Complete ($k, 3$)-arcs from quartic curves

Daniele Bartoli ${ }^{1}$. Massimo Giulietti ${ }^{2}$. Giovanni Zini ${ }^{\mathbf{3}}$

Received: 1 December 2014 / Revised: 12 March 2015 / Accepted: 23 March 2015 /
Published online: 12 April 2015
© Springer Science+Business Media New York 2015

Abstract

Complete ($k, 3$)-arcs in projective planes over finite fields are the geometric counterpart of linear non-extendible Near MDS codes of length k and dimension 3. A class of infinite families of complete $(k, 3)$-arcs in $\operatorname{PG}(2, q)$ is constructed, for q a power of an odd prime $p \equiv 2(\bmod 3)$. The order of magnitude of k is smaller than q. This property significantly distinguishes the complete ($k, 3$)-arcs of this paper from the previously known infinite families, whose size differs from q by at most $2 \sqrt{q}$.

Keywords ($k, 3$)-arcs • NMDS codes • Quartic curves
Mathematics Subject Classification 51E21

1 Introduction

$\mathrm{A}(k, r)$-arc in $\operatorname{PG}(2, q)$, the projective Galois plane over the finite field with q elements \mathbb{F}_{q}, is a set of k points no $(r+1)$ of which are collinear and such that there exist r collinear points.

[^0]A general introduction to (k, r)-arcs can be found in the monograph [13, Chapt. 12], as well as in the survey paper [16, Sect. 5]. A natural problem in this context is the construction of infinite families of complete (k, r)-arcs, that is, arcs that are maximal with respect to set theoretical inclusion. From the standpoint of Coding Theory, complete (k, r)-arcs correspond to linear $[k, 3, k-r]_{q}$-codes which cannot be extended to a code with a larger minimum distance. If $r=3$ the associated code is a Near MDS code, that is, a code C such that the Singleton defects of C and its dual C^{\perp} is equal to 1 (see $[6,7]$).

In the case $r=2$, the theory is well developed and quite rich of constructions; see e.g. [$1-3,14-16,22,23$] and the references therein, as well as [13, Chapt. $8-10]$. On the other hand, for most $r>2$, the only known infinite families either consist of the set of \mathbb{F}_{q}-rational points of some irreducible curve of degree r (see [10,17,24] for $r=3$, as well as [11] for $r>3$), or arise from the theory of 2-character sets in $\operatorname{PG}(2, q)$ (see Sects. 12.2 and 12.3 in [13], as well as the more recent work [12]). In particular, no general description of a complete $(k, 3)$-arc other than the set of \mathbb{F}_{q}-rational points of an irreducible cubic seems to be known. Computational results about the smallest size of a complete $(k, 3)$-arc in $\operatorname{PG}(2, q)$ have been obtained for $q \leq 16$; see $[4,5,19]$.

The aim of this paper is to provide a new class of infinite families of complete ($k, 3$)-arcs in $\mathrm{PG}(2, q)$. Our main result is the following.

Theorem 1 Let σ be a non-square power of a prime $p>2$, with $p \equiv 2(\bmod 3)$. Define

$$
\tau(\sigma)= \begin{cases}\frac{p+5}{4} & \text { if } \sigma=p \geq 29, \\ 2 \sqrt{\sigma p}+p-4 & \text { if } \sigma \geq p^{3} .\end{cases}
$$

Then, for each power q of σ with $q \geq 3600 \sigma^{6}$, there exists a complete ($k, 3$)-arc in $\operatorname{PG}(2, q)$ of size

$$
k \leq \frac{\tau(\sigma)}{\sigma} q+6
$$

The order of magnitude of the $(k, 3)$-arcs constructed in Theorem 1 is significantly smaller than that of the previously known families. In fact, complete ($k, 3$)-arcs arising from cubic curves have at least $q+1-2 \sqrt{q}$ points; on the other hand, the size of the arcs of Theorem 1 is asymptotically smaller than q. For example, if $\sigma=p^{3}$ with $p>13$, then $q=\sigma^{7}$ can be chosen and the bound on k is roughly $q^{20 / 21}$.

The points of the $(k, 3)$-arcs constructed in this paper belong, with at most 6 exceptions, to the set of \mathbb{F}_{q}-rational points of the quartic curve \mathcal{Q} with equation $Y=X^{4}$. It should be remarked that for this reason they share at most 18 points with an irreducible cubic. The proof of their completeness is based on a classical idea going back to Segre [20] and Lombardo-Radice [18]. In order to show that the 3 -secants of the ($k, 3$)-arc cover a point P off the quartic curve \mathcal{Q}, we construct an algebraic curve \mathcal{H}_{P} defined over \mathbb{F}_{q} describing the collinearity of three points of the arc and P, and then prove that \mathcal{H}_{P} has an absolutely irreducible component defined over \mathbb{F}_{q}; the Hasse-Weil bound guarantees the existence of a suitable \mathbb{F}_{q}-rational point in \mathcal{H}_{P}; finally we deduce that P is collinear with three points in the arc. The main difficulty here is that \mathcal{H}_{P} is not a plane curve, but a curve embedded in the 3-dimensional space; see Eq. (3). This is why the theory and the language of Function Fields have been used in order to show that \mathcal{H}_{P} possesses an absolutely irreducible component defined over \mathbb{F}_{q}.

The paper is organized as follows. In Sect. 2 we summarize the notions and the results from the theory of Function Fields that will be used in the paper. In Sect. 3, we construct a $(q / \sigma, 3)$-arc \mathcal{K}_{t} lying on the quartic curve \mathcal{Q}; it is associated to an additive subgroup M
with index σ in \mathbb{F}_{q}. We show in Sect. 4 that under the conditions on p, σ, and q of Theorem 1 , the 3 -secants of \mathcal{K}_{t} covers almost all points of $\operatorname{PG}(2, q) \backslash \mathcal{Q}$. To this end, we thoroughly investigate the curve \mathcal{H}_{P} and its function field. A 4-independent subset in the factor group \mathbb{F}_{q} / M is constructed in Sect. 5. This allows us to show in Sect. 6 how to cover the points of \mathcal{Q}, for q large enough, by joining more copies of \mathcal{K}_{t}.

2 Preliminaries from function field theory

We recall that a function field over a perfect field \mathbb{L} is an extension \mathbb{F} of \mathbb{L} such that \mathbb{F} is a finite algebraic extension of $\mathbb{L}(\alpha)$, with α transcendental over \mathbb{L}. For basic definitions on function fields we refer to [21]. In particular, the (full) constant field of \mathbb{F} is the set of elements of \mathbb{F} that are algebraic over \mathbb{L}.

If \mathbb{F}^{\prime} is a finite extension of \mathbb{F}, then a place P^{\prime} of \mathbb{F}^{\prime} is said to be lying over a place P of \mathbb{F} if $P \subset P^{\prime}$. This holds precisely when $P=P^{\prime} \cap \mathbb{F}$. In this paper, $e\left(P^{\prime} \mid P\right)$ will denote the ramification index of P^{\prime} over P. A finite extension \mathbb{F}^{\prime} of a function field \mathbb{F} is said to be unramified if $e\left(P^{\prime} \mid P\right)=1$ for every P^{\prime} place of \mathbb{F}^{\prime} and every P place of \mathbb{F} with P^{\prime} lying over P. Throughout the paper, we will refer to the following results.

Theorem 2 [21, Prop. 3.7.3 and Cor. 3.7.4] Consider an algebraic function field \mathbb{F} with constant field \mathbb{L} containing a primitive n-th root of the unity ($n>1$ and n relatively prime to the characteristic of $\mathbb{L})$. Let $u \in \mathbb{F}$ such that there is a place Q of \mathbb{F} with $\operatorname{gcd}\left(v_{Q}(u), n\right)=1$. Let $\mathbb{F}^{\prime}=\mathbb{F}(y)$ with $y^{n}=u$. Then

1. $\Phi(T)=T^{n}-u$ is the minimal polynomial of y over \mathbb{F}. The extension $\mathbb{F}^{\prime}: \mathbb{F}$ is Galois of degree n and the Galois group of $\mathbb{F}^{\prime}: \mathbb{F}$ is cyclic;
2.

$$
e\left(P^{\prime} \mid P\right)=\frac{n}{r_{P}} \text { where } r_{P}:=G C D\left(n, v_{P}(u)\right)>0 \text {; }
$$

3. \mathbb{L} is the constant field of \mathbb{F}^{\prime};
4. let g^{\prime} (resp. g) be the genus of \mathbb{F}^{\prime} (resp. \mathbb{F}), then

$$
g^{\prime}=1+n(g-1)+\frac{1}{2} \sum_{P \in \mathbb{P}(\mathbb{F})}\left(n-r_{P}\right) \operatorname{deg} P .
$$

Theorem 3 [21, Th. 3.7.10] Consider an algebraic function field \mathbb{F} with constant field \mathbb{L} of characteristic $p>0$, and an additive separable polynomial $a(T) \in \mathbb{L}[T]$ of degree p^{n} with all its roots in \mathbb{L}. Let $u \in \mathbb{F}$. Suppose that for each place P of \mathbb{F} there is an element $z \in \mathbb{F}$ (depending on P) such that either

$$
v_{P}(u-a(z)) \geq 0
$$

or

$$
v_{P}(u-a(z))=-m \text { with } m>0 \text { and } p X m .
$$

Define $m_{P}:=-1$ in the former case and $m_{p}:=m$ in the latter case. Let $\mathbb{F}^{\prime}=\mathbb{F}(y)$ be the extension with $a(y)=u$. If there exists at least one place Q such that $m_{Q}>0$, then

1. the extension $\mathbb{F}^{\prime}: \mathbb{F}$ is Galois of degree p^{n} and the Galois group of $\mathbb{F}^{\prime}: \mathbb{F}$ is isomorphic to the additive group $\{\alpha \in \mathbb{L}: a(\alpha)=0\}$;
2. \mathbb{L} is the constant field of \mathbb{F}^{\prime};
3. each place P in F with $m_{P}=-1$ is unramified in $\mathbb{F}^{\prime}: \mathbb{F}$;
4. each place P in F with $m_{P}>0$ is totally ramified in $\mathbb{F}^{\prime}: \mathbb{F}$;
5. let g^{\prime} (resp. g) be the genus of \mathbb{F}^{\prime} (resp. \mathbb{F}), then

$$
g^{\prime}=p^{n} g+\frac{p^{n}-1}{2}\left(-2+\sum_{P \in \mathbb{P}(\mathbb{F})}\left(m_{p}+1\right) \operatorname{deg} P\right) .
$$

An extension such as \mathbb{F}^{\prime} in Theorem 2 or 3 is said to be a Kummer extension or a generalized Artin-Schreier extension of \mathbb{F}, respectively.

Denote by \mathbb{F}_{q} the finite field with q elements. Let \mathbb{K} denote the algebraic closure of \mathbb{F}_{q}. A curve \mathcal{C} in some affine or projective space over \mathbb{K} is said to be defined over \mathbb{F}_{q} if the ideal of \mathcal{C} is generated by polynomials with coefficients in \mathbb{F}_{q}. Let $\mathbb{K}(\mathcal{C})$ denote the function field of \mathcal{C}. The subfield $\mathbb{F}_{q}(\mathcal{C})$ of $\mathbb{K}(\mathcal{C})$ consists of the rational functions on \mathcal{C} defined over \mathbb{F}_{q}. The extension $\mathbb{K}(\mathcal{C}): \mathbb{F}_{q}(\mathcal{C})$ is a constant field extension (see [21, Sect. 3.6]). In particular, \mathbb{F}_{q}-rational places of $\mathbb{F}_{q}(\mathcal{C})$ can be viewed as the restrictions to $\mathbb{F}_{q}(\mathcal{C})$ of places of $\mathbb{K}(\mathcal{C})$ that are fixed by the Frobenius map on $\mathbb{K}(\mathcal{C})$. The center of an \mathbb{F}_{q}-rational place is an \mathbb{F}_{q}-rational point of \mathcal{C}; conversely, if P is a simple \mathbb{F}_{q}-rational point of \mathcal{C}, then the only place centered at P is \mathbb{F}_{q}-rational.

We now recall the well-known Hasse-Weil bound.
Theorem 4 (Hasse-Weil bound, [21, Theorem 5.2.3]) The number N_{q} of \mathbb{F}_{q}-rational places of a function field \mathbb{F} with constant field \mathbb{F}_{q} and genus g satisfies

$$
\left|N_{q}-(q+1)\right| \leq 2 g \sqrt{q} .
$$

In order to apply the Hasse-Weil bound, the following lemma will be useful.
Lemma 1 Let $\mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right)$ be a function field with constant field \mathbb{F}_{q}. Suppose that $f \in$ $\mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right)[T]$ is a polynomial which is irreducible over $\mathbb{K}\left(\beta_{1}, \ldots, \beta_{n}\right)[T]$. Then, for a root z of f, the field \mathbb{F}_{q} is the constant field of $\mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right)(z)$.

Proof Let $\mathbb{F}_{q^{\prime}}$ be the constant field of $\mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right)(z)$. Then

$$
\mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right) \subseteq \mathbb{F}_{q^{\prime}}\left(\beta_{1}, \ldots, \beta_{n}\right) \subseteq \mathbb{F}_{q^{\prime}}\left(\beta_{1}, \ldots, \beta_{n}\right)(z)=\mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right)(z)
$$

Clearly f is irreducible over $\mathbb{F}_{q^{\prime}}\left(\beta_{1}, \ldots, \beta_{n}\right)$; then $\left[\mathbb{F}_{q^{\prime}}\left(\beta_{1}, \ldots, \beta_{n}\right)(z): \mathbb{F}_{q^{\prime}}\left(\beta_{1}, \ldots, \beta_{n}\right)\right]=$ $\operatorname{deg}(f)=\left[\mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right)(z): \mathbb{F}_{q}\left(\beta_{1}, \ldots, \beta_{n}\right)\right]$, and hence $\left[\mathbb{F}_{q^{\prime}}\left(\beta_{1}, \ldots, \beta_{n}\right): \mathbb{F}_{q}\left(\beta_{1}, \ldots\right.\right.$, $\left.\left.\beta_{n}\right)\right]=1$. This implies $\mathbb{F}_{q^{\prime}}=\mathbb{F}_{q}$.

$3(k, 3)$-arcs from quartic curves

Throughout the paper, p is an odd prime with $p \equiv 2(\bmod 3), \sigma=p^{h^{\prime}}$ with h^{\prime} odd, $q=p^{h}$ with $h>h^{\prime}, h^{\prime} \mid h$, and $\mathbb{K}=\overline{\mathbb{F}}_{q}$ is the algebraic closure of \mathbb{F}_{q}.

Let

$$
\mathcal{Q}=\left\{\left(x, x^{4}\right) \mid x \in \mathbb{F}_{q}\right\}
$$

be the set of \mathbb{F}_{q}-rational affine points of the plane quartic curve with Equation $Y=X^{4}$. The following propositions show the collinearity condition of three and four points on the quartic \mathcal{Q}.

Proposition 1 Let $A=\left(u, u^{4}\right), B=\left(v, v^{4}\right), C=\left(w, w^{4}\right)$ three distinct points of \mathcal{Q}. They are collinear if and only if

$$
u^{2}+v^{2}+w^{2}+u v+u w+v w=0
$$

Proof A, B, C are collinear if and only if

$$
\operatorname{det}\left(\begin{array}{ccc}
u & u^{4} & 1 \\
v-u & v^{4}-u^{4} & 0 \\
w-u & w^{4}-u^{4} & 0
\end{array}\right)=(v-u)(w-u)(w-v)\left[u^{2}+v^{2}+w^{2}+u v+u w+v w\right]=0 .
$$

As A, B, C are distinct, the assertion follows.
Proposition 2 Let $A=\left(u, u^{4}\right), B=\left(v, v^{4}\right), C=\left(w, w^{4}\right), D=\left(t, t^{4}\right)$ four distinct points of \mathcal{Q}. They are collinear if and only if

$$
\left\{\begin{array}{l}
u^{2}+v^{2}+w^{2}+u v+u w+v w=0 \\
u+v+w+t=0
\end{array} .\right.
$$

Proof By Proposition 1, the points A, B, C, D are collinear if and only if

$$
\left\{\begin{array}{l}
u^{2}+v^{2}+w^{2}+u v+u w+v w=0 \\
u^{2}+v^{2}+t^{2}+u v+u t+v t=0
\end{array}\right. \text {. }
$$

Since $w \neq t$, this is equivalent to

$$
\left\{\begin{array}{l}
u^{2}+v^{2}+w^{2}+u v+u w+v w=0 \\
u+v+w+t=0
\end{array} .\right.
$$

Next we construct an $(n, 3)$-arc contained in \mathcal{Q} from a coset of an additive subgroup of \mathbb{F}_{q}. Let

$$
\begin{equation*}
M:=\left\{\left(a^{\sigma}-a\right) \mid a \in \mathbb{F}_{q}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}_{t}:=\left\{\left(v, v^{4}\right) \mid v \in M+t\right\} \tag{2}
\end{equation*}
$$

with $t \notin M$.
Proposition 3 No four points of \mathcal{K}_{t} are collinear.
Proof By Proposition 2, if four distinct points $\left(a_{i}+t,\left(a_{i}+t\right)^{4}\right), a_{i} \in M, i=1, \ldots, 4$, are collinear then

$$
a_{1}+t+a_{2}+t+a_{3}+t+a_{4}+t=0, \quad \text { hence } \quad-4 t=a_{1}+a_{2}+a_{3}+a_{4} \in M
$$

Since $p \neq 2$ and M is closed under multiplication by elements of \mathbb{F}_{σ}, we have $t \in M$, a contradiction.

4 Points off \mathcal{Q} are covered by $\mathcal{K}_{\boldsymbol{t}}$

Consider a point $P=(a, b) \in \mathrm{AG}(2, q) \backslash \mathcal{Q}$. Arguing as in Proposition 2, the following result is obtained.

Proposition 4 Three distinct points $A=\left(u, u^{4}\right), B=\left(v, v^{4}\right), C=\left(w, w^{4}\right)$ of \mathcal{Q} and $P=(a, b) \in \mathrm{AG}(2, q) \backslash \mathcal{Q}$ are collinear if and only if

$$
\left\{\begin{array}{l}
u^{2}+v^{2}+w^{2}+u v+u w+v w=0 \\
a\left(u^{2}+v^{2}\right)(u+v)-u v\left(u^{2}+u v+v^{2}\right)-b=0
\end{array} .\right.
$$

Proof Note that the first equation gives the collinearity condition for A, B, C, whereas the second is the collinearity condition for A, B, P, since

$$
\operatorname{det}\left(\begin{array}{ccc}
u & u^{4} & 1 \\
v & v^{4} & 1 \\
a & b & 1
\end{array}\right)=(u-v)\left[a\left(u^{2}+v^{2}\right)(u+v)-u v\left(u^{2}+u v+v^{2}\right)-b\right] .
$$

In particular, if the points of \mathcal{Q} have the form $A=\left(u+t,(u+t)^{4}\right), B=\left(v+t,(v+t)^{4}\right)$, $C=\left(w+t,(w+t)^{4}\right)$, the conditions in Proposition 4 read

$$
\left\{\begin{array}{l}
w^{2}+w(u+v+4 t)+4 t(u+v)+6 t^{2}+u v+u^{2}+v^{2}=0 \\
a\left(u^{2}+v^{2}+2 t^{2}+2 t u+2 t v\right)(u+v+2 t) \\
-(u+t)(v+t)\left(u^{2}+v^{2}+u v+3 t^{2}+3 t(u+v)\right)-b=0
\end{array} .\right.
$$

Then the following result holds.
Corollary 1 A point $P=(a, b) \in \mathrm{AG}(2, q) \backslash \mathcal{Q}$ is collinear with three distinct points of \mathcal{K}_{t} if and only if there exists an \mathbb{F}_{q}-rational affine point (x, y, z), with $x^{\sigma}-x, y^{\sigma}-y, z^{\sigma}-z$ pairwise distinct, lying on the space curve \mathcal{H}_{P} with equations

$$
\mathcal{H}_{P}:\left\{\begin{array}{l}
\left(Z^{\sigma}-Z\right)^{2}+\left(Z^{\sigma}-Z\right)\left(\left(X^{\sigma}-X\right)+\left(Y^{\sigma}-Y\right)+4 t\right)+4 t\left(X^{\sigma}-X+Y^{\sigma}-Y\right) \tag{3}\\
+6 t^{2}+\left(X^{\sigma}-X\right)\left(Y^{\sigma}-Y\right)+\left(X^{\sigma}-X\right)^{2}+\left(Y^{\sigma}-Y\right)^{2}=0 \\
a\left(\left(X^{\sigma}-X\right)^{2}+\left(Y^{\sigma}-Y\right)^{2}+2 t^{2}+2 t\left(X^{\sigma}-X\right)+2 t\left(Y^{\sigma}-Y\right)\right)\left(X^{\sigma}-X+Y^{\sigma}-Y+2 t\right) \\
-\left(X^{\sigma}-X+t\right)\left(Y^{\sigma}-Y+t\right) \\
\cdot\left(\left(X^{\sigma}-X\right)^{2}+\left(Y^{\sigma}-Y\right)^{2}+\left(X^{\sigma}-X\right)\left(Y^{\sigma}-Y\right)+3 t^{2}+3 t\left(X^{\sigma}-X+Y^{\sigma}-Y\right)\right)-b=0
\end{array} .\right.
$$

Consider the following sequence of function field extensions:
$F_{5}=F_{4}(z): z^{\sigma}-z=w$
σ
$F_{4}=F_{3}(w): \begin{aligned} & w^{2}+w\left(\left(x^{\sigma}-x\right)+\left(y^{\sigma}-y\right)+4 t\right)+4 t\left(x^{\sigma}-x+y^{\sigma}-y\right) \\ & +6 t^{2}+\left(x^{\sigma}-x\right)\left(y^{\sigma}-y\right)+\left(x^{\sigma}-x\right)^{2}+\left(y^{\sigma}-y\right)^{2}=0\end{aligned}$
2
$F_{3}=F_{2}(y): y^{\sigma}-y=v$
σ
$F_{2}=F_{1}(x): x^{\sigma}-x=u$
σ
$F_{1}=\mathbb{F}_{q}(u, v): \begin{aligned} & a\left(u^{2}+v^{2}+2 t^{2}+2 t u+2 t v\right)(u+v+2 t) \\ & -(u+t)(v+t)\left(u^{2}+v^{2}+u v+3 t^{2}+3 t(u+v)\right)-b=0\end{aligned}$

We are going to show that each extension $F_{i}: F_{i-1}$ is well-defined and that the field of constants of each function field F_{i} is \mathbb{F}_{q}. We will also estimate the genus g_{i} of F_{i}. Finally, by using the Hasse-Weil bound, we will show that if q is large enough with respect to σ, then F_{5} has a large number of \mathbb{F}_{q}-rational places. By the equations defining F_{5}, this implies that the curve \mathcal{H}_{P} possesses a large number \mathbb{F}_{q}-rational points.

We will first show that F_{1} is a function field with genus 3 whose field of constants is \mathbb{F}_{q}; see Proposition 5 below. Equivalently, the plane quartic curve with equation
$\mathcal{H}_{1}: a\left(U^{2}+V^{2}+2 t^{2}+2 t U+2 t V\right)(U+V+2 t)-(U+t)(V+t)\left(U^{2}+V^{2}+U V+3 t^{2}+3 t(U+V)\right)-b=0$
is non-singular. We start by investigating an auxiliary cubic curve.
Lemma 2 Let $a, b \in \mathbb{F}_{q}$ with $b \neq 0, b \neq a^{4}$. The plane curve with equation

$$
\begin{equation*}
a\left(C^{2}+2 t^{2}+2 t C-2 D\right)(C+2 t)-\left(D+t C+t^{2}\right)\left(C^{2}-D+3 t^{2}+3 t C\right)-b=0 \tag{5}
\end{equation*}
$$

is absolutely irreducible and has genus $g_{0}=1$.
Proof After the affine transformation $\xi=D+t C+t^{2}, \zeta=C+2 t$ Eq. 5 becomes $h_{0}(\xi, \zeta)=0$ with

$$
h_{0}(\xi, \zeta)=a \zeta^{3}-\xi \zeta^{2}-2 a \xi \zeta+\xi^{2}-b
$$

Since $\partial_{\xi} h_{0}(\xi, \zeta)=-\zeta^{2}-2 a \zeta+2 \xi$ and $\partial_{\zeta} h_{0}(\xi, \zeta)=3 a \zeta^{2}-2 \xi \zeta-2 a \xi$, we have that the only three possibilities for an affine singular point are $\left(a^{2}(\sqrt{-2} \mp 1), \pm \sqrt{-2} a\right)$ and $(0,0)$, which satisfy $h_{0}(\xi, \zeta)=0$ if and only if $b=a^{4}$ or $b=0$. It is straightforward to check that the ideal points $(1,0,0),(a, 1,0)$ are non-singular. Then the assertion follows.

Proposition 5 Let $a, b \in \mathbb{F}_{q}$ with $b \neq 0, b \neq a^{4}$. Let $\mathbb{F}_{q}(c, d)$ be the function field of the non-singular cubic curve with Eq. 5. Then the equations

$$
u+v=c, \quad u v=d
$$

define a function field $\mathbb{F}_{q}(u, v)$ of genus 3 , with equation

$$
\begin{aligned}
& a\left(u^{2}+v^{2}+2 t^{2}+2 t u+2 t v\right)(u+v+2 t) \\
& \quad-(u+t)(v+t)\left(u^{2}+v^{2}+u v+3 t^{2}+3 t(u+v)\right)-b=0
\end{aligned}
$$

whose constant field is \mathbb{F}_{q}.
Proof Let $\mu=\frac{c^{2}}{4}-d \in \mathbb{F}_{q}(c, d)$. We are going to show that μ is a non-square in $\mathbb{K}(c, d)$. By substituting $D=C^{2} / 4$ in (5) we obtain

$$
\begin{equation*}
-3 / 16 C^{4}+(1 / 2 a-3 / 2 t) C^{3}+\left(3 a t-9 / 2 t^{2}\right) C^{2}+\left(6 a t^{2}-6 t^{3}\right) C+4 a t^{3}-b-3 t^{4}=0 . \tag{6}
\end{equation*}
$$

Derivation with respect to C gives

$$
-\frac{3}{4}(C+2 t)^{2}(C-2 a+2 t)
$$

Then, the only possible multiple solutions of (6) are $C=-2 t$ and $C=2 a-2 t$. By straightforward computation, this actually happens only if $b=0$ or $b=a^{4}$, which is excluded by our hypothesis. Therefore, there exist four distinct simple zeros of μ in $\mathbb{K}(c, d)$. Let P_{∞} and Q_{∞} be the places centered at the ideal points $(0,1,0)$ and $(1, a-t, 0)$, respectively. It is easily seen that

$$
v_{P_{\infty}}\left(c^{2}-4 d\right)=-2 \quad \text { and } \quad v_{Q_{\infty}}\left(c^{2}-4 d\right)=-2
$$

By Theorem 2, the extension $\mathbb{K}(c, d)(\eta): \mathbb{K}(c, d)$, with $\eta^{2}=\mu$ is a Kummer extension of degree 2 and genus

$$
g_{1}=1+2\left(g_{0}-1\right)+\frac{1}{2} \sum_{P \in \mathbb{P}(\mathbb{K}(c, d))}\left(n-r_{P}\right) \operatorname{deg} P=1+\frac{1}{2} 4=3 .
$$

Also, by Lemma $1, \mathbb{F}_{q}$ is the constant field of $\mathbb{F}_{q}(u, v)$.
To complete the proof, we only need to show that actually $\mathbb{K}(c, d)(\eta)$ coincides with $\mathbb{K}(u, v)$. This immediately follows from

$$
u=\eta+\frac{c}{2}, \quad v=-\eta+\frac{c}{2} .
$$

Proposition 6 Let $a, b \in \mathbb{F}_{q}$ with $b \neq 0, b \neq a^{4}$, and $a \neq t$. The equation $x^{\sigma}-x=u$ defines an extension $F_{2}=F_{1}(x)$ with genus $g_{2}=5 \sigma-2$ whose field of constants is \mathbb{F}_{q}.

Proof Let \mathcal{H}_{1} be as in (4). By Proposition 5, \mathcal{H}_{1} is a non-singular curve such that $F_{1}=$ $\mathbb{F}_{q}\left(\mathcal{H}_{1}\right)$. Then places of $\mathbb{K}(u, v)$ can be identified with points of \mathcal{H}_{1}. The ideal points of \mathcal{H}_{1} are $P_{1}=(1,0,0), Q_{1}=(0,1,0), R_{1}=(1, \alpha, 0)$, and $S_{1}=(\alpha, 1,0)$, with $\alpha^{2}+\alpha+1=0$. The tangent lines at such points are

$$
\begin{aligned}
& \ell_{P_{1}}: V=(a-t), \quad \ell_{Q_{1}}: U=(a-t), \\
& \ell_{R_{1}}: U+(\alpha+1) V+\frac{(\alpha+2)(a+3 t)}{3}=0, \quad \ell_{S_{1}}: U-\alpha V-\frac{(\alpha-1)(a+3 t)}{3}=0 .
\end{aligned}
$$

Here, the assumption $a \neq t$ assures that $U=0$ and $V=0$ are not tangent lines at the ideal points of \mathcal{H}_{1}; hence,

$$
\begin{array}{ll}
v_{P_{1}}(u)=v_{R_{1}}(u)=v_{S_{1}}(u)=-1, & v_{Q_{1}}(u)=0, \\
v_{Q_{1}}(v)=v_{R_{1}}(v)=v_{S_{1}}(v)=-1, & v_{P_{1}}(v)=0 . \tag{7}
\end{array}
$$

Consider the function field $\mathbb{K}(u, v)(x)=\mathbb{K}(v, x)$ defined by $u=x^{\sigma}-x$. For each place centered at an affine point and for Q_{1} there exists $\rho \in \mathbb{K}(u, v)$ such that the valuation of $u-\left(\rho^{\sigma}-\rho\right)$ at that place is non-negative; in fact, it is sufficient to consider $\rho=0$. Hence, we can apply Theorem 3, so that $\mathbb{K}(x, v): \mathbb{K}(u, v)$ is a Galois extension and $[\mathbb{K}(x, v)$: $\mathbb{K}(u, v)]=\sigma$. Moreover P_{1}, R_{1}, and S_{1} are the only totally ramified places; all other places are unramified. By Lemma $1, \mathbb{F}_{q}$ is the constant field of $F_{2}=\mathbb{F}_{q}(x, v)$. The genus is given by

$$
\begin{aligned}
g_{2} & =\sigma g_{1}+\frac{\sigma-1}{2}\left(-2+\sum_{P \in \mathbb{P}\left(\mathbb{K}\left(\mathcal{H}_{1}\right)\right)}\left(m_{P}+1\right) \operatorname{deg} P\right) \\
& =3 \sigma+\frac{\sigma-1}{2}(-2+3(1+1))=5 \sigma-2 .
\end{aligned}
$$

From now on, denote by P_{2}, R_{2}, S_{2} the places of $\mathbb{K}(x, y)$ lying over P_{1}, R_{1}, S_{1}, respectively. Also, let $Q_{2}^{1}, \ldots, Q_{2}^{\sigma}$ the places lying over Q_{1}.

Proposition 7 Let $a, b \in \mathbb{F}_{q}$ with $b \neq 0, b \neq a^{4}$, and $a \neq t$. The equation $y^{\sigma}-y=v$ defines an extension $F_{3}=F_{2}(y)$ with genus $g_{3}=6 \sigma^{2}-2 \sigma-1$ whose field of constants is \mathbb{F}_{q}.

Proof $\operatorname{In} \mathbb{K}(x, v)$ we have

$$
\begin{equation*}
v_{P_{2}}(v)=0, \quad v_{Q_{2}^{i}}(v)=-1, \quad v_{R_{2}}(v)=v_{S_{2}}(v)=-\sigma . \tag{8}
\end{equation*}
$$

The element $v-\alpha u \in \mathbb{K}(u, v)$ satisfies $v_{R_{2}}(v-\alpha u)=0$. Let $A \in \mathbb{K}$ be such that $A^{\sigma}=\alpha$ and consider $\rho=A x$; then,

$$
v-\left(\rho^{\sigma}-\rho\right)=v-\alpha x^{\sigma}+A x=v-\alpha x^{\sigma}+\alpha x-\alpha x+A x=v-\alpha u-\alpha x+A x .
$$

Since $\alpha^{2}+\alpha+1=0$, we have that $A=\alpha$ if and only if $3 \mid(\sigma-1)$. Then $A \neq \alpha$ by our assumptions on σ; in fact, $\sigma=p^{h^{\prime}}$ with h^{\prime} odd and $p \equiv 2(\bmod 3)$ imply that 3 does not divide $\sigma-1$. Thus, $v_{R_{2}}((A-\alpha) x)=-1$, and hence

$$
v_{R_{2}}\left(v-\left(\rho^{\sigma}-\rho\right)\right)=-1
$$

By taking $\rho=A^{-1} x$, the same argument yields $v_{S_{2}}\left(v-\left(\rho^{\sigma}-\rho\right)\right)=-1$. For the places centered at affine points and at Q_{2}^{i}, it is sufficient to choose $\rho=0$. Then, by Theorem 3, $\mathbb{K}(x, y): \mathbb{K}(x, v)$ is a Galois extension with $[\mathbb{K}(x, y): \mathbb{K}(x, v)]=\sigma$ and

$$
\begin{aligned}
g_{3} & =\sigma g_{2}+\frac{\sigma-1}{2}\left(-2+\sum_{P \in \mathbb{P}(\mathbb{K}(x, v))}\left(m_{P}+1\right) \operatorname{deg} P\right) \\
& =\sigma(5 \sigma-2)+\frac{\sigma-1}{2}(-2(\sigma-2)(1+1))=6 \sigma^{2}-2 \sigma-1 .
\end{aligned}
$$

Finally, by Lemma $1, \mathbb{F}_{q}$ is the constant field of $F_{3}=\mathbb{F}_{q}(x, y)$.
In the extension $\mathbb{K}(x, y): \mathbb{K}(x, v)$ the unique totally ramified places are $Q_{2}^{1}, \ldots, Q_{2}^{\sigma}$, R_{2}, and S_{2}; let $Q_{3}^{1}, \ldots, Q_{3}^{\sigma}, R_{3}$, and S_{3} be the places lying over them. All other places are unramified; denote by P_{3}^{i} the places lying over $P_{2}, i=1, \ldots, \sigma$.

Proposition 8 Let $a, b \in \mathbb{F}_{q}$ with $b \neq 0, b \neq a^{4}$, and $a \neq t$. The equation

$$
\begin{align*}
& w^{2}+w\left(\left(x^{\sigma}-x\right)+\left(y^{\sigma}-y\right)+4 t\right)+4 t\left(x^{\sigma}-x+y^{\sigma}-y\right)+6 t^{2} \\
& \quad+\left(x^{\sigma}-x\right)\left(y^{\sigma}-y\right)+\left(x^{\sigma}-x\right)^{2}+\left(y^{\sigma}-y\right)^{2}=0 \tag{9}
\end{align*}
$$

defines an extension $F_{4}=F_{3}(w)$ with genus $g_{4} \leq 16 \sigma^{2}-4 \sigma-3$ whose field of constants is \mathbb{F}_{q}.

Proof By the substitution

$$
\theta=w+\frac{1}{2}\left(x^{\sigma}-x+y^{\sigma}-y+4 t\right)
$$

we have $F_{4}=F_{3}(\theta)$. By straightforward computations,
$\theta^{2}=-\frac{3}{4}(u+v)^{2}+u v-2 t(u+v)-2 t^{2}=-\frac{3}{4}\left(u-\beta_{1} v+\left(1-\beta_{1}\right) t\right)\left(u-\beta_{2} v+\left(1-\beta_{2}\right) t\right)$,
where β_{1}, β_{2} are the two distinct solutions of $3 T^{2}+2 T+3=0$. Let $h_{1}(U, V)=0$ be the affine equation defining \mathcal{H}_{1}. By straightforward computations

$$
\begin{aligned}
& h_{1}\left(\beta_{1} V+\left(\beta_{1}-1\right) t, V\right)=0 \text { if and only if } r(V) \\
& \quad:=\left(3+2 \beta_{1}\right)(V+t)^{4}+2 a\left(3-\beta_{1}\right)(V+t)^{3}-b=0 .
\end{aligned}
$$

The coefficients of $r(V)$ are non-zero by the assumptions on a, b and the characteristic p; as

$$
r^{\prime}(V)=2(V+t)^{2}\left[2\left(3+2 \beta_{1}\right) V+3 a\left(3-\beta_{1}\right)\right],
$$

$\left(u-\beta_{1} v+\left(1-\beta_{1}\right) t\right)$ provides at most one double zero of θ^{2} in $\mathbb{K}(u, v)$, so at least two simple zeros; the same holds for the second factor $\left(u-\beta_{2} v+\left(1-\beta_{2}\right) t\right)$. The two factors have at most one common zero; then, there exists a zero P of θ^{2} in $\mathbb{K}(u, v)$ with multiplicity 1 , and hence θ^{2} is not a square in $\mathbb{K}(u, v)$. Let P^{\prime} be a place of $\mathbb{K}(x, y)$ lying over P; then $v_{P^{\prime}}\left(\theta^{2}\right) \in\left\{1, \sigma, \sigma^{2}\right\}$ is odd, hence θ^{2} is not a square in $\mathbb{K}(x, y)$. Therefore, $\mathbb{K}(x, y, \theta): \mathbb{K}(x, y)$ is a Kummer extension. By (10), θ^{2} has valuation -2 at P_{1}, Q_{1}, R_{1}, and S_{1}; hence,

$$
\begin{equation*}
v_{P_{3}^{i}}\left(\theta^{2}\right)=v_{Q_{3}^{i}}\left(\theta^{2}\right)=-2 \sigma, \quad v_{R_{3}}\left(\theta^{2}\right)=v_{S_{3}}\left(\theta^{2}\right)=-2 \sigma^{2} \quad(i=1, \ldots, \sigma) . \tag{11}
\end{equation*}
$$

The number of zeros of θ^{2} in $\mathbb{K}(x, y, \theta)$ is σ^{2} times the number of its zeros in $\mathbb{K}(u, v)$, so at most $8 \sigma^{2}$. By Theorem 3,

$$
\begin{aligned}
g_{4} & =1+2\left(g_{3}-1\right)+\frac{1}{2} \sum_{P \in \mathbb{P}(\mathbb{K}(x, y))}\left(2-r_{P}\right) \operatorname{deg} P \\
& \leq 1+2\left(6 \sigma^{2}-2 \sigma-2\right)+\frac{1}{2} 8 \sigma^{2}=16 \sigma^{2}-4 \sigma-3 .
\end{aligned}
$$

Finally, by Lemma $1, \mathbb{F}_{q}$ is the constant field of $\mathbb{F}_{q}(x, y, \theta)=F_{4}$.
Let $P_{4}^{i, j}, Q_{4}^{i, j}, R_{4}^{j}$, and $S_{4}^{j}(j=1,2)$ be the places of $\mathbb{K}(x, y, \theta)$ lying over the unramified places $P_{3}^{i}, Q_{3}^{i}, R_{3}$, and S_{3}, respectively.

Proposition 9 Let $a, b \in \mathbb{F}_{q}$ with $b \neq 0, b \neq a^{4}$, and $a \neq t$. The equation $z^{\sigma}-z=w$ defines an extension $F_{5}=F_{4}(z)$ with genus $g_{5} \leq 30 \sigma^{3}-12 \sigma^{2}-4 \sigma+1$ whose field of constants is \mathbb{F}_{q}.

Proof Arguing as in the proof of Proposition 8, we have that $\mathbb{K}(u, v, \theta): \mathbb{K}(u, v)$ is a Kummer extension of degree 2 . The unique ramified places are the zeros of θ^{2} with odd multiplicity, and

$$
g(\mathbb{K}(u, v, \theta)) \leq 1+2(g(\mathbb{K}(u, v))-1)+\frac{1}{2} \cdot 8=9 .
$$

Let $\tilde{P}_{1}^{j}, \tilde{Q}_{1}^{j}, \tilde{R}_{1}^{j}$, and $\tilde{S}_{1}^{j}(j=1,2)$ be the places of $\mathbb{K}(u, v, \theta)$ lying over P_{1}, Q_{1}, R_{1}, and S_{1}. As $v_{\tilde{P}_{1}^{j}}\left(\theta^{2}\right)=-2$, we have $v_{\tilde{P}_{1}^{j}}(\theta)=-1=v_{\tilde{P}_{1}^{j}}(u)$ and we can write

$$
\theta=k u+\Phi,
$$

for some $k \in \mathbb{K}, \Phi \in \mathbb{K}(u, v, \theta)$ with $v_{\tilde{P}_{1}^{j}}(\Phi) \geq 0$. Thus,

$$
v_{\tilde{P}_{1}^{j}}\left(\theta^{2}-k^{2} u^{2}\right)=v_{\tilde{P}_{1}^{j}}\left(2 k u \Phi+\Phi^{2}\right) \geq-1 .
$$

On the other hand, from (10) we have

$$
v_{\tilde{P}_{1}^{j}}\left(\theta^{2}-k^{2} u^{2}\right)=v_{\tilde{P}_{1}^{j}}\left(\left(-\frac{3}{4}-k^{2}\right) u^{2}-\frac{3}{4} v^{2}-\frac{1}{2} u v-2 t(u+v)-2 t^{2}\right),
$$

and $v_{\tilde{P}_{1}^{j}}\left(u^{2}\right)=-2$, whereas, by (7), the other terms have valuation greater than or equal to -1 at \tilde{P}_{1}^{j}. Therefore the coefficient $\left(-3 / 4-k^{2}\right)$ must vanish. By our assumptions on σ,
-3 is not a square in \mathbb{F}_{σ} (see Lemma 4.5 in [9]). Then $k \notin \mathbb{F}_{\sigma}$, and there exists a σ-th root $e_{\sigma} \in \mathbb{K}$ of k with $e_{\sigma} \neq k$. Let $\rho=e_{\sigma} x$; then

$$
\begin{aligned}
\theta & -\left(\rho^{\sigma}-\rho\right)=k\left(x^{\sigma}-x\right)+\Phi-e_{\sigma}^{\sigma} x^{\sigma}+e_{\sigma} x \\
& =\left(k-e_{\sigma}^{\sigma}\right) x^{\sigma}+\left(e_{\sigma}-k\right) x+\Phi=\left(e_{\sigma}-k\right) x+\Phi .
\end{aligned}
$$

$\mathbb{K}(x, y, \theta)$ is the compositum of $\mathbb{K}(u, v, \theta)$ and $\mathbb{K}(x, y)$; hence, at the places $P_{4}^{i, j}$ over P_{1} we have

$$
v_{P_{4}^{i, j}}(\Phi)=e\left(P_{4}^{i, j} \mid \tilde{P}_{1}^{j}\right) \cdot v_{\tilde{P}_{1}^{j}}(\Phi) \geq 0, \quad v_{P_{4}^{i, j}}(x)=e\left(P_{4}^{i, j} \mid P_{3}^{i}\right) \cdot v_{P_{3}^{i}}(x)=-1 .
$$

Therefore,

$$
\begin{equation*}
v_{P_{4}^{i, j}}\left(\theta-\left(\rho^{\sigma}-\rho\right)\right)=-1 . \tag{12}
\end{equation*}
$$

Now we prove that

$$
\mu \theta \neq \xi^{p}-\xi \quad \text { for all } \quad \xi \in \mathbb{K}(x, y, \theta), \mu \in \mathbb{F}_{\sigma}
$$

On the contrary, assume $\mu \theta=\xi^{p}-\xi$ with $\xi \in \mathbb{K}(x, y, \theta), \mu \in \mathbb{F}_{\sigma}$. From (12),

$$
-1=v_{P_{4}^{i, j}}\left(\mu \theta-\left(\mu \rho^{\sigma}-\mu \rho\right)\right)=v_{P_{4}^{i, j}}\left(\mu \theta-\left(w^{\sigma}-w\right)\right),
$$

with $w=\mu \rho \in \mathbb{K}(x, y, \theta)$. Since

$$
w^{\sigma}-w=\left(w^{\sigma / p}+w^{\sigma / p^{2}}+\ldots+w\right)^{p}-\left(w^{\sigma / p}+w^{\sigma / p^{2}}+\ldots+w\right)
$$

we have

$$
v_{P_{4}^{i, j}}\left(\xi^{p}-\xi-\left(\lambda^{p}-\lambda\right)\right)=-1
$$

where $\lambda=w^{\sigma / p}+w^{\sigma / p^{2}}+\ldots+w \in \mathbb{K}(u, v, \theta)$. But this is clearly impossible, since the valuation of ($\left.\xi^{p}-\xi-\left(\lambda^{p}-\lambda\right)\right)$ must be either non-negative or a multiple of p. Then we can apply Lemma 1.3 in [8] to conclude that $T^{\sigma}-T-\theta$ is irreducible over $\mathbb{K}(x, y, \theta)$, and $\mathbb{K}(x, y, z): \mathbb{K}(x, y, \theta)$ is a Galois extension of degree σ. Also, by Lemma $1, \mathbb{F}_{q}$ is the constant field of $\mathbb{F}_{q}(x, y, z)$. Finally we give a bound on $g 5$. By Castelnuovo's Inequality (see Theorem 3.11.3 in [21]),

$$
\begin{aligned}
g_{5} \leq & {[\mathbb{K}(x, y, z): \mathbb{K}(x, y)] \cdot g(\mathbb{K}(x, y))+[\mathbb{K}(x, y, z): \mathbb{K}(u, v, z)] \cdot g(\mathbb{K}(u, v, z)) } \\
& +([\mathbb{K}(x, y, z): \mathbb{K}(x, y)]-1) \cdot([\mathbb{K}(x, y, z): \mathbb{K}(u, v, z)]-1)
\end{aligned}
$$

We have

$$
\begin{aligned}
& {[\mathbb{K}(x, y, z): \mathbb{K}(x, y)]=[\mathbb{K}(x, y, z): \mathbb{K}(x, y, \theta)] \cdot[\mathbb{K}(x, y, \theta): \mathbb{K}(x, y)]=2 \sigma,} \\
& \quad g(\mathbb{K}(x, y))=6 \sigma^{2}-2 \sigma-1 .
\end{aligned}
$$

Since $\left\{x, x^{2}, \ldots, x^{\sigma}\right\}$ is a basis of $\mathbb{K}(x, v, z)$ over $\mathbb{K}(u, v, z)$ and $\left\{y, y^{2}, \ldots, y^{\sigma}\right\}$ is a basis of $\mathbb{K}(x, y, z)$ over $\mathbb{K}(x, v, z)$, we have that $\left\{x^{i} y^{j} \mid i, j=1, \ldots, \sigma\right\}$ is a basis of $\mathbb{K}(x, y, z)$ over $\mathbb{K}(u, v, z)$ and

$$
[\mathbb{K}(x, y, z): \mathbb{K}(u, v, z)]=\sigma^{2} .
$$

Since P_{1}, Q_{1}, R_{1}, and S_{1} do not ramify in $\mathbb{K}(u, v, \theta): \mathbb{K}(u, v)$, we have that θ^{2} has valuation -2 at the places lying over them; hence,

$$
v_{\tilde{P}_{1}^{j}}(\theta)=v_{\tilde{Q}_{1}^{j}}(\theta)=v_{\tilde{R}_{1}^{j}}(\theta)=v_{\tilde{S}_{1}^{j}}(\theta)=-1, \quad \text { for } j=1,2,
$$

whereas θ has non-negative valuation at any other place of $\mathbb{K}(u, v, \theta)$. Hence $\mathbb{K}(u, v, z)$: $\mathbb{K}(u, v, \theta)$, with $\theta=z^{\sigma}-z$, is a generalized Artin-Schreier extension of degree σ and

$$
\begin{aligned}
g(\mathbb{K}(u, v, z)) & =\sigma g(\mathbb{K}(u, v, \theta))+\frac{\sigma-1}{2}\left(-2+\sum_{P \in \mathbb{P}(\mathbb{K}(u, v, \theta))}\left(m_{P}+1\right) \operatorname{deg} P\right) \\
& \leq 9 \sigma+\frac{\sigma-1}{2}(-2+8(1+1))=16 \sigma-7 .
\end{aligned}
$$

Therefore,
$g_{5} \leq 2 \sigma\left(6 \sigma^{2}-2 \sigma-1\right)+\sigma^{2}(16 \sigma-7)+(2 \sigma-1)\left(\sigma^{2}-1\right)=30 \sigma^{3}-12 \sigma^{2}-4 \sigma+1$.

Theorem 5 Let \mathcal{K}_{t} as in (2). If $q \geq 3600 \sigma^{6}$ then \mathcal{K}_{t} is a 3 -arc which covers all points of $\mathrm{AG}(2, q) \backslash \mathcal{Q}$ except possibly those lying on the line $Y=0$.

Proof Let $P=(a, b) \in \mathrm{AG}(2, q) \backslash \mathcal{Q}$ and assume that $a \neq t$ and $b \neq 0$. We start by counting the number Z_{1} of poles of $x^{\sigma}-x, y^{\sigma}-y$, and $z^{\sigma}-z$ in F_{5}. The poles of $x^{\sigma}-x$ are the places lying over P_{1}, R_{1}, and S_{1} in $F_{5}: F_{1}$, and hence over $P_{4}^{i, j}, R_{4}^{j}$, and S_{4}^{j} in $F_{5}: F_{4}$ $(i=1, \ldots, \sigma, j=1,2)$. The extension $F_{5}: F_{4}$ has degree σ; then, by Theorem 3.1.11 in [21], $x^{\sigma}-x$ has at most $\sigma(2 \sigma+4)$ poles in F_{5}. By similar arguments it can be shown that the number of poles in F_{5} is at most $\sigma(2 \sigma+4)$ for $y^{\sigma}-y$ and at most $\sigma(4 \sigma+4)$ for $z^{\sigma}-z$. Summing up,

$$
Z_{1} \leq \sigma(2 \sigma+4)+\sigma(2 \sigma+4)+\sigma(4 \sigma+4)=8 \sigma^{2}+12 \sigma .
$$

Now count the number Z_{2} of zeros of $\left(x^{\sigma}-x\right)-\left(y^{\sigma}-y\right)$ in F_{5}. Clearly a place P_{5} is a zero of $\left(x^{\sigma}-x\right)-\left(y^{\sigma}-y\right)=(x-y)^{\sigma}-(x-y)$ if and only if it is a zero of $x-y-\lambda$ for some $\lambda \in \mathbb{F}_{\sigma}$; then,

$$
Z_{2} \leq \sum_{\lambda \in \mathbb{F}_{\sigma}} \operatorname{deg}(x-y-\lambda)_{0}=\sum_{\lambda \in \mathbb{F}_{\sigma}} \operatorname{deg}(x-y-\lambda)_{\infty} .
$$

The poles of $x-y-\lambda$ are the places lying over P_{1}, Q_{1}, R_{1}, and S_{1}. Then, by Theorem 3.1.11 in [21],

$$
\operatorname{deg}(x-y-\lambda)_{\infty}=4 \cdot\left[F_{5}: F_{1}\right]=8 \sigma^{3} \quad \text { for all } \quad \lambda \in \mathbb{F}_{\sigma} ;
$$

hence, $Z_{2} \leq 8 \sigma^{4}$.
Therefore, if the number N_{q} of \mathbb{F}_{q}-rational places of F_{5} is greater than

$$
8 \sigma^{4}+8 \sigma^{2}+12 \sigma
$$

then there exists an \mathbb{F}_{q}-rational place P of F_{5} such that $(x(P), y(P), z(P))$ is a well-defined affine point of \mathcal{H}_{P} with $x(P)^{\sigma}-x(P), y(P)^{\sigma}-y(P), z(P)^{\sigma}-z(P)$ pairwise distinct. By Theorem 4 we have

$$
N_{q} \geq q+1-2 g_{5} \sqrt{q} \geq q+1-2\left(30 \sigma^{3}-12 \sigma^{2}-4 \sigma+1\right) \sqrt{q} .
$$

From $q \geq 3600 \sigma^{6}$ it follows that

$$
q+1-2\left(30 \sigma^{3}-12 \sigma^{2}-4 \sigma+1\right) \sqrt{q} \geq 8 \sigma^{4}+8 \sigma^{2}+12 \sigma+1
$$

and hence, by Corollary 1 , the point P is collinear with three distinct points in \mathcal{K}_{t}.

Assume now that $P=(t, b)$ with $b \neq 0$. Let $t^{\prime} \in M+t$ with $t^{\prime} \neq t$, and consider the curve \mathcal{H}_{P}^{\prime} obtained by replacing t with t^{\prime} in Eq. 9 . Arguing as above, $\mathcal{K}_{t^{\prime}}$ covers the point P. But clearly $\mathcal{K}_{t^{\prime}}=\mathcal{K}_{t}$, and the assertion follows.

5 Constructions of 4-independent subsets

We now want to construct complete ($k, 3$)-arcs from union of cosets \mathcal{K}_{t}; to this end, we will use the notion of a 4 -independent subset of an elementary abelian p-group.

Definition 1 Let G be a finite abelian group and let \mathcal{T} be a subset of G. If

$$
y_{1}+y_{2}+y_{3}+y_{4} \neq 0 \quad \text { for all } \quad y_{1}, y_{2}, y_{3}, y_{4} \in \mathcal{T},
$$

then \mathcal{T} is said to be a 4-independent subset of G. An element $g \in G$ is covered by \mathcal{T} if either $g \in \mathcal{T}$ or

$$
\text { there exist } y_{1}, y_{2}, y_{3} \in \mathcal{T} \text { such that } y_{1}+y_{2}+y_{3}+g=0 \text {. }
$$

In the remaining part of the section we construct 4-independent subsets of the abelian group $\mathbb{Z}_{p}^{h^{\prime}}$, for h^{\prime} an odd integer and $p \geq 5$. We distinguish the cases $h^{\prime}=1$ and $h^{\prime} \geq 3$. For a subset A of a group G, let $s^{\wedge} A$ denote the s-fold sumset of A, that is,

$$
s^{\wedge} A=\left\{y_{1}+\ldots+y_{s} \mid y_{1}, \ldots, y_{s} \in A\right\} .
$$

In the following, let $[a, b]$ denote the set of elements in \mathbb{Z}_{p} represented by integers x with $a \leq x \leq b$.

Proposition 10 Let $p \geq 29$ be a prime, with $p \equiv 1 \bmod 4$. Then

$$
\mathcal{T}=\{-1,2\} \cup\left[4, \frac{p-1}{4}\right]
$$

is a 4-independent subset of \mathbb{Z}_{p} covering $\mathbb{Z}_{p} \backslash\{1\}$.
Proof The sum of four elements of $\mathcal{T}^{*}=\{2\} \cup\left[4, \frac{p-1}{4}\right]$ is contained in $[8, p-1]$ and therefore is different from 0 . An easy check shows that if one or more of the four elements is -1 , then it is not possible to obtain 0 .

Note that $p \geq 29$ guarantees that the element 4 is in $\left(-2+\mathcal{T}^{*}\right)$. Then

$$
\begin{aligned}
3^{\wedge} \mathcal{T} & =\{-3\} \cup\left(-2+\mathcal{T}^{*}\right) \cup\left(-1+2^{\wedge} \mathcal{T}^{*}\right) \cup 3^{\wedge} \mathcal{T}^{*} \\
& =\{-3\} \cup\{0\} \cup\left[2, \frac{p-9}{4}\right] \cup\{3\} \cup\left[5, \frac{p-3}{2}\right] \cup\{6\} \cup\left[8,3 \frac{p-1}{4}\right] \\
& =\{-3,0\} \cup\left[2,3 \frac{p-1}{4}\right] .
\end{aligned}
$$

Hence, the set of covered elements contains

$$
-3^{\wedge} \mathcal{T}=\{0,3\} \cup\left[\frac{p-1}{4}+1, p-2\right] .
$$

Note that the non-covered element 1 cannot be added to \mathcal{T} since $1+1-1-1=0$.

Proposition 11 Let $p>29$ be a prime, with $p \equiv 3 \bmod 4$. Then

$$
\mathcal{T}=\{-1,2\} \cup\left[4, \frac{p-3}{4}\right]
$$

is a 4 -independent subset of \mathbb{Z}_{p} covering $\mathbb{Z}_{p} \backslash\left\{1, \frac{p+1}{4}, \frac{p+5}{4}\right\}$.
Proof The sum of four elements of $\mathcal{T}^{*}=\{2\} \cup\left[4, \frac{p-3}{4}\right]$ is contained in $[8, p-3]$, and therefore is different from 0 . An easy check shows that if one or more of the four elements is -1 , then it is not possible to obtain 0 . From $p>29$ it follows that the element 4 is in $\left(-2+\mathcal{T}^{*}\right)$. Arguing as in Proposition 10,

$$
\begin{aligned}
3^{\wedge \mathcal{T}} & =\left\{y_{1}+y_{2}+y_{3} \mid y_{1}, y_{2}, y_{3} \in \mathcal{T}\right\}=\{-3\} \cup\left(-2+\mathcal{T}^{*}\right) \cup\left(-1+2^{\wedge} \mathcal{T}^{*}\right) \cup 3^{\wedge} \mathcal{T}^{*} \\
& =\{-3\} \cup\{0\} \cup\left[2, \frac{p-11}{4}\right] \cup\{3\} \cup\left[5, \frac{p-5}{2}\right] \cup\{6\} \cup\left[8,3 \frac{p-3}{4}\right] \\
& =\{-3,0\} \cup\left[2,3 \frac{p-3}{4}\right] .
\end{aligned}
$$

Then the the set of covered elements contains

$$
-3^{\wedge} \mathcal{T}=\{0,3\} \cup\left[\frac{p+9}{4}, p-2\right]
$$

Also, note that the non-covered elements $1, \frac{p+1}{4}, \frac{p+5}{4}$ cannot be added to \mathcal{T} since

$$
\begin{aligned}
1+1-1-1=0, & \frac{p+1}{4}+\frac{p+1}{4}+\frac{p+1}{4}+\frac{p-3}{4}
\end{aligned}=p,
$$

We now consider the case $G=\mathbb{Z}_{p}^{h^{\prime}}$ for $h^{\prime} \geq 3$. Clearly, G can be written as $G=A \times B \times C$, with $A=\mathbb{Z}_{p}, B=C=\mathbb{Z}_{p}^{\frac{h^{\prime}-1}{2}}$. Let

$$
\begin{equation*}
\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3}, \tag{13}
\end{equation*}
$$

where $\mathcal{T}_{1}=\{(a, 1,1) \mid a \in A\}, \mathcal{T}_{2}=\{(1, b, 1) \mid b \in B \backslash\{-3\}\}, \mathcal{T}_{3}=\{(1,1, c) \mid c \in C \backslash$ $\{-3\}\}$. Here, 1 and -3 are viewed as elements of the additive group of the finite field $\mathbb{F}_{p^{\frac{h^{\prime}-1}{2}}}$, which is isomorphic to B and C.

Proposition 12 Let $h^{\prime} \geq 3$ and let \mathcal{T} be as in (13). Then \mathcal{T} is a 4-independent subset of $\mathbb{Z}_{p}^{h^{\prime}}$ of size $2 p^{\frac{h^{\prime}-1}{2}}+p-4$ not covering at most $2\left(p^{\frac{h^{\prime}+1}{2}}-p^{\frac{h^{\prime}-1}{2}}\right)$ elements of $\mathbb{Z}_{p}^{h^{\prime}}$.

Proof Consider four elements $t_{1}, t_{2}, t_{3}, t_{4} \in \mathcal{T}$. If $t_{1}, t_{2}, t_{3}, t_{4}$ belong either to the same \mathcal{T}_{i} or to exactly two distinct \mathcal{T}_{i} 's, then they all share 1 in one of the coordinates, and therefore $t_{1}+t_{2}+t_{3}+t_{4} \neq(0,0,0)$ holds. Assume then that $t_{1}, t_{2}, t_{3}, t_{4}$ belong to all the three \mathcal{T}_{i} 's. If three of them belong to $\mathcal{T}_{1} \cup \mathcal{T}_{2}$, then the remaining element has the third coordinate different from -3 ; therefore, $t_{1}+t_{2}+t_{3}+t_{4} \neq(0,0,0)$ holds. Otherwise, three of them belong to $\mathcal{T}_{1} \cup \mathcal{T}_{3}$, the remaining element has the second coordinate different from -3 , and their sum
cannot be equal to $(0,0,0)$. This proves that \mathcal{T} is a 4 -independent subset of $\mathbb{Z}_{p}^{h^{\prime}}$. Now, let $t=(x, y, z) \in \mathbb{Z}_{p}^{h^{\prime}} \backslash \mathcal{T}$ with $y \neq 1$ and $z \neq 1$. Then

$$
(x, y, z)+(-2-x, 1,1)+(1,-2-y, 1)+(1,1,-2-z)=(0,0,0),
$$

and hence t is covered by \mathcal{T}.

6 Construction of $(k, 3)$-arcs from union of cosets of M

We first fix two (not necessarily distinct) subsets $\mathcal{K}_{t_{1}}$ and $\mathcal{K}_{t_{2}}$, defined as in (2), and a point $P=\left(w, w^{4}\right)$ in $\mathcal{Q} \backslash \mathcal{K}_{t_{1}} \cup \mathcal{K}_{t_{2}}$. Clearly P belongs to some subset $\mathcal{K}_{t_{P}}$ for some $t_{P} \in \mathbb{F}_{q}$.

Let $P_{1}=\left(x^{\sigma}-x+t_{1},\left(x^{\sigma}-x+t_{1}\right)^{4}\right) \in \mathcal{K}_{t_{1}}$ and $P_{2}=\left(y^{\sigma}-y+t_{2},\left(y^{\sigma}-y+t_{2}\right)^{4}\right) \in \mathcal{K}_{t_{2}}$. By Proposition 1, the three points P, P_{1}, and P_{2} are collinear if and only if

$$
\begin{equation*}
\left(x^{\sigma}-x+t_{1}\right)^{2}+\left(y^{\sigma}-y+t_{2}\right)^{2}+\left(x^{\sigma}-x+t_{1}\right)\left(y^{\sigma}-y+t_{2}\right)+w\left(x^{\sigma}-x+t_{1}+y^{\sigma}-y+t_{2}\right)+w^{2}=0 . \tag{14}
\end{equation*}
$$

Proposition 13 Equation 14, defines a function field $L=\mathbb{F}_{q}(x, y)$ with genus $g=\sigma^{2}-1$ whose field of constants is \mathbb{F}_{q}.

Proof Consider first the plane curve Γ_{0} with equation
$f_{0}(U, V)=\left(U+t_{1}\right)^{2}+\left(V+t_{2}\right)^{2}+\left(U+t_{1}\right)\left(V+t_{2}\right)+w\left(U+t_{1}+V+t_{2}\right)+w^{2}=0$.
The ideal points of Γ_{0} are the simple points $R_{1}=(1, \alpha, 0)$ and $S_{1}=(\alpha, 1,0)$, where $\alpha^{2}+\alpha+1=0$; all affine points are non-singular since $w \neq 0$. Then Γ_{0} is an irreducible conic. Let $L_{0}=\mathbb{F}_{q}(u, v)$ be the function field of Γ_{0}, where $f_{0}(u, v)=0$. Since Γ_{0} is non-singular, places of $\mathbb{K}(u, v)$ can be identified with points of Γ_{0}. The rational function $u \in \mathbb{K}(u, v)$ has valuation -1 at R_{1} and S_{1}, and non-negative valuation at the places centered at affine points of Γ_{0}. Then, by Theorem $3, \mathbb{K}(x, v): \mathbb{K}(u, v)$ with $u=x^{\sigma}-x$ is a generalized Artin-Schreier extension, and

$$
\begin{aligned}
g(\mathbb{K}(x, v)) & =\sigma g(\mathbb{K}(u, v))+\frac{\sigma-1}{2}\left(-2+\sum_{P \in \mathbb{P}(\mathbb{K}(u, v))}\left(m_{P}+1\right) \operatorname{deg} P\right) \\
& =\frac{\sigma-1}{2}(-2+4)=\sigma-1 .
\end{aligned}
$$

R_{1} and S_{1} are the unique totally ramified places; let \bar{R}_{1} and \bar{S}_{1} be the places lying over them. The other places are unramified. By Lemma $1, \mathbb{F}_{q}$ is the constant field of $\mathbb{F}_{q}(x, v)$.

Now, consider the element $v \in \mathbb{K}(x, v)$; we have $v_{\bar{R}_{1}}(v-\alpha u)=0$. For $A \in \mathbb{K}$ such that $A^{\sigma}=\alpha$, let $\rho=A x$; then

$$
v-\left(\rho^{\sigma}-\rho\right)=v-\alpha x^{\sigma}+A x=v-\alpha x^{\sigma}+\alpha x-\alpha x+A x=v-\alpha u-\alpha x+A x .
$$

Since $\alpha^{2}+\alpha+1=0$, we have that $A=\alpha$ if and only if $3 \mid(\sigma-1)$. Then $A \neq \alpha$ by our assumptions on σ, so $v_{\bar{R}_{1}}((A-\alpha) x)=-1$, and hence

$$
v_{\bar{R}_{1}}\left(v-\left(\rho^{\sigma}-\rho\right)\right)=-1 .
$$

By taking $\rho=A^{-1} x$, the same argument yields $v_{\bar{S}_{1}}\left(v-\left(\rho^{\sigma}-\rho\right)\right)=-1$. At the places centered at affine points it is sufficient to take $\rho=0$. Then, by Theorem $3, \mathbb{K}(x, y): \mathbb{K}(x, v)$
is a Galois extension with $[\mathbb{K}(x, y): \mathbb{K}(x, v)]=\sigma$; in this extension the unique totally ramified places are \bar{R}_{1} and \bar{S}_{1} while the others are unramified. Then,

$$
\begin{aligned}
g & =\sigma g(\mathbb{K}(x, v))+\frac{\sigma-1}{2}\left(-2+\sum_{P \in \mathbb{P}(\mathbb{K}(x, v))}\left(m_{P}+1\right) \operatorname{deg} P\right) \\
& =\sigma(\sigma-1)+\frac{\sigma-1}{2}(-2+4)=\sigma^{2}-1 .
\end{aligned}
$$

By Lemma $1, \mathbb{F}_{q}$ is the constant field of L.
Proposition 14 Assume that $q \geq 5 \sigma^{4}$. Then P is collinear with two distinct points $P_{1} \in \mathcal{K}_{t_{1}}$ and $P_{2} \in \mathcal{K}_{t_{2}}$.

Proof We are going to show that there exist x_{0}, y_{0} in \mathbb{F}_{q} such that (14) holds for $x=x_{0}$ and $y=y_{0}$, and $x_{0}^{\sigma}-x_{0} \neq y_{0}^{\sigma}-y_{0}$. We start by counting the number of poles of $x^{\sigma}-x=u$ and $y^{\sigma}-y=v$ in L. They are the places lying over the totally ramified places R_{1} and S_{1} in $L: L_{0}$; hence, the number of such poles is 2 . Next we count the number Z of zeros of $\left(x^{\sigma}-x\right)-\left(y^{\sigma}-y\right)$ in L. A place P is a zero of $\left(x^{\sigma}-x\right)-\left(y^{\sigma}-y\right)=(x-y)^{\sigma}-(x-y)$ if and only if it is a zero of $x-y-\lambda$ for some $\lambda \in \mathbb{F}_{\sigma}$; then

$$
Z \leq \sum_{\lambda \in \mathbb{F}_{\sigma}} \operatorname{deg}(x-y-\lambda)_{0}=\sum_{\lambda \in \mathbb{F}_{\sigma}} \operatorname{deg}(x-y-\lambda)_{\infty} .
$$

The poles of $x-y-\lambda$ are the places lying over R_{1} and S_{1} in $L: L_{0}$; then, by Theorem 3.1.11 in [21],

$$
\operatorname{deg}(x-y-\lambda)_{\infty}=2 \cdot\left[L: L_{0}\right]=2 \sigma^{2} \text { for all } \lambda \in \mathbb{F}_{\sigma} ;
$$

hence, $Z \leq 2 \sigma^{3}$ holds.
Therefore, if the number N_{q} of \mathbb{F}_{q}-rational places of Γ is greater than $2 \sigma^{3}+2$, then there exists an \mathbb{F}_{q}-rational place P of L such that the point $\left(x_{0}, y_{0}\right)=(x(P), y(P))$ is well defined and $x_{0}^{\sigma}-x_{0} \neq y_{0}^{\sigma}-y_{0}$. By the Hasse-Weil bound,

$$
N_{q} \geq q+1-2 g \sqrt{q}=q+1-2\left(\sigma^{2}-1\right) \sqrt{q} .
$$

Our hypothesis $q \geq 5 \sigma^{4}$ implies

$$
q+1-2 g \sqrt{q} \geq 2 \sigma^{3}+2+1
$$

This completes the proof.
Proposition 15 Assume that $q \geq 11 \sigma^{4}$. Then P is collinear with three distinct points $P_{1} \in$ $\mathcal{K}_{t_{1}}, P_{2} \in \mathcal{K}_{t_{2}}$, and $P_{3} \in \mathcal{Q}$.

Proof By Proposition 14, P is collinear with two distinct points $P_{1} \in \mathcal{K}_{t_{1}}, P_{2} \in \mathcal{K}_{t_{2}}$. The line through P_{1}, P_{2}, and P can be a tangent line to the curve \mathcal{Q}. Note that there are at most four tangent lines through P to the curve \mathcal{Q}; in fact, imposing that P lies on the tangent to \mathcal{Q} at the point $\left(X, X^{4}\right)$ gives an equation in X of degree 4 . Since each tangent line can be obtained from two pairs, we need at least nine distinct pairs of points P_{1}^{i}, P_{2}^{i} such that P_{1}^{i} and P_{2}^{i} are collinear with $P(i=1, \ldots, 9)$. Arguing as in the proof of Proposition 14, it is sufficient to require that the number of \mathbb{F}_{q}-rational places of L is greater than

$$
9 \cdot 2 \sigma^{3}+2=18 \sigma^{3}+2
$$

This is implied by the Hasse-Weil bound, together with $q \geq 11 \sigma^{4}$.

Henceforth, \mathcal{T} denotes a 4-independent subset of \mathbb{F}_{q} / M, for M as in (1). Let

$$
\begin{equation*}
\mathcal{K}_{\mathcal{T}}=\bigcup_{M+t \in \mathcal{T}} \mathcal{K}_{t} . \tag{15}
\end{equation*}
$$

Proposition 16 The set $\mathcal{K}_{\mathcal{T}}$ is a $(k, 3)$-arc.
Proof By Proposition 2, the sum of the first coordinate of 4 collinear points on \mathcal{Q} is equal to 0 . This is clearly impossible if the points belong to $\mathcal{K}_{\mathcal{T}}$, since \mathcal{T} is a 4 -indipendent subset of \mathbb{F}_{q} / M.

Proposition 17 Assume that $q \geq 11 \sigma^{4}$. Let $\operatorname{Cov}(\mathcal{T})$ be the set of all the elements of \mathbb{F}_{q} / M covered by \mathcal{T} as 4 -independent subset. Then the points in

$$
\bigcup_{M+t \in \operatorname{Cov}(\mathcal{T})} \mathcal{K}_{t}
$$

are covered by $\mathcal{K}_{\mathcal{T}}$.
Proof Let $P \in \mathcal{K}_{t_{P}}$ with $M+t_{P} \in \operatorname{Cov}(\mathcal{T})$. Then there exist $M+t_{1}, M+t_{2}, M+t_{3} \in \mathcal{T}$ such that

$$
t_{P}+t_{1}+t_{2}+t_{3} \in M
$$

Also, by Proposition 15, there exist three distinct points $P_{1} \in \mathcal{K}_{t_{1}}, P_{2} \in \mathcal{K}_{t_{2}}$, and $P_{3} \in \mathcal{Q}$ which are collinear with P.

Let t_{3}^{\prime} be such that $P_{3} \in \mathcal{K}_{t_{3}^{\prime}}$. By Proposition 2,

$$
t_{P}+t_{1}+t_{2}+t_{3}^{\prime} \in M
$$

Then $M+t_{3}=M+t_{3}^{\prime}$, that is, $\mathcal{K}_{t_{3}}=\mathcal{K}_{t_{3}^{\prime}}$; hence, P_{1}, P_{2}, P_{3} all belong to \mathcal{T} and the assertion is proved.

Theorem 6 Let \mathcal{T} be a 4 -independent subset of \mathbb{F}_{q} / M of size n, not covering at most m elements of \mathbb{F}_{q} / M. Let $\mathcal{K}_{\mathcal{T}}$ be as in (15). Assume $q \geq 3600 \sigma^{6}$. Then there exists a complete (k, 3)-arc \mathcal{K} with $\mathcal{K}_{\mathcal{T}} \subset \mathcal{K} \subset \mathcal{Q}$ of size at most

$$
(n+m) \frac{q}{\sigma}+6 .
$$

Proof Fix a coset $M+t$ in \mathcal{T}. By Theorem 5, all the points of $\operatorname{PG}(2, q) \backslash \mathcal{Q}$ are covered by a \mathcal{K}_{t} plus at most six points covering the lines $Y=0$ and $T=0$. By Proposition 17, there are at most $m \frac{q}{\sigma}$ affine points of \mathcal{Q} not covered by $\mathcal{K}_{\mathcal{T}}$. This shows that there exists a complete ($k, 3$)-arc \mathcal{K} containing $\mathcal{K}_{\mathcal{T}}$ of size at most

$$
\left|\mathcal{K}_{\mathcal{T}}\right|+m \frac{q}{\sigma}+6=(n+m) \frac{q}{\sigma}+6 .
$$

We are finally in a position to prove Theorem 1. Identify the additive groups $\mathbb{Z}_{p}^{h^{\prime}}$ and \mathbb{F}_{q} / M. From Propositions 10,11 , and 12 the following values of n and m occur in Theorem 6 :

- for $\sigma=p, p \equiv 1 \bmod 4, p \geq 29$,

$$
n=\frac{p-5}{4} \text { and } m=1 ;
$$

- for $\sigma=p, p \equiv 3 \bmod 4, p>29$,

$$
n=\frac{p-7}{4} \quad \text { and } \quad m=3
$$

- for $\sigma \geq p^{3}$, then

$$
n=2 p^{\frac{h^{\prime}-1}{2}}+p-4, \quad m=2\left(p^{\frac{h^{\prime}+1}{2}}-p^{\frac{h^{\prime}-1}{2}}\right)
$$

Acknowledgments This research was supported by the Italian Ministry MIUR, PRIN 2012 Strutture Geometriche, Combinatoria e loro Applicazioni and by INdAM. The first author acknowledges the support of the European Community under a Marie-Curie Intra-European Fellowship (FACE Project Number 626511).

References

1. Anbar N., Giulietti M.: Bicovering arcs and small complete caps from elliptic curves. J. Algebr. Comb. 38, 371-392 (2013). doi:10.1007/s10801-012-0407-8.
2. Anbar N., Bartoli D., Giulietti M., Platoni I.: Small complete caps from singular cubics. J. Comb. Des. 22(10), 409-424 (2014). doi:10.1002/jcd. 21366.
3. Anbar N., Bartoli D., Giulietti M., Platoni I.: Small complete caps from singular cubics. II. J. Algebr. Comb (to appear). (2014). doi:10.1007/s10801-014-0532-7 (published online May).
4. Bartoli D., Marcugini S., Pambianco F.: The non-existence of some NMDS codes and the extremal sizes of complete ($n, 3$)-arcs in PG(2,16). Des. Codes Cryptogr. 72(1), 129-134 (2014). doi:10.1007/ s10623-013-9837-0.
5. Coolsaet K., Sticker H.: The complete ($k, 3$)-arcs of $\mathrm{PG}(2, q), q \leq 13$. J. Comb. Des. 20, 89-111 (2012). doi:10.1002/jcd.20293.
6. Dodunekov S., Landjev I.: Near-MDS codes. J. Geom. 54, 30-43 (1995).
7. Dodunekov S., Landjev I.: Near-MDS codes over some small fields. Discret. Math. 213, 55-65 (2000).
8. Garcia A., Stichtenoth H.: Elementary Abelian p-extensions of algebraic function fields. Manuscr. Math. 72, 67-79 (1991).
9. Giulietti M.: On plane arcs contained in cubic curves. Finite Fields Appl. 8, 69-90 (2002).
10. Giulietti M., Pasticci F.: On the completeness of certain n-tracks arising from elliptic curves. Finite Fields Appl. 13(4), 988-1000 (2007).
11. Giulietti M., Pambianco F., Torres F., Ughi E.: On complete arcs arising from plane curves. Des. Codes Cryptogr. 25, 237-246 (2002).
12. Hamilton N., Penttila, T.: Sets of Type (a, b) From Subgroups of $\Gamma L\left(1, p^{R}\right)$. J. Algebr. Comb. 13, 67-76 (2001).
13. Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).
14. Hirschfeld J.W.P.: Algebraic curves, arcs, and caps over finite fields. In: Quaderni del Dipartimento di Matematica dell’ Università del Salento 5, Dipartimento di Matematica, Università del Salento, Lecce, (1986).
15. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Plan. Inference. 72(1-2), 355-380 (1998). R. C. Bose Memorial Conference (Fort Collins, CO, 1995).
16. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory, and finite projective spaces: update 2001. In: Blokhuis A, Hirschfeld J.W.P, Jungnickel D, Thas J.A. (eds.) Finite Geometries. Proceedings of the Fourth Isle of Thorns Conference, Developments in Mathematics, vol. 3, pp. 201-246. Kluwer Academic Publishers, Boston (2001).
17. Hirschfeld J.W.P., Voloch J.F.: The characterization of elliptic curves over finite fields. J. Austral. Math. Soc. 45, 275-286 (1988).
18. Lombardo-Radice L.: Sul problema dei k-archi completi in $S_{2, q}\left(q=p^{t}, p\right.$ primo dispari). Boll. Unione Mat. Ital. 3(11), 178-181 (1956).
19. Marcugini S., Milani A., Pambianco F.: Classification of the ($n, 3$)-arcs in PG(2, 7). J. Geom. 80(1-2), 179-184 (2004).
20. Segre B.: Ovali e curve σ nei piani di Galois di caratteristica due. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 32(8), 785-790 (1962).
21. Stichtenoth H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254, 2nd edn. Springer, Berlin (2009).
22. Szőnyi T.: Complete arcs in galois planes: a survey. In: Quaderni del Seminario di Geometrie Combinatorie, vol. 94, Dipartimento di Matematica G. Castelnuovo, Università degli Studi di Roma La Sapienza, Roma (1989).
23. Szőnyi T.: Some applications of algebraic curves in finite geometry and combinatorics. In: Surveys in combinatorics, London, 1997. London Mathematical Society Lecture Note Series, vol. 241, pp. 197-236. Cambridge University Press, Cambridge (1997).
24. Tallini Scafati M.: Graphic curves on a Galois plane. In: Atti del Convegno di Geometria Combinatoria e sue Applicazioni, Perugia, pp. 413-419 (1970).

[^0]: This is one of several papers published in Designs, Codes and Cryptography comprising the "Special Issue on Finite Geometries".

 Massimo Giulietti
 massimo.giulietti@unipg.it
 Daniele Bartoli
 daniele275@gmail.com
 Giovanni Zini
 gzini@math.unifi.it
 1 Department of Mathematics, Ghent University, Krijgslaan 281- B, 9000 Ghent, Belgium
 2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia, Italy

 3 Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni, 67/A, 50134 Florence, Italy

