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ABSTRACT Forecasting of stock market returns is a challenging research activity that is now expanding
with the availability of new data sources, markets, financial instruments, and algorithms. At its core, the
predictability of prices still raises important questions. Here we discuss the economic significance of the
prediction accuracy. To develop this question, we collect the daily series prices of almost half of the publicly
traded companies around the world over a period of ten years and formulate some trading strategies based
on their prediction. Proper visualization of these data together with the use of the No Free Lunch theoretical
framework give some unexpected results that show how the a priori less accurate algorithms and inefficient
strategies can offer better results than the a priori best alternatives in some particular subsets of data that
have a clear interpretation in terms of economic sectors and regions.

INDEX TERMS Stock market, economic significance, forecasting, prediction algorithm, trading strategies,
extended Bayesian framework, no free lunch theorem, support vector machines, big data, visualization.

I. INTRODUCTION

FORECASTING of stock market returns is not only dif-
ficult, it may also cause the price generating process

to change over time [1], [16]. Interestingly, it seems that
the same act of academic publication may interfere with
the price of the shares [2]. These facts, together with the
availability of new data sources [22], [25], markets [18], [26],
financial instruments [8] and algorithms [21], [23] make the
predictability of stock returns a hot topic [34].

The econometric approach to forecasting stock market
generally proposes mathematical models for the price gen-
eration process and then test them with data. A celebrated
discussion, usually under the rubric of Efficient Market Hy-
pothesis (EMH), is whether the models consistent with the
data are predictable or not: It is now widely accepted that
the financial series are predictable to a certain extent [5],
[6], [11], [17], [18]. Another typical financial objective is the
design of trading strategies [14]–[16]. A trading strategy is a
plan to buy and sell assets that make up a portfolio in order
to be profitable. It can use any type of information and traded
assets, and it can cover different time horizons [10].

On the other hand, the engineering approach to this topic
essentially designs prediction algorithms, mainly based on
artificial intelligence and using the time series of prices or
other data sources [3], [21]–[26], [30], [31], [34]. Although
the typical objective in the design of algorithms lies in the
accuracy of the prediction, the final aim should address the
corresponding profit. The relationship between the accuracy
and profit is not straightforward. Although it is sensible to
believe that greater accuracy can generate higher profits, the
simple idealized example of an asset with constant prices
shows that it may not be like this: since it remains constant, it
can be predicted perfectly, however since it does not change
its return is none.

In this paper, we address the relationship between the
prediction accuracy and the profit that can be obtained in
real markets, a relationship that is sometimes referred to as
the economic significance of the stock predictability [33].
The search for profits generally comes in terms of a trading
strategy, while the predictability accuracy is associated with
the prediction algorithms. Therefore, we define prediction
strategies as those trading strategies that are explicitly built
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on a prediction algorithm. Our purpose is to discuss to what
extent the profit can be credited to the prediction algorithm.

To address our objective, we must formulate the prob-
lem of stock prediction in a set of very simple prediction
strategies, collect real market data and interpret its results in
a formal learning theory. As the setting for our prediction
strategies, we have considered the problem of forecasting
daily stocks individually, taking as the explanatory variables
the time series of previous closing prices. As simple as it
seems, it can yield interesting insights, paraphrasing Camp-
bell [5]. The daily frequency of forecasts is selected because
it is a good compromise between the better predictability of
short periods and the transaction costs [37] on the one hand,
and the resources available to collect and process data on the
other. Prediction is made of the binary movements instead of
continuous changes; that is, our algorithms predict whether
or not the price will rise the next day, instead of the more
difficult problem to guess its value.

Our prediction strategies are not designed to find the
optimum profit or obtain the best prediction accuracy but
to express our results as easily and clearly as possible. We
consider four prediction strategies to develop our discussion:
the Support Vector Machine strategy (SVM), the Efficient
Market strategy (EMS), the Buy and Hold strategy (B&H)
and the Optimal strategy (OPT). We will refer to their pre-
diction algorithms with the same acronyms when there is
no risk of confusion. They all rely on the same data for a
fair comparison. The SVM prediction strategy uses a SVM
algorithm and decides to buy or sell an asset at the beginning
of each day if its SVM predicts that its price will rise or fall,
respectively. We use the Support Vector Machines as possibly
the most fashionable machine learning representative of the
years for which we have data and also capable of delivering
very good prediction results [3], [30]. The EMS strategy is
similar to the SVM strategy but its prediction algorithm uses
the day return as the next day’s return. The return for a day
is defined as the price of that day divided by the price of the
previous day so that this algorithm follows a similar idea to
the EMH but in trends rather than prices. Therefore, the EMS
algorithm is perhaps the simplest possible. When compared
to the SVM, we can discuss the effect of the algorithmic
complexity on the profits, being the rest of those strategies
equal. The other two prediction strategies are references to
frame our discussion and do not have prediction algorithms
as such, but simply consider the extremes of prediction: the
B&H does not predict at all, always buys the asset and keeps
it until the end of the considered time horizon; on the other
hand, the OPT exhibits a perfect prediction and applies to this
prediction the same strategy as the SVM and EMS.

The basis of our discussion is the collection, visualization
and interpretation of a large set of asset price data. The lack
of a well-established financial data standard [39] and the
unstructured nature of these data require special care in their
handling as well as the development of customized tools for
meaningful visualization. These characteristics allow us to
refer to these techniques as Big Data [52].We have compiled

the daily prices of approximately half of the listed companies
worldwide in the period 2007-2016, and some important
metadata, such as their industrial classification and their
currencies to assign them a regional affiliation.

Finally, we interpret our results against an extension of the
Bayesian Learning framework [28]. This theoretical frame-
work allows us to discuss the proposed problem of how the
prediction algorithm impacts profit and secondly to show
how the No Free Lunch Theorem (NFL) applies to the fi-
nancial stocks prediction strategies [29]. In essence, the NFL
says that, under certain conditions, if a prediction algorithm
works better in a certain asset class, it will perform worse
in the rest. We extend its application to different economic
sectors and regions, following the interest of the current
literature [9], [11], [13].

Please note that our results do not take into account impor-
tant issues for the actual trading, such as the spread [32], the
trading costs, or the price impact [57], among others.

II. DATA AND THE SVM
The basis for our analysis is a database of listed companies
worldwide on top of which we discuss prediction algorithms
and some related trading strategies performance. This section
presents the details of its collection and the need of filtering
in order to make meaningful its economic significance. On
the other hand, our prediction strategies are quite simple
in their formulation except for the SVM prediction neural
network which deserves some previous discussion. Note that
the selection of the SVM as a complex type of prediction
algorithm is not determinant in the overall discussion and
some similar algorithm like Deep Neural Networks might be
used. Our main motivation for this selection is that in the time
interval corresponding to our data collection, this prediction
machine has been the main representative in the literature
[30].

A. STOCK MARKET DATABASE
Data are extracted from different online sources with histor-
ical closing prices of companies classified by sectors, indus-
tries and currencies. Among these sources, there are websites
of the main stock exchanges in the world and aggregators
such as Yahoo finance.

A recursive query method has been used to collect and
process all data from these sources in a distributed server
system using a DNS-based approach. This system reduces
the time in proportion to the number of servers involved [51].
To achieve this, a cloud computing system was implemented
with a centralized database optimized for Big Data analysis
[50]. In this way, we could get N virtual servers in the cloud,
each with L threads, achieving a significant time reduction.
Therefore, we translate the computational time problem to an
economic cost proportional to the number of virtual servers
involved in the calculation [41].

Due to the way in which the operating system treats the
threads in each process, there is a maximum number of
threads for the efficiency to decrease [49]. In that case, it
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is more convenient to add an additional server instead of
continuing to add new threads.

The centralized database, encoded in MySQL, has ac-
cess control to avoid typical problems derived from multi-
threaded computing, such as ’phantom reads’, and all
database transactions work using a serializable isolation level
provided by the innobd engine. [48]. However, having a
centralized database implies a limitation on the maximum
number of read and write operations. To improve the flow
of data, we use mirror databases with MySQL replication
system [48]. Therefore, we have two data streams: one write-
only and some read databases.

An important part of the database is to demonstrate its con-
sistency. During this validation process two problems were
found: splits and discontinuous life cycles of the companies.
Some price values suffer abrupt changes as a result from
the grouping of securities in the stock exchange or their
separation, generically known as splits and reverse splits.
This puts the consistency of the data at risk, since they can
vary very quickly from one day to the next, which leads to the
calculation of false returns that can endanger the rigor of the
system. For example, Netflix (NFLX - Nasdaq) with a 7-for-
1 stock split on July 14 2015 [47] or Apple (AAPL - Nasdaq)
on February 18, 2005 with a 2-for-1 split [46]. To avoid this,
we work with a model that corrects these prices directly from
the source we use. In this way, the algorithm works only with
prices corrected for splits and reverse splits. This correction
is made as if the price of the entire series was the result of
the operation of split or reverse split. On the other hand, the
activity of some companies appears and disappears over time,
giving rise to discontinuous life cycles. This may be due to
temporary or permanent closures of its activity, as well as for
regulatory reasons, changes in the name of the company or
acquisitions. To achieve temporal coherence in the analysis,
we consider companies whose life cycle provides sufficient
data to support our analysis. In the case of companies with
name changes (e.g.: Alphabet vs Google [45]), it is treated as
if it had always been the same company.

There are 35,324 companies in our database with prices
compiled for 10 years, making a total of 105,627,027 entries.
Historical data are collected until July 19, 2017. Table1
shows their distribution by currency as a proxy of their
geographic location, also illustrated in Fig. 1. Table 2 and Fig.
2 show how companies are distributed among the different
economic sectors of activity. These sectors are obtained from
the Industry Classification Benchmark (ICB) [44], a global
standard. Each company is assigned to the sector that most
closely represents the nature of its business.

B. DATA SELECTION AND VISUALIZATION
For each company and year in our database, Fig. 3 plots a
red dot showing its maximum daily equivalent return versus
the percentage of days in that year that has positive returns.
However, this figure is quite misleading to draw realistic con-
clusions: first, the daily return grows higher than is credibly
expected for any company in order to translate this return

Currency Symbol Number of Companies
US Dollar USD 7,743
Japanese Yen JPY 3,597
Euro EUR 2,758
Canadian Dollar CAD 1,961
Australian Dollar AUD 1,766
Hong Kong Dollar HK 1,762
Indian Rupee INR 1,711
Pound sterling GBX 1,462
Chinese Yuan CNY 1,085
Malaysian Ringgit MYR 912
Other currencies - 10,567

TABLE 1. Distribution of collected companies by currency
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FIGURE 1. Distribution of companies by currency.

into real profits. Second, the area of a region in the plot does
not correspond to the actual number of companies, since they
overlap.

To filter out those companies for which the reported equiv-
alent return cannot credibly translate into actual profit, we
need to take into account the relationship between the sensi-
tivity of price variation and the market capitalization. There-
fore, those companies with very small capitalization or small

Industry Number of companies
Industrials 7.383
Financials 6.421
Consumer Goods 4.786
Basic Materials 4.357
Consumer Services 3.880
Technology 3.296
Health Care 2.526
Oil and Gas 1.622
Utilities 731
Telecommunications 322

TABLE 2. Distribution of collected companies by industry
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FIGURE 2. Distribution of companies by sectors.

caps exhibit a high return with small volume transaction
[35]. An additional relation between market capitalization
and average prices can be observed in Fig. 4. As a result
of this analysis and considering the relation between the
average prices and returns given by Fig. 5, we eliminate those
companies with prices below US$ 0.01 for the subsequent
discussion.
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FIGURE 3. A simple illustration of the maximum daily equivalent return versus
the percentage of days with positive returns for the total database.

In order to faithfully represent the relationship between
prediction accuracy and return, we change the raw points for
a statistical aggregate of the companies in accuracy intervals
and report the 90% return percentile for that interval, as
shown in blue in Fig. 6.

.

−4 −2 0 2 4

6
7

8
9

10
11

12
13

log10(Price)

lo
g1

0(
M

ar
ke

t C
ap

ita
liz

at
io

n)

FIGURE 4. The relationship between the market capitalization of companies
in our complete database and their prices, both in US$.
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FIGURE 5. Relationship between the maximal equivalent daily returns and the
average prices for the complete database. Notice how the ’small caps’, that is,
those companies with very low prices, show daily equivalent returns that are
too large to be credible, as well as high volatility. In red, we show the threshold,
10−2 US$, we use to filter our database in order to obtain significant results.

C. THE SVM AND ITS OPTIMIZATION
The SVM is our representative for the best prediction algo-
rithm in our prediction strategies. The full description of the
corresponding strategy is provided in the next section, here
we describe the SVM parameters optimization in detail. For
a description of the SVM and its different classes see [53].

As already discussed in the introduction, our goal is to
predict binary outcomes: whether the price will rise or not the
next day. Therefore, we evaluate the SVM performance by
its prediction accuracy, defined as the percentage of correct
predictions in a year of data. Since different companies have
different lengths of data in a year, our first challenge is to
define one year of data for our analysis. We have used the
median of the length of data available through the companies,
instead of its mean, to get a value insensitive to extreme
values. The result is 244 days per year, which is a bit smaller
than the number of trading days (255).

In order to find the best predictability, SVMs with different
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FIGURE 6. In blue, the 90%-percentile of the maximum daily equivalent
return in accuracy intervals of the filtered data. The meaning of this percentile
is that 10% of the companies have greater return than that shown in the graph.
Notice how the basic representation for this relationship, in red, is misleading
with respect the actual density of the points

configuration parameters are trained and optimized using the
Python implementation of Scikit-learn [43]. The training pa-
rameters considered are: the number of vectors, their length,
the kernel and type of SVM and the data format, either raw
prices or returns. For each company, we search the parameter
space for the highest prediction rate. We have considered
six vector lengths, six numbers of vectors, three kernels and
three SVM types, which means a total of 72,576 simulations
per company. We made an initial exploration for optimal
parameters with 5% of the companies randomly selected
(1,550), making a total of 112,492,800 simulations. To assess
the centrality and dispersion of the results, percentiles are
taken to avoid the influence of outliers. This is especially
useful in the calculation of returns, where the dispersion is
greater.

To train the algorithm, future values are not used but
only values from the past to the reference date X0. For
each company, in order to predict the return obtained
from day X1, we build n training vectors, where n ∈
{1, 5, 19, 61, 122, 244}, by rotating a time window of
length W :

V ector1 : [X0, X−1, . . . , X−W+1]
V ector2 : [X−1, X−2, . . . , X−W ]
...
V ectorn : [X−n+1, X−n, . . . , X−n−W+2]

Table 3 shows that a vector of length n = 5 (days) provides
slightly greater percentiles than the rest of the lengths.

For the sample length, W , we have tested the following
alternatives: one day (1 closing price), one week (5 closing
prices), one month (19 closing prices), one quarter (61 clos-
ing prices), half a year (122 closing prices) and one year (244
closing prices). Table 4 shows that the size of the vector does
not have much impact on the results, so we use single-day
samples, W = 1, since it accelerates data processing.

Q 1 5 19 61 122 244
0% 0.3483 0.3319 0.3442 0.2540 0.1188 0.0081
25% 0.5040 0.5204 0.5081 0.5040 0.5081 0.5040
50% 0.5450 0.5778 0.5696 0.57377 0.5737 0.5737
75% 0.6106 0.6885 0.6844 0.6721 0.6721 0.6680
100% 0.9959 0.9959 0.9959 1.0000 1.0000 1.0000

TABLE 3. Accuracy percentiles for the number of training vectors

Q 1 day 1 week 1 month 1 quarter 1/2 year 1 year
0% 0.0122 0.0081 0.0081 0.1106 0.1844 0.1639
25% 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081
50% 0.5737 0.5737 0.5655 0.5614 0.5614 0.5655
75% 0.6680 0.6680 0.6680 0.6639 0.6639 0.6680
100% 0.9959 0.9959 0.9959 1.0000 1.0000 1.0000

TABLE 4. Accuracy percentiles for the training vector lengths

We have considered three different kernels for the SVM:
the linear, the radial basis function (RBF) and the sigmoidal.
As shown in Table 5, there is a small predictive improvement
of the RBF and sigmoidal kernels over the linear ones. Be-
tween these two kernels, we have opted for the RBF because
its calculation is the fastest.

Finally, two different SVM configurations are tested for
prediction optimality: the regression (SVR) and classifier
(SVC) modes. Although the classifier configuration adapts
naturally to a binary forecast, the regression configuration
output can be considered a soft decision to be later quantized
into two hard binary values using a convenient threshold.
Additionally, two different data formats are tested: the price
closing data and the return. Table 6 shows the results of
our tests; since the SVC gets the same results for both data
formats, only one column is shown. There, it can be observed
how the SVR working on returns offers the best performance.

In summary, our SVM algorithm is selected to work with
a RBF kernel in the regression mode, over the returns, and
with 5 training vectors of length 1.

Q Linear RBF Sigmoid
0% 0.008 0.0081 0.0163
25% 0.5081 0.5122 0.5122
50% 0.5532 0.5737 0.5778
75% 0.6557 0.6762 0.6762
100% 1.0000 1.0000 1.0000

TABLE 5. Accuracy percentiles for the SVM kernels

Q SVC (prices/return) SVR (prices) SVR (return)
0% 0.3483 0.1639 0.0081
25% 0.5081 0.4790 0.6106
50% 0.5573 0.5163 0.6844
75% 0.6229 0.5614 0.7172
100% 1.0000 1.0000 0.9959

TABLE 6. Accuracy percentiles for both SVM types and data formats
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III. PREDICTION, TRADING STRATEGIES AND THE NO
FREE LUNCH THEOREM
The interpretation of the data to find the aimed relationships
among the algorithms predictive power and their related trad-
ing strategies’ returns requires a theoretical framework which
may trigger further research questions. We first define some
very simple trading strategies whose main purpose is to trans-
late the predictive power of the algorithms they are based on
directly to their returns. Please note that our objective is not to
get an optimum trading strategy but to prepare the tools for
our discussion. The Extended Bayesian Framework (EBF),
which gives the complete real data a predominant role in
the relationship between the algorithmic prediction and the
obtained results, is therefore a good candidate for getting the
most out of a data set which is more representative of the
whole real world data than a statistical sample.

A. PREDICTION STRATEGIES
We define a prediction strategy as a trading strategy that uses
a prediction algorithm. While a precision can be attributed to
the prediction algorithm, the final performance obtained must
be credited to the trading strategy. An important objective in
this paper is to analyze the impact that the algorithmic accu-
racy has on the final return, and to delimit what part of the
credit it has in the entire strategy. We will refer to the whole
trading strategy as the prediction strategy when we want to
emphasize this mixture and use the term prediction algorithm
when we want to emphasize the impact of the predictive
algorithm. To elaborate our discussion, we have defined four
prediction strategies: the SVM strategy (SVM), the Efficient
Market strategy (EM), the Buy and Hold strategy (B&H), and
the Optimal strategy (OPT).

The SVM strategy uses the prediction capabilities of a
Support Vector Machine. This artificial neural network has
been the most celebrated among practitioners in the pre-
diction of stock prices for many years, see [30]. We use it
to predict from the previous daily returns weather the next
day return will be above or below one, which will result
directly in a purchase or not purchase order, respectively.
This strategy is our representative of the machine learning
ingenuity towards trading.

The EM strategy is inspired in the Efficient Market Hy-
pothesis. It projects the return of one day to the next: if it
is greater than one, the action is to buy. The generalization
of the EMH to returns implies that, instead of prices, we
consider that efficiency also entails price derivatives. Let us
clarify that we are not claiming any kind of statement, simply
using this projection as a prediction strategy adequately close
in terms of previous returns.

The B&H strategy is a typical reference for the other
strategies, see for instance [42]. The asset in this strategy is
always bought at the opening price of the day and sold at
the closing price of that day. Obviously, it does not take into
account the changes of price between the closing price of a
day and the opening price of the following, but in this way
its comparison with the other strategies is fairer in terms of

earnings due to predictability. Note also that its predictability
is zero, so the the accuracy of ’this prediction’ is the actual
percentage of days with returns greater than one for each
asset.

The OPT is also a reference strategy for our discussion
purpose. It implies a perfect predictability, so it reflects the
highest possible return that a stock can have.

For each company in our database and each strategy, we
have calculated their accuracy and return: Fig. 7 shows their
return distribution and Fig. 8 their accuracy distribution. The
compounded daily return in a year grows exponentially, so
to summarize the annual result in a daily return figure, we
consider the equivalent daily return r that is calculated from
the total annual return of a company AR considering 255
days of trading in a year as r = AR1/255.
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FIGURE 7. Return histograms for the prediction strategies applied to our
filtered database.Please note that the ranges shown for the different strategies
are different.
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FIGURE 8. Accuracy histograms for the prediction strategies.We do not
include the OPT strategy since its accuracy is 1 by definition. For the B&H
strategy, the accuracy is the number of days with returns greater than or equal
to 1.
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B. THE NO FREE LUNCH THEOREM INTERPRETATION
First we summarize the theoretical framework related to the
NFL theorem and then proceed to interpret the data by defin-
ing heuristics that conceptually coincide with the theoretical
concepts in the aforementioned framework.

The Extended Bayesian Framework (EBF) is formalized
following [28]. Let X be an input space and Y an out-
put space. The unknown function from X to Y to be
learned is called target function, f . We are given a set
of samples of the target function called the training set,
d = {(xi, f(xi))}i=1..m, for some m > 0. The output
of the learning algorithm is called hypothesis function, h.
We assume that the set of all f ’s is F , and the set of all
h’s is H . All information about the relationships between
these elements is specified by a probability distribution that
depends on the learning algorithm i, Pi(f, h, d) over an
appropriate event space. For example, the dependence of
the hypothesis function on the training data is given by
Pi(h|d) = Pi(h, d)/Pi(d). The measure of how well a
learning algorithm performs is given by a cost function
associated with a discrepancy between h and f that can also
dependend on d, c(h, f, d). This cost in the Wolpert model
can be written as a inner product between their distributions:
Ei(C|d) =

∑
h,f c(h, f, d)Pi(h|d)P (f |d). The key point

in this probabilistic framework is the explicit distinction
between the two spaces F and H . While the researcher
has total control of H , F is set by the physical universe
and outside the researcher’s control. If H = F , we are
back to the conventional Bayesian Framework. Discussing
their difference allows to encompass and compare different
learning frameworks like the PAC or the Vapnik’sVC [29].

Within the EBF, the No Free Lunch Theorem for super-
vised learning can be expressed as follows [29]: Let i and j
be two learning algorithms, then uniformly averaging over
all possible fs, and for any training set d, Ei(C|f, d) =
Ej(C|f, d), that is, their performances are equal. This theo-
rem only states that there is no best algorithm for everything,
it must be adapted to its role, formally given by the projection
of P (F |d) on P (H|d) in the Wolpert’s model.

To interpret the data, we propose an intuitive mapping
between the data distributions and the concepts in the EBF.
To do that, we introduce an additional independent variable
in the EBF terms, the algorithmic prediction accuracy α.
As a rigorous mathematical characterization is beyond the
scope of this paper, we will refer generically to them as
heuristics. First, we would like to characterize the predictive
algorithm i with the projection of the real data P (f |d) to
the hypothesis functions Pi(h, α|d). A reasonable candidate
heuristic could be the distribution on the accuracy of this
algorithm, see Fig. 8. Intuitively, this distribution measures
how well the algorithm matches the actual function. How-
ever, the economic significance of this match is actually
given by the return delivered by the prediction, so this term
should be taken into account. As a simple example already
given in the introduction, consider a fixed price that gives
a flat return of 1. Taken the previous day price as today’s

would offer the maximum accuracy, but its benefit is none.
To provide a meaningful heuristic, the gain obtained by the
strategy must be included in this heuristic and the cost term
c(h, f, d) in the EBF can do the job. To emphasize the new
role for this formal term, we will refer to it as the gain
term, g(h, α, f, d). However, its full inclusion would take
into account how optimal the strategy is above the prediction
value. Therefore, we divide this gain into a term that explains
the efficiency of the strategy, eff(h, α, f, d), and another
related to the prediction matching, pm(h, α, f, d), such that:
g(h, α, f, d) = pm(h, α, f, d) eff(h, α, f, d).

With these definitions, we propose our first heuristic
H1 as the distribution on the accuracy of the maxi-
mum return a prediction algorithm can have, as shown
in Fig.9. This distribution is interpreted as the EBF
term

∑
h,f pm(h, α, f, d)Pi(h, α|d)P (f |d). Since we re-

flect in this heuristic the maximum gain for an algo-
rithm, therefore, the efficiency term of the strategy is
bounded by 1. The second heuristic, H2, is the distribu-
tion of the real return by a prediction strategy that takes
into account both the matching of the prediction algo-
rithm and the efficiency of the strategy, see Fig.10. In
relation to the EBF, H2 corresponds to the total gain,
G: Ei(G,α|d) =

∑
h,f g(h, α, f, d)Pi(h, α|d)P (f |d) =∑

h,f pm(h, α, f, d)eff(h, α, f, d)Pi(h, α|d)P (f |d).
These definitions can be supported intuitively by carefully

comparing their graphs. To appreciate it better, we use a
logarithmic scale and we weight the real returns so that its
maximum is adjusted to the maximum returns, see Fig. 11. It
can be observed how the maximum potential return basically
follows the real returns obtained by the strategy, so that the
efficiency term is independent of the accuracy to a large
extent, that is eff(h, α, f, d) ∼ eff(h, f, d). Therefore, the
accuracy of the algorithmic prediction is mainly related to
H1. These heuristics make precise the difference between the
return credited to the prediction algorithm and that attributed
to the strategy using it, although this conceptual partition may
not be easy or even possible to apply in real strategies.
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FIGURE 9. Maximal returns are plotted versus accuracy for the different
prediction strategies. These distributions define the H1 heuristic.
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FIGURE 10. Actual returns are plotted versus accuracy for the different
prediction strategies. These distributions define the H2 heuristic.
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FIGURE 11. The maximum and weighed real returns are plotted on a
logarithmic scale versus accuracy for the different prediction strategies. This
visualization allows us to appreciate how the real returns essentially follows
the maximum returns for different values of accuracy.

H1 offers interesting information about the economic
significance of the algorithmic accuracy. Looking at Fig.9,
it can be seen that the financial assets with higher returns
have different accuracies due to use of different algorithms.
Therefore, the simple conclusion that a lower accuracy is
related to a lower return is not correct. Nor can it be expected
that a prediction strategy with maximum return at a low ac-
curacy can offer sufficient efficiency to obtain better returns
than prediction strategies with high accuracy at their maximal
returns. However, the NFL theorem will point out that, for
different subsets of data, that may indeed be possible.

A first illustration of the NFL is provided for the SVM
and EMS prediction algorithms in Figs.12 and Fig. 13,
which show for each company the accuracies obtained with
these prediction algorithms and their corresponding returns,
respectively. It is important to bear in mind that these basic
representations are a little misleading regarding with respect
to the number of companies in each region of the plots: the
percentage of companies with the highest accuracy using

the SVM is 99% and the corresponding percentage with
the highest return is 89%. For this 11% of the companies,
their EMS’s return is greater than their SVM’s, although
their accuracy is lower. This fact emphasizes the fundamental
mismatch between the accuracy of the prediction and the
return, that we attribute to the term pm(h, α, f, d).
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FIGURE 12. The SVM accuracy for each company is shown versus its EMS
accuracy. For one 1% of the companies, the EMS accuracy is greater than the
SVM’s (in blue).
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FIGURE 13. The SVM real return for each company is shown versus its EMS
actual return. For 11%of the companies, the EMS return is greater than the
SVM’s (in blue).

The comparison between the B&H and EMS strategies,
makes this effect more striking, see Figs. 14 and 15. While
the percentage of companies for which the accuracy obtained
by B&H is higher than that obtained with the EMS is 93%,
the percentage of companies that get more return with B& H
is only 49%. This can be explained because the strategy B&
H does not reject those days with losses while the EMS gets
rid of them. Therefore, the efficiency of the EMS is much
greater than that of the B&H, which does not actually use
any prediction capability as already mentioned.
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FIGURE 14. The EMS accuracy for each company is shown versus its B&H
accuracy. For 7% of the companies, the EMS accuracy is greater than the
B&H’s (in blue).
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FIGURE 15. The EMS real return for each company is shown versus its B&H
actual return. For 51%of the companies, the EMS return is greater than the
B&H’s (in blue).

C. ECONOMIC SECTORS AND REGIONS AND
PREDICTION PERSISTENCY THROUGH TIME
As suggested in the previous section, ourH2 heuristic allows
us to deepen empirically in the relationship of the prediction
algorithms and the different real data partitions, in sectors,
geographical regions, and years, under the perspective of the
NFL theorem. To emphasize the difference in the returns, we
have selected the companies with the highest returns, setting
the percentile of the representation at 99.0% for the plots in
this section.

Fig. 16 shows the real returns delivered by the prediction
strategies for different economic sectors. Notice how the
worst a priori strategy, the B&H, has obtained highest return
peaks than the SVM, the a priori best strategy, in the sectors
of Utilities, Technology, Finance and Health Care in the
period considered. Even the EMS has got a best peak in the
sector of Consumer Services.

Fig. 17 shows similar illustrations of the NFL theorem
in the geopolitical regions as show by coin proxies. It is

particularly interesting to note that, in the USA market, the
best prediction strategy seems to be not predict at all, since it
is the B&H that gets the best results.

Finally, Fig. 18 allows us to discuss the NFL theorem
during the ten years covered by the collected data. When
considering the set of companies worldwide, the performance
of the prediction algorithms seems quite persistent in their
returns versus accuracy. The best peaks typically belong to
the SVM, although the B&H strategy takes the lead every
three or four years.

IV. CONCLUSIONS AND FURTHER WORK
We have used the Extended Bayesian Framework and the
No Free Lunch theorem together with a big set of daily
prices for almost half of the publicly traded companies
around the world to discuss the relationship between the
accuracy of prediction algorithms and their use by means
of trading strategies. Through the definition of a pair of
heuristics related to the theoretical terms, some unexpected
results show how the a priori less accurate algorithms and
inefficient strategies can offer better results than the a priori
best alternatives in some particular subsets of data that have a
clear interpretation in terms of economic sectors and regions.

The proposed link between the theoretical concepts in the
Extended Bayesian Framework and our Big Data heuristics
allows some additional research questions. For example, we
have shown how the efficiency of a strategy, eff(h, α, f, d),
is independent of the accuracy of the prediction algorithm
α to a large extent. However, it is not independent totally,
and this fact may suggest a deeper relationship between
the prediction algorithm and the trading strategy that uses
it. Given that many trading strategies can be formalized as
optimization algorithms, and given that the No Free Lunch
Theorem was formulated in that framework [27], unfolding
such a relationship would result in a fruitful discussion.
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FIGURE 16. Return vs. accuracy for economic sectors: SVM, EMS and B&H.
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FIGURE 17. Return vs. accuracy for economic regions: SVM, EMS and B&H.
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FIGURE 18. Return vs. accuracy for years: SVM, EMS and B&H
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