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Received: 29 June 2018 / Accepted: 10 January 2019 / Published online: 28 January 2019
© The Author(s) 2019

Abstract
We present a generation theorem for positive semigroups on an L1 space. It provides
sufficient conditions for the existence of positive and integrable solutions of initial-
boundary value problems. An application to a two-phase cell cycle model is given.

Keywords Positive semigroup · Perturbation of boundary conditions · Steady state ·
Cell cycle models
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1 Introduction

We study well-posedness of linear evolution equations on L1 of the form

u′(t) = Au(t), Ψ0u(t) = Ψ u(t), t > 0, u(0) = f , (1)

where Ψ0, Ψ are positive and possibly unbounded linear operators on L1, the linear
operator A is such that Eq. (1) with Ψ = 0 generates a positive semigroup on L1,
i.e., a C0-semigroup of positive operators on L1. We present sufficient conditions for
the operators A, Ψ0, and Ψ under which there is a unique positive semigroup on L1

providing solutions of the initial-boundary value problem (1). For a general theory of
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922 P. Gwiżdż, M. Tyran-Kamińska

positive semigroups and their applications we refer the reader to [4,7,11,14,34]. An
overview of different approaches used in studying initial-boundary value problems is
presented in [13].

Our result is an extension of Greiner’s [19] by considering unbounded Ψ and pos-
itive semigroups. Unbounded perturbations of the boundary conditions of a generator
were studied recently in [1,2] by using extrapolated spaces and various admissibility
conditions. In the proof of our perturbation theorem we apply a result about positive
perturbations of resolvent positive operators [3] with non-dense domain in AL-spaces
in the form given in [37, Theorem 1.4]. It is an extension of the well known perturba-
tion result due to Desch [15] and by Voigt [41]. For positive perturbations of positive
semigroups in the case when the space is not an AL-space we refer to [5,10]. We
also present a result about stationary solutions of (1). We illustrate our general results
with an age-size-dependent cell cycle model generalizing the discrete time model of
[22,25,38]. This model can be described as a piecewise deterministic Markov process
(see Sect. 5 and [34]). Our approach can also be used in transport equations [8,23].

2 General results

Let (E, E,m) and (E∂ , E∂ ,m∂ ) be two σ -finite measure spaces. Denote by L1 =
L1(E, E,m) and L1

∂ = L1(E∂ , E∂ ,m∂ ) the corresponding spaces of integrable
functions. Let D be a linear subspace of L1. We assume that A : D → L1 and
Ψ0, Ψ : D → L1

∂ are linear operators satisfying the following conditions:

(i) for each λ > 0, the operator Ψ0 : D → L1
∂ restricted to the nullspace N (λI −

A) = { f ∈ D : λ f − A f = 0} of the operator (λI − A,D) has a positive right
inverse, i.e., there exists a positive operator Ψ (λ) : L1

∂ → N (λI − A) such that
Ψ0Ψ (λ) f∂ = f∂ for f∂ ∈ L1

∂ ;
(ii) the operatorΨ : D → L1

∂ is positive and there existsω ∈ R such that the operator
I∂ − Ψ Ψ (λ) : L1

∂ → L1
∂ is invertible with positive inverse for all λ > ω, where

I∂ is the identity operator on L1
∂ ;

(iii) the operator A0 ⊆ A with D(A0) = { f ∈ D : Ψ0 f = 0} is the generator of a
positive semigroup on L1;

(iv) for each nonnegative f ∈ D
∫
E
A f (x)m(dx) −

∫
E∂

Ψ0 f (x)m∂ (dx) ≤ 0. (2)

Theorem 1 Assume conditions (i)–(iv). Then the operator (AΨ ,D(AΨ )) defined by

AΨ f = A f , f ∈ D(AΨ ) = { f ∈ D : Ψ0( f ) = Ψ ( f )}, (3)

is the generator of a positive semigroup on L1. Moreover, the resolvent operator of
AΨ at λ > ω is given by

R(λ, AΨ ) f = (I + Ψ (λ)(I∂ − Ψ Ψ (λ))−1Ψ )R(λ, A0) f , f ∈ L1. (4)
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Positive semigroups and perturbations of boundary… 923

Proof The space X = L1 × L1
∂ is an AL-space with norm

‖( f , f∂ )‖ =
∫
E

| f (x)|m(dx) +
∫
E∂

| f∂ (x)|m∂ (dx), ( f , f∂ ) ∈ L1 × L1
∂ .

We define operators A,B : D(A) → L1 × L1
∂ with D(A) = D × {0} by (see e.g.

[34])

A( f , 0) = (A f ,−Ψ0 f ) and B( f , 0) = (0, Ψ f ) for f ∈ D.

We have D(A0) × {0} ⊂ D(A) ⊂ L1 × {0} and D(A0) is dense in L1. Hence,
D(A) = L1 × {0}. For every λ > 0 the resolvent of the operator A at λ > 0 is given
by

R(λ,A)( f , f∂ ) = (R(λ, A0) f + Ψ (λ) f∂ , 0), ( f , f∂ ) ∈ L1 × L1
∂ . (5)

Thus (A,D(A)) is resolvent positive, i.e., its resolvent operator R(λ,A) is positive
for all sufficiently large λ > 0. We now show that‖λR(λ,A)‖ ≤ 1 for all λ > 0.
Since the operator λR(λ,A) is positive, it is enough to show that

‖λR(λ,A)( f , f∂ )‖ ≤ ‖( f , f∂ )‖ for nonnegative ( f , f∂ ) ∈ L1 × L1
∂ . (6)

The operator R(λ, A0) is positive, R(λ, A0) f ∈ D(A0) ⊆ D and Ψ0R(λ, A0) f = 0
for f ∈ L1. From this and (2) we see that

∫
E
AR(λ, A0) f (x)m(dx) ≤

∫
E∂

Ψ0R(λ, A0) f (x)m∂ (dx) = 0

for all nonnegative f ∈ L1. We have AR(λ, A0) f = λR(λ, A0) f − f for all f ∈ L1,
by (iii). Thus, we get

∫
E

λR(λ, A0) f (x)m(dx) =
∫
E
AR(λ, A0) f (x)m(dx) +

∫
E
f (x)m(dx)

≤
∫
E
f (x)m(dx), f ∈ L1, f ≥ 0.

By assumption (i), AΨ (λ) f∂ = λΨ (λ) f∂ and Ψ0Ψ (λ) f∂ = f∂ for f∂ ∈ L1
∂ . This

together with condition (2) implies that

∫
E∂

λΨ (λ) f∂ (x)m∂ (dx) =
∫
E
AΨ (λ) f∂ (x)m(dx) ≤

∫
E∂

Ψ0Ψ (λ) f∂ (x)m∂ (dx)

=
∫
E∂

f∂ (x)m∂ (dx)

for all nonnegative f∂ ∈ L1
∂ , completing the proof of (6).
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924 P. Gwiżdż, M. Tyran-Kamińska

Let I be the identity operator on X = L1 × L1
∂ . We have BR(λ,A)( f , f∂ ) =

(0, Ψ R(λ, A0) f + Ψ Ψ (λ) f∂ ) for any ( f , f∂ ). Thus, I − BR(λ,A) is invertible if
and only if I∂ − Ψ Ψ (λ) is invertible. In that case

(I − BR(λ,A))−1( f , f∂ ) = ( f , (I∂ − Ψ Ψ (λ))−1(Ψ R(λ, A0) f + f∂ )).

Combining this with (ii) we conclude that I − BR(λ,A) is invertible with positive
inverse (I − BR(λ,A))−1 for all λ > ω. Hence, the spectral radius of the positive
operator BR(λ,A) is strictly smaller than 1 for some λ > ω. It follows from [37,
Theorem 1.4] that the part of (A + B,D(A)) in X0 = D(A) denoted by ((A +
B)|,D((A + B)|)) generates a positive semigroup on X0. We have D((A + B)|) =
D(AΨ ) × {0} and (A + B)|( f , 0) = (AΨ f , 0), f ∈ D(AΨ ). Consequently, the
operator (AΨ ,D(AΨ )) is densely defined and generates a positive semigroup on L1.
Finally, the operator (A + B,D(A)) is resolvent positive with resolvent given by
R(λ,A + B) = R(λ,A)(I − BR(λ,A))−1 for λ > ω. Hence, the formula for
R(λ, AΨ ) is also valid. 
�
Remark 1 Condition (iv) ensures that the operator (A0,D(A0)) satisfies

∫
E
A0 f (x)m(dx) ≤ 0 (7)

for all nonnegative f ∈ D(A0). If, additionally,

(v) (A0,D(A0)) is densely defined and resolvent positive,

then (A0,D(A0)) is the generator of a substochastic semigroup on L1, i.e., a positive
semigroup of contractions on L1. This is a consequence of the Hille–Yosida theorem,
see e.g. [34, Theorem 4.4]. Thus it is enough to assume condition (v) instead of (iii).
Observe also that (iii) and (iv) imply that (0,∞) ⊆ ρ(A0).

Remark 2 Note that if (AΨ ,D(AΨ )) is the generator of a positive semigroup and

∫
E
AΨ f (x)m(dx) = 0 for all nonnegative f ∈ D(AΨ ), (8)

then (AΨ ,D(AΨ )) generates a stochastic semigroup, i.e., a positive semigroup of
operators preserving the L1 norm of nonnegative elements (see e.g. [7, Section 6.2]
and [34, Corollary 4.1]).

Remark 3 If we assume that

(a) (A,D) is closed,
(b) Ψ0 is onto and continuous with respect to the graph norm ‖ f ‖A = ‖ f ‖ + ‖A f ‖,
thenΨ (λ) exists for each λ > 0 and is bounded, by [19, Lemma 1.2]. IfΨ0 is positive,
then Ψ (λ) is positive. Thus condition (i) can be replaced by conditions (a) and (b).
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Remark 4 Greiner [19, Theorem 2.1] establishes that (AΨ ,D(AΨ )) is the generator
of a C0-semigroup for any bounded Ψ provided that conditions (a) and (b) hold true,
(A0,D(A0)) is the generator of a C0-semigroup, and that there exist constants γ > 0
and λ0 such that

‖Ψ0 f ‖ ≥ λγ ‖ f ‖, f ∈ N (λI − A), λ > λ0. (9)

This is condition (2.1) of Greiner [19, Theorem 2.1]. Some extensions of this result
are provided in [20,29] for unbounded Ψ , as well as in [1,2].

Remark 5 Recall that a positive operator on an AL-space defined everywhere is auto-
matically bounded. Thus our assumption (i) implies that Ψ (λ) is bounded for each
λ > 0. Moreover, its norm is determined through its values on the positive cone. From
assumptions (i) and (iv) it follows that λ‖Ψ (λ)‖ ≤ 1 for each λ > 0, as was shown in
the proof of Theorem 1. Thus, for f = Ψ (λ) f∂ , we get (9) with γ = 1. Now suppose,
as in [19], that Ψ is bounded. Then ‖Ψ Ψ (λ)‖ ≤ ‖Ψ ‖/λ for all λ > 0. Hence, the
operator I∂ − Ψ Ψ (λ) is invertible for λ > ‖Ψ ‖. Since I − Ψ (λ)Ψ is also invertible,
we have (I − Ψ (λ)Ψ )−1 = I + Ψ (λ)(I∂ − Ψ Ψ (λ))−1Ψ and, by (4),

R(λ, AΨ ) = (I − Ψ (λ)Ψ )−1R(λ, A0).

Consequently, if Ψ is bounded and positive, then we get the same result as in [19].

We now look at a simple example where Theorem 1 can be easily applied and it
should be compared with [1, Corollary 25].

Example 1 Consider the space L1 = L1[0, 1] and the first derivative operator A = d
dx

with domain D = W 1,1[0, 1]. Let E∂ be the one point set {1} and m∂ be the point
measure δ1 at 1, so that the boundary space is L1

∂ = { f∂ : {1} → R : f∂ (1) ∈ R} and
can be identified with R, by writing f∂ = f∂ (1). Let the boundary operators Ψ0 and
Ψ be defined by

Ψ0 f = f (1) and Ψ f =
∫

[0,1]
f (x)μ(dx), f ∈ W 1,1[0, 1],

where μ is a finite Borel measure. Note that for each λ > 0 and f ∈ N (λI − A) we
have f ′ = λ f . Thus f ′ is a continuous function. Consequently, for each f∂ ∈ L1

∂ and
λ > 0, the solution f = Ψ (λ) f∂ of equation f ′ = λ f satisfying Ψ0(λ) f = f∂ is of
the form

Ψ (λ) f∂ (x) = eλ(x−1) f∂ , x ∈ [0, 1].

Hence condition (i) holds true. We have

∫
[0,1]

A f (x)dx = f (1) − f (0), f ∈ W 1,1[0, 1],
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926 P. Gwiżdż, M. Tyran-Kamińska

and the restriction A0 of the operator A to

D(A0) = { f ∈ W 1,1[0, 1] : f (1) = 0}

is the generator of a positive semigroup. Thus conditions (iii) and (iv) hold true. If
there exists λ > 0 such that

∫
[0,1]

eλ(x−1)μ(dx) < 1, (10)

then condition (ii) holds true and the operator AΨ ⊆ d
dx with domain

D(AΨ ) = { f ∈ W 1,1[0, 1] : f (1) =
∫

[0,1]
f (x)μ(dx)}

is the generator of a positive semigroup, by Theorem 1. Now suppose that μ is a prob-
ability measure, so that μ([0, 1]) = 1. Then

∫
[0,1]

eλ(x−1)μ(dx) ≤ 1

for all λ > 0. Thus if (10) does not hold for any λ > 0 then eλ(x−1) = 1 for all
λ > 0 and μ-almost every x ∈ [0, 1] implying that μ{x ∈ [0, 1] : x = 1} = 1.
Consequently, if μ is a probability measure such that μ = δ1 then (AΨ ,D(AΨ )) is
the generator of a positive semigroup.

It should be noted that in [34, Theorem 4.6] the assumption that the domainD(AΨ )

of the operator AΨ is dense is missing.Making use of Theorem 1, we get the following
result.

Theorem 2 Assume conditions (i)–(iv). If B is a bounded positive operator such that

∫
E
(AΨ f (x) + B f (x))m(dx) ≤ 0 for all nonnegative f ∈ D(AΨ ),

then (AΨ + B,D(AΨ )) is the generator of a substochastic semigroup.

We conclude this section with a result concerning the existence of steady states of
the positive semigroup from Theorem 1. Note that given any λ,μ ∈ ρ(A0) we have
Ψ (λ) = Ψ (μ) + (μ − λ)R(λ, A0)Ψ (μ), see [19, Lemma 1.3]. Thus Ψ (λ) ≥ Ψ (μ)

for λ ≤ μ. Consequently, for each nonnegative f∂ ∈ L1
∂ the pointwise limit

Ψ (0) f∂ = lim
λ→0+ Ψ (λ) f∂ (11)

exists and Ψ (0) f∂ is nonnegative.

123



Positive semigroups and perturbations of boundary… 927

Theorem 3 Assume conditions (i)–(iv). Let Ψ (0) be as in (11). If a nonnegative
f∂ ∈ L1

∂ satisfies Ψ (0) f∂ ∈ L1 and f∂ = Ψ Ψ (0) f∂ , then Ψ (0) f∂ ∈ D(AΨ ) and
AΨ Ψ (0) f∂ = 0. Conversely, if AΨ f = 0 for a nonnegative f ∈ D(AΨ ) then
f∂ = Ψ f satisfies Ψ Ψ (λ) f∂ ≤ f∂ for all λ > max{0, ω}, where ω is as in (ii).

Proof It follows from condition (i) that Ψ (λ) f∂ ∈ D, Ψ0Ψ (λ) f∂ = f∂ , and
AΨ (λ) f∂ = λ f∂ for all λ > 0. We have Ψ (λ) f∂ → Ψ (0) f∂ in L1, as λ → 0.
Thus AΨ (λ) f∂ → 0 in L1, as λ → 0. Recall from the proof of Theorem 1
that the operator (A + B)( f , 0) = (A f , Ψ f − Ψ0 f ), f ∈ D, is a closed oper-
ator in the space L1 × L1

∂ . The operators Ψ and Ψ0 are positive and we have
Ψ Ψ (λ) f∂ → Ψ Ψ (0) f∂ = f∂ = Ψ0Ψ (0) f∂ . Thus, (A + B)(Ψ (λ) f∂ , 0) → (0, 0) as
λ → 0. This implies that Ψ (0) f∂ ∈ D(AΨ ) and AΨ Ψ (0) f∂ = 0.

For the converse, suppose that f ∈ D(AΨ ) and AΨ f = 0. We have
R(λ, AΨ )(λ f − AΨ f ) = 0. Thus λR(λ, AΨ ) f = f and Ψ f = Ψ R(λ, AΨ )(λ f ) =
Ψ R(λ, A0)(λ f ) + Ψ Ψ (λ)(I∂ − Ψ Ψ (λ))−1Ψ R(λ, A0)(λ f ), by (4). Since

Ψ R(λ, A0)(λ f ) = (I∂ − Ψ Ψ (λ))(I∂ − Ψ Ψ (λ))−1Ψ R(λ, A0)(λ f ),

we conclude that Ψ f = (I∂ − Ψ Ψ (λ))−1Ψ R(λ, A0)(λ f ). This implies that (I∂ −
Ψ Ψ (λ))Ψ f = Ψ R(λ, A0)(λ f ) ≥ 0 for λ > max{0, ω} and completes the proof. 
�

3 Amodel of a two phase cell cycle in a single cell line

The cell cycle is the period from cell birth to its division into daughter cells. It contains
four major phases: G1 phase (cell growth before DNA replicates), S phase (DNA
synthesis and replication), G2 phase (post DNA replication growth period), and M
(mitotic) phase (period of cell division). The Smith–Martin model [36] divides the cell
cycle into two phases: A and B. The A phase corresponds to all or part of G1 phase
of the cell cycle and has a variable duration, while the B phase covers the rest of the
cell cycle. The cell enters the phase A after birth and waits for some random time TA
until a critical event occurs that is necessary for cell division. Then the cell enters the
phase B which lasts for a finite fixed time TB . At the end of the B-phase the cell splits
into two daughter cells. We assume that individual states of the cell are characterized
by age a ≥ 0 in each phase and by size x > 0, which can be volume, mass, DNA
content or any quantity conserved trough division. We assume that individual cells
of size x increase their size over time in the same way, with growth rate g(x) so that
dx/dt = g(x), and all cells age over time with unitary velocity so that da/dt = 1.
We assume that the probability that a cell is still being in the phase A at age a is equal
to H(a), so the rate of exit from the phase A at age a is ρ(a) given by

ρ(a) = −H ′(a)

H(a)
, H(a) =

∫ ∞

a
h(r)dr , (12)

where h is a probability density function defined on [0,∞), describing the distribution
of the time TA, the duration of the phase A. We make the following assumptions:

123



928 P. Gwiżdż, M. Tyran-Kamińska

(I) The function h in (12) is a probability density function so that h : [0,∞) →
[0,∞) is Borel measurable and the function H in (12) satisfies: H(0) = 1,
H(∞) = 0.

(II) The growth rate function g : (0,∞) → (0,∞) is globally Lipschitz continuous
and g(x) > 0 for x > 0.

The Smith and Martin hypothesis [36] states that h is exponentially distributed with
parameter p > 0, so that ρ(a) = p for all a > 0. However, this does not agree with
experimental data, see e.g. [18,43] for recent results. The generation time of a cell, i.e.
the time from birth to division, can be written as T = TA + TB . Thus the distribution
of the generation time has a probability density of the form

hT (t) =
{
0, t < TB
h(t − TB), t ≥ TB .

Cell generation times can have lognormal or bimodal distribution (see [35]), exponen-
tially modified Gaussian [17], or tempered stable distributions [30].

To describe the growth of cells we define

Q(x) :=
∫ x

x̄

1

g(r)
dr , x > 0, (13)

where x̄ > 0 or x̄ = 0, if the integral is finite. The valueQ(x) has a simple biological
interpretation. If x̄ is the size of a cell, then Q(x) is the time it takes the cell to reach
the size x . It follows from assumption (II) that the function Q is strictly increasing
and continuous. We denote by Q−1 the inverse of Q. Define

πt x0 = Q−1(Q(x0) + t) (14)

for t ≥ 0 and x0 > 0. Then πt x0 satisfies the initial value problem

x ′(t) = g(x(t)), x(0) = x0 > 0.

If Q(0) = −∞ then Q−1 is defined on R. Hence, formula (14) extends to all t ∈ R

and x0 > 0. We also set πt0 = 0 for t > 0 in this case. If Q(0) = 0 then Q−1 is
defined only on (0,∞) and we set πt0 = Q−1(t) for t > 0. We can extend formula
(14) to all negative t satisfying Q(x0) + t > 0; otherwise we set πt x0 = 0. Note
that at time t = T , the generation time, a “mother cell” of size πT x0 divides into two
daughter cells of equal size 1

2πT x0.
In the probabilistic model of [22,25,38,39] a sequence of consecutive descendants

of a single cell was studied. Let f be the probability density function of the size
distribution at birth at time t0 of mother cells and let t1 > t0 be a random time of
birth of daughter cells. Then the probability density function of the size distribution
of daughter cells is given by [25,38]

P f (x) = −
∫ λ(x)

0

∂

∂x
H(Q(λ(x)) − Q(r)) f (r) dr , (15)

123
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where

λ(x) = max{π−TB (2x), 0} = max{Q−1(Q(2x) − TB), 0}.

The iterates P2 f , P3 f , . . . denote densities of the size distribution of consecutive
descendants born at random times t2, t3, . . .. The operator P defined by (15) is a
positive contraction on L1(0,∞), the space of Borel measurable functions defined
on (0,∞) and integrable with respect to the Lebesgue measure. Here we extend the
probabilistic model to a continuous time situation by examining what happens at all
times t and not only at t0, t1, t2, . . ..

We denote by p1(t, a, x) and p2(t, a, x) the densities of the age and size distribution
of cell in the A-phase and in the B-phase at time t , age a, and size x , respectively.
Neglecting cell deaths the equations can be written as

∂ p1(t, a, x)

∂t
+ ∂ p1(t, a, x)

∂a
+ ∂(g(x)p1(t, a, x))

∂x
= −ρ(a)p1(t, a, x),

∂ p2(t, a, x)

∂t
+ ∂ p2(t, a, x)

∂a
+ ∂(g(x)p2(t, a, x))

∂x
= 0,

(16)

with boundary and initial conditions

p1(t, 0, x) = 2p2(t, TB, 2x), x > 0, t > 0, (17)

p2(t, 0, x) =
∫ ∞

0
ρ(a)p1(t, a, x)da, x > 0, t > 0, (18)

p1(0, a, x) = f1(a, x), p2(0, a, x) = f2(a, x). (19)

In thismodel, cells in theA-phase enter the B-phase at rate ρ. This is taken into account
by the boundary condition (18). All cells stay in the B-phase until they reach the age
TB . Then they divide their size into half (17). The model is complemented with initial
conditions (19). The model we propose is different as compared to mass/maturity
structured models [16,21,31,40] where a cell leaves the phase A with intensity being
dependent onmaturity, not age. In the case of TB = 0 there is only one phase present; a
maturity structured model being a continuous time extension of [24] is studied in [27],
while age and volume/maturity structured population models of growth and division
were studied extensively since the seminal work of [12,26,33]. We refer the reader to
[28] for historical remarks concerning modeling of age structured populations and to
[35,42] for recent reviews.

We look for positive solutions of (16)–(19) in the space L1 = L1(E, E,m) with
E = E1 × {1} ∪ E2 × {2}, where

E1 = {(a, x) ∈ (0,∞) × (0,∞) : x > πa0}

and

E2 = {(a, x) ∈ (0, TB) × (0,∞) : x > πa0},

123



930 P. Gwiżdż, M. Tyran-Kamińska

m is the product of the two-dimensional Lebesgue measure and the counting mea-
sure on {1, 2}, and E is the σ -algebra of all Borel subsets of E . We identify
L1 = L1(E, E,m) with the product of the spaces L1(E1) and L1(E2) of functions
defined on the sets E1 and E2, respectively, and being integrable with respect to the
two-dimensional Lebesgue measure. We say that the operator P has a steady state in
L1(0,∞) if there exists a probability density function f such that P f = f . Similarly,
a semigroup {S(t)}t≥0 has a steady state in L1 if there exists a nonnegative f ∈ L1

such that S(t) f = f for all t > 0 and ‖ f ‖1 = 1 where ‖ · ‖1 is the norm in L1.

Theorem 4 Assume conditions (I) and (II). There exists a unique positive semigroup
{S(t)}t≥0 on L1 which provides solutions of (16)–(19) and {S(t)}t≥0 is stochastic. If
H ∈ L1(0,∞) then the semigroup {S(t)}t≥0 has a steady state in L1 if and only if the
operator P in (15) has a steady state in L1(0,∞).

We give the proof of Theorem 4 in the next section. Theorem 4 combined with [9]
implies the following sufficient conditions for the existence of steady states of (16)–
(19).

Corollary 1 Assume conditions (I) and (II). Suppose that H ∈ L1(0,∞) and that
|Q(0)| < ∞. If

E(TA) :=
∫ ∞

0
H(a)da < lim inf

x→∞ (Q(λ(x)) − Q(x)) (20)

then (16)–(19) has a steady state and it is unique if, additionally, h(a) > 0 for all
sufficiently large a. Conversely, if there is x0 ≥ 0 such that H(Q(λ(x0))) > 0 and
E(TA) > supx≥x0(Q(λ(x)) − Q(x)), then (16)–(19) has no steady states.

If the cell growth is exponential so that we have g(x) = kx for all x > 0, where
k is a positive constant, then it is known [22,38,39] that the operator P has no steady
state. We now consider a linear cell growth and assume that g(x) = k for all x > 0.
We see that Q(x) = x/k, the operator P is of the form (see [39] or the last section)

P f (x) = 2

k

∫ 2x−kTB

0
h((2x − kTB − r)/k) f (r)dr1(0,∞)(2x − kTB), x > 0,

and condition (20) holds if and only if E(TA) < ∞. Combining Corollary 1 with
Theorem 4 implies the following.

Corollary 2 Assume that g(x) = k for x > 0 and that h(a) > 0 for all sufficiently
large a > 0. If E(TA) < ∞ then the semigroup {S(t)}t≥0 has a unique steady state.

4 Proof of Theorem 4

We will show that Theorem 4 can be deduced from Theorems 1 and 3. To this end, we
introduce some notation. Let us define

π(t, a0, x0) = (a0 + t, πt x0), a0, x0 ≥ 0, t ∈ R,
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where πt is given by (14). Then t �→ π(t, a0, x0) solves the system of equations
a′(t) = 1 and x ′(t) = g(x(t)) with initial condition a(0) = a0 and x(0) = x0. Recall
that E1 is an open set. For any x0, a0 ∈ E1 we define

t−(a0, x0) = inf{s > 0 : π(−s, a0, x0) /∈ E1}

and the incoming part of the boundary ∂E1

Γ −
1 = {z ∈ ∂E1 : z = π(−t−(y), y) for some y ∈ E1 with t−(y) < ∞}.

Observe that t−(a0, x0) = a0 for all (a0, x0) ∈ E1 and that Γ −
1 = {0} × (0,∞). We

consider on Γ −
1 the Borel measure m−

1 being the product of the point measure δ0 at 0
and the Lebesgue measure on (0,∞). We define the operator Tmax on L1(E1) by [6]

Tmax f (a, x) = −∂( f (a, x))

∂a
− ∂(g(x) f (a, x))

∂x

with domain

D(Tmax) = { f ∈ L1(E1) : Tmax f ∈ L1(E1)},

where the differentiation is understood in the sense of distributions. Then it follows
from [6] that for f ∈ D(Tmax) the following limit

B− f (z) = lim
t→0

f (π(t, z))

exists for almost every z ∈ Γ −
1 with respect to the measure m−

1 on Γ −
1 . According to

[6, Theorem 4.4] the operator T0 = Tmax with domain

D(T0) = { f ∈ D(Tmax) : B− f = 0}

is the generator of a substochastic semigroup on L1(E1) given by

U0(t) f (a, x)= g(π−t x)

g(x)
f (a−t, π−t x)1{t<t−(a,x)}(a, x), (a, x)∈E1, f ∈ L1(E1).

By [6, Proposition 5.1], the operator (T,D(T)) defined by

T f = Tmax f − ρ f , f ∈ D(T) = { f ∈ D(T0) : ρ f ∈ L1(E1)}

is the generator of a substochastic semigroup on L1(E1) of the from

U1(t) f (a, x) = e− ∫ t
0 ρ(a−r)drU0(t) f (a, x), (a, x) ∈ E1, f ∈ L1(E1).
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932 P. Gwiżdż, M. Tyran-Kamińska

Note that we can identify the space L1(E2) with the subspace

Y = { f ∈ L1(E1) : f (a, x) = 0 for a.e. (a, x) ∈ E1\E2}

of L1(E1) and we have Tmax(D(Tmax) ∩ L1(E2)) ⊆ L1(E2). We set

t−(a0, x0) = inf{s > 0 : π(−s, a0, x0) /∈ E2} = a0, (a0, x0) ∈ E2,

and

Γ −
2 = {z ∈ ∂E2 : z = π(−t−(y), y) for some y ∈ E2 with t−(y) < ∞}.

We also define the exit time from the set E2 by

t+(a0, x0) = inf{s > 0 : π(s, a0, x0) /∈ E2}

and the outgoing part of the boundary ∂E2

Γ +
2 = {z ∈ ∂E2 : z = π(t+(y), y) for some y ∈ E2}.

We have t+(a0, x0) = TB − a0 and Γ +
2 = {(TB, x) : x > πTB0}. We define the

Borel measure m−
2 on Γ −

2 as the measure m−
1 and the m+

2 on Γ +
2 as the prod-

uct of the point measure at TB and the one dimensional Lebesgue measure. Since
U0(t)(L1(E2)) ⊆ L1(E2), the part of the operator (T0,D(T0)) in L1(E2) is the gen-
erator of a substochastic semigroup {U2(t)}t≥0 in L1(E2). Moreover, the following
pointwise limits exist

B± f (z) = lim
t→0

f (π(∓t, z)) for f ∈ D(Tmax) ∩ L1(E2)

for almost every z ∈ Γ ±
2 with respect to the Borel measure m±

2 on Γ ±
2 .

Let E∂ = Γ −
1 × {1} ∪ Γ −

2 × {2}, E∂ be the σ -algebra of Borel subsets of E∂ and
m∂ be the product of the Lebesgue measure on the line {0} × (0,∞) and the counting
measure on {1, 2}. To simplify the notation we identify L1

∂ = L1(E∂ , E∂ ,m∂ ) with
the product space L1(0,∞) × L1(0,∞). We define operators A1 and A2 by

A1 f1 = Tmax f1 − ρ f1, f1 ∈ D1 = { f1 ∈ L1(E1) : Tmax f1, ρ f1 ∈ L1(E1)},
(21)

A2 f2 = Tmax f2, f2 ∈ D2 = { f2 ∈ L1(E2) : Tmax f2 ∈ L1(E2)}. (22)

We set

D = {( f1, f2) ∈ D1 × D2 : B− f1,B
− f2 ∈ L1(0,∞)}
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and we define the operator A onD by setting A f = (A1 f1, A2 f2) for f = ( f1, f2) ∈
D. We take operators Ψ0, Ψ : D → L1

∂ of the form

Ψ0 f = (B− f1,B
− f2), f = ( f1, f2) ∈ D, (23)

and

Ψ f (x) =
(
2B+ f2(TB, 2x)1(πTB (0),∞)(2x),

∫ ∞

0
ρ(a) f1(a, x)1(0,∞)(π−ax)da

)

(24)
for f = ( f1, f2) ∈ D. We show that the operator (AΨ ,D(AΨ )) is the generator of a
positive semigroup on L1, where AΨ f = A f for f ∈ D(AΨ ) = { f ∈ D : Ψ0 f =
Ψ f }. To this end, we check that assumptions (i)–(iv) of Theorem 1 from Sect. 2 are
satisfied.

We first show that conditions (iii) and (iv) hold. The operator A restricted to
D(A0) = {( f1, f2) ∈ D1 × D2 : B− f1 = 0,B− f2 = 0} is the generator of the
semigroup {S0(t)}t≥0 given by

S0(t) f = (U1(t) f1,U2(t) f2), t ≥ 0, f = ( f1, f2) ∈ L1,

since {U1(t)}t≥0 and {U2(t)}t≥0 are semigroups on the spaces L1(E1) and L1(E2)

with the corresponding generators. The semigroup {S0(t)}t≥0 is substochastic. For all
nonnegative f = ( f1, f2) ∈ D we have

∫
E
A f dm −

∫
E∂

Ψ0 f dm∂ =
∫
E1

A1 f1(a, x)dadx +
∫
E2

A2 f2(a, x)dadx

−
∫

Γ −
1

B− f1(z)m
−
1 (dz) −

∫
Γ −
2

B− f2(z)m
−
2 (dz).

By [6, Proposition 4.6], this reduces to

∫
E
A f dm −

∫
E∂

Ψ0 f dm∂ = −
∫
E1

ρ(a) f1(a, x) dadx −
∫

Γ +
2

B+ f2(z)m
+
2 (dz),

(25)
implying that condition (iv) holds.

For f = ( f1, f2) ∈ D we can rewrite the equation λ f − A f = 0 as

∂

∂a

(
e
∫ a
0 ρ(r)dr f1(a, x)

)
= − ∂

∂x
(g(x) f1(a, x)) − λ f1(a, x),

∂

∂a
( f2(a, x)) = − ∂

∂x
(g(x) f2(a, x)) − λ f2(a, x).
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Hence, we see that the right inverse of Ψ0 when restricted to the nullspace of λI − A
is given by

Ψ (λ) f∂ (a, x) =
(
e−λa−∫ a

0 ρ(r)dr f∂,1(π−ax), e
−λa f∂,2(π−ax)1(0,TB )(a)

) g(π−ax)

g(x)
(26)

for (a, x) ∈ E1 and f∂ = ( f∂,1, f∂,2) ∈ L1
∂ . Moreover, if ( f1, f2) = Ψ (λ) f∂ then

B− f1(0, x) = lim
t→0

f1(t, πt x) = lim
t→0

e−λt−∫ t
0 ρ(r)dr f∂,1(x) = f∂,1(x).

Thus f1 ∈ D1. Similarly, f2 ∈ D2. Hence, condition (i) holds.
To check condition (ii) take λ > 0 and f∂ ∈ L1

∂ . For ( f1, f2) = Ψ (λ) f∂ we have

f2(a, x) = e−λa f∂,2(π−ax)
g(π−ax)

g(x)
1(0,∞)(π−ax)1(0,TB )(a).

This implies that

B+ f2(TB, x) = lim
t→0

f2(TB − t, π−t x)

= lim
t→0

e−λ(TB−t) f∂,2(π−TB x)
g(π−TB x)

g(π−t x)
1(0,∞)(π−TB x)

= e−λTB f∂,2(π−TB x)
g(π−TB x)

g(x)
1(0,∞)(π−TB x).

Hence,

Ψ Ψ (λ) f∂ (x) = ((Ψ Ψ (λ) f∂ )1(x), (Ψ Ψ (λ) f∂ )2(x)) ,

where

(Ψ Ψ (λ) f∂ )1(x) = 2e−λTB f∂,2(π−TB (2x))
g(π−TB (2x))

g(2x)
1(0,∞)(π−TB (2x))

and, by (12),

(Ψ Ψ (λ) f∂ )2(x) =
∫ ∞

0
h(a)e−λa f∂,1(π−ax)

g(π−ax)

g(x)
1(0,∞)(π−ax)da.

For f∂ ∈ L1
∂ we obtain

‖Ψ Ψ (λ) f∂‖ ≤ e−λTB

∫ ∞

0
| f∂,2(z)|dz +

∫ ∞

0
h(a)e−λada

∫ ∞

0
| f∂,1(y)|dy

≤ max

{
e−λTB ,

∫ ∞

0
h(a)e−λada

}
‖ f∂‖,
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showing that ‖Ψ Ψ (λ)‖ < 1 for all λ > 0. Consequently, it follows from Theorem 1
that the operator (AΨ ,D(AΨ )) is the generator of a positive semigroup {S(t)}t≥0 on
L1. The semigroup {S(t)}t≥0 is stochastic, since (8) holds by (25).

Next assume that H ∈ L1(0,∞). By Theorem 3, it remains to look for fixed points
of the operator Ψ Ψ (0). Here Ψ (0) defined as in (11) is, by (26), of the form

Ψ (0) f∂ (a, x) =
(
e− ∫ a

0 ρ(r)dr f∂,1(π−ax), f∂,2(π−ax)1[0,TB )(a)
) g(π−ax)

g(x)
(27)

for (a, x) ∈ E1. Observe that Ψ (0) f∂ ∈ L1 for f∂ ∈ L1
∂ , since e

− ∫ a
0 ρ(r)dr = H(a),

by (12), and

‖Ψ (0) f∂‖ ≤
∫ ∞

0
H(a)da

∫ ∞

0
| f∂,1(y)|dy + TB

∫ ∞

0
| f∂,2(y)|dy.

We have π−TB (2x) = Q−1(Q(2x) − TB) = λ(x) if 2x > πTB0 and

λ′(x) = 2
g(λ(x))

g(2x)
1(0,∞)(λ(x)). (28)

Hence

(Ψ Ψ (0) f∂ )1(x) = f∂,2(λ(x))λ′(x)

and

(Ψ Ψ (0) f∂ )2(x) =
∫ ∞

0
ρ(a)e− ∫ a

0 ρ(r)dr f∂,1(π−ax)
g(π−ax)

g(x)
1(0,∞)(π−ax)da.

If f∂ = Ψ Ψ (0) f∂ then f∂,2(x) = (Ψ Ψ (0) f∂ )2(x) and f∂,1 satisfies

f∂,1(x) = (Ψ Ψ (0) f∂ )1(x)

= 2
∫ ∞

0
h(a) f∂,1(π−a(λ(x)))

g(π−a(λ(x)))

g(2x)
1(0,∞)(π−a(λ(x)))da.

By changing the variables r = π−a(λ(x)), we arrive at the equation

f∂,1(x) = 2

g(2x)

∫ λ(x)

0
h(Q(λ(x)) − Q(r)) f∂,1(r)dr , x > 0. (29)

Equivalently, f∂,1 = P f∂,1 where P is as in (15). Consequently, equationΨ Ψ (0) f∂ =
f∂ has a solution in L1

∂ if and only if the equation P f∂,1 = f∂,1 has a solution in
L1(0,∞).Observe also that the operatorΨ Ψ (0)preserves the L1

∂ normonnonnegative
elements. Hence, if f∂ ∈ L1

∂ is such that Ψ Ψ (0) f∂ ≤ f∂ then Ψ Ψ (0) f∂ = f∂ . Thus
the assertion follows from Theorem 3.
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5 Final remarks

Our model can be described as a piecewise deterministic Markov process {X(t)}t≥0.
We considered three variables (a, x, i), where i = 1 if a cell is in the phase A, i = 2
if it is in the phase B, the variable x describes the cell size, and a describes the
time which elapsed since the cell entered the i th phase. Let t0 = 0. If we observe
consecutive descendants of a given cell and the nth generation time is denoted by tn ,
then tn+1 = sn + TB where sn is the time when the cell from the nth generation enters
the phase B, n ≥ 0. A newborn cell at time tn is with age a(tn) = 0 andwith initial size
equal to x(t−n )/2, where x(t−n ) is the size of its mother cell. The cell ages with velocity
1 and its size grows according to the equations x ′(t) = g(x(t)) for t ∈ (tn, sn). If the
cell enters the phase B then its age is reset to 0 and its size still grows according to
x ′(t) = g(x(t)) for t ∈ (sn, sn + TB). We have

a(sn) = 0, x(sn) = x(s−
n ), i(sn) = 2, (30)

and at the end of the second phase the cell divides into two cells, so that we have

a(tn+1) = 0, x(tn+1) = 1

2
x(t−n+1), i(tn+1) = 1. (31)

Thus the process X(t) = (a(t), x(t), i(t)) satisfies the following system of ordinary
differential equations

a′(t) = 1, x ′(t) = g(x(t)), i ′(t) = 0,

between consecutive times t0, s0, t1, s1, . . ., called jump times. At jump times the
process is given by (30) and (31). If the distribution of X(0) has a density f then X(t)
has a density S(t) f , i.e.,

Pr(X(t) ∈ Bi × {i}) =
∫
Bi

(S(t) f )i (a, x)dadx

for any Borel set Bi ⊂ Ei , where {S(t)}t≥0 is the stochastic semigroup from Theo-
rem 4.

If f∂,1 is the density of the size distribution at time t0 = 0 and f∂,2 is the density
of the distribution of size at time s1, then the distribution of size at time t1 is given by

Pr(x(t1) ≤ x) = Pr(πTB x(s1) ≤ 2x) = Pr(x(s1) ≤ λ(x)) =
∫ λ(x)

0
f∂,2(z)dz

and

f∂,2(z) =
∫ ∞

0
h(a)π̂a f∂,1(z)da, (32)
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where

π̂a f∂,1(z) = f∂,1(π−az)
g(π−az)

g(z)
1(0,∞)(π−az)

is the density of the size x(a) of the cell at time a, if x(0) has a density f∂,1. Thus the
density of the mass x(t1) is given by

d

dx
Pr(x(t1) ≤ x) = f∂,2(λ(x))λ′(x) = P f∂,1(x)

for Lebesgue almost every x ∈ (0,∞), where P is as in (15). Now, if the operator P
has a steady state f∂,1 ∈ L1(0,∞) so that f∂,1 satisfies (29) and if f∂,2 is as in (32),
then f ∗ = ( f ∗

1 , f ∗
2 ) given by

f ∗
1 (a, x) = e− ∫ a

0 ρ(r)dr π̂a f∂,1(x), f ∗
2 (a, x) = π̂a f∂,2(x)1(0,TB )(a) (33)

is the steady state for the semigroup {S(t)}t≥0 existing by Theorem 4. Moreover, it is
unique if P has a unique steady state.

Remark 6 It should be noted that in the two-phase cell cycle model in [31] the rate of
exit from the phase A depends on x , not on a, and that there is no such equivalence
between the existence of steady states as presented in Theorem 4. Our results remain
true if we assume as in [31] that division into unequal parts takes place. Methods as in
[31,34] can also be used in our model to study asymptotic behaviour of the semigroup
{S(t)}t≥0. For a different approach to study positivity and asymptotic behaviour of
solutions of population equations in L1 we refer to [32].

We conclude this section with an extension of the age-size dependent model from
[12] to a model with two phases. Let pi (t, a, x) be the function representing the
distribution of cells over all individual states a and x at time t in the phase A for i = 1
or B for i = 2, i.e.,

∫ a2
a1

∫ x2
x1

pi (t, a, x)dadx is the number of cells with age between
a1 and a2 and size between x1 and x2 at time t in the given phase. Then p1 and p2
satisfy Eqs. (16), (18), (19) while the boundary condition (17) takes the form

p1(t, 0, x) = 4p2(t, TB, 2x), x > 0, t > 0, (34)

since a mother cell at the moment of division TB has size 2x and gives birth to two
daughters of size x entering the phase A at age 0.

Theorem 5 Assume conditions (I) and (II). Then there exists a unique positive semi-
group on L1 which provides solutions of (16), (34), (18), (19).

This follows from Theorem 1 in the same way as Theorem 4, where now to check
condition (ii) we note that

‖Ψ Ψ (λ) f∂‖ ≤ max

{
2e−λTB ,

∫ ∞

0
h(a)e−λada

}
‖ f∂‖
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for all f∂ ∈ L1
∂ and λ > 0, implying that ‖Ψ Ψ (λ)‖ < 1 for all λ > ω with ω =

log 2/TB .

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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