

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On maximal curves that are not quotients of the Hermitian curve

Massimo Giulietti^{a,*}, Maria Montanucci^b, Giovanni Zini^c

^a Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia, Italy

^b Dipartimento di Matematica, Informatica ed Economia, Università degli Studi

della Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy

^c Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni, 67/a, 50134 Firenze, Italy

A R T I C L E I N F O

Article history: Received 30 November 2015 Received in revised form 22 May 2016 Accepted 23 May 2016 Available online 8 June 2016 Communicated by Anne Canteaut

MSC: 11G20

Keywords: Hermitian curve Unitary groups Maximal curves

ABSTRACT

For each prime power ℓ the plane curve \mathcal{X}_{ℓ} with equation $Y^{\ell^2-\ell+1} = X^{\ell^2} - X$ is maximal over \mathbb{F}_{ℓ^6} . Garcia and Stichtenoth in 2006 proved that \mathcal{X}_3 is not Galois covered by the Hermitian curve and raised the same question for \mathcal{X}_{ℓ} with $\ell > 3$; in this paper we show that \mathcal{X}_{ℓ} is not Galois covered by the Hermitian curve for any $\ell > 3$. Analogously, Duursma and Mak proved that the generalized GK curve \mathcal{C}_{ℓ^n} over $\mathbb{F}_{\ell^{2n}}$ is not a quotient of the Hermitian curve for $\ell > 2$ and $n \ge 5$, leaving the case $\ell = 2$ open; here we show that \mathcal{C}_{2^n} is not Galois covered by the Hermitian curve over $\mathbb{F}_{2^{2n}}$ for $n \ge 5$.

© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: massimo.giulietti@unipg.it (M. Giulietti), maria.montanucci@unibas.it (M. Montanucci), gzini@math.unifi.it (G. Zini).

1. Introduction

Let \mathbb{F}_{q^2} be the finite field with q^2 elements, where q is a power of a prime p, and let \mathcal{X} be an \mathbb{F}_{q^2} -rational curve, that is a projective, absolutely irreducible, non-singular algebraic curve defined over \mathbb{F}_{q^2} . \mathcal{X} is called \mathbb{F}_{q^2} -maximal if the number $\mathcal{X}(\mathbb{F}_{q^2})$ of its \mathbb{F}_{q^2} -rational points attains the Hasse–Weil upper bound

$$q^2 + 1 + 2gq,$$

where g is the genus of \mathcal{X} . Maximal curves have interesting properties and have also been investigated for their applications in Coding Theory. Surveys on maximal curves are found in [9–11,13,32,33] and [23, Chapt. 10].

The most important example of an \mathbb{F}_{q^2} -maximal curve is the Hermitian curve \mathcal{H}_q , defined as any \mathbb{F}_{q^2} -rational curve projectively equivalent to the plane curve with Fermat equation

$$X^{q+1} + Y^{q+1} + T^{q+1} = 0.$$

The norm-trace equation

$$Y^{q+1} = X^q T + X T^q$$

gives another model of \mathcal{H}_q , \mathbb{F}_{q^2} -equivalent to the Fermat model, see [15, Eq. (2.15)]. For fixed q, \mathcal{H}_q has the largest possible genus $g(\mathcal{H}_q) = q(q-1)/2$ that an \mathbb{F}_{q^2} -maximal curve can have. The automorphism group $\operatorname{Aut}(\mathcal{H}_q)$ is isomorphic to $\operatorname{PGU}(3,q)$, the group of projectivities of $\operatorname{PG}(2,q^2)$ commuting with the unitary polarity associated with \mathcal{H}_q .

By a result commonly attributed to Serre, see [26, Prop. 6], any \mathbb{F}_{q^2} -rational curve which is \mathbb{F}_{q^2} -covered by an \mathbb{F}_{q^2} -maximal curve is also \mathbb{F}_{q^2} -maximal. In particular, \mathbb{F}_{q^2} -maximal curves are given by the Galois \mathbb{F}_{q^2} -subcovers of an \mathbb{F}_{q^2} -maximal curve \mathcal{X} , that is by the quotient curves \mathcal{X}/G over a finite \mathbb{F}_{q^2} -automorphism group $G \leq \operatorname{Aut}(\mathcal{X})$.

Most of the known maximal curves are Galois subcovers of the Hermitian curve, many of which were studied in [4,5,15]. Garcia and Stichtenoth [14] discovered the first example of maximal curve not Galois covered by the Hermitian curve, namely the curve $Y^7 = X^9 - X$ maximal over \mathbb{F}_{3^6} . It is a special case of the curve \mathcal{X}_{ℓ} with equation

$$Y^{\ell^2 - \ell + 1} = X^{\ell^2} - X,\tag{1}$$

which is \mathbb{F}_{ℓ^6} -maximal for any $\ell \geq 2$; see [1]. In [17], Giulietti and Korchmáros showed that the Galois covering of \mathcal{X}_{ℓ} given by

$$\begin{cases} Z^{\ell^2 - \ell + 1} = Y^{\ell^2} - Y \\ Y^{\ell + 1} = X^{\ell} + X \end{cases}$$

is also \mathbb{F}_{ℓ^6} -maximal, for any prime power ℓ . Remarkably, it is not covered by \mathcal{H}_{ℓ^3} for any $\ell > 2$. This curve, nowadays referred to as the GK curve, was generalized in [12] by Garcia, Güneri, and Stichtenoth to the curve

$$\mathcal{C}_{\ell^n} : \begin{cases} Z^{\frac{\ell^n + 1}{\ell + 1}} = Y^{\ell^2} - Y \\ X^{\ell} + X = Y^{\ell + 1} \end{cases}$$

,

which is $\mathbb{F}_{\ell^{2n}}$ -maximal for any prime power ℓ and $n \geq 3$ odd. For $\ell = 2$ and n = 3, \mathcal{C}_8 is Galois covered by \mathcal{H}_8 , see [17]. Duursma and Mak proved in [8] that, if $\ell \geq 3$, then \mathcal{C}_{ℓ^n} is not Galois covered by \mathcal{H}_{ℓ^n} . In Section 3, we show that the same holds in the remaining open cases.

Theorem 1.1. For $\ell = 2$ and $n \geq 5$, C_{2^n} is not a Galois subcover of the Hermitian curve \mathcal{H}_{ℓ^n} .

Duursma and Mak [8, Thm. 1.2] showed that if C_{2^n} is the quotient curve \mathcal{H}_{2^n}/G for G a subgroup of $\operatorname{Aut}(\mathcal{H}_{2^n})$, then G has order $(2^n + 1)/3$ and acts semiregularly on \mathcal{H}_{2^n} . Remember that G is semiregular on \mathcal{H}_{2^n} if the stabilizer of any $P \in \mathcal{H}_{2^n}$ under G is trivial; by the orbit-stabilizer theorem, this is equivalent to require that G has just long orbits on \mathcal{H}_{2^n} , i.e. each orbit has length |G|. We investigate all subgroups G of $\operatorname{Aut}(\mathcal{H}_{2^n})$ satisfying these conditions, relying also on classical results by Mitchell [30] and Hartley [22] (see Section 2) which provide a classification of the maximal subgroups of PSU(3, q) in terms of their order and their action on \mathcal{H}_q . For any candidate subgroup G, we find another subgroup \overline{G} of $\operatorname{Aut}(\mathcal{H}_{2^n})$ containing G as a normal subgroup, and such that \overline{G}/G has an action on \mathcal{H}_{2^n}/G not compatible with the action of any automorphism group of \mathcal{C}_{2^n} .

In Section 4 we consider the curve \mathcal{X}_{ℓ} with equation (1). In [14] it was shown that \mathcal{X}_3 is not a Galois subcover of \mathcal{H}_{3^6} , while \mathcal{X}_2 is a quotient of \mathcal{H}_{2^6} , as noted in [16]. Garcia and Stichtenoth [14, Remark 4] raised the same question for any $\ell > 3$. The case where ℓ is a prime was settled by Mak [29]. Here we provide an answer for any prime power $\ell > 3$.

Theorem 1.2. For $\ell > 3$, \mathcal{X}_{ℓ} is not a Galois subcover of the Hermitian curve \mathcal{H}_{ℓ^6} .

In the proof of Theorem 1.2 we bound the possible degree of a Galois covering $\mathcal{H}_{\ell^6} \to \mathcal{X}_{\ell}$ by means of [8, Thm. 1.3], then we exclude the three possible values given by the bound. To this aim, we use again the classification results of Mitchell [30] and Hartley [22], other group-theoretic arguments, and the Riemann–Hurwitz formula (see [31, Chapt. 3]) applied to the Galois coverings $\mathcal{H}_{\ell^6} \to \mathcal{H}_{\ell^6}/G$.

2. Preliminary results

Theorem 2.1. (Mitchell [30], Hartley [22]) Let $q = p^k$, d = gcd(q + 1, 3). The following is the list of maximal subgroups of PSU(3, q) up to conjugacy:

- i) the stabilizer of an \mathbb{F}_{q^2} -rational point of \mathcal{H}_q , of order $q^3(q^2-1)/d$;
- ii) the stabilizer of an \mathbb{F}_{q^2} -rational point not on \mathcal{H}_q and its polar line (which is a (q + 1)-secant to \mathcal{H}_q), of order $q(q-1)(q+1)^2/d$;
- iii) the stabilizer of the self-polar triangle, of order $6(q+1)^2/d$;
- iv) the normalizer of a cyclic Singer group stabilizing a triangle in $PG(2, q^6) \setminus PG(2, q^2)$, of order $3(q^2 q + 1)/d$.

Further, for p > 2:

- v) PGL(2,q) preserving a conic;
- vi) $PSU(3, p^m)$ with $m \mid k$ and k/m odd;
- vii) subgroups containing $PSU(3, 2^m)$ as a normal subgroup of index 3, when $m \mid k$, k/m is odd, and 3 divides both k/m and q + 1;
- viii) the Hessian groups of order 216 when $9 \mid (q+1)$, and of order 72 and 36 when $3 \mid (q+1)$;
 - ix) PSL(2,7) when p = 7 or -7 is not a square in \mathbb{F}_q ;
 - x) the alternating group \mathbf{A}_6 when either p = 3 and k is even, or 5 is a square in \mathbb{F}_q but \mathbb{F}_q contains no cube root of unity;
 - xi) the symmetric group \mathbf{S}_6 when p = 5 and k is odd;
- xii) the alternating group \mathbf{A}_7 when p = 5 and k is odd.

Further, for p = 2:

- xiii) $PSU(3, 2^m)$ with $m \mid k$ and k/m an odd prime;
- xiv) subgroups containing $PSU(3, 2^m)$ as a normal subgroup of index 3, when k = 3m with m odd;
- xv) a group of order 36 when k = 1.

The previous theorem will be used for a case-by-case analysis of the possible unitary groups G such that the quotient curve \mathcal{H}/G realizes a putative Galois covering.

While dealing with case ii), we will invoke a result by Dickson [7] which classifies all subgroups of the projective special linear group PSL(2,q) acting on PG(1,q). We remark that PSL(2,q) has index gcd(q-1,2) in the group PGL(2,q) of all projectivities of PG(1,q). From Dickson's result the classification of subgroups of PGL(2,q) is easily obtained.

Theorem 2.2. ([7, Chapt. XII, Par. 260]; see also [23, Thm. A.8]) Let $q = p^k$, d = gcd(q-1,2). The following is the complete list of subgroups of PGL(2, q) up to conjugacy:

- i) the cyclic group of order h with $h \mid (q \pm 1)$;
- ii) the elementary abelian p-group of order p^f with $f \leq k$;
- iii) the dihedral group of order 2h with $h \mid (q \pm 1)$;

- iv) the alternating group \mathbf{A}_4 for p > 2, or p = 2 and k even;
- v) the symmetric group \mathbf{S}_4 for $16 \mid (q^2 1)$;
- vi) the alternating group \mathbf{A}_5 for p = 5 or $5 \mid (q^2 1)$;
- vii) the semidirect product of an elementary abelian p-group of order p^f by a cyclic group of order h, with $f \leq k$ and $h \mid (q-1)$;
- viii) $PSL(2, p^f)$ for $f \mid k$;
 - ix) $\operatorname{PGL}(2, p^f)$ for $f \mid k$.

3. \mathcal{C}_{2^n} is not Galois-covered by \mathcal{H}_{2^n} , for any $n \geq 5$

Throughout the section, $n \ge 5$ is an odd integer and $q = 2^n$. We rely on a result by Duursma and Mak.

Lemma 3.1. Let $n \geq 5$ be odd. If $C_{2^n} \cong \mathcal{H}_{2^n}/G$ for some $G \leq \operatorname{Aut}(\mathcal{H}_{2^n})$, then G has order $(2^n + 1)/3$ and acts semiregularly on \mathcal{H}_{2^n} .

Proof. The order of G is equal to the degree of the covering $\varphi : \mathcal{H}_{2^n} \to \mathcal{H}_{2^n}/G \cong \mathcal{C}_{2^n}$. Hence, by [8, Thm. 1.2], G has order $(2^n + 1)/3$. Also, by [8, Thm. 1.2], φ is unramified. Since \mathcal{H}_{2^n} is non-singular, this means that there are exactly |G| points of \mathcal{H}_{2^n} lying over each point of \mathcal{H}_{2^n}/G . Therefore, each orbit of G is long and the thesis follows. \Box

By Lemma 3.1 only subgroups G of $\operatorname{Aut}(\mathcal{H}_q)$ of order (q+1)/3 acting semiregularly on \mathcal{H}_q need to be considered. We will also use the fact that the whole automorphism group of $\operatorname{Aut}(\mathcal{C}_{2^n})$ fixes a point.

Theorem 3.2. ([18, Thm. 3.10], [19, Prop. 2.10]) For $n \ge 5$, the group $\operatorname{Aut}(\mathcal{C}_{2^n})$ has a unique fixed point P_{∞} on \mathcal{C}_q , and P_{∞} is \mathbb{F}_{q^2} -rational.

Corollary 3.3. Let $G \leq \operatorname{Aut}(\mathcal{H}_q)$. If there exists $\overline{G} \leq \operatorname{Aut}(\mathcal{H}_q)$ such that G is a proper normal subgroup of \overline{G} and \overline{G} acts semiregularly on \mathcal{H}_q , then $\mathcal{C}_{2^n} \ncong \mathcal{H}_q/G$.

Proof. The claim follows from Theorem 3.2, taking into account that $\overline{G}/G \leq \operatorname{Aut}(\mathcal{H}_q/G)$ acts semiregularly on \mathcal{H}_q/G . \Box

The following well-known result about finite groups will be used (see [28, Ex. 16 page 232]).

Lemma 3.4. Let H be a finite group and K a subgroup of H such that the index [H : K] is the smallest prime number dividing the order of H. Then K is normal in H.

Proposition 3.5. Let $G \leq PSU(3,q)$. If a maximal subgroup of PSU(3,q) containing G is of type ii) in Theorem 2.1, then $C_{2^n} \ncong \mathcal{H}_q/G$.

Proof. Let ℓ be the (q + 1)-secant to \mathcal{H}_q stabilized by G; we show that G is isomorphic to a cyclic subgroup of $\mathrm{PSL}(2,q^2)$. We can assume that ℓ is the line at infinity T = 0; in fact, the group $\mathrm{PGU}(3,q)$ is transitive on the points of $\mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$, and hence also on the (q + 1)-secant lines. The action of an element $g \in G$ on ℓ is given by $(X,Y,0) \mapsto A_g \cdot (X,Y,0)$, where the matrix $A_g = (a_{ij})_{i=1,2,3}^{j=1,2,3}$ satisfies $a_{31} = a_{32} = 0$; we set $a_{33} = 1$. By direct computation, the map

$$\varphi: G \to \mathrm{PGL}(2, q^2), \qquad \varphi(g): \begin{pmatrix} X \\ Y \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix},$$

is a well-defined group homomorphism. Moreover, φ is injective, since no non-trivial element of G can fix the points of $\mathcal{H}_q \cap \ell$, by the semiregularity of G. Hence G is isomorphic to a subgroup of $\mathrm{PGL}(2,q^2)$. Since |G| is odd, Theorem 2.2 implies that Gis cyclic.

Let $g \in G$ be an element of prime order d > 3; such a d exists, since it is easy to check that $2^n + 1$ is a power of 3 only when n = 1 or n = 3. If we denote by d^h the highest power of d dividing (q + 1)/3, then d^{2h} is the highest power of d dividing

$$|PGU(3,q)| = q^3(q^3+1)(q^2-1) = q^3(q+1)^2(q-1)(q^2-q+1).$$

Let $\mathcal{H}_q: X^{q+1} + Y^{q+1} + T^{q+1} = 0$; then

$$D = \left\{ (X, Y, T) \mapsto (\lambda X, \mu Y, T) \mid \lambda^{d^h} = \mu^{d^h} = 1 \right\}$$

is a Sylow d-subgroup of PGU(3, q). By Sylow theorems we can assume, up to conjugation, that $g \in D$; therefore, the fixed points of the subgroup $\langle g \rangle$ generated by g are the fundamental points $P_1 = (1, 0, 0), P_2 = (0, 1, 0), \text{ and } P_3 = (0, 0, 1)$. Since G is abelian, $\langle g \rangle$ is normal in G; hence, G acts on $\mathcal{T} = \{P_1, P_2, P_3\}$. As |G| is odd, we have by the orbit-stabilizer theorem that the orbits of any $h \in G$ on \mathcal{T} have length 1 or 3. If h has a single orbit on \mathcal{T} , then h is either

$$\begin{pmatrix} 0 & 0 & \lambda \\ \mu & 0 & 0 \\ 0 & \rho & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 0 & \lambda & 0 \\ 0 & 0 & \mu \\ \rho & 0 & 0 \end{pmatrix}; \quad \text{in both cases} \quad h^3 = \begin{pmatrix} \lambda \mu \rho & 0 & 0 \\ 0 & \lambda \mu \rho & 0 \\ 0 & 0 & \lambda \mu \rho \end{pmatrix},$$

that is h^3 is the identity element of G and clearly G cannot be generated by h. Therefore, a generator α of G has the form

$$\alpha: (X, Y, T) \mapsto (\theta X, \eta Y, T),$$

with $\theta^{\frac{q+1}{3}} = \eta^{\frac{q+1}{3}} = 1$. If θ had order m < (q+1)/3, then α^m would fix the points of $\mathcal{H}_q \cap (Y=0)$, against the semiregularity of G. Then θ is a primitive (q+1)/3-th root of unity, and the same holds for η ; hence

$$\alpha = \alpha_{\theta} : (X, Y, T) \mapsto (\theta X, \theta^{i} Y, T),$$

with θ a primitive (q+1)/3-th root of unity, and *i* coprime with (q+1)/3. Let $\zeta \in \mathbb{F}_{q^2}$ with $\zeta^3 = \theta$, and let \bar{G} be the group generated by $\alpha_{\zeta} : (X, Y, T) \mapsto (\zeta X, \zeta^i Y, T)$. Any element of \bar{G} fixes only the fundamental points, hence \bar{G} is semiregular on \mathcal{H}_q ; moreover, G is normal in \bar{G} of index 3. Then the thesis follows from Corollary 3.3. \Box

Proposition 3.6. Let $G \leq \text{PSU}(3,q)$. If a maximal subgroup of PSU(3,q) containing G is of type iii) in Theorem 2.1, then $C_{2^n} \ncong \mathcal{H}_q/G$.

Proof. Let $\mathcal{H}_q : X^{q+1} + Y^{q+1} + T^{q+1} = 0$. Up to conjugation, the self-polar triangle stabilized by G is the fundamental triangle $\mathcal{T} = \{P_1, P_2, P_3\}$, whose vertices are not points of \mathcal{H}_q . The elements of G stabilizing \mathcal{T} pointwise form a normal subgroup N of G, and G/N acts faithfully on \mathcal{T} ; hence, either G = N or [G:N] = 3.

If G = N, then G fixes one fundamental point, say P_1 , and its polar line P_2P_3 ; therefore, the thesis follows from Proposition 3.5.

If [G : N] = 3, then N is cyclic, by the same argument used in the proof of Proposition 3.5; say $N = \langle \alpha_{\xi} \rangle$, where ξ is a primitive (q + 1)/9-th root of unity, $\alpha_{\xi} : (X, Y, T) \mapsto (\xi X, \xi^i Y, T)$, and *i* is coprime with (q + 1)/9. Let $h \in G \setminus N$. By arguing as in the proof of Proposition 3.5, *h* has order 3. Moreover, *G* is the semidirect product $N \rtimes \langle h \rangle$; in fact, *N* is normal in *G*, *N* and $\langle h \rangle$ have trivial intersection, and $|G| = |N| \cdot |\langle h \rangle|$. Let \overline{N} be the cyclic group generated by $\alpha_{\theta} : (X, Y, T) \mapsto (\theta X, \theta^i Y, T)$, where $\theta \in \mathbb{F}_{q^2}$ satisfies $\theta^3 = \xi$. Let \overline{G} be the group generated by \overline{N} and *h*. Then \overline{G} is the semidirect product $\overline{N} \rtimes \langle h \rangle$.

We want to double count the size of the set

$$I = \left\{ (\bar{g}, P) \mid \bar{g} \in \bar{G} \setminus \{id\}, \ P \in \mathcal{H}_q, \ \bar{g}(P) = P \right\}.$$

Since G and \bar{N} are semiregular on \mathcal{H}_q , we consider only elements of the form $\bar{n}h$ or $\bar{n}h^2$, with $\bar{n} \in \bar{N} \setminus N$. Up to reordering of the fundamental points, we have

$$\bar{n} = \begin{pmatrix} \rho & 0 & 0\\ 0 & \rho^i & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad h = \begin{pmatrix} 0 & \lambda & 0\\ 0 & 0 & \mu\\ 1 & 0 & 0 \end{pmatrix},$$
(2)

where $\lambda^{q+1} = \mu^{q+1} = 1$, gcd(i, (q+1)/3) = 1, and $\rho = \theta^{3j+u}$ with 0 < j < (q+1)/3 and $u \in \{1, 2\}$. Hence

$$\bar{n}h = \begin{pmatrix} \rho & 0 & 0\\ 0 & \rho^i & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & \lambda & 0\\ 0 & 0 & \mu\\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & A & 0\\ 0 & 0 & B\\ 1 & 0 & 0 \end{pmatrix},$$
(3)

where $A^{q+1} = B^{q+1} = 1$, and $\det(\bar{n}h) = AB$ is not a cube in \mathbb{F}_{q^2} , since $\bar{n}h \notin PSU(3,q)$. Then $\bar{n}h$ has three distinct eigenvalues in a cubic extension of \mathbb{F}_{q^2} , namely z, zx, and z(x+1), where $x^2 + x + 1 = 0$ and $z^3 = AB$. Therefore, $\bar{n}h$ has exactly three fixed points, namely M. Giulietti et al. / Finite Fields and Their Applications 41 (2016) 72-88

$$Q_1 = \left(z, \frac{z^2}{A}, 1\right), \quad Q_2 = \left(zx, \frac{z^2x^2}{A}, 1\right), \text{ and } Q_3 = \left(z(x+1), \frac{z^2(x+1)^2}{A}, 1\right);$$

it is easy to check that Q_1 , Q_2 , and Q_3 are points of \mathcal{H}_q . The same holds for $\bar{n}h^2$.

Therefore, any element $\bar{n}h$ or $\bar{n}h^2$ with $\bar{n} \in \bar{N} \setminus N$ has exactly three fixed points on \mathcal{H}_q ; then

$$|I| = 2 \cdot \left(|\bar{N}| - |N|\right) \cdot 3 = 2 \cdot \left(\frac{q+1}{3} - \frac{q+1}{9}\right) \cdot 3 = 4 \cdot \frac{q+1}{3}.$$
 (4)

The orbit \mathcal{O} of a point $P \in \mathcal{H}_q$ under \overline{G} has size $|\mathcal{O}| \geq |G| = (q+1)/3$. Then the stabilizer \mathcal{S} of P under \overline{G} has size $|\mathcal{S}| \leq 3$; in particular, $|\mathcal{S}| \in \{1,3\}$ since $|\overline{G}|$ is odd. Hence, the number $|\mathcal{S}| - 1$ of pairs in I having P in the second coordinate is either zero or 2.

Therefore |I| = 2m, where *m* is the number of points of \mathcal{H}_q fixed by some non-trivial element of \bar{G} . By (4), we get

$$m = 2 \cdot \frac{q+1}{3} = 2 \cdot |G|.$$

Hence, \overline{G}/G has two fixed points $R_1, R_2 \in \mathcal{H}_q/G$ and acts semiregularly on $\mathcal{H}_q/G \setminus \{R_1, R_2\}$. By Theorem 3.2, either R_1 or R_2 is \mathbb{F}_{q^2} -rational. Then the number $|\mathcal{H}_q/G(\mathbb{F}_{q^2})|$ of \mathbb{F}_{q^2} -rational points of \mathcal{H}_q/G satisfies

$$|\mathcal{H}_q/G(\mathbb{F}_{q^2})| \equiv |\{P \in \{R_1, R_2\} \mid P \text{ is } \mathbb{F}_{q^2}\text{-rational}\}| \pmod{|G/G|},$$

that is, $|\mathcal{H}_q/G(\mathbb{F}_{q^2})|$ is congruent to 1 or 2 modulo 3.

On the other side, the number $|\mathcal{C}_{2^n}(\mathbb{F}_{q^2})|$ of \mathbb{F}_{q^2} -rational points of \mathcal{C}_{2^n} equals

$$q^{2} + 1 + 2q \cdot (3q - 4)/2 = 4q^{2} - 4q + 1,$$

see [12, Prop. 2.2]; then $|\mathcal{C}_{2^n}(\mathbb{F}_{q^2})| \equiv 0 \pmod{3}$, as $q \equiv 2 \pmod{3}$. Therefore, $\mathcal{H}_q/G \ncong \mathcal{C}_{2^n}$. \Box

Proposition 3.7. Let $G \leq \text{PGU}(3,q)$, $G \not\subseteq \text{PSU}(3,q)$. If a maximal subgroup of PSU(3,q) containing $G \cap \text{PSU}(3,q)$ is of type ii) in Theorem 2.1, then $C_{2^n} \ncong \mathcal{H}_q/G$.

Proof. Let $G' = G \cap \text{PSU}(3, q)$. Since PSU(3, q) has index 3 in PGU(3, q), $\text{PGU}(3, q) = G \cdot \text{PSU}(3, q)$ and [G : G'] = 3; hence, G' is normal in G by Lemma 3.4. Arguing as in the proof of Proposition 3.5, G' is cyclic; moreover, G' is generated by $\alpha_{\xi} : (X, Y, T) \mapsto (\xi X, \xi^i Y, T)$, where ξ is a primitive (q + 1)/9-th root of unity and i is coprime with (q + 1)/9. Then G stabilizes the fundamental triangle \mathcal{T} .

If there exists $h \in G \setminus G'$ of order 3, then $G = G' \rtimes \langle h \rangle$ by arguing as in the proof of Proposition 3.6. Let $\theta \in \mathbb{F}_{q^2}$ with $\theta^3 = \xi$, and define $\alpha_{\theta} : (X, Y, T) \mapsto (\theta X, \theta^i Y, T)$. Let \bar{G}' be the cyclic group generated by α_{θ} , and let \bar{G} be the group generated by \bar{G}' and h; then $\bar{G} = \bar{G}' \rtimes \langle h \rangle$. Moreover, $[\bar{G} : G] = [\bar{G}' : G'] = 3$; hence, by Lemma 3.4, G' is normal in \bar{G}' and G is normal in \bar{G} . We can repeat the same argument used in the proof of Proposition 3.6, after replacing N with G' and \bar{N} with \bar{G}' ; then $|\mathcal{H}_q/G(\mathbb{F}_{q^2})| \equiv$ $1, 2 \pmod{3}$, while $|\mathcal{C}_{2^n}| \equiv 0 \pmod{3}$. This yields the thesis.

If there is no $h \in G \setminus G'$ of order 3, then G is made of diagonal matrices, since G acts on \mathcal{T} . By Theorem 2.2, G is cyclic; a generator of G has the form $\alpha_{\theta} : (X, Y, T) \mapsto (\theta X, \theta^j Y, T)$, with θ a primitive (q+1)/3-th root of unity and j coprime with (q+1)/3. Let \overline{G} be the group generated by $\alpha_{\zeta} : (X, Y, T) \mapsto (\zeta X, \zeta^i Y, T)$, where $\zeta \in \mathbb{F}_{q^2}$ satisfies $\zeta^3 = \theta$. Then G is a normal subgroup of \overline{G} of index 3, and \overline{G} acts semiregularly on \mathcal{H}_q . Corollary 3.3 yields the thesis. \Box

Proposition 3.8. Let $G \leq PGU(3,q)$, $G \not\subseteq PSU(3,q)$. If a maximal subgroup of PSU(3,q) containing $G \cap PSU(3,q)$ is of type iii) in Theorem 2.1, then $\mathcal{C}_{2^n} \ncong \mathcal{H}_q/G$.

Proof. As in the proof of Proposition 3.7, $G' = G \cap \text{PSU}(3, q)$ is normal in G of index 3. Arguing as in the proof of Proposition 3.6, it can be shown that there are two possible cases for G': (A) G' is cyclic and generated by $\alpha_{\xi} : (X, Y, T) \mapsto (\xi X, \xi^i Y, T)$, with ξ a primitive (q + 1)/9-th root of unity and i coprime with (q + 1)/9; (B) $G' = \langle \alpha_{\eta} \rangle \rtimes \langle h \rangle$, where $\alpha_{\eta} : (X, Y, T) \mapsto (\eta X, \eta^i Y, T)$ with η a primitive (q + 1)/27-th root of unity and i coprime with (q + 1)/27, and h is an element of order 3 acting with a single orbit on the fundamental triangle \mathcal{T} , hence having the form (2).

- (A) Since G' is normal in G, we have that G acts on \mathcal{T} . If G fixes \mathcal{T} pointwise, then the elements of G are diagonal matrices whose diagonal coefficients are (q+1)/3-th roots of unity, hence cubes in \mathbb{F}_{q^2} ; therefore $G \leq \text{PSU}(3,q)$, against the hypothesis. Then $G = G' \rtimes \langle h \rangle$, where $h \in G \setminus G'$ has order 3. Let $\theta \in \mathbb{F}_{q^2}$ with $\theta^3 = \xi$, and let \overline{G} be the group generated by $\alpha_{\theta} : (X, Y, T) \mapsto (\theta X, \theta^i Y, T)$ and h; then $\overline{G} = \langle \alpha_{\theta} \rangle \rtimes \langle h \rangle$. By arguing as in the proof of Proposition 3.6, we have that $|\mathcal{H}_q/G(\mathbb{F}_{q^2})| \equiv 1, 2 \pmod{3}$, while $|\mathcal{C}_{2^n}| \equiv 0 \pmod{3}$. This yields the thesis.
- (B) Any element of $G' \setminus \langle \alpha_{\eta} \rangle$ has order 3; in fact, it is the product of a diagonal matrix with a matrix of the form (2). Thus every element of $G' \setminus \langle \alpha_{\eta} \rangle$ has the form (3), which has order 3. Therefore, $\langle \alpha_{\eta} \rangle$ is the only cyclic subgroup of order (q+1)/27in G'; thus $\langle \alpha_{\eta} \rangle$ is characteristic in G', and hence normal in G. Therefore, G acts on the set of points which are fixed by $\langle \alpha_{\eta} \rangle$, i.e. the fundamental points. Let G''be the subgroup of G fixing \mathcal{T} pointwise. The group G'' is abelian, as it is made of diagonal matrices; moreover, G'' is normal in G of index 3, and $G = G'' \rtimes \langle h \rangle$. By the primary decomposition of abelian groups, either $G'' = \langle \alpha_{\xi} \rangle$ with $\xi^3 = \eta$ and $\alpha_{\xi} : (X, Y, T) \mapsto (\xi X, \xi^i Y, T)$, or $G'' = \langle \alpha_{\eta} \rangle \times \langle k \rangle$, where k has order 3. In the latter case det $(k)^3 = 1$, as k^3 is the identity element; hence, det(k) is a cube in \mathbb{F}_{q^2} , and $k \in G \cap \text{PSU}(3, q) = G'$. Therefore G' = G'', contradicting $h \in G' \setminus G''$.

Then $G'' = \langle \alpha_{\xi} \rangle$ and $G = \langle \alpha_{\xi} \rangle \rtimes \langle h \rangle$. Let $\overline{G} = \langle \alpha_{\theta} \rangle \rtimes \langle h \rangle$, with $\theta^3 = \xi$ and $\alpha_{\theta} : (X, Y, T) \mapsto (\theta X, \theta^i Y, T)$. We can argue as in the proof of Proposition 3.6, after replacing N with $\langle \alpha_{\xi} \rangle$ and \overline{N} with $\langle \alpha_{\theta} \rangle$; we get that $|\mathcal{H}_q/G(\mathbb{F}_{q^2})| \equiv 1, 2 \pmod{3}$, while $|\mathcal{C}_{2^n}(\mathbb{F}_{q^2})| \equiv 0 \pmod{3}$. This yields the thesis. \Box

Lemma 3.9. Let $G \leq PSU(3,q)$. If a maximal subgroup M of PSU(3,q) containing G is neither of type ii) nor of type iii) in Theorem 2.1, then M is of type xiv); that is, $G \nsubseteq PSU(3,2^{n/3})$ and M contains $PSU(3,2^{n/3})$ as a normal subgroup of index 3.

Proof. With the notations of Theorem 2.1, we can exclude cases *ii*) and *iii*) by hypothesis, case *i*) by the semiregularity of *G*, and cases *iv*) and *xv*) since |G| does not divide either $3(q^2 - q + 1)$ or 36. The thesis will follow if we exclude case *xiii*). Assume by contradiction that *M* is of type *xiii*); we apply Theorem 2.1 to $M = \text{PSU}(3, 2^m)$, where n = p'm with p' an odd prime. Note that, since $n \ge 5$ is odd, either $p' \ge 5$, or p' = 3 and $m \ge 3$.

Case *i*). *G* fixes an $\mathbb{F}_{2^{2m}}$ -rational point $P \in \mathcal{H}_{2^m}$. Since $P \notin \mathcal{H}_q$ by the semiregularity of *G*, *M* is of type *ii*) in the list of maximal subgroups of PSU(3, q), against the hypothesis.

Case *ii*). The order $(2^{p'm}+1)/3$ of G divides $2^m(2^m-1)(2^m+1)^2/3$, which is impossible.

Case *iii*). The order of G divides $2(2^m + 1)^2$, which is impossible.

Case *iv*). The order of G divides $2^{2m} - 2^m + 1$, which is impossible.

Case *xiii*). G is contained in PSU(3, 2^r), where m/r is an odd prime; hence $n/r \ge 9$. This is impossible, since the order of G is greater than the order of any maximal subgroup of PSU(3, 2^r).

Case *xiv*). *G* is contained in a group *K* containing $PSU(3, 2^r)$ as a normal subgroup of index 3, where r = m/3. If *H* is a maximal subgroup of *K* and $H \neq PSU(3, 2^r)$, then $H \cap PSU(3, 2^r)$ has index 3 in *H*; therefore, |H|/3 divides the order of a maximal subgroup of $PSU(3, 2^r)$. This yields a contradiction, since, by direct computation, the order of *G* does not divide three times the order of any maximal subgroup of $PSU(3, 2^r)$.

Case xv). The order of G divides 36, which is impossible. \Box

Proposition 3.10. Let $G \leq \text{PSU}(3,q)$. If a maximal subgroup M of PSU(3,q) containing G is of type xiv) in Theorem 2.1, then $\mathcal{C}_{2^n} \ncong \mathcal{H}_q/G$.

Proof. The subgroup M contains $PSU(3, 2^m)$ as a normal subgroup of order 3, where $m = n/3 \ge 3$. As in the proof of Lemma 3.9, |G| divides three times the order of a maximal subgroup of $PSU(3, 2^m)$. We apply Theorem 2.1 to $PSU(3, 2^m)$.

Case i). The order $(2^{3m} + 1)/3$ of G divides $2^{3m}(2^{2m} - 1)$, which is impossible.

Case *ii*). The order of G divides $2^m(2^m+1)^2(2^m-1)$, which is impossible.

Case *iii*). The order of G divides $6(2^m + 1)^2$, which is impossible.

Case iv). The order of G divides $3(2^{2m} - 2^m + 1)$; this happens if and only if m = 3.

Cases *xiii*) and *xiv*). The order of G divides either $3 \cdot |PSU(3, 2^r)|$ or $3 \cdot |PGU(3, 2^r)|$, where m/r is an odd prime. This is impossible, since |G| exceeds three times the order of any subgroup of PGU(3, 2^r).

Case xv). The order of G divides 36, which is impossible.

Therefore, we have to consider only case iv), with m = 3. In this case, G has order 171 and $G'' = G \cap PSU(3, 2^m)$ has order |G|/3 = 57; moreover, G'' coincides with the normalizer in $PSU(3, 2^m)$ of a cyclic Singer group S. The fixed points of S are three non-collinear points P_1 , P_2 , P_3 whose coordinate are in a cubic extension of $\mathbb{F}_{2^{2m}}$, hence in $\mathbb{F}_{2^{2n}}$. Since G is semiregular, we have that $P_i \notin \mathcal{H}_q$; therefore, $\mathcal{T} = \{P_1, P_2, P_3\}$ is a self-polar triangle with respect to \mathcal{H}_q . Since G acts on \mathcal{T} , the thesis follows as in the proof of Proposition 3.8, after replacing q with 2^m and G' with G''. \Box

Theorem 3.11. \mathcal{C}_{2^n} is not a Galois subcover of the Hermitian curve \mathcal{H}_a .

Proof. Suppose $C_{2^n} \cong \mathcal{H}_q/G$. Then $G \not\subseteq \mathrm{PSU}(3,q)$, by Propositions 3.5, 3.6, 3.10 and Lemma 3.9. Hence, $G' = G \cap \mathrm{PSU}(3,q)$ has index 3 in G. After replacing G with G', we can repeat the proofs of Propositions 3.7 and 3.8, the proof of Lemma 3.9, and the first part of the proof of Proposition 3.10. Then n = 9, and any maximal subgroup M of $\mathrm{PSU}(3,2^9)$ containing G' contains also $\mathrm{PSU}(3,2^3)$ as a normal subgroup of index 3. Moreover, $G'' = G' \cap \mathrm{PSU}(3,2^3)$ is contained in the normalizer N' of a cyclic Singer group with |N'| = 57.

If $G' \leq \text{PSU}(3, 2^3)$, then we argue as in the proof of Proposition 3.10, after replacing G with G'. In this way we get a contradiction.

If $G' \not\subseteq \text{PSU}(3, 2^3)$, then $G'' = G' \cap \text{PSU}(3, 2^3)$ has order |G'|/3 = 19. By Sylow theorems, G'' is the only Sylow 19-subgroup of G'; hence, G'' is a cyclic Singer group. Therefore G'' fixes a triangle \mathcal{T} with coordinates in the cubic extension $\mathbb{F}_{2^{18}}$ of \mathbb{F}_{2^6} , and \mathcal{T} is self-polar with respect to \mathcal{H}_{2^9} . Since G' acts on \mathcal{T} , the thesis follows from Proposition 3.8. \Box

4. \mathcal{X}_q is not Galois-covered by \mathcal{H}_{q^3} , for any q > 3

Throughout the section, let q > 3 be a power of a prime p. We rely on the following bound by Duursma and Mak.

Proposition 4.1. ([8, Thm. 1.3]) If there exists a Galois-covering $\mathcal{H}_{q^3} \to \mathcal{X}_q$ of degree d, then

$$q^2 + q \le d \le q^2 + q + 2.$$

Therefore, we have to exclude three possible values of d.

Proposition 4.2. There is no Galois-covering $\varphi : \mathcal{H}_{q^3} \to \mathcal{X}_q$ of degree $q^2 + q + 2$.

Proof. If such φ existed, then $q^2 + q + 2$ would divide the order $q^9(q^9 + 1)(q^6 - 1)$ of PGU(3, q^3), hence $q^2 + q + 2$ would divide 2128q - 1568. But this is impossible for any prime power greater than 3. \Box

Now we consider the case $d = q^2 + q + 1$.

Lemma 4.3. Let $G \leq PGU(3, q^3)$ with $|G| = q^2 + q + 1$. Then $G \leq PSU(3, q^3)$.

Proof. If $PSU(3, q^3) \neq PGU(3, q^3)$, then $PSU(3, q^3)$ has index 3 in $PGU(3, q^3)$ and 3 divides $q^3 + 1$; hence, 3 does not divide |G|. Suppose $G \notin PSU(3, q^3)$; then $PGU(3, q^3) = G \cdot PSU(3, q^3)$, and G has a subgroup $G \cap PSU(3, q^3)$ of index 3, which is impossible. \Box

Proposition 4.4. There is no Galois-covering $\varphi : \mathcal{H}_{q^3} \to \mathcal{X}_q$ of degree $q^2 + q + 1$.

Proof. Assume by contradiction that such φ exists. Then $\mathcal{X}_q \cong \mathcal{H}_{q^3}/G$, with $G \leq PSU(3, q^3)$ by Lemma 4.3 and Theorem 2.1 can be applied.

Case *i*). Let $\mathcal{H}_{q^3}: Y^{q^3+1} = X^{q^3} + X$. Up to conjugation, *G* fixes the ideal point P_{∞} of \mathcal{H}_{q^3} . By [15, Section 4], the stabilizer *S* of P_{∞} in PGU(3, q^3) has order $q^9(q^6 - 1)$. The group *S* is the semidirect product $Q \rtimes H$, where *Q* is the unique Sylow *p*-subgroup of *S*, and *H* is a cyclic group generated by $\alpha_a : (X, Y, T) \mapsto (a^{q^3+1}X, aY, T)$, where *a* is a primitive $(q^6 - 1)$ -th root of unity; moreover, *H* fixes two \mathbb{F}_{q^3} -rational points $P_{\infty}, O \in \mathcal{H}_{q^3}$ and is semiregular on $\mathcal{H}_{q^3} \setminus \{P_{\infty}, O\}$. We have $G \subset H$, because *Q* is normal in *S*, |Q| and |H| are coprime, and |G| divides |H|. In particular, *G* is generated by $\alpha_b : (X, Y, T) \mapsto (b^{q^3+1}X, bY, T)$, with $b = a^{(q^3+1)(q-1)}$. Let \overline{G} be the group generated by $\alpha_c : (X, Y, T) \mapsto (c^{q^3+1}X, cY, T)$, with $c = a^{q-1}$; then *G* is normal in \overline{G} of index $q^3 + 1$. The group \overline{G}/G fixes two \mathbb{F}_{q^6} -rational points of \mathcal{H}_{q^3}/G and acts semiregularly on the other points of \mathcal{H}_{q^3}/G . Therefore, the number of \mathbb{F}_{q^6} -rational points of \mathcal{H}_{q^3}/G is congruent to 2 modulo $q^3 + 1$. On the other hand, the number of \mathbb{F}_{q^6} -rational points of \mathcal{X}_q is $q^7 - q^5 + q^4 + 1$, which is congruent to $q^2 + 1$ modulo $q^3 + 1$.

Case *ii*). Let $\mathcal{H}_{q^3} : X^{q^3+1} + Y^{q^3+1} + 1 = 0$. Up to conjugation, G fixes the affine point (0,0) and the line at infinity $\ell : T = 0$. The action of G on ℓ is faithful. In fact, if $g \in G$ fixes ℓ pointwise, then g is a homology of the form $g : (X, Y, T) \mapsto (X, Y, \lambda T)$, whose order divides $q^3 + 1$; since |G| and $q^3 + 1$ are coprime, g is the identity element. Therefore, as in the proof of Proposition 3.5, G is isomorphic to a subgroup of PGL(2, q^6); by Theorem 2.2, G is cyclic. Moreover, since |G| divides $q^6 - 1$, G has two fixed points $P_1, P_2 \in \ell$ and acts semiregularly on $\ell \setminus \{P_1, P_2\}$; see [24, Chapt. II, Thm. 8.3]. As $|\ell \cap \mathcal{H}_{q^3}|$ is congruent to 2 modulo |G|, we have that $P_1, P_2 \in \mathcal{H}_{q^3}$. Now the same argument used in case i) yields a contradiction.

Cases iii) and iv). The order of G does not divide the order of these maximal subgroups.

Case v). The group G acts on the $q^6 + 1 \mathbb{F}_{q^6}$ -rational points of a conic C defined over \mathbb{F}_{q^6} . As in case *ii*), G is isomorphic to a cyclic subgroup Γ of PGL(2, q^6) acting on a line ℓ with no short orbits apart from two fixed \mathbb{F}_{q^6} -rational points. The action of G on \mathcal{C} is equivalent to the action of Γ on ℓ , see [34, Chapt. VIII, Thm. 15]; hence G has no short orbits on \mathcal{C} apart from two fixed \mathbb{F}_{q^6} -rational points P_1, P_2 . If G has a fixed \mathbb{F}_{q^6} -point on \mathcal{H}_{q^3} , then we get a contradiction by arguing as in case i). Otherwise, $P_1, P_2 \notin \mathcal{H}_{q^3}$; by [30, Par. 2] and [22, page 141], G fixes a third \mathbb{F}_{q^6} -rational point $P_3 \in \mathcal{H}_{q^3}$, and $\mathcal{T} = \{P_1, P_2, P_3\}$ is a self-polar triangle. Let $\mathcal{H}_{q^3} : X^{q^3+1} + Y^{q^3+1} + 1 = 0$; up to conjugation, \mathcal{T} is the fundamental triangle and a generator of G has the form $g : (X, Y, T) \mapsto (\lambda X, \mu Y, T)$. Then the order |G| of g divides $q^3 + 1$, which is impossible.

Cases viii) to xii), and case xv). The order of G does not divide the order of these maximal subgroups.

Cases vi), vii), xiii), and xiv). If K is a group containing $PSU(3, 2^m)$ as a normal subgroup of index 3, then the order of any maximal subgroup of K divides three times the order of a maximal subgroup of $PSU(3, 2^m)$. Hence, by applying Theorem 2.1 to $PSU(3, p^m)$, it can be checked that |G| does not divide either the order of any maximal subgroup of $PSU(3, p^m)$, or the order of any maximal subgroup of K. \Box

Lemma 4.5. Let $G \leq PGU(3,q^3)$ with |G| = q(q+1). Then the number of Sylow *p*-subgroups of G is either 1 or q + 1.

Proof. Let Q_1, \ldots, Q_n be the Sylow *p*-subgroups of *G*. By [23, Thm. 12.25 (i), (ii)], for each $i = 1, \ldots, n$ there is a unique point $P_i \in \mathcal{H}_{q^3}$ fixed by Q_i, P_i is \mathbb{F}_{q^6} -rational, and $P_i \neq P_j$ for $i \neq j$. If n > 1, then *G* has no fixed points; hence, the length of the orbit \mathcal{O}_{P_1} of P_1 under *G* is at least q + 1, since Q_1 is semiregular on $\mathcal{H}_{q^3} \setminus \{P_1\}$. On the other hand, the stabilizer of P_1 in *G* has length at least *q*, as it contains Q_1 . Therefore $|\mathcal{O}_{P_1}| = q + 1$ by the orbit-stabilizer theorem. If $P \in \mathcal{O}_{P_1}$, then the stabilizer of *P* in *G* has order *q*, hence $P = P_i$ for some $i \in \{2, \ldots, n\}$. Then n = q + 1. \Box

Proposition 4.6. Let $G \leq PGU(3,q^3)$ with |G| = q(q+1). If G has a unique Sylow p-subgroup Q, then $\mathcal{X}_q \ncong \mathcal{H}_{q^3}/G$.

Proof. Let $\mathcal{H}_{q^3}: Y^{q^3+1} = X^{q^3} + X$. Since Q is normal in G, we have that G fixes the unique fixed point of Q on \mathcal{H}_{q^3} , which can be assumed to be the ideal point P_{∞} . The stabilizer of P_{∞} in PGU(3, q^3) is solvable; hence, by Hall's theorem [21, Theorems 2.1-2.4], we have that, up to conjugation, $G = Q \rtimes \langle \alpha_{\lambda} \rangle$, where $\alpha_{\lambda}: (X,Y,T) \mapsto$ $(X, \lambda Y, T)$ and λ is a primitive (q+1)-th root of unity. The genus g of \mathcal{H}_{q^3}/G is computed in [15, Thm. 4.4]. In the terminology of [15, Thm. 4.4], $g = g(\mathcal{X}_q)$ implies $q = p^w$, that is, the elements of Q are involutions of the form $\beta_{\mu}: (X,Y,T) \mapsto (X + \mu T,Y,T)$, with $\mu^{q^3} + \mu = 0$. Then there exists a p-linearized polynomial $L \in \mathbb{F}_{q^6}[X]$ of degree q dividing $X^{q^3} + X$, such that the set of roots of L coincides with $\{\mu \in \mathbb{F}_{q^6} \mid \beta_{\mu} \in Q\}$. By [27, Thm. 3.62], there is also a p-linearized polynomial $F \in \mathbb{F}_{q^6}[X]$ of degree q^2 dividing $X^{q^3} + X$, such that $F(L(X)) = X^{q^3} + X$. Then it is easy to see that the quotient curve \mathcal{H}_{q^3}/G is \mathbb{F}_{q^6} -birationally equivalent to the plane curve \mathcal{C} with equation $V^{q^2-q+1} = F(U)$. Assume that there exists an \mathbb{F}_{q^6} -isomorphism $\psi : \mathcal{C} \to \mathcal{X}_q$. We will show that in this case F(U) cannot be a divisor of $U^{q^3} + U$, which is a contradiction.

By [23, Thm. 12.11], the ideal points $R_{\infty} \in \mathcal{X}_q$ and $S_{\infty} \in \mathcal{C}$ are the unique fixed points of the automorphism groups $\operatorname{Aut}(\mathcal{X}_q)$ and $\operatorname{Aut}(\mathcal{C})$, respectively. Hence, $\psi(S_{\infty}) = R_{\infty}$. Also, the coordinate functions have pole divisors

$$div(x)_{\infty} = (q^2 - q + 1)R_{\infty}, \ div(y)_{\infty} = q^2 R_{\infty},$$
$$div(u)_{\infty} = (q^2 - q + 1)S_{\infty}, \ div(v)_{\infty} = q^2 S_{\infty},$$

and the Weierstrass semigroups at the ideal points are $H(R_{\infty}) = H(S_{\infty}) = \langle q^2 - q + 1, q^2 \rangle$ (see [23, Lemmata 12.1, 12.2]). Then $\{1, u\}$ is a basis of the Riemann–Roch space $\mathcal{L}((q^2 - q + 1)R_{\infty})$ and $\{1, u, v\}$ is a basis of $\mathcal{L}(q^2R_{\infty})$. Therefore, there exist constants $a, b, c, d, e \in \mathbb{F}_{q^6}, a, d \neq 0$, such that $\psi^*(x) = au + b$ and $\psi^*(y) = cu + dv + e$, where $\psi^* : \mathbb{F}_{q^6}(\mathcal{X}_q) \to \mathbb{F}_{q^6}(\mathcal{C})$ is the pull-back of ψ ; equivalently, $\psi : (U, V, T) \mapsto (aU + b, cU + dV + e, T)$.

Then the polynomial identity

$$(aU+b)^{q^{2}} - (aU+b) - (cU+dV+e)^{q^{2}-q+1} = k\left(F(U) - V^{q^{2}-q+1}\right)$$

holds for some non-zero $k \in \overline{\mathbb{F}}_{q^6}$. By comparing the coefficients we get $c = e = 0, b \in \mathbb{F}_{q^2}$, and $k = d^{q^2-q+1}$; this implies

$$F(U) = k^{-1}a^{q^2}U^{q^2} - k^{-1}aU.$$

It is easily checked that the conventional *p*-associate of the *p*-linearized polynomial F(X) is not a divisor of the conventional *p*-associate of $U^{q^3} + U$, hence F(U) is not a divisor of $U^{q^3} + U$ by [27, Thm. 3.62]. \Box

Lemma 4.7. Let $G \leq \text{PGU}(3, q^3)$ with |G| = q(q+1). If G has q+1 distinct Sylow p-subgroup Q_1, \ldots, Q_{q+1} , then $G \cong (\mathbb{Z}_{p'})^s \rtimes Q_1$, where p' is a prime and $(p')^s = q+1$.

Proof. By the proof of Lemma 4.5, the points P_1, \ldots, P_{q+1} , fixed by Q_1, \ldots, Q_{q+1} , respectively, form a single orbit \mathcal{O} under the action of G. By Burnside's Lemma [2, Chapt. VIII, Par. 118], G is sharply 2-transitive on \mathcal{O} . Then, by [20, Thm. 20.7.1], G is isomorphic to the group of affine transformations of a near-field F; also, G has a regular normal subgroup N, and hence $G = N \rtimes Q_1$. The order f of F satisfies q(q+1) = (f-1)f, hence f = q + 1. This implies that F cannot be one of the seven exceptional near-fields listed in [35] and then F is a Dickson near-field; see [20, Thm. 20.7.2]. In particular, N is isomorphic to the additive group $(\mathbb{Z}_{p'})^s$ of a finite field. \Box

Proposition 4.8. Let $G \leq PGU(3, q^3)$ with |G| = q(q+1). If G has q+1 distinct Sylow p-subgroup Q_1, \ldots, Q_{q+1} , then $\mathcal{X}_q \ncong \mathcal{H}_{q^3}/G$.

Proof. Suppose q is odd. Then all involutions of $PGU(3, q^3)$ are conjugate, and they are homologies of $PG(2, q^6)$; see [25, Lemma 2.2]. The maximum number of pairwise commuting involutions is 3; in fact, two homologies commute if and only if the center of one homology lies on the axis of the other (see [6, Thm. 3.1.12]). Then q + 1 = 4 by Lemma 4.7, contradicting q > 3.

Suppose q is even, and $\mathcal{X}_q \cong \mathcal{H}_{q^3}/G$. The group Q_1 is isomorphic to the multiplicative group of F, hence Q_1 is metacyclic; see e.g. [3, Ex. 1.19]. Also, Q_1 has exponent 2 or 4 by [25, Lemma 2.1]. Therefore, $q \in \{2, 4, 8, 16\}$. The case q = 2 is excluded. If q = 16, then F has prime order 17 and F is a field; hence Q_1 has exponent 16, a contradiction.

For $q \in \{4, 8\}$ we apply the Riemann–Hurwitz formula [31, Thm. 3.4.13] to the covering $\mathcal{H}_{q^3} \to \mathcal{X}_q$ to get a contradiction on the degree $\Delta = (2g(\mathcal{H}_{q^3}) - 2) - |G| (2g(\mathcal{X}_q) - 2)$ of the different divisor. By [31, Thm. 3.8.7]

$$\Delta = \sum_{\sigma \in G \setminus \{id\}} i(\sigma),$$

where $i(\sigma) \ge 0$ satisfies the following conditions.

- If σ has order 2, then $i(\sigma) = q^3 + 2$; if σ has order 4, then $i(\sigma) = 2$ (see [31, Eq. (2.12)]).
- If σ has odd order, then $i(\sigma)$ equals the number of fixed points of σ on \mathcal{H}_{q^3} , see [31, Cor. 3.5.5]; also, by [22, pp. 141–142], either σ has exactly 3 fixed points or σ is a homology. In the former case $i(\sigma) \leq 3$, in the latter $i(\sigma) = q^3 + 1$.

If q = 4, then $\Delta = 470$ and $G = \mathbb{Z}_5 \rtimes Q_1$. If $Q_1 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, then G has 15 involutions, whose contributions to Δ sum up to $990 > \Delta$. Then $Q_1 \cong \mathbb{Z}_4$, and the contributions of the Q_i 's to Δ sum up to $5 \cdot 66 + 10 \cdot 2 = 350$. The remaining four non-trivial elements of G are generators of \mathbb{Z}_5 ; then either all of them are homologies, or all of them fix 3 points. In both cases, their contribution cannot be equal to $120 = \Delta - 350$.

Let q = 8, hence $\Delta = 7758$ and $G = (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes Q_1$. If Q_1 has more than one involution, then the involutions of G contribute to Δ for at least $18 \cdot 514 > \Delta$. Hence, Q_1 is the quaternion group, and the sum of Q_i 's contributions to Δ is $9 \cdot 514 + 54 \cdot 2 = 4734$. The contribution to Δ of the elements of $\mathbb{Z}_3 \times \mathbb{Z}_3$ is either 513 or less than 4; hence, it cannot sum up to $3024 = \Delta - 4734$. \Box

By Lemma 4.5 and Propositions 4.6 and 4.8, the following result follows.

Proposition 4.9. There is no Galois-covering $\mathcal{H}_{q^3} \to \mathcal{X}_q$ of degree $q^2 + q$.

Finally, Theorem 1.2 follows from Propositions 4.1, 4.2, 4.4, and 4.9.

Acknowledgments

This research was supported by the Italian Ministry MIUR, Strutture Geometriche, Combinatoria e loro Applicazioni, PRIN 2012 prot. 2012XZE22K, and by GNSAGA of the Italian INdAM.

References

- M. Abdón, J. Bezerra, L. Quoos, Further examples of maximal curves, J. Pure Appl. Algebra 213 (6) (2009) 1192–1196.
- [2] W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, Cambridge, 1897.
- [3] P.J. Cameron, Permutation Groups, Cambridge University Press, 1999.
- [4] A. Cossidente, G. Korchmáros, F. Torres, On curves covered by the Hermitian curve, J. Algebra 216 (1) (1999) 56–76.
- [5] A. Cossidente, G. Korchmáros, F. Torres, Curves of large genus covered by the Hermitian curve, Commun. Algebra 28 (10) (2000) 4707–4728.
- [6] P. Dembowski, Finite Geometries, Springer, Berlin, 1968.
- [7] L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1902.
- [8] I. Duursma, K.-H. Mak, On maximal curves which are not Galois subcovers of the Hermitian curve, Bull. Braz. Math. Soc. (N. S.) 43 (3) (2012) 453–465.
- [9] R. Fuhrmann, F. Torres, On Weierstrass points and optimal curves, Rend. Circ. Mat. Palermo Suppl. 51 (1998) 25–46 (Recent Progress in Geometry, Ballico E., Korchmáros G. (Eds.)).
- [10] A. Garcia, Curves over finite fields attaining the Hasse–Weil upper bound, in: European Congress of Mathematics, vol. II, Barcellona, 2000, in: Prog. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 199–205.
- [11] A. Garcia, On curves with many rational points over finite fields, in: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, Springer, Berlin, 2002, pp. 152–163.
- [12] A. Garcia, C. Güneri, H. Stichtenoth, A generalization of the Giulietti–Korchmáros maximal curve, Adv. Geom. 10 (3) (2010) 427–434.
- [13] A. Garcia, H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inf. Theory 41 (1995) 1548–1563.
- [14] A. Garcia, H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, Bull. Braz. Math. Soc. (N. S.) 37 (1) (2006) 139–152.
- [15] A. Garcia, H. Stichtenoth, C.P. Xing, On subfields of the Hermitian function field, Compos. Math. 120 (2000) 137–170.
- [16] A. Garcia, F. Torres, On unramified coverings of maximal curves, in: Proceedings of AGCT-10 2005, in: Semin. Congr., vol. 21, 2010, pp. 35–42.
- [17] M. Giulietti, G. Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (1) (2009) 229–245.
- [18] C. Güneri, M. Özdemir, H. Stichtenoth, The automorphism group of the generalized Giulietti– Korchmáros function field, Adv. Geom. 13 (2) (2013) 369–380.
- [19] R. Guralnick, B. Malmskog, R. Pries, The automorphism of a family of maximal curves, J. Algebra 361 (2012) 92–106.
- [20] M. Hall, The Theory of Groups, Macmillan, New York, 1959.
- [21] P. Hall, A note on soluble groups, J. Lond. Math. Soc. 3 (1928) 98–105.
- [22] R.W. Hartley, Determination of the ternary collineation group whose coefficients lie in the $GF(2^n)$, Ann. of Math. Second Series 27 (2) (1925) 140–158.
- [23] J.W.P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves over a Finite Field, Princeton Ser. Appl. Math., Princeton, 2008.
- [24] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., vol. 134, Springer, Berlin, 1967.
- [25] W.N. Kantor, M.E. O'Nan, G.M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic, J. Algebra 21 (1972) 17–50.
- [26] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305 (Série I) (1987) 729–732.
- [27] R. Lidl, H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1986.

- [28] I.D. Macdonald, The Theory of Groups, Oxford University Press, Oxford, 1968.
- [29] K.-H. Mak, On congruence function fields with many rational points, PhD Thesis. Available at www.ideals.illinois.edu.
- [30] H.H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Am. Math. Soc. 12 (2) (1911) 207–242.
- [31] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd edn., Grad. Texts Math., vol. 254, Springer, Berlin, 2009.
- [32] G. van der Geer, Curves over finite fields and codes, in: European Congress of Mathematics, vol. II, Barcellona, 2000, in: Prog. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 225–238.
- [33] G. van der Geer, Coding theory and algebraic curves over finite fields: a survey and questions, in: Applications of Algebraic Geometry to Coding Theory, Physics and Computation, in: NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer, Dordrecht, 2001, pp. 139–159.
- [34] O. Veblen, J.W. Young, Projective Geometry, The Atheneum Press, Boston, 1910.
- [35] H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Semin. Univ. Hamb. 11 (1936) 132–145.