ {p, p2, . . . , q2/p} the length of Ωi, and by Mi the stabilizer of 
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a given place Pi ∈ Ωi in Eq2 , of size q2/
i. Note that Mi coincides with the stabilizer in 
Eq2 of any place in Ωi, because Eq2 acts on the fixed places of its normal subgroup Mi.

(A) Case g ≤ (q − 1)2 and H := Eq2 � (C2 × C2) ≤ Aut(X ).
If γ = 0, then every element of Eq2 fixes exactly one place of X from [6, 
Lemma 11.129]. Since Eq2 is abelian all elements of Eq2 have the same fixed place 
P , which is fixed also by H. Thus, H/Eq2 is cyclic by [6, Theorem 11.49], a con-
tradiction to H/Eq2 ∼= C2 × C2. If γ = 1 then Eq2 is cyclic by Theorem 2.1 (IV), 
a contradiction. Hence γ ≥ 2. The Deuring–Shafarevich formula (8) applied to Eq2

yields

γ − 1 = q2(γ̄ − 1) +
k∑

i=1
(q2 − 
i). (10)

If k = 0 then γ̄ = (γ − 1)/q2 + 1 > 1, and hence q2 ≤ γ − 1 ≤ g − 1 ≤ q2 − 2q, 
a contradiction. Therefore γ̄ ≤ 1 and k ≥ 1.
Assume that γ̄ = 1. The Riemann–Hurwitz formula together with ḡ ≥ γ̄ yields 
ḡ = 1. If k ≥ 2 then γ − 1 ≥ 2(q2 − q2/p) by equation (10), a contradiction to 
γ ≤ g. This yields k = 1. Since C2 × C2 normalizes Eq2 which has a unique short 
orbit Ω1, the induced group C̄2 × C̄2 fixes one place of the elliptic curve X̄ . From [6, 
Theorem 11.94 (ii)] and its proof, C̄2 × C̄2 is cyclic, a contradiction.
Therefore γ̄ = 0. If k ≥ 3 then equation (10) together with g ≥ γ yields a contradic-
tion. If k = 1 then equation (10) reads 2 ≥ γ = 1 − 
1, a contradiction. Thus k = 2
and equation (10) reads

γ = q2 + 1 − (
1 + 
2).

We prove that ḡ = 0. From the Riemann–Hurwitz formula (6) applied to X → X̄ we 
have that

q2ḡ ≤ 
1 + 
2 − 2q ≤ 2q
2

p
− 2q,

which implies ḡ = 0. Since C2 × C2 normalizes Eq2 , the induced group C̄2 × C̄2 is a 
subgroup of PGL(2, K) acting on the two places P̄1 and P̄2 lying under Ω1 and Ω2. 
From [7, Hauptsatz 8.27], C̄2 × C̄2 switches P̄1 and P̄2 and hence 
1 = 
2 = 
. Let 
P ∈ Ωi. From [6, Lemma 11.75 (v)] either (Eq2)(2)P is trivial, or (Eq2)(2)P = Eq2 , or 
1 < |(Eq2)(2)P | = · · · = |(Eq2)(2)P | < q2. By direct checking with the Riemann–Hurwitz 
formula applied to X → X̄ , the second and the third case are not possible; hence 
(Eq2)(2)P is trivial for all P , which implies 
 = q. Now the Deuring–Shafarevich formula 
yields γ = (q − 1)2 ≥ g; hence, γ = g = (q − 1)2 and the claim (1) follows. Since 
Mi, i = 1, 2, is the stabilizer in Eq2 of any place in Ωi, we have that any other 
subgroup Mj of order q of Eq2 , j �= 1, 2, has no fixed place, and thus the claim (2)
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is proved. Finally, for i = 1, 2, denote by gi the genus of the curve X/Mi. By the 
Riemann–Hurwitz formula (6) applied to the cover X → X/Mi,

2g− 2 = 2(q2 − 2q) ≥ 2q(gi − 1) + 2q(q − 1). (11)

Hence gi = 0 for i = 1, 2 and equality holds in (11). This proves that Mi has no fixed 
place out of Ωi, and so M1 �= M2.

(B) Case g = (q − 1)2 and H := Eq2 ≤ Aut(X ).
Suppose γ = 0. Then by [6, Lemma 11.129] every element of H fixes exactly one 
place, which is the same place P for all of them. The Riemann–Hurwitz formula (6)
applied to the cover X → X/H yields ḡ = 0, H(2)

P �= {1}, and

∞∑
i=2

(|H(i)
P | − 1) = 2(q − 1)2. (12)

From [6, Th. 11.78], X/H
(2)
P is rational; hence, the Riemann–Hurwitz formula applied 

to X → X/H
(2)
P yields

∞∑
i=2

(|H(i)
P | − 1) = 2q2 − 4q + 2|H(2)

P |. (13)

Equations (12) and (13) provide a contradiction to H(2)
P �= {1}. Suppose γ = 1. Then 

H is cyclic by Theorem 2.1 (IV), a contradiction.
Therefore γ ≥ 2. As in Case (A), γ̄ ≤ 1 and k ≥ 1; also, if γ̄ = 1, then k = 1.
Suppose γ̄ = 1 and k = 1. From g ≥ γ and the Deuring–Shafarevich formula applied 
to X → X̄ we have ḡ = 1 and 
1 ≥ 2q; hence, pq divides 
1. The Riemann–Hurwitz 
formula applied to X → X̄ reads

2(q − 1)2 − 2 = q2(2 · 0 − 2) + 
1

∞∑
i=0

(|H(i)
P | − 1)

for any P in Ω1. This implies that 
1 divides q, a contradiction to pq | 
1.
Therefore γ̄ = 0. Arguing as in the proof of Proposition 4.1 we have k = 2, γ =
q2+1 −(
1+
2), and ḡ = 0. From the Riemann–Hurwitz formula applied to X → X̄ ,

2(
1 + 
2) − 4q = 
1c1 + 
2c2 ≥ 0, (14)

where cj :=
∑∞

i=2(|H
(i)
Pj

| − 1) ≥ 0 for j = 1, 2. From Equation (14), the integers 
1
and 
2 cannot be multiple of pq at the same time. Hence 
1 ≤ q or 
2 ≤ q; say 
1 ≤ q. 
We have |H(2)

P1
| < q2/
1 and |H(2)

P2
| < q2/
2; otherwise, Equation (14) would imply 

2(
1 + 
2) − 4q ≥ q2 − 
1 or 2(
1 + 
2) − 4q ≥ q2 − 
2, which is impossible because 

1 ≤ q and 
2 ≤ q2/p. Therefore, for j = 1, 2, cj is a multiple of p (possibly zero) 
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from [6, Lemma 11.75 (v)]. Suppose 
2 ≥ pq. As c2 �= 2, Equation (14) implies that 

2 divides [4q+(c1−2)
1]; hence, p divides [2(2q/
1−1)], a contradiction. Therefore, 

2 ≤ q. Thus, from Equation (14), 
1 = 
2 = q. The rest of the claim follows as in 
Case (A). �

Theorem 4.2 provides a characterization which generalizes a result by van der Geer 
and van der Vlugt; see [12, Proposition 2.2 and Corollary 2.3].

Theorem 4.2. Let Y be a curve of genus q−1 defined over K whose automorphism group 
Aut(Y) contains an elementary abelian subgroup Eq of order q. Then one of the following 
holds.

(I) Y is birationally equivalent over K to the curve YL,a with affine equation

L(y) = ax + 1
x
, (15)

for some a ∈ K
∗ and L(T ) ∈ K[T ] a separable p-linearized polynomial of degree q. 

For the curve YL,a the following properties hold:
(i) YL,a is ordinary and hyperelliptic;
(ii) YL,a has exactly 2q Weierstrass places, which are the fixed places of the hyper-

elliptic involution μ.
(iii) The full automorphism group Aut(YL) of YL,a has order 4q and is a direct 

product Dih(Eq) × 〈μ〉.
(II) p �= 3 and Y is birationally equivalent over K to the curve ZL̃,b with affine equation

L̃(y) = x3 + bx, (16)

for some a ∈ K and L̃(T ) ∈ K[T ] a separable p-linearized polynomial of degree q. 
For the curve ZL̃,b the following properties hold:
(i) ZL̃,b has zero p-rank;
(ii) Aut(ZL̃,b) contains a generalized dihedral subgroup Dih(Eq) = Eq � 〈ν〉.

Proof. The proof is divided in several steps.

• We show that YL,a as in (15) has genus q − 1 and Aut(YL,a) contains a subgroup 
Dih(Eq) × 〈μ〉.
Let P̄0 and P̄∞ be the zero and pole of x in K(x), respectively. Then K(Y)|K(x) is a 
generalized Artin–Schreier extension ([10, Proposition 3.7.10]) which ramifies exactly 
over the simple poles P̄0 and P̄∞ of ax + 1

x . Hence, g(YL,a) = q − 1. The maps

Eq = {τα : (x, y) �→ (x, y + α) | L(α) = 0},
ν : (x, y) �→ (−x,−y), μ : (x, y) �→ (1/(ax), y), (17)
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generate an automorphism group Dih(Eq) × 〈μ〉 = (Eq � 〈ν〉) × 〈μ〉 of order 4q
of YL,a.

• We show that YL,a is ordinary and hyperelliptic with hyperelliptic involution μ, and 
that the Weierstrass places of YL,a are exactly the 2q fixed places of μ.
Let P0 and P∞ be the places of Y lying over P̄0 and P̄∞. The group Eq and the 
involution ν fix P0 and P∞, while the involution μ interchanges P0 and P∞. Let 
Ȳ = Y/Eq and Y ′ = Y/〈μ〉. The Riemann–Hurwitz formula applied to the cover 
Y → Ȳ shows that Ȳ is rational and P0, P∞ are the unique fixed places of any 
element of Eq. Thus, the Deuring–Shafarevich formula applied to Y → Ȳ shows that 
Y has p-rank q−1; hence, Y is ordinary. Let P̄1 and P̄2 be the distinct zeros of ax2+1
in K(x), and P 1

1 , . . . , P
q
1 and P 1

2 , . . . , P
q
2 be the distinct places of Y lying over P̄1 and 

P̄2. By direct checking, μ fixes P 1
1 , . . . , P

q
1 , P

1
2 , . . . , P

q
2 . Then the Riemann–Hurwitz 

formula applied to Y → Y ′ shows that μ has no other fixed places and Y ′ is rational; 
hence, Y is hyperelliptic with hyperelliptic involution μ. Since 2q > 4, the 2q fixed 
places of μ are Weierstrass places of Y from [6, Theorem 11.112]. Moreover, Y has 
exactly 2q Weierstrass places from [6, Theorem 7.103].

• We show that ZL̃,b as in (16) has zero p-rank and admits an automorphism group 
Dih(Eq).
The curve ZL̃,b admits the automorphism group Dih(Eq) = Eq � 〈ν〉, where

Eq = {τα : (x, y) �→ (x, y + α) | M(α) = 0}, ν : (x, y) �→ (−x,−y).

From [6, Lemma 12.1 (f)], ZL̃,b has zero p-rank.
• Let Y be a curve of genus q − 1 admitting an automorphism group Eq with λ fixed 

places. We show that, if λ = 1, then p �= 3 and Y is birationally equivalent to 
some ZM,b.
Let Ȳ = Y/Eq. The Riemann–Hurwitz formula applied to Y → Ȳ shows that Ȳ has 
genus zero and

2(q − 1) =
∞∑
i=2

(|(Eq)(i)P | − 1) +
∑
i


idPi
, (18)

where 
i are the lengths of the short orbits Ωi of Eq other than {P} and Pi is a 
place of Ωi; hence, the second summation in Equation (18) is multiple of p. From 
[6, Lemma 11.75 (v)], the first summation in (18) is the sum of a multiple of p
and j(q − 1), where j is the largest integer such that (Eq)(j+1)

P = Eq. Thus j =
2, Eq = . . . = (Eq)(3)P , (Eq)(4)P = {1}, and {P} is the unique short orbit of Eq. 
Let x ∈ K(Ȳ) with K(Ȳ) = K(x) and P̄ be the place of Ȳ lying under P . Up to 
conjugation in Aut(Ȳ) ∼= PGL(2, K), P̄ is the simple pole of x. Since K(Y)|K(x) is 
a generalized Artin–Schreier extension ([10, Proposition 3.7.10]), K(Y) is defined as 
K(x, y) by M(y) = h(x), where M(T ) ∈ K[T ] is a separable p-linearized polynomial 
of degree q and h(x) ∈ K(x). Since P is the unique ramified place in K(x, y)|K(x), 
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Proposition 3.7.10 in [10] implies that h(x) is a polynomial function in K[x] and, in 
order for the genus of Y to be q − 1, the valuation of x at P is −3 and coprime to 
p. Hence, h(T ) ∈ K[T ] has degree 3 and p �= 3. Up to a linear transformation in x, 
we can assume that h(x) has the form x3 + bx + c; up to a translation in y, we can 
then assume that c = 0.

• Let Y be a curve of genus q − 1 admitting an automorphism group Eq with λ fixed 
places. We show that, if λ �= 1, then Y is birationally equivalent to some YL,a.
Let Ȳ = Y/Eq with genus ḡ. From the Riemann–Hurwitz formula applied to Y → Ȳ,

2q − 4 = q(2ḡ− 2) + 2λ(q − 1) +
λ∑

i=1

∞∑
j=2

(|(Eq)(j)Qi
| − 1) +

∑
i


idPi
, (19)

where Q1, . . . , Qλ are the fixed places of Eq, 
i are the lengths of the short orbits of 
Eq other than {Q1}, . . . , {Qλ}, and Pi is a place of the i-th short orbit. Note that 
i
is a multiple of p. If λ = 0, then Equation (19) yields a contradiction modulo p. Then 
λ ≥ 2. Hence, from Equation (19), ̄g = 0, λ = 2, and Eq has no short orbits other than 
the two fixed places P and Q. Let x ∈ K(Ȳ) with K(Y) = K(x). Since K(Y)|K(x) is 
a generalized Artin–Schreier extension ([10, Proposition 3.7.10]), K(Y) is defined as 
K(x, y) by L(y) = h(x), for some separable p-linearized polynomial L(T ) ∈ K[T ] of 
degree q. Also, from [10, Proposition 3.7.10], P and Q are the unique poles of h(x), 
and they are simple poles. Up to conjugation in Aut(Ȳ) ∼= PGL(2, K), P̄ and Q̄ are 
the zero and the pole of x. Therefore, h(x) = (x − r)(x − s)/x for some r, s ∈ K. 
Up to formal replacement of x and y with rsx and y + δ, where δ ∈ K satisfies 
L(δ) = −r − s, the equation L(y) = h(x) is the equation defining the curve YL,rs.

• Finally, we show that Aut(YL,a) is the group Dih(Eq) × 〈μ〉 = (Eq � 〈ν〉) × 〈μ〉
described in (17).
Let Y ′ = Y/μ. Then Aut(Y ′) contains the group G′ ∼= Aut(Y)/〈μ〉 induced by 
Aut(Y), and in particular the subgroup E′

q � 〈ν′〉 ∼= Eq � 〈ν〉 induced by Eq � 〈ν〉. 
The group E′

q is a Sylow p-subgroup of G′, because Eq is a Sylow p-subgroup of 
Aut(Y) from Theorem 2.1 (II). From [6, Theorem 11.98] and [7, Haptsatz 8.27], 
either G′ ∼= PSL(2, q), or G′ ∼= PGL(2, q), or G′ = E′

q � C ′
m, where C ′

m is cyclic of 
order m with m | (q − 1).
Assume that G′ contains a subgroup E′

q � C ′
m with m | (q − 1). Up to conjugation, 

E′
q is the group induced by Eq as in (17). Let C be a tame subgroup of Aut(Y)

inducing C ′
m. Since C normalizes Eq, C acts on the two places of Y fixed by Eq and 

acts on the other orbits of Eq; since C commutes with μ, C acts on the fixed places of 
μ, which form two orbits of Eq. Thus, the group C̄ ∼= C induced by C on the rational 
curve Ȳ = Y/Eq acts on two couples of places. From [7, Satz 8.5], C̄ has two fixed 
places and no other short orbits on Ȳ; hence, C̄ has order 2. This implies m = 2. For 
q − 1 > 2 the Lemma is then proved, because both PGL(2, q) and PSL(2, q) contain 
subgroups Eq � Cq−1 of order q(q − 1); see [7, Hauptsatz 8.27] and [11].
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Assume q = 3. The case G′ ∼= PSL(2, 3) is not possible, since PSL(2, 3) contains no 
subgroup Dih(E3). Suppose G′ ∼= PGL(2, 3). Let ρ′ be an element of G′ of order 4, 
and ρ ∈ G an element of order 4 inducing ρ′. From [7, Sätze 8.2 and 8.4] and [11], 
ρ′ does not fix the place P ′ of Y ′ lying under the fixed places P, Q of Eq. Hence, 
P and Q are in a long orbit of ρ. Therefore, ρ′ has a short orbit of length 2 on Y ′. 
This is impossible, since from [7, Satz 8.5] (see also [11]) ρ′ has two fixed places and 
no other short orbits on Y ′. We conclude that G′ = E′

q � C ′
m, and m = 2 follows as 

above. The Lemma is thus proved. �
Proposition 4.3. For a curve X defined over K, assume that one of the following holds.

(A) X has genus g ≤ (q − 1)2 and Aut(X ) contains a subgroup H = Eq2 � (C2 × C2);
(B) X has genus g = (q − 1)2 and Aut(X ) contains a subgroup H = Eq2 .

Then Eq2 has a subgroup T of order q such that the quotient curve X/T is birationally 
equivalent over K to the curve YL,a in (15), for some a ∈ K

∗ and L(T ) ∈ K[T ] a separable 
p-linearized polynomial of degree q.

Proof. From Proposition 4.1, X is ordinary of genus (q−1)2 and Eq2 admits a subgroup 
T of order q such that the cover X → X/T is unramified. From the Riemann–Hurwitz 
formula and the Deuring–Shafarevich formula applied to X → X/T , the curve X/T

is ordinary of genus q − 1. Since T is normal in Eq2 , Aut(X/T ) contains a subgroup 
Eq2/T ∼= Eq. From Theorem 4.2, X/T is birationally equivalent over K to YL,a for some 
a and L. �
Proposition 4.4. Let X be a curve admitting an automorphism group Eq2 such that, for 
some Eq ≤ Eq2 the quotient curve X/Eq has affine equation

L(y) = ax + 1
x
,

for some a ∈ K
∗ and L(T ) ∈ K[T ] a separable p-linearized polynomial of degree q. Then 

the following hold:

(1) K(X/Eq2) = K(x).
(2) If X is an ordinary curve with genus (q − 1)2, then Eq2 contains a subgroup M of 

order q different from Eq such that the quotient curve X/M has affine equation

L̃(z) = b + 1
x
,

for some z ∈ K(X ), b ∈ K, and L̃(T ) ∈ K[T ] a separable p-linearized polynomial of 
degree q.
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Proof. Since [K(X ) : K(x)] = q2 = [K(X ) : K(X/Eq2)], it is enough to prove that 
τ(x) = x for any τ ∈ Eq2 \ Eq. Since τ and Eq commute, τ induces an automorphism 
τ ′ of K(x, y). If τ ′ is trivial then τ(x) = x and (1) follows. Otherwise, τ ′ has order p. 
Clearly Eq2/Eq

∼= Ẽq, where Ẽq is an elementary abelian subgroup of Aut(YL) of order q. 
Arguing as in the proof of Theorem 1.1, Aut(YL) has a unique elementary abelian group 
F of order q, namely

F = {τα : (x, y) �→ (x, y + α) | L(α) = 0},

and hence F = Ẽq. Hence τ(x) = x for every τ ∈ Eq2 \ Eq and (1) follows. From (1), 
K(X/Eq2) = K(x), that is, X/Eq2 = P

1(K). The curve YL is the quotient curve 
X(L,L)/H, where

H = {τα,α : (x, y) �→ (x + α, y + α) | L(α) = 0}.

In fact it is sufficient to consider the functions η, θ ∈ K(X(L,L)) with η = L(y) and 
θ = x + y. By direct checking L(θ) = η + 1/η and K(X(L,L)/H) = K(η, θ). Since X(L,L)
is an ordinary curve of genus (q − 1)2 and the cover X(L,L) → X(L,L)/H is unramified, 
from the Deuring–Shafarevich formula and the Riemann–Hurwitz formula, we have that 
YL is an ordinary curve of genus g′ = q−1. The Deuring–Shafarevich formula applied to 
Eq shows that the extension K(X )|K(YL) is unramified. Let P0 and P∞ be respectively 
the zero and pole of x in K(x). Then P0 and P∞ are totally ramified in the extension 
K(YL)|K(x) and no other place of P1(K) ramifies; see [10, Proposition 3.7.10]. Therefore, 
both P0 and P∞ split completely in X . Let M be the stabilizer in Eq2 of a place Q∞ of X
lying over P∞. We show that P∞ is unramified in the extension K(X/M)|K(x). Note that 
|M | = q, since P∞ splits in q distinct places in X . Furthermore, since Eq2 is abelian, each 
place of X lying over P∞ has the same stabilizer M . Therefore, P∞ splits completely in 
X/M . Applying the Riemann–Hurwitz formula to the extension K(X )|K(X/M) yields

2(q − 1)2 − 2 ≥ q(2g(X/M) − 2) + 2q(q − 1).

Thus g(X/M) = 0. Clearly [K(X/M) : K(x)] = q, since

q2 = [K(X ) : K(x)] = [K(X ) : K(X/M)][K(X/M) : K(x)] = q[K(X/M) : K(x)].

From the Deuring–Shafarevich formula applied to the extension K(X/M)|K(x), we have 
that K(x) has only one place that ramifies in K(X/M)|K(x), and this place must be P0.

We prove that the quotient curve X/M has affine equation

L̃(z) = b + 1
x
,

for some z ∈ K(X ), b ∈ K, and L̃(T ) ∈ K[T ] a separable p-linearized polynomial of 
degree q. Since K(X/M)|K(x) is a generalized Artin–Schreier extension ([10, Propo-
sition 3.7.10]), we have that K(X/M) = K(x, y) where L̃(y) = f(x)/g(x) for some 
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separable p-linearized polynomial L̃(T ) ∈ K[T ] of degree q and f(x)/g(x) ∈ K(x). Recall 
that P0 is the unique pole of f(x)/g(x), and it is a simple pole.

• Suppose that deg(f) > deg(g). Then f(x)/g(x) has a pole at P∞, a contradiction.
• Suppose that deg(f) = deg(g) > 0. Let g(x) = x · r(x)p with r(x) ∈ K[x], then 

f(x) = (x + α)s(x)p with α ∈ K and s(x) ∈ K[x]. If r(x) has a zero β, then by [10, 
Proposition 3.7.10] it is easily checked that f(x)/g(x) has a corresponding pole of 
multiplicity at least p − 1, a contradiction. Therefore, g(x) = βx and f(x) = x + α, 
α, β ∈ K. Applying a linear transformation to x, the claim follows.

• Suppose that deg(f) < deg(g) and deg(g) > 0. Then, arguing as in the previous 
case, f(x) = α and g(x) = βx with α, β ∈ K. Applying a linear transformation to x, 
the claim follows.

• Suppose that deg(g) = 0. This is impossible since P0 is a pole of f(x)/g(x). �
4.1. Proof of Theorems 1.3 and 1.4

We keep our notation introduced in the previous sections. From Proposition 4.3, 
Eq2 contains a subgroup T of order q such that the quotient curve X/T is the curve YL,a

with affine equation

L(y) = ax + 1
x
,

for some a ∈ K
∗ and L(T ) ∈ K[T ] a separable p-linearized polynomial of degree q. 

Let K(x, y) be the function field K(X/T ). From Proposition 4.1, the p-rank of X is 
γ = g = (q − 1)2. Thus by Proposition 4.4, K(X ) has a subfield K(x, z) defined by

L̃1(z) = b + 1
x
,

for some z ∈ K(X ), b ∈ K, and L̃1(T ) ∈ K[T ] a separable p-linearized polynomial of 
degree q. Hence, the compositum K(x, y, z) of K(x, y) and K(x, z) is a subfield of K(X )
such that

{
L(y) = ax + 1

x ,

L1(z) = b + 1
x .

(20)

Therefore, K(x, y, z) = K(y, z) with

(L1(z) − b)L(y) − (L1(z) − b)2 = a. (21)

From Proposition 4.4, K(x, z) = K(X )M and K(x, y) = K(X )T , where M �= T is an 
elementary abelian p-subgroup of Eq2 of order q. Thus,
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Gal(K(X ) | K(y, z)) = Gal(K(X ) | K(X/M)) ∩Gal(K(X ) | K(X/T )) = M ∩ T.

Since the cover X → X/T is unramified, we have M∩T = {1} and hence K(X ) = K(y, z).

Remark 4.5. Every p-element of Aut(X ) is an element of Eq2 .

Proof. Let σ be a p-element of Aut(X ). By Nakajima’s bound, Theorem 2.1 (I), 
|〈Eq2 , σ〉| ≤ q2 = |Eq2 |. Therefore σ ∈ Eq2 . �

Let z′ = z − δ, with L1(δ) = b. Then K(y, z) = K(y, z′) where

L1(z′)L(y) − L1(z′)2 = a. (22)

Up to a K-scaling of z′ and y, we can assume that both L1 and L are monic. Let Z
be the plane curve with affine equation L1(Z ′)L(Y ) − L1(Z ′)2 = a. By Remark 4.5 and 
Proposition 4.1,

Eq2 = {τα,β : (y, z′) �→ (y + α, z′ + β) | L(α) = L1(β) = 0} ≤ Aut(Z)

has exactly two short orbits Ω1 and Ω2, which have length q and are centered at the 
points at infinity P1 = (1 : 1 : 0) and P2 = (1 : 0 : 0), respectively. The q distinct 
tangent lines to Z at P1 have equation 
i : Y −Z ′ = εi, i = 1, . . . , q, and the intersection 
multiplicity at P1 of Z and 
i is equal to the intersection multiplicity at P1 of the curve 
W : L(Y ) − L1(Z ′) = 0 with the line 
i. Since W has degree q, this implies that W
splits into linear factors 
1, 
2, . . . , 
q. Therefore L(Y ) − L1(Z ′) = L2(Y − Z ′) for some 
separable p-linearized polynomial L2(T ) ∈ K[T ] of degree q. Thus, Equation (22) is the 
equation (3) defining X(L1,L2), up to the formal replacement of y − z′ with Y and of z′
with bX, where bq = a.

Let q̄ be the largest power of p such that Aut(X ) contains a cyclic subgroup C of 
order q̄ − 1. Up to conjugation in Aut(X ), C contains the group

Γ = {(X,Y ) �→ (X + α, Y + β) | L1(α) = L2(β) = 0}.

Then X ∈ Sq|q̄ from Theorems 1.1 and 1.2. Thus, Theorem 1.3 is proved.
If L1 �= L2, then from Theorem 1.2 X(L1,L2) does not admit any automorphism group 

C2 × C2. Thus, also Theorem 1.4 is proved.
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