On maximal curves that are not quotients of the Hermitian curve

Massimo Giulietti ${ }^{\text {a,* }}$, Maria Montanucci ${ }^{\text {b }}$, Giovanni Zini ${ }^{\text {c }}$
${ }^{\text {a }}$ Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia, Italy
${ }^{\text {b }}$ Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy
${ }^{\text {c }}$ Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni, 67/a, 50134 Firenze, Italy

A R T I C L E I N F O

Article history:

Received 30 November 2015
Received in revised form 22 May
2016
Accepted 23 May 2016
Available online 8 June 2016
Communicated by Anne Canteaut

MSC:

11G20
Keywords:
Hermitian curve
Unitary groups
Maximal curves

A B S T R A C T

For each prime power ℓ the plane curve \mathcal{X}_{ℓ} with equation $Y^{\ell^{2}-\ell+1}=X^{\ell^{2}}-X$ is maximal over $\mathbb{F}_{\ell^{6}}$. Garcia and Stichtenoth in 2006 proved that \mathcal{X}_{3} is not Galois covered by the Hermitian curve and raised the same question for \mathcal{X}_{ℓ} with $\ell>3$; in this paper we show that \mathcal{X}_{ℓ} is not Galois covered by the Hermitian curve for any $\ell>3$. Analogously, Duursma and Mak proved that the generalized GK curve $\mathcal{C}_{\ell^{n}}$ over $\mathbb{F}_{\ell^{2 n}}$ is not a quotient of the Hermitian curve for $\ell>2$ and $n \geq 5$, leaving the case $\ell=2$ open; here we show that $\mathcal{C}_{2^{n}}$ is not Galois covered by the Hermitian curve over $\mathbb{F}_{2^{2 n}}$ for $n \geq 5$.
© 2016 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.ffa.2016.05.005
1071-5797/® 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{F}_{q^{2}}$ be the finite field with q^{2} elements, where q is a power of a prime p, and let \mathcal{X} be an $\mathbb{F}_{q^{2}}$-rational curve, that is a projective, absolutely irreducible, non-singular algebraic curve defined over $\mathbb{F}_{q^{2}}$. \mathcal{X} is called $\mathbb{F}_{q^{2} \text {-maximal }}$ if the number $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$ of its $\mathbb{F}_{q^{2}}$-rational points attains the Hasse-Weil upper bound

$$
q^{2}+1+2 g q
$$

where g is the genus of \mathcal{X}. Maximal curves have interesting properties and have also been investigated for their applications in Coding Theory. Surveys on maximal curves are found in [9-11, 13,32,33] and [23, Chapt. 10].

The most important example of an $\mathbb{F}_{q^{2}}$-maximal curve is the Hermitian curve \mathcal{H}_{q}, defined as any $\mathbb{F}_{q^{2}}$-rational curve projectively equivalent to the plane curve with Fermat equation

$$
X^{q+1}+Y^{q+1}+T^{q+1}=0
$$

The norm-trace equation

$$
Y^{q+1}=X^{q} T+X T^{q}
$$

gives another model of $\mathcal{H}_{q}, \mathbb{F}_{q^{2}}$-equivalent to the Fermat model, see [15, Eq. (2.15)]. For fixed q, \mathcal{H}_{q} has the largest possible genus $g\left(\mathcal{H}_{q}\right)=q(q-1) / 2$ that an $\mathbb{F}_{q^{2}}$-maximal curve can have. The automorphism group $\operatorname{Aut}\left(\mathcal{H}_{q}\right)$ is isomorphic to $\operatorname{PGU}(3, q)$, the group of projectivities of $\operatorname{PG}\left(2, q^{2}\right)$ commuting with the unitary polarity associated with \mathcal{H}_{q}.

By a result commonly attributed to Serre, see [26, Prop. 6], any $\mathbb{F}_{q^{2}}$-rational curve which is $\mathbb{F}_{q^{2}}$-covered by an $\mathbb{F}_{q^{2}}$-maximal curve is also $\mathbb{F}_{q^{2}}$-maximal. In particular,
 that is by the quotient curves \mathcal{X} / G over a finite $\mathbb{F}_{q^{2}}$-automorphism group $G \leq \operatorname{Aut}(\mathcal{X})$.

Most of the known maximal curves are Galois subcovers of the Hermitian curve, many of which were studied in $[4,5,15]$. Garcia and Stichtenoth [14] discovered the first example of maximal curve not Galois covered by the Hermitian curve, namely the curve $Y^{7}=X^{9}-X$ maximal over $\mathbb{F}_{3^{6}}$. It is a special case of the curve \mathcal{X}_{ℓ} with equation

$$
\begin{equation*}
Y^{\ell^{2}-\ell+1}=X^{\ell^{2}}-X \tag{1}
\end{equation*}
$$

which is $\mathbb{F}_{\ell^{6}-\text {-maximal }}$ for any $\ell \geq 2$; see [1]. In [17], Giulietti and Korchmáros showed that the Galois covering of \mathcal{X}_{ℓ} given by

$$
\left\{\begin{array}{l}
Z^{\ell^{2}-\ell+1}=Y^{\ell^{2}}-Y \\
Y^{\ell+1}=X^{\ell}+X
\end{array}\right.
$$

 any $\ell>2$. This curve, nowadays referred to as the GK curve, was generalized in [12] by Garcia, Güneri, and Stichtenoth to the curve

$$
\mathcal{C}_{\ell^{n}}:\left\{\begin{array}{l}
Z^{\frac{\ell^{n}+1}{\ell+1}}=Y^{\ell^{2}}-Y \\
X^{\ell}+X=Y^{\ell+1}
\end{array}\right.
$$

 Galois covered by \mathcal{H}_{8}, see [17]. Duursma and Mak proved in [8] that, if $\ell \geq 3$, then $\mathcal{C}_{\ell^{n}}$ is not Galois covered by $\mathcal{H}_{\ell^{n}}$. In Section 3, we show that the same holds in the remaining open cases.

Theorem 1.1. For $\ell=2$ and $n \geq 5, \mathcal{C}_{2^{n}}$ is not a Galois subcover of the Hermitian curve $\mathcal{H}_{\ell^{n}}$.

Duursma and Mak [8, Thm. 1.2] showed that if $\mathcal{C}_{2^{n}}$ is the quotient curve $\mathcal{H}_{2^{n}} / G$ for G a subgroup of $\operatorname{Aut}\left(\mathcal{H}_{2^{n}}\right)$, then G has order $\left(2^{n}+1\right) / 3$ and acts semiregularly on $\mathcal{H}_{2^{n}}$. Remember that G is semiregular on $\mathcal{H}_{2^{n}}$ if the stabilizer of any $P \in \mathcal{H}_{2^{n}}$ under G is trivial; by the orbit-stabilizer theorem, this is equivalent to require that G has just long orbits on $\mathcal{H}_{2^{n}}$, i.e. each orbit has length $|G|$. We investigate all subgroups G of $\operatorname{Aut}\left(\mathcal{H}_{2^{n}}\right)$ satisfying these conditions, relying also on classical results by Mitchell [30] and Hartley [22] (see Section 2) which provide a classification of the maximal subgroups of $\operatorname{PSU}(3, q)$ in terms of their order and their action on \mathcal{H}_{q}. For any candidate subgroup G, we find another subgroup \bar{G} of $\operatorname{Aut}\left(\mathcal{H}_{2^{n}}\right)$ containing G as a normal subgroup, and such that \bar{G} / G has an action on $\mathcal{H}_{2^{n}} / G$ not compatible with the action of any automorphism group of $\mathcal{C}_{2^{n}}$.

In Section 4 we consider the curve \mathcal{X}_{ℓ} with equation (1). In [14] it was shown that \mathcal{X}_{3} is not a Galois subcover of $\mathcal{H}_{3^{6}}$, while \mathcal{X}_{2} is a quotient of $\mathcal{H}_{2^{6}}$, as noted in [16]. Garcia and Stichtenoth [14, Remark 4] raised the same question for any $\ell>3$. The case where ℓ is a prime was settled by Mak [29]. Here we provide an answer for any prime power $\ell>3$.

Theorem 1.2. For $\ell>3, \mathcal{X}_{\ell}$ is not a Galois subcover of the Hermitian curve $\mathcal{H}_{\ell 6}$.
In the proof of Theorem 1.2 we bound the possible degree of a Galois covering $\mathcal{H}_{\ell}{ }^{6} \rightarrow \mathcal{X}_{\ell}$ by means of [8, Thm. 1.3], then we exclude the three possible values given by the bound. To this aim, we use again the classification results of Mitchell [30] and Hartley [22], other group-theoretic arguments, and the Riemann-Hurwitz formula (see [31, Chapt. 3]) applied to the Galois coverings $\mathcal{H}_{\ell^{6}} \rightarrow \mathcal{H}_{\ell^{6}} / G$.

2. Preliminary results

Theorem 2.1. (Mitchell [30], Hartley [22]) Let $q=p^{k}, d=\operatorname{gcd}(q+1,3)$. The following is the list of maximal subgroups of $\operatorname{PSU}(3, q)$ up to conjugacy:

ii) the stabilizer of an $\mathbb{F}_{q^{2}}$-rational point not on \mathcal{H}_{q} and its polar line (which is a $(q+$ 1)-secant to $\left.\mathcal{H}_{q}\right)$, of order $q(q-1)(q+1)^{2} / d$;
iii) the stabilizer of the self-polar triangle, of order $6(q+1)^{2} / d$;
iv) the normalizer of a cyclic Singer group stabilizing a triangle in $\mathrm{PG}\left(2, q^{6}\right) \backslash \mathrm{PG}\left(2, q^{2}\right)$, of order $3\left(q^{2}-q+1\right) / d$.

Further, for $p>2$:
v) $\operatorname{PGL}(2, q)$ preserving a conic;
vi) $\operatorname{PSU}\left(3, p^{m}\right)$ with $m \mid k$ and k / m odd;
vii) subgroups containing $\operatorname{PSU}\left(3,2^{m}\right)$ as a normal subgroup of index 3, when $m \mid k$, k / m is odd, and 3 divides both k / m and $q+1$;
viii) the Hessian groups of order 216 when $9 \mid(q+1)$, and of order 72 and 36 when $3 \mid(q+1)$;
ix) $\operatorname{PSL}(2,7)$ when $p=7$ or -7 is not a square in \mathbb{F}_{q};
$x)$ the alternating group \mathbf{A}_{6} when either $p=3$ and k is even, or 5 is a square in \mathbb{F}_{q} but \mathbb{F}_{q} contains no cube root of unity;
xi) the symmetric group \mathbf{S}_{6} when $p=5$ and k is odd;
xii) the alternating group \mathbf{A}_{7} when $p=5$ and k is odd.

Further, for $p=2$:
xiii) $\operatorname{PSU}\left(3,2^{m}\right)$ with $m \mid k$ and k / m an odd prime;
xiv) subgroups containing $\operatorname{PSU}\left(3,2^{m}\right)$ as a normal subgroup of index 3 , when $k=3 m$ with m odd;
xv) a group of order 36 when $k=1$.

The previous theorem will be used for a case-by-case analysis of the possible unitary groups G such that the quotient curve \mathcal{H} / G realizes a putative Galois covering.

While dealing with case $i i$), we will invoke a result by Dickson [7] which classifies all subgroups of the projective special linear group $\operatorname{PSL}(2, q)$ acting on $\operatorname{PG}(1, q)$. We remark that $\operatorname{PSL}(2, q)$ has index $\operatorname{gcd}(q-1,2)$ in the $\operatorname{group} \operatorname{PGL}(2, q)$ of all projectivities of PG(1,q). From Dickson's result the classification of subgroups of PGL $(2, q)$ is easily obtained.

Theorem 2.2. ([7, Chapt. XII, Par. 260]; see also [23, Thm. A.8]) Let $q=p^{k}, d=$ $\operatorname{gcd}(q-1,2)$. The following is the complete list of subgroups of $\mathrm{PGL}(2, q)$ up to conjugacy:
i) the cyclic group of order h with $h \mid(q \pm 1)$;
ii) the elementary abelian p-group of order p^{f} with $f \leq k$;
iii) the dihedral group of order $2 h$ with $h \mid(q \pm 1)$;
iv) the alternating group \mathbf{A}_{4} for $p>2$, or $p=2$ and k even;
$v)$ the symmetric group \mathbf{S}_{4} for $16 \mid\left(q^{2}-1\right)$;
vi) the alternating group \mathbf{A}_{5} for $p=5$ or $5 \mid\left(q^{2}-1\right)$;
vii) the semidirect product of an elementary abelian p-group of order p^{f} by a cyclic group of order h, with $f \leq k$ and $h \mid(q-1)$;
viii) $\operatorname{PSL}\left(2, p^{f}\right)$ for $f \mid k$;
ix) $\operatorname{PGL}\left(2, p^{f}\right)$ for $f \mid k$.

3. $\mathcal{C}_{2^{n}}$ is not Galois-covered by $\mathcal{H}_{2^{n}}$, for any $n \geq 5$

Throughout the section, $n \geq 5$ is an odd integer and $q=2^{n}$. We rely on a result by Duursma and Mak.

Lemma 3.1. Let $n \geq 5$ be odd. If $\mathcal{C}_{2^{n}} \cong \mathcal{H}_{2^{n}} / G$ for some $G \leq \operatorname{Aut}\left(\mathcal{H}_{2^{n}}\right)$, then G has order $\left(2^{n}+1\right) / 3$ and acts semiregularly on $\mathcal{H}_{2^{n}}$.

Proof. The order of G is equal to the degree of the covering $\varphi: \mathcal{H}_{2^{n}} \rightarrow \mathcal{H}_{2^{n}} / G \cong \mathcal{C}_{2^{n}}$. Hence, by [8, Thm. 1.2], G has order $\left(2^{n}+1\right) / 3$. Also, by [8, Thm. 1.2], φ is unramified. Since $\mathcal{H}_{2^{n}}$ is non-singular, this means that there are exactly $|G|$ points of $\mathcal{H}_{2^{n}}$ lying over each point of $\mathcal{H}_{2^{n}} / G$. Therefore, each orbit of G is long and the thesis follows.

By Lemma 3.1 only subgroups G of $\operatorname{Aut}\left(\mathcal{H}_{q}\right)$ of order $(q+1) / 3$ acting semiregularly on \mathcal{H}_{q} need to be considered. We will also use the fact that the whole automorphism group of $\operatorname{Aut}\left(\mathcal{C}_{2^{n}}\right)$ fixes a point.

Theorem 3.2. ([18, Thm. 3.10], [19, Prop. 2.10]) For $n \geq 5$, the group $\operatorname{Aut}\left(\mathcal{C}_{2^{n}}\right)$ has a unique fixed point P_{∞} on \mathcal{C}_{q}, and P_{∞} is $\mathbb{F}_{q^{2}}$-rational.

Corollary 3.3. Let $G \leq \operatorname{Aut}\left(\mathcal{H}_{q}\right)$. If there exists $\bar{G} \leq \operatorname{Aut}\left(\mathcal{H}_{q}\right)$ such that G is a proper normal subgroup of \bar{G} and \bar{G} acts semiregularly on \mathcal{H}_{q}, then $\mathcal{C}_{2^{n}} \not \not \mathcal{H}_{q} / G$.

Proof. The claim follows from Theorem 3.2, taking into account that $\bar{G} / G \leq \operatorname{Aut}\left(\mathcal{H}_{q} / G\right)$ acts semiregularly on \mathcal{H}_{q} / G.

The following well-known result about finite groups will be used (see [28, Ex. 16 page 232]).

Lemma 3.4. Let H be a finite group and K a subgroup of H such that the index $[H: K]$ is the smallest prime number dividing the order of H. Then K is normal in H.

Proposition 3.5. Let $G \leq \operatorname{PSU}(3, q)$. If a maximal subgroup of $\operatorname{PSU}(3, q)$ containing G is of type ii) in Theorem 2.1, then $\mathcal{C}_{2^{n}} \not \neq \mathcal{H}_{q} / G$.

Proof. Let ℓ be the $(q+1)$-secant to \mathcal{H}_{q} stabilized by G; we show that G is isomorphic to a cyclic subgroup of $\operatorname{PSL}\left(2, q^{2}\right)$. We can assume that ℓ is the line at infinity $T=0$; in fact, the group $\operatorname{PGU}(3, q)$ is transitive on the points of $\operatorname{PG}\left(2, q^{2}\right) \backslash \mathcal{H}_{q}$, and hence also on the $(q+1)$-secant lines. The action of an element $g \in G$ on ℓ is given by $(X, Y, 0) \mapsto A_{g} \cdot(X, Y, 0)$, where the matrix $A_{g}=\left(a_{i j}\right)_{i=1,2,3}^{j=1,2,3}$ satisfies $a_{31}=a_{32}=0$; we set $a_{33}=1$. By direct computation, the map

$$
\varphi: G \rightarrow \mathrm{PGL}\left(2, q^{2}\right), \quad \varphi(g):\binom{X}{Y} \mapsto\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \cdot\binom{X}{Y}
$$

is a well-defined group homomorphism. Moreover, φ is injective, since no non-trivial element of G can fix the points of $\mathcal{H}_{q} \cap \ell$, by the semiregularity of G. Hence G is isomorphic to a subgroup of $\operatorname{PGL}\left(2, q^{2}\right)$. Since $|G|$ is odd, Theorem 2.2 implies that G is cyclic.

Let $g \in G$ be an element of prime order $d>3$; such a d exists, since it is easy to check that $2^{n}+1$ is a power of 3 only when $n=1$ or $n=3$. If we denote by d^{h} the highest power of d dividing $(q+1) / 3$, then $d^{2 h}$ is the highest power of d dividing

$$
|\operatorname{PGU}(3, q)|=q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)=q^{3}(q+1)^{2}(q-1)\left(q^{2}-q+1\right)
$$

Let $\mathcal{H}_{q}: X^{q+1}+Y^{q+1}+T^{q+1}=0$; then

$$
D=\left\{(X, Y, T) \mapsto(\lambda X, \mu Y, T) \mid \lambda^{d^{h}}=\mu^{d^{h}}=1\right\}
$$

is a Sylow d-subgroup of $\operatorname{PGU}(3, q)$. By Sylow theorems we can assume, up to conjugation, that $g \in D$; therefore, the fixed points of the subgroup $\langle g\rangle$ generated by g are the fundamental points $P_{1}=(1,0,0), P_{2}=(0,1,0)$, and $P_{3}=(0,0,1)$. Since G is abelian, $\langle g\rangle$ is normal in G; hence, G acts on $\mathcal{T}=\left\{P_{1}, P_{2}, P_{3}\right\}$. As $|G|$ is odd, we have by the orbit-stabilizer theorem that the orbits of any $h \in G$ on \mathcal{T} have length 1 or 3 . If h has a single orbit on \mathcal{T}, then h is either

$$
\left(\begin{array}{ccc}
0 & 0 & \lambda \\
\mu & 0 & 0 \\
0 & \rho & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
0 & \lambda & 0 \\
0 & 0 & \mu \\
\rho & 0 & 0
\end{array}\right) ; \quad \text { in both cases } \quad h^{3}=\left(\begin{array}{ccc}
\lambda \mu \rho & 0 & 0 \\
0 & \lambda \mu \rho & 0 \\
0 & 0 & \lambda \mu \rho
\end{array}\right)
$$

that is h^{3} is the identity element of G and clearly G cannot be generated by h. Therefore, a generator α of G has the form

$$
\alpha:(X, Y, T) \mapsto(\theta X, \eta Y, T)
$$

with $\theta^{\frac{q+1}{3}}=\eta^{\frac{q+1}{3}}=1$. If θ had order $m<(q+1) / 3$, then α^{m} would fix the points of $\mathcal{H}_{q} \cap(Y=0)$, against the semiregularity of G. Then θ is a primitive $(q+1) / 3$-th root of unity, and the same holds for η; hence

$$
\alpha=\alpha_{\theta}:(X, Y, T) \mapsto\left(\theta X, \theta^{i} Y, T\right)
$$

with θ a primitive $(q+1) / 3$-th root of unity, and i coprime with $(q+1) / 3$. Let $\zeta \in \mathbb{F}_{q^{2}}$ with $\zeta^{3}=\theta$, and let \bar{G} be the group generated by $\alpha_{\zeta}:(X, Y, T) \mapsto\left(\zeta X, \zeta^{i} Y, T\right)$. Any element of \bar{G} fixes only the fundamental points, hence \bar{G} is semiregular on \mathcal{H}_{q}; moreover, G is normal in \bar{G} of index 3. Then the thesis follows from Corollary 3.3.

Proposition 3.6. Let $G \leq \operatorname{PSU}(3, q)$. If a maximal subgroup of $\operatorname{PSU}(3, q)$ containing G is of type iii) in Theorem 2.1, then $\mathcal{C}_{2^{n}} \not \neq \mathcal{H}_{q} / G$.

Proof. Let $\mathcal{H}_{q}: X^{q+1}+Y^{q+1}+T^{q+1}=0$. Up to conjugation, the self-polar triangle stabilized by G is the fundamental triangle $\mathcal{T}=\left\{P_{1}, P_{2}, P_{3}\right\}$, whose vertices are not points of \mathcal{H}_{q}. The elements of G stabilizing \mathcal{T} pointwise form a normal subgroup N of G, and G / N acts faithfully on \mathcal{T}; hence, either $G=N$ or $[G: N]=3$.

If $G=N$, then G fixes one fundamental point, say P_{1}, and its polar line $P_{2} P_{3}$; therefore, the thesis follows from Proposition 3.5.

If $[G: N]=3$, then N is cyclic, by the same argument used in the proof of Proposition 3.5; say $N=\left\langle\alpha_{\xi}\right\rangle$, where ξ is a primitive $(q+1) / 9$-th root of unity, $\alpha_{\xi}:(X, Y, T) \mapsto\left(\xi X, \xi^{i} Y, T\right)$, and i is coprime with $(q+1) / 9$. Let $h \in G \backslash N$. By arguing as in the proof of Proposition 3.5, h has order 3. Moreover, G is the semidirect product $N \rtimes\langle h\rangle$; in fact, N is normal in G, N and $\langle h\rangle$ have trivial intersection, and $|G|=|N| \cdot|\langle h\rangle|$. Let \bar{N} be the cyclic group generated by $\alpha_{\theta}:(X, Y, T) \mapsto\left(\theta X, \theta^{i} Y, T\right)$, where $\theta \in \mathbb{F}_{q^{2}}$ satisfies $\theta^{3}=\xi$. Let \bar{G} be the group generated by \bar{N} and h. Then \bar{G} is the semidirect product $\bar{N} \rtimes\langle h\rangle$.

We want to double count the size of the set

$$
I=\left\{(\bar{g}, P) \mid \bar{g} \in \bar{G} \backslash\{i d\}, P \in \mathcal{H}_{q}, \bar{g}(P)=P\right\} .
$$

Since G and \bar{N} are semiregular on \mathcal{H}_{q}, we consider only elements of the form $\bar{n} h$ or $\bar{n} h^{2}$, with $\bar{n} \in \bar{N} \backslash N$. Up to reordering of the fundamental points, we have

$$
\bar{n}=\left(\begin{array}{ccc}
\rho & 0 & 0 \tag{2}\\
0 & \rho^{i} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad h=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
0 & 0 & \mu \\
1 & 0 & 0
\end{array}\right)
$$

where $\lambda^{q+1}=\mu^{q+1}=1, \operatorname{gcd}(i,(q+1) / 3)=1$, and $\rho=\theta^{3 j+u}$ with $0<j<(q+1) / 3$ and $u \in\{1,2\}$. Hence

$$
\bar{n} h=\left(\begin{array}{ccc}
\rho & 0 & 0 \tag{3}\\
0 & \rho^{i} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & \lambda & 0 \\
0 & 0 & \mu \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & A & 0 \\
0 & 0 & B \\
1 & 0 & 0
\end{array}\right)
$$

where $A^{q+1}=B^{q+1}=1$, and $\operatorname{det}(\bar{n} h)=A B$ is not a cube in $\mathbb{F}_{q^{2}}$, since $\bar{n} h \notin \operatorname{PSU}(3, q)$. Then $\bar{n} h$ has three distinct eigenvalues in a cubic extension of $\mathbb{F}_{q^{2}}$, namely $z, z x$, and $z(x+1)$, where $x^{2}+x+1=0$ and $z^{3}=A B$. Therefore, $\bar{n} h$ has exactly three fixed points, namely

$$
Q_{1}=\left(z, \frac{z^{2}}{A}, 1\right), \quad Q_{2}=\left(z x, \frac{z^{2} x^{2}}{A}, 1\right), \quad \text { and } \quad Q_{3}=\left(z(x+1), \frac{z^{2}(x+1)^{2}}{A}, 1\right)
$$

it is easy to check that Q_{1}, Q_{2}, and Q_{3} are points of \mathcal{H}_{q}. The same holds for $\bar{n} h^{2}$.
Therefore, any element $\bar{n} h$ or $\bar{n} h^{2}$ with $\bar{n} \in \bar{N} \backslash N$ has exactly three fixed points on \mathcal{H}_{q}; then

$$
\begin{equation*}
|I|=2 \cdot(|\bar{N}|-|N|) \cdot 3=2 \cdot\left(\frac{q+1}{3}-\frac{q+1}{9}\right) \cdot 3=4 \cdot \frac{q+1}{3} . \tag{4}
\end{equation*}
$$

The orbit \mathcal{O} of a point $P \in \mathcal{H}_{q}$ under \bar{G} has size $|\mathcal{O}| \geq|G|=(q+1) / 3$. Then the stabilizer \mathcal{S} of P under \bar{G} has size $|\mathcal{S}| \leq 3$; in particular, $|\mathcal{S}| \in\{1,3\}$ since $|\bar{G}|$ is odd. Hence, the number $|\mathcal{S}|-1$ of pairs in I having P in the second coordinate is either zero or 2 .

Therefore $|I|=2 m$, where m is the number of points of \mathcal{H}_{q} fixed by some non-trivial element of \bar{G}. By (4), we get

$$
m=2 \cdot \frac{q+1}{3}=2 \cdot|G| .
$$

Hence, \bar{G} / G has two fixed points $R_{1}, R_{2} \in \mathcal{H}_{q} / G$ and acts semiregularly on $\mathcal{H}_{q} / G \backslash$ $\left\{R_{1}, R_{2}\right\}$. By Theorem 3.2, either R_{1} or R_{2} is $\mathbb{F}_{q^{2}}$-rational. Then the number $\left|\mathcal{H}_{q} / G\left(\mathbb{F}_{q^{2}}\right)\right|$ of $\mathbb{F}_{q^{2}}$-rational points of \mathcal{H}_{q} / G satisfies

$$
\left|\mathcal{H}_{q} / G\left(\mathbb{F}_{q^{2}}\right)\right| \equiv \mid\left\{P \in\left\{R_{1}, R_{2}\right\} \mid P \text { is } \mathbb{F}_{q^{2}} \text {-rational }\right\} \mid \quad(\bmod |\bar{G} / G|)
$$

that is, $\left|\mathcal{H}_{q} / G\left(\mathbb{F}_{q^{2}}\right)\right|$ is congruent to 1 or 2 modulo 3.
On the other side, the number $\left|\mathcal{C}_{2^{n}}\left(\mathbb{F}_{q^{2}}\right)\right|$ of $\mathbb{F}_{q^{2} \text {-rational points of } \mathcal{C}_{2^{n}} \text { equals }}$

$$
q^{2}+1+2 q \cdot(3 q-4) / 2=4 q^{2}-4 q+1
$$

see $\left[12\right.$, Prop. 2.2]; then $\left|\mathcal{C}_{2^{n}}\left(\mathbb{F}_{q^{2}}\right)\right| \equiv 0(\bmod 3)$, as $q \equiv 2(\bmod 3)$. Therefore, $\mathcal{H}_{q} / G \nsubseteq \mathcal{C}_{2^{n}}$.

Proposition 3.7. Let $G \leq \operatorname{PGU}(3, q), G \nsubseteq \operatorname{PSU}(3, q)$. If a maximal subgroup of $\operatorname{PSU}(3, q)$ containing $G \cap \operatorname{PSU}(3, q)$ is of type ii) in Theorem 2.1, then $\mathcal{C}_{2^{n}} \not \neq \mathcal{H}_{q} / G$.

Proof. Let $G^{\prime}=G \cap \operatorname{PSU}(3, q)$. Since $\operatorname{PSU}(3, q)$ has index 3 in $\operatorname{PGU}(3, q), \operatorname{PGU}(3, q)=$ $G \cdot \operatorname{PSU}(3, q)$ and $\left[G: G^{\prime}\right]=3$; hence, G^{\prime} is normal in G by Lemma 3.4. Arguing as in the proof of Proposition 3.5, G^{\prime} is cyclic; moreover, G^{\prime} is generated by $\alpha_{\xi}:(X, Y, T) \mapsto$ $\left(\xi X, \xi^{i} Y, T\right)$, where ξ is a primitive $(q+1) / 9$-th root of unity and i is coprime with $(q+1) / 9$. Then G stabilizes the fundamental triangle \mathcal{T}.

If there exists $h \in G \backslash G^{\prime}$ of order 3, then $G=G^{\prime} \rtimes\langle h\rangle$ by arguing as in the proof of Proposition 3.6. Let $\theta \in \mathbb{F}_{q^{2}}$ with $\theta^{3}=\xi$, and define $\alpha_{\theta}:(X, Y, T) \mapsto\left(\theta X, \theta^{i} Y, T\right)$.

Let \bar{G}^{\prime} be the cyclic group generated by α_{θ}, and let \bar{G} be the group generated by \bar{G}^{\prime} and h; then $\bar{G}=\bar{G}^{\prime} \rtimes\langle h\rangle$. Moreover, $[\bar{G}: G]=\left[\bar{G}^{\prime}: G^{\prime}\right]=3$; hence, by Lemma 3.4, G^{\prime} is normal in \bar{G}^{\prime} and G is normal in \bar{G}. We can repeat the same argument used in the proof of Proposition 3.6, after replacing N with G^{\prime} and \bar{N} with \bar{G}^{\prime}; then $\left|\mathcal{H}_{q} / G\left(\mathbb{F}_{q^{2}}\right)\right| \equiv$ $1,2(\bmod 3)$, while $\left|\mathcal{C}_{2^{n}}\right| \equiv 0(\bmod 3)$. This yields the thesis.

If there is no $h \in G \backslash G^{\prime}$ of order 3 , then G is made of diagonal matrices, since G acts on \mathcal{T}. By Theorem 2.2, G is cyclic; a generator of G has the form $\alpha_{\theta}:(X, Y, T) \mapsto$ $\left(\theta X, \theta^{j} Y, T\right)$, with θ a primitive $(q+1) / 3$-th root of unity and j coprime with $(q+1) / 3$. Let \bar{G} be the group generated by $\alpha_{\zeta}:(X, Y, T) \mapsto\left(\zeta X, \zeta^{i} Y, T\right)$, where $\zeta \in \mathbb{F}_{q^{2}}$ satisfies $\zeta^{3}=\theta$. Then G is a normal subgroup of \bar{G} of index 3 , and \bar{G} acts semiregularly on \mathcal{H}_{q}. Corollary 3.3 yields the thesis.

Proposition 3.8. Let $G \leq \operatorname{PGU}(3, q), G \nsubseteq \operatorname{PSU}(3, q)$. If a maximal subgroup of $\mathrm{PSU}(3, q)$ containing $G \cap \operatorname{PSU}(3, q)$ is of type iii) in Theorem 2.1, then $\mathcal{C}_{2^{n}} \not \not \mathcal{H}_{q} / G$.

Proof. As in the proof of Proposition 3.7, $G^{\prime}=G \cap \operatorname{PSU}(3, q)$ is normal in G of index 3. Arguing as in the proof of Proposition 3.6, it can be shown that there are two possible cases for $G^{\prime}:(\mathrm{A}) G^{\prime}$ is cyclic and generated by $\alpha_{\xi}:(X, Y, T) \mapsto\left(\xi X, \xi^{i} Y, T\right)$, with ξ a primitive $(q+1) / 9$-th root of unity and i coprime with $(q+1) / 9$; (B) $G^{\prime}=\left\langle\alpha_{\eta}\right\rangle \rtimes\langle h\rangle$, where $\alpha_{\eta}:(X, Y, T) \mapsto\left(\eta X, \eta^{i} Y, T\right)$ with η a primitive $(q+1) / 27$-th root of unity and i coprime with $(q+1) / 27$, and h is an element of order 3 acting with a single orbit on the fundamental triangle \mathcal{T}, hence having the form (2).
(A) Since G^{\prime} is normal in G, we have that G acts on \mathcal{T}. If G fixes \mathcal{T} pointwise, then the elements of G are diagonal matrices whose diagonal coefficients are $(q+1) / 3$-th roots of unity, hence cubes in $\mathbb{F}_{q^{2}}$; therefore $G \leq \operatorname{PSU}(3, q)$, against the hypothesis. Then $G=G^{\prime} \rtimes\langle h\rangle$, where $h \in G \backslash G^{\prime}$ has order 3 . Let $\theta \in \mathbb{F}_{q^{2}}$ with $\theta^{3}=\xi$, and let \bar{G} be the group generated by $\alpha_{\theta}:(X, Y, T) \mapsto\left(\theta X, \theta^{i} Y, T\right)$ and h; then $\bar{G}=\left\langle\alpha_{\theta}\right\rangle \rtimes\langle h\rangle$. By arguing as in the proof of Proposition 3.6, we have that $\left|\mathcal{H}_{q} / G\left(\mathbb{F}_{q^{2}}\right)\right| \equiv 1,2(\bmod 3)$, while $\left|\mathcal{C}_{2^{n}}\right| \equiv 0(\bmod 3)$. This yields the thesis.
(B) Any element of $G^{\prime} \backslash\left\langle\alpha_{\eta}\right\rangle$ has order 3; in fact, it is the product of a diagonal matrix with a matrix of the form (2). Thus every element of $G^{\prime} \backslash\left\langle\alpha_{\eta}\right\rangle$ has the form (3), which has order 3 . Therefore, $\left\langle\alpha_{\eta}\right\rangle$ is the only cyclic subgroup of order $(q+1) / 27$ in G^{\prime}; thus $\left\langle\alpha_{\eta}\right\rangle$ is characteristic in G^{\prime}, and hence normal in G. Therefore, G acts on the set of points which are fixed by $\left\langle\alpha_{\eta}\right\rangle$, i.e. the fundamental points. Let $G^{\prime \prime}$ be the subgroup of G fixing \mathcal{T} pointwise. The group $G^{\prime \prime}$ is abelian, as it is made of diagonal matrices; moreover, $G^{\prime \prime}$ is normal in G of index 3 , and $G=G^{\prime \prime} \rtimes\langle h\rangle$. By the primary decomposition of abelian groups, either $G^{\prime \prime}=\left\langle\alpha_{\xi}\right\rangle$ with $\xi^{3}=\eta$ and $\alpha_{\xi}:(X, Y, T) \mapsto\left(\xi X, \xi^{i} Y, T\right)$, or $G^{\prime \prime}=\left\langle\alpha_{\eta}\right\rangle \times\langle k\rangle$, where k has order 3. In the latter case $\operatorname{det}(k)^{3}=1$, as k^{3} is the identity element; hence, $\operatorname{det}(k)$ is a cube in $\mathbb{F}_{q^{2}}$, and $k \in G \cap \operatorname{PSU}(3, q)=G^{\prime}$. Therefore $G^{\prime}=G^{\prime \prime}$, contradicting $h \in G^{\prime} \backslash G^{\prime \prime}$.

Then $G^{\prime \prime}=\left\langle\alpha_{\xi}\right\rangle$ and $G=\left\langle\alpha_{\xi}\right\rangle \rtimes\langle h\rangle$. Let $\bar{G}=\left\langle\alpha_{\theta}\right\rangle \rtimes\langle h\rangle$, with $\theta^{3}=\xi$ and $\alpha_{\theta}:(X, Y, T) \mapsto\left(\theta X, \theta^{i} Y, T\right)$. We can argue as in the proof of Proposition 3.6, after replacing N with $\left\langle\alpha_{\xi}\right\rangle$ and \bar{N} with $\left\langle\alpha_{\theta}\right\rangle$; we get that $\left|\mathcal{H}_{q} / G\left(\mathbb{F}_{q^{2}}\right)\right| \equiv 1,2(\bmod 3)$, while $\left|\mathcal{C}_{2^{n}}\left(\mathbb{F}_{q^{2}}\right)\right| \equiv 0(\bmod 3)$. This yields the thesis.

Lemma 3.9. Let $G \leq \operatorname{PSU}(3, q)$. If a maximal subgroup M of $\operatorname{PSU}(3, q)$ containing G is neither of type ii) nor of type iii) in Theorem 2.1, then M is of type xiv); that is, $G \nsubseteq \operatorname{PSU}\left(3,2^{n / 3}\right)$ and M contains $\operatorname{PSU}\left(3,2^{n / 3}\right)$ as a normal subgroup of index 3 .

Proof. With the notations of Theorem 2.1, we can exclude cases $i i$) and $i i i$) by hypothesis, case i) by the semiregularity of G, and cases $i v$) and $x v$) since $|G|$ does not divide either $3\left(q^{2}-q+1\right)$ or 36 . The thesis will follow if we exclude case $\left.x i i i\right)$. Assume by contradiction that M is of type xiii); we apply Theorem 2.1 to $M=\operatorname{PSU}\left(3,2^{m}\right)$, where $n=p^{\prime} m$ with p^{\prime} an odd prime. Note that, since $n \geq 5$ is odd, either $p^{\prime} \geq 5$, or $p^{\prime}=3$ and $m \geq 3$.
 G, M is of type $i i)$ in the list of maximal subgroups of $\operatorname{PSU}(3, q)$, against the hypothesis.

Case $i i)$. The order $\left(2^{p^{\prime} m}+1\right) / 3$ of G divides $2^{m}\left(2^{m}-1\right)\left(2^{m}+1\right)^{2} / 3$, which is impossible.

Case $i i i$). The order of G divides $2\left(2^{m}+1\right)^{2}$, which is impossible.
Case $i v$). The order of G divides $2^{2 m}-2^{m}+1$, which is impossible.
Case $x i i i)$. G is contained in $\operatorname{PSU}\left(3,2^{r}\right)$, where m / r is an odd prime; hence $n / r \geq 9$. This is impossible, since the order of G is greater than the order of any maximal subgroup of $\operatorname{PSU}\left(3,2^{r}\right)$.

Case xiv). G is contained in a group K containing $\operatorname{PSU}\left(3,2^{r}\right)$ as a normal subgroup of index 3 , where $r=m / 3$. If H is a maximal subgroup of K and $H \neq \operatorname{PSU}\left(3,2^{r}\right)$, then $H \cap \operatorname{PSU}\left(3,2^{r}\right)$ has index 3 in H; therefore, $|H| / 3$ divides the order of a maximal subgroup of $\operatorname{PSU}\left(3,2^{r}\right)$. This yields a contradiction, since, by direct computation, the order of G does not divide three times the order of any maximal subgroup of $\operatorname{PSU}\left(3,2^{r}\right)$.

Case $x v$). The order of G divides 36 , which is impossible.

Proposition 3.10. Let $G \leq \operatorname{PSU}(3, q)$. If a maximal subgroup M of $\operatorname{PSU}(3, q)$ containing G is of type xiv) in Theorem 2.1, then $\mathcal{C}_{2^{n}} \not \equiv \mathcal{H}_{q} / G$.

Proof. The subgroup M contains $\operatorname{PSU}\left(3,2^{m}\right)$ as a normal subgroup of order 3, where $m=n / 3 \geq 3$. As in the proof of Lemma 3.9, $|G|$ divides three times the order of a maximal subgroup of $\operatorname{PSU}\left(3,2^{m}\right)$. We apply Theorem 2.1 to $\operatorname{PSU}\left(3,2^{m}\right)$.

Case i). The order $\left(2^{3 m}+1\right) / 3$ of G divides $2^{3 m}\left(2^{2 m}-1\right)$, which is impossible.
Case $i i)$. The order of G divides $2^{m}\left(2^{m}+1\right)^{2}\left(2^{m}-1\right)$, which is impossible.
Case $i i i)$. The order of G divides $6\left(2^{m}+1\right)^{2}$, which is impossible.
Case $i v)$. The order of G divides $3\left(2^{2 m}-2^{m}+1\right)$; this happens if and only if $m=3$.

Cases xiii) and $x i v)$. The order of G divides either $3 \cdot\left|P S U\left(3,2^{r}\right)\right|$ or $3 \cdot\left|P G U\left(3,2^{r}\right)\right|$, where m / r is an odd prime. This is impossible, since $|G|$ exceeds three times the order of any subgroup of $\operatorname{PGU}\left(3,2^{r}\right)$.

Case $x v$). The order of G divides 36 , which is impossible.
Therefore, we have to consider only case $i v$), with $m=3$. In this case, G has order 171 and $G^{\prime \prime}=G \cap \operatorname{PSU}\left(3,2^{m}\right)$ has order $|G| / 3=57$; moreover, $G^{\prime \prime}$ coincides with the normalizer in $\operatorname{PSU}\left(3,2^{m}\right)$ of a cyclic Singer group S. The fixed points of S are three non-collinear points P_{1}, P_{2}, P_{3} whose coordinate are in a cubic extension of $\mathbb{F}_{2^{2 m}}$, hence in $\mathbb{F}_{2^{2 n}}$. Since G is semiregular, we have that $P_{i} \notin \mathcal{H}_{q}$; therefore, $\mathcal{T}=\left\{P_{1}, P_{2}, P_{3}\right\}$ is a self-polar triangle with respect to \mathcal{H}_{q}. Since G acts on \mathcal{T}, the thesis follows as in the proof of Proposition 3.8, after replacing q with 2^{m} and G^{\prime} with $G^{\prime \prime}$.

Theorem 3.11. $\mathcal{C}_{2^{n}}$ is not a Galois subcover of the Hermitian curve \mathcal{H}_{q}.
Proof. Suppose $\mathcal{C}_{2^{n}} \cong \mathcal{H}_{q} / G$. Then $G \nsubseteq \operatorname{PSU}(3, q)$, by Propositions 3.5, 3.6, 3.10 and Lemma 3.9. Hence, $G^{\prime}=G \cap \operatorname{PSU}(3, q)$ has index 3 in G. After replacing G with G^{\prime}, we can repeat the proofs of Propositions 3.7 and 3.8, the proof of Lemma 3.9, and the first part of the proof of Proposition 3.10. Then $n=9$, and any maximal subgroup M of $\operatorname{PSU}\left(3,2^{9}\right)$ containing G^{\prime} contains also $\operatorname{PSU}\left(3,2^{3}\right)$ as a normal subgroup of index 3 . Moreover, $G^{\prime \prime}=G^{\prime} \cap \operatorname{PSU}\left(3,2^{3}\right)$ is contained in the normalizer N^{\prime} of a cyclic Singer group with $\left|N^{\prime}\right|=57$.

If $G^{\prime} \leq \operatorname{PSU}\left(3,2^{3}\right)$, then we argue as in the proof of Proposition 3.10, after replacing G with G^{\prime}. In this way we get a contradiction.

If $G^{\prime} \nsubseteq \operatorname{PSU}\left(3,2^{3}\right)$, then $G^{\prime \prime}=G^{\prime} \cap \operatorname{PSU}\left(3,2^{3}\right)$ has order $\left|G^{\prime}\right| / 3=19$. By Sylow theorems, $G^{\prime \prime}$ is the only Sylow 19-subgroup of G^{\prime}; hence, $G^{\prime \prime}$ is a cyclic Singer group. Therefore $G^{\prime \prime}$ fixes a triangle \mathcal{T} with coordinates in the cubic extension $\mathbb{F}_{2^{18}}$ of $\mathbb{F}_{2^{6}}$, and \mathcal{T} is self-polar with respect to $\mathcal{H}_{2^{9}}$. Since G^{\prime} acts on \mathcal{T}, the thesis follows from Proposition 3.8.

4. \mathcal{X}_{q} is not Galois-covered by $\mathcal{H}_{q^{3}}$, for any $q>3$

Throughout the section, let $q>3$ be a power of a prime p. We rely on the following bound by Duursma and Mak.

Proposition 4.1. ([8, Thm. 1.3]) If there exists a Galois-covering $\mathcal{H}_{q^{3}} \rightarrow \mathcal{X}_{q}$ of degree d, then

$$
q^{2}+q \leq d \leq q^{2}+q+2
$$

Therefore, we have to exclude three possible values of d.
Proposition 4.2. There is no Galois-covering $\varphi: \mathcal{H}_{q^{3}} \rightarrow \mathcal{X}_{q}$ of degree $q^{2}+q+2$.

Proof. If such φ existed, then $q^{2}+q+2$ would divide the order $q^{9}\left(q^{9}+1\right)\left(q^{6}-1\right)$ of $\operatorname{PGU}\left(3, q^{3}\right)$, hence $q^{2}+q+2$ would divide $2128 q-1568$. But this is impossible for any prime power greater than 3 .

Now we consider the case $d=q^{2}+q+1$.
Lemma 4.3. Let $G \leq \operatorname{PGU}\left(3, q^{3}\right)$ with $|G|=q^{2}+q+1$. Then $G \leq \operatorname{PSU}\left(3, q^{3}\right)$.
Proof. If $\operatorname{PSU}\left(3, q^{3}\right) \neq \operatorname{PGU}\left(3, q^{3}\right)$, then $\operatorname{PSU}\left(3, q^{3}\right)$ has index 3 in $\operatorname{PGU}\left(3, q^{3}\right)$ and 3 divides $q^{3}+1$; hence, 3 does not divide $|G|$. Suppose $G \nsubseteq \operatorname{PSU}\left(3, q^{3}\right)$; then $\operatorname{PGU}\left(3, q^{3}\right)=$ $G \cdot \operatorname{PSU}\left(3, q^{3}\right)$, and G has a subgroup $G \cap \operatorname{PSU}\left(3, q^{3}\right)$ of index 3 , which is impossible.

Proposition 4.4. There is no Galois-covering $\varphi: \mathcal{H}_{q^{3}} \rightarrow \mathcal{X}_{q}$ of degree $q^{2}+q+1$.
Proof. Assume by contradiction that such φ exists. Then $\mathcal{X}_{q} \cong \mathcal{H}_{q^{3}} / G$, with $G \leq$ $\operatorname{PSU}\left(3, q^{3}\right)$ by Lemma 4.3 and Theorem 2.1 can be applied.

Case i). Let $\mathcal{H}_{q^{3}}: Y^{q^{3}+1}=X^{q^{3}}+X$. Up to conjugation, G fixes the ideal point P_{∞} of $\mathcal{H}_{q^{3}}$. By [15, Section 4], the stabilizer S of P_{∞} in $\operatorname{PGU}\left(3, q^{3}\right)$ has order $q^{9}\left(q^{6}-1\right)$. The group S is the semidirect product $Q \rtimes H$, where Q is the unique Sylow p-subgroup of S, and H is a cyclic group generated by $\alpha_{a}:(X, Y, T) \mapsto\left(a^{q^{3}+1} X, a Y, T\right)$, where a is a primitive $\left(q^{6}-1\right)$-th root of unity; moreover, H fixes two $\mathbb{F}_{q^{3}}$-rational points $P_{\infty}, O \in \mathcal{H}_{q^{3}}$ and is semiregular on $\mathcal{H}_{q^{3}} \backslash\left\{P_{\infty}, O\right\}$. We have $G \subset H$, because Q is normal in $S,|Q|$ and $|H|$ are coprime, and $|G|$ divides $|H|$. In particular, G is generated by $\alpha_{b}:(X, Y, T) \mapsto\left(b^{q^{3}+1} X, b Y, T\right)$, with $b=a^{\left(q^{3}+1\right)(q-1)}$. Let \bar{G} be the group generated by $\alpha_{c}:(X, Y, T) \mapsto\left(c^{q^{3}+1} X, c Y, T\right)$, with $c=a^{q-1}$; then G is normal in \bar{G} of index $q^{3}+1$. The group \bar{G} / G fixes two $\mathbb{F}_{q^{6}}$-rational points of $\mathcal{H}_{q^{3}} / G$ and acts semiregularly on the other points of $\mathcal{H}_{q^{3}} / G$. Therefore, the number of $\mathbb{F}_{q^{6}}$-rational points of $\mathcal{H}_{q^{3}} / G$ is congruent to 2 modulo $q^{3}+1$. On the other hand, the number of $\mathbb{F}_{q^{6}}$-rational points of \mathcal{X}_{q} is $q^{7}-q^{5}+q^{4}+1$, which is congruent to $q^{2}+1$ modulo $q^{3}+1$.

Case ii). Let $\mathcal{H}_{q^{3}}: X^{q^{3}+1}+Y^{q^{3}+1}+1=0$. Up to conjugation, G fixes the affine point $(0,0)$ and the line at infinity $\ell: T=0$. The action of G on ℓ is faithful. In fact, if $g \in G$ fixes ℓ pointwise, then g is a homology of the form $g:(X, Y, T) \mapsto(X, Y, \lambda T)$, whose order divides $q^{3}+1$; since $|G|$ and $q^{3}+1$ are coprime, g is the identity element. Therefore, as in the proof of Proposition $3.5, G$ is isomorphic to a subgroup of PGL $\left(2, q^{6}\right)$; by Theorem 2.2, G is cyclic. Moreover, since $|G|$ divides $q^{6}-1, G$ has two fixed points $P_{1}, P_{2} \in \ell$ and acts semiregularly on $\ell \backslash\left\{P_{1}, P_{2}\right\}$; see [24, Chapt. II, Thm. 8.3]. As $\left|\ell \cap \mathcal{H}_{q^{3}}\right|$ is congruent to 2 modulo $|G|$, we have that $P_{1}, P_{2} \in \mathcal{H}_{q^{3}}$. Now the same argument used in case i) yields a contradiction.

Cases $i i i$) and $i v$). The order of G does not divide the order of these maximal subgroups.

Case v). The group G acts on the $q^{6}+1 \mathbb{F}_{q^{6}}$-rational points of a conic \mathcal{C} defined over $\mathbb{F}_{q^{6}}$. As in case $\left.i i\right), G$ is isomorphic to a cyclic subgroup Γ of $\operatorname{PGL}\left(2, q^{6}\right)$ acting
on a line ℓ with no short orbits apart from two fixed $\mathbb{F}_{q^{6}}$-rational points. The action of G on \mathcal{C} is equivalent to the action of Γ on ℓ, see [34, Chapt. VIII, Thm. 15]; hence G has no short orbits on \mathcal{C} apart from two fixed $\mathbb{F}_{q^{6}}$-rational points P_{1}, P_{2}. If G has a fixed $\mathbb{F}_{q^{6}}$-point on $\mathcal{H}_{q^{3}}$, then we get a contradiction by arguing as in case i). Otherwise, $P_{1}, P_{2} \notin \mathcal{H}_{q^{3}}$; by [30, Par. 2] and [22, page 141], G fixes a third $\mathbb{F}_{q^{6}}$-rational point $P_{3} \in \mathcal{H}_{q^{3}}$, and $\mathcal{T}=\left\{P_{1}, P_{2}, P_{3}\right\}$ is a self-polar triangle. Let $\mathcal{H}_{q^{3}}: X^{q^{3}+1}+Y^{q^{3}+1}+1=0 ;$ up to conjugation, \mathcal{T} is the fundamental triangle and a generator of G has the form $g:(X, Y, T) \mapsto(\lambda X, \mu Y, T)$. Then the order $|G|$ of g divides $q^{3}+1$, which is impossible.

Cases viii) to $x i i$), and case $x v$). The order of G does not divide the order of these maximal subgroups.

Cases vi), vii), xiii), and xiv). If K is a group containing $\operatorname{PSU}\left(3,2^{m}\right)$ as a normal subgroup of index 3 , then the order of any maximal subgroup of K divides three times the order of a maximal subgroup of $\operatorname{PSU}\left(3,2^{m}\right)$. Hence, by applying Theorem 2.1 to $\operatorname{PSU}\left(3, p^{m}\right)$, it can be checked that $|G|$ does not divide either the order of any maximal subgroup of $\operatorname{PSU}\left(3, p^{m}\right)$, or the order of any maximal subgroup of K.

Lemma 4.5. Let $G \leq \operatorname{PGU}\left(3, q^{3}\right)$ with $|G|=q(q+1)$. Then the number of Sylow p-subgroups of G is either 1 or $q+1$.

Proof. Let Q_{1}, \ldots, Q_{n} be the Sylow p-subgroups of G. By [23, Thm. 12.25 (i), (ii)], for each $i=1, \ldots, n$ there is a unique point $P_{i} \in \mathcal{H}_{q^{3}}$ fixed by Q_{i}, P_{i} is $\mathbb{F}_{q^{6} \text {-rational, and }}$ $P_{i} \neq P_{j}$ for $i \neq j$. If $n>1$, then G has no fixed points; hence, the length of the orbit $\mathcal{O}_{P_{1}}$ of P_{1} under G is at least $q+1$, since Q_{1} is semiregular on $\mathcal{H}_{q^{3}} \backslash\left\{P_{1}\right\}$. On the other hand, the stabilizer of P_{1} in G has length at least q, as it contains Q_{1}. Therefore $\left|\mathcal{O}_{P_{1}}\right|=q+1$ by the orbit-stabilizer theorem. If $P \in \mathcal{O}_{P_{1}}$, then the stabilizer of P in G has order q, hence $P=P_{i}$ for some $i \in\{2, \ldots, n\}$. Then $n=q+1$.

Proposition 4.6. Let $G \leq \operatorname{PGU}\left(3, q^{3}\right)$ with $|G|=q(q+1)$. If G has a unique Sylow p-subgroup Q, then $\mathcal{X}_{q} \not \not \mathcal{H}_{q^{3}} / G$.

Proof. Let $\mathcal{H}_{q^{3}}: Y^{q^{3}+1}=X^{q^{3}}+X$. Since Q is normal in G, we have that G fixes the unique fixed point of Q on $\mathcal{H}_{q^{3}}$, which can be assumed to be the ideal point P_{∞}. The stabilizer of P_{∞} in $\operatorname{PGU}\left(3, q^{3}\right)$ is solvable; hence, by Hall's theorem [21, Theorems 2.1-2.4], we have that, up to conjugation, $G=Q \rtimes\left\langle\alpha_{\lambda}\right\rangle$, where $\alpha_{\lambda}:(X, Y, T) \mapsto$ $(X, \lambda Y, T)$ and λ is a primitive $(q+1)$-th root of unity. The genus g of $\mathcal{H}_{q^{3}} / G$ is computed in [15, Thm. 4.4]. In the terminology of [15, Thm. 4.4], $g=g\left(\mathcal{X}_{q}\right)$ implies $q=p^{w}$, that is, the elements of Q are involutions of the form $\beta_{\mu}:(X, Y, T) \mapsto(X+\mu T, Y, T)$, with $\mu^{q^{3}}+\mu=0$. Then there exists a p-linearized polynomial $L \in \mathbb{F}_{q^{6}}[X]$ of degree q dividing $X^{q^{3}}+X$, such that the set of roots of L coincides with $\left\{\mu \in \mathbb{F}_{q^{6}} \mid \beta_{\mu} \in Q\right\}$. By [27, Thm. 3.62], there is also a p-linearized polynomial $F \in \mathbb{F}_{q^{6}}[X]$ of degree q^{2} dividing $X^{q^{3}}+X$, such that $F(L(X))=X^{q^{3}}+X$. Then it is easy to see that the quotient curve $\mathcal{H}_{q^{3}} / G$ is $\mathbb{F}_{q^{6}}$-birationally equivalent to the plane curve \mathcal{C} with equation $V^{q^{2}-q+1}=F(U)$.
 case $F(U)$ cannot be a divisor of $U^{q^{3}}+U$, which is a contradiction.

By [23, Thm. 12.11], the ideal points $R_{\infty} \in \mathcal{X}_{q}$ and $S_{\infty} \in \mathcal{C}$ are the unique fixed points of the automorphism groups $\operatorname{Aut}\left(\mathcal{X}_{q}\right)$ and $\operatorname{Aut}(\mathcal{C})$, respectively. Hence, $\psi\left(S_{\infty}\right)=R_{\infty}$. Also, the coordinate functions have pole divisors

$$
\begin{aligned}
& \operatorname{div}(x)_{\infty}=\left(q^{2}-q+1\right) R_{\infty}, \operatorname{div}(y)_{\infty}=q^{2} R_{\infty} \\
& \operatorname{div}(u)_{\infty}=\left(q^{2}-q+1\right) S_{\infty}, \operatorname{div}(v)_{\infty}=q^{2} S_{\infty}
\end{aligned}
$$

and the Weierstrass semigroups at the ideal points are $H\left(R_{\infty}\right)=H\left(S_{\infty}\right)=\left\langle q^{2}-q+\right.$ $\left.1, q^{2}\right\rangle$ (see [23, Lemmata 12.1, 12.2]). Then $\{1, u\}$ is a basis of the Riemann-Roch space $\mathcal{L}\left(\left(q^{2}-q+1\right) R_{\infty}\right)$ and $\{1, u, v\}$ is a basis of $\mathcal{L}\left(q^{2} R_{\infty}\right)$. Therefore, there exist constants $a, b, c, d, e \in \mathbb{F}_{q^{6}}, a, d \neq 0$, such that $\psi^{*}(x)=a u+b$ and $\psi^{*}(y)=c u+d v+e$, where $\psi^{*}: \mathbb{F}_{q^{6}}\left(\mathcal{X}_{q}\right) \rightarrow \mathbb{F}_{q^{6}}(\mathcal{C})$ is the pull-back of ψ; equivalently, $\psi:(U, V, T) \mapsto(a U+b, c U+$ $d V+e, T)$.

Then the polynomial identity

$$
(a U+b)^{q^{2}}-(a U+b)-(c U+d V+e)^{q^{2}-q+1}=k\left(F(U)-V^{q^{2}-q+1}\right)
$$

holds for some non-zero $k \in \overline{\mathbb{F}}_{q^{6}}$. By comparing the coefficients we get $c=e=0, b \in \mathbb{F}_{q^{2}}$, and $k=d^{q^{2}-q+1}$; this implies

$$
F(U)=k^{-1} a^{q^{2}} U^{q^{2}}-k^{-1} a U .
$$

It is easily checked that the conventional p-associate of the p-linearized polynomial $F(X)$ is not a divisor of the conventional p-associate of $U^{q^{3}}+U$, hence $F(U)$ is not a divisor of $U^{q^{3}}+U$ by [27, Thm. 3.62].

Lemma 4.7. Let $G \leq \operatorname{PGU}\left(3, q^{3}\right)$ with $|G|=q(q+1)$. If G has $q+1$ distinct Sylow p-subgroup Q_{1}, \ldots, Q_{q+1}, then $G \cong\left(\mathbb{Z}_{p^{\prime}}\right)^{s} \rtimes Q_{1}$, where p^{\prime} is a prime and $\left(p^{\prime}\right)^{s}=q+1$.

Proof. By the proof of Lemma 4.5, the points P_{1}, \ldots, P_{q+1}, fixed by Q_{1}, \ldots, Q_{q+1}, respectively, form a single orbit \mathcal{O} under the action of G. By Burnside's Lemma [2, Chapt. VIII, Par. 118], G is sharply 2-transitive on \mathcal{O}. Then, by [20, Thm. 20.7.1], G is isomorphic to the group of affine transformations of a near-field F; also, G has a regular normal subgroup N, and hence $G=N \rtimes Q_{1}$. The order f of F satisfies $q(q+1)=(f-1) f$, hence $f=q+1$. This implies that F cannot be one of the seven exceptional near-fields listed in [35] and then F is a Dickson near-field; see [20, Thm. 20.7.2]. In particular, N is isomorphic to the additive group $\left(\mathbb{Z}_{p^{\prime}}\right)^{s}$ of a finite field.

Proposition 4.8. Let $G \leq \operatorname{PGU}\left(3, q^{3}\right)$ with $|G|=q(q+1)$. If G has $q+1$ distinct Sylow p-subgroup Q_{1}, \ldots, Q_{q+1}, then $\mathcal{X}_{q} \not \not \mathcal{H}_{q^{3}} / G$.

Proof. Suppose q is odd. Then all involutions of $\operatorname{PGU}\left(3, q^{3}\right)$ are conjugate, and they are homologies of $\operatorname{PG}\left(2, q^{6}\right)$; see [25, Lemma 2.2]. The maximum number of pairwise commuting involutions is 3 ; in fact, two homologies commute if and only if the center of one homology lies on the axis of the other (see [6, Thm. 3.1.12]). Then $q+1=4$ by Lemma 4.7, contradicting $q>3$.

Suppose q is even, and $\mathcal{X}_{q} \cong \mathcal{H}_{q^{3}} / G$. The group Q_{1} is isomorphic to the multiplicative group of F, hence Q_{1} is metacyclic; see e.g. [3, Ex. 1.19]. Also, Q_{1} has exponent 2 or 4 by [25, Lemma 2.1]. Therefore, $q \in\{2,4,8,16\}$. The case $q=2$ is excluded. If $q=16$, then F has prime order 17 and F is a field; hence Q_{1} has exponent 16, a contradiction.

For $q \in\{4,8\}$ we apply the Riemann-Hurwitz formula [31, Thm. 3.4.13] to the covering $\mathcal{H}_{q^{3}} \rightarrow \mathcal{X}_{q}$ to get a contradiction on the degree $\Delta=\left(2 g\left(\mathcal{H}_{q^{3}}\right)-2\right)-|G|\left(2 g\left(\mathcal{X}_{q}\right)-2\right)$ of the different divisor. By [31, Thm. 3.8.7]

$$
\Delta=\sum_{\sigma \in G \backslash\{i d\}} i(\sigma)
$$

where $i(\sigma) \geq 0$ satisfies the following conditions.

- If σ has order 2 , then $i(\sigma)=q^{3}+2$; if σ has order 4 , then $i(\sigma)=2$ (see [31, Eq. (2.12)]).
- If σ has odd order, then $i(\sigma)$ equals the number of fixed points of σ on $\mathcal{H}_{q^{3}}$, see [31, Cor. 3.5.5]; also, by [22, pp. 141-142], either σ has exactly 3 fixed points or σ is a homology. In the former case $i(\sigma) \leq 3$, in the latter $i(\sigma)=q^{3}+1$.

If $q=4$, then $\Delta=470$ and $G=\mathbb{Z}_{5} \rtimes Q_{1}$. If $Q_{1} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then G has 15 involutions, whose contributions to Δ sum up to $990>\Delta$. Then $Q_{1} \cong \mathbb{Z}_{4}$, and the contributions of the Q_{i} 's to Δ sum up to $5 \cdot 66+10 \cdot 2=350$. The remaining four non-trivial elements of G are generators of \mathbb{Z}_{5}; then either all of them are homologies, or all of them fix 3 points. In both cases, their contribution cannot be equal to $120=\Delta-350$.

Let $q=8$, hence $\Delta=7758$ and $G=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{1}$. If Q_{1} has more than one involution, then the involutions of G contribute to Δ for at least $18 \cdot 514>\Delta$. Hence, Q_{1} is the quaternion group, and the sum of Q_{i} 's contributions to Δ is $9 \cdot 514+54 \cdot 2=4734$. The contribution to Δ of the elements of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is either 513 or less than 4 ; hence, it cannot sum up to $3024=\Delta-4734$.

By Lemma 4.5 and Propositions 4.6 and 4.8 , the following result follows.

Proposition 4.9. There is no Galois-covering $\mathcal{H}_{q^{3}} \rightarrow \mathcal{X}_{q}$ of degree $q^{2}+q$.

Finally, Theorem 1.2 follows from Propositions 4.1, 4.2, 4.4, and 4.9.

Acknowledgments

This research was supported by the Italian Ministry MIUR, Strutture Geometriche, Combinatoria e loro Applicazioni, PRIN 2012 prot. 2012XZE22K, and by GNSAGA of the Italian INdAM .

References

[1] M. Abdón, J. Bezerra, L. Quoos, Further examples of maximal curves, J. Pure Appl. Algebra 213 (6) (2009) 1192-1196.
[2] W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, Cambridge, 1897.
[3] P.J. Cameron, Permutation Groups, Cambridge University Press, 1999.
[4] A. Cossidente, G. Korchmáros, F. Torres, On curves covered by the Hermitian curve, J. Algebra 216 (1) (1999) 56-76.
[5] A. Cossidente, G. Korchmáros, F. Torres, Curves of large genus covered by the Hermitian curve, Commun. Algebra 28 (10) (2000) 4707-4728.
[6] P. Dembowski, Finite Geometries, Springer, Berlin, 1968.
[7] L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1902.
[8] I. Duursma, K.-H. Mak, On maximal curves which are not Galois subcovers of the Hermitian curve, Bull. Braz. Math. Soc. (N. S.) 43 (3) (2012) 453-465.
[9] R. Fuhrmann, F. Torres, On Weierstrass points and optimal curves, Rend. Circ. Mat. Palermo Suppl. 51 (1998) 25-46 (Recent Progress in Geometry, Ballico E., Korchmáros G. (Eds.)).
[10] A. Garcia, Curves over finite fields attaining the Hasse-Weil upper bound, in: European Congress of Mathematics, vol. II, Barcellona, 2000, in: Prog. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 199-205.
[11] A. Garcia, On curves with many rational points over finite fields, in: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, Springer, Berlin, 2002, pp. 152-163.
[12] A. Garcia, C. Güneri, H. Stichtenoth, A generalization of the Giulietti-Korchmáros maximal curve, Adv. Geom. 10 (3) (2010) 427-434.
[13] A. Garcia, H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inf. Theory 41 (1995) 1548-1563.
[14] A. Garcia, H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, Bull. Braz. Math. Soc. (N. S.) 37 (1) (2006) 139-152.
[15] A. Garcia, H. Stichtenoth, C.P. Xing, On subfields of the Hermitian function field, Compos. Math. 120 (2000) 137-170.
[16] A. Garcia, F. Torres, On unramified coverings of maximal curves, in: Proceedings of AGCT-10 2005, in: Semin. Congr., vol. 21, 2010, pp. 35-42.
[17] M. Giulietti, G. Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (1) (2009) 229-245.
[18] C. Güneri, M. Özdemir, H. Stichtenoth, The automorphism group of the generalized GiuliettiKorchmáros function field, Adv. Geom. 13 (2) (2013) 369-380.
[19] R. Guralnick, B. Malmskog, R. Pries, The automorphism of a family of maximal curves, J. Algebra 361 (2012) 92-106.
[20] M. Hall, The Theory of Groups, Macmillan, New York, 1959.
[21] P. Hall, A note on soluble groups, J. Lond. Math. Soc. 3 (1928) 98-105.
[22] R.W. Hartley, Determination of the ternary collineation group whose coefficients lie in the $G F\left(2^{n}\right)$, Ann. of Math. Second Series 27 (2) (1925) 140-158.
[23] J.W.P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves over a Finite Field, Princeton Ser. Appl. Math., Princeton, 2008.
[24] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., vol. 134, Springer, Berlin, 1967.
[25] W.N. Kantor, M.E. O'Nan, G.M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic, J. Algebra 21 (1972) 17-50.
[26] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305 (Série I) (1987) 729-732.
[27] R. Lidl, H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1986.
[28] I.D. Macdonald, The Theory of Groups, Oxford University Press, Oxford, 1968.
[29] K.-H. Mak, On congruence function fields with many rational points, PhD Thesis. Available at www.ideals.illinois.edu.
[30] H.H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Am. Math. Soc. 12 (2) (1911) 207-242.
[31] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd edn., Grad. Texts Math., vol. 254, Springer, Berlin, 2009.
[32] G. van der Geer, Curves over finite fields and codes, in: European Congress of Mathematics, vol. II, Barcellona, 2000, in: Prog. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 225-238.
[33] G. van der Geer, Coding theory and algebraic curves over finite fields: a survey and questions, in: Applications of Algebraic Geometry to Coding Theory, Physics and Computation, in: NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer, Dordrecht, 2001, pp. 139-159.
[34] O. Veblen, J.W. Young, Projective Geometry, The Atheneum Press, Boston, 1910.
[35] H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Semin. Univ. Hamb. 11 (1936) 132-145.

[^0]: * Corresponding author.

 E-mail addresses: massimo.giulietti@unipg.it (M. Giulietti), maria.montanucci@unibas.it (M. Montanucci), gzini@math.unifi.it (G. Zini).

