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Abstract

We present a generation theorem for positive semigroups on an L! space. It provides
sufficient conditions for the existence of positive and integrable solutions of initial-
boundary value problems. An application to a two-phase cell cycle model is given.

Keywords Positive semigroup - Perturbation of boundary conditions - Steady state -
Cell cycle models

Mathematics Subject Classification 47B65 - 47TH07 - 47D06 - 92C40

1 Introduction
We study well-posedness of linear evolution equations on L' of the form
u'(t) = Au(t), You(t) =Wu@), t>0, u@) =7f, (1)

where W, ¥ are positive and possibly unbounded linear operators on L!, the linear
operator A is such that Eq. (1) with ¥ = 0 generates a positive semigroup on L',
i.e., a Co-semigroup of positive operators on L!. We present sufficient conditions for
the operators A, ¥, and ¥ under which there is a unique positive semigroup on L!
providing solutions of the initial-boundary value problem (1). For a general theory of
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922 P. Gwizdz, M. Tyran-Kamiriska

positive semigroups and their applications we refer the reader to [4,7,11,14,34]. An
overview of different approaches used in studying initial-boundary value problems is
presented in [13].

Our result is an extension of Greiner’s [19] by considering unbounded ¥ and pos-
itive semigroups. Unbounded perturbations of the boundary conditions of a generator
were studied recently in [1,2] by using extrapolated spaces and various admissibility
conditions. In the proof of our perturbation theorem we apply a result about positive
perturbations of resolvent positive operators [3] with non-dense domain in A L-spaces
in the form given in [37, Theorem 1.4]. It is an extension of the well known perturba-
tion result due to Desch [15] and by Voigt [41]. For positive perturbations of positive
semigroups in the case when the space is not an AL-space we refer to [5,10]. We
also present a result about stationary solutions of (1). We illustrate our general results
with an age-size-dependent cell cycle model generalizing the discrete time model of
[22,25,38]. This model can be described as a piecewise deterministic Markov process
(see Sect. 5 and [34]). Our approach can also be used in transport equations [8,23].

2 General results

Let (E,&,m) and (Ey, &y, my) be two o-finite measure spaces. Denote by L' =
L' (E,&, m) and L;) = L'(Ej, &, my) the corresponding spaces of integrable
functions. Let D be a linear subspace of L'. We assume that A: D — L' and
Y,¥:D — L}, are linear operators satisfying the following conditions:

(i) for each A > 0, the operator ¥y: D — L 5 restricted to the nullspace N'(A1 —
A)={f e D:Arf — Af = 0} of the operator (A] — A, D) has a positive right
inverse, i.e., there exists a positive operator ¥ (1) : L(}J — N(AI — A) such that
WoW (L) fy = fy for fy € L;

(ii) theoperator¥ : D — L (,1, is positive and there exists w € R such that the operator
Iy —ww()): LEI) — L}, is invertible with positive inverse for all A > w, where
I, is the identity operator on L);

(iii) the operator Ag € A with D(Ag) = {f € D : ¥y f = 0} is the generator of a
positive semigroup on L';
(iv) for each nonnegative f € D

/ AF (0 m(dx) — / Vo £ () my (dx) < 0. @)
E Ey

Theorem 1 Assume conditions (1)—(iv). Then the operator (Ay, D(Ay)) defined by
Apf=Af, feDAw)={f €D W)=Y} (3)

is the generator of a positive semigroup on L'. Moreover, the resolvent operator of
Ay at A > w is given by

RO AR f =T +¥ W)Uy —¥W0)"WRM, A f, fel'. 4
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Proof The space X = L' x L}j is an A L-space with norm
Il = [ 1r@im@n + [ fawima@n. (7 g e L x L
E Ey

We define operators A, B: D(A) — L' x Lé with D(A) = D x {0} by (see e.g.
[34])

A(f,0) = (Af, =W f) and B(f,0) = (0, ¥f) for f € D.
We have D(Ag) x {0} ¢ D(A) ¢ L' x {0} and D(Ao) is dense in L'. Hence,

D(A) = L' x {0}. For every A > 0 the resolvent of the operator A at A > 0 is given
by

ROGAS, f3) = (RO, A f+ W (W) f3,0), (f, fo) e L' x Ly, (5

Thus (A, D(A)) is resolvent positive, i.e., its resolvent operator R(A, A) is positive
for all sufficiently large 2 > 0. We now show that|AR(x, A)|| < 1 for all A > 0.
Since the operator AR (X, A) is positive, it is enough to show that

IR, AV, f)l < ICf, fa)ll- for nonnegative (f, f3) € L' x Ly, (6)

The operator R(X, Ag) is positive, R(A, Ag) f € D(Ap) € D and YyR(A, Ag) f =0
for f € L'. From this and (2) we see that

/ ARGk, Ag) f (x) m(dx) < / WoR (. Ag) f (x) ma(dx) = 0
E

Ey

for all nonnegative f € L'. Wehave AR(A, Ag) f = AR(A, Ag) f — f forall f € L',
by (iii). Thus, we get

/ AR, Ag) f(x)m(dx) = / AR(A, Ag) f(x) m(dx) +/ f(x)m(dx)
E E E

fff(X)m(dx), fel', f=o.
E

By assumption (i), A¥ (X) fo = AP (L) fy and VoW (A) fy = fy for fy € Lé. This
together with condition (2) implies that

/E ?»W()»)fa(X)ma(dX)=/EAW()»)fa(X)m(dX) 5/ Y (1) fa(x) my(dx)
\ t

)

2/ Sfa(x) my(dx)
Ey

for all nonnegative f; € L., completing the proof of (6).

@ Springer



924 P. Gwizdz, M. Tyran-Kamiriska

Let Z be the identity operator on X = L' x L}j. We have BR(A, A)(f, f3) =
O, R\, Ag) f + YW (L) fy) for any (f, f3). Thus, Z — BR(A, A) is invertible if
and only if Iy — W W (A) is invertible. In that case

(T = BROL AN (f, fo) = (f, Iy = ¥W )T (WRO, Ao f + fa)).

Combining this with (ii) we conclude that Z — BR(A, A) is invertible with positive
inverse (Z — BR(x, A))~! for all A > w. Hence, the spectral radius of the positive
operator BR(A, A) is strictly smaller than 1 for some A > w. It follows from [37,
Theorem 1.4] that the part of (A + B, D(A)) in Xy = D(A) denoted by ((A +
B), D((A + B)))) generates a positive semigroup on Xxp. We have D((A + B)|) =
D(Ay) x {0} and (A + B)|(f,0) = (Ag f,0), f € D(Ag). Consequently, the
operator (Ay, D(Ay)) is densely defined and generates a positive semigroup on L'.
Finally, the operator (A + B, D(A)) is resolvent positive with resolvent given by
R(A, A+ B) = R(A, A)(Z — BR(x, A))~! for . > w. Hence, the formula for
R()\, Ay) is also valid. O

Remark 1 Condition (iv) ensures that the operator (Ag, D(Ag)) satisfies

/ Ag f(x)m(dx) <0 (N
E

for all nonnegative f € D(Ap). If, additionally,
(v) (Ao, D(Ap)) is densely defined and resolvent positive,

then (Ao, D(Ap)) is the generator of a substochastic semigroup on L' ie.,a positive
semigroup of contractions on L. This is a consequence of the Hille—Yosida theorem,
see e.g. [34, Theorem 4.4]. Thus it is enough to assume condition (v) instead of (iii).
Observe also that (iii) and (iv) imply that (0, co) € p(Aop).

Remark 2 Note that if (Ay, D(Ay)) is the generator of a positive semigroup and
/ Ay f(x)m(dx) =0 for all nonnegative f € D(Ay), ®)
E

then (Ay, D(Ay)) generates a stochastic semigroup, i.e., a positive semigroup of
operators preserving the L' norm of nonnegative elements (see e.g. [7, Section 6.2]
and [34, Corollary 4.1]).

Remark 3 If we assume that

(a) (A, D) is closed,
(b) ¥y is onto and continuous with respect to the graph norm || f|l4 = | fIl + |1Af ],

then ¥ ()) exists for each A > 0 and is bounded, by [19, Lemma 1.2]. If ¥ is positive,
then ¥ () is positive. Thus condition (i) can be replaced by conditions (a) and (b).
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Positive semigroups and perturbations of boundary... 925

Remark 4 Greiner [19, Theorem 2.1] establishes that (Ay, D(Ay)) is the generator
of a Cy-semigroup for any bounded ¥ provided that conditions (a) and (b) hold true,
(Ao, D(Ap)) is the generator of a Cp-semigroup, and that there exist constants y > 0
and A such that

W fll = Ay I fll, feNQI—A) x> k. ©)

This is condition (2.1) of Greiner [19, Theorem 2.1]. Some extensions of this result
are provided in [20,29] for unbounded ¥, as well as in [1,2].

Remark 5 Recall that a positive operator on an AL-space defined everywhere is auto-
matically bounded. Thus our assumption (i) implies that ¥ (1) is bounded for each
A > 0. Moreover, its norm is determined through its values on the positive cone. From
assumptions (i) and (iv) it follows that 1| (A)|| < 1 for each A > 0, as was shown in
the proof of Theorem 1. Thus, for f = ¥ (1) f5, we get (9) with y = 1. Now suppose,
as in [19], that ¥ is bounded. Then [[YW¥ (A)|| < [|¥]|/A for all A > 0. Hence, the
operator Iy — YW () is invertible for A > ||¥||. Since I — ¥ (A)Y is also invertible,
we have (I — ¥ (VW)™ =T + ¥ (L) (Iy — ¥ (L)' and, by (4),

RO\, Aw) = (I — ¥ ()W) 'R, Ao).

Consequently, if ¥ is bounded and positive, then we get the same result as in [19].

We now look at a simple example where Theorem 1 can be easily applied and it
should be compared with [1, Corollary 25].

Example 1 Consider the space L' = L'[0, 1] and the first derivative operator A = %
with domain D = W"1[0, 1]. Let E; be the one point set {1} and mj be the point
measure 81 at 1, so that the boundary space is L} ={fy: {1} > R: f3(1) € R} and
can be identified with R, by writing f5 = f3(1). Let the boundary operators ¥, and

¥ be defined by
Yf = f(1) and ¥f =/ foudx), fewhlo, 1],
[0,1]

where w is a finite Borel measure. Note that for each A > 0 and f € N(Al — A) we
have f/ = A f. Thus f’is a continuous function. Consequently, for each f3 € L é and
A > 0, the solution f = W () fy of equation f' = A f satisfying $o(A) f = fy is of
the form

W) fox) =V fy x e 0, 10.

Hence condition (i) holds true. We have
/ Afndx = f(1) = £(0), few"'o,1],
[0,1]

@ Springer



926 P. Gwizdz, M. Tyran-Kamiriska

and the restriction Aq of the operator A to
D(Ag) = {f € W0, 1] 2 f(1) =0}

is the generator of a positive semigroup. Thus conditions (iii) and (iv) hold true. If
there exists A > O such that

/ S D pdx) <1, (10)
[0,1]
then condition (ii) holds true and the operator Ay C % with domain

D(Ay) = {f e WH0, 112 f(1) = /[0 ; J@udx)}

is the generator of a positive semigroup, by Theorem 1. Now suppose that x is a prob-
ability measure, so that u([0, 1]) = 1. Then

/ Dy <1
[0,1]

for all A > 0. Thus if (10) does not hold for any A > 0 then ¢**~1 = 1 for all
A > 0 and p-almost every x € [0, 1] implying that u{x € [0,1] : x = 1} = 1.
Consequently, if u is a probability measure such that u # §; then (Ay, D(Ay)) is
the generator of a positive semigroup.

It should be noted that in [34, Theorem 4.6] the assumption that the domain D(Ay)
of the operator Ay is dense is missing. Making use of Theorem 1, we get the following
result.

Theorem 2 Assume conditions (1)-(iv). If B is a bounded positive operator such that
/ (Agy f(x) + Bf(x))m(dx) <0 forall nonnegative f € D(Ay),
E

then (Ay + B, D(Ay)) is the generator of a substochastic semigroup.
We conclude this section with a result concerning the existence of steady states of
the positive semigroup from Theorem 1. Note that given any A, i € p(Ap) we have

YA =¥ () + (u— AR, Ag)¥ (1), see [19, Lemma 1.3]. Thus ¥ (1) > ¥ ()
for A < u. Consequently, for each nonnegative fj € L(}, the pointwise limit

Y(0) fy = lim ¥ (A)fy (11)
A—0t
exists and ¥ (0) fy is nonnegative.

@ Springer
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Theorem 3 Assume conditions (1)—(iv). Let W (0) be as in (11). If a nonnegative
fy € L) satisfies W(0) fy € L' and fy = W& (0) fy, then ¥(0) fy € D(Ay) and
AgyW(0)fy = 0. Conversely, if Ap f = 0 for a nonnegative f € D(Ay) then
fo = W[ satisfies VW (A) fy < fy forall A > max{0, o}, where w is as in (ii).

Proof 1t follows from condition (i) that ¥ (L) fy3 € D, VoW (L) fy = fy, and
AU (M) fy = Afy forall A > 0. We have ¥ (1) fy — w(0)fy in L', as A — 0.
Thus AV (L) fy — 0 in L', as » — 0. Recall from the proof of Theorem 1
that the operator (A + B)(f,0) = (Af,¥f — ¥ f), f € D, is a closed oper-
ator in the space L' x Lé. The operators ¥ and ¥ are positive and we have
YW X)) fy > PWO) fy = fo =Y (0)fy. Thus, (A+ B)(W (L) fy,0) — (0,0) as
A — 0. This implies that ¥ (0) f5 € D(Ay) and Ay ¥ (0) f3 = 0.

For the converse, suppose that f € D(Ay) and Ay f = 0. We have
RA, Ap)(Af — Ay f) =0.Thus AR(A, Ay) f = fand W f = W R(A, Ap)(Lf) =
YR, AL f) + WA (I; — ¥ (L) 'WR(A, Ag)(Af), by (4). Since

WR(, A)(Af) = (Ig — ¥ (W) (Iy — W (L) WRO, A (L f),

we conclude that ¥ f = (I — gw (L) 'WWRM, Ag)(Af). This implies that (15 —
YU ONYf =WR(, Ag)(Af) > 0 for A > max{0, w} and completes the proof. O

3 A model of a two phase cell cycle in a single cell line

The cell cycle is the period from cell birth to its division into daughter cells. It contains
four major phases: G| phase (cell growth before DNA replicates), S phase (DNA
synthesis and replication), G, phase (post DNA replication growth period), and M
(mitotic) phase (period of cell division). The Smith—Martin model [36] divides the cell
cycle into two phases: A and B. The A phase corresponds to all or part of G phase
of the cell cycle and has a variable duration, while the B phase covers the rest of the
cell cycle. The cell enters the phase A after birth and waits for some random time 74
until a critical event occurs that is necessary for cell division. Then the cell enters the
phase B which lasts for a finite fixed time 7. At the end of the B-phase the cell splits
into two daughter cells. We assume that individual states of the cell are characterized
by age @ > 0 in each phase and by size x > 0, which can be volume, mass, DNA
content or any quantity conserved trough division. We assume that individual cells
of size x increase their size over time in the same way, with growth rate g(x) so that
dx/dt = g(x), and all cells age over time with unitary velocity so that da/dt = 1.
We assume that the probability that a cell is still being in the phase A at age a is equal
to H(a), so the rate of exit from the phase A at age a is p(a) given by

_ _H/(a) _ o8]
p(a) = Ha) H(a)—/a h(r)dr, (12)

where A is a probability density function defined on [0, c0), describing the distribution
of the time T4, the duration of the phase A. We make the following assumptions:
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928 P. Gwizdz, M. Tyran-Kamiriska

(I) The function & in (12) is a probability density function so that 4 : [0, c0) —
[0, c0) is Borel measurable and the function H in (12) satisfies: H(0) = 1,
H(c0) = 0.

(IT) The growth rate function g: (0, o0) — (0, oo) is globally Lipschitz continuous
and g(x) > 0 for x > 0.

The Smith and Martin hypothesis [36] states that / is exponentially distributed with
parameter p > 0, so that p(a) = p for all a > 0. However, this does not agree with
experimental data, see e.g. [18,43] for recent results. The generation time of a cell, i.e.
the time from birth to division, can be written as 7" = T4 + Tg. Thus the distribution
of the generation time has a probability density of the form

0, t<Tp
hr (1) = {h(t —Tp), t>Ts.

Cell generation times can have lognormal or bimodal distribution (see [35]), exponen-
tially modified Gaussian [17], or tempered stable distributions [30].
To describe the growth of cells we define

Nx) = /x Ldr, x>0, (13)
i &)

where X > 0 or X = 0, if the integral is finite. The value £(x) has a simple biological
interpretation. If X is the size of a cell, then £Q(x) is the time it takes the cell to reach
the size x. It follows from assumption (II) that the function £ is strictly increasing
and continuous. We denote by Q7! the inverse of Q. Define

mxo = Q7 (Qx0) + 1) (14)
for t > 0 and xo > 0. Then m,x¢ satisfies the initial value problem
x'(1) = g(x(1)), x(0) =xp > 0.

If 9(0) = —oo then Q! is defined on R. Hence, formula (14) extends to all 7 € R
and xo > 0. We also set ;0 = 0 for r > 0 in this case. If Q(0) = 0 then Q! is
defined only on (0, co) and we set 7,0 = Q7 (r) for t > 0. We can extend formula
(14) to all negative ¢ satisfying Q(xo) + ¢ > 0; otherwise we set m;x9 = 0. Note
that at time # = T, the generation time, a “mother cell” of size w7x¢ divides into two
daughter cells of equal size %nrxo.

In the probabilistic model of [22,25,38,39] a sequence of consecutive descendants
of a single cell was studied. Let f be the probability density function of the size
distribution at birth at time #y of mother cells and let #{ > fy be a random time of
birth of daughter cells. Then the probability density function of the size distribution
of daughter cells is given by [25,38]

A(x) P
Pf(x) = _/0 aH(Q(A(X)) — Q) f(r)dr, (15)
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where
A(x) = max{7_1, (2x), 0} = max{Q ' (Q(2x) — Tp), 0}.

The iterates P2 f, P> f, ... denote densities of the size distribution of consecutive
descendants born at random times #,, 73, . ... The operator P defined by (15) is a
positive contraction on L! (0, 00), the space of Borel measurable functions defined
on (0, co) and integrable with respect to the Lebesgue measure. Here we extend the
probabilistic model to a continuous time situation by examining what happens at all
times ¢ and not only at 1y, t1, 2, . . ..

We denote by pi (¢, a, x) and py (¢, a, x) the densities of the age and size distribution
of cell in the A-phase and in the B-phase at time ¢, age a, and size x, respectively.
Neglecting cell deaths the equations can be written as

9 t,a, J 1, a, d t,a,
pitax) | pia ) dE@pitax)
91 Ja 0x

16
dpa(t.ax)  dpa(tia,x) | d(gpat.a,x) (10
+ + =0,
at da 9x
with boundary and initial conditions
pi(t,0,x) =2py(t, Tp, 2x), x> 0,1 >0, (17)
o
p2(t,0,x) = [ pa)pi1(t,a,x)da, x >0,t>0, (18)
0
p1(0,a,x) = fi(a,x), p20,a,x)= fa(a,x). (19)

In this model, cells in the A-phase enter the B-phase at rate p. This is taken into account
by the boundary condition (18). All cells stay in the B-phase until they reach the age
Tp. Then they divide their size into half (17). The model is complemented with initial
conditions (19). The model we propose is different as compared to mass/maturity
structured models [16,21,31,40] where a cell leaves the phase A with intensity being
dependent on maturity, not age. In the case of 75 = 0 there is only one phase present; a
maturity structured model being a continuous time extension of [24] is studied in [27],
while age and volume/maturity structured population models of growth and division
were studied extensively since the seminal work of [12,26,33]. We refer the reader to
[28] for historical remarks concerning modeling of age structured populations and to
[35,42] for recent reviews.

We look for positive solutions of (16)—(19) in the space L' = L'(E, £, m) with
E =E; x {1} U E> x {2}, where

Ei ={(a,x) € (0,00) x (0,00) : x > 7,0}
and
E> ={(a,x) € (0, Tg) x (0,00) : x > 7,0},
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930 P. Gwizdz, M. Tyran-Kamiriska

m is the product of the two-dimensional Lebesgue measure and the counting mea-
sure on {1,2}, and £ is the o-algebra of all Borel subsets of E. We identify
L' = LY(E, & m) with the product of the spaces LY(E)) and L' (E,) of functions
defined on the sets E1 and E», respectively, and being integrable with respect to the
two-dimensional Lebesgue measure. We say that the operator P has a steady state in
L'(0, 00) if there exists a probability density function f such that Pf = f. Similarly,
a semigroup {S(#)};>0 has a steady state in L if there exists a nonnegative f € L!
such that S(r) f = f forallr > O and | f||; = 1 where || - ||1 is the norm in L.

Theorem 4 Assume conditions (1) and (11). There exists a unique positive semigroup
{S(#)}i>0 on L' which provides solutions of (16)—(19) and {S(t)};>¢ is stochastic. If
H € L'(0, 00) then the semigroup {S(t)};>0 has a steady state in L' if and only if the
operator P in (15) has a steady state in L' (0, 00).

We give the proof of Theorem 4 in the next section. Theorem 4 combined with [9]
implies the following sufficient conditions for the existence of steady states of (16)—
(19).

Corollary 1 Assume conditions (1) and (I). Suppose that H € L'(0, c0) and that
1Q(0)] < oco. If

E(Ty) = /000 H(a)da < lixrgioréf(ﬂ()n(x)) —9(x)) (20)

then (16)—(19) has a steady state and it is unique if, additionally, h(a) > 0 for all
sufficiently large a. Conversely, if there is xo > 0 such that H(Q(M(xp))) > 0 and
E(T4) > sup,>,,(Q(x)) — Q(x)), then (16)—(19) has no steady states.

If the cell growth is exponential so that we have g(x) = kx for all x > 0, where
k is a positive constant, then it is known [22,38,39] that the operator P has no steady
state. We now consider a linear cell growth and assume that g(x) = k for all x > 0.
We see that Q(x) = x/k, the operator P is of the form (see [39] or the last section)

2 2x—kTp
Pf(x) = %/0 h((2x —kTp —r)/k) f(r)dr1,00)(2x — kTp), x >0,

and condition (20) holds if and only if E(T4) < oo. Combining Corollary 1 with
Theorem 4 implies the following.

Corollary 2 Assume that g(x) = k for x > 0 and that h(a) > 0 for all sufficiently
large a > 0. If E(T4) < oo then the semigroup {S(t)};>0 has a unique steady state.

4 Proof of Theorem 4

We will show that Theorem 4 can be deduced from Theorems 1 and 3. To this end, we
introduce some notation. Let us define

7 (t, ap, xo) = (ap +t, m:x0), ap,xo >0, € R,
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Positive semigroups and perturbations of boundary... 931

where m; is given by (14). Then ¢t +— m (¢, ag, xo) solves the system of equations
a'(t) = 1 and x'(t) = g(x(¢)) with initial condition a(0) = ag and x(0) = x¢. Recall
that E; is an open set. For any x(, ap € E1 we define

t_(ag, xo) = inf{s > 0 : 7w(—s, ag, x0) ¢ E1}
and the incoming part of the boundary 9 E
I'N ={z€0E|:z=mn(-t_(y),y) forsome y € E; withr_(y) < oo}.
Observe that ¢ (ag, xo) = ap for all (ag, xo) € Ey and that I = {0} x (0, c0). We

consider on I';” the Borel measure m | being the product of the point measure ¢ at O
and the Lebesgue measure on (0, 0o). We define the operator Tpax On L! (E1) by [6]

C0(f(@.x) B8 f(a.x)
da 0x

Tmaxf(a’ x) =
with domain
D(Tmax) = (f € L'"(E1) : Tmax f € LY(ED)},

where the differentiation is understood in the sense of distributions. Then it follows
from [6] that for f € D(Tpax) the following limit

B™ f(z) = tli_r)lg)f(ﬂ(t,z))

exists for almost every z € I'} with respect to the measure m | on I';” . According to
[6, Theorem 4.4] the operator Ty = Tax With domain

D(To) ={f € D(Tmax) : B" f =0}
is the generator of a substochastic semigroup on L!(E1) given by

g(m—sx) 1
U()(t)f(a,X):Wf(a_t,ﬂ_t.x)l{t<t7(a,x)}(a,x), (a,X)EE], fEL (El)

By [6, Proposition 5.1], the operator (T, D(T)) defined by
Tf =Tmaxf —pf. [ DM ={f €D(To):pf €L (En)
is the generator of a substochastic semigroup on L!(E1) of the from
Vi) f(a,x) = e P @Yoy fa, %), (a,x) € Er, f € LU(EY).
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Note that we can identify the space L' (E>) with the subspace
Y={feLY(E): f(a,x) =0forae. (a,x) € E|\E>}
of L'(E}) and we have Timax (D (Tmax) N LY (E»)) C LY (E,). We set
1-(ag, x0) = inf{s > 0: 7(=s, ao, xo0) ¢ E2} = a0, (ap, xo) € E2,
and
Iy ={z€0Ey:z=mn(—t_(y),y) forsome y € E; withz_(y) < oo}.
We also define the exit time from the set E, by
ty(ag, xo) = inf{s > 0 : 7 (s, ag, x0) ¢ E2}

and the outgoing part of the boundary 0 E;

F2+ ={z€0Ey:z=mn(ty(y),y) forsome y € Er}.

We have ¢4 (ag, xo) = Tp — ao and F2+ = {(Tp,x) : x > mr,0}. We define the
Borel measure m, on I, as the measure m; and the m2+ on F2+ as the prod-
uct of the point measure at 7p and the one dimensional Lebesgue measure. Since
Uo(t)(L'(E)) € L'(E»), the part of the operator (Tg, D(Tp)) in L' (E») is the gen-
erator of a substochastic semigroup {Uz(#)};>0 in L' (E»). Moreover, the following
pointwise limits exist

BXf(z) = lim f((Ft,2)) for f € D(Timax) N L'(Ey)

for almost every z € I 2i with respect to the Borel measure m? on Ff.

Let Ey = Iy x {1} U T, x {2}, & be the o-algebra of Borel subsets of Ej and
my be the product of the Lebesgue measure on the line {0} x (0, oo) and the counting
measure on {1, 2}. To simplify the notation we identify L 5 = LY(Ey, &, my) with
the product space L' (0, 00) x L!(0, 00). We define operators A| and A, by

ALfi =T fi —0fi, fi €D1=1{fi € L"(E1) : Twmax f1, pf1 € LY(ED)},
1)
Arfr = Tmax 2y fr€D2={fr € L'(E2) : Tmax o € L' (E2)}. (22)
We set

D ={(f1, o) €D1 x Dy :B™ f1,B™ f» € L'(0, 00)}
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and we define the operator A on D by setting Af = (A} f1, Az f2) for f = (f1, f2) €
D. We take operators ¥, ¥ : D — L} of the form

Wf=0B f1.B"f), f=(1/)eD, (23)

and

Vfx) = <2B+f2(TB, 20)(ny, (0),00)(2)6)1/0 /O(a)fl(a,x)l(o,oo)(ﬂ—ax)dd)

(24)
for f = (f1, f») € D. We show that the operator (Ay, D(Ay)) is the generator of a
positive semigroup on L', where Ay f = Af for f € D(Ay) ={f € D: ¥ f =
Y f}. To this end, we check that assumptions (i)—(iv) of Theorem 1 from Sect. 2 are
satisfied.
We first show that conditions (iii) and (iv) hold. The operator A restricted to
D(Ag) = {(f1, f2) € D1 x Dy : B" fi = 0,B™ fo = 0} is the generator of the
semigroup {So(#)};>0 given by

So() f = (U1t f1, Ua(1) o), t =0, f=(fi, o) elL,

since {U1(#)};>0 and {Ux(t)};>0 are semigroups on the spaces LY(E)) and LY(E»)
with the corresponding generators. The semigroup {So(#)};>0 is substochastic. For all
nonnegative f = (f1, f2) € D we have

/Afdm—/ Yo fdmy =/ A1f1(a,x)dadx+/ Aj fo(a, x)dadx
E Ej Eq Ey

—fiB_fl(Z)ml_(dZ)—/7B_f2(2)m2_(d2)-

Iy )

By [6, Proposition 4.6], this reduces to

/ Afdm — / Wo fdmy = — / p(@) fi(a, x) dadx — / B* fy(2mi (d2),
E Ej E| rt

2
(25)
implying that condition (iv) holds.
For f = (f1, f2) € D we can rewrite the equation A f — Af = 0 as

(o0 fia, ) = (a0 i@ ) ~ 2 i@, ),

0 0
B—(fz(a, X)) = ——(gx) fa(a, x)) — A fa(a, x).
a 0x
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Hence, we see that the right inverse of ¥ when restricted to the nullspace of Al — A
is given by

8(m_yx)
g(x)
(26)

W0 faa, x) = (eI POD fy ), e fra (o) 0,1 @)

for (a,x) € Ey and f3 = (f3.1, f5,2) € Lzl,. Moreover, if (f1, f2) = ¥ (A) f3 then
BT A1(0,2) = fim fi(r,7x) = lim BP0 fy1 ) = o (0.
t— t—

Thus f; € Dy. Similarly, f> € D;. Hence, condition (i) holds.
To check condition (ii) take A > 0 and fy € L }9. For (f1, f2) = ¥ (L) f3 we have

(T—ax)

Fla.x) = e fy 2 (r_gn)E G Moo a0 @.

This implies that

Bt f2(Tp, x) = lim f>(Tp =1, 71)
t—

= tll_{r(l) e_A(TB_l)fa,z(ﬂ—TBX)%hom)(ﬂ—mﬂ
= s f8,2(777T3x)%1(0,00) (T_Ty%).
Hence,
YY) fa(x) = (PP f)1(x), WP (A) fa)a(x)),
where

8(m_1, (2x))

T ) f)r(x) =2 B £y 5 (m_1, (2x)) 0

1(0,00) (T—75 (2x))

and, by (12),

g(m_yx)

——10.00)(T_gx)da.
2(x) (0,00)

WH () fr)a(r) = /0 h(@)e™ fy 1 (r_a)
For fy € L é we obtain

W) foll < e 8 /O | f5,2(2)ldz + /O h(a)e *da /0 | fo.1(0)dy

o
< max {e_’\TB,/ h(a)e_lada} Il fall,
0
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showing that || ¥ (A)| < 1 for all A > 0. Consequently, it follows from Theorem 1
that the operator (Ay, D(Ay)) is the generator of a positive semigroup {S(#)};>0 on
L'. The semigroup {S(¢)};>0 is stochastic, since (8) holds by (25).

Next assume that H € L' (0, 00). By Theorem 3, it remains to look for fixed points
of the operator ¥ ¥ (0). Here ¥ (0) defined as in (11) is, by (26), of the form

(0) fy(a, x) = (e*fé’p(r)drfaJ(ﬂ—aX), f3,2(ﬂ—ax)1[0,T3)(a)) % 27

for (a, x) € E1. Observe that ¥ (0) fy € L' for f; € L;), since e~ Jo P(dr — H(a),
by (12), and

o0

1¥(0) f5l S/O H(a)da/O Ifa,l(y)ldy+TB/O | fa.2(D)Idy.

We have 7_7, (2x) = Q7' (Q(2x) — Tp) = A(x) if 2x > 77,0 and

o gG)
M(x) = 2—g(2x) 1(0,00) (A (x)). (28)
Hence
WP 0) f)1(x) = fa2((x)A (x)
and

(TP (0) fo)2(x) = / oop(a)ze—fo” W”’rfa,l(n_ax)M
0 g(x)

If fo5 =wWw(0)fsthen fi2(x) = (PW¥(0)[f3)2(x) and fy 1 satisfies

1(0700) (n_ax)da.

So.1(x) = (@W(0) f5)1(x)
00 e
-2 /0 7(@) fo.1 (—a (0()y) ST X))

2(2%) 1(0,00) (T (A (x)))da.

By changing the variables r = w_,(A(x)), we arrive at the equation

2 A(x)
Sa1(x) = —/ h(QA(x)) — Q) fo,1(r)dr, x > 0. (29)
g(2x) Jo

Equivalently, f5.1 = Pf3,1 where P isasin (15). Consequently, equation ¥ ¥ (0) f5 =
f» has a solution in Lzl, if and only if the equation Pf; | = f3,1 has a solution in
L'(0, 00). Observe also that the operator ¥ ¥ (0) preserves the L }, norm on nonnegative
elements. Hence, if f; € Lé is such that ¥ (0) f3 < f5 then YW (0) f3 = fy. Thus
the assertion follows from Theorem 3.
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5 Final remarks

Our model can be described as a piecewise deterministic Markov process {X (f)};>0.
We considered three variables (a, x, i), where i = 1 if a cell is in the phase A,i =2
if it is in the phase B, the variable x describes the cell size, and a describes the
time which elapsed since the cell entered the ith phase. Let 79 = 0. If we observe
consecutive descendants of a given cell and the nth generation time is denoted by ¢,
then #,41 = s, + Tp where s, is the time when the cell from the nth generation enters
the phase B,n > 0. A newborn cell at time ¢, is with age a(t,) = 0 and with initial size
equal to x(¢,,)/2, where x(t,") is the size of its mother cell. The cell ages with velocity
1 and its size grows according to the equations x'(t) = g(x(¢)) for r € (t,, s,). If the
cell enters the phase B then its age is reset to 0 and its size still grows according to
x'(t) = g(x()) fort € (s, s, + Tg). We have

a(sp) =0, x(sp) = x(s,), i(sp) =2, (30)

and at the end of the second phase the cell divides into two cells, so that we have

1
atre1) = 0. X)) = 320y ) i) = 1. (31)

Thus the process X (t) = (a(t), x(t), i(t)) satisfies the following system of ordinary
differential equations

dm =1, x'@)=gkx@®), i't)=0,

between consecutive times fy, so, t1, S1, - - ., called jump times. At jump times the
process is given by (30) and (31). If the distribution of X (0) has a density f then X (¢)
has a density S(¢) f, i.e.,

Pr(X(t) € B; x {i}) = / (S@®) fi(a, x)dadx
B;

for any Borel set B; C E;, where {S(¢)};>0 is the stochastic semigroup from Theo-
rem 4.

If f5.1 is the density of the size distribution at time #p = 0 and f3  is the density
of the distribution of size at time s, then the distribution of size at time #; is given by

A(x)
Pr(x(s1) < x) =Pr(myzx(s1) < 2x) = Pr(x(s1) < A(x)) = / fa2(2)dz
0
and
fa.2(2) = /0 h(a)7t, fy,1(2)da, (32)
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where

Ta f5,1(2) = fa, 1(7t—az) 81— 2@ )1(0 00) (T—42)

is the density of the size x(a) of the cell at time a, if x(0) has a density fj ;. Thus the
density of the mass x(#;) is given by

d
5PT(X(I1) <x) = fa2(Ax))A (x) = Pfy1(x)

for Lebesgue almost every x € (0, 0o), where P is as in (15). Now, if the operator P
has a steady state fy 1 € L' (0, o0) so that f.1 satisfies (29) and if fj > is as in (32),

then f* = (ff, f5) given by

fia,x) =e B POUR £ 1(x), (@, x) = Ra fr20010.15) (@) (33)

is the steady state for the semigroup {S(¢)};>0 existing by Theorem 4. Moreover, it is
unique if P has a unique steady state.

Remark 6 1t should be noted that in the two-phase cell cycle model in [31] the rate of
exit from the phase A depends on x, not on a, and that there is no such equivalence
between the existence of steady states as presented in Theorem 4. Our results remain
true if we assume as in [31] that division into unequal parts takes place. Methods as in
[31,34] can also be used in our model to study asymptotic behaviour of the semigroup
{S(#)};>0. For a different approach to study positivity and asymptotic behaviour of
solutions of population equations in L' we refer to [32].

We conclude this section with an extension of the age-size dependent model from
[12] to a model with two phases. Let p;(¢, a, x) be the function representing the
distribution of cells over all individual states a and x at time ¢ in the phase A fori = 1
or Bfori =2,ie., faalz f;clz pi(t, a, x)dadx is the number of cells with age between
ap and a; and size between x| and x; at time ¢ in the given phase. Then p; and p»
satisfy Egs. (16), (18), (19) while the boundary condition (17) takes the form

p1(t,0,x) =4pr(t, Tp,2x), x>0,1>0, (34)

since a mother cell at the moment of division 7Tp has size 2x and gives birth to two
daughters of size x entering the phase A at age 0.

Theorem 5 Assume conditions (1) and (11). Then there exists a unique positive semi-
group on L' which provides solutions of (16), (34), (18), (19).

This follows from Theorem 1 in the same way as Theorem 4, where now to check
condition (ii) we note that

I¥Ww () foll < max {2e”'*, fo ” h(a)e*“da} Il £l
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for all fy € L}, and A > 0, implying that | (L)|| < 1 forall A > w with w =
log2/Tp.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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