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Highlights  

 The antimicrobial peptide BMAP27(1-18) was covalently linked to titanium disks 

 Staphylococcal adhesion to peptide-modified titanium surface was strongly inhibited 

 Bacterial morphology highlighted a bactericidal effect of the anchored peptide 

 The tethered peptide was not cytotoxic to osteoblast cells 

 Peptide-modified surface improved osteoblast adhesion in co-culture with bacteria  
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Abstract  

Bacterial infection of orthopaedic implants, often caused by Staphylococcus species, may 

ultimately lead to implant failure. The development of infection-resistant, osteoblast-

compatible biomaterials could represent an effective strategy to prevent bacterial colonization 

of implants, reducing the need for antibiotics.  

In this study, the widely used biomaterial titanium was functionalized with BMAP27(1-18), an -

helical cathelicidin antimicrobial peptide that retains potent staphylocidal activity when 

immobilized on agarose beads. A derivative bearing a short spacer with a free thiol at the N-

terminus was coupled to silanized titanium disks via thiol-maleimide chemistry. Tethering was 

successful, as assessed by Contact angle, Quartz Crystal Microbalance with Dissipation 

monitoring (QCM-D), and X-ray Photoelectron Spectroscopy (XPS), with an average surface mass 

density of 456 ng/cm2 and a layer thickness of 3 nm. The functionalized titanium displayed 

antimicrobial properties against a reference strain of Staphylococcus epidermidis with well-

known biofilm forming capability. Reduction of bacterial counts and morphological alterations 

of adhering bacteria, upon 2h incubation, indicate a rapid contact-killing effect. The immobilized 

peptide was not toxic to osteoblasts, which adhered and spread better on functionalized 

titanium when co-cultured with bacteria, compared to non-coated surfaces. Results suggest that 

functionalization of titanium with BMAP27(1-18) could be promising for prevention of  bacterial 

colonization in bone graft applications. 

 

Keywords  

Titanium; alpha-helical antimicrobial peptide; biofunctionalization; Staphylococcus 

epidermidis; osteoblasts; osteoblast-bacteria co-culture.  
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1. Introduction 

Infection of implanted prostheses is the most serious complication in arthroplasty 

procedures and it may lead to implant failure[1]. Treatment is difficult, mainly due to formation 

of microbial biofilm on device surfaces[1–3]. When sessile, bacteria grow encased in a self-made 

extracellular matrix that protects them from host defence and renders them less accessible to 

antibiotics [1,2,4]. Bacteria in biofilms are remarkably less susceptible to currently used 

antibiotics, when compared to their planktonic counterparts, so that only a few of the available 

antibiotics are effective  against them [3,5,6]. Treatment can be additionally challenging in the 

case of infections caused by pathogens with acquired antibiotic-resistance [1,5]. Among the 

most frequent causative agents of prosthetic joint infections and orthopaedic surgical site 

infections are Gram-positive microorganisms[7], with 20 – 30 % of cases being ascribed to 

Staphylococcus aureus and about 20 – 40 % to coagulase-negative staphylococci[5]. In this 

respect, Staphylococcus epidermidis, which is a harmless commensal in healthy subjects, is 

emerging as an opportunistic pathogen in immunocompromised patients, preterm newborns, 

and patients with indwelling medical devices[8]. Its ability to adhere and form biofilm on device 

surfaces is recognized as a true virulent factor[9].  

Consequently, it is crucial to adopt strategies for the prevention of bacterial adhesion to, and 

biofilm formation on, implant surfaces, not only by improving the perioperative preventative 

measures but also with the development of osteoblast-compatible biomaterials resistant to 

bacterial infection. In fact, events following implantation have been described as a “race for the 

surface”. If it is won by host tissue cells, the implant surface is covered by tissue and becomes 

less susceptible to bacterial colonization. If, however, it is won by bacteria, then biofilm 

formation on the implant surface reduces the likeliness of tissue integration[10–12]. 

Among the several approaches that are currently being examined for orthopaedic 

applications [13–15], the development of biomaterials coated with antimicrobial peptides 
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(AMPs) could represent an effective strategy to prevent bacterial colonization of implants[16–

18]. AMPs represent an untapped reservoir of natural antibacterial molecules [19,20]. Despite a 

remarkably high variation in size and sequence, most of these molecules are small, cationic and 

amphipathic, and are membrane-active[21,22]. Their mode of action, based on membrane 

permeabilization, has important consequences such as broad spectrum activity including 

antibiotic-resistant clinical isolates, efficacy also against biofilm-embedded microorganisms, and 

low tendency to elicit resistance[4,22–24]. These are useful properties in the light of the growing 

antibiotics resistance problem [25]. Furthermore, various AMPs have been shown to modulate 

host cell functions in a manner useful for host defence[19], and this includes the bone 

environment[26–28]. In this respect, several recent studies report the successful tethering of 

short cationic AMPs  onto the surface of titanium (Ti) or other metals by using various coupling 

procedures [29–37]. These differ mainly by the choice of tethering orientation (N- or C-terminal) 

and the nature and length of a possible spacer between the peptide and anchoring 

moiety[16,17,38]. However, there is a lively debate concerning what antimicrobial efficacy is 

retained by  AMPs upon surface anchoring[39–42]. Depending on several parameters related to 

the structural characteristics of the peptide and to the coupling strategies used for tethering,  

an immobilized peptide can display quite different antimicrobial properties with respect to its 

soluble counterpart[43–45]. With respect to covalent surface immobilization, membrane-active 

peptides could be suitable candidates as they would not need to penetrate into the bacterial 

cell to reach intracellular targets. Furthermore, assembling short, linear and therefore relatively 

simple peptide molecules onto a surface should have a positive impact on the production costs. 

In a previous study an AMP derived from the α-helical cathelicidin BMAP27, namely the 

BMAP27(1-18) fragment, was selected for immobilization onto solid support[46]. In solution this 

peptide displayed potent bactericidal activity against Gram-positive clinical isolates including 

methicillin resistant S. aureus (MRSA)[47,48] and methicillin resistant S. epidermidis (MRSE)[46]. 

It was active also in the presence of relevant biological components such as serum, hyaluronic 
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acid and synovial fluid, and was biocompatible to osteoblasts[46]. Moreover, an N-biotinylated 

analogue tethered to streptavidin resin beads retained a  potent killing capacity against S. aureus 

and S. epidermidis[46]. 

Based on these properties, in the present study a derivative of BMAP27(1-18) was covalently 

immobilized on the surface of titanium, which is a widely and routinely used metal for 

orthopaedic implants[49,50]. Functionalized Ti samples were characterized by contact angle 

(CA), quartz crystal microbalance with dissipation monitoring (QCM-D) and X-ray photoelectron 

spectroscopy (XPS). Their antimicrobial efficacy was investigated against a biofilm-forming S. 

epidermidis reference strain by colony forming unit (CFU) counts, evaluation of metabolic 

activity, and scanning electron microscopy (SEM). Biocompatibility was determined by 

measuring viability of MG-63 osteoblast-like cells upon cell adhesion to Ti samples. Finally, the 

capacity to promote cell adhesion also in the presence of contaminating bacteria was addressed 

in a cell-bacteria co-culture experiment by analysing cell number and morphology by confocal 

fluorescence microscopy. The aim was to assess whether Ti-immobilized BMAP27(1-18) was 

able to inhibit bacterial colonization while being compatible with osteoblast cells, with the final 

goal of exploiting this system for the production of infection-resistant titanium surfaces.  
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2. Materials and Methods 

2.1. Media and reagents.  

Polyethylene glycol–polystyrene (PEG-PS) resin, coupling reagents for peptide synthesis 

and 9-fluorenylmethoxy carbonyl (Fmoc)-amino acids were purchased from Applied 

Biosystems/Thermo Fisher Scientific (Waltham, MA, USA). Peptide synthesis-grade N,N-

dimethylformamide (DMF), dichloromethane, piperidine and high performance liquid 

chromatography (HPLC)-grade acetonitrile were from Biosolve (Valkenswaard, The 

Netherlands). Trifluoroacetic acid (TFA) and N-methylmorpholine were from Acros Chimica 

(Beerse, Belgium). 6-aminohexanoic acid (Ahx) and 3-mercaptopropionic acid (MPA) were 

purchased from Fluorochem Ltd (Hadfield, Derbyshire, UK). 

Commercially pure Ti grade II disks were obtained from Technalloy S.A. (Sant Cugat del 

Vallès, Spain). (3-aminopropyl)triethoxysilane (APTES) and N-succinimidyl-3-

maleimidopropionate (SMP) were purchased from Sigma-Aldrich (St Louis, MO, USA). Alexa 

fluor 488-phalloidin, Hoechst 33342, and PrestoBlue® reagent were from 

Invitrogen/Thermo Fisher Scientific. Dehydrated media for antimicrobial activity assays 

were from Difco laboratories (Detroit, MI, USA), and Oxoid/Thermo Fisher Scientific, cell 

culture media and supplements from Sigma-Aldrich (St. Louis, MO, USA), and Fetal bovine 

serum (FBS) from Euroclone (Pero, Italy). 

2.2. Sample preparation.  

Ti disks of 10 mm diameter and 2 mm height were polished with wet abrasive papers 

(800, 1200 and 2400 - European P-grade standard) and smoothed with a water suspension 

of alumina particles (1 µm and 0.05 µm particle size) on cotton cloths. Before the activation 

and silanization process, samples were ultrasonically rinsed with cyclohexane, isopropanol, 

distilled water, ethanol and acetone and finally stored dry under vacuum. 
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2.3. Activation and silanization of samples.  

Ti samples were activated by 10 min oxygen plasma treatment at 100 W power in a 

Standard Plasma System (FEMTO, Diener electronic GmbH, Germany). Samples were 

silanized with 2 % (v/v) APTES in anhydrous toluene for 1 h at 70 °C under agitation and 

nitrogen atmosphere. Ti disks were then sonicated for 5 min and washed with toluene, 

isopropanol, distilled water, ethanol and acetone, and dried with nitrogen. Thereafter, 

aminosilanized samples were immersed in a 7.5 mM solution of the bifunctional crosslinker 

SMP in DMF for 1 h under agitation at room temperature. Finally, aminosilanized samples 

carrying the SMP group (Ti_A) were rinsed with DMF, distilled water, ethanol and acetone, 

and dried under nitrogen. 

2.4. Peptide synthesis.  

The amino acid sequence of the α-helical cathelicidin derived peptide BMAP27(1-18) 

(GRFKRFRKKFKKLFKKLS, amidated C-terminus)[46] was modified at the N-terminus by 

addition of three aminohexanoic acid (Ahx) residues and one unit of 3-mercaptopropionic 

acid (MPA) as spacer and anchoring group, respectively. The resulting MPA-(Ahx)3-

BMAP27(1-18), hereafter referred to as B27(1-18)SH, was synthesized on a Biotage Initiator+ 

microwave-assisted automated peptide synthesizer in the solid phase using Fmoc-

chemistry, according to published procedures[46]. After cleavage and deprotection, B27(1-

18)SH was HPLC-purified and confirmed by mass spectrometry using a Q-STAR hybrid 

quadrupole time-of-flight mass spectrometer (Applied Biosystems/MDS Sciex, Concord, 

ON, Canada) equipped with an electrospray ion source. Peptide concentration was 

determined in aqueous solution by measuring the absorbance at 257 nm taking into 

account the molar extinction coefficient of 195.1 for each Phe residue[46]. 

2.5. Immobilization of peptide onto titanium samples.  

B27(1-18)SH, dissolved in phosphate buffered saline (PBS) at pH 6.5 to a 100 µM 

concentration, was deposited onto Ti_A samples (100 µL/disk) and incubated overnight at 
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room temperature. Thereafter, the peptide functionalized Ti samples were rinsed with PBS 

and dried with nitrogen. These samples are designated as Ti_A_B27(1-18)SH. 

2.6. Physicochemical characterization 

2.6.1. Static contact angle measurements and surface energy calculations.  

The hydrophilicity of the Ti surfaces was determined by the sessile drop method using 

the Contact Angle System OCA15 plus (Dataphysics, Filderstadt, Germany). All 

measurements were done at room temperature using MilliQ ultrapure water (Merck 

Millipore Corporation, Bedford, MA, USA), and diiodomethane (Sigma-Aldrich, Spain) as 

wetting liquids (drop volume of 1 µL and 1 µL/min dosing rate). Static contact angles were 

calculated using SCA 20 software (Dataphysics). The surface energy and its dispersive and 

polar components were determined using the Owens, Wendt, Rabel, and Kaelble (OWRK) 

equation applied to both water and diiodomethane measurements [32,51]. Data are 

means of five measurements per disk for three sample replicates. 

2.6.2. X-ray Photoelectron Spectroscopy (XPS).  

The chemical composition of the surface of Ti samples was analysed using XPS 

instrument (D8 advance, SPECS Surface Nano Analysis GmbH, Germany) equipped with 

an XR50 Mg anode source operating at 150 W and a Phoibos 150 MCD-9 detector. High-

resolution spectra were registered with pass energy of 25 eV at 0.1 eV steps at a pressure 

below 7.5 x 10-9 mbar. Binding energies were referenced to the C1s signal. Data were 

analysed using CasaXPS software (Version 2.3.16, Casa Software Ltd., Teignmouth, UK). 

Two samples were analysed for each studied condition. 

2.6.3. Quartz Crystal Microbalance with Dissipation monitoring (QCM-D).  

To quantify and characterize the peptide layer attached to the surfaces, QCM-D 

measurements were performed on Ti crystal sensors (QSX 310, Q-Sense, Sweden) in a D-

300 instrument (Q-sense, Sweden). Ti sensors, cleaned as previously described[52], were 

activated with O2 plasma and subsequently treated with APTES and SMP as described 
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above for Ti_A samples. Prior to monitoring the adsorption of B27(1-18)SH, the baseline 

was stabilized with PBS for 30 - 60 min. Afterwards, B27(1-18)SH derivative was added (100 

µM in PBS, pH 6.5) and changes in resonance frequency and dissipation were monitored 

at 25 °C for 100 minutes, in real-time using a Qsoft software (Q-Sense, Sweden). 

Frequency and dissipation curves were fitted to a Voigt viscoelastic model [53] to yield 

the adsorbed mass and thickness of the peptide layer, as well as kinetic information, by 

using the Q-tool data analysis software (Q-Sense, Sweden). 

2.7. Bacteria and antimicrobial activity assays.  

The reference strains Staphylococcus epidermidis ATCC 35984, Staphylococcus aureus 

ATCC 25923, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were 

used in MIC assays with soluble peptides. Bacteria were cultured either in liquid Brain 

Hearth Infusion (BHI) (both Staphylococcus species) or in Mueller-Hinton (MH) (both Gram-

negatives) overnight at 37 °C. Staphylococcus epidermidis ATCC 35984 was used in 

antimicrobial assays with Ti-bound peptide. Stationary phase bacteria were harvested by 

10 min centrifugation at 1000 x g and resuspended in sterile PBS (pH 7.4). Bacterial density 

was assessed by turbidity at 600 nm, with reference to previously determined standards. 

For the experiments, bacterial suspensions were prepared in MH broth at optimal density.  

2.7.1. Determination of the Minimum Inhibitory Concentration (MIC).  

The minimum inhibitory concentration (MIC) of B27(1-18)SH in solution was 

determined by a broth microdilution assay in 96-well microtiter plates, using MH broth 

with logarithmic-phase microorganisms at 5 × 105 CFU/mL, as previously reported[46], 

following Clinical and Laboratory Standards Institute (CLSI) guidelines. 

2.7.2. Evaluation of bacterial adhesion to titanium surface.  

Bacterial adhesion was studied adapting a previously described protocol[33]. Prior to 

use in antimicrobial assays Ti, Ti_A and Ti_A_B27(1-18)SH samples were sterilized by 30 

min treatment with 70 % ethanol, and then thoroughly rinsed with sterile PBS in order to 
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remove any trace of ethanol. Ti samples were placed in a 24-well plate and incubated with 

1 mL of S. epidermidis (1 x 105 CFU/mL) for 2 h at 37 °C. The medium containing planktonic 

bacteria was then aspirated and the samples were rinsed three times with sterile PBS. 

Afterwards, disks were transferred in sterile tubes containing 1 mL of 50 % Mueller-Hinton 

in sterile PBS (MH-PBS), and adherent bacteria were detached by 10 min vortexing. To 

make sure that dislodging of bacteria from the surfaces was effective, after the first 

vortexing step the disks were transferred in new sterile tubes containing 1 mL of MH-PBS 

and vortexed again for 5 min. Bacterial suspensions from each vortexing step were then 

serially diluted in MH-PBS and seeded on BHI agar plates. The plates were incubated at 

37 °C for 24 h and the resulting colonies counted. All experiments were performed in 

triplicate for each type of surface. 

2.7.3. Scanning Electron Microscopy (SEM).  

The morphology of S. epidermidis adhered to Ti samples was studied by SEM 

(Quanta250 SEM, FEI, Oregon, USA) operated in secondary electron detection mode. The 

working distance was adjusted in order to obtain the suitable magnification; the 

accelerating voltage was set to 30 kV. SEM was performed in duplicate for each sample. 

Briefly, upon 2 h incubation as described above, all samples were rinsed three times with 

filtered sterile PBS, fixed with 2.5 % (v/v) glutaraldehyde for 30 min at 4 °C, rinsed three 

times with filtered sterile PBS and MilliQ ultrapure water, and dehydrated in graded series 

of ethanol solutions (20 min each). Immediately prior to SEM analysis, samples were 

sputter-coated with gold (Sputter Coater K550X, Emitech, Quorum Technologies Ltd, UK). 

2.7.4. Bacterial growth kinetics on titanium surfaces.  

Ti samples, placed in triplicate into 48-well plates, were immersed in 1 mL of S. 

epidermidis (6 × 104 CFU/mL) suspension in MH for 2 h. The medium containing planktonic 

bacteria was removed, Ti disks were rinsed with sterile PBS, and adherent bacteria were 

allowed to grow at 37 °C for 22 h in fresh MH medium supplemented with 10 % (v/v) 
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PrestoBlue® metabolic dye. Bacterial growth kinetics were monitored fluorometrically 

according to PrestoBlue® manufacturer’s instructions by using a Multimode Plate Reader 

(EnSpireTM 2300, PerkinElmer, Waltham, MA, USA). 

2.8. Cell culture.  

The human osteoblast-like MG-63 cell line was obtained from ATCC (Manassas, VA, USA) 

and maintained in Dulbecco’s Modified Eagle Medium (DMEM), in a humidified incubator 

at 37 °C and 5 % CO2 atmosphere. DMEM medium was supplemented with 10 % (v/v) heat 

inactivated FBS, 2 mM L-glutamine, 100 units/mL penicillin and 100 µg/mL streptomycin. 

2.8.1. Cell adhesion and viability assay.  

The biocompatibility of Ti samples was evaluated by measuring viability of the MG-63 

cell line by using the metabolic dye PrestoBlue®. Cells were seeded onto Ti samples in a 

48-well plate at a density of 4 x 104 cells/well in complete medium and allowed to adhere 

for 4 h at 37 °C. Thereafter the medium was aspirated, cells were rinsed with sterile PBS 

and incubated at 37 °C for 90 min in fresh complete medium containing 10 % (v/v) 

PrestoBlue®. Cell metabolic activity was measured fluorometrically according to 

PrestoBlue® manufacturer’s instructions by using a Multimode Plate Reader (EnSpireTM 

2300, PerkinElmer, Waltham, MA, USA). All experiments were performed in triplicate for 

each type of surface. 

2.8.2. Cell-bacteria co-culture.  

This assay was performed according to previously reported studies[12,54]. Ti samples 

were incubated with 1 mL of S. epidermidis (6 x 104 CFU/mL) in a 48-well plate for 2 h at 

37 °C as described above. The medium was then removed and the samples were washed 

three times in sterile PBS. Next, MG-63 cells, freshly resuspended in DMEM medium 

without penicillin and streptomycin, supplemented with 2 % MH broth, were seeded on 

bacteria-covered surfaces at a density of 4 x 104 cells/well. Bacteria and MG-63 cells were 

incubated at 37 °C in humidified 5 % CO2 for 6 and 24 h. At these time points, samples 
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were fixed in 3% Paraformaldehyde, stained with Alexa Fluor 488-phalloidin and Hoechst 

33342 and examined by Confocal Laser Scanning Microscopy (CLSM) with a Leica TCS SP8 

X microscope (Leica Microsystems GmbH, Wetzlar, Germany). Images were analysed 

using ImageJ 1.51w software (NIH, Bethesda, MD, USA) to determine cell area and surface 

coverage. All experiments were performed in duplicate for each type of surface. 

2.9. Statistical analysis.  

Data, presented as mean values ± standard deviations, were analysed by a non-

parametric Mann-Whitney U test (IBM SPSS Statistics 20 software, Armonk, NY, USA). 

Statistical significance was set at P value <0.05. 
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3. Results and Discussion 

3.1. Coupling strategy and physicochemical characterization of titanium samples.  

The cathelicidin derived peptide BMAP27(1-18), previously shown to possess potent 

bactericidal activity also upon immobilization on solid support[46], was covalently linked to 

Ti disks by using the maleimide-thiol chemistry. To this aim, the selected peptide sequence 

was modified at the N-terminus by adding a spacer and an anchoring moiety bearing a free 

thiol. The peptide derivative is hereafter referred to as B27(1-18)SH. This modification did 

not significantly affect the antimicrobial properties of the original peptide, as assessed by 

determining minimum inhibitory concentration (MIC) against representative Gram-positive 

and Gram-negative bacterial species (Table 1). 

The selected coupling strategy has been previously applied for functionalization of 

titanium and tantalum with, respectively, the antimicrobial peptide hLF1-11, and the cell 

adhesive RGD peptide, both for osseointegrative applications[32,33,55]. In the present 

study this simple and linear functionalization procedure, schematically illustrated in Fig. S1 

(see Supplementary material), was used for covalent anchoring of B27(1-18)SH to titanium 

via its N-terminus. Ti disks (Ti) were first treated with oxygen plasma (Ti_Pl) to generate 

hydroxyl groups required for the subsequent silanization of the metal surface with the 

aminosilane APTES. The amino group of the organosilane was then exploited to introduce 

the bifunctional crosslinker SMP, bearing the maleimide function (Ti_A) which was 

subsequently used to react with the thiol on the peptide N-terminus (Ti_A_B27(1-18)SH) 

(see Fig. S1 in Supplementary material). 

To verify whether the functionalization procedure was successful, Ti samples first 

underwent physicochemical characterization by static contact angle (CA) measurements 

and XPS. As expected, CA analysis (Table 2) showed a substantial change in wettability upon 
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plasma treatment (Ti_Pl vs. Ti samples) as well as upon silanization (Ti_A vs. Ti_Pl), and 

subsequent peptide coupling (Ti_A_B27(1-18)SH vs. Ti_Pl, and Ti_A_B27(1-18)SH vs. Ti_A). 

High resolution XPS spectra were then recorded to obtain the chemical composition of 

the modified Ti surfaces, reported in Fig. 1. Silanization of samples was supported by the 

presence of silicon (Si 2p) and by the increase in carbon (C 1s) and nitrogen (N 1s) content 

in Ti_A vs. Ti disks. An additional increase of both carbon and nitrogen, and decrease in 

percent oxygen (O 1s) and titanium (Ti 2p) in Ti_A_B27(1-18)SH samples, with respect to 

Ti_A disks, indicated stable and strong attachment of peptide molecules to the silanized 

metal surfaces, thus confirming that the applied procedure for peptide tethering to 

titanium was both sound and reliable. 

The peptide layer formed on the Ti surface was quantified using Quartz Crystal 

Microbalance with Dissipation monitoring (QCM-D), which is a very sensitive tool to 

measure masses in the ng/cm2 range [56]. The technique is based on monitoring the 

resonance frequency of an appropriate piezoelectric sensor crystal, which decreases 

proportionally to the adsorbed mass (defined as “adlayer”) on the surface of the crystal 

itself. The additional monitoring of the dissipation factor enables a more accurate mass 

estimate by taking into account the contribution of the adsorbed water to the adlayer 

mass[57]. 

In the present study, in order to record the formation of a peptide layer covalently linked 

to titanium, Ti crystal sensors were used and, prior to peptide addition, the surface of the 

Ti sensor was treated with O2 plasma, APTES and crosslinker, as described above for Ti disks, 

and extensively rinsed with PBS. Upon addition of peptide solution, changes in resonance 

frequency (ΔF, Fig. 2A) and dissipation (ΔD, Fig. 2B) indicated deposition of a stable layer 

with a rapid drop in ΔF, corresponding to a rapid increase in ΔD, during the first 5 - 6 min. 

This was followed by stabilization of both parameters during the next 15 – 20 min. 
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Replacement of the peptide solution by PBS after 80 min monitoring did not result in 

appreciable modifications of the registered traces, consistent with the formation of a stable 

peptide monolayer over the silanized surface. By fitting data to the Voigt model[53], an 

average surface mass density of 456.32 ± 7.61 ng/cm2 and a layer thickness of 3.08 ± 0.06 

nm were determined. Although it is difficult to make direct comparisons, these values are 

in the same order of magnitude as the QCM-D data obtained by Castellanos et al. using cell-

adhesive peptides[52] and by Corrales Urena et al. using antimicrobial peptides[58] 

adsorbed onto CoCr and Ti sensors, respectively. The peptide layer thickness was 

comparable to that achieved by a basically similar coupling scheme for the antimicrobial 

peptide Dhvar5 grafted on chitosan[29], and for the covalently bound lactoferrin 

peptide[33], both determined by ellipsometry. Regarding the surface peptide density on 

titanium, it is interesting to note that our data are comparable to those obtained by others 

with colorimetric methods[29,30]. Collectively the physicochemical data support successful 

functionalization of Ti disks with the cathelicidin peptide derivative B27(1-18)SH. 

3.2. Analysis of antimicrobial properties of titanium samples.  

The antimicrobial efficacy of Ti-anchored peptide was first tested in terms of bacterial 

adhesion inhibition. Adhesion of microorganisms to surfaces of implanted biomedical 

devices is the first and crucial step in bacterial colonization of implants so its prevention 

should likely prevent the development of infection. Ti samples were exposed to a 

suspension of Staphylococcus epidermidis ATCC 35984, a reference strain with a well-

documented biofilm-forming ability[8]. Notably, this feature is considered to be related to 

the pathogenicity of this otherwise harmless microorganism[2,8]. Bacteria were allowed to 

adhere to Ti samples for 2 h at 37 °C, then planktonic cells were washed away and surface 

attached bacteria recovered by a two-step vortexing procedure. As shown in Fig. 3, the 

colony forming units (CFU) of S. epidermidis, recovered from Ti_A_B27(1-18)SH disks, were 

significantly less than those recovered from both controls, i.e. Ti and Ti_A samples. This 
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would suggest that bacteria were killed upon contact with the peptide-functionalized Ti, 

and/or that their adhesion to Ti_A_B27(1-18)SH disks was in some way hindered. 

To clarify events occurring at the metal surface during staphylococcal adhesion, the 

morphology of the attached bacteria was determined by SEM in parallel to CFU counting. 

As shown in Fig. 4, this analysis revealed a remarkable difference in S. epidermidis cells 

adhered to the different substrata. Bacterial cells on control Ti samples were opaque, round 

in shape, with smooth surface and with division septa clearly evident (Fig. 4B, 4F). Individual 

bacteria were on average of the expected size with diameter values ranging from 0.55 m 

to 0.85 m. Dividing microorganisms were very frequent, indicating that bacteria on bare 

titanium were viable and growing (Fig. 4B, 4F - G). Often several dozens of bacterial cells 

were clustered together (Fig. 4A, 4C). Such bacterial agglomerates were covered by a dense 

and grey layer resembling a blanket (Fig. 4A, 4C and 4G). Individual cells were tightly 

associated with each other and connected by junctions (Fig. 4C, 4E). In addition, in most 

instances there was a halo surrounding the bacteria at the contact interface between 

bacterial cell and Ti surface (Fig. 4C, 4G). In some clusters, fimbriae-like surface appendages, 

connecting bacteria to Ti, were also visible (Fig. 4D - E). All these elements likely represent 

extracellular matrix components and/or adhesion structures, indicating biofilm initiation 

[59–61], in line with the well-known biofilm forming properties of S. epidermidis ATCC 

35984, which is known to be a heavy matrix producer[8,9]. Notably, we did not observe 

significant morphological differences between bacteria adhered to bare Ti (Ti; Fig. 4A - E) 

and those adhered to silanized Ti disks (Ti_A; Fig. 4F - G). In contrast to controls, bacteria 

adhered to Ti_A_B27(1-18)SH samples were not only fewer in number, but also showed 

dramatically different morphologies (Fig. 4I). They showed increased size and elongated 

shapes, and division septa were conspicuously missing (Fig. 4J). In addition, bacteria had a 

knobbly appearance, many were collapsed and deflated and appeared embedded in a layer 

of amorphous material deposited on the Ti surface (Fig. 4H - J). In many cases, these ghost-
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like bacterial cells were surrounded by an empty circle (Fig. 4K), and for some bacteria what 

appeared to be the extrusion of cytoplasmic material out of the cell was observed (Fig. 4L). 

Such dramatic changes in morphology pointed to the impairment of microbial cell growth 

as well as of cell division, which is normally accomplished through formation of the division 

septum. The observed structures could reasonably derive from dead bacteria. However, 

the “deflated bag” appearance, in the absence of evident surface lesions such as blebs or 

holes[62], would suggest that digestion of bacterial content has occurred, possibly upon 

activation of autolytic enzymes[63].  

In Ti_A_B27(1-18)SH samples, the observed changes in morphology matched the 

reduction in CFUs, thus highlighting killing ability of Ti-immobilized B27(1-18)SH. This finding 

was not unexpected, considering that BMAP27(1-18) proved able to kill staphylococci when 

N-terminally anchored to a model support[46]. However, a question arises about its mode 

of action in the immobilized state. The bactericidal activity of this peptide in solution is 

based on its ability to perturb microbial membranes, and is intimately related to its ability 

to adopt an amphipathic conformation[47,64]. In our case however, it appears quite 

obvious that, presuming their limited mobility, the anchored peptide molecules may 

interact only with superficial components of the bacterial cell, and thus, the killing action 

likely differs from that displayed by this type of peptides in solution[47,62,64]. In this 

respect, it is worth noting that the staphylococci adhered to peptide-functionalized Ti (this 

study, Fig. 4) were remarkably different from those observed in a previous study after 

treatment with the sheep cathelicidin SMAP-29 in solution[62]. In this latter case, surface 

roughening and blebbing of SMAP29-treated microorganisms was interpreted as 

morphological evidence of the potent permeabilizing activity of this alpha-helical peptide 

in solution[62], while the bactericidal mode of action of immobilized SMAP-29 [41], or 

indeed BMAP-27 [65], has not as yet been elucidated. 

Jo
ur

na
l P

re
-p

ro
of



19 
 

It is very likely that the negatively charged bacteria were initially attracted by the highly 

cationic B27(1-18)SH (net charge +10 [46]), but were killed upon their contact/adhesion to 

the metal, in keeping with what suggested also by other authors[31,44]. The observed 

changes in morphology could be the result of events triggered by a peptide-induced 

perturbation at the bacterial surface, as reported for free peptides in solution[63,66,67], 

and also suggested for immobilized AMPs [44,68]. 

It is interesting to note however, that in Ti_A_B27(1-18)SH samples, besides dead or 

heavily damaged bacteria, microcolonies with normal appearance were also occasionally 

observed (Fig. 4H). This prompted us to investigate whether the surviving bacteria could be 

able to regrow. To this end, Ti samples were exposed to a suspension of S. epidermidis for 

2 h as above and, after removal of planktonic microorganisms and washings, the incubation 

was extended for additional 22 h in fresh MH broth. Since the presence of metal disks in 

the wells would not allow optical density measurements, growth was kinetically monitored 

by the PrestoBlue® dye, which emits fluorescence upon conversion by metabolically active 

microorganisms. As shown in Fig. 5, bacterial growth on control Ti disks (Ti and Ti_A) 

became detectable at 7 - 8 h post-adhesion, with an exponential phase between 10 - 15 h, 

and a final plateau at 18 - 20 h. The surviving bacteria on Ti_A_B27(1-18)SH samples showed 

an about 1.5-h delay both for the beginning of growth and onset of the exponential growth 

phase, presumably related to their decreased initial number, in keeping with the results of 

bacterial adhesion assays. Hence, inhibition of the initial bacterial adhesion remains crucial 

for long lasting antimicrobial efficacy[14]. 

It is worth stressing in this respect that the experimental conditions used in our in vitro 

assays, such as a relatively high initial inoculum, are likely different from those occurring in 

clinical settings where a possible bacterial contamination would take origin from a very low 

bacterial number, as also confirmed by animal model studies[69,70]. In agreement with 
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what has been suggested by other authors[30], one could reasonably expect a more 

effective protection under medically relevant conditions, with only few bacteria present at 

the implant surface thanks to strictly antiseptic surgical procedures.  

3.3. Evaluation of compatibility of titanium samples to osteoblast cells.  

In the general context of the prosthetic settings, one should take into consideration the 

complex dynamics of events occurring during and upon implantation, such as osteoblast 

attachment, growth and differentiation, that collectively should lead to complete implant 

integration. With this perspective, it was mandatory to assess the biocompatibility of our 

Ti samples to osteoblast cells. To address this issue, Ti samples were seeded with the 

osteosarcoma-derived MG-63 cells, used as a model, in a 48-well plate. Adherent cells after 

4 h incubation were quantified by a PrestoBlue® metabolic assay. As shown in Fig. 6, 

metabolic activity of cells on Ti_A and Ti_A_B27(1-18)SH samples was comparable to that of 

MG-63 cells on bare Ti, which is known for its biocompatibility. This means that cells were 

vital and able to adhere to various substrata without appreciable toxic effects neither by 

the peptide nor by other organic molecules present on Ti (e.g. Ti_A). This result adds to 

previous reports concerning the virtual absence of cytotoxic effects of BMAP27(1-18) 

against different host cell types, both in solution[47,48,64], and upon immobilization[46]. 

Given the cytocompatibility of the functionalized Ti samples we next investigated their 

antimicrobial efficacy in a more complex context by addressing the issue of “race for the 

surface”. This concept stems from the observation that, in order to achieve successful and 

long lasting tissue integration of the implanted prosthesis, the surface of an ideal implant 

should be resistant to bacterial colonization but at the same time prone to colonization by 

host tissue cells[10,12,71].  

To investigate to what extent the colonizing capacity of osteoblast cells might be 

hampered by bacteria present on Ti itself, a co-culture experiment of MG-63 cells and 
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bacteria was set up. S. epidermidis was allowed to adhere to Ti samples as in the 

antimicrobial assays described above. After withdrawal of planktonic bacteria and 

washings, Ti disks contaminated by adherent bacteria were seeded with freshly 

resuspended MG-63 cells in antibiotic-free DMEM medium supplemented with 2 % MH, 

and incubated for additional 6 h and 24 h. At these time points, Ti disks were processed and 

analysed by fluorescence microscopy in order to evaluate MG-63 cell number and 

morphology. 

Data and representative CSLM images are shown in Fig. 7. Data were calculated as 

percent cell surface coverage respect to bacteria-free Ti controls (Fig. 7A, B), and mean cell 

area (Fig. 7C, D). It is evident that the presence of bacteria affected cell adhesion and 

spreading on distinct Ti samples to different extents. For example, at a 6 h time point, 

osteoblast adhesion to Ti and Ti_A samples was inhibited by about 40 % for bacterial 

adhered samples, whereas cell adhesion to Ti_A_B27(1-18)SH samples was not impaired but 

rather enhanced (Fig. 7A). Since at this time point cell size (Fig. 7C) and morphology (Fig. 7, 

images in the upper row) were on average highly comparable, the increased surface 

coverage on Ti_A_B27(1-18)SH samples could be reasonably ascribed to a higher number of 

adhered MG-63 cells. This finding would suggest that the bactericidal action exerted by 

peptide-functionalized Ti, as observed by SEM (Fig. 5H-L) and confirmed by CFU counts (Fig. 

3), was effective enough to allow displacement of bacteria by MG-63 cells, which could thus 

predominate and spread onto the surface. This hypothesis seems further supported by the 

increment in both surface coverage (Fig. 7B) and mean cell area (Fig. 7D) observed after 24 

h co-incubation on peptide-functionalized samples. However, although BMAP27(1-18) 

proved neutral with respect to MG-63 cell growth and differentiation in a previous 

study[46], we cannot exclude specific effects on cells by the Ti-anchored peptide. It is 

interesting to note that at 24-h time point a slight improvement of cell adhesion and 

spreading compared to bacteria-free control was observed in Ti and Ti_A samples, which 
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were devoid of antimicrobial properties (Fig. 3 – 5). This would suggest that besides 

bacterial killing, one should take into consideration other phenomena in the complex 

network of multiple interactions between implant surfaces, bacteria, and relevant tissue 

cells[10,54,72]. In the light of what has been reported for the oral environment[73,74], at 

present we cannot rule out possible stimulating effects of bacteria on tissue cell expression 

of adhesion molecules that would in turn improve cell adhesion and spreading. 

4. CONCLUSIONS 

In order to obtain titanium with anti-infective surface, in this study Ti disks were 

successfully functionalized with the cathelicidin derived -helical peptide B27(1-18)SH, as 

assessed by contact angle, XPS, and QCM-D analyses. Adhesion of S. epidermidis to peptide-

functionalized samples was markedly reduced and alterations in bacterial morphology 

revealed by SEM indicate a contact-killing effect of the anchored peptide, suggesting a 

possibly different mode of action respect to that displayed by this peptide in solution. In this 

respect, a more profound knowledge of the bactericidal mechanism of surface-immobilized 

peptide should help design improved peptide derivatives, spacers, and coupling strategies, 

in order to increase the antimicrobial performance of the functionalized Ti. Importantly, the 

immobilized peptide did not produce any cytotoxic effect on osteoblast-like cells, which 

adhered and spread better on functionalized Ti when co-cultured with bacteria compared to 

non-coated surfaces. For further improvement in view of orthopaedic applications, it would 

be worth investigating the stability/efficacy of Ti-anchored peptide in the presence of human 

serum and/or other relevant biological components such as hyaluronic acid, or in the 

presence of proteases. Although these aspects have not yet been addressed, results obtained 

in the present study are promising, highlighting the potential of BMAP27(1-18) for the 

development of biomaterials refractory to microbial contamination. 
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Figure captions 

Fig. 1. Chemical composition (atomic percentage) obtained by XPS analysis of the indicated titanium 

surfaces. Results are the average ± SD of at least two samples for each condition. 

 

 

 

Fig. 2. Resonance frequency (A) and dissipation (B) of a Ti crystal sensor upon addition of B27(1-18)SH 

solution in a QCM-D assay. Prior to addition of 100 M peptide solution in PBS, the sensor has been 

treated as described in Materials and Methods. Data were fitted in the Voigt viscoelastic model to obtain 

surface mass density and thickness values. 
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Fig. 3. Adhesion of S. epidermidis to the indicated Ti samples. Following 2 h incubation at 37 °C, the CFUs 

of adherent microorganisms were recovered by a vortexing procedure, serial dilutions and plating on solid 

medium. Results are expressed as percent CFU respect to CFU recovered from bare titanium (Ti) and are 

the means ± SD of at least three independent experiments performed in triplicate. * Statistically significant 

difference vs. Ti and vs. Ti_A (P < 0.05). 
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Fig. 4. Morphology of S. epidermidis on distinct titanium samples analyzed by SEM. Upon 2 h incubation 

all samples were rinsed, fixed and processed for SEM analysis. Panels A – E, Ti; panels F – G, Ti_A; panels 

H – L, Ti_A_B27(1-18)SH. Panel E is a higher magnification of the image represented in Panel A. Arrows 

indicate, respectively, division septa ( ), contact junctions ( ), halos ( ), pseudopod-like structures (

), empty circles ( ), extruded cytoplasmic material ( ). Representative images from two experiments 

performed in duplicate are shown. 
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Fig. 5. Growth kinetics of S. epidermidis on the indicated Ti samples (Ti, circles; Ti_A, squares; Ti_A_B27(1-

18)SH, triangles). After 2 h incubation and washing, fresh MH supplemented with the metabolic dye 

PrestoBlue® was added and adherent bacteria were allowed to grow overnight at 37 °C. Growth kinetics 

were monitored by measuring fluorescence emission that is directly proportional to microorganism 
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viability. Results are reported as relative fluorescence units (RFU) and are the means ± SD of at least three 

independent experiments performed in triplicate. 

 

 

 

Fig. 6. Osteoblast viability upon adhesion to functionalized Ti samples. MG-63 osteoblast cells were 

seeded on Ti disks in a 48-well plate in complete medium. After 4 h incubation samples were gently 

washed and viability of adherent cells quantified by the metabolic dye PrestoBlue®. Results are expressed 

as percent cell viability respect to cells seeded on bare titanium and are the means ± SD of at least three 

independent experiments performed in triplicate. Differences between samples did not reach statistical 

significance. 
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Fig. 7. Osteoblast adhesion to the indicated Ti samples in a cell-bacteria co-culture experiment. MG-63 

cells were seeded on functionalized Ti disks, previously incubated with S. epidermidis, and co-cultured in 

antibiotic-free medium for additional 6 h (A, C) and 24 h (B, D). At these time points, samples were fixed 

and stained with Alexa Fluor 488-phalloidin and Hoechst. Osteoblast cell number and morphology were 

evaluated by CLSM with a Leica TCS SP8 X microscope followed by quantification with the ImageJ 

software. Results are expressed as means ± SD of five optical fields for each condition on duplicate 

samples. A, B: percent cell surface coverage in the presence of bacteria respect to bacteria free controls. 

C, D: mean cell area values in the presence (Ti, Ti_A, Ti_A_B27(1-18)SH) and in the absence (Ti_cells) of 

bacteria. Asterisks denote statistically significant differences between the indicated samples (P < 0.05). 

Representative images for each condition are shown in the lower part of the figure. Scale bar = 100 m.  
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Table 1. Antimicrobial activity of soluble peptides against reference strains 

 BMAP27(1-18) B27(1-18)SH 

 MIC (µM)a,b 

S. epidermidis ATCC 35984 2 1 

S. aureus ATCC 25923 4 4 

E. coli ATCC 25922 2 4 

P. aeruginosa ATCC 27853 2 4 

a Determined in MH broth   

b Data are means of at least 3 independent experiments. 

 

Table 2. Contact angle values and calculation of surface free energy and of its polar and 

dispersive components. Results are expressed as means ± SD of five measurements for 

each condition on duplicate samples. 

 CAw (°) POL (mJ/m2) DISP (mJ/m2) SFE (mJ/m2) 

Ti 70.4 ± 0.5 8.0 ± 0.3 37.0 ± 0.2 45.1 ± 0.2 

Ti_Pl 7.5 ± 0.2 a 32.4 ± 0.1 a 46.5 ± 0.1 a 78.9 ± 0.1 a 

Ti_A 62.7 ± 0.9 a,b 12.0 ± 0.5 a,b 36.8 ± 0.5 b 48.9 ± 0.6 a,b 

Ti_A_B27(1-18)SH 68.3 ± 0.9 b,c 8.6 ± 0.4 b,c 38.4 ± 0.5 a,b 47.0 ± 0.6 a,b 

CAw: contact angle water; POL: polar component; DISP: dispersive component and SFE: surface 

free energy.  

a Statistically significant differences versus control Ti (P < 0.05). 

b Statistically significant differences vs. Ti_Pl (P < 0.05). 

c Statistically significant differences vs. Ti_A (P < 0.05). 
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