

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On monomial complete permutation polynomials $\stackrel{\star}{\approx}$

Daniele Bartoli^a, Massimo Giulietti^{a,*}, Giovanni Zini^b

 ^a Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia, Italy
 ^b Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni, 67/A, 50134 Firenze, Italy

A R T I C L E I N F O

Article history: Received 11 February 2016 Received in revised form 26 April 2016 Accepted 13 June 2016 Communicated by Xiang-dong Hou

MSC: 11T06

Keywords: Permutation polynomials Complete permutation polynomials Bent-negabent boolean functions

ABSTRACT

We investigate monomials ax^d over the finite field with q elements \mathbb{F}_q , in the case where the degree d is equal to $\frac{q-1}{q'-1}+1$ with $q = (q')^n$ for some n. For n = 6 we explicitly list all a's for which ax^d is a complete permutation polynomial (CPP) over \mathbb{F}_q . Some previous characterization results by Wu et al. for n = 4 are also made more explicit by providing a complete list of a's such that ax^d is a CPP. For odd n, we show that if q is large enough with respect to n then ax^d cannot be a CPP over \mathbb{F}_q , unless q is even, $n \equiv 3 \pmod{4}$, and the trace $\mathrm{Tr}_{\mathbb{F}_q/\mathbb{F}_{q'}}(a^{-1})$ is equal to 0.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: daniele.bartoli@unipg.it (D. Bartoli), massimo.giulietti@unipg.it (M. Giulietti), gzini@math.unifi.it (G. Zini).

http://dx.doi.org/10.1016/j.ffa.2016.06.005 1071-5797/© 2016 Elsevier Inc. All rights reserved.

^{*} The research of D. Bartoli, M. Giulietti, and G. Zini was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza" – Prot. N. 2012XZE22K_005) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA – INdAM).

1. Introduction

Let \mathbb{F}_{ℓ} , $\ell = p^h$, p prime, denote the finite field of order ℓ . A permutation polynomial (or PP) $f(x) \in \mathbb{F}_{\ell}[x]$ is a bijection of \mathbb{F}_{ℓ} onto itself. A polynomial $f(x) \in \mathbb{F}_{\ell}[x]$ is a complete permutation polynomial (or CPP), if both f(x) and f(x)+x are permutation polynomials of \mathbb{F}_{ℓ} . Both permutation polynomials and complete permutation polynomials have been extensively studied also because of their applications to cryptography and combinatorics; see for instance [6,9,11,12,16,18] and the references therein. In particular, CPPs over fields of characteristic 2 give rise to bent–negabent boolean functions, which are a useful tool in cryptography; see [14].

Some families of CPPs are obtained in [6,9,11,13,17,18]. Nevertheless, CPPs seem to be very rare objects, even if we restrict to the monomial case. It is easily seen that a monomial ax^d is a CPP if and only if $(d, \ell - 1) = 1$ and $x^d + \frac{x}{a}$ is a PP. This motivates the investigation of permutation binomials of type $x^d + bx$ for $d = (\ell - 1)/m + 1$ with ma divisor of $\ell - 1$.

In [3–5,18,19] PPs of type $f_b(x) = x^{\frac{q^n-1}{q-1}+1} + bx$ over \mathbb{F}_{q^n} are thoroughly investigated for n = 2, n = 3, and n = 4. For n = 6, sufficient conditions for f_b to be a PP of \mathbb{F}_{q^6} are provided in [18,19] in the special cases of characteristic $p \in \{2,3,5\}$. The case p = n + 1is dealt with in [10].

In this paper, we provide a complete classification of permutation polynomials f_b in the case n = 6, for arbitrary q. Theorems 1.1 and 1.2 list explicitly for $q \ge 421$ all elements $b \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$ such that f_b is a PP. For smaller values of q, Theorems 1.1 and 1.2 provide families of PPs of type f_b . We also determine the number of PPs of type f_b for $q \ge 421$; see Corollary 4.3. It should be noted that for p = 7, the sufficient condition in [10] for f_b to be a PP is that $b^{q-1} = -1$; our results show that this is not a necessary condition.

Our methods also work for n = 4. This allows us to list PPs of type f_b for n = 4; see Remark 4.4. In this way, a more explicit description of the necessary and sufficient conditions of [19, Theorem 4.1] is given.

In the paper the case n odd is dealt with as well. Note that for n odd f_b being a PP implies that $b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is a CPP only for p = 2. We show that if p does not divide (n+1)/2 or $\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_{q'}}(b) \neq 0$, then for q large enough with respect to n the polynomial f_b is never a PP; see Theorem 5.2. This shows that for n odd the monomial $b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is never a CPP unless $n \equiv 3 \pmod{4}$. For n = 3 Theorem 5.2 provides a shorter proof of the results of [5, Section 3].

A key tool in our investigation is the following criterion from [13], which relates the existence of a suitable \mathbb{F}_q -rational point of some algebraic curve to f_b being a PP of \mathbb{F}_{q^n} or not.

Niederreiter-Robinson Criterion. The polynomial

$$f_b(x) = x^{\frac{q^n - 1}{q - 1} + 1} + bx \tag{1}$$

is a PP of \mathbb{F}_{q^n} if and only if $b \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$ and the following inequality

$$x(x+b)^{\frac{q^n-1}{q-1}} \neq y(y+b)^{\frac{q^n-1}{q-1}}$$
(2)

holds for all $x, y \in \mathbb{F}_q$ such that $x \neq 0, y \neq 0$, and $x \neq y$.

The well-known Hasse–Weil bound, see Section 2, will be applied to an algebraic curve related to Condition (2).

Our results for n = 6 are Theorems 1.1 and 1.2 below.

Theorem 1.1. Let $q = p^h$ with $p \neq 7$, and let ξ be a primitive 7-th root of unity in \mathbb{F}_{q^6} ; define $\alpha = \xi^4 - \xi^3$. Let ϵ be a primitive element of \mathbb{F}_q . If $q \geq 421$, then f_b is a PP of \mathbb{F}_{q^6} if and only if one of the following cases occurs.

• $q \equiv 3, 5 \pmod{7}$,

$$b \in \left\{ \frac{t(1-\xi^{i})}{7} \mid i = 1, \dots, 6, \ t \in \mathbb{F}_{q}^{*} \right\}.$$
(3)

• $q \text{ odd}, q \equiv 3 \pmod{7}$,

$$b \in \left\{\frac{-\alpha^{2q}u + \alpha s}{14}, \frac{-\alpha^{2q^2}u + \alpha^q s}{14}, \frac{-\alpha^2 u + \alpha^{q^2} s}{14} \mid u, s \in \mathbb{F}_q, u \neq \pm s\right\}.$$
(4)

• $q \text{ odd}, q \equiv 5 \pmod{7}$,

$$b \in \left\{ \frac{-\alpha^{2q^2}u + \alpha s}{14}, \frac{-\alpha^2 u + \alpha^q s}{14}, \frac{-\alpha^{2q}u + \alpha^{q^2}s}{14} \mid u, s \in \mathbb{F}_q, u \neq \pm s \right\}.$$
(5)

• $q \text{ odd}, q \equiv 2 \pmod{7}$,

$$b \in \left\{ \frac{-\alpha^{2q^2}u + \alpha s\sqrt{\epsilon}}{14}, \frac{-\alpha^2 u + \alpha^q s\sqrt{\epsilon}}{14}, \frac{-\alpha^{2q}u + \alpha^{q^2}s\sqrt{\epsilon}}{14} \mid (u,s) \in \mathbb{F}_q^2 \setminus \{(0,0)\} \right\}.$$
 (6)

• $q \text{ odd}, q \equiv 4 \pmod{7}$,

$$b \in \left\{ \frac{-\alpha^{2q}u + \alpha s\sqrt{\epsilon}}{14}, \frac{-\alpha^{2q^2}u + \alpha^q s\sqrt{\epsilon}}{14}, \frac{-\alpha^2 u + \alpha^{q^2} s\sqrt{\epsilon}}{14} \mid (u, s) \in \mathbb{F}_q^2 \setminus \{(0, 0)\} \right\}.$$
(7)

• $q even, q \equiv 2, 4 \pmod{7}$.

$$b \in \left\{ (\xi+1)t, (\xi+1)^2 t, (\xi+1)^4 t \mid t \in \mathbb{F}_q^* \right\}.$$
(8)

• $q = 2^h$, $q \equiv 2, 4 \pmod{7}$. Assume without loss of generality that ξ satisfies $\xi^3 = \xi + 1$, and fix an element k such that $\operatorname{Tr}_{\mathbb{F}_q 6}/\mathbb{F}_2(k) = 1$. Define $\delta_i(u, v) = \frac{v}{u^2} + (\xi + 1)^{2^i}$, i = 0, 1, 2, and $y_i = y_i(u, v) = k\delta_i^2(u, v) + (k + k^2)\delta_i^4(u, v) + \dots + (k + k^2 + \dots + k^{2^{6h-2}})\delta_i^{2^{6h-1}}(u, v)$; then

$$b \in \left\{ y_i(\xi+1)^{2^{i+1}} u, (y_i+1)(\xi+1)^{2^{i+1}} u \mid u \in \mathbb{F}_q^*, \ v \in \mathbb{F}_q, \\ \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(\frac{v}{u^2}\right) \equiv (h-1) \pmod{2} \right\}$$
(9)

for some i = 0, 1, 2.

If q < 421, then the above conditions are sufficient for f_b to be a PP of \mathbb{F}_{q^6} .

Theorem 1.2. Let $q = 7^h$. Let $\xi, \epsilon \in \mathbb{F}_{343}$ be such that $\xi^{18} = 1$ and $\epsilon^2 = \xi$. Let z be a 6-th root of a fixed primitive element of \mathbb{F}_q . If $q \ge 421$, then the polynomial f_b is a PP of \mathbb{F}_{q^6} if and only if one of the following cases occurs.

$$b \in \left\{ tz, tz^5 \mid t \in \mathbb{F}_q^* \right\}.$$

$$\tag{10}$$

• h is odd and

$$b \in \left\{ -2\xi t + \epsilon \frac{3s}{t} \mid t \in \mathbb{F}_{q^3}, \ t^3 \in \mathbb{F}_q, \ 3t^3 \text{ is not a cube in } \mathbb{F}_q, \ s \in \mathbb{F}_q \right\}.$$
(11)

• h is even and

$$b \in \left\{ -2\xi t + \epsilon \frac{3s}{t} \mid t \in \mathbb{F}_{q^3}, \ t^3 \in \mathbb{F}_q, \ 3t^3 \text{ is not a cube in } \mathbb{F}_q, \ s \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q, \ s^2 \in \mathbb{F}_q \right\}.$$
(12)

$$b \in \left\{-\xi t \mid t \in \mathbb{F}_{q^3}, \ t^3 \in \mathbb{F}_q, \ 3t^3 \text{ is not a cube in } \mathbb{F}_q\right\}.$$
(13)

$$b \in \left\{ 3t \mid t \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q, \ t^2 \in \mathbb{F}_q^* \right\}.$$
(14)

$$b \in \left\{ 3t + 3s + \frac{s^2}{t} \mid t \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q, \ s \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q, \ t^2 \in \mathbb{F}_q^*, \ s^3 \in \mathbb{F}_q^* \right\}.$$
(15)

If q < 421, then the above conditions are sufficient for f_b to be a PP of \mathbb{F}_{q^6} .

The paper is organized as follows. Section 2 contains some basic facts on algebraic curves that will be used in the paper. In Section 3 we provide necessary and sufficient conditions for f_b to be a PP of \mathbb{F}_{q^6} when $q \ge 421$; to this aim, we study the reducibility of an algebraic curve associated to f_b and discuss the existence of some \mathbb{F}_q -rational points. In Section 4 we present the proofs of Theorems 1.1 and 1.2; as a consequence, Corollary 4.3 gives the exact number of PPs of type f_b for $q \ge 421$, and a lower bound for q < 421. Remark 4.4 shows that the techniques used in Section 4 can be applied also to other types of permutation polynomials; in particular, PPs of \mathbb{F}_{q^4} of type $x^{\frac{q^4-1}{q-1}+1} + bx$ are listed. In this way, the characterization given in [19, Theorem 4.1] is made more explicit. Finally, in Section 5 we deal with the odd n case.

2. Plane algebraic curves

In this section we summarize some basic notions on plane algebraic curves defined over a finite field. For a detailed treatment we refer the reader to [8].

Given a field K we denote by \overline{K} its algebraic closure. An algebraic curve \mathcal{C} defined over K is a class of homogeneous polynomials $\{\lambda F(X,Y,T) \mid \lambda \in \overline{K} \setminus \{0\}\}$, where $F(X,Y,T) \in K[X,Y,T]$. The order (or the degree) of the curve \mathcal{C} is the degree of the polynomial F(X,Y,T); curves of degree two, three, four, or six are usually called conics, cubics, quartics, or sextics, respectively. The curve \mathcal{C} is *irreducible* over K if the polynomial $F(X,Y,T) \in K[X,Y,T]$ is irreducible in K[X,Y,T]. If in addition F(X,Y,T)is irreducible over \overline{K} , then \mathcal{C} is said to be absolutely *irreducible*.

We say that a point $(x, y, z) \in PG(2, \overline{K})$, the projective plane over \overline{K} , belongs to the curve \mathcal{C} if F(x, y, z) = 0. The points $(x, y, 0) \in \mathcal{C}$ are called *ideal points* of the curve \mathcal{C} and the line ℓ_{∞} with equation T = 0 is the *ideal line* of the plane. A point $P = (x, y, z) \in \mathcal{C}$ is *K*-rational if it belongs to PG(2, K). For a line ℓ not contained in \mathcal{C} , let $P = (x, y, z) \in \mathcal{C} \cap \ell$ and $Q = (\overline{x}, \overline{y}, \overline{z}) \in \ell$ with $Q \neq P$. The *intersection multiplicity* $\mathcal{I}(\ell, \mathcal{C}, P)$ between ℓ and \mathcal{C} at the point P is the maximum integer m such that μ^m divides the polynomial $F_{P,Q}(\lambda, \mu) = F(\lambda x + \mu \overline{x}, \lambda y + \mu \overline{y}, \lambda y + \mu \overline{y})$. When a line ℓ through Pis contained in \mathcal{C} we set $\mathcal{I}(\ell, \mathcal{C}, P) = \infty$. The *multiplicity* of the point $P \in \mathcal{C}$ is defined as

$$\min_{\ell \ni P} \mathcal{I}(\ell, \mathcal{C}, P).$$

A simple point is a point with multiplicity one; when the multiplicity is larger than one the point is said to be singular. A tangent line at a point $P \in C$ of multiplicity m is a line such that $\mathcal{I}(\ell, C, P) > m$; P is ordinary if there exist m distinct tangent lines at P.

Let ℓ be a line not contained in C; then the number n of points of C lying on ℓ is at most the order of C. More generally, the Bézout Theorem states that the number of common points of two curves of order d and d' with no common components is at most dd'.

136

Let \mathbb{F}_q be the finite field with q elements and assume that \mathcal{C} is defined over \mathbb{F}_q . In this paper we will use the following corollary to the famous Hasse–Weil Theorem.

Hasse–Weil Bound. [8, Theorem 9.57(iii)] Let C be an absolutely irreducible curve of order n defined over \mathbb{F}_q . The number R_q of \mathbb{F}_q -rational points of C satisfies

$$|R_q - (q+1)| \le (n-1)(n-2)\sqrt{q}.$$

3. Some auxiliary curves associated to f_b for n = 6

Our results on polynomials f_b , for $b \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$, involve elementary symmetric polynomials in b^{q^j} , for $j = 0, \ldots, 5$. Throughout the paper, let

$$A = \sum_{0 \le j \le 5} b^{q^{j}}, \qquad B = \sum_{0 \le j_{1} < j_{2} \le 5} b^{q^{j_{1}} + q^{j_{2}}}, \qquad C = \sum_{0 \le j_{1} < j_{2} < j_{3} \le 5} b^{q^{j_{1}} + q^{j_{2}} + q^{j_{3}}},$$
$$D = \sum_{0 \le j_{1} < \ldots < j_{4} \le 5} b^{q^{j_{1}} + q^{j_{2}} + q^{j_{3}} + q^{j_{4}}}, \qquad E = \sum_{0 \le j_{1} < \ldots < j_{5} \le 5} b^{q^{j_{1}} + q^{j_{2}} + q^{j_{3}} + q^{j_{4}}},$$
(16)

and

$$F = b^{1+q+q^2+q^3+q^4+q^5}$$

Note that $A, B, C, D, E, F \in \mathbb{F}_q$. The aim of this section is to prove the following theorems which characterize PPs of type f_b .

Theorem 3.1. Let $p \neq 7$, $b \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$. Suppose that one of the following conditions holds.

1. $q \not\equiv 1 \pmod{7}$ and

$$B = \frac{3}{7}A^2$$
, $C = \frac{5}{7^2}A^3$, $D = \frac{5}{7^3}A^4$, $E = \frac{3}{7^4}A^5$, $F = \frac{1}{7^5}A^6$;

2. $q \not\equiv 1 \pmod{7}$, $7B - 3A^2 \neq 0$, and

$$C = \frac{1}{7^2} (-10A^3 + 35AB), \qquad D = \frac{1}{7^2} (14B^2 - A^4 - 2A^2B),$$
$$E = \frac{1}{7^4} (27A^5 - 182A^3B + 294AB^2), \qquad F = \frac{1}{7^5} (13A^6 - 28A^4B - 147A^2B^2 + 343B^3).$$

Then f_b is a PP of \mathbb{F}_{q^6} . Viceversa, if $q \geq 421$ and f_b is a PP of \mathbb{F}_{q^6} , then either Condition 1 or Condition 2 holds.

Theorem 3.2. Let p = 7, $b \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$. Suppose that one of the following conditions holds. 1.

$$b \in \left\{ (0, \lambda, 0, 0, 0, 0), (0, 0, 0, 0, 0, \lambda) \mid \lambda \in \mathbb{F}_q^* \right\};$$

2.

$$A = B = 0, \quad C \neq 0, \quad E = \frac{3D^2}{C}, \quad F = \frac{2C^4 + 4D^3}{C^2};$$
 (17)

3.

$$A = 0, \quad \sqrt{B} \notin \mathbb{F}_q, \quad D = \frac{5B^3 + 6C^2}{B}, \quad E = \frac{C(3B^3 + 4C^2)}{B^2}, \quad F = \frac{6(B^3 + 6C^2)^2}{B^3}.$$
(18)

Then f_b is a PP of \mathbb{F}_{q^6} . Viceversa, if $q \ge 421$ and f_b is a PP of \mathbb{F}_{q^6} , then Condition 1, Condition 2 or Condition 3 holds.

It is easily seen that for $x, y \in \mathbb{F}_q$ Condition (2) in Niederreiter–Robinson criterion reads as follows:

$$\begin{split} & \left(x-y\right)\left[x^6+x^5y+x^4y^2+x^3y^3+x^2y^4+xy^5+y^6\right. \\ & \left.+A(x^5+x^4y+x^3y^2+x^2y^3+xy^4+y^5)+B(x^4+x^3y+x^2y^2+xy^3+y^4)\right. \\ & \left.+C(x^3+x^2y+xy^2+y^3)+D(x^2+xy+y^2)+E(x+y)+F\right] \neq 0. \end{split}$$

Let \mathcal{S}_b be the sextic plane curve defined over \mathbb{F}_q with affine equation $F_b(X, Y) = 0$, where

$$\begin{split} F_b(X,Y) &= X^6 + X^5Y + X^4Y^2 + X^3Y^3 + X^2Y^4 + XY^5 + Y^6 \\ &\quad + A(X^5 + X^4Y + X^3Y^2 + X^2Y^3 + XY^4 + Y^5) \\ &\quad + B(X^4 + X^3Y + X^2Y^2 + XY^3 + Y^4) + C(X^3 + X^2Y + XY^2 + Y^3) \\ &\quad + D(X^2 + XY + Y^2) + E(X + Y) + F. \end{split}$$

Remark 3.3. By Niederreiter–Robinson Criterion, f_b is a PP of \mathbb{F}_{q^6} if and only if $b \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$ and \mathcal{S}_b has no \mathbb{F}_q -rational affine points off the lines X = Y, X = 0, and Y = 0.

Remark 3.4. Throughout the paper, we denote by φ_q the Frobenius map $(x, y, z) \mapsto (x^q, y^q, z^q)$ of $PG(2, \overline{\mathbb{F}}_q)$. The map φ_q is a collineation of the projective plane, that is a bijection of the points of the plane mapping a line to a line and preserving incidences between lines and points. Clearly, φ_q fixes \mathcal{S}_b because \mathcal{S}_b is defined over \mathbb{F}_q ; hence, φ_q acts on the absolutely irreducible components of \mathcal{S}_b of the same degree. The orbit

of an absolutely irreducible component \mathcal{C} of \mathcal{S}_b under the action of φ_q has length k if and only if \mathcal{C} is defined over \mathbb{F}_{q^k} but not over any proper subfield of \mathbb{F}_{q^k} ; in particular, φ_q fixes \mathcal{C} if and only if \mathcal{C} is defined over \mathbb{F}_q . Note that if an \mathbb{F}_q -rational point P belongs to a component \mathcal{C} of \mathcal{S}_b not defined over \mathbb{F}_q , then $\varphi_q(\mathcal{C}) \neq \mathcal{C}$ contains P. By Bézout Theorem, this implies that the number of \mathbb{F}_q -rational points of a curve of order d not defined over \mathbb{F}_q is at most d^2 .

Since no confusion arises, we denote by φ_q also the Frobenius automorphism $a \mapsto a^q$ of $\overline{\mathbb{F}}_q$ and the automorphism $\sum_i a_i X^i \mapsto \sum_i a_i^q X^i$ of $\overline{\mathbb{F}}_q[X]$. Clearly, φ_q fixes any polynomial $f \in \mathbb{F}_q[X]$ and acts on its irreducible factors over $\overline{\mathbb{F}}_q$ of the same degree.

Also, we denote by ψ both the collineation $(x, y, z) \mapsto (y, x, z)$ of $PG(2, \overline{\mathbb{F}}_q)$ and the bijection $F(X, Y, T) \mapsto F(Y, X, T)$ of $\overline{\mathbb{F}}_q[X, Y, T]$. Note that ψ acts on the absolutely irreducible components of \mathcal{S}_b of the same degree since ψ preserves \mathcal{S}_b .

Lemma 3.5. If S_b has no \mathbb{F}_q -rational affine points off the lines X = Y, X = 0, and Y = 0, then one of the following cases occurs.

- *i)* The prime power q is at most 421.
- ii) The curve S_b has a linear component not defined over \mathbb{F}_q .
- iii) The curve S_b splits into three absolutely irreducible conics not defined over \mathbb{F}_q but over \mathbb{F}_{q^3} .
- iv) The curve S_b splits into two absolutely irreducible cubics not defined over \mathbb{F}_q but over \mathbb{F}_{q^2} .

Proof. Assume that S_b is absolutely irreducible. Note that S_b has at most 6 points on the ideal line ℓ_{∞} , at most 6 points on the line X = Y, and no \mathbb{F}_q -rational affine points (x, y) with x = 0 or y = 0; this is easily seen by (2). By the Hasse-Weil Bound, $q + 1 - 20\sqrt{q} \leq 12$, that is, $q \leq 421$. If S_b is reducible but has an absolutely irreducible component defined over \mathbb{F}_q , then the same argument yields $q \leq 13$.

We can now assume that \mathcal{S}_b splits into absolutely irreducible components not defined over \mathbb{F}_q . Let \mathcal{C} be an absolutely irreducible component of \mathcal{S}_b . By Remark 3.4, the degree of \mathcal{C} is smaller than 4. If \mathcal{S}_b has no linear components, then either \mathcal{C} is a conic, whose orbit under φ_q has length 3; or \mathcal{C} is a cubic, whose orbit under φ_q has length 2. In the former case \mathcal{C} is defined over \mathbb{F}_{q^3} , otherwise over \mathbb{F}_{q^2} . \Box

3.1. The case $p \neq 7$

Theorem 3.1 is implied by the following result.

Proposition 3.6. Let $p \neq 7$.

1. If S_b has a linear component not defined over \mathbb{F}_q , then S_b splits into six linear components not defined over \mathbb{F}_q . This happens if and only if $q \not\equiv 1 \pmod{7}$ and

$$7B - 3A^2 = 49C - 5A^3 = 343D - 5A^4 = 2401E - 3A^5 = 16807F - A^6 = 0.$$
(19)

In this case, S_b has no \mathbb{F}_q -rational affine points off the line X = Y.

2. The curve S_b splits into three absolutely irreducible conics not defined over \mathbb{F}_q if and only if $q \not\equiv 1 \pmod{7}$, $7B - 3A^2 \neq 0$, and

$$A^{4} + 2A^{2}B - 14B^{2} + 49D = 27A^{5} - 182A^{3}B + 294AB^{2} - 2401E$$

= 10A³ - 35AB + 49C = 13A⁶ - 28A⁴B - 147A^{2}B^{2} + 343B^{3} - 16807F = 0. (20)

In this case, S_b has no \mathbb{F}_q -rational affine points.

3. The curve S_b does not split into two absolutely irreducible cubics not defined over \mathbb{F}_q .

Proof. Let ξ denote a primitive 7-th root of unity; the curve S_b has 6 non-singular ideal points $P_i = (1, \xi^i, 0), i = 1, ..., 6$. We denote by ℓ_i the tangent line to S_b at P_i , which has affine equation $L_i(X, Y) = 0$, where

$$L_i(X,Y) = Y - \xi^i X - w_i, \quad \text{with} \quad w_i = \frac{A\xi^{6i}}{6\xi^{5i} + 5\xi^{4i} + 4\xi^{3i} + 3\xi^{2i} + 2\xi^i + 1}$$

Let $\Phi_7(X) = \frac{X^7-1}{X-1} \in \mathbb{F}_q[X]$ be the 7-th cyclotomic polynomial. For a polynomial $F(X) \in \mathbb{F}_q[X]$ we denote by $R(F) \in \mathbb{F}_q$ the resultant of Φ_7 and F with respect to X. Therefore, $R(F) \neq 0$ implies $F(\xi) \neq 0$.

1. A linear component s_i of S_b must have affine equation $Y = \xi^i X + \alpha_i$, for some $i \in \{1, \ldots, 6\}, \alpha_i \in \overline{\mathbb{F}}_q$ since it must contain one of the ideal points P_i . The line s_i is contained in S_b if and only if the polynomial $G(X) = F_b(X, \xi^i X + \alpha_i)$ is the zero polynomial. By straightforward computations, this happens if and only if

$$\begin{cases} (5\xi^{4i} + 4\xi^{3i} + 3\xi^{2i} + 2\xi^{i} + 1)A\alpha_{i} + (\xi^{4i} + \xi^{3i} + \xi^{2i} + \xi^{i} + 1)B \\ + (15\xi^{4i} + 10\xi^{3i} + 6\xi^{2i} + 3\xi^{i} + 1)\alpha_{i}^{2} = 0 \\ A(\xi^{5i} + \xi^{4i} + \xi^{3i} + \xi^{2i} + \xi^{i} + 1) + (6\xi^{5i} + 5\xi^{4i} + 4\xi^{3i} + 3\xi^{2i} + 2\xi^{i} + 1)\alpha_{i} = 0 \\ (10\xi^{3i} + 6\xi^{2i} + 3A\xi^{i} + 1)A\alpha_{i}^{2} + (4\xi^{3i} + 3\xi^{2i} + 2\xi^{i} + 1)B\alpha_{i} \\ + (\xi^{3i} + \xi^{2i} + \xi^{i} + 1)C + (20\xi^{3i} + 10\xi^{2i} + 4\xi^{i} + 1)\alpha_{i}^{3} = 0 \\ (10\xi^{2i} + 4\xi^{i} + 1)A\alpha_{i}^{3} + (6\xi^{2i} + 3\xi^{i} + 1)B\alpha_{i}^{2} + (3\xi^{2i} + 2\xi^{i} + 1)C\alpha_{i} \\ + (\xi^{2i} + \xi^{i} + 1)D + 15\alpha_{i}^{4}\xi^{2i} + 5\alpha_{i}^{4}\xi^{i} + \alpha_{i}^{4} = 0 \\ (5\xi^{i} + 1)A\alpha_{1}^{4} + (4\xi^{i} + 1)B\alpha_{i}^{3} + (3\xi^{i} + 1)C\alpha_{i}^{2} + (2\xi^{i} + 1)D\alpha_{i} \\ + (\xi^{i} + 1)E + 6\alpha_{i}^{5}\xi + \alpha_{i}^{5} = 0 \\ A\alpha_{i}^{5} + B\alpha_{i}^{4} + C\alpha_{i}^{3} + D\alpha_{i}^{2} + E\alpha_{i} + F + \alpha_{i}^{6} = 0 \end{cases}$$

1	0	1)
L	4	т)

From the first two equations we obtain

$$(3A^2 - 7B)(\xi^{5i} + 4\xi^{4i} + 9\xi^{3i} + 9\xi^{2i} + 4\xi^i + 1) = 0.$$

For each $i \in \{1, \ldots, 6\}$ we have $R(X^{5i} + 4X^{4i} + 9X^{3i} + 9X^{2i} + 4X^i + 1) = 7^4$, and hence $\xi^{5i} + 4\xi^{4i} + 9\xi^{3i} + 9\xi^{2i} + 4\xi^i + 1 \neq 0$. Combining $3A^2 - 7B = 0$ with the second and the third equation in (21), we get

$$(5A^3 - 49C)(2\xi^{5i} + 7\xi^{4i} + 12\xi^{3i} + 14\xi^{2i} + 10\xi^i + 4) = 0.$$

For each $i \in \{1, ..., 6\}$, we have $R(2X^{5i} + 7X^{4i} + 12X^{3i} + 14X^{2i} + 10X^i + 4) = 7^3$, and hence $5A^3 - 49C = 0$. Similarly, from the other equations in (21), we obtain

$$343D - 5A^4 = 2401E - 3A^5 = 16807F - A^6 = 0.$$

Also,

$$\alpha_i = \frac{A\xi^{6i}}{6\xi^{5i} + 5\xi^{4i} + 4\xi^{3i} + 3\xi^{2i} + 2\xi^i + 1}.$$
(22)

Therefore $s_i : Y = \xi^i X + \alpha_i$ is not defined over \mathbb{F}_q if and only if $\xi^i \notin \mathbb{F}_q$. Equivalently, $q \not\equiv 1 \pmod{7}$; in fact, Φ_7 factorizes over \mathbb{F}_q into 6/d irreducible polynomials, where d is the multiplicative order of q modulo 7.

On the other hand, direct calculations show that, if Conditions (19) hold and α_i is defined by (22) for $i = 1, \ldots, 6$, then S_b splits into the six lines ℓ_1, \ldots, ℓ_6 .

As already mentioned in Remark 3.4, if S_b has a component C not defined over \mathbb{F}_q containing an \mathbb{F}_q -rational point, then this point lies on at least another component of S_b , namely $\varphi_q(C)$. As $\ell_1 \cap \ldots \cap \ell_6 = \{(\frac{-A}{7}, \frac{-A}{7})\}$ and $(\frac{-A}{7}, \frac{-A}{7})$ belongs to the line X = Y, the thesis follows.

2. If \mathcal{S}_b splits into three absolutely irreducible conics not defined over \mathbb{F}_q , then \mathcal{S}_b has equation S(X, Y) = 0, where

$$S(X,Y) = (L_{i_1}(X,Y)L_{j_1}(X,Y) + \beta_1) \cdot (L_{i_2}(X,Y)L_{j_2}(X,Y) + \beta_2)$$
$$\cdot (L_{i_3}(X,Y)L_{j_3}(X,Y) + \beta_3)$$

for some $\beta_1, \beta_2, \beta_3 \in \overline{\mathbb{F}}_q^*$, with $\{i_1, j_1, i_2, j_2, i_3, j_3\} = \{1, \ldots, 6\}$. In fact, each conic must contain two distinct ideal points P_i and P_j of \mathcal{S}_b and $L_i(X, Y)$, $L_j(X, Y)$ must be tangent lines to the conic at P_i , P_j . There are $\binom{6}{2}\binom{4}{2}/6 = 15$ possible distinct choices for the three pairs $\{i_1, j_1\}, \{i_2, j_2\}, \{i_3, j_3\}$. For instance, let $(i_1, j_1, i_2, j_2, i_3, j_3) = (1, 2, 3, 4, 5, 6)$. Using the fact that the three conics are in the same orbit under φ_q , and comparing the coefficients of S(X, Y) with the coefficients of $F_b(X, Y)$, we get D. Bartoli et al. / Finite Fields and Their Applications 41 (2016) 132-158

$$\begin{cases} (\xi^{5} + \xi^{4} + 3\xi^{3} + \xi^{2} + \xi)\beta_{1} + (-2\xi^{5} - 2\xi^{4} - 2\xi^{3} - 2\xi^{2} + 1)\beta_{2} + (2\xi^{4} - \xi - 1)\beta_{3} \\ = 21A^{2} - 49B \\ (-2\xi^{5} - 2\xi^{4} - \xi^{2} - \xi - 1)\beta_{1} + (-\xi^{4} - \xi^{3} + 2)\beta_{2} + (\xi^{4} - \xi^{3} - \xi^{2} + \xi)\beta_{3} \\ = 21A^{2} - 49B \\ (\xi^{4} + 2\xi^{3} + \xi^{2} + 2\xi + 1)\beta_{1} + (\xi^{5} + 2\xi^{4} + 2\xi^{3} + \xi^{2} + 1)\beta_{2} - \xi^{5} - \xi^{3} - 2\xi^{2} - 2\xi - 1)\beta_{3} \\ = 21A^{2} - 49B \\ (\xi^{3} - \xi^{2} - \xi + 1)\beta_{1} + (-\xi^{4} - \xi^{3} + 2)\beta_{2} + (2\xi^{4} + \xi^{3} + \xi^{2} + \xi + 2)\beta_{3} \\ = 21A^{2} - 49B \\ (\xi^{5} + \xi^{3} - \xi - 1)\beta_{1} + (\xi^{5} + 2\xi^{4} + 2\xi^{3} + \xi^{2} + 1)\beta_{2} + (\xi^{5} + 2\xi^{4} + \xi^{3} + 2\xi^{2} + \xi)\beta_{3} \\ = 21A^{2} - 49B \end{cases}$$

$$(23)$$

System (23) has a solution $(\beta_1, \beta_2, \beta_3)$ if and only if

$$\begin{cases} 6A^2\xi^5 - 15A^2\xi^4 - 45A^2\xi^3 - 66A^2\xi^2 - 60A^2\xi - 30A^2 \\ -14B\xi^5 + 35B\xi^4 + 105B\xi^3 + 154B\xi^2 + 140B\xi + 70B = 0 \\ 6A^2\xi^5 - 6A^2\xi^4 - 24A^2\xi^3 - 36A^2\xi^2 - 30A^2\xi - 15A^2 \\ -14B\xi^5 + 14B\xi^4 + 56B\xi^3 + 84B\xi^2 + 70B\xi + 35B = 0 \end{cases}$$

,

that is

$$\begin{cases} (3A^2 - 7B)(2\xi^5 - 5\xi^4 - 15\xi^3 - 22\xi^2 - 20\xi - 10) = 0\\ (3A^2 - 7B)(2\xi^5 - 2\xi^4 - 8\xi^3 - 12\xi^2 - 10\xi - 5) = 0 \end{cases}$$

Since $R(2X^5 - 2X^4 - 8X^3 - 12X^2 - 10X - 5) = 7^3$, we have $3A^2 - 7B = 0$. Then, by (23),

$$\begin{cases} (-2\xi^{5} - 2\xi^{4} - \xi^{2} - \xi - 1)\beta_{1} + (-\xi^{4} - \xi^{3} + 2)\beta_{2} \\ + (\xi^{4} - \xi^{3} - \xi^{2} + \xi)\beta_{3} = 0 \\ (\xi^{4} + 2\xi^{3} + \xi^{2} + 2\xi + 1)\beta_{1} + (\xi^{5} + 2\xi^{4} + 2\xi^{3} + \xi^{2} + 1)\beta_{2} \\ - \xi^{5} - \xi^{3} - 2\xi^{2} - 2\xi - 1)\beta_{3} = 0 \\ (\xi^{5} + \xi^{3} - \xi - 1)\beta_{1} + (\xi^{5} + 2\xi^{4} + 2\xi^{3} + \xi^{2} + 1)\beta_{2} \\ + (\xi^{5} + 2\xi^{4} + \xi^{3} + 2\xi^{2} + \xi)\beta_{3} = 0 \end{cases}$$

$$(24)$$

System (24) is linear and homogeneous in the β_i 's, and its determinant is $\xi^5 + 3\xi^4 + 3\xi^3 + 5\xi^2 + 6\xi + 3$. Since $R(X^5 + 3X^4 + 3X^3 + 5X^2 + 6X + 3) = 7^3$, the system has a unique solution $\beta_1 = \beta_2 = \beta_3 = 0$, a contradiction.

When $\{\{i_1, j_1\}, \{i_2, j_2\}, \{i_3, j_3\}\} \neq \{\{1, 6\}, \{2, 5\}, \{3, 4\}\}$, an analogous argument yields a contradiction. Now assume $(i_1, j_1, i_2, j_2, i_3, j_3) = (1, 6, 2, 5, 3, 4)$. By direct calculations,

142

D. Bartoli et al. / Finite Fields and Their Applications 41 (2016) 132-158

$$\beta_1 = (\xi^5 + \xi^4 + \xi^3 + \xi^2 - 1)(3A^2 - 7B),$$

$$\beta_2 = \beta_3 = (-\xi^5 - \xi^2 - 2)(3A^2 - 7B).$$
(25)

Recall that $\beta_1, \beta_2, \beta_3$ are non-zero, otherwise the conics are reducible. Hence $3A^2 - 7B \neq 0$, because $R(X^5 + X^4 + X^3 + X^2 - 1) = R(-X^5 - X^2 - 2) = 1$. Using (25) and comparing the coefficients of S(X, Y) and $F_b(X, Y)$, we get that Conditions (20) hold. Since the conic components of S_b are not defined over \mathbb{F}_q , it is easily seen that $\xi \notin \mathbb{F}_q$, i.e. $q \neq 1 \pmod{7}$.

On the other hand, if $3A^2 - 7B \neq 0$ and Conditions (20) hold, then by direct computations S_b has equation

$$(L_1(X,Y)L_6(X,Y) + \beta_1) \cdot (L_2(X,Y)L_5(X,Y) + \beta_2) \cdot (L_3(X,Y)L_4(X,Y) + \beta_3) = 0,$$

where the β_i 's are non-zero and defined as in (25).

In this case, it is easy to check that two conic components of S_b intersect in an \mathbb{F}_q -rational point if and only if $q \equiv 1 \pmod{7}$ or $3A^2 - 7B = 0$, which is not possible. Hence, S_b has no \mathbb{F}_q -rational points; see Remark 3.4.

3. If S_b splits into two absolutely irreducible cubics C_1 and C_2 not defined over \mathbb{F}_q , then C_1, C_2 have affine equation $C_1(X, Y) = 0, C_2(X, Y) = 0$, where

$$C_{1}(X,Y) = (Y - \xi^{i_{1}}X)(Y - \xi^{i_{2}}X)(Y - \xi^{i_{3}}X) + (w_{i_{1}}\xi^{i_{2}}\xi^{i_{3}} + w_{i_{2}}\xi^{i_{1}}\xi^{i_{3}} + w_{i_{3}}\xi^{i_{1}}\xi^{i_{2}})X^{2} + (w_{i_{1}}(\xi^{i_{2}} + \xi^{i_{3}}) + w_{i_{2}}(\xi^{i_{1}} + \xi^{i_{3}}) + w_{i_{3}}(\xi^{i_{1}} + \xi^{i_{2}}))XY - (w_{i_{1}} + w_{i_{2}} + w_{i_{3}})Y^{2} + \alpha X + \beta Y + \gamma,$$

$$C_{2}(X,Y) = (Y - \xi^{i_{4}}X)(Y - \xi^{i_{5}}X)(Y - \xi^{i_{6}}X) + (w_{i_{4}}\xi^{i_{5}}\xi^{i_{6}} + w_{i_{5}}\xi^{i_{4}}\xi^{i_{6}} + w_{i_{6}}\xi^{i_{4}}\xi^{i_{5}})X^{2} + (w_{i_{4}}(\xi^{i_{5}} + \xi^{i_{6}}) + w_{i_{5}}(\xi^{i_{4}} + \xi^{i_{6}}) + w_{i_{6}}(\xi^{i_{4}} + \xi^{i_{5}}))XY - (w_{i_{4}} + w_{i_{5}} + w_{i_{6}})Y^{2} + \alpha'X + \beta'Y + \gamma'.$$
(26)

In fact, each cubic contains three distinct ideal points P_i, P_j, P_k of \mathcal{S}_b and $L_i(X, Y)$, $L_j(X, Y), L_k(X, Y)$ are the tangent lines to the cubic at P_i, P_j, P_k . By Remark 3.4, \mathcal{C}_1 and \mathcal{C}_2 are switched by φ_q , hence there exists $\lambda \in \overline{\mathbb{F}}_q^*$ such that $C_1^q(X, Y) = \lambda C_2(X, Y)$. Let $u \in \{1, \ldots, 6\}$ be such that $q \equiv u \pmod{7}$; then $(\xi^i)^q = \xi^{iu}$. By comparing the coefficients of $C_1(X, Y) \cdot C_2(X, Y)$ with the coefficients of $F_b(X, Y)$, we have for $\{\{i_1, i_2, i_3\}, \{i_4, i_5, i_6\}, u\}$ the following possibilities:

$$\{\{1,2,3\},\{4,5,6\},6\}, \quad \{\{1,2,4\},\{3,5,6\},3\}, \quad \{\{1,2,4\},\{3,5,6\},5\}, \\ \{\{1,2,4\},\{3,5,6\},6\}, \quad \{\{1,3,5\},\{2,4,6\},6\}, \quad \{\{1,4,5\},\{2,3,6\},6\}.$$

In all these cases we have $\lambda = 1$. Hence $\alpha' = \alpha^q$, $\beta' = \beta^q$, and $\gamma' = \gamma^q$.

By Remark 3.4, ψ either fixes or switches the irreducible components C_1 and C_2 . It is easy to check that the former case cannot occur, for any case in (27); thus $\psi(C_1) = C_2$. Together with $C_1C_2 = S_b$, this yields

$$\begin{split} \gamma^{q} &= \mu \gamma, \quad \alpha^{q} = \mu \beta, \quad \beta^{q} = \mu \alpha, \quad \gamma^{q+1} = 16807F, \\ \alpha \gamma^{q} + \alpha^{q} \gamma &= \beta \gamma^{q} + \beta^{q} \gamma = 16807E, \end{split}$$

for some $\mu \in \overline{\mathbb{F}}_q$. Consider for instance the case $(i_1, i_2, i_3, i_4, i_5, i_6, u) = (1, 2, 4, 3, 5, 6, 3)$; by direct computation $\mu = 1$, and $C_1C_2 = S_b$ is equivalent to

$$\begin{cases} \alpha\gamma + \beta\gamma = 16807E \\ A(\alpha - \beta)(\xi^4 + \xi^2 + \xi - 2) - 5A\beta - 343C - 7\gamma = 0 \\ \gamma^2 = 16807F \\ A(\beta - \alpha)(\xi^4 + \xi^2 + \xi) - A\alpha - 343C = 0 \\ 98A^2 - 343B + (\alpha - \beta)(\xi^4 + \xi^2 + \xi - 3) - 7\beta = 0 \\ -196A\gamma - 16807D + \alpha^2 + \beta^2 = 0 \\ -49A\gamma - 16807D + \alpha\beta = 0 \\ 98A^2 - 343B + (\beta - \alpha)(2\xi^4 + 2\xi^2 + 2\xi + 1) = 0 \\ 49A^2 - 343B + (\alpha - \beta)(2\xi^4 + 2\xi^2 + 2\xi - 6) - 14\beta = 0 \end{cases}$$

By eliminating α , β , and γ , the system yields

$$\begin{cases} (3A^2 - 7B)(2\xi^4 + 2\xi^2 + 2\xi + 1) = 0\\ (2A^3 + 7AB - 49C)(2\xi^4 + 2\xi^2 + 2\xi + 1) = 0\\ -15A^4 + 56A^2B - 49AC - 49B^2 + 343D = 0\\ (-33A^5 + 259A^3B - 147A^2C - 490AB^2 + 686BC - 2401E)(2\xi^4 + 2\xi^2 + 2\xi + 1) = 0\\ -121A^6 + 770A^4B - 1078A^3C - 1225A^2B^2 + 3430ABC - 2401C^2 + 16807F = 0\\ -45A^4 + 182A^2B - 196AC - 98B^2 + 343D = 0 \end{cases}$$

Since $R(2X^4 + 2X^2 + 2X + 1) = 7^3$, we obtain

$$7B - 3A^2 = 49C - 5A^3 = 343D - 5A^4 = 2401E - 3A^5 = 16807F - A^6 = 0.$$

Then \mathcal{S}_b splits into lines as shown above, contradiction.

If $(\{i_1, i_2, i_3\}, \{i_4, i_5, i_6\}, u) \in \{(\{1, 2, 4\}, \{3, 5, 6\}, 6), (\{1, 2, 4\}, \{3, 5, 6\}, 6)\}$, then $\mu = 1$ and analogous arguments yield a contradiction. Now consider the case $(\{i_1, i_2, i_3\}, \{i_4, i_5, i_6\}, u) = (\{1, 2, 3\}, \{4, 5, 6\}, 6)$. We get $\mu = \xi^5$, and $C_1 C_2 = S_b$ implies

$$\begin{split} A^2(22\xi^5 - 5\xi^4 - 4\xi^3 + 11\xi^2 + 26\xi + 27) &- 49B(2\xi^5 + \xi^2 + 2\xi + 2) + \alpha\xi^5 - \beta\xi = 0 \\ A^2(22\xi^5 - 5\xi^4 - 4\xi^3 + 11\xi^2 + 26\xi + 27) - 49B(2\xi^5 + \xi^2 + 2\xi + 2) + \alpha\xi^2 - \beta\xi^4 = 0 \\ -A^2(70\xi^4 + 14\xi + 14) + 343B\xi^4 + \alpha(8\xi^5 + 6\xi^4 + 9\xi^3 + 4\xi^2 - \xi + 2) = 0 \\ -A^2(70\xi^4 + 14\xi + 14) + 343B\xi^4 - \alpha(6\xi^5 + 8\xi^4 + 5\xi^3 + 3\xi^2 + \xi - 2) = 0 \\ 343C\xi^4 + \gamma(2\xi^5 + \xi^3 - 2\xi^2 - 2\xi + 1) = 0 \\ 343C\xi^4 + \gamma(-\xi^5 + 3\xi^3 + \xi^2 + \xi + 3) = 0 \end{split}$$

whence

$$\begin{cases} (\xi^4 - \xi)(\alpha\xi + \beta) = 0\\ (14\xi^5 + 14\xi^4 + 14\xi^3 + 7\xi^2)\alpha = 0\\ (3\xi^5 - 2\xi^3 - 3\xi^2 - 3\xi - 2)\gamma = 0 \end{cases}$$

Since $3\xi^5 - 2\xi^3 - 3\xi^2 - 3\xi - 2 \neq 0$, this yields $\gamma = 0$ and $F = \gamma^2/16807 = 0$, a contradiction.

Finally, for $(\{i_1, i_2, i_3\}, \{i_4, i_5, i_6\}, u) \in \{(\{1, 3, 5\}, \{2, 4, 6\}, 6), (\{1, 4, 5\}, \{2, 3, 6\}, 6)\},\$ analogous arguments yield a contradiction. \Box

3.2. The case p = 7

Theorem 3.2 is implied by the following result.

Proposition 3.7. Let p = 7.

1. If S_b has a linear component not defined over \mathbb{F}_q , then S_b splits into six linear components not defined over \mathbb{F}_q . This happens if and only if

$$b \in \left\{ (0, \lambda, 0, 0, 0, 0), (0, 0, 0, 0, 0, \lambda) \mid \lambda \in \mathbb{F}_q^* \right\}.$$
(28)

In this case, S_b has no \mathbb{F}_q -rational affine points.

2. The curve S_b splits into three absolutely irreducible conics not defined over \mathbb{F}_q if and only if

$$A = B = 0, \quad C \neq 0, \quad E = \frac{3D^2}{C}, \quad F = \frac{2C^4 + 4D^3}{C^2}.$$
 (29)

In this case, S_b has no \mathbb{F}_q -rational affine points off the line X = Y.

3. The curve S_b splits into two absolutely irreducible cubics not defined over \mathbb{F}_q if and only if

$$A = 0, \quad \sqrt{B} \notin \mathbb{F}_q, \quad D = \frac{5B^3 + 6C^2}{B}, \quad E = \frac{C(3B^3 + 4C^2)}{B^2}, \quad F = \frac{6(B^3 + 6C^2)^2}{B^3}.$$
(30)

In this case S_b has no \mathbb{F}_q -rational affine points off the line X = Y.

,

Proof. The unique ideal point of S_b is $P_{\infty} = (1, 1, 0)$. The point P_{∞} is singular if and only if A = 0. Suppose $A \neq 0$. The tangent line to S_b at P_{∞} is the ideal line ℓ_{∞} . A line through P_{∞} either is ℓ_{∞} or has equation $Y = X + \alpha$ with $\alpha \in \overline{\mathbb{F}}_q$; by direct computation, none of them is a component of S_b . Hence, S_b is absolutely irreducible by a criterion due to Segre; see [15] and [2, Lemma 8].

Therefore, a necessary condition for S_b to be reducible is A = 0.

1. Let s_1 be a linear component of \mathcal{S}_b , then it has affine equation $Y = X + \alpha$ with $\alpha \in \overline{\mathbb{F}}_q$, and the system

$$\begin{cases} A = 0\\ A\alpha + 5B = 0\\ 6A\alpha^2 + 3B\alpha + 4C = 0\\ A\alpha^3 + 3B\alpha^2 + 6C\alpha + 3D = 0\\ 6A\alpha^4 + 5B\alpha^3 + 4C\alpha^2 + 3D\alpha + 2E = 0\\ A\alpha^5 + B\alpha^4 + C\alpha^3 + D\alpha^2 + E\alpha + F + \alpha^6 = 0 \end{cases}$$

holds. This happens if and only if A = B = C = D = E = 0 and $\alpha^6 = -F$. On the other hand, these conditions imply that S_b splits into the six lines $s_i : Y = X + i\alpha$, $i = 1, \ldots, 6$.

Let k be such that q = 6k + 1. Recall that ζ is a primitive element of \mathbb{F}_q and z is a root of the polynomial $T^6 - \zeta$. In particular $z^{6(q-1)} = 1$ and $\{1, z, z^2, z^3, z^4, z^5\}$ is a basis of \mathbb{F}_{q^6} over \mathbb{F}_q .

Let $b, c \in \mathbb{F}_{q^6}$, and $(b_0, b_1, b_2, b_3, b_4, b_5)$, $(c_0, c_1, c_2, c_3, c_4, c_5)$ be their components with respect to the basis $\{1, z, z^2, z^3, z^4, z^5\}$. Then

$$\begin{split} b^{q} &= (b_{0}, b_{1}\zeta^{k}, b_{2}\zeta^{k} - b_{2}, -b_{3}, -b_{4}\zeta^{k}, -b^{5}\zeta^{k} + b_{5}), \\ b^{q^{2}} &= (b_{0}, b_{1}\zeta^{k} - b_{1}, -b_{2}\zeta^{k}, b_{3}, b_{4}\zeta^{k} - b_{4}, -b^{5}\zeta^{k}), \\ b^{q^{3}} &= (b_{0}, -b_{1}, b_{2}, -b_{3}, b_{4}, -b_{5}), \\ b^{q^{4}} &= (b_{0}, -b_{1}\zeta^{k}, b_{2}\zeta^{k} - b_{2}, b_{3}, -b_{4}\zeta^{k}, b^{5}\zeta^{k} - b_{5}), \\ b^{q^{5}} &= (-b_{0}, -b_{1}\zeta^{k} + b_{1}, -b_{2}\zeta^{k}, -b_{3}, b_{4}\zeta^{k} - b_{4}, b^{5}\zeta^{k}), \\ bc &= (b_{0}c_{0} + b_{1}c_{5}\zeta + b_{2}c_{4}\zeta + b_{3}c_{3}\zeta + b_{4}c_{2}\zeta + b_{5}c_{1}\zeta, \\ b_{0}c_{1} + b_{1}c_{0} + b_{2}c_{5}\zeta + b_{3}c_{4}\zeta + b_{4}c_{3}\zeta + b_{5}c_{2}\zeta, \\ b_{0}c_{2} + b_{1}c_{1} + b_{2}c_{0} + b_{3}c_{5}\zeta + b_{4}c_{4}\zeta + b_{5}c_{3}\zeta, \\ b_{0}c_{3} + b_{1}c_{2} + b_{2}c_{1} + b_{3}c_{0} + b_{4}c_{5}\zeta + b_{5}c_{4}\zeta, \\ b_{0}c_{4} + b_{1}c_{3} + b_{2}c_{2} + b_{3}c_{1} + b_{4}c_{0} + b_{5}c_{5}\zeta, \\ b_{0}c_{5} + b_{1}c_{4} + b_{2}c_{3} + b_{3}c_{2} + b_{4}c_{1} + b_{5}c_{0}), \end{split}$$

hence

$$\begin{split} A &= -b_0, \quad B = b_0^2 + b_1 b_5 \zeta + b_2 b_4 \zeta + 4 b_3^2 \zeta, \\ C &= 6 b_0^3 + 4 b_0 b_1 b_5 \zeta + 4 b_0 b_2 b_4 \zeta + 2 b_0 b_3^2 \zeta + 6 b_1^2 b_4 \zeta \\ &+ 5 b_1 b_2 b_3 \zeta + 2 b_2^3 \zeta + 6 b_2 b_2^2 \zeta^2 + 5 b_3 b_4 b_5 \zeta^2 + 2 b_4^3 \zeta^2, \\ D &= b_0^4 + 6 b_0^2 b_1 b_5 \zeta + 6 b_0^2 b_2 b_4 \zeta + 3 b_0^2 b_3^2 \zeta + 4 b_0 b_1^2 b_4 \zeta + b_0 b_1 b_2 b_3 \zeta + 6 b_0 b_2^3 \zeta \\ &+ 4 b_0 b_2 b_5^2 \zeta^2 + b_0 b_3 b_4 b_5 \zeta^2 + 6 b_0 b_4^3 \zeta^2 + b_1^3 b_3 \zeta + 5 b_1^2 b_2^2 \zeta + 2 b_1^2 b_5^2 \zeta^2 \\ &+ 3 b_1 b_3 b_4^2 \zeta^2 + 3 b_2^2 b_3 b_5 \zeta^2 + 2 b_2^2 b_4^2 \zeta^2 + 3 b_3^4 \zeta^2 + b_3 b_5^3 \zeta^3 + 5 b_4^2 b_5^2 \zeta^3, \\ E &= 6 b_0^5 + 4 b_0^3 b_1 b_5 \zeta + 4 b_0^3 b_2 b_4 \zeta + 2 b_0^3 b_3^2 \zeta + 4 b_0^2 b_1^2 b_4 \zeta + b_0^2 b_1 b_2 b_3 \zeta + 6 b_0^2 b_2^3 \zeta \\ &+ 4 b_0^2 b_2 b_5^2 \zeta^2 + b_0^2 b_3 b_4 b_5 \zeta^2 + 6 b_0^2 b_4^3 \zeta^2 + 2 b_0 b_1^3 b_3 \zeta + 3 b_0 b_1^2 b_2^2 \zeta + 4 b_0 b_1^2 b_2^2 \zeta^2 \\ &+ 6 b_0 b_1 b_3 b_4^2 \zeta^2 + 6 b_0 b_2^2 b_3 b_5 \zeta^2 + 4 b_0 b_2^2 b_4^2 \zeta^2 + 6 b_0 b_3^4 \zeta^2 + 2 b_0 b_3 b_5^3 \zeta^3 + 3 b_0 b_4^2 b_5^2 \zeta^3 \\ &+ 6 b_1^4 b_2 \zeta + 2 b_1^3 b_4 b_5 \zeta^2 + 4 b_1^2 b_3^2 b_4 \zeta^2 + 5 b_1 b_2^3 b_5 \zeta^2 + 2 b_1 b_2 b_3^3 \zeta^2 + 2 b_1 b_2 b_3^3 \zeta^3 \\ &+ 5 b_1 b_4^3 b_5 \zeta^3 + b_2^4 b_4 \zeta^2 + 6 b_2^3 b_3^2 \zeta^2 + 4 b_2 b_3^2 b_5^2 \zeta^3 + b_2 b_4^4 \zeta^3 + 2 b_3^3 b_4 b_5 \zeta^3 \\ &+ 6 b_3^2 b_4^3 \zeta^3 + 6 b_4 b_5^4 \zeta^4. \end{split}$$

It is easy to check that A = B = C = D = E = 0 is equivalent to Condition (28). Since $b = \lambda z$ or $b = \lambda z^5$, with $\lambda \in \mathbb{F}_q^*$, the condition $\alpha^6 = -b^{q^5+q^4+q^3+q^2+q+1}$, i.e. $\alpha^6 = -F$, implies $\alpha \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$. Therefore, the six lines $s_i, i = 1, \ldots, 6$, have no \mathbb{F}_q -rational affine points.

2. Suppose that S_b splits into three absolutely irreducible conics C_1 , C_2 , and C_3 not defined over \mathbb{F}_q . By Remark 3.4, either ψ fixes each C_i , or (up to reordering the indexes) ψ fixes C_1 and switches C_2 and C_3 .

In the latter case, the conics C_i 's have affine equation

$$C_1: (X - Y)^2 + \alpha X + \alpha Y + \beta = 0,$$

$$C_2: (X - Y)^2 + \gamma X + \delta Y + \epsilon = 0,$$

$$C_3: (X - Y)^2 + \delta X + \gamma Y + \zeta = 0,$$

for some $\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \overline{\mathbb{F}}_q$. The conditions $\mathcal{C}_1 \mathcal{C}_2 \mathcal{C}_3 = \mathcal{S}_b$ and A = 0 yield

$$A = B = C = D = E = 0.$$

Hence, as above, S_b splits into six lines, a contradiction. In the former case, the conics C_i 's have affine equation

$$C_{1}: (X - Y)^{2} + \alpha X + \alpha Y + \beta = 0,$$

$$C_{2}: (X - Y)^{2} + \gamma X + \gamma Y + \delta = 0,$$

$$C_{3}: (X - Y)^{2} + \epsilon X + \epsilon Y + \zeta = 0,$$

(31)

for some $\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \overline{\mathbb{F}}_q$. Since the three conics C_i 's are not defined over \mathbb{F}_q , they form a single orbit under φ_q , the coefficients lie in \mathbb{F}_{q^3} and $\gamma = \alpha^q$, $\epsilon = \alpha^{q^2}$, $\delta = \beta^q$, $\zeta = \beta^{q^2}$. By direct computation, $C_1 C_2 C_3 = S_b$ and A = 0 imply

$$B = 0, \quad CE + 4D^2 = 0, \quad C^2D + 3DF + E^2 = 0, \quad C^3 + 3CF + 3DE = 0.$$

Hence Conditions (29) follow, because C = 0 would imply that \mathcal{S}_b splits into lines, a contradiction. Conversely, if Conditions (29) hold, then \mathcal{S}_b splits into irreducible conics defined by (31), where the \mathcal{C}_i 's form a single orbit under φ_q , and α , β are defined by

$$\alpha^3 = 4C, \quad \beta = \frac{C\alpha + 2D}{\alpha^2}.$$

The conics C_i 's are not defined over \mathbb{F}_q . Assume by contradiction that one of them is defined over \mathbb{F}_q . Then $S_b = (C_1)^3$, and the polynomial $((X - Y)^2 + \alpha(X + Y) + \beta)^3$ has no terms of degree either 5 or 4. Hence, by direct checking, $\alpha = \beta = 0$, which is impossible since $F \neq 0$.

Conditions (29), together with the condition $(x, y) \in C_1 \cap C_2 \cap C_3$, yield x = y. This means that S_b has no \mathbb{F}_q -rational affine points off the line X = Y.

3. Suppose that S_b splits into two absolutely irreducible cubics C_1 and C_2 . By Remark 3.4, ψ either fixes or switches C_1 and C_2 .

In the former case, the cubics C_i 's have affine equation

$$\begin{aligned} \mathcal{C}_1 : \quad & (X-Y)^3 + \alpha (X^2+Y^2) + \beta XY + \gamma (X+Y) + \delta = 0, \\ \mathcal{C}_2 : \quad & (X-Y)^3 + \alpha' (X^2+Y^2) + \beta' XY + \gamma' (X+Y) + \delta' = 0. \end{aligned}$$

The conditions $C_1C_2 = S_b$ and A = 0 yield B = C = D = E = 0; hence, as above, S_b splits into lines, a contradiction.

In the latter case, the conditions $C_1C_2 = S_b$, A = 0, and $\psi(C_1) = C_2$ yield in particular

$$\begin{cases} CF^2 + DEF + 2E^3 = 0\\ BC^2 + 5BF + 4CE + 3D^2 = 0\\ B^2E + CF + 5DE = 0\\ B^2C + 3BE + 5CD = 0\\ B^3 + 4BD + 4C^2 = 0 \end{cases}$$

Hence $B \neq 0$, otherwise S_b splits into lines; also,

$$A = 0, \quad D = \frac{5B^3 + 6C^2}{B}, \quad E = \frac{C(3B^3 + 4C^2)}{B^2}, \quad F = \frac{6(B^3 + 6C^2)^2}{B^3}.$$
 (32)

If Conditions (32) are satisfied, then C_1 and C_2 have equation

$$C_{1}: \quad \alpha \left[(X-Y)^{3} - B(X-Y) \right] + 4B(X+Y)^{2} + 3C(X+Y) + \frac{3B^{3} + 5BC^{2} + C^{2}}{B} = 0,$$

$$C_{2}: \quad -\alpha \left[(X-Y)^{3} - B(X-Y) \right] + 4B(X+Y)^{2} + 3C(X+Y) + \frac{3B^{3} + 5BC^{2} + C^{2}}{B} = 0,$$

(33)

where $\alpha^2 = 4B$; therefore, \mathcal{S}_b is not defined over \mathbb{F}_q if and only if $\sqrt{B} \notin \mathbb{F}_q$.

Viceversa, if Conditions (30) are satisfied, then $S_b = C_1 C_2$, with C_1, C_2 defined as in (33).

If $\sqrt{B} \notin \mathbb{F}_q$, then \mathcal{C}_1 and \mathcal{C}_2 in (33) have no \mathbb{F}_q -rational affine points off the line X = Y. In fact, if an \mathbb{F}_q -rational point (x, y) lies on \mathcal{C}_1 , then the coefficient $(X - Y)^3 - B(X - Y)$ of α must vanish at (x, y); this implies either $B = (x - y)^2$, which is impossible, or x = y. \Box

4. Proof of Theorems 1.1 and 1.2

Using the characterization results contained in Theorems 3.1 and 3.2 we are now in a position to prove our main Theorems.

Assume first that $p \neq 7$ and let $\xi \in \mathbb{F}_{q^6}$ denote a primitive 7-th root of unity.

Consider the following family of polynomials over \mathbb{F}_q .

$$\mathcal{F} = \left\{ F_{u,v} = X^6 - uX^5 + vX^4 - \frac{(-10u^3 + 35uv)}{7^2} X^3 + \frac{(14v^2 - u^4 - 2u^2v)}{7^2} X^2 - \frac{(27u^5 - 182u^3v + 294uv^2)}{7^4} X + \frac{(13u^6 - 28u^4v - 147u^2v^2 + 343v^3)}{7^5} \mid u, v \in \mathbb{F}_q \right\}.$$

Since by definition of A, B, C, D, E, and F, the elements b, b^q, \ldots, b^{q^5} are the zeros of the following polynomial over \mathbb{F}_q

$$X^{6} - AX^{5} + BX^{4} - CX^{3} + DX^{2} - EX + F,$$

we have that f_b is a PP of \mathbb{F}_{q^6} if and only if b, b^q, \ldots, b^{q^5} are the only zeros of $F_{u_b,v_b} \in \mathcal{F}$, for some u_b, v_b depending on b. More precisely, Condition 1 in Theorem 3.1 holds if and only if b, b^q, \ldots, b^{q^5} are the zeros of $F_{A,\frac{3}{2}A^2}$, whereas Condition 2 in Theorem 3.1 is equivalent to $7B - 3A^2 \neq 0$ and b, b^q, \ldots, b^{q^5} being the zeros of $F_{A,B}$.

We consider Condition 1 first. By direct computation,

$$F_{u,\frac{3}{7}u^2} = \prod_{i=1}^6 \left(X - u \frac{1-\xi^i}{7} \right).$$

Since the trace map is surjective, for each $u \in \mathbb{F}_q$ there exists $b \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$ such that u = A. Moreover, for each $i = 1, \ldots, 6$, the minimal polynomial of ξ^i over \mathbb{F}_q has degree congruent to q modulo 7. Hence, $F_{u,\frac{3}{7}u^2}$ is irreducible over \mathbb{F}_q if and only if $q \equiv 3, 5 \pmod{7}$; in this case, the roots b of $F_{u,\frac{3}{7}u^2}$ provide 6 permutation polynomials f_b . If

 $F_{u,\frac{3}{7}u^2}$ is reducible over \mathbb{F}_q , then the zeros of $F_{u,\frac{3}{7}u^2}$ do not form a single orbit under φ_q , since they are all distinct; in this case, if b is a root of $F_{u,\frac{3}{7}u^2}$, then f_b is not a PP of \mathbb{F}_{q^6} .

As to Condition 2 in Theorem 3.1, it is satisfied by b if and only if b is a root of some $F_{u,v}$, where $u, v \in \mathbb{F}_q$ are such that $7v - 3u^2 \neq 0$ and either $F_{u,v}$ is irreducible over \mathbb{F}_q , or $F_{u,v}$ is the square of an irreducible polynomial over \mathbb{F}_q , or $F_{u,v}$ is the cube of an irreducible polynomial over \mathbb{F}_q .

By direct computation, $F_{u,v} = \frac{1}{7^6} \cdot G_{u,v}^{(1)} \cdot G_{u,v}^{(2)} \cdot G_{u,v}^{(3)}$, with

$$\begin{split} G^{(1)}_{u,v}(X) &= 49X^2 + 7(\xi^4 + \xi^3 - 2)uX - (3\xi^5 + 4\xi^4 + 4\xi^3 + 3\xi^2 + 7)u^2 \\ &\quad + 7(\xi^5 + \xi^4 + \xi^3 + \xi^2 + 3)v, \\ G^{(2)}_{u,v}(X) &= 49X^2 - 7(\xi^5 + \xi^4 + \xi^3 + \xi^2 + 3)uX + (4\xi^5 + \xi^4 + \xi^3 + 4\xi^2 - 3)u^2 \\ &\quad - 7(\xi^5 + \xi^2 - 2)v, \\ G^{(3)}_{u,v}(X) &= 49X^2 + 7(\xi^5 + \xi^2 - 2)uX - (\xi^5 - 3\xi^4 - 3\xi^3 + \xi^2 + 4)u^2 - 7(\xi^4 + \xi^3 - 2)v. \end{split}$$

Also, the $G_{u,v}^{(i)}$'s are defined over \mathbb{F}_{q^3} and form a single orbit under φ_q . The discriminant of $F_{u,v}(X)$ is $\Delta = 13u^6 - 28u^4v - 147u^2v^2 + 343v^3$ and it vanishes if and only if $u^2 = \delta \cdot v$, with $13\delta^3 - 28\delta^2 - 147\delta + 343 = 0$. For $p \neq 13$, δ is in

$$\left\{\frac{21\xi^5 + 35\xi^4 + 35\xi^3 + 21\xi^2 + 28}{13}, \frac{14\xi^5 - 21\xi^4 - 21\xi^3 + 14\xi^2 + 7}{13}, \frac{-35\xi^5 - 14\xi^4 - 14\xi^3 - 35\xi^2 - 7}{13}\right\},$$

and it is easily seen that $\delta \notin \mathbb{F}_q$; hence $\Delta \neq 0$, since $u, v \in \mathbb{F}_q^*$. For p = 13, $\delta \in \{8, 11\}$. In this case, a direct computation shows that $F_{u,v}$ is not a power of an irreducible polynomial over \mathbb{F}_q , for any $(u, v) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}$; hence, f_b is not a PP of \mathbb{F}_{q^6} for any root b of $F_{u,v}$.

Therefore, we can assume that $G_{u,v}^{(i)}$ and $G_{u,v}^{(j)}$ have no roots in common for $i \neq j$.

If $q \equiv 1, 6 \pmod{7}$, then the $G_{u,v}^{(i)}$'s are defined over \mathbb{F}_q . Hence, f_b is not a PP of \mathbb{F}_{q^6} , for any root b of $F_{u,v}$.

Suppose now q odd and $q \equiv r \in \{2, 3, 4, 5\} \pmod{7}$. For i = 1, 2, 3, the roots of $G_{u,v}^{(i)}$ are

$$x_{1,2}^{(i)} = (\alpha_i u \pm \rho_i) / 14, \text{ with } \rho_i^2 = \beta_i (28v - 11u^2),$$
 (34)

where

$$\alpha_2 = \beta_1 = (\xi^4 - \xi^3)^2, \ \alpha_3 = \beta_2 = (\xi^5 + \xi^4 + \xi^3 + \xi^2 + 2\xi + 1)^2, \ \alpha_1 = \beta_3 = (\xi^5 - \xi^2)^2.$$

Note that $\xi^4 - \xi^3$, $\xi^5 + \xi^4 + \xi^3 + \xi^2 + 2\xi + 1$, and $\xi^5 - \xi^2$ belong to \mathbb{F}_{q^3} if and only if $r \in \{2, 4\}$. Therefore, for any i = 1, 2, 3, $\beta_i^{q^3} = \beta_i$ when $r \in \{2, 4\}$, and $\beta_i^{q^3} = -\beta_i$ when $r \in \{3, 5\}$, whereas $\alpha_i^{q^3} = \alpha_i$.

Suppose $28v - 11u^2 = 0$. Then $x_1^{(i)} = x_2^{(i)}$, and $F_{u,v}$ is the square of an irreducible polynomial over \mathbb{F}_q . Hence, the three distinct roots b of $F_{u,v}$ provide PPs f_b of \mathbb{F}_{q^6} .

Suppose $28v - 11u^2 \neq 0$, hence $\rho_i \neq 0$ for any i = 1, 2, 3. Then

$$\rho_i^{q^3} = (-1)^r \cdot (28v - 11u^2)^{\frac{q^3 - 1}{2}} \cdot \rho_i.$$

Note that $(28v - 11u^2)^{\frac{q^3-1}{2}} = 1$ if $28v - 11u^2$ is a square in \mathbb{F}_q (and hence in \mathbb{F}_{q^3}), while $(28v - 11u^2)^{\frac{q^3-1}{2}} = -1$ if $28v - 11u^2$ is a non-square in \mathbb{F}_q .

If $r \in \{2,4\}$ and $28v - 11u^2$ is a non-zero square in \mathbb{F}_q , then $\rho^{q^3} = \rho$; the same holds if $r \in \{3,5\}$ and $28v - 11u^2$ is a non-square in \mathbb{F}_q . Therefore, $(x_1^{(i)})^{q^3} = x_1^{(i)}$, and $F_{u,v}$ factors over \mathbb{F}_q into two distinct irreducible polynomials. Hence, for any root b of $F_{u,v}$, f_b is not a PP of \mathbb{F}_{q^6} .

If $r \in \{2, 4\}$ and $28v - 11u^2$ is a non-square in \mathbb{F}_q , then $\rho^{q^3} = -\rho$; the same holds if $r \in \{3, 5\}$ and $28v - 11u^2$ is a non-zero square in \mathbb{F}_q . Therefore, $(x_1^{(i)})^{q^3} = x_2^{(i)}$, and $F_{u,v}$ is irreducible over \mathbb{F}_q . Hence, the roots b of $F_{u,v}$ provide PPs f_b of \mathbb{F}_{q^6} .

Let $s, \epsilon \in \mathbb{F}_q$ with ϵ a primitive element of \mathbb{F}_q , such that $28v - 11u^2 = s^2$ when $28v - 11u^2$ is a square in \mathbb{F}_q , and $28v - 11u^2 = s^2\epsilon$ when $28v - 11u^2$ is a non-square in \mathbb{F}_q . Then the condition $7v - 3u^2 \neq 0$ reads $u \neq \pm s$ in the former case, while it is satisfied for all $(u, s) \neq (0, 0)$ in the latter case.

Suppose now $q = 2^h$. Then, $q \equiv 2, 4 \pmod{7}$. The minimal polynomial of ξ is either $X^3 + X + 1$ or $X^3 + X^2 + 1$; assume without loss of generality that $\xi^3 = \xi + 1$. The factors of $F_{u,v}$ over \mathbb{F}_{q^3} in this case are

$$\begin{split} X^2 + (\xi+1)Xu + (\xi+1)^2v + (\xi^2+\xi)u^2, \\ X^2 + (\xi+1)^2Xu + (\xi+1)^4v + \xi u^2, \\ X^2 + (\xi+1)^4Xu + (\xi+1)v + \xi^2u^2. \end{split}$$

There exist roots of $F_{u,v}$ of multiplicity larger than one if and only if $u^6(u^2+\xi v)^4(u^2+\xi^2 v)^4(u^2+(\xi^2+\xi)v)^4=0$. Since $\xi \notin \mathbb{F}_q$, the only possibility is u=0. In this case

$$F_{u,v} = \left[\left(X + (\xi + 1)\sqrt{v} \right) \cdot \left(X + (\xi^2 + 1)\sqrt{v} \right) \cdot \left(X + (\xi^2 + \xi + 1)\sqrt{v} \right) \right]^2.$$

Hence, $F_{u,v}$ has three distinct zeros with multiplicity 2 and defined over \mathbb{F}_{q^3} , for any $v \in \mathbb{F}_q^*$, namely

$$(\xi+1)\sqrt{v}, (\xi^2+1)\sqrt{v}, (\xi^2+\xi+1)\sqrt{v},$$

which form a unique orbit under the Frobenius map.

Suppose now $u \neq 0$, that is $F_{u,v}$ has six distinct zeros belonging to \mathbb{F}_{q^6} . They belong to \mathbb{F}_{q^3} if and only if $\operatorname{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_2}\left(\frac{v}{u^2} + (\xi+1)^{2^i}\right) = 0, i = 0, 1, 2$, that is

$$\operatorname{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_2}\left(\frac{v}{u^2} + (\xi+1)^{2^i}\right) = \operatorname{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_2}\left(\frac{v}{u^2}\right) + \operatorname{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_2}\left((\xi+1)^{2^i}\right) = 0,$$

where $\operatorname{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_2}$ denotes the trace function from \mathbb{F}_{q^3} to \mathbb{F}_2 . It is not hard to see that $\operatorname{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_2}\left((\xi+1)^{2^i}\right) = 1$ if and only if h is odd. Therefore the zeros of $F_{u,v}(X)$ correspond to PPs f_b if and only if one of the following cases occurs:

- h is odd and $\operatorname{Tr}_{\mathbb{F}_q^3/\mathbb{F}_2}\left(\frac{v}{u^2}\right) = \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(\frac{v}{u^2}\right) = 0;$
- *h* is even and $\operatorname{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_2}\left(\frac{v}{u^2}\right) = \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(\frac{v}{u^2}\right) = 1.$

In these cases, let $\delta_i = \frac{v}{u^2} + (\xi + 1)^{2^i}$, i = 0, 1, 2, and let k be an element with $\operatorname{Tr}_{\mathbb{F}_{q^6}/\mathbb{F}_2}(k) = 1$. Define $y_i = k\delta_i^2 + (k+k^2)\delta_i^4 + \dots + (k+k^2+\dots+k^{2^{h-2}})\delta_i^{2^{h-1}}$, i = 0, 1, 2. The six roots are

$$b \in \left\{ y_i(\xi+1)^{2^{i+1}}u, (y_i+1)(\xi+1)^{2^{i+1}}u \mid i=0,1,2, \ \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(\frac{v}{u^2}\right) = 0 \right\}$$

if h is odd,

$$b \in \left\{ y_i(\xi+1)^{2^{i+1}} u, (y_i+1)(\xi+1)^{2^{i+1}} u \mid i=0,1,2, \ \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}\left(\frac{v}{u^2}\right) = 1 \right\}$$

otherwise.

Therefore we have proved Theorem 1.1.

For the case p = 7, Propositions 4.1 and 4.2 imply Theorem 1.2.

Proposition 4.1. Let $q = 7^h \ge 421$. Let $\xi, \epsilon \in \mathbb{F}_{7^3}$ be such that $\xi^{18} = 1$ and $\epsilon^2 = \xi$. The polynomial f_b is a PP of \mathbb{F}_{q^6} of type (17) if and only if one of the following cases occurs.

• h is odd and

$$b \in \left\{ -2\xi \overline{C} + \epsilon \frac{3\overline{D}}{\overline{C}} \mid \overline{C} \in \mathbb{F}_{q^3}, \ \overline{C}^3 \in \mathbb{F}_q, \ 3\overline{C}^3 \ is \ not \ a \ cube \ in \ \mathbb{F}_q, \ \overline{D} \in \mathbb{F}_q \right\}.$$

• h is even and

$$b \in \left\{ -2\xi \overline{C} + \epsilon \frac{3\overline{D}}{\overline{C}} \mid \overline{C} \in \mathbb{F}_{q^3}, \ \overline{C}^3 \in \mathbb{F}_q, \ 3\overline{C}^3 \ is \ not \ a \ cube \ in \ \mathbb{F}_q, \\ \overline{D} \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q, \ \overline{D}^2 \in \mathbb{F}_q \right\}.$$

$$b \in \left\{-\xi \overline{C} \mid \overline{C} \in \mathbb{F}_{q^3}, \ \overline{C}^3 \in \mathbb{F}_q, \ 3\overline{C}^3 \ is \ not \ a \ cube \ in \ \mathbb{F}_q\right\}.$$

Proof. By Theorem 3.2, we have that f_b is a PP of \mathbb{F}_{q^6} if and only if b, b^q, \ldots, b^{q^5} are the unique zeros of some polynomial $F_{C,D}(x)$, with $C, D \in \mathbb{F}_q, C \neq 0$, where

$$F_{C,D}(x) := C^2 x^6 - C^3 x^3 + C^2 D x^2 - 3D^2 C x + (2C^4 + 4D^3).$$

A polynomial of this type factorizes over \mathbb{F}_{q^3} as

•

$$\begin{split} (\overline{C}^2 x^2 + \xi \overline{C}^3 x + \xi^8 \overline{C}^4 + \xi^4 D) (4 \overline{C}^2 x^2 + \xi^7 \overline{C}^3 x + 2\xi^2 \overline{C}^4 + \xi^{10} D) \\ \times (2 \overline{C}^2 x^2 + \xi^{13} \overline{C}^3 x + 4\xi^{14} \overline{C}^4 + \xi^{16} D), \end{split}$$

where $\overline{C}, 2\overline{C}, 4\overline{C} \in \mathbb{F}_{q^3}$ are the cubic roots of C. It is easily seen that the three factors above are defined over \mathbb{F}_q if and only if $\xi\overline{C}$ belongs to \mathbb{F}_q , that is if and only if 3C is a cube in \mathbb{F}_q . Also, the polynomial $F_{C,D}(x)$ has roots of multiplicity greater than 1 if and only if $C^3D^{10}(C^4 + 2D^3)^4 = 0$. Since $C \neq 0$, the only possibilities are D = 0 and $C^4 + 2D^3 = 0$.

- D = 0. In this case $F_{C,D}(x) = C^2(x^3 + 3C)^2$, which has three roots not defined over \mathbb{F}_q if and only if 3C is not a cube in \mathbb{F}_q .
- $C^4 + 2D^3 = 0$. This is equivalent to $D^3/C^3 = 3C$, which is not possible since 3C is not a cube in \mathbb{F}_q .

Suppose now that $F_{C,D}(x)$ has no roots of multiplicity greater than 1. Then, the six roots are

$$\left\{\frac{-\xi\overline{C}^3\pm\overline{C}\xi^3\sqrt{D\xi}}{2\overline{C}^2},\frac{-\xi^7\overline{C}^3\pm\overline{C}\xi^3\sqrt{D\xi}}{\overline{C}^2},\frac{-\xi^{13}\overline{C}^3\pm\overline{C}\xi^3\sqrt{D\xi}}{4\overline{C}^2}\right\}.$$

These six solutions belong to a unique orbit under φ_q if and only if ξD is a non-square in \mathbb{F}_{q^3} . This happens if and only if h is even and D is a non-square in \mathbb{F}_q , or h is odd and D is a non-zero square in \mathbb{F}_q . \Box

Proposition 4.2. Let $q = 7^h$. The polynomial f_b is a PP of \mathbb{F}_{q^6} of type (18) if and only if one of the following cases occurs:

$$b \in \left\{ 3\overline{B} \mid \overline{B} \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q, \ \overline{B}^2 \in \mathbb{F}_q^* \right\};$$

$$b \in \left\{ 3\overline{D} + 3\overline{C} + \frac{\overline{C}^2}{\overline{D}} \mid \overline{D} \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q, \ \overline{C} \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q, \ \overline{D}^2 \in \mathbb{F}_q^*, \ \overline{C}^3 \in \mathbb{F}_q^* \right\}.$$

Proof. By Theorem 3.2, we need to determine if the roots in \mathbb{F}_{q^6} of the polynomials

$$F_{B,C}(x) := B^3 x^6 + B^4 x^4 - B^3 C x^3 + (5B^3 + 6C^2) B^2 x^2 - BC(3B^3 + 4C^2) x^4 + 6(B^3 + 6C^2)^2,$$

with $B, C \in \mathbb{F}_q$, $B \neq 0$, are contained in a unique orbit under φ_q . Such roots are

$$\begin{split} &\left\{4\overline{B}+6\overline{C}+3\overline{C}^2/\overline{B},4\overline{B}+5\overline{C}+5\overline{C}^2/\overline{B},4\overline{B}+3\overline{C}+6\overline{C}^2/\overline{B},\\ &3\overline{B}+6\overline{C}+4\overline{C}^2/\overline{B},3\overline{B}+5\overline{C}+2\overline{C}^2/\overline{B},3\overline{B}+3\overline{C}+\overline{C}^2/\overline{B}\right\}, \end{split}$$

where $\overline{B} \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ and $\overline{C} \in \mathbb{F}_{q^3}$ are such that $\overline{B}^2 = B$ and $\overline{C}^3 = C$, respectively. There are roots of multiplicity larger than one if and only if $C^4 B^{15} (B^3 + 6C^2)^8 = 0$.

If $C^4 B^{15} (B^3 + 6C^2)^8 = 0$, then C = 0, because $B \neq 0$ and $B^3 + 6C^2 = 0$ would imply $C = \pm \overline{B}B \notin \mathbb{F}_q$, which is impossible. Also, C = 0 implies that the two distinct roots of $F_{B,0}(x)$ are $\pm 3\overline{B} \notin \mathbb{F}_q$, and the corresponding f_b are PPs of \mathbb{F}_{q^6} .

If $C^4 B^{15} (B^3 + 6C^2)^8 \neq 0$, then the roots of $F_{B,C}(x)$ are all distinct. If $\overline{C} \in \mathbb{F}_q$, then they form three orbits under φ_q , namely

$$\begin{split} &\left\{ 4\overline{B} + 6\overline{C} + 3\overline{C}^2/\overline{B}, 3\overline{B} + 6\overline{C} + 4\overline{C}^2/\overline{B} \right\}, \\ &\left\{ 4\overline{B} + 5\overline{C} + 5\overline{C}^2/\overline{B}, 3\overline{B} + 5\overline{C} + 2\overline{C}^2/\overline{B} \right\}, \\ &\left\{ 4\overline{B} + 3\overline{C} + 6\overline{C}^2/\overline{B}, 3\overline{B} + 3\overline{C} + \overline{C}^2/\overline{B} \right\}, \end{split}$$

and the corresponding f_b are not PPs of \mathbb{F}_{q^6} . If $\overline{C} \notin \mathbb{F}_q$, then the roots of $F_{B,C}(x)$ are contained in a unique orbit under φ_q and therefore the corresponding f_b are PPs of \mathbb{F}_{q^6} . \Box

Note that if q is even, then $q \equiv 2, 4, 8, 16 \pmod{28}$, whereas $7 \mid q$ implies $q \equiv 7, 14 \pmod{28}$.

Corollary 4.3. Let $q \ge 421$ and let n_q be the number of PPs of \mathbb{F}_{q^6} of type f_b .

- If $q \equiv 0, 1, 6, 8, 13, 14, 15, 27 \pmod{28}$, then $n_q = 0$.
- If $q \equiv 2, 3, 4, 5, 9, 11, 16, 17, 18, 19, 23, 25 \pmod{28}$, then $n_q = 3(q^2 1)$.
- If $q \equiv 7,21 \pmod{28}$, then $n_q = 4q^2 3q 1$.

•

Proof. Note first that the values of b listed in Theorems 1.1 and 1.2 are all distinct for a fixed q.

1. The solutions of type (4)-(7) are

$$\begin{cases} 3(q-1)(q-2) + 3(q-1) = 3(q-1)^2, & q \equiv 3, 5, 17, 19 \pmod{28}, \\ 3(q-1)q + 3(q-1) = 3(q^2-1), & q \equiv 9, 11, 23, 25 \pmod{28}, \end{cases}$$

If $q \equiv 3, 5, 17, 19 \pmod{28}$ the number of solutions of type (3) is 6(q-1).

- 2. If q is even and $q \equiv 2, 4 \pmod{7}$, that is $q \equiv 2, 4, 16, 18 \pmod{28}$, there are q/2 elements with trace 1 and q/2 elements with trace 0. For a fixed element $t \in \mathbb{F}_q$ there are q-1 pairs $(u,v), u \neq 0$, such that $v/u^2 = t$. For each of them there exist 6 corresponding b's. If u = 0, there are 3 values of b for each choice of $v \in \mathbb{F}_q^*$. The solutions of type (9) are $6\frac{q}{2}(q-1)$, whereas the number of solutions of type (8) is 3(q-1).
- 3. If 7 | q, that is $q \equiv 7, 21 \pmod{28}$, then the solutions of types (10), (11), (12), (13), (14), (15) are respectively $2(q-1), 2(q-1)^2, 2(q-1)^2, 2(q-1), (q-1), 2(q-1)^2$. Therefore the total number of solutions is

$$\begin{split} & 2(q-1) + 2(q-1)^2 + 2(q-1) + (q-1) + 2(q-1)^2 \\ & = 4(q-1)^2 + 5(q-1) = 4q^2 - 3q - 1. \quad \Box \end{split}$$

Remark 4.4. By using the same methods, it is possible to obtain similar descriptions of the values $b \in \mathbb{F}_{q^4} \setminus \mathbb{F}_q$ which provide permutation polynomials of \mathbb{F}_{q^4} of the type $x^{q^3+q^2+q+2}+bx$. By straightforward computations, if $q \equiv 2,3 \pmod{5}$, then the values bsatisfying the first condition in [19, Theorem 4.1] are as follows. Let $a \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ be such that $a^2 + a + 1/5 = 0$; for each pair $(A, B) \in \mathbb{F}_q^2$ distinct from (0, 0), if $7A^2 - 20B \neq 0$, then

$$b \in \left\{\frac{-(2a+1)aA \pm 5\sqrt{(a+1)(7A^2 - 20B)}}{2(2a+1)}, \frac{(2a+1)(a+1)A \pm 5\sqrt{-a(7A^2 - 20B)}}{2(2a+1)}\right\},$$

otherwise

$$b \in \left\{\frac{-aA}{2}, \frac{(a+1)A}{2}\right\}.$$

As to the second condition in [19, Theorem 4.1], no $b \in \mathbb{F}_{q^4} \setminus \mathbb{F}_q$ can satisfy it when $q \equiv 4 \pmod{5}$. If $q \equiv 2, 3 \pmod{5}$, then for each $A \in \mathbb{F}_q^*$ we have

$$b \in \left\{ \frac{-(2a+1)aA \pm 5A\sqrt{-(a+1)}}{2(2a+1)}, \frac{(2a+1)(a+1)A \pm 5A\sqrt{a}}{2(2a+1)} \right\},$$

where $a \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ is such that $a^2 + a + 1/5 = 0$.

5. Necessary conditions for PPs of type $x^{\frac{q^n-1}{q-1}+1} + bx$, n odd

The Niederreiter–Robinson Criterion can be applied to any binomial of type $f_{q,b,n} = x^{\frac{q^n-1}{q-1}+1} + bx$ for some $n \in \mathbb{N}$. The algebraic curve $\mathcal{C}_{q,b,n}$ associated to $f_{q,b,n}$ is given by

$$\sum_{i=0}^{n} A_{n-i} \frac{x^{i+1} - y^{i+1}}{x - y} = 0,$$

where $A_0 = 1$ and $A_i = \sum_{0 \le j_1 < j_2 < \dots < j_i \le (n-1)} b^{q^{j_1} + q^{j_2} + \dots + q^{j_i}}$. Note that

$$A_1 = \operatorname{Tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(b).$$

When n is odd, it is easily seen that the point (1, -1, 0) belongs to $C_{q,b,n}$ for every q and $b \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$.

Proposition 5.1. Let C be an algebraic curve defined over \mathbb{F}_q having a simple \mathbb{F}_q -rational point P. Then there exists an absolutely irreducible \mathbb{F}_q -rational component passing through P.

Proof. Let \mathcal{C}' be an absolutely irreducible \mathbb{F}_q -rational component of \mathcal{C} containing P. The image \mathcal{C}'' of \mathcal{C}' under φ_q contains P, since $\varphi_q(P) = P$. Also, P being a simple point of \mathcal{C} implies the existence of a unique component of \mathcal{C} through it. Therefore $\mathcal{C}'' = \varphi_q(\mathcal{C}') = \mathcal{C}'$, that is \mathcal{C}' is defined over \mathbb{F}_q . \Box

The above criterion is useful to deduce necessary conditions for a polynomial $f_{q,b,n}$ to be a PP of \mathbb{F}_{q^n} . Let p be the characteristic of \mathbb{F}_q .

Theorem 5.2. Let n be odd. Suppose $q > \frac{((n-1)(n-2)+\sqrt{n^2+13n-2})^2}{4}$. If $f_{q,b,n}$ is a PP of \mathbb{F}_{q^n} , then $p \mid \frac{n+1}{2}$ and $\operatorname{Tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(b) = 0$.

Proof. We already observed that the point P = (1, -1, 0) always belongs to the curve $C_{q,b,n}$. We now show that if $f_{q,b,n}$ is a PP of \mathbb{F}_{q^n} , then the point P is a singular point of $C_{q,b,n}$. Assume on the contrary that P is simple. Then by Proposition 5.1 the curve $C_{q,b,n}$ contains an absolutely irreducible component defined over \mathbb{F}_q . Since $q > \frac{((n-1)(n-2)+\sqrt{n^2+13n-2})^2}{4}$, this component contains an affine \mathbb{F}_q -rational point not lying on X = 0, Y = 0, or X = Y. Therefore by the Niederreiter–Robinson Criterion $f_{q,b,n}$ cannot be a PP of \mathbb{F}_{q^n} , a contradiction.

Let $F(X,Y,T) = \sum_{i=0}^{n} A_{n-i} \frac{X^{i+1} - Y^{i+1}}{X - Y} T^{n-i}$ the homogenization of the polynomial defining $\mathcal{C}_{q,b,n}$. As P is singular, we have

$$\frac{\partial F(X,Y,T)}{\partial X}(1,-1,0) = \frac{\partial F(X,Y,T)}{\partial Y}(1,-1,0) = \frac{\partial F(X,Y,T)}{\partial T}(1,-1,0) = 0.$$

156

This is equivalent to

$$p \mid \frac{n+1}{2}$$
 and $A_1 = 0.$

A consequence of Theorem 5.2 is that for a given n odd there are just a finite number of characteristics p for which there exists a PP of \mathbb{F}_{q^n} of type $f_{q,b,n}$.

For n = 3, Theorem 5.2 implies that for $q \ge 23$ odd there cannot be a PP of \mathbb{F}_{q^3} of type $x^{q^2+q+2} + bx$. This is the main result in [5, Section 3].

For n = 7, p = 2, it has been shown in [7] that for q large enough the values b for which $f_{2^{h},b,7}$ is a PP of $\mathbb{F}_{q^{7}}$ are exactly the roots of irreducible polynomials of type $x^{7} + ax^{3} + bx + c$ for some $a, b, c \in \mathbb{F}_{q}$. Note that for such b's, the monomial $b^{-1}x^{\frac{q^{7}-1}{q-1}+1}$ is a CPP of $\mathbb{F}_{q^{7}}$. In particular, for q = 2 the values of b are $\{\eta^{2^{i}} : i = 0 \dots 6\} \cup \{(\eta^{11})^{2^{i}} : i = 0 \dots 6\}$, where η is a primitive element of $\mathbb{F}_{2^{7}}$.

Other values of n are currently under investigation in [1].

References

- [1] D. Bartoli, M. Giulietti, L. Quoos, G. Zini, Complete permutation polynomials from exceptional polynomials, in preparation.
- [2] U. Bartocci, B. Segre, Ovali ed altre curve nei piani di Galois di caratteristica 2, Acta Arith. XVIII (1971) 423–449.
- [3] L.A. Bassalygo, V.A. Zinoviev, On complete permutation polynomials, in: Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory, Proceedings, Svetlogorsk (Kaliningrad region), Russia, September 7–13, 2014, pp. 57–62.
- [4] L.A. Bassalygo, V.A. Zinoviev, On one class of permutation polynomials over finite fields of characteristic two, preprint.
- [5] L.A. Bassalygo, V.A. Zinoviev, Permutation and complete permutation polynomials, Finite Fields Appl. 33 (2015) 198-211.
- [6] P. Charpin, G.M. Kyureghyan, Cubic monomial bent functions: a subclass of M^{*}, SIAM J. Discrete Math. 22 (2) (2008) 650–665.
- [7] E. Franzè, Polinomi di permutazione, Master thesis, Università degli Studi di Perugia.
- [8] J.W.P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves over a Finite Field, Princeton Ser. Appl. Math., Princeton, 2008.
- X. Hou, Permutation polynomials over finite fields a survey of recent advances, Finite Fields Appl. 32 (2015) 82–119.
- [10] J. Ma, T. Zhang, T. Feng, G. Ge, New results on permutation polynomials over finite fields, arXiv:1506.05525.
- [11] G.L. Mullen, Q. Wang, Permutation polynomials: one variable, in: G.L. Mullen, D. Panario (Eds.), Handbook of Finite Fields, Chapman and Hall/CRC, 2013.
- [12] A. Muratovic-Ribic, E. Pasalic, A note on complete polynomials over finite fields and their applications in cryptography, Finite Fields Appl. 25 (2014) 306–315.
- [13] H. Niederreiter, K.H. Robinson, Complete mappings of finite fields, J. Aust. Math. Soc. Ser. A 33 (1982) 197–212.
- [14] P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Gangopadhyay, S. Maitra, Investigation on bent and negabent functions via the nega-Hadamard transform, IEEE Trans. Inf. Theory 58 (6) (2012) 4064–4072.
- [15] B. Segre, Ovali e curve σ nei piani di Galois di caratteristica 2, Atti Accad Naz. Lincei 32 (8) (1962) 785–790.
- [16] S. Sarkar, S. Bhattacharya, A. Cesmelioglu, On some permutation binomials of the form $x^{(2^h-1)/k+1} + ax$ over \mathbb{F}_{2^h} : existence and count, in: International Workshop on the Arithmetic of Finite Fields, WAIFI 2012, in: Lect. Notes Comput. Sci., vol. 7369, Springer, 2012, pp. 236–246.

- [17] Z. Tu, X. Zeng, L. Hu, Several classes of complete permutation polynomials, Finite Fields Appl. 25 (2014) 182–193.
- [18] G. Wu, N. Li, T. Helleseth, Y. Zhang, Some classes of monomial complete permutation polynomials over finite fields of characteristic two, Finite Fields Appl. 28 (2014) 148–165.
- [19] G. Wu, N. Li, T. Helleseth, Y. Zhang, Some classes of complete permutation polynomials over \mathbb{F}_q , Sci. China Math. 58 (10) (2015) 2081–2094.