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1. Introduction

Let F�, � = ph, p prime, denote the finite field of order �. A permutation polynomial (or 
PP) f(x) ∈ F�[x] is a bijection of F� onto itself. A polynomial f(x) ∈ F�[x] is a complete 
permutation polynomial (or CPP), if both f(x) and f(x) +x are permutation polynomials 
of F�. Both permutation polynomials and complete permutation polynomials have been 
extensively studied also because of their applications to cryptography and combinatorics; 
see for instance [6,9,11,12,16,18] and the references therein. In particular, CPPs over fields 
of characteristic 2 give rise to bent–negabent boolean functions, which are a useful tool 
in cryptography; see [14].

Some families of CPPs are obtained in [6,9,11,13,17,18]. Nevertheless, CPPs seem to 
be very rare objects, even if we restrict to the monomial case. It is easily seen that a 
monomial axd is a CPP if and only if (d, � − 1) = 1 and xd + x

a is a PP. This motivates 
the investigation of permutation binomials of type xd + bx for d = (� − 1)/m + 1 with m
a divisor of � − 1.

In [3–5,18,19] PPs of type fb(x) = x
qn−1
q−1 +1 + bx over Fqn are thoroughly investigated 

for n = 2, n = 3, and n = 4. For n = 6, sufficient conditions for fb to be a PP of Fq6 are 
provided in [18,19] in the special cases of characteristic p ∈ {2, 3, 5}. The case p = n + 1
is dealt with in [10].

In this paper, we provide a complete classification of permutation polynomials fb in 
the case n = 6, for arbitrary q. Theorems 1.1 and 1.2 list explicitly for q ≥ 421 all 
elements b ∈ Fq6 \Fq such that fb is a PP. For smaller values of q, Theorems 1.1 and 1.2
provide families of PPs of type fb. We also determine the number of PPs of type fb for 
q ≥ 421; see Corollary 4.3. It should be noted that for p = 7, the sufficient condition 
in [10] for fb to be a PP is that bq−1 = −1; our results show that this is not a necessary 
condition.

Our methods also work for n = 4. This allows us to list PPs of type fb for n = 4; 
see Remark 4.4. In this way, a more explicit description of the necessary and sufficient 
conditions of [19, Theorem 4.1] is given.

In the paper the case n odd is dealt with as well. Note that for n odd fb being a PP 

implies that b−1x
qn−1
q−1 +1 is a CPP only for p = 2. We show that if p does not divide 

(n + 1)/2 or TrFq/Fq′ (b) �= 0, then for q large enough with respect to n the polynomial 

fb is never a PP; see Theorem 5.2. This shows that for n odd the monomial b−1x
qn−1
q−1 +1

is never a CPP unless n ≡ 3 (mod 4). For n = 3 Theorem 5.2 provides a shorter proof 
of the results of [5, Section 3].

A key tool in our investigation is the following criterion from [13], which relates the 
existence of a suitable Fq-rational point of some algebraic curve to fb being a PP of Fqn

or not.

Niederreiter–Robinson Criterion. The polynomial

fb(x) = x
qn−1
q−1 +1 + bx (1)
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is a PP of Fqn if and only if b ∈ Fqn \ Fq and the following inequality

x(x + b)
qn−1
q−1 �= y(y + b)

qn−1
q−1 (2)

holds for all x, y ∈ Fq such that x �= 0, y �= 0, and x �= y.

The well-known Hasse–Weil bound, see Section 2, will be applied to an algebraic curve 
related to Condition (2).

Our results for n = 6 are Theorems 1.1 and 1.2 below.

Theorem 1.1. Let q = ph with p �= 7, and let ξ be a primitive 7-th root of unity in Fq6 ; 
define α = ξ4 − ξ3. Let ε be a primitive element of Fq. If q ≥ 421, then fb is a PP of Fq6

if and only if one of the following cases occurs.

• q ≡ 3, 5 (mod 7),

b ∈
{
t(1 − ξi)

7

∣∣∣ i = 1, . . . , 6, t ∈ F
∗
q

}
. (3)

• q odd, q ≡ 3 (mod 7),

b ∈
{
−α2qu + αs

14 ,
−α2q2

u + αqs

14 ,
−α2u + αq2

s

14

∣∣∣ u, s ∈ Fq, u �= ±s

}
. (4)

• q odd, q ≡ 5 (mod 7),

b ∈
{
−α2q2

u + αs

14 ,
−α2u + αqs

14 ,
−α2qu + αq2

s

14

∣∣∣ u, s ∈ Fq, u �= ±s

}
. (5)

• q odd, q ≡ 2 (mod 7),

b ∈
{
−α2q2

u + αs
√
ε

14 ,
−α2u + αqs

√
ε

14 ,
−α2qu + αq2

s
√
ε

14

∣∣∣ (u, s) ∈ F
2
q \ {(0, 0)}

}
. (6)

• q odd, q ≡ 4 (mod 7),

b ∈
{
−α2qu + αs

√
ε

14 ,
−α2q2

u + αqs
√
ε

14 ,
−α2u + αq2

s
√
ε

14

∣∣∣ (u, s) ∈ F
2
q \ {(0, 0)}

}
. (7)

• q even, q ≡ 2, 4 (mod 7).

b ∈
{
(ξ + 1)t, (ξ + 1)2t, (ξ + 1)4t

∣∣ t ∈ F
∗
q

}
. (8)
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• q = 2h, q ≡ 2, 4 (mod 7). Assume without loss of generality that ξ satisfies ξ3 = ξ+1, 
and fix an element k such that TrFq6/F2 (k) = 1. Define δi(u, v) = v

u2 + (ξ + 1)2i , 
i = 0, 1, 2, and yi = yi(u, v) = kδ2

i (u, v) + (k + k2)δ4
i (u, v) + · · · + (k + k2 + · · · +

k26h−2)δ26h−1

i (u, v); then

b ∈
{
yi(ξ + 1)2

i+1
u, (yi + 1)(ξ + 1)2

i+1
u
∣∣ u ∈ F

∗
q , v ∈ Fq,

TrFq/F2

( v

u2

)
≡ (h− 1) (mod 2)

} (9)

for some i = 0, 1, 2.

If q < 421, then the above conditions are sufficient for fb to be a PP of Fq6 .

Theorem 1.2. Let q = 7h. Let ξ, ε ∈ F343 be such that ξ18 = 1 and ε2 = ξ. Let z be a 6-th 
root of a fixed primitive element of Fq. If q ≥ 421, then the polynomial fb is a PP of Fq6

if and only if one of the following cases occurs.

•

b ∈
{
tz, tz5 | t ∈ F

∗
q

}
. (10)

• h is odd and

b ∈
{
−2ξt + ε

3s
t

∣∣∣ t ∈ Fq3 , t3 ∈ Fq, 3t3 is not a cube in Fq, s ∈ Fq

}
. (11)

• h is even and

b ∈
{
−2ξt + ε

3s
t

∣∣∣ t ∈ Fq3 , t3 ∈ Fq, 3t3 is not a cube in Fq, s ∈ Fq2 \ Fq, s2 ∈ Fq

}
.

(12)

•

b ∈
{
−ξt | t ∈ Fq3 , t3 ∈ Fq, 3t3 is not a cube in Fq

}
. (13)

•

b ∈
{
3t | t ∈ Fq2 \ Fq, t2 ∈ F

∗
q

}
. (14)

•

b ∈
{

3t + 3s + s2

t

∣∣∣ t ∈ Fq2 \ Fq, s ∈ Fq3 \ Fq, t2 ∈ F
∗
q , s3 ∈ F

∗
q

}
. (15)

If q < 421, then the above conditions are sufficient for fb to be a PP of Fq6 .
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The paper is organized as follows. Section 2 contains some basic facts on algebraic 
curves that will be used in the paper. In Section 3 we provide necessary and sufficient 
conditions for fb to be a PP of Fq6 when q ≥ 421; to this aim, we study the reducibility 
of an algebraic curve associated to fb and discuss the existence of some Fq-rational 
points. In Section 4 we present the proofs of Theorems 1.1 and 1.2; as a consequence, 
Corollary 4.3 gives the exact number of PPs of type fb for q ≥ 421, and a lower bound for 
q < 421. Remark 4.4 shows that the techniques used in Section 4 can be applied also to 

other types of permutation polynomials; in particular, PPs of Fq4 of type x
q4−1
q−1 +1 + bx

are listed. In this way, the characterization given in [19, Theorem 4.1] is made more 
explicit. Finally, in Section 5 we deal with the odd n case.

2. Plane algebraic curves

In this section we summarize some basic notions on plane algebraic curves defined 
over a finite field. For a detailed treatment we refer the reader to [8].

Given a field K we denote by K its algebraic closure. An algebraic curve C defined 
over K is a class of homogeneous polynomials {λF (X, Y, T ) | λ ∈ K \ {0}}, where 
F (X, Y, T ) ∈ K[X, Y, T ]. The order (or the degree) of the curve C is the degree of 
the polynomial F (X, Y, T ); curves of degree two, three, four, or six are usually called 
conics, cubics, quartics, or sextics, respectively. The curve C is irreducible over K if the 
polynomial F (X, Y, T ) ∈ K[X, Y, T ] is irreducible in K[X, Y, T ]. If in addition F (X, Y, T )
is irreducible over K, then C is said to be absolutely irreducible.

We say that a point (x, y, z) ∈ PG(2, K), the projective plane over K, belongs to 
the curve C if F (x, y, z) = 0. The points (x, y, 0) ∈ C are called ideal points of the 
curve C and the line �∞ with equation T = 0 is the ideal line of the plane. A point 
P = (x, y, z) ∈ C is K-rational if it belongs to PG(2, K). For a line � not contained in C, 
let P = (x, y, z) ∈ C ∩ � and Q = (x, y, z) ∈ � with Q �= P . The intersection multiplicity
I(�, C, P ) between � and C at the point P is the maximum integer m such that μm divides 
the polynomial FP,Q(λ, μ) = F (λx + μx, λy + μy, λy + μy). When a line � through P
is contained in C we set I(�, C, P ) = ∞. The multiplicity of the point P ∈ C is defined 
as

min
��P

I(�, C, P ).

A simple point is a point with multiplicity one; when the multiplicity is larger than one 
the point is said to be singular. A tangent line at a point P ∈ C of multiplicity m is 
a line such that I(�, C, P ) > m; P is ordinary if there exist m distinct tangent lines
at P .

Let � be a line not contained in C; then the number n of points of C lying on � is 
at most the order of C. More generally, the Bézout Theorem states that the number 
of common points of two curves of order d and d′ with no common components is at 
most dd′.
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Let Fq be the finite field with q elements and assume that C is defined over Fq. In this 
paper we will use the following corollary to the famous Hasse–Weil Theorem.

Hasse–Weil Bound. [8, Theorem 9.57(iii)] Let C be an absolutely irreducible curve of 
order n defined over Fq. The number Rq of Fq-rational points of C satisfies

|Rq − (q + 1)| ≤ (n− 1)(n− 2)√q.

3. Some auxiliary curves associated to fb for n = 6

Our results on polynomials fb, for b ∈ Fq6 \ Fq, involve elementary symmetric poly-
nomials in bq

j , for j = 0, . . . , 5. Throughout the paper, let

A =
∑

0≤j≤5
bq

j

, B =
∑

0≤j1<j2≤5
bq

j1+qj2 , C =
∑

0≤j1<j2<j3≤5
bq

j1+qj2+qj3 ,

D =
∑

0≤j1<...<j4≤5
bq

j1+qj2+qj3+qj4 , E =
∑

0≤j1<...<j5≤5
bq

j1+qj2+qj3+qj4+qj5 ,
(16)

and

F = b1+q+q2+q3+q4+q5
.

Note that A, B, C, D, E, F ∈ Fq. The aim of this section is to prove the following theorems 
which characterize PPs of type fb.

Theorem 3.1. Let p �= 7, b ∈ Fq6 \Fq. Suppose that one of the following conditions holds.

1. q �≡ 1 (mod 7) and

B = 3
7A

2, C = 5
72A

3, D = 5
73A

4, E = 3
74A

5, F = 1
75A

6;

2. q �≡ 1 (mod 7), 7B − 3A2 �= 0, and

C = 1
72 (−10A3 + 35AB), D = 1

72 (14B2 −A4 − 2A2B),

E = 1
74 (27A5 − 182A3B + 294AB2), F = 1

75 (13A6 − 28A4B − 147A2B2 + 343B3).

Then fb is a PP of Fq6 . Viceversa, if q ≥ 421 and fb is a PP of Fq6 , then either 
Condition 1 or Condition 2 holds.
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Theorem 3.2. Let p = 7, b ∈ Fq6 \Fq. Suppose that one of the following conditions holds.

1.

b ∈
{
(0, λ, 0, 0, 0, 0), (0, 0, 0, 0, 0, λ) | λ ∈ F

∗
q

}
;

2.

A = B = 0, C �= 0, E = 3D2

C
, F = 2C4 + 4D3

C2 ; (17)

3.

A = 0,
√
B /∈ Fq, D = 5B3 + 6C2

B
, E = C(3B3 + 4C2)

B2 , F = 6(B3 + 6C2)2

B3 .

(18)

Then fb is a PP of Fq6 . Viceversa, if q ≥ 421 and fb is a PP of Fq6 , then Condition 1, 
Condition 2 or Condition 3 holds.

It is easily seen that for x, y ∈ Fq Condition (2) in Niederreiter–Robinson criterion 
reads as follows:

(
x− y

)[
x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y6

+ A(x5 + x4y + x3y2 + x2y3 + xy4 + y5) + B(x4 + x3y + x2y2 + xy3 + y4)

+ C(x3 + x2y + xy2 + y3) + D(x2 + xy + y2) + E(x + y) + F
]
�= 0.

Let Sb be the sextic plane curve defined over Fq with affine equation Fb(X, Y ) = 0, where

Fb(X,Y ) = X6 + X5Y + X4Y 2 + X3Y 3 + X2Y 4 + XY 5 + Y 6

+ A(X5 + X4Y + X3Y 2 + X2Y 3 + XY 4 + Y 5)

+ B(X4 + X3Y + X2Y 2 + XY 3 + Y 4) + C(X3 + X2Y + XY 2 + Y 3)

+ D(X2 + XY + Y 2) + E(X + Y ) + F.

Remark 3.3. By Niederreiter–Robinson Criterion, fb is a PP of Fq6 if and only if b ∈
Fq6 \ Fq and Sb has no Fq-rational affine points off the lines X = Y , X = 0, and Y = 0.

Remark 3.4. Throughout the paper, we denote by ϕq the Frobenius map (x, y, z) 
→
(xq, yq, zq) of PG(2, Fq). The map ϕq is a collineation of the projective plane, that is a 
bijection of the points of the plane mapping a line to a line and preserving incidences 
between lines and points. Clearly, ϕq fixes Sb because Sb is defined over Fq; hence, 
ϕq acts on the absolutely irreducible components of Sb of the same degree. The orbit 
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of an absolutely irreducible component C of Sb under the action of ϕq has length k if 
and only if C is defined over Fqk but not over any proper subfield of Fqk ; in particular, 
ϕq fixes C if and only if C is defined over Fq. Note that if an Fq-rational point P belongs 
to a component C of Sb not defined over Fq, then ϕq(C) �= C contains P . By Bézout 
Theorem, this implies that the number of Fq-rational points of a curve of order d not 
defined over Fq is at most d2.

Since no confusion arises, we denote by ϕq also the Frobenius automorphism a 
→ aq of 
Fq and the automorphism 

∑
i aiX

i 
→
∑

i a
q
iX

i of Fq[X]. Clearly, ϕq fixes any polynomial 
f ∈ Fq[X] and acts on its irreducible factors over Fq of the same degree.

Also, we denote by ψ both the collineation (x, y, z) 
→ (y, x, z) of PG(2, Fq) and the 
bijection F (X, Y, T ) 
→ F (Y, X, T ) of Fq[X, Y, T ]. Note that ψ acts on the absolutely 
irreducible components of Sb of the same degree since ψ preserves Sb.

Lemma 3.5. If Sb has no Fq-rational affine points off the lines X = Y , X = 0, and 
Y = 0, then one of the following cases occurs.

i) The prime power q is at most 421.
ii) The curve Sb has a linear component not defined over Fq.
iii) The curve Sb splits into three absolutely irreducible conics not defined over Fq but 

over Fq3 .
iv) The curve Sb splits into two absolutely irreducible cubics not defined over Fq but 

over Fq2 .

Proof. Assume that Sb is absolutely irreducible. Note that Sb has at most 6 points 
on the ideal line �∞, at most 6 points on the line X = Y , and no Fq-rational affine 
points (x, y) with x = 0 or y = 0; this is easily seen by (2). By the Hasse–Weil Bound, 
q + 1 − 20√q ≤ 12, that is, q ≤ 421. If Sb is reducible but has an absolutely irreducible 
component defined over Fq, then the same argument yields q ≤ 13.

We can now assume that Sb splits into absolutely irreducible components not defined 
over Fq. Let C be an absolutely irreducible component of Sb. By Remark 3.4, the degree 
of C is smaller than 4. If Sb has no linear components, then either C is a conic, whose 
orbit under ϕq has length 3; or C is a cubic, whose orbit under ϕq has length 2. In the 
former case C is defined over Fq3 , otherwise over Fq2 . �
3.1. The case p �= 7

Theorem 3.1 is implied by the following result.

Proposition 3.6. Let p �= 7.

1. If Sb has a linear component not defined over Fq, then Sb splits into six linear com-
ponents not defined over Fq. This happens if and only if q �≡ 1 (mod 7) and
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7B−3A2 = 49C−5A3 = 343D−5A4 = 2401E−3A5 = 16807F−A6 = 0. (19)

In this case, Sb has no Fq-rational affine points off the line X = Y .
2. The curve Sb splits into three absolutely irreducible conics not defined over Fq if and 

only if q �≡ 1 (mod 7), 7B − 3A2 �= 0, and

A4 + 2A2B − 14B2 + 49D = 27A5 − 182A3B + 294AB2 − 2401E

= 10A3 − 35AB + 49C = 13A6 − 28A4B − 147A2B2 + 343B3 − 16807F = 0.
(20)

In this case, Sb has no Fq-rational affine points.
3. The curve Sb does not split into two absolutely irreducible cubics not defined over Fq.

Proof. Let ξ denote a primitive 7-th root of unity; the curve Sb has 6 non-singular ideal 
points Pi = (1, ξi, 0), i = 1, . . . , 6. We denote by �i the tangent line to Sb at Pi, which 
has affine equation Li(X, Y ) = 0, where

Li(X,Y ) = Y − ξiX − wi, with wi = Aξ6i

6ξ5i + 5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1 .

Let Φ7(X) = X7−1
X−1 ∈ Fq[X] be the 7-th cyclotomic polynomial. For a polynomial 

F (X) ∈ Fq[X] we denote by R(F ) ∈ Fq the resultant of Φ7 and F with respect to X. 
Therefore, R(F ) �= 0 implies F (ξ) �= 0.

1. A linear component si of Sb must have affine equation Y = ξiX + αi, for some 
i ∈ {1, . . . , 6}, αi ∈ Fq since it must contain one of the ideal points Pi.
The line si is contained in Sb if and only if the polynomial G(X) = Fb(X, ξiX + αi)
is the zero polynomial. By straightforward computations, this happens if and only if
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1)Aαi + (ξ4i + ξ3i + ξ2i + ξi + 1)B
+ (15ξ4i + 10ξ3i + 6ξ2i + 3ξi + 1)α2

i = 0
A(ξ5i + ξ4i + ξ3i + ξ2i + ξi + 1) + (6ξ5i + 5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1)αi = 0
(10ξ3i + 6ξ2i + 3Aξi + 1)Aα2

i + (4ξ3i + 3ξ2i + 2ξi + 1)Bαi

+ (ξ3i + ξ2i + ξi + 1)C + (20ξ3i + 10ξ2i + 4ξi + 1)α3
i = 0

(10ξ2i + 4ξi + 1)Aα3
i + (6ξ2i + 3ξi + 1)Bα2

i + (3ξ2i + 2ξi + 1)Cαi

+ (ξ2i + ξi + 1)D + 15α4
i ξ

2i + 5α4
i ξ

i + α4
i = 0

(5ξi + 1)Aα4
1 + (4ξi + 1)Bα3

i + (3ξi + 1)Cα2
i + (2ξi + 1)Dαi

+ (ξi + 1)E + 6α5
i ξ + α5

i = 0
Aα5

i + Bα4
i + Cα3

i + Dα2
i + Eαi + F + α6

i = 0

.

(21)
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From the first two equations we obtain

(3A2 − 7B)(ξ5i + 4ξ4i + 9ξ3i + 9ξ2i + 4ξi + 1) = 0.

For each i ∈ {1, . . . , 6} we have R(X5i + 4X4i + 9X3i + 9X2i + 4Xi + 1) = 74, and 
hence ξ5i +4ξ4i +9ξ3i +9ξ2i +4ξi +1 �= 0. Combining 3A2−7B = 0 with the second 
and the third equation in (21), we get

(5A3 − 49C)(2ξ5i + 7ξ4i + 12ξ3i + 14ξ2i + 10ξi + 4) = 0.

For each i ∈ {1, . . . , 6}, we have R(2X5i + 7X4i + 12X3i + 14X2i + 10Xi + 4) = 73, 
and hence 5A3 − 49C = 0. Similarly, from the other equations in (21), we obtain

343D − 5A4 = 2401E − 3A5 = 16807F −A6 = 0.

Also,

αi = Aξ6i

6ξ5i + 5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1 . (22)

Therefore si : Y = ξiX+αi is not defined over Fq if and only if ξi /∈ Fq. Equivalently, 
q �≡ 1 (mod 7); in fact, Φ7 factorizes over Fq into 6/d irreducible polynomials, where 
d is the multiplicative order of q modulo 7.
On the other hand, direct calculations show that, if Conditions (19) hold and αi is 
defined by (22) for i = 1, . . . , 6, then Sb splits into the six lines �1, . . . , �6.
As already mentioned in Remark 3.4, if Sb has a component C not defined over Fq

containing an Fq-rational point, then this point lies on at least another component 
of Sb, namely ϕq(C). As �1 ∩ . . .∩ �6 = {(−A

7 , −A
7 )} and (−A

7 , −A
7 ) belongs to the line 

X = Y , the thesis follows.
2. If Sb splits into three absolutely irreducible conics not defined over Fq, then Sb has 

equation S(X, Y ) = 0, where

S(X,Y ) = (Li1(X,Y )Lj1(X,Y ) + β1) · (Li2(X,Y )Lj2(X,Y ) + β2)

· (Li3(X,Y )Lj3(X,Y ) + β3)

for some β1, β2, β3 ∈ F
∗
q , with {i1, j1, i2, j2, i3, j3} = {1, . . . , 6}. In fact, each conic 

must contain two distinct ideal points Pi and Pj of Sb and Li(X, Y ), Lj(X, Y )
must be tangent lines to the conic at Pi, Pj . There are 

(6
2
)(4

2
)
/6 = 15 possi-

ble distinct choices for the three pairs {i1, j1}, {i2, j2}, {i3, j3}. For instance, let 
(i1, j1, i2, j2, i3, j3) = (1, 2, 3, 4, 5, 6). Using the fact that the three conics are in the 
same orbit under ϕq, and comparing the coefficients of S(X, Y ) with the coefficients 
of Fb(X, Y ), we get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ5 + ξ4 + 3ξ3 + ξ2 + ξ)β1 + (−2ξ5 − 2ξ4 − 2ξ3 − 2ξ2 + 1)β2 + (2ξ4 − ξ − 1)β3

= 21A2 − 49B
(−2ξ5 − 2ξ4 − ξ2 − ξ − 1)β1 + (−ξ4 − ξ3 + 2)β2 + (ξ4 − ξ3 − ξ2 + ξ)β3

= 21A2 − 49B
(ξ4 + 2ξ3 + ξ2 + 2ξ + 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2 − ξ5 − ξ3 − 2ξ2 − 2ξ − 1)β3

= 21A2 − 49B
(ξ3 − ξ2 − ξ + 1)β1 + (−ξ4 − ξ3 + 2)β2 + (2ξ4 + ξ3 + ξ2 + ξ + 2)β3

= 21A2 − 49B
(ξ5 + ξ3 − ξ − 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2 + (ξ5 + 2ξ4 + ξ3 + 2ξ2 + ξ)β3

= 21A2 − 49B

.

(23)

System (23) has a solution (β1, β2, β3) if and only if
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6A2ξ5 − 15A2ξ4 − 45A2ξ3 − 66A2ξ2 − 60A2ξ − 30A2

− 14Bξ5 + 35Bξ4 + 105Bξ3 + 154Bξ2 + 140Bξ + 70B = 0
6A2ξ5 − 6A2ξ4 − 24A2ξ3 − 36A2ξ2 − 30A2ξ − 15A2

− 14Bξ5 + 14Bξ4 + 56Bξ3 + 84Bξ2 + 70Bξ + 35B = 0

,

that is {
(3A2 − 7B)(2ξ5 − 5ξ4 − 15ξ3 − 22ξ2 − 20ξ − 10) = 0
(3A2 − 7B)(2ξ5 − 2ξ4 − 8ξ3 − 12ξ2 − 10ξ − 5) = 0

.

Since R(2X5 − 2X4 − 8X3 − 12X2 − 10X − 5) = 73, we have 3A2 − 7B = 0. Then, 
by (23), ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−2ξ5 − 2ξ4 − ξ2 − ξ − 1)β1 + (−ξ4 − ξ3 + 2)β2

+ (ξ4 − ξ3 − ξ2 + ξ)β3 = 0
(ξ4 + 2ξ3 + ξ2 + 2ξ + 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2

− ξ5 − ξ3 − 2ξ2 − 2ξ − 1)β3 = 0
(ξ5 + ξ3 − ξ − 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2

+ (ξ5 + 2ξ4 + ξ3 + 2ξ2 + ξ)β3 = 0

. (24)

System (24) is linear and homogeneous in the βi’s, and its determinant is ξ5 + 3ξ4 +
3ξ3 + 5ξ2 + 6ξ + 3. Since R(X5 + 3X4 + 3X3 + 5X2 + 6X + 3) = 73, the system has 
a unique solution β1 = β2 = β3 = 0, a contradiction.
When {{i1, j1}, {i2, j2}, {i3, j3}} �= {{1, 6}, {2, 5}, {3, 4}}, an analogous argument 
yields a contradiction. Now assume (i1, j1, i2, j2, i3, j3) = (1, 6, 2, 5, 3, 4). By direct 
calculations,
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β1 = (ξ5 + ξ4 + ξ3 + ξ2 − 1)(3A2 − 7B),

β2 = β3 = (−ξ5 − ξ2 − 2)(3A2 − 7B).
(25)

Recall that β1, β2, β3 are non-zero, otherwise the conics are reducible. Hence 3A2 −
7B �= 0, because R(X5 + X4 + X3 + X2 − 1) = R(−X5 −X2 − 2) = 1. Using (25)
and comparing the coefficients of S(X, Y ) and Fb(X, Y ), we get that Conditions (20)
hold. Since the conic components of Sb are not defined over Fq, it is easily seen that 
ξ /∈ Fq, i.e. q �≡ 1 (mod 7).
On the other hand, if 3A2 − 7B �= 0 and Conditions (20) hold, then by direct 
computations Sb has equation

(L1(X,Y )L6(X,Y ) + β1) · (L2(X,Y )L5(X,Y ) + β2) · (L3(X,Y )L4(X,Y ) + β3) = 0,

where the βi’s are non-zero and defined as in (25).
In this case, it is easy to check that two conic components of Sb intersect in an 
Fq-rational point if and only if q ≡ 1 (mod 7) or 3A2 − 7B = 0, which is not 
possible. Hence, Sb has no Fq-rational points; see Remark 3.4.

3. If Sb splits into two absolutely irreducible cubics C1 and C2 not defined over Fq, then 
C1, C2 have affine equation C1(X, Y ) = 0, C2(X, Y ) = 0, where

C1(X,Y ) = (Y − ξi1X)(Y − ξi2X)(Y − ξi3X) + (wi1ξ
i2ξi3 + wi2ξ

i1ξi3 + wi3ξ
i1ξi2)X2

+ (wi1(ξi2 + ξi3) + wi2(ξi1 + ξi3) + wi3(ξi1 + ξi2))XY

− (wi1 + wi2 + wi3)Y 2 + αX + βY + γ,

C2(X,Y ) = (Y − ξi4X)(Y − ξi5X)(Y − ξi6X) + (wi4ξ
i5ξi6 + wi5ξ

i4ξi6 + wi6ξ
i4ξi5)X2

+ (wi4(ξi5 + ξi6) + wi5(ξi4 + ξi6) + wi6(ξi4 + ξi5))XY

− (wi4 + wi5 + wi6)Y 2 + α′X + β′Y + γ′.
(26)

In fact, each cubic contains three distinct ideal points Pi, Pj , Pk of Sb and Li(X, Y ), 
Lj(X, Y ), Lk(X, Y ) are the tangent lines to the cubic at Pi, Pj , Pk. By Remark 3.4, 
C1 and C2 are switched by ϕq, hence there exists λ ∈ F

∗
q such that Cq

1(X, Y ) =
λC2(X, Y ). Let u ∈ {1, . . . , 6} be such that q ≡ u (mod 7); then (ξi)q = ξiu. By 
comparing the coefficients of C1(X, Y ) · C2(X, Y ) with the coefficients of Fb(X, Y ), 
we have for {{i1, i2, i3}, {i4, i5, i6}, u} the following possibilities:

{{1, 2, 3}, {4, 5, 6}, 6}, {{1, 2, 4}, {3, 5, 6}, 3}, {{1, 2, 4}, {3, 5, 6}, 5},

{{1, 2, 4}, {3, 5, 6}, 6}, {{1, 3, 5}, {2, 4, 6}, 6}, {{1, 4, 5}, {2, 3, 6}, 6}.
(27)

In all these cases we have λ = 1. Hence α′ = αq, β′ = βq, and γ′ = γq.
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By Remark 3.4, ψ either fixes or switches the irreducible components C1 and C2. 
It is easy to check that the former case cannot occur, for any case in (27); thus 
ψ(C1) = C2. Together with C1C2 = Sb, this yields

γq = μγ, αq = μβ, βq = μα, γq+1 = 16807F,

αγq + αqγ = βγq + βqγ = 16807E,

for some μ ∈ Fq. Consider for instance the case (i1, i2, i3, i4, i5, i6, u)=(1,2,4,3,5,6,3); 
by direct computation μ = 1, and C1C2 = Sb is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αγ + βγ = 16807E
A(α− β)(ξ4 + ξ2 + ξ − 2) − 5Aβ − 343C − 7γ = 0
γ2 = 16807F
A(β − α)(ξ4 + ξ2 + ξ) −Aα− 343C = 0
98A2 − 343B + (α− β)(ξ4 + ξ2 + ξ − 3) − 7β = 0
−196Aγ − 16807D + α2 + β2 = 0
−49Aγ − 16807D + αβ = 0
98A2 − 343B + (β − α)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
49A2 − 343B + (α− β)(2ξ4 + 2ξ2 + 2ξ − 6) − 14β = 0

.

By eliminating α, β, and γ, the system yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3A2 − 7B)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
(2A3 + 7AB − 49C)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
−15A4 + 56A2B − 49AC − 49B2 + 343D = 0
(−33A5 + 259A3B − 147A2C − 490AB2 + 686BC − 2401E)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
−121A6 + 770A4B − 1078A3C − 1225A2B2 + 3430ABC − 2401C2 + 16807F = 0
−45A4 + 182A2B − 196AC − 98B2 + 343D = 0

.

Since R(2X4 + 2X2 + 2X + 1) = 73, we obtain

7B − 3A2 = 49C − 5A3 = 343D − 5A4 = 2401E − 3A5 = 16807F −A6 = 0.

Then Sb splits into lines as shown above, contradiction.
If ({i1, i2, i3}, {i4, i5, i6}, u) ∈ {({1, 2, 4}, {3, 5, 6}, 6), ({1, 2, 4}, {3, 5, 6}, 6)}, then 
μ = 1 and analogous arguments yield a contradiction.
Now consider the case ({i1, i2, i3}, {i4, i5, i6}, u) = ({1, 2, 3}, {4, 5, 6}, 6). We get 
μ = ξ5, and C1C2 = Sb implies
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2(22ξ5 − 5ξ4 − 4ξ3 + 11ξ2 + 26ξ + 27) − 49B(2ξ5 + ξ2 + 2ξ + 2) + αξ5 − βξ = 0
A2(22ξ5 − 5ξ4 − 4ξ3 + 11ξ2 + 26ξ + 27) − 49B(2ξ5 + ξ2 + 2ξ + 2) + αξ2 − βξ4 = 0
−A2(70ξ4 + 14ξ + 14) + 343Bξ4 + α(8ξ5 + 6ξ4 + 9ξ3 + 4ξ2 − ξ + 2) = 0
−A2(70ξ4 + 14ξ + 14) + 343Bξ4 − α(6ξ5 + 8ξ4 + 5ξ3 + 3ξ2 + ξ − 2) = 0
343Cξ4 + γ(2ξ5 + ξ3 − 2ξ2 − 2ξ + 1) = 0
343Cξ4 + γ(−ξ5 + 3ξ3 + ξ2 + ξ + 3) = 0

,

whence ⎧⎪⎨
⎪⎩

(ξ4 − ξ)(αξ + β) = 0
(14ξ5 + 14ξ4 + 14ξ3 + 7ξ2)α = 0
(3ξ5 − 2ξ3 − 3ξ2 − 3ξ − 2)γ = 0

.

Since 3ξ5 − 2ξ3 − 3ξ2 − 3ξ − 2 �= 0, this yields γ = 0 and F = γ2/16807 = 0, 
a contradiction.
Finally, for ({i1, i2, i3}, {i4, i5, i6}, u) ∈ {({1, 3, 5}, {2, 4, 6}, 6), ({1, 4, 5}, {2, 3, 6}, 6)}, 
analogous arguments yield a contradiction. �

3.2. The case p = 7

Theorem 3.2 is implied by the following result.

Proposition 3.7. Let p = 7.

1. If Sb has a linear component not defined over Fq, then Sb splits into six linear com-
ponents not defined over Fq. This happens if and only if

b ∈
{
(0, λ, 0, 0, 0, 0), (0, 0, 0, 0, 0, λ) | λ ∈ F

∗
q

}
. (28)

In this case, Sb has no Fq-rational affine points.
2. The curve Sb splits into three absolutely irreducible conics not defined over Fq if and 

only if

A = B = 0, C �= 0, E = 3D2

C
, F = 2C4 + 4D3

C2 . (29)

In this case, Sb has no Fq-rational affine points off the line X = Y .
3. The curve Sb splits into two absolutely irreducible cubics not defined over Fq if and 

only if

A = 0,
√
B /∈ Fq, D = 5B3 + 6C2

B
, E = C(3B3 + 4C2)

B2 , F = 6(B3 + 6C2)2

B3 .

(30)

In this case Sb has no Fq-rational affine points off the line X = Y .
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Proof. The unique ideal point of Sb is P∞ = (1, 1, 0). The point P∞ is singular if and 
only if A = 0. Suppose A �= 0. The tangent line to Sb at P∞ is the ideal line �∞. A line 
through P∞ either is �∞ or has equation Y = X+α with α ∈ Fq; by direct computation, 
none of them is a component of Sb. Hence, Sb is absolutely irreducible by a criterion due 
to Segre; see [15] and [2, Lemma 8].

Therefore, a necessary condition for Sb to be reducible is A = 0.

1. Let s1 be a linear component of Sb, then it has affine equation Y = X + α with 
α ∈ Fq, and the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = 0
Aα + 5B = 0
6Aα2 + 3Bα + 4C = 0
Aα3 + 3Bα2 + 6Cα + 3D = 0
6Aα4 + 5Bα3 + 4Cα2 + 3Dα + 2E = 0
Aα5 + Bα4 + Cα3 + Dα2 + Eα + F + α6 = 0

holds. This happens if and only if A = B = C = D = E = 0 and α6 = −F . On the 
other hand, these conditions imply that Sb splits into the six lines si : Y = X + iα, 
i = 1, . . . , 6.
Let k be such that q = 6k + 1. Recall that ζ is a primitive element of Fq and z is a 
root of the polynomial T 6 − ζ. In particular z6(q−1) = 1 and {1, z, z2, z3, z4, z5} is a 
basis of Fq6 over Fq.
Let b, c ∈ Fq6 , and (b0, b1, b2, b3, b4, b5), (c0, c1, c2, c3, c4, c5) be their components with 
respect to the basis {1, z, z2, z3, z4, z5}. Then

bq = (b0, b1ζk, b2ζk − b2,−b3,−b4ζ
k,−b5ζk + b5),

bq
2

= (b0, b1ζk − b1,−b2ζ
k, b3, b4ζ

k − b4,−b5ζk),

bq
3

= (b0,−b1, b2,−b3, b4,−b5),

bq
4

= (b0,−b1ζ
k, b2ζ

k − b2, b3,−b4ζ
k, b5ζk − b5),

bq
5

= (−b0,−b1ζ
k + b1,−b2ζ

k,−b3, b4ζ
k − b4, b

5ζk),

bc =
(
b0c0 + b1c5ζ + b2c4ζ + b3c3ζ + b4c2ζ + b5c1ζ,

b0c1 + b1c0 + b2c5ζ + b3c4ζ + b4c3ζ + b5c2ζ,

b0c2 + b1c1 + b2c0 + b3c5ζ + b4c4ζ + b5c3ζ,

b0c3 + b1c2 + b2c1 + b3c0 + b4c5ζ + b5c4ζ,

b0c4 + b1c3 + b2c2 + b3c1 + b4c0 + b5c5ζ,

b0c5 + b1c4 + b2c3 + b3c2 + b4c1 + b5c0
)
,
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hence

A = −b0, B = b20 + b1b5ζ + b2b4ζ + 4b23ζ,

C = 6b30 + 4b0b1b5ζ + 4b0b2b4ζ + 2b0b23ζ + 6b21b4ζ

+ 5b1b2b3ζ + 2b32ζ + 6b2b25ζ2 + 5b3b4b5ζ2 + 2b34ζ2,

D = b40 + 6b20b1b5ζ + 6b20b2b4ζ + 3b20b23ζ + 4b0b21b4ζ + b0b1b2b3ζ + 6b0b32ζ

+ 4b0b2b25ζ2 + b0b3b4b5ζ
2 + 6b0b34ζ2 + b31b3ζ + 5b21b22ζ + 2b21b25ζ2

+ 3b1b3b24ζ2 + 3b22b3b5ζ2 + 2b22b24ζ2 + 3b43ζ2 + b3b
3
5ζ

3 + 5b24b25ζ3,

E = 6b50 + 4b30b1b5ζ + 4b30b2b4ζ + 2b30b23ζ + 4b20b21b4ζ + b20b1b2b3ζ + 6b20b32ζ

+ 4b20b2b25ζ2 + b20b3b4b5ζ
2 + 6b20b34ζ2 + 2b0b31b3ζ + 3b0b21b22ζ + 4b0b21b25ζ2

+ 6b0b1b3b24ζ2 + 6b0b22b3b5ζ2 + 4b0b22b24ζ2 + 6b0b43ζ2 + 2b0b3b35ζ3 + 3b0b24b25ζ3

+ 6b41b2ζ + 2b31b4b5ζ2 + 4b21b23b4ζ2 + 5b1b32b5ζ2 + 2b1b2b33ζ2 + 2b1b2b35ζ3

+ 5b1b34b5ζ3 + b42b4ζ
2 + 6b32b23ζ2 + 4b2b23b25ζ3 + b2b

4
4ζ

3 + 2b33b4b5ζ3

+ 6b23b34ζ3 + 6b4b45ζ4.

It is easy to check that A = B = C = D = E = 0 is equivalent to Condition (28). 
Since b = λz or b = λz5, with λ ∈ F

∗
q , the condition α6 = −bq

5+q4+q3+q2+q+1, i.e. 
α6 = −F , implies α ∈ Fq6 \ Fq. Therefore, the six lines si, i = 1, . . . , 6, have no 
Fq-rational affine points.

2. Suppose that Sb splits into three absolutely irreducible conics C1, C2, and C3 not 
defined over Fq. By Remark 3.4, either ψ fixes each Ci, or (up to reordering the 
indexes) ψ fixes C1 and switches C2 and C3.
In the latter case, the conics Ci’s have affine equation

C1 : (X − Y )2 + αX + αY + β = 0,

C2 : (X − Y )2 + γX + δY + ε = 0,

C3 : (X − Y )2 + δX + γY + ζ = 0,

for some α, β, γ, δ, ε, ζ ∈ Fq. The conditions C1C2C3 = Sb and A = 0 yield

A = B = C = D = E = 0.

Hence, as above, Sb splits into six lines, a contradiction.
In the former case, the conics Ci’s have affine equation

C1 : (X − Y )2 + αX + αY + β = 0,

C2 : (X − Y )2 + γX + γY + δ = 0,

C : (X − Y )2 + εX + εY + ζ = 0,

(31)
3
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for some α, β, γ, δ, ε, ζ ∈ Fq. Since the three conics Ci’s are not defined over Fq, they 
form a single orbit under ϕq, the coefficients lie in Fq3 and γ = αq, ε = αq2 , δ = βq, 
ζ = βq2 . By direct computation, C1C2C3 = Sb and A = 0 imply

B = 0, CE + 4D2 = 0, C2D + 3DF + E2 = 0, C3 + 3CF + 3DE = 0.

Hence Conditions (29) follow, because C = 0 would imply that Sb splits into lines, 
a contradiction. Conversely, if Conditions (29) hold, then Sb splits into irreducible 
conics defined by (31), where the Ci’s form a single orbit under ϕq, and α, β are 
defined by

α3 = 4C, β = Cα + 2D
α2 .

The conics Ci’s are not defined over Fq. Assume by contradiction that one of them is 
defined over Fq. Then Sb = (C1)3, and the polynomial 

(
(X − Y )2 + α(X + Y ) + β

)3
has no terms of degree either 5 or 4. Hence, by direct checking, α = β = 0, which is 
impossible since F �= 0.
Conditions (29), together with the condition (x, y) ∈ C1 ∩ C2 ∩ C3, yield x = y. This 
means that Sb has no Fq-rational affine points off the line X = Y .

3. Suppose that Sb splits into two absolutely irreducible cubics C1 and C2. By Re-
mark 3.4, ψ either fixes or switches C1 and C2.
In the former case, the cubics Ci’s have affine equation

C1 : (X − Y )3 + α(X2 + Y 2) + βXY + γ(X + Y ) + δ = 0,

C2 : (X − Y )3 + α′(X2 + Y 2) + β′XY + γ′(X + Y ) + δ′ = 0.

The conditions C1C2 = Sb and A = 0 yield B = C = D = E = 0; hence, as above, 
Sb splits into lines, a contradiction.
In the latter case, the conditions C1C2 = Sb, A = 0, and ψ(C1) = C2 yield in particular

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CF 2 + DEF + 2E3 = 0
BC2 + 5BF + 4CE + 3D2 = 0
B2E + CF + 5DE = 0
B2C + 3BE + 5CD = 0
B3 + 4BD + 4C2 = 0

.

Hence B �= 0, otherwise Sb splits into lines; also,

A = 0, D = 5B3 + 6C2

B
, E = C(3B3 + 4C2)

B2 , F = 6(B3 + 6C2)2

B3 . (32)

If Conditions (32) are satisfied, then C1 and C2 have equation
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C1 : α
[
(X − Y )3 −B(X − Y )

]
+ 4B(X + Y )2 + 3C(X + Y ) + 3B3+5BC2+C2

B = 0,

C2 : −α
[
(X − Y )3 −B(X − Y )

]
+ 4B(X + Y )2 + 3C(X + Y ) + 3B3+5BC2+C2

B = 0,

(33)

where α2 = 4B; therefore, Sb is not defined over Fq if and only if 
√
B /∈ Fq.

Viceversa, if Conditions (30) are satisfied, then Sb = C1C2, with C1, C2 defined as 
in (33).
If 

√
B /∈ Fq, then C1 and C2 in (33) have no Fq-rational affine points off the line 

X = Y . In fact, if an Fq-rational point (x, y) lies on C1, then the coefficient (X −
Y )3 −B(X − Y ) of α must vanish at (x, y); this implies either B = (x − y)2, which 
is impossible, or x = y. �

4. Proof of Theorems 1.1 and 1.2

Using the characterization results contained in Theorems 3.1 and 3.2 we are now in a 
position to prove our main Theorems.

Assume first that p �= 7 and let ξ ∈ Fq6 denote a primitive 7-th root of unity.
Consider the following family of polynomials over Fq.

F =
{
Fu,v = X6 − uX5 + vX4 − (−10u3 + 35uv)

72 X3 + (14v2 − u4 − 2u2v)
72 X2

− (27u5 − 182u3v + 294uv2)
74 X + (13u6 − 28u4v − 147u2v2 + 343v3)

75 | u, v ∈ Fq

}
.

Since by definition of A, B, C, D, E, and F , the elements b, bq, . . . , bq5 are the zeros of 
the following polynomial over Fq

X6 −AX5 + BX4 − CX3 + DX2 − EX + F,

we have that fb is a PP of Fq6 if and only if b, bq, . . . , bq5 are the only zeros of Fub,vb ∈ F , 
for some ub, vb depending on b. More precisely, Condition 1 in Theorem 3.1 holds if 
and only if b, bq, . . . , bq5 are the zeros of FA, 37A

2 , whereas Condition 2 in Theorem 3.1 is 
equivalent to 7B − 3A2 �= 0 and b, bq, . . . , bq

5 being the zeros of FA,B.
We consider Condition 1 first. By direct computation,

Fu, 37u
2 =

6∏
i=1

(
X − u

1 − ξi

7

)
.

Since the trace map is surjective, for each u ∈ Fq there exists b ∈ Fq6 \ Fq such that 
u = A. Moreover, for each i = 1, . . . , 6, the minimal polynomial of ξi over Fq has degree 
congruent to q modulo 7. Hence, Fu, 37u

2 is irreducible over Fq if and only if q ≡ 3, 5
(mod 7); in this case, the roots b of Fu, 3u2 provide 6 permutation polynomials fb. If 
7
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Fu, 37u
2 is reducible over Fq, then the zeros of Fu, 37u

2 do not form a single orbit under ϕq, 
since they are all distinct; in this case, if b is a root of Fu, 37u

2 , then fb is not a PP of Fq6 .
As to Condition 2 in Theorem 3.1, it is satisfied by b if and only if b is a root of 

some Fu,v, where u, v ∈ Fq are such that 7v − 3u2 �= 0 and either Fu,v is irreducible 
over Fq, or Fu,v is the square of an irreducible polynomial over Fq, or Fu,v is the cube 
of an irreducible polynomial over Fq.

By direct computation, Fu,v = 1
76 ·G(1)

u,v ·G(2)
u,v ·G(3)

u,v, with

G(1)
u,v(X) = 49X2 + 7(ξ4 + ξ3 − 2)uX − (3ξ5 + 4ξ4 + 4ξ3 + 3ξ2 + 7)u2

+ 7(ξ5 + ξ4 + ξ3 + ξ2 + 3)v,

G(2)
u,v(X) = 49X2 − 7(ξ5 + ξ4 + ξ3 + ξ2 + 3)uX + (4ξ5 + ξ4 + ξ3 + 4ξ2 − 3)u2

− 7(ξ5 + ξ2 − 2)v,

G(3)
u,v(X) = 49X2 + 7(ξ5 + ξ2 − 2)uX − (ξ5 − 3ξ4 − 3ξ3 + ξ2 + 4)u2 − 7(ξ4 + ξ3 − 2)v.

Also, the G(i)
u,v’s are defined over Fq3 and form a single orbit under ϕq. The discriminant 

of Fu,v(X) is Δ = 13u6−28u4v−147u2v2 +343v3 and it vanishes if and only if u2 = δ ·v, 
with 13δ3 − 28δ2 − 147δ + 343 = 0. For p �= 13, δ is in

{
21ξ5 + 35ξ4 + 35ξ3 + 21ξ2 + 28

13 ,
14ξ5 − 21ξ4 − 21ξ3 + 14ξ2 + 7

13 ,

−35ξ5 − 14ξ4 − 14ξ3 − 35ξ2 − 7
13

}
,

and it is easily seen that δ /∈ Fq; hence Δ �= 0, since u, v ∈ F
∗
q . For p = 13, δ ∈ {8, 11}. 

In this case, a direct computation shows that Fu,v is not a power of an irreducible 
polynomial over Fq, for any (u, v) ∈ F

2
q \ {(0, 0)}; hence, fb is not a PP of Fq6 for any 

root b of Fu,v.
Therefore, we can assume that G(i)

u,v and G(j)
u,v have no roots in common for i �= j.

If q ≡ 1, 6 (mod 7), then the G(i)
u,v’s are defined over Fq. Hence, fb is not a PP of Fq6 , 

for any root b of Fu,v.
Suppose now q odd and q ≡ r ∈ {2, 3, 4, 5} (mod 7). For i = 1, 2, 3, the roots of G(i)

u,v

are

x
(i)
1,2 = (αiu± ρi) /14, with ρ2

i = βi(28v − 11u2), (34)

where

α2 = β1 = (ξ4 − ξ3)2, α3 = β2 = (ξ5 + ξ4 + ξ3 + ξ2 + 2ξ + 1)2, α1 = β3 = (ξ5 − ξ2)2.
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Note that ξ4 − ξ3, ξ5 + ξ4 + ξ3 + ξ2 + 2ξ + 1, and ξ5 − ξ2 belong to Fq3 if and only if 
r ∈ {2, 4}. Therefore, for any i = 1, 2, 3, βq3

i = βi when r ∈ {2, 4}, and βq3

i = −βi when 

r ∈ {3, 5}, whereas αq3

i = αi.
Suppose 28v − 11u2 = 0. Then x(i)

1 = x
(i)
2 , and Fu,v is the square of an irreducible 

polynomial over Fq. Hence, the three distinct roots b of Fu,v provide PPs fb of Fq6 .
Suppose 28v − 11u2 �= 0, hence ρi �= 0 for any i = 1, 2, 3. Then

ρq
3

i = (−1)r · (28v − 11u2)
q3−1

2 · ρi.

Note that (28v− 11u2) q3−1
2 = 1 if 28v− 11u2 is a square in Fq (and hence in Fq3), while 

(28v − 11u2) q3−1
2 = −1 if 28v − 11u2 is a non-square in Fq.

If r ∈ {2, 4} and 28v − 11u2 is a non-zero square in Fq, then ρq
3 = ρ; the same holds 

if r ∈ {3, 5} and 28v − 11u2 is a non-square in Fq. Therefore, (x(i)
1 )q3 = x

(i)
1 , and Fu,v

factors over Fq into two distinct irreducible polynomials. Hence, for any root b of Fu,v, 
fb is not a PP of Fq6 .

If r ∈ {2, 4} and 28v − 11u2 is a non-square in Fq, then ρq
3 = −ρ; the same holds if 

r ∈ {3, 5} and 28v− 11u2 is a non-zero square in Fq. Therefore, (x(i)
1 )q3 = x

(i)
2 , and Fu,v

is irreducible over Fq. Hence, the roots b of Fu,v provide PPs fb of Fq6 .
Let s, ε ∈ Fq with ε a primitive element of Fq, such that 28v − 11u2 = s2 when 

28v − 11u2 is a square in Fq, and 28v − 11u2 = s2ε when 28v − 11u2 is a non-square 
in Fq. Then the condition 7v − 3u2 �= 0 reads u �= ±s in the former case, while it is 
satisfied for all (u, s) �= (0, 0) in the latter case.

Suppose now q = 2h. Then, q ≡ 2, 4 (mod 7). The minimal polynomial of ξ is either 
X3 + X + 1 or X3 + X2 + 1; assume without loss of generality that ξ3 = ξ + 1. The 
factors of Fu,v over Fq3 in this case are

X2 + (ξ + 1)Xu + (ξ + 1)2v + (ξ2 + ξ)u2,

X2 + (ξ + 1)2Xu + (ξ + 1)4v + ξu2,

X2 + (ξ + 1)4Xu + (ξ + 1)v + ξ2u2.

There exist roots of Fu,v of multiplicity larger than one if and only if u6(u2+ξv)4(u2+
ξ2v)4(u2 + (ξ2 + ξ)v)4 = 0. Since ξ /∈ Fq, the only possibility is u = 0. In this case

Fu,v =
[(
X + (ξ + 1)

√
v
)
·
(
X + (ξ2 + 1)

√
v
)
·
(
X + (ξ2 + ξ + 1)

√
v
)]2

.

Hence, Fu,v has three distinct zeros with multiplicity 2 and defined over Fq3 , for any 
v ∈ F

∗
q , namely

(ξ + 1)
√
v, (ξ2 + 1)

√
v, (ξ2 + ξ + 1)

√
v,

which form a unique orbit under the Frobenius map.
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Suppose now u �= 0, that is Fu,v has six distinct zeros belonging to Fq6 . They belong 

to Fq3 if and only if TrFq3/F2

(
v
u2 + (ξ + 1)2i

)
= 0, i = 0, 1, 2, that is

TrFq3/F2

( v

u2 + (ξ + 1)2
i
)

= TrFq3/F2

( v

u2

)
+ TrFq3/F2

(
(ξ + 1)2

i
)

= 0,

where TrFq3/F2 denotes the trace function from Fq3 to F2. It is not hard to see that 

TrFq3/F2

(
(ξ + 1)2i

)
= 1 if and only if h is odd. Therefore the zeros of Fu,v(X) correspond 

to PPs fb if and only if one of the following cases occurs:

• h is odd and TrFq3/F2

(
v
u2

)
= TrFq/F2

(
v
u2

)
= 0;

• h is even and TrFq3/F2

(
v
u2

)
= TrFq/F2

(
v
u2

)
= 1.

In these cases, let δi = v
u2 + (ξ + 1)2i , i = 0, 1, 2, and let k be an element with 

TrFq6/F2 (k) = 1. Define yi = kδ2
i + (k + k2)δ4

i + · · · + (k + k2 + · · · + k2h−2)δ2h−1

i , 
i = 0, 1, 2. The six roots are

b ∈
{
yi(ξ + 1)2

i+1
u, (yi + 1)(ξ + 1)2

i+1
u
∣∣∣ i = 0, 1, 2, TrFq/F2

( v

u2

)
= 0

}

if h is odd,

b ∈
{
yi(ξ + 1)2

i+1
u, (yi + 1)(ξ + 1)2

i+1
u
∣∣∣ i = 0, 1, 2, TrFq/F2

( v

u2

)
= 1

}

otherwise.
Therefore we have proved Theorem 1.1.
For the case p = 7, Propositions 4.1 and 4.2 imply Theorem 1.2.

Proposition 4.1. Let q = 7h ≥ 421. Let ξ, ε ∈ F73 be such that ξ18 = 1 and ε2 = ξ. The 
polynomial fb is a PP of Fq6 of type (17) if and only if one of the following cases occurs.

• h is odd and

b ∈
{
−2ξC + ε

3D
C

∣∣∣ C ∈ Fq3 , C
3 ∈ Fq, 3C3 is not a cube in Fq, D ∈ Fq

}
.

• h is even and

b ∈
{
−2ξC + ε

3D
C

∣∣∣ C ∈ Fq3 , C
3 ∈ Fq, 3C3 is not a cube in Fq,

D ∈ Fq2 \ Fq, D
2 ∈ Fq

}
.
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•

b ∈
{
−ξC | C ∈ Fq3 , C

3 ∈ Fq, 3C3 is not a cube in Fq

}
.

Proof. By Theorem 3.2, we have that fb is a PP of Fq6 if and only if b, bq, . . . , bq5 are 
the unique zeros of some polynomial FC,D(x), with C, D ∈ Fq, C �= 0, where

FC,D(x) := C2x6 − C3x3 + C2Dx2 − 3D2Cx + (2C4 + 4D3).

A polynomial of this type factorizes over Fq3 as

(C2
x2 + ξC

3
x + ξ8C

4 + ξ4D)(4C2
x2 + ξ7C

3
x + 2ξ2C

4 + ξ10D)

× (2C2
x2 + ξ13C

3
x + 4ξ14C

4 + ξ16D),

where C, 2C, 4C ∈ Fq3 are the cubic roots of C. It is easily seen that the three factors 
above are defined over Fq if and only if ξC belongs to Fq, that is if and only if 3C is 
a cube in Fq. Also, the polynomial FC,D(x) has roots of multiplicity greater than 1 if 
and only if C3D10(C4 + 2D3)4 = 0. Since C �= 0, the only possibilities are D = 0 and 
C4 + 2D3 = 0.

• D = 0. In this case FC,D(x) = C2(x3 + 3C)2, which has three roots not defined 
over Fq if and only if 3C is not a cube in Fq.

• C4 + 2D3 = 0. This is equivalent to D3/C3 = 3C, which is not possible since 3C is 
not a cube in Fq.

Suppose now that FC,D(x) has no roots of multiplicity greater than 1. Then, the six 
roots are

{
−ξC

3 ± Cξ3√Dξ

2C2 ,
−ξ7C

3 ± Cξ3√Dξ

C
2 ,

−ξ13C
3 ± Cξ3√Dξ

4C2

}
.

These six solutions belong to a unique orbit under ϕq if and only if ξD is a non-square 
in Fq3 . This happens if and only if h is even and D is a non-square in Fq, or h is odd 
and D is a non-zero square in Fq. �
Proposition 4.2. Let q = 7h. The polynomial fb is a PP of Fq6 of type (18) if and only if 
one of the following cases occurs:

•

b ∈
{

3B | B ∈ Fq2 \ Fq, B
2 ∈ F

∗
q

}
;
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•

b ∈
{

3D + 3C + C
2

D

∣∣∣ D ∈ Fq2 \ Fq, C ∈ Fq3 \ Fq, D
2 ∈ F

∗
q , C

3 ∈ F
∗
q

}
.

Proof. By Theorem 3.2, we need to determine if the roots in Fq6 of the polynomials

FB,C(x) := B3x6 + B4x4 −B3Cx3 + (5B3 + 6C2)B2x2 −BC(3B3 + 4C2)x

+ 6(B3 + 6C2)2,

with B, C ∈ Fq, B �= 0, are contained in a unique orbit under ϕq. Such roots are

{
4B + 6C + 3C2

/B, 4B + 5C + 5C2
/B, 4B + 3C + 6C2

/B,

3B + 6C + 4C2
/B, 3B + 5C + 2C2

/B, 3B + 3C + C
2
/B

}
,

where B ∈ Fq2 \ Fq and C ∈ Fq3 are such that B2 = B and C
3 = C, respectively. There 

are roots of multiplicity larger than one if and only if C4B15(B3 + 6C2)8 = 0.
If C4B15(B3 +6C2)8 = 0, then C = 0, because B �= 0 and B3 +6C2 = 0 would imply 

C = ±BB /∈ Fq, which is impossible. Also, C = 0 implies that the two distinct roots of 
FB,0(x) are ±3B /∈ Fq, and the corresponding fb are PPs of Fq6 .

If C4B15(B3 + 6C2)8 �= 0, then the roots of FB,C(x) are all distinct. If C ∈ Fq, then 
they form three orbits under ϕq, namely

{
4B + 6C + 3C2

/B, 3B + 6C + 4C2
/B

}
,{

4B + 5C + 5C2
/B, 3B + 5C + 2C2

/B
}
,{

4B + 3C + 6C2
/B, 3B + 3C + C

2
/B

}
,

and the corresponding fb are not PPs of Fq6 . If C /∈ Fq, then the roots of FB,C(x)
are contained in a unique orbit under ϕq and therefore the corresponding fb are PPs 
of Fq6 . �

Note that if q is even, then q ≡ 2, 4, 8, 16 (mod 28), whereas 7 | q implies q ≡ 7, 14
(mod 28).

Corollary 4.3. Let q ≥ 421 and let nq be the number of PPs of Fq6 of type fb.

• If q ≡ 0, 1, 6, 8, 13, 14, 15, 27 (mod 28), then nq = 0.
• If q ≡ 2, 3, 4, 5, 9, 11, 16, 17, 18, 19, 23, 25 (mod 28), then nq = 3(q2 − 1).
• If q ≡ 7, 21 (mod 28), then nq = 4q2 − 3q − 1.
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Proof. Note first that the values of b listed in Theorems 1.1 and 1.2 are all distinct for 
a fixed q.

1. The solutions of type (4)–(7) are{
3(q − 1)(q − 2) + 3(q − 1) = 3(q − 1)2, q ≡ 3, 5, 17, 19 (mod 28),
3(q − 1)q + 3(q − 1) = 3(q2 − 1), q ≡ 9, 11, 23, 25 (mod 28),

If q ≡ 3, 5, 17, 19 (mod 28) the number of solutions of type (3) is 6(q − 1).
2. If q is even and q ≡ 2, 4 (mod 7), that is q ≡ 2, 4, 16, 18 (mod 28), there are q/2

elements with trace 1 and q/2 elements with trace 0. For a fixed element t ∈ Fq

there are q − 1 pairs (u, v), u �= 0, such that v/u2 = t. For each of them there exist 
6 corresponding b’s. If u = 0, there are 3 values of b for each choice of v ∈ F

∗
q . The 

solutions of type (9) are 6 q
2 (q − 1), whereas the number of solutions of type (8) is 

3(q − 1).
3. If 7 | q, that is q ≡ 7, 21 (mod 28), then the solutions of types (10), (11), (12), (13), 

(14), (15) are respectively 2(q − 1), 2(q − 1)2, 2(q − 1)2, 2(q − 1), (q − 1), 2(q − 1)2. 
Therefore the total number of solutions is

2(q − 1) + 2(q − 1)2 + 2(q − 1) + (q − 1) + 2(q − 1)2

= 4(q − 1)2 + 5(q − 1) = 4q2 − 3q − 1. �
Remark 4.4. By using the same methods, it is possible to obtain similar descriptions 
of the values b ∈ Fq4 \ Fq which provide permutation polynomials of Fq4 of the type 
xq3+q2+q+2 +bx. By straightforward computations, if q ≡ 2, 3 (mod 5), then the values b
satisfying the first condition in [19, Theorem 4.1] are as follows. Let a ∈ Fq2 \Fq be such 
that a2 + a + 1/5 = 0; for each pair (A, B) ∈ F

2
q distinct from (0, 0), if 7A2 − 20B �= 0, 

then

b ∈
{
−(2a + 1)aA± 5

√
(a + 1)(7A2 − 20B)

2(2a + 1) ,
(2a + 1)(a + 1)A± 5

√
−a(7A2 − 20B)

2(2a + 1)

}
,

otherwise

b ∈
{
−aA

2 ,
(a + 1)A

2

}
.

As to the second condition in [19, Theorem 4.1], no b ∈ Fq4 \Fq can satisfy it when q ≡ 4
(mod 5). If q ≡ 2, 3 (mod 5), then for each A ∈ F

∗
q we have

b ∈
{
−(2a + 1)aA± 5A

√
−(a + 1)

2(2a + 1) ,
(2a + 1)(a + 1)A± 5A

√
a

2(2a + 1)

}
,

where a ∈ Fq2 \ Fq is such that a2 + a + 1/5 = 0.
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5. Necessary conditions for PPs of type x
qn−1

q−1
+1 + bx, n odd

The Niederreiter–Robinson Criterion can be applied to any binomial of type fq,b,n =
x

qn−1
q−1 +1 + bx for some n ∈ N. The algebraic curve Cq,b,n associated to fq,b,n is given by

n∑
i=0

An−i
xi+1 − yi+1

x− y
= 0,

where A0 = 1 and Ai =
∑

0≤j1<j2<···<ji≤(n−1) b
qj1+qj2+···+qji . Note that

A1 = TrFqn/Fq
(b).

When n is odd, it is easily seen that the point (1, −1, 0) belongs to Cq,b,n for every q and 
b ∈ Fqn \ Fq.

Proposition 5.1. Let C be an algebraic curve defined over Fq having a simple Fq-rational 
point P . Then there exists an absolutely irreducible Fq-rational component passing 
through P .

Proof. Let C′ be an absolutely irreducible Fq-rational component of C containing P . The 
image C′′ of C′ under ϕq contains P , since ϕq(P ) = P . Also, P being a simple point of C
implies the existence of a unique component of C through it. Therefore C′′ = ϕq(C′) = C′, 
that is C′ is defined over Fq. �

The above criterion is useful to deduce necessary conditions for a polynomial fq,b,n to 
be a PP of Fqn . Let p be the characteristic of Fq.

Theorem 5.2. Let n be odd. Suppose q >
(
(n−1)(n−2)+

√
n2+13n−2

)2
4 . If fq,b,n is a PP of Fqn , 

then p | n+1
2 and TrFqn/Fq

(b) = 0.

Proof. We already observed that the point P = (1, −1, 0) always belongs to the curve 
Cq,b,n. We now show that if fq,b,n is a PP of Fqn , then the point P is a singular 
point of Cq,b,n. Assume on the contrary that P is simple. Then by Proposition 5.1
the curve Cq,b,n contains an absolutely irreducible component defined over Fq. Since 

q >
(
(n−1)(n−2)+

√
n2+13n−2

)2
4 , this component contains an affine Fq-rational point not 

lying on X = 0, Y = 0, or X = Y . Therefore by the Niederreiter–Robinson Criterion 
fq,b,n cannot be a PP of Fqn , a contradiction.

Let F (X, Y, T ) =
∑n

i=0 An−i
Xi+1−Y i+1

X−Y Tn−i the homogenization of the polynomial 
defining Cq,b,n. As P is singular, we have

∂F (X,Y, T ) (1,−1, 0) = ∂F (X,Y, T )(1,−1, 0) = ∂F (X,Y, T ) (1,−1, 0) = 0.

∂X ∂Y ∂T
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This is equivalent to

p | n + 1
2 and A1 = 0. �

A consequence of Theorem 5.2 is that for a given n odd there are just a finite number 
of characteristics p for which there exists a PP of Fqn of type fq,b,n.

For n = 3, Theorem 5.2 implies that for q ≥ 23 odd there cannot be a PP of Fq3 of 
type xq2+q+2 + bx. This is the main result in [5, Section 3].

For n = 7, p = 2, it has been shown in [7] that for q large enough the values b for 
which f2h,b,7 is a PP of Fq7 are exactly the roots of irreducible polynomials of type 

x7 + ax3 + bx + c for some a, b, c ∈ Fq. Note that for such b’s, the monomial b−1x
q7−1
q−1 +1

is a CPP of Fq7 . In particular, for q = 2 the values of b are {η2i : i = 0 . . . 6} ∪ {
(
η11)2i

:
i = 0 . . . 6}, where η is a primitive element of F27 .

Other values of n are currently under investigation in [1].

References

[1] D. Bartoli, M. Giulietti, L. Quoos, G. Zini, Complete permutation polynomials from exceptional 
polynomials, in preparation.

[2] U. Bartocci, B. Segre, Ovali ed altre curve nei piani di Galois di caratteristica 2, Acta Arith. XVIII 
(1971) 423–449.

[3] L.A. Bassalygo, V.A. Zinoviev, On complete permutation polynomials, in: Fourteenth International 
Workshop on Algebraic and Combinatorial Coding Theory, Proceedings, Svetlogorsk (Kaliningrad
region), Russia, September 7–13, 2014, pp. 57–62.

[4] L.A. Bassalygo, V.A. Zinoviev, On one class of permutation polynomials over finite fields of char-
acteristic two, preprint.

[5] L.A. Bassalygo, V.A. Zinoviev, Permutation and complete permutation polynomials, Finite Fields 
Appl. 33 (2015) 198–211.

[6] P. Charpin, G.M. Kyureghyan, Cubic monomial bent functions: a subclass of M∗, SIAM J. Discrete 
Math. 22 (2) (2008) 650–665.

[7] E. Franzè, Polinomi di permutazione, Master thesis, Università degli Studi di Perugia.
[8] J.W.P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves over a Finite Field, Princeton Ser. 

Appl. Math., Princeton, 2008.
[9] X. Hou, Permutation polynomials over finite fields – a survey of recent advances, Finite Fields Appl. 

32 (2015) 82–119.
[10] J. Ma, T. Zhang, T. Feng, G. Ge, New results on permutation polynomials over finite fields, 

arXiv:1506.05525.
[11] G.L. Mullen, Q. Wang, Permutation polynomials: one variable, in: G.L. Mullen, D. Panario (Eds.), 

Handbook of Finite Fields, Chapman and Hall/CRC, 2013.
[12] A. Muratovic-Ribic, E. Pasalic, A note on complete polynomials over finite fields and their appli-

cations in cryptography, Finite Fields Appl. 25 (2014) 306–315.
[13] H. Niederreiter, K.H. Robinson, Complete mappings of finite fields, J. Aust. Math. Soc. Ser. A 33 

(1982) 197–212.
[14] P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Gangopadhyay, S. Maitra, Investigation on bent 

and negabent functions via the nega-Hadamard transform, IEEE Trans. Inf. Theory 58 (6) (2012) 
4064–4072.

[15] B. Segre, Ovali e curve σ nei piani di Galois di caratteristica 2, Atti Accad Naz. Lincei 32 (8) (1962) 
785–790.

[16] S. Sarkar, S. Bhattacharya, A. Cesmelioglu, On some permutation binomials of the form 
x(2h−1)/k+1 + ax over F2h : existence and count, in: International Workshop on the Arithmetic 
of Finite Fields, WAIFI 2012, in: Lect. Notes Comput. Sci., vol. 7369, Springer, 2012, pp. 236–246.

http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4253s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4253s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib425A32303135s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib425A32303135s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib434Bs1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib434Bs1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib484B54s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib484B54s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib486F75s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib486F75s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4D5A4647s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4D5A4647s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4D57s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4D57s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4D50s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4D50s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4E696564s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib4E696564s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib504743474Ds1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib504743474Ds1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib504743474Ds1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib53s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib53s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib534243s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib534243s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib534243s1


158 D. Bartoli et al. / Finite Fields and Their Applications 41 (2016) 132–158
[17] Z. Tu, X. Zeng, L. Hu, Several classes of complete permutation polynomials, Finite Fields Appl. 25 
(2014) 182–193.

[18] G. Wu, N. Li, T. Helleseth, Y. Zhang, Some classes of monomial complete permutation polynomials 
over finite fields of characteristic two, Finite Fields Appl. 28 (2014) 148–165.

[19] G. Wu, N. Li, T. Helleseth, Y. Zhang, Some classes of complete permutation polynomials over Fq, 
Sci. China Math. 58 (10) (2015) 2081–2094.

http://refhub.elsevier.com/S1071-5797(16)30027-2/bib545A48s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib545A48s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib574C485As1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib574C485As1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib574C485A32303135s1
http://refhub.elsevier.com/S1071-5797(16)30027-2/bib574C485A32303135s1

	On monomial complete permutation polynomials
	1 Introduction
	2 Plane algebraic curves
	3 Some auxiliary curves associated to fb for n=6
	3.1 The case p<>7
	3.2 The case p=7

	4 Proof of Theorems 1.1 and 1.2
	5 Necessary conditions for PPs of type xqn-1/q-1+1+bx, n odd
	References


