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1. Introduction

Let Fq2 be the finite field with q2 elements, where q is a power of a prime p, and 
let X be an Fq2-rational curve, that is a projective, absolutely irreducible, non-singular 
algebraic curve defined over Fq2 . X is called Fq2-maximal if the number X (Fq2) of its 
Fq2-rational points attains the Hasse–Weil upper bound

q2 + 1 + 2gq,

where g is the genus of X . Maximal curves have interesting properties and have also 
been investigated for their applications in Coding Theory. Surveys on maximal curves 
are found in [9–11,13,32,33] and [23, Chapt. 10].

The most important example of an Fq2-maximal curve is the Hermitian curve Hq, 
defined as any Fq2-rational curve projectively equivalent to the plane curve with Fermat 
equation

Xq+1 + Y q+1 + T q+1 = 0.

The norm-trace equation

Y q+1 = XqT + XT q

gives another model of Hq, Fq2-equivalent to the Fermat model, see [15, Eq. (2.15)]. For 
fixed q, Hq has the largest possible genus g(Hq) = q(q−1)/2 that an Fq2-maximal curve 
can have. The automorphism group Aut(Hq) is isomorphic to PGU(3, q), the group of 
projectivities of PG(2, q2) commuting with the unitary polarity associated with Hq.

By a result commonly attributed to Serre, see [26, Prop. 6], any Fq2-rational curve 
which is Fq2-covered by an Fq2-maximal curve is also Fq2-maximal. In particular, 
Fq2-maximal curves are given by the Galois Fq2-subcovers of an Fq2-maximal curve X , 
that is by the quotient curves X/G over a finite Fq2-automorphism group G ≤ Aut(X ).

Most of the known maximal curves are Galois subcovers of the Hermitian curve, 
many of which were studied in [4,5,15]. Garcia and Stichtenoth [14] discovered the first 
example of maximal curve not Galois covered by the Hermitian curve, namely the curve 
Y 7 = X9 −X maximal over F36 . It is a special case of the curve X� with equation

Y �2−�+1 = X�2 −X, (1)

which is F�6-maximal for any � ≥ 2; see [1]. In [17], Giulietti and Korchmáros showed 
that the Galois covering of X� given by

{
Z�2−�+1 = Y �2 − Y

Y �+1 = X� + X
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is also F�6-maximal, for any prime power �. Remarkably, it is not covered by H�3 for 
any � > 2. This curve, nowadays referred to as the GK curve, was generalized in [12] by 
Garcia, Güneri, and Stichtenoth to the curve

C�n :
{
Z

�n+1
�+1 = Y �2 − Y

X� + X = Y �+1
,

which is F�2n-maximal for any prime power � and n ≥ 3 odd. For � = 2 and n = 3, C8 is 
Galois covered by H8, see [17]. Duursma and Mak proved in [8] that, if � ≥ 3, then C�n is 
not Galois covered by H�n . In Section 3, we show that the same holds in the remaining 
open cases.

Theorem 1.1. For � = 2 and n ≥ 5, C2n is not a Galois subcover of the Hermitian 
curve H�n .

Duursma and Mak [8, Thm. 1.2] showed that if C2n is the quotient curve H2n/G for 
G a subgroup of Aut(H2n), then G has order (2n + 1)/3 and acts semiregularly on H2n . 
Remember that G is semiregular on H2n if the stabilizer of any P ∈ H2n under G is 
trivial; by the orbit-stabilizer theorem, this is equivalent to require that G has just long 
orbits on H2n , i.e. each orbit has length |G|. We investigate all subgroups G of Aut(H2n)
satisfying these conditions, relying also on classical results by Mitchell [30] and Hartley 
[22] (see Section 2) which provide a classification of the maximal subgroups of PSU(3, q)
in terms of their order and their action on Hq. For any candidate subgroup G, we find 
another subgroup Ḡ of Aut(H2n) containing G as a normal subgroup, and such that 
Ḡ/G has an action on H2n/G not compatible with the action of any automorphism 
group of C2n .

In Section 4 we consider the curve X� with equation (1). In [14] it was shown that X3
is not a Galois subcover of H36 , while X2 is a quotient of H26 , as noted in [16]. Garcia 
and Stichtenoth [14, Remark 4] raised the same question for any � > 3. The case where �
is a prime was settled by Mak [29]. Here we provide an answer for any prime power � > 3.

Theorem 1.2. For � > 3, X� is not a Galois subcover of the Hermitian curve H�6.

In the proof of Theorem 1.2 we bound the possible degree of a Galois covering 
H�6 → X� by means of [8, Thm. 1.3], then we exclude the three possible values given 
by the bound. To this aim, we use again the classification results of Mitchell [30] and 
Hartley [22], other group-theoretic arguments, and the Riemann–Hurwitz formula (see 
[31, Chapt. 3]) applied to the Galois coverings H�6 → H�6/G.

2. Preliminary results

Theorem 2.1. (Mitchell [30], Hartley [22]) Let q = pk, d = gcd(q + 1, 3). The following 
is the list of maximal subgroups of PSU(3, q) up to conjugacy:
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i) the stabilizer of an Fq2-rational point of Hq, of order q3(q2 − 1)/d;
ii) the stabilizer of an Fq2-rational point not on Hq and its polar line (which is a (q +

1)-secant to Hq), of order q(q − 1)(q + 1)2/d;
iii) the stabilizer of the self-polar triangle, of order 6(q + 1)2/d;
iv) the normalizer of a cyclic Singer group stabilizing a triangle in PG(2, q6) \PG(2, q2), 

of order 3(q2 − q + 1)/d.

Further, for p > 2:

v) PGL(2, q) preserving a conic;
vi) PSU(3, pm) with m | k and k/m odd;
vii) subgroups containing PSU(3, 2m) as a normal subgroup of index 3, when m | k, 

k/m is odd, and 3 divides both k/m and q + 1;
viii) the Hessian groups of order 216 when 9 | (q + 1), and of order 72 and 36 when 

3 | (q + 1);
ix) PSL(2, 7) when p = 7 or −7 is not a square in Fq;
x) the alternating group A6 when either p = 3 and k is even, or 5 is a square in Fq

but Fq contains no cube root of unity;
xi) the symmetric group S6 when p = 5 and k is odd;
xii) the alternating group A7 when p = 5 and k is odd.

Further, for p = 2:

xiii) PSU(3, 2m) with m | k and k/m an odd prime;
xiv) subgroups containing PSU(3, 2m) as a normal subgroup of index 3, when k = 3m

with m odd;
xv) a group of order 36 when k = 1.

The previous theorem will be used for a case-by-case analysis of the possible unitary 
groups G such that the quotient curve H/G realizes a putative Galois covering.

While dealing with case ii), we will invoke a result by Dickson [7] which classifies 
all subgroups of the projective special linear group PSL(2, q) acting on PG(1, q). We 
remark that PSL(2, q) has index gcd(q− 1, 2) in the group PGL(2, q) of all projectivities 
of PG(1, q). From Dickson’s result the classification of subgroups of PGL(2, q) is easily 
obtained.

Theorem 2.2. ([7, Chapt. XII, Par. 260]; see also [23, Thm. A.8]) Let q = pk, d =
gcd(q−1, 2). The following is the complete list of subgroups of PGL(2, q) up to conjugacy:

i) the cyclic group of order h with h | (q ± 1);
ii) the elementary abelian p-group of order pf with f ≤ k;
iii) the dihedral group of order 2h with h | (q ± 1);
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iv) the alternating group A4 for p > 2, or p = 2 and k even;
v) the symmetric group S4 for 16 | (q2 − 1);
vi) the alternating group A5 for p = 5 or 5 | (q2 − 1);
vii) the semidirect product of an elementary abelian p-group of order pf by a cyclic 

group of order h, with f ≤ k and h | (q − 1);
viii) PSL(2, pf ) for f | k;
ix) PGL(2, pf ) for f | k.

3. C2n is not Galois-covered by H2n , for any n ≥ 5

Throughout the section, n ≥ 5 is an odd integer and q = 2n. We rely on a result by 
Duursma and Mak.

Lemma 3.1. Let n ≥ 5 be odd. If C2n ∼= H2n/G for some G ≤ Aut(H2n), then G has 
order (2n + 1)/3 and acts semiregularly on H2n .

Proof. The order of G is equal to the degree of the covering ϕ : H2n → H2n/G ∼= C2n . 
Hence, by [8, Thm. 1.2], G has order (2n + 1)/3. Also, by [8, Thm. 1.2], ϕ is unramified. 
Since H2n is non-singular, this means that there are exactly |G| points of H2n lying over 
each point of H2n/G. Therefore, each orbit of G is long and the thesis follows. �

By Lemma 3.1 only subgroups G of Aut(Hq) of order (q + 1)/3 acting semiregularly 
on Hq need to be considered. We will also use the fact that the whole automorphism 
group of Aut(C2n) fixes a point.

Theorem 3.2. ([18, Thm. 3.10], [19, Prop. 2.10]) For n ≥ 5, the group Aut(C2n) has a 
unique fixed point P∞ on Cq, and P∞ is Fq2-rational.

Corollary 3.3. Let G ≤ Aut(Hq). If there exists Ḡ ≤ Aut(Hq) such that G is a proper 
normal subgroup of Ḡ and Ḡ acts semiregularly on Hq, then C2n � Hq/G.

Proof. The claim follows from Theorem 3.2, taking into account that Ḡ/G ≤ Aut(Hq/G)
acts semiregularly on Hq/G. �

The following well-known result about finite groups will be used (see [28, Ex. 16 
page 232]).

Lemma 3.4. Let H be a finite group and K a subgroup of H such that the index [H : K]
is the smallest prime number dividing the order of H. Then K is normal in H.

Proposition 3.5. Let G ≤ PSU(3, q). If a maximal subgroup of PSU(3, q) containing G is 
of type ii) in Theorem 2.1, then C2n � Hq/G.
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Proof. Let � be the (q + 1)-secant to Hq stabilized by G; we show that G is isomorphic 
to a cyclic subgroup of PSL(2, q2). We can assume that � is the line at infinity T = 0; 
in fact, the group PGU(3, q) is transitive on the points of PG(2, q2) \ Hq, and hence 
also on the (q + 1)-secant lines. The action of an element g ∈ G on � is given by 
(X, Y, 0) �→ Ag · (X, Y, 0), where the matrix Ag = (aij)j=1,2,3

i=1,2,3 satisfies a31 = a32 = 0; we 
set a33 = 1. By direct computation, the map

ϕ : G → PGL(2, q2), ϕ(g) :
(
X
Y

)
�→

(
a11 a12
a21 a22

)
·
(
X
Y

)
,

is a well-defined group homomorphism. Moreover, ϕ is injective, since no non-trivial 
element of G can fix the points of Hq ∩ �, by the semiregularity of G. Hence G is 
isomorphic to a subgroup of PGL(2, q2). Since |G| is odd, Theorem 2.2 implies that G
is cyclic.

Let g ∈ G be an element of prime order d > 3; such a d exists, since it is easy to check 
that 2n + 1 is a power of 3 only when n = 1 or n = 3. If we denote by dh the highest 
power of d dividing (q + 1)/3, then d2h is the highest power of d dividing

|PGU(3, q)| = q3(q3 + 1)(q2 − 1) = q3(q + 1)2(q − 1)(q2 − q + 1).

Let Hq : Xq+1 + Y q+1 + T q+1 = 0; then

D =
{

(X,Y, T ) �→ (λX, μY, T ) | λdh

= μdh

= 1
}

is a Sylow d-subgroup of PGU(3, q). By Sylow theorems we can assume, up to conjuga-
tion, that g ∈ D; therefore, the fixed points of the subgroup 〈g〉 generated by g are the 
fundamental points P1 = (1, 0, 0), P2 = (0, 1, 0), and P3 = (0, 0, 1). Since G is abelian, 
〈g〉 is normal in G; hence, G acts on T = {P1, P2, P3}. As |G| is odd, we have by the 
orbit-stabilizer theorem that the orbits of any h ∈ G on T have length 1 or 3. If h has a 
single orbit on T , then h is either

( 0 0 λ
μ 0 0
0 ρ 0

)
or

(0 λ 0
0 0 μ
ρ 0 0

)
; in both cases h3 =

(
λμρ 0 0
0 λμρ 0
0 0 λμρ

)
,

that is h3 is the identity element of G and clearly G cannot be generated by h. Therefore, 
a generator α of G has the form

α : (X,Y, T ) �→ (θX, ηY, T ),

with θ
q+1
3 = η

q+1
3 = 1. If θ had order m < (q + 1)/3, then αm would fix the points of 

Hq ∩ (Y = 0), against the semiregularity of G. Then θ is a primitive (q + 1)/3-th root of 
unity, and the same holds for η; hence

α = αθ : (X,Y, T ) �→ (θX, θiY, T ),
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with θ a primitive (q + 1)/3-th root of unity, and i coprime with (q + 1)/3. Let ζ ∈ Fq2

with ζ3 = θ, and let Ḡ be the group generated by αζ : (X, Y, T ) �→ (ζX, ζiY, T ). Any 
element of Ḡ fixes only the fundamental points, hence Ḡ is semiregular on Hq; moreover, 
G is normal in Ḡ of index 3. Then the thesis follows from Corollary 3.3. �
Proposition 3.6. Let G ≤ PSU(3, q). If a maximal subgroup of PSU(3, q) containing G is 
of type iii) in Theorem 2.1, then C2n � Hq/G.

Proof. Let Hq : Xq+1 + Y q+1 + T q+1 = 0. Up to conjugation, the self-polar triangle 
stabilized by G is the fundamental triangle T = {P1, P2, P3}, whose vertices are not 
points of Hq. The elements of G stabilizing T pointwise form a normal subgroup N
of G, and G/N acts faithfully on T ; hence, either G = N or [G : N ] = 3.

If G = N , then G fixes one fundamental point, say P1, and its polar line P2P3; 
therefore, the thesis follows from Proposition 3.5.

If [G : N ] = 3, then N is cyclic, by the same argument used in the proof of 
Proposition 3.5; say N = 〈αξ〉, where ξ is a primitive (q + 1)/9-th root of unity, 
αξ : (X, Y, T ) �→ (ξX, ξiY, T ), and i is coprime with (q + 1)/9. Let h ∈ G \ N . By 
arguing as in the proof of Proposition 3.5, h has order 3. Moreover, G is the semidirect 
product N � 〈h〉; in fact, N is normal in G, N and 〈h〉 have trivial intersection, and 
|G| = |N | · |〈h〉|. Let N̄ be the cyclic group generated by αθ : (X, Y, T ) �→ (θX, θiY, T ), 
where θ ∈ Fq2 satisfies θ3 = ξ. Let Ḡ be the group generated by N̄ and h. Then Ḡ is the 
semidirect product N̄ � 〈h〉.

We want to double count the size of the set

I =
{
(ḡ, P ) | ḡ ∈ Ḡ \ {id} , P ∈ Hq , ḡ(P ) = P

}
.

Since G and N̄ are semiregular on Hq, we consider only elements of the form n̄h or 
n̄h2, with n̄ ∈ N̄ \N . Up to reordering of the fundamental points, we have

n̄ =
(
ρ 0 0
0 ρi 0
0 0 1

)
and h =

(0 λ 0
0 0 μ
1 0 0

)
, (2)

where λq+1 = μq+1 = 1, gcd(i, (q + 1)/3) = 1, and ρ = θ3j+u with 0 < j < (q + 1)/3 and 
u ∈ {1, 2}. Hence

n̄h =
(
ρ 0 0
0 ρi 0
0 0 1

)
·
(0 λ 0

0 0 μ
1 0 0

)
=

(0 A 0
0 0 B
1 0 0

)
, (3)

where Aq+1 = Bq+1 = 1, and det(n̄h) = AB is not a cube in Fq2 , since n̄h /∈ PSU(3, q). 
Then n̄h has three distinct eigenvalues in a cubic extension of Fq2 , namely z, zx, and 
z(x + 1), where x2 + x + 1 = 0 and z3 = AB. Therefore, n̄h has exactly three fixed 
points, namely
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Q1 =
(
z,

z2

A
, 1
)
, Q2 =

(
zx,

z2x2

A
, 1
)
, and Q3 =

(
z(x + 1), z

2(x + 1)2

A
, 1
)

;

it is easy to check that Q1, Q2, and Q3 are points of Hq. The same holds for n̄h2.
Therefore, any element n̄h or n̄h2 with n̄ ∈ N̄ \ N has exactly three fixed points 

on Hq; then

|I| = 2 ·
(
|N̄ | − |N |

)
· 3 = 2 ·

(
q + 1

3 − q + 1
9

)
· 3 = 4 · q + 1

3 . (4)

The orbit O of a point P ∈ Hq under Ḡ has size |O| ≥ |G| = (q + 1)/3. Then the 
stabilizer S of P under Ḡ has size |S| ≤ 3; in particular, |S| ∈ {1, 3} since |Ḡ| is odd. 
Hence, the number |S| − 1 of pairs in I having P in the second coordinate is either zero 
or 2.

Therefore |I| = 2m, where m is the number of points of Hq fixed by some non-trivial 
element of Ḡ. By (4), we get

m = 2 · q + 1
3 = 2 · |G|.

Hence, Ḡ/G has two fixed points R1, R2 ∈ Hq/G and acts semiregularly on Hq/G \
{R1, R2}. By Theorem 3.2, either R1 or R2 is Fq2-rational. Then the number |Hq/G(Fq2)|
of Fq2-rational points of Hq/G satisfies

|Hq/G(Fq2)| ≡ |{P ∈ {R1, R2} | P is Fq2-rational}| (mod |Ḡ/G|) ,

that is, |Hq/G(Fq2)| is congruent to 1 or 2 modulo 3.
On the other side, the number |C2n(Fq2)| of Fq2-rational points of C2n equals

q2 + 1 + 2q · (3q − 4)/2 = 4q2 − 4q + 1,

see [12, Prop. 2.2]; then |C2n(Fq2)| ≡ 0 (mod 3), as q ≡ 2 (mod 3). Therefore, 
Hq/G � C2n . �
Proposition 3.7. Let G ≤ PGU(3, q), G � PSU(3, q). If a maximal subgroup of PSU(3, q)
containing G ∩ PSU(3, q) is of type ii) in Theorem 2.1, then C2n � Hq/G.

Proof. Let G′ = G ∩ PSU(3, q). Since PSU(3, q) has index 3 in PGU(3, q), PGU(3, q) =
G · PSU(3, q) and [G : G′] = 3; hence, G′ is normal in G by Lemma 3.4. Arguing as in 
the proof of Proposition 3.5, G′ is cyclic; moreover, G′ is generated by αξ : (X, Y, T ) �→
(ξX, ξiY, T ), where ξ is a primitive (q + 1)/9-th root of unity and i is coprime with 
(q + 1)/9. Then G stabilizes the fundamental triangle T .

If there exists h ∈ G \ G′ of order 3, then G = G′ � 〈h〉 by arguing as in the proof 
of Proposition 3.6. Let θ ∈ Fq2 with θ3 = ξ, and define αθ : (X, Y, T ) �→ (θX, θiY, T ). 
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Let Ḡ′ be the cyclic group generated by αθ, and let Ḡ be the group generated by Ḡ′

and h; then Ḡ = Ḡ′ � 〈h〉. Moreover, [Ḡ : G] = [Ḡ′ : G′] = 3; hence, by Lemma 3.4, 
G′ is normal in Ḡ′ and G is normal in Ḡ. We can repeat the same argument used in the 
proof of Proposition 3.6, after replacing N with G′ and N̄ with Ḡ′; then |Hq/G(Fq2)| ≡
1, 2 (mod 3), while |C2n | ≡ 0 (mod 3). This yields the thesis.

If there is no h ∈ G \ G′ of order 3, then G is made of diagonal matrices, since G
acts on T . By Theorem 2.2, G is cyclic; a generator of G has the form αθ : (X, Y, T ) �→
(θX, θjY, T ), with θ a primitive (q + 1)/3-th root of unity and j coprime with (q + 1)/3. 
Let Ḡ be the group generated by αζ : (X, Y, T ) �→ (ζX, ζiY, T ), where ζ ∈ Fq2 satisfies 
ζ3 = θ. Then G is a normal subgroup of Ḡ of index 3, and Ḡ acts semiregularly on Hq. 
Corollary 3.3 yields the thesis. �
Proposition 3.8. Let G ≤ PGU(3, q), G � PSU(3, q). If a maximal subgroup of PSU(3, q)
containing G ∩ PSU(3, q) is of type iii) in Theorem 2.1, then C2n � Hq/G.

Proof. As in the proof of Proposition 3.7, G′ = G ∩PSU(3, q) is normal in G of index 3. 
Arguing as in the proof of Proposition 3.6, it can be shown that there are two possible 
cases for G′: (A) G′ is cyclic and generated by αξ : (X, Y, T ) �→ (ξX, ξiY, T ), with ξ a 
primitive (q + 1)/9-th root of unity and i coprime with (q + 1)/9; (B) G′ = 〈αη〉 � 〈h〉, 
where αη : (X, Y, T ) �→ (ηX, ηiY, T ) with η a primitive (q + 1)/27-th root of unity and 
i coprime with (q + 1)/27, and h is an element of order 3 acting with a single orbit on 
the fundamental triangle T , hence having the form (2).

(A) Since G′ is normal in G, we have that G acts on T . If G fixes T pointwise, then the 
elements of G are diagonal matrices whose diagonal coefficients are (q+1)/3-th roots 
of unity, hence cubes in Fq2 ; therefore G ≤ PSU(3, q), against the hypothesis. Then 
G = G′ � 〈h〉, where h ∈ G \G′ has order 3. Let θ ∈ Fq2 with θ3 = ξ, and let Ḡ be 
the group generated by αθ : (X, Y, T ) �→ (θX, θiY, T ) and h; then Ḡ = 〈αθ〉 �〈h〉. By 
arguing as in the proof of Proposition 3.6, we have that |Hq/G(Fq2)| ≡ 1, 2 (mod 3), 
while |C2n | ≡ 0 (mod 3). This yields the thesis.

(B) Any element of G′ \ 〈αη〉 has order 3; in fact, it is the product of a diagonal matrix 
with a matrix of the form (2). Thus every element of G′ \ 〈αη〉 has the form (3), 
which has order 3. Therefore, 〈αη〉 is the only cyclic subgroup of order (q + 1)/27
in G′; thus 〈αη〉 is characteristic in G′, and hence normal in G. Therefore, G acts 
on the set of points which are fixed by 〈αη〉, i.e. the fundamental points. Let G′′

be the subgroup of G fixing T pointwise. The group G′′ is abelian, as it is made 
of diagonal matrices; moreover, G′′ is normal in G of index 3, and G = G′′ � 〈h〉. 
By the primary decomposition of abelian groups, either G′′ = 〈αξ〉 with ξ3 = η

and αξ : (X, Y, T ) �→ (ξX, ξiY, T ), or G′′ = 〈αη〉 × 〈k〉, where k has order 3. In the 
latter case det(k)3 = 1, as k3 is the identity element; hence, det(k) is a cube in 
Fq2 , and k ∈ G ∩ PSU(3, q) = G′. Therefore G′ = G′′, contradicting h ∈ G′ \ G′′. 
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Then G′′ = 〈αξ〉 and G = 〈αξ〉 � 〈h〉. Let Ḡ = 〈αθ〉 � 〈h〉, with θ3 = ξ and 
αθ : (X, Y, T ) �→ (θX, θiY, T ). We can argue as in the proof of Proposition 3.6, after 
replacing N with 〈αξ〉 and N̄ with 〈αθ〉; we get that |Hq/G(Fq2)| ≡ 1, 2 (mod 3), 
while |C2n(Fq2)| ≡ 0 (mod 3). This yields the thesis. �

Lemma 3.9. Let G ≤ PSU(3, q). If a maximal subgroup M of PSU(3, q) containing G
is neither of type ii) nor of type iii) in Theorem 2.1, then M is of type xiv); that is, 
G � PSU(3, 2n/3) and M contains PSU(3, 2n/3) as a normal subgroup of index 3.

Proof. With the notations of Theorem 2.1, we can exclude cases ii) and iii) by hypoth-
esis, case i) by the semiregularity of G, and cases iv) and xv) since |G| does not divide 
either 3(q2 − q + 1) or 36. The thesis will follow if we exclude case xiii). Assume by 
contradiction that M is of type xiii); we apply Theorem 2.1 to M = PSU(3, 2m), where 
n = p′m with p′ an odd prime. Note that, since n ≥ 5 is odd, either p′ ≥ 5, or p′ = 3
and m ≥ 3.

Case i). G fixes an F22m-rational point P ∈ H2m . Since P /∈ Hq by the semiregularity of 
G, M is of type ii) in the list of maximal subgroups of PSU(3, q), against the hypothesis.

Case ii). The order (2p′m +1)/3 of G divides 2m(2m− 1)(2m +1)2/3, which is impos-
sible.

Case iii). The order of G divides 2(2m + 1)2, which is impossible.
Case iv). The order of G divides 22m − 2m + 1, which is impossible.
Case xiii). G is contained in PSU(3, 2r), where m/r is an odd prime; hence n/r ≥ 9. 

This is impossible, since the order of G is greater than the order of any maximal subgroup 
of PSU(3, 2r).

Case xiv). G is contained in a group K containing PSU(3, 2r) as a normal subgroup 
of index 3, where r = m/3. If H is a maximal subgroup of K and H �= PSU(3, 2r), 
then H ∩ PSU(3, 2r) has index 3 in H; therefore, |H|/3 divides the order of a maximal 
subgroup of PSU(3, 2r). This yields a contradiction, since, by direct computation, the 
order of G does not divide three times the order of any maximal subgroup of PSU(3, 2r).

Case xv). The order of G divides 36, which is impossible. �
Proposition 3.10. Let G ≤ PSU(3, q). If a maximal subgroup M of PSU(3, q) containing 
G is of type xiv) in Theorem 2.1, then C2n � Hq/G.

Proof. The subgroup M contains PSU(3, 2m) as a normal subgroup of order 3, where 
m = n/3 ≥ 3. As in the proof of Lemma 3.9, |G| divides three times the order of a 
maximal subgroup of PSU(3, 2m). We apply Theorem 2.1 to PSU(3, 2m).

Case i). The order (23m + 1)/3 of G divides 23m(22m − 1), which is impossible.
Case ii). The order of G divides 2m(2m + 1)2(2m − 1), which is impossible.
Case iii). The order of G divides 6(2m + 1)2, which is impossible.
Case iv). The order of G divides 3(22m − 2m + 1); this happens if and only if m = 3.
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Cases xiii) and xiv). The order of G divides either 3 · |PSU(3, 2r)| or 3 · |PGU(3, 2r)|, 
where m/r is an odd prime. This is impossible, since |G| exceeds three times the order 
of any subgroup of PGU(3, 2r).

Case xv). The order of G divides 36, which is impossible.
Therefore, we have to consider only case iv), with m = 3. In this case, G has order 

171 and G′′ = G ∩ PSU(3, 2m) has order |G|/3 = 57; moreover, G′′ coincides with the 
normalizer in PSU(3, 2m) of a cyclic Singer group S. The fixed points of S are three 
non-collinear points P1, P2, P3 whose coordinate are in a cubic extension of F22m , hence 
in F22n . Since G is semiregular, we have that Pi /∈ Hq; therefore, T = {P1, P2, P3} is 
a self-polar triangle with respect to Hq. Since G acts on T , the thesis follows as in the 
proof of Proposition 3.8, after replacing q with 2m and G′ with G′′. �
Theorem 3.11. C2n is not a Galois subcover of the Hermitian curve Hq.

Proof. Suppose C2n ∼= Hq/G. Then G � PSU(3, q), by Propositions 3.5, 3.6, 3.10 and 
Lemma 3.9. Hence, G′ = G ∩ PSU(3, q) has index 3 in G. After replacing G with G′, 
we can repeat the proofs of Propositions 3.7 and 3.8, the proof of Lemma 3.9, and the 
first part of the proof of Proposition 3.10. Then n = 9, and any maximal subgroup M
of PSU(3, 29) containing G′ contains also PSU(3, 23) as a normal subgroup of index 3. 
Moreover, G′′ = G′ ∩ PSU(3, 23) is contained in the normalizer N ′ of a cyclic Singer 
group with |N ′| = 57.

If G′ ≤ PSU(3, 23), then we argue as in the proof of Proposition 3.10, after replacing 
G with G′. In this way we get a contradiction.

If G′ � PSU(3, 23), then G′′ = G′ ∩ PSU(3, 23) has order |G′|/3 = 19. By Sylow 
theorems, G′′ is the only Sylow 19-subgroup of G′; hence, G′′ is a cyclic Singer group. 
Therefore G′′ fixes a triangle T with coordinates in the cubic extension F218 of F26 , 
and T is self-polar with respect to H29 . Since G′ acts on T , the thesis follows from 
Proposition 3.8. �
4. Xq is not Galois-covered by Hq3 , for any q > 3

Throughout the section, let q > 3 be a power of a prime p. We rely on the following 
bound by Duursma and Mak.

Proposition 4.1. ([8, Thm. 1.3]) If there exists a Galois-covering Hq3 → Xq of degree d, 
then

q2 + q ≤ d ≤ q2 + q + 2.

Therefore, we have to exclude three possible values of d.

Proposition 4.2. There is no Galois-covering ϕ : Hq3 → Xq of degree q2 + q + 2.
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Proof. If such ϕ existed, then q2 + q + 2 would divide the order q9(q9 + 1)(q6 − 1) of 
PGU(3, q3), hence q2 + q + 2 would divide 2128q − 1568. But this is impossible for any 
prime power greater than 3. �

Now we consider the case d = q2 + q + 1.

Lemma 4.3. Let G ≤ PGU(3, q3) with |G| = q2 + q + 1. Then G ≤ PSU(3, q3).

Proof. If PSU(3, q3) �= PGU(3, q3), then PSU(3, q3) has index 3 in PGU(3, q3) and 3
divides q3 +1; hence, 3 does not divide |G|. Suppose G � PSU(3, q3); then PGU(3, q3) =
G ·PSU(3, q3), and G has a subgroup G ∩PSU(3, q3) of index 3, which is impossible. �
Proposition 4.4. There is no Galois-covering ϕ : Hq3 → Xq of degree q2 + q + 1.

Proof. Assume by contradiction that such ϕ exists. Then Xq
∼= Hq3/G, with G ≤

PSU(3, q3) by Lemma 4.3 and Theorem 2.1 can be applied.
Case i). Let Hq3 : Y q3+1 = Xq3 + X. Up to conjugation, G fixes the ideal point P∞

of Hq3 . By [15, Section 4], the stabilizer S of P∞ in PGU(3, q3) has order q9(q6 − 1). 
The group S is the semidirect product Q �H, where Q is the unique Sylow p-subgroup 
of S, and H is a cyclic group generated by αa : (X, Y, T ) �→ (aq3+1X, aY, T ), where 
a is a primitive (q6 − 1)-th root of unity; moreover, H fixes two Fq3-rational points 
P∞, O ∈ Hq3 and is semiregular on Hq3 \ {P∞, O}. We have G ⊂ H, because Q is 
normal in S, |Q| and |H| are coprime, and |G| divides |H|. In particular, G is generated 
by αb : (X, Y, T ) �→ (bq3+1X, bY, T ), with b = a(q3+1)(q−1). Let Ḡ be the group generated 
by αc : (X, Y, T ) �→ (cq3+1X, cY, T ), with c = aq−1; then G is normal in Ḡ of index 
q3 + 1. The group Ḡ/G fixes two Fq6-rational points of Hq3/G and acts semiregularly 
on the other points of Hq3/G. Therefore, the number of Fq6-rational points of Hq3/G is 
congruent to 2 modulo q3 + 1. On the other hand, the number of Fq6-rational points of 
Xq is q7 − q5 + q4 + 1, which is congruent to q2 + 1 modulo q3 + 1.

Case ii). Let Hq3 : Xq3+1 + Y q3+1 + 1 = 0. Up to conjugation, G fixes the affine 
point (0, 0) and the line at infinity � : T = 0. The action of G on � is faithful. In fact, 
if g ∈ G fixes � pointwise, then g is a homology of the form g : (X, Y, T ) �→ (X, Y, λT ), 
whose order divides q3 + 1; since |G| and q3 + 1 are coprime, g is the identity element. 
Therefore, as in the proof of Proposition 3.5, G is isomorphic to a subgroup of PGL(2, q6); 
by Theorem 2.2, G is cyclic. Moreover, since |G| divides q6 − 1, G has two fixed points 
P1, P2 ∈ � and acts semiregularly on � \{P1, P2}; see [24, Chapt. II, Thm. 8.3]. As |� ∩Hq3 |
is congruent to 2 modulo |G|, we have that P1, P2 ∈ Hq3 . Now the same argument used 
in case i) yields a contradiction.

Cases iii) and iv). The order of G does not divide the order of these maximal sub-
groups.

Case v). The group G acts on the q6 + 1 Fq6-rational points of a conic C defined 
over Fq6 . As in case ii), G is isomorphic to a cyclic subgroup Γ of PGL(2, q6) acting 
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on a line � with no short orbits apart from two fixed Fq6-rational points. The action 
of G on C is equivalent to the action of Γ on �, see [34, Chapt. VIII, Thm. 15]; hence 
G has no short orbits on C apart from two fixed Fq6-rational points P1, P2. If G has a 
fixed Fq6-point on Hq3 , then we get a contradiction by arguing as in case i). Otherwise, 
P1, P2 /∈ Hq3 ; by [30, Par. 2] and [22, page 141], G fixes a third Fq6-rational point 
P3 ∈ Hq3 , and T = {P1, P2, P3} is a self-polar triangle. Let Hq3 : Xq3+1 +Y q3+1 +1 = 0; 
up to conjugation, T is the fundamental triangle and a generator of G has the form 
g : (X, Y, T ) �→ (λX, μY, T ). Then the order |G| of g divides q3 + 1, which is impossible.

Cases viii) to xii), and case xv). The order of G does not divide the order of these 
maximal subgroups.

Cases vi), vii), xiii), and xiv). If K is a group containing PSU(3, 2m) as a normal 
subgroup of index 3, then the order of any maximal subgroup of K divides three times 
the order of a maximal subgroup of PSU(3, 2m). Hence, by applying Theorem 2.1 to 
PSU(3, pm), it can be checked that |G| does not divide either the order of any maximal 
subgroup of PSU(3, pm), or the order of any maximal subgroup of K. �
Lemma 4.5. Let G ≤ PGU(3, q3) with |G| = q(q + 1). Then the number of Sylow 
p-subgroups of G is either 1 or q + 1.

Proof. Let Q1, . . . , Qn be the Sylow p-subgroups of G. By [23, Thm. 12.25 (i), (ii)], for 
each i = 1, . . . , n there is a unique point Pi ∈ Hq3 fixed by Qi, Pi is Fq6-rational, and 
Pi �= Pj for i �= j. If n > 1, then G has no fixed points; hence, the length of the orbit OP1

of P1 under G is at least q+1, since Q1 is semiregular on Hq3 \{P1}. On the other hand, 
the stabilizer of P1 in G has length at least q, as it contains Q1. Therefore |OP1 | = q + 1
by the orbit-stabilizer theorem. If P ∈ OP1 , then the stabilizer of P in G has order q, 
hence P = Pi for some i ∈ {2, . . . , n}. Then n = q + 1. �
Proposition 4.6. Let G ≤ PGU(3, q3) with |G| = q(q + 1). If G has a unique Sylow 
p-subgroup Q, then Xq � Hq3/G.

Proof. Let Hq3 : Y q3+1 = Xq3 + X. Since Q is normal in G, we have that G fixes 
the unique fixed point of Q on Hq3 , which can be assumed to be the ideal point P∞. 
The stabilizer of P∞ in PGU(3, q3) is solvable; hence, by Hall’s theorem [21, Theorems 
2.1–2.4], we have that, up to conjugation, G = Q � 〈αλ〉, where αλ : (X, Y, T ) �→
(X, λY, T ) and λ is a primitive (q+1)-th root of unity. The genus g of Hq3/G is computed 
in [15, Thm. 4.4]. In the terminology of [15, Thm. 4.4], g = g(Xq) implies q = pw, that 
is, the elements of Q are involutions of the form βμ : (X, Y, T ) �→ (X + μT, Y, T ), with 
μq3 +μ = 0. Then there exists a p-linearized polynomial L ∈ Fq6 [X] of degree q dividing 
Xq3 +X, such that the set of roots of L coincides with {μ ∈ Fq6 | βμ ∈ Q}. By [27, Thm. 
3.62], there is also a p-linearized polynomial F ∈ Fq6 [X] of degree q2 dividing Xq3 + X, 
such that F (L(X)) = Xq3 + X. Then it is easy to see that the quotient curve Hq3/G is 
Fq6-birationally equivalent to the plane curve C with equation V q2−q+1 = F (U).
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Assume that there exists an Fq6-isomorphism ψ : C → Xq. We will show that in this 
case F (U) cannot be a divisor of Uq3 + U , which is a contradiction.

By [23, Thm. 12.11], the ideal points R∞ ∈ Xq and S∞ ∈ C are the unique fixed points 
of the automorphism groups Aut(Xq) and Aut(C), respectively. Hence, ψ(S∞) = R∞. 
Also, the coordinate functions have pole divisors

div(x)∞ = (q2 − q + 1)R∞, div(y)∞ = q2R∞,

div(u)∞ = (q2 − q + 1)S∞, div(v)∞ = q2S∞,

and the Weierstrass semigroups at the ideal points are H(R∞) = H(S∞) = 〈q2 − q +
1, q2〉 (see [23, Lemmata 12.1, 12.2]). Then {1, u} is a basis of the Riemann–Roch space 
L((q2 − q + 1)R∞) and {1, u, v} is a basis of L(q2R∞). Therefore, there exist constants 
a, b, c, d, e ∈ Fq6 , a, d �= 0, such that ψ∗(x) = au + b and ψ∗(y) = cu + dv + e, where 
ψ∗ : Fq6(Xq) → Fq6(C) is the pull-back of ψ; equivalently, ψ : (U, V, T ) �→ (aU + b, cU +
dV + e, T ).

Then the polynomial identity

(aU + b)q
2
− (aU + b) − (cU + dV + e)q

2−q+1 = k
(
F (U) − V q2−q+1

)

holds for some non-zero k ∈ Fq6 . By comparing the coefficients we get c = e = 0, b ∈ Fq2 , 
and k = dq

2−q+1; this implies

F (U) = k−1aq
2
Uq2 − k−1aU.

It is easily checked that the conventional p-associate of the p-linearized polynomial F (X)
is not a divisor of the conventional p-associate of Uq3 + U , hence F (U) is not a divisor 
of Uq3 + U by [27, Thm. 3.62]. �
Lemma 4.7. Let G ≤ PGU(3, q3) with |G| = q(q + 1). If G has q + 1 distinct Sylow 
p-subgroup Q1, . . . , Qq+1, then G ∼= (Zp′)s �Q1, where p′ is a prime and (p′)s = q + 1.

Proof. By the proof of Lemma 4.5, the points P1, . . . , Pq+1, fixed by Q1, . . . , Qq+1, 
respectively, form a single orbit O under the action of G. By Burnside’s Lemma [2, 
Chapt. VIII, Par. 118], G is sharply 2-transitive on O. Then, by [20, Thm. 20.7.1], G is 
isomorphic to the group of affine transformations of a near-field F ; also, G has a regular 
normal subgroup N , and hence G = N�Q1. The order f of F satisfies q(q+1) = (f−1)f , 
hence f = q + 1. This implies that F cannot be one of the seven exceptional near-fields 
listed in [35] and then F is a Dickson near-field; see [20, Thm. 20.7.2]. In particular, N is 
isomorphic to the additive group (Zp′)s of a finite field. �
Proposition 4.8. Let G ≤ PGU(3, q3) with |G| = q(q + 1). If G has q + 1 distinct Sylow 
p-subgroup Q1, . . . , Qq+1, then Xq � Hq3/G.
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Proof. Suppose q is odd. Then all involutions of PGU(3, q3) are conjugate, and they 
are homologies of PG(2, q6); see [25, Lemma 2.2]. The maximum number of pairwise 
commuting involutions is 3; in fact, two homologies commute if and only if the center 
of one homology lies on the axis of the other (see [6, Thm. 3.1.12]). Then q + 1 = 4 by 
Lemma 4.7, contradicting q > 3.

Suppose q is even, and Xq
∼= Hq3/G. The group Q1 is isomorphic to the multiplicative 

group of F , hence Q1 is metacyclic; see e.g. [3, Ex. 1.19]. Also, Q1 has exponent 2 or 4
by [25, Lemma 2.1]. Therefore, q ∈ {2, 4, 8, 16}. The case q = 2 is excluded. If q = 16, 
then F has prime order 17 and F is a field; hence Q1 has exponent 16, a contradiction.

For q ∈ {4, 8} we apply the Riemann–Hurwitz formula [31, Thm. 3.4.13] to the cover-
ing Hq3 → Xq to get a contradiction on the degree Δ =

(
2g(Hq3) − 2

)
−|G| (2g(Xq) − 2)

of the different divisor. By [31, Thm. 3.8.7]

Δ =
∑

σ∈G\{id}
i(σ),

where i(σ) ≥ 0 satisfies the following conditions.

• If σ has order 2, then i(σ) = q3 + 2; if σ has order 4, then i(σ) = 2 (see [31, 
Eq. (2.12)]).

• If σ has odd order, then i(σ) equals the number of fixed points of σ on Hq3 , see [31, 
Cor. 3.5.5]; also, by [22, pp. 141–142], either σ has exactly 3 fixed points or σ is a 
homology. In the former case i(σ) ≤ 3, in the latter i(σ) = q3 + 1.

If q = 4, then Δ = 470 and G = Z5 �Q1. If Q1 ∼= Z2 ×Z2, then G has 15 involutions, 
whose contributions to Δ sum up to 990 > Δ. Then Q1 ∼= Z4, and the contributions of 
the Qi’s to Δ sum up to 5 · 66 + 10 · 2 = 350. The remaining four non-trivial elements 
of G are generators of Z5; then either all of them are homologies, or all of them fix 3
points. In both cases, their contribution cannot be equal to 120 = Δ − 350.

Let q = 8, hence Δ = 7758 and G = (Z3 × Z3) � Q1. If Q1 has more than one 
involution, then the involutions of G contribute to Δ for at least 18 ·514 > Δ. Hence, Q1

is the quaternion group, and the sum of Qi’s contributions to Δ is 9 ·514 +54 ·2 = 4734. 
The contribution to Δ of the elements of Z3 × Z3 is either 513 or less than 4; hence, it 
cannot sum up to 3024 = Δ − 4734. �

By Lemma 4.5 and Propositions 4.6 and 4.8, the following result follows.

Proposition 4.9. There is no Galois-covering Hq3 → Xq of degree q2 + q.

Finally, Theorem 1.2 follows from Propositions 4.1, 4.2, 4.4, and 4.9.
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