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Abstract
We extend work of Lautemann, Schwentick and Stewart [14] on characterisations of the “positive”
polynomial-time predicates (posP, also called mP by Grigni and Sipser [11]) to function classes.
Our main result is the obtention of a function algebra for the positive polynomial-time func-
tions (posFP) by imposing a simple uniformity constraint on the bounded recursion operator in
Cobham’s characterisation of FP. We show that a similar constraint on a function algebra based
on safe recursion, in the style of Bellantoni and Cook [3], yields an “implicit” characterisation of
posFP, mentioning neither explicit bounds nor explicit monotonicity constraints.
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1 Introduction

Monotone functions abound in the theory of computation, e.g. sorting a string, and detecting
cliques in graphs. They have been comprehensively studied in the setting of circuit complexity,
via ¬-free circuits (usually called “monotone circuits”), cf. [13]. Most notably, Razborov’s
seminal work [20] gave exponential lower bounds on the size of monotone circuits, and later
refinements, cf. [1, 23], separated them from non-monotone circuits altogether.

The study of uniform monotone computation is a much less developed subject. Grigni
and Sipser began a line of work studying the effect of restricting “negation” in computational
models [11, 10]. One shortfall of their work was that deterministic classes lacked a bona fide
treatment, with positive models only natively defined for nondeterminstic classes. This means
that positive versions of, say, P must rather be obtained via indirect characterisations, e.g. as
ALOGSPACE. Later work by Lautemann, Schwentick and Stewart solved this problem by
proposing a model of deterministic computation whose polynomial-time predicates coincide
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18:2 A Recursion-Theoretic Characterisation of the Positive Polynomial-Time Functions

with several characterisations of P once “negative” operations are omitted [14, 15]. This
induces a robust definition of a class “posP”, the positive polynomial-time predicates [11, 10].

In this paper we extend this line of work to associated function classes (see, e.g., [5]),
which are of natural interest for logical approaches to computational complexity, e.g. [4, 7].
Noting that several of the characterisations proposed by [14] make sense for function classes
(and, indeed, coincide), we propose a function algebra for the “positive polynomial-time
functions” on binary words (posFP) based on Cobham’s bounded recursion on notation [6].
We show that this algebra indeed coincides with certain characterisations proposed in [14],
and furthermore give a function algebra based on safe recursion, in the style of Bellantoni and
Cook [3]. The latter constitutes an entirely implicit characterisation of posFP, mentioning
neither explicit bounds nor explicit monotonicity constraints. As far as we know, this is the
first implicit approach to monotone computation.

This paper is structured as follows. In Sect. 2 we present preliminaries on monotone
functions on binary strings and recall some notions of positive computation from [14, 15].
We show also that these models compute the same class of functions (Thm. 7), inducing
our definition of posFP. In Sect. 3 we recall Cobham’s function algebra for FP, based on
bounded recursion on notation, and introduce a uniform version of it, uC, which we show is
contained in posFP in Sect. 4 (Thm. 17). In Sect. 5 we prove some basic properties about uC;
we characterise the tally functions of uC, those that return unary outputs on unary inputs,
as just the unary codings of linear space functions on N, by giving an associated function
algebra (Thm. 21). We use this to recover a proof that uC is closed under a simultaneous
version of its recursion scheme (Thm. 28), tracking the length of functions rather than usual
methods relying on explicit pairing functions. In Sect. 6 we show the converse result that uC
contains posFP (Thm. 30). Finally, in Sect. 7 we give a characterisation of posFP based
on “safe” recursion (Thm. 36), and we give some concluding remarks in Sect. 8.

Throughout this work, we follow the convention of [14, 15], reserving the word “monotone”
for the semantic level, and rather using “positive” to describe restricted models of computation.

2 Monotone functions and positive computation

We consider binary strings (or “words”), i.e. elements of {0, 1}∗ =
⋃
n∈N
{0, 1}n, and for

x ∈ {0, 1}n we write x(j) for the jth bit of x, where j = 0, . . . , n− 1. We follow the usual
convention that bits are indexed from right (“least significant”) to left (“most significant”),
e.g. as in [5]; for instance the word 011 has 0th bit 1, 1st bit 1 and 2nd bit 0.

We write ε, s0, s1 for the usual generators of {0, 1}∗, i.e. ε denotes the empty string,
s0x = x0 and s1x = x1. We also write 1n for 1 concatenated with itself n times, for n ∈ N.

We consider functions of type {0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗. For n ∈ N, we define
≤n as the n-wise product order of ≤ on {0, 1}, i.e. for x, y ∈ {0, 1}n we have x ≤n y if
∀j < n. x(j) ≤ y(j). The partial order ≤ on {0, 1}∗ is the union of all ≤n, for n ∈ N. A
function f : ({0, 1}∗)k → {0, 1}∗ is monotone if x1 ≤ y1, . . . , xk ≤ yk =⇒ f(~x) ≤ f(~y).

I Example 1. A recurring example we will consider is the sorting function sort(x), which
takes a binary word input and rearranges the bits so that all 0s occur before all 1s, left-right.
Clearly sort is monotone, and can be given the following recursive definition:

sort(ε) = ε

sort(s0x) = 0sort(x)
sort(s1x) = sort(x)1

(1)
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While in the binary case it may seem rather simple, we will see that sort nonetheless
exemplifies well the difference between positive and non-positive computation.

One particular well-known feature of monotone functions, independent of any machine
model, is that they are rather oblivious: the length of the output depends only on the length
of the inputs:

I Observation 2. Let f(x1, . . . , xk) be a monotone function. Then, whenever |x1| =
|y1|, . . . , |xk| = |yk|, we also have that |f(~x)| = |f(~y)|.

Proof. Let nj = |xj | = |yj |, for 1 ≤ j ≤ k. We have both f(~x) ≤ f(1n1 , . . . , 1nk ) and
f(~y) ≤ f(1n1 , . . . , 1nk ), by monotonicity, so indeed all these outputs have the same length. J

One way to define a positive variant of FP is to consider ¬-free circuits that are in
some sense uniform. [14, 15] followed this approach too for P, showing that one of the
strongest levels of uniformity (P) and one of the weakest levels (“quantifier-free”) needed
to characterise P indeed yield the same class of languages when describing ¬-free circuits.
We show that a similar result holds for classes of functions, when allowing circuits to have
many output wires. Most of the techniques used in this section are standard, so we keep
to a high-level exposition, rather dedicating space to examples of the notions of positive
computation presented.

We consider ∆0-uniformity rather than quantifier-free uniformity in [14, 15] since it
is easier to present and suffices for our purposes. (We point out that this subsumes, say,
L-uniformity, as explained in the Remark below.) Recall that a ∆0 formula is a first-order
formula over {0, 1,+,×, <} where all quantifiers of the form ∃x < t or ∀x < t for a term t.
A ∆0-formula ϕ(n1, . . . , nk) is interpreted over N in the usual way, and naturally computes
the set {~n ∈ Nk : N � ϕ(~n)}.

I Definition 3 (Positive circuits). A family of k-argument ¬-free circuits is a set {C(~n)}~n∈Nk ,
where each C(~n) is a circuit with arbitrary fan-in

∨
and

∧
gates,3 given as a tuple

(N,D,E, I1, . . . , Ik, O), where [N ] = {n < N} is the set of gates, D ⊆ [N ] is the set of∨
gates (remaining gates are assumed to be

∧
), E ⊆ [N ]× [N ] is the set of (directed) edges

(requiring E(m,n) =⇒ m < n), Ij ⊆ [nj ]× [N ] contains just pairs (l, n) s.t. the lth bit of
the jth input is connected to the gate n, and O ⊆ [N ] is the (ordered) set of output gates.

If these sets are polynomial-time computable from inputs (1n1 , . . . , 1nk ) then we say the
circuit family is P-uniform. Similarly, we say the family is ∆0-uniform if N(~n) is a term
(i.e. a polynomial) in ~n and there are ∆0-formulae D(n,~n), E(m,n,~n), Ij(l, n, ~n), O(n,~n)
computing the associated sets.

The specification of a circuit family above is just a variant of the usual “direct connection
language” from circuit complexity, cf. [22]. Notice that, importantly, we restrict the set O of
output gates to depend only on the length of the inputs, not their individual bit-values; this
is pertinent thanks to Prop. 2. Also, when it is convenient, we may construe Ij as a function
[nj ]→ P([N ]), by Currying.
I Remark. ∆0-sets are well known to be complete for the linear-time hierarchy [24]. However,
since we only need to manipulate “unary” inputs in the notion of ∆0-uniformity above, the
circuits generated are actually LH-uniform, where LH is the logarithmic-time hierarchy, the
uniform version of AC0 [2]. See, e.g., [5] Sect. 6.3 for related discussions on LH and, e.g.,
[7] Sect. IV.3 for some relationships between ∆0 and AC0.

3 By convention, a
∨

gate with zero inputs outputs 0, while a
∧

gate with zero inputs outputs 1.

CSL 2018
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I Example 4 (Circuits for sorting). Let us write th(j, x) for the (j − 1)th bit of sort(x), for
1 ≤ j ≤ |x|. We also set th(0, x) = 1 and th(j, x) = 0 for j > |x|. Notice that th(j, x) = 1
precisely if there are at least j 1s in x, i.e. it is a threshold function. We assume that the
input j is given in unary, for monotonicity, but as an abuse of notation write, say, j rather
than 1j throughout this example to lighten the notation. (Later, in Sect. 5, we will be more
formal when handling unary inputs.)
We have the following recurrence, for j > 0:

th(j, six) = th(j, x) ∨ (i ∧ th(j − 1, x)) (2)

Notice that this recurrence treats the i = 0 and i = 1 cases in the “same way”. This
corresponds to the notion of uniformity that we introduce in our function algebras later. We
can use this recurrence to construct polynomial-size ¬-free circuits for sorting. For an input
x of size n, write xl for the prefix x(l − 1) · · · · · x(0). Informally, we construct a circuit with
n+ 1 “layers” (numbered 0, . . . , n), where the lth layer outputs th(n, xl) · · · · · th(0, xl); the
layers are connected to each other according to the recurrence in (2), with th(0, xl) always
set to 1. Each layer will thus have 2(n+ 1) gates, with (n+ 1) disjunction gates (computing
the functions th(j, xl)), and n+ 1 intermediate conjunction gates. We assign odd numbers
to disjunction gates and even numbers to conjunction gates, so that the total number of
gates is N(n) = 2(n+ 1)2 and D(n) = {2r+ 1 : r < (n+ 1)2}. The sets E(r, s, n) and I(r, n)
can be given a routine description, and the set O(r, n) of output gates consists of just the
final layer of disjunction gates (except the rightmost), computing th(n, x) · · · · · th(1, x), i.e.
O(r, n) = {2(n+ 1)2 − 2r − 1 : r < n}. It is not hard to see that such circuits are not only
P-uniform, but also ∆0-uniform.

Now we introduce a machine model for uniform positive computation. The definition of a
multitape machine below is essentially from [19]. The monotonicity criterion is identical to
that from [14, 15], though we also allow auxiliary “work” tapes so that the model is easier
to manipulate. This also means that we do not need explicit accepting and rejecting states
with the further monotonicity requirements from [14, 15], since this is subsumed by the
monotonicity requirement on writing 0s and 1s: predicates can be computed in the usual
way by Boolean valued functions, with 0 indicating “reject” and 1 indicating “accept”.

I Definition 5 (Positive machines). A k-tape (deterministic) Turing machine (TM) is a tuple
M = (Q,Σ, δ, s, h) where:

Q is a finite set of (non-final) states.
Σ ⊇ {.,�, 0, 1} is a finite set, called the alphabet.
δ : Q× Σk → (Q ∪ {h})× (Σ× {←,−,→})k such that, whenever δ(q, σ1, . . . , σk) =
(q, τ1, d1, . . . , τk, dk), if σi = . then τi = . and di = →.
s ∈ Q is the initial state.
Q and Σ are disjoint, and neither contains the symbols h,←,−,→.

We call h the final state, . the “beginning of tape marker”, � the “blank” symbol, and
←,−,→ are the directions “left”, “stay” and “right”.

Now, write I = Q× Σk and O = (Q ∪ {h})× (Σ× {←,−,→})k, so that δ is a function
I → O. We define partial orders ≤I and ≤O on I and O resp. as follows:

(q, σ1, . . . , σk) ≤I (q′, σ′1, . . . , σ′k) if q = q′ and, for i = 1, . . . , k, either σi = σ′i, or both
σi = 0 and σ′i = 1.
(q, σ1, d1, . . . , σk, dk) ≤O (q′, σ′1, d′1, . . . , σ′k, d′k) if q = q′ and, for i = 1, . . . , k, we have
di = d′i and either σi = σ′i, or both σi = 0 and σ′i = 1.
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We say that M is positive (a PTM) if δ : I → O is monotone with respect to ≤I and ≤O,
i.e. I ≤I I ′ =⇒ δ(I) ≤O δ(I ′).

A run of input strings x1, . . . , xk ∈ {0, 1}∗ on M is defined in the usual way (see, e.g.,
[19]), beginning from the initial state s and initialising the ith tape to .xi�ω, for i = 1, . . . , k.
If M halts, i.e. reaches the state h, its output is whatever is printed on the kth tape at that
moment, up to the first � symbol.

We say that a function f : ({0, 1}∗)k → {0, 1}∗ is computable by a PTM if there is a k′-tape
PTM M , with k′ ≥ k, such that M halts on every input and, for inputs (x1, . . . , xk, ε, . . . , ε),
outputs f(x1, . . . , xk).

The monotonicity condition on the transition function above means that the value
of a Boolean read does not affect the next state or cursor movements (this reflects the
“obliviousness” of monotone functions, cf. Prop. 2). Moreover, it may only affect the Boolean
symbols printed: the machine may read 0 and print 0 but read 1 and print 1, in otherwise-
the-same situation. However, if in one situation it prints a non-Boolean σ when reading a
Boolean 0 or 1, it must also print σ when reading the other.

I Example 6 (Machines for sorting). A simple algorithm for sorting a binary string x is as
follows: do two passes of x, first copying the 0s in x onto a fresh tape, then appending the
1s.4 However, it is not hard to see that a machine directly implementing this algorithm will
not be positive. Instead, we may again use the recurrence from (2).

We give an informal description of a PTM that sorts a binary string. The machine has
four tapes; the first is read-only and stores the input, say x with |x| = n. As in Ex. 4, we
inductively compute tl = th(n, xl) · · · · · th(0, xl), for l ≤ n. The second and third tape are
used to temporarily store tl, while the fourth is used to compute the sorting of the next prefix
tl+1. At each step the cursors on the working tapes move to the next bit and the transition
function implements the recurrence from (2), calculating the next bit of tl+1 and writing it
to the fourth tape. Notice that the cursor on the third tape remains one position offset from
the cursor on the second and fourth tapes, cf. (2). Once tl+1 has been completely written on
the fourth tape the machine copies it over the contents of the second and third tapes and
erases the fourth tape before moving onto the next bit of the first tape and repeating the
process. Finally, once the first tape has been exhausted, the machine copies the contents
of the second (or third) tape, except the last bit (corresponding to th(x, 0) = 1), onto the
fourth tape and halts.

I Theorem 7. The following function classes are equivalent:
(1) Functions on {0, 1}∗ computable by ∆0-uniform families of ¬-free circuits.
(2) Functions on {0, 1}∗ computable by multi-tape PTMs that halt in polynomial time.
(3) Functions on {0, 1}∗ computable by P-uniform families of ¬-free circuits.
This result is similar to analogous ones found in [14] for positive versions of the predicate
class P. It uses standard techniques so we give only a sketch of the proof below. Notice that
the equivalence of models thus holds for any level of uniformity between ∆0 and P, e.g. for
L-uniform ¬-free circuits, cf. the Remark on p. 3.

Proof sketch of Thm. 7. We show that (1) ⊆ (2) ⊆ (3) ⊆ (1). The containments are mostly
routine, though (3) ⊆ (1) requires some subtlety due to the positivity condition on circuits.
For this we rely on an observation from [10]. Let C(~n) be a P-uniform family of ¬-free

4 Recall that, while bits are indexed from right to left, machines read from left to right.

CSL 2018
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circuits, specified by polynomial-time programs N,D,E, I1, . . . , Ik, O. Since the circuit-
value problem is P-complete under even AC0-reductions (see, e.g., [7]), we may recover
∆0-uniform polynomial-size circuits (with negation) computing each of N,D,E, I1, . . . , Ik, O,
cf. the Remark on p. 3. However, these circuits take only unary strings of 1s as inputs,
and so all negations can be pushed to the bottom (by De Morgan laws) and eliminated,
yielding input-free ¬-free circuits for each of N,D,E, I1, . . . , Ik, O and their complements (by
dualising gates). We may use these as “subcircuits” to compute the relevant local properties
of C(~n). In particular, every internal gate n of C(~n) may be replaced by the following
configuration (progressively, beginning from the highest-numbered gate N(~n)− 1):(

D(n,~n) ∧
( ∨
m<n

(m ∧ E(m,n,~n)) ∨
k∨
j=1

∨
l<nj

(x(l) ∧ Ij(l, n))
))

∨

(
¬D(n,~n) ∧

( ∧
m<n

(m ∨ ¬E(m,n,~n)) ∧
k∧
j=1

∧
l<nj

(x(l) ∨ ¬Ij(l, n))
))

This entire construction can be made ∆0-uniform, upon a suitable renumbering of gates.
The proof of (2) ⊆ (3) follows a standard construction (see, e.g., [19]), observing that

the positivity criterion on PTMs entails local monotonicity and hence allows us to construct
circuits that are ¬-free. (Similar observations are made in [11, 10, 14, 15]). Suppose Q,Σ
and {←,−,→} are encoded by Boolean strings such that distinct elements are incomparable
under ≤, (except 0 ≤ 1 for 0, 1 ∈ Σ). Thus we may construe δ as a bona fide monotone
Boolean function of fixed input arities, and thus has some (constant-size) ¬-free circuit thanks
to adequacy of the basis {

∨
,
∧
}, say Cδ. Now, on a fixed input, consider “configurations”

of the form (q, x1, n1, . . . , xk, nk), where q ∈ Q, xi is the content of the ith tape (up to the
halting time bound) and ni is the associated cursor position (encoded in unary). We may use
Cδ to construct polynomial-size ¬-free circuits mapping the machine configuration at time t
to the configuration at time t+ 1. By chaining these circuits together polynomially many
times (determined by the halting time bound), we may thus obtain a circuit that returns the
output of the PTM. This entire construction remains P-uniform, as usual.

The proof of (1) ⊆ (2) is also routine, building a PTM “evaluator” for ¬-free circuits,
where ¬-freeness allows us to satisfy the positivity condition on TMs. We rely on the fact
that the ∆0-specifications may be entirely encoded in unary on a PTM, so that they are
monotone, in polynomial-time. We do not go into details here since, in particular, this
containment is subsumed by our later results, Thm. 17 and Thm. 30, which show that (1) ⊆
uC ⊆ (2), for the algebra uC we introduce in the next section. J

I Definition 8 (Positive FP). The function class posFP is defined to be the set of functions
on {0, 1}∗ computed by any of the equivalent models from Thm. 7.

I Remark. The notion of positive computation was previously studied in [11, 14, 15]. One
interesting point already noted in those works is that, for a complexity class, its positive
version is not, in general, just its monotone members. This follows from a seminal result
of Razborov [20], and later improvements [1, 23]: there are polynomial-time monotone
predicates (and hence polynomial-size circuits with negation) for which the only ¬-free
circuits are exponential in size. In particular, posFP ( {f ∈ FP : f monotone}.

3 An algebra uC for posFP

We present a function algebra for posFP by considering “uniform” versions of recursion
operators. We write [F ;O] for the function class generated by a set of initial functions F
and a set of operations O, and generally follow conventions and notations from [5].
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Let us first recall Cobham’s function algebra for the polynomial-time functions, FP. This
algebra was originally formulated over natural numbers, though we work with a version here
over binary words, essentially as in [9, 18].

Define πkj (x1, . . . , xk) := xj and x#y := 1|x||y|. We write comp for the operation of
function composition.

I Definition 9. A function f is defined by bounded recursion on notation (BRN) from
g, h0, h1, k if |f(x, ~x)| ≤ |k(x, ~x)| for all x, ~x and:

f(ε, ~x) = g(~x)
f(s0x, ~x) = h0(x, ~x, f(x, ~x))
f(s1x, ~x) = h1(x, ~x, f(x, ~x))

(3)

We write C for the function algebra [ε, s0, s1, π
k
j ,#; comp,BRN].

I Theorem 10 ([6]). C = FP.

Notice that ε, s0, s1, π
k
j ,# are monotone, and the composition of two monotone functions is

again monotone. However, non-monotone functions are definable using BRN, for instance:

cond(ε, yε, y0, y1) = yε
cond(s0x, yε, y0, y1) = y0
cond(s1x, yε, y0, y1) = y1

(4)

This “conditional” function is definable since we do not force any connection between
h0 and h1 in (3). Insisting on h0 ≤ h1 would retain monotonicity, but this condition is
external and not generally checkable. Instead, we can impose monotonicity implicitly by
somewhat “uniformising” BRN. First, we will need to recover certain monotone variants of
the conditional:

I Definition 11 (Meets and joins). We define x ∧ y = z by |z| = min(|x|, |y|) and z(j) =
min(x(j), y(j)), for j < min(|x|, |y|). We define analogously x ∨ y = z by |z| = max(|x|, |y|)
and z(j) = max(x(j), y(j)), for j < max(|x|, |y|).

Note that, in the case of x ∨ y above, if |x| < |y| and |x| ≤ j < max(|x|, |y|), then x(j) is not
defined and we set z(j) = y(j). We follow an analogous convention when |y| < |x|.

I Definition 12 (The function algebra uC). We say that a function is defined by uniform
bounded recursion on notation (uBRN) from g, h, k if |f(x, ~x)| ≤ |k(x, ~x)| for all x, ~x and:

f(ε, ~x) = g(~x)
f(s0x, ~x) = h(0, x, ~x, f(x, ~x))
f(s1x, ~x) = h(1, x, ~x, f(x, ~x))

(5)

We define uC to be the function algebra [ε, s0, s1, π
k
j ,#,∧,∨; comp, uBRN].

Notice that ∧ and ∨ are clearly FP functions, therefore they are in C. Moreover, notice
that (5) is the special case of (3) when hi(x, ~x, y) has the form h(i, x, ~x, y). So, we have that
uC ⊆ C = FP. We will implicitly use this observation later to ensure that the outputs of uC
functions have lengths which are polynomially bounded on the lengths of the inputs.

The main result of this work is that uC = posFP. The two directions of the equality are
proved in the sections that follow, in the form of Thms. 17 and 30. Before that, we make
some initial observations about uC.
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I Proposition 13. uC contains only monotone functions.

Proof. The proof is by induction on the definition of f . The relevant case is when f is
defined by uBRN. It suffices to show that f is monotone in its first input, which we do by
induction on its length. Let w ≤ x. If |w| = |x| = 0, then they are both ε and we are done.
Otherwise let w = siw′ and x = sjx′. Then f(w, ~y) = h(i, w′, ~y, f(w′, ~y)) ≤ h(j, x′, ~y, f(x′, ~y))
by the inductive hypothesis, since i ≤ j and w′ ≤ x′, and we are done. J

I Proposition 14. uC + cond = C.5

Proof. The left-right inclusion follows from the definition of cond by BRN in (4). For the
right-left inclusion, we again proceed by induction on the definition of functions in C, and the
relevant case is when f is defined by BRN, say from g, h0, h1, k. In this case, we may recover a
definition of f using uBRN by writing h(i, x, ~x, y) = cond(i, g(~x), h0(x, ~x, y), h1(x, ~x, y)). J

As expected, uC contains the usual predecessor function, least significant parts, concaten-
ation, and a form of iterated predecessor:

I Proposition 15 (Basic functions in uC). uC contains the following functions:6

p(ε) := ε

p(six) := x

lsp(ε) := ε

lsp(six) := i

x · ε := x

x · (siy) := si(x · y)
msp(|ε|, y) := y

msp(|six|, y) := p(msp(|x|, y))

Proof. All these definitions are instances of uBRN, with bounding function #(s1x, s1y). J

Notice that, in the above definition of concatenation and throughout this work, we write six
for s0x ∨ i. We also sometimes simply write xy instead of x · y.

We may also extract individual bits and test for the empty string in:

I Proposition 16 (Bits and tests). uC contains the following functions:

bit(|x|, y) := lsp(msp(|x|, y)) condε(ε, y, z) := y

condε(six, y, z) := z

4 posFP contains uC

One direction of our main result follows by standard techniques:

I Theorem 17. uC ⊆ posFP.

It is not hard to see that one can extract (uniform) ¬-free circuits from a uC program,
but we instead give a PTM for each function of uC.

Proof sketch of Thm. 17. The proof is by induction on the function definitions. We prove
that for all f ∈ uC there exists a PTM Mf computing f in polynomial time. For the initial
functions the result is straightforward, and composition is routine.

We give the important case of when f is defined by uBRN from functions g, h, k ∈ uC, as
in (5); we will assume there are no side variables ~x, for simplicity, though the general case is
similar. Let |f(x)| ≤ b(|x|) for some polynomial b(n) (since, in particular, f(x) ∈ C = FP).
By the inductive hypothesis, there are PTMs Mg (with t tapes) and Mh (with 3 + u tapes)

5 Here we write [F ;O] + f for the function algebra [F , f ;O].
6 Notice that we could have equivalently defined lsp(x) as x ∧ 1.
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computing, respectively, g and h in time bounded by pg(n) and ph(1,m, n) for inputs of
lengths n and (1,m, n), respectively, for appropriate polynomials pg, ph. We assume that
Mg and Mh halt scanning the first cell of each tape. In case of Mh we also assume that the
content of tapes 1 and 2 are not changed during the computation (i.e. are read-only), and
that the machine halts with the output in tape 3 with the other u tapes empty. We may
define an auxiliary machine, M , with 3 tapes. Whenever the recursion input x is on tape 1,
every time we run M , it writes the two first inputs of a call to h on tapes 2 and 3 and shifts
the cursor in x one bit along. This means that a bit of x will be on tape 2 and a prefix of x,
up to that bit, will be on tape 3.
Such M may be constructed so that it is a positive TM which works in time bounded by
2|x|+ 1.

Now, we describe a positive TM Mf (with 3 + u+ t tapes) computing f as follows:
1. Run Mg (over the last t tapes of Mf );
2. Enter state s, run M (over tapes 1-3), and if M reaches state H, halt;
3. Run Mh (over tapes 2,3, 3 + u+ t, and tapes 4 to u+ 3 of Mf , in this order);
4. Go to (2).
Each run of M shifts the cursor of the input tape one cell to the right, so, as expected, it
halts after |x| repetitions of the loop above, and hence operates in polynomial time. J

5 Some properties of the algebra uC

We conduct some “bootstrapping” in the algebra uC, both for self-contained interest and
also for use later on to prove the converse of Thm. 17 in Sect. 6.

5.1 An algebra for lengths: tally functions of uC and linear space
We characterise the tally functions of uC, i.e. those with unary inputs and outputs, as just
the unary codings of functions on N computable in linear space. We carry this argument out
in a recursion-theoretic setting so that the exposition is more self-contained.

To distinguish functions on N from functions on {0, 1}∗, we use variables m,n etc. to vary
over N. We will also henceforth write n for 1n, to lighten the presentation when switching
between natural numbers and binary words.

Further to Prop. 2, for functions in uC we may actually compute output lengths in a
simple function algebra over N.

I Definition 18. Let 0, 1,+,×,min,max have their usual interpretations over N. f(n,~n) is
defined by bounded recursion, written BR, from g, h, k if f(n,~n) ≤ k(n,~n) for all n,~n and:

f(0, ~n) = g(~n)
f(n+ 1, ~n) = h(n,~n, f(n,~n))

We write E2 for the function algebra [0, 1,+,×,min,max, πkj ; comp,BR] over N.

Let us write FLINSPACE for the class of functions on N computable in linear space (see,
e.g., [5]). The following result is well-known:

I Proposition 19 ([21]). E2 = FLINSPACE.

For a list of arguments ~x = (x1, . . . , xk), let us write |~x| for (|x1|, . . . , |xk|).

I Lemma 20. For f(~x) ∈ uC, there is a lf (~n) ∈ E2 such that |f(~x)| = lf (|~x|).
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Proof. We proceed by induction on the definition of f in uC. For the initial functions
we have: |ε| = 0, |s0x| = |x| + 1, |s1x| = |x| + 1, |x#y| = |x||y|, |πkj (x1, . . . , xn)| = |xj |,
|x ∧ y| = min(|x|, |y|), and |x ∨ y| = max(|x|, |y|).

If f is defined by composition, the result is immediate from composition in E2. Finally, if
f(x, ~x) is defined by uBRN from functions g, h, k ∈ uC, as in (5), then we have,

|f(ε, ~x)| = |g(~x)|
|f(six, ~x)| = |h(1, x, ~x, f(x, ~x))|

and we may define lf by BR from lg, lh and lk, by the inductive hypothesis. J

By appealing to the lengths of ε, s1, ·,#,∧,∨, uBRN, we also have a converse result to
Lemma 20 above, giving the following characterisation of the tally functions of uC:

I Theorem 21. Let f : Nk → N. Then the binary string function f(|~x|) is in uC if and only
if the natural number function f(~n) is in E2.

Proof sketch. The left-right implication follows from Lemma 20 above, and the right-left
implication follows by simulating E2-definitions with unary codings in uC. J

Thanks to this result, we will rather work in E2 when reasoning about tally functions in uC,
relying on known facts about FLINSPACE (see, e.g., [5]).

In uC, we may also use unary codings to “iterate” other functions. We write f(~n, ~y) ∈ uC
if there is f ′(~x, ~y) ∈ uC such that f ′(~n, ~y) = f(~n, ~y), for all ~n ∈ N.

I Observation 22 (Length iteration). uC is closed under the bounded length iteration
operation: we may define f(n, ~x) from g(~x), h(n, ~x, y) and k(n, ~x) as:

f(0, ~x) := g(~x)
f(n+ 1, ~x) := h(n, ~x, f(n, ~x))

as long as |f(n, ~x)| ≤ |k(n, ~x)|.

In fact, bounded length iteration is just a special case of uBRN, and we will implicitly use
this when iterating functions by length. This is crucial for deriving closure properties of uC,
as in the next subsection, and for showing that uC ⊇ posFP in Sect. 6.
I Remark (Some iterated functions). For h(x, ~x) ∈ uC, the following functions are in uC:∨

j<|x|
h(j, ~x) := h

(
|x| − 1, ~x

)
∨ · · · ∨ h (0, ~x)∧

j<|x|
h(j, ~x) := h

(
|x| − 1, ~x

)
∧ · · · ∧ h (0, ~x)

∨
x :=

∨
j<|x|

bit (j, x)

∧
x :=

∧
j<|x|

bit (j, x)

⊙
j<|x|

h(j, ~x) := h
(
|x| − 1, ~x

)
· · · · · h (0, ~x)

Notice that, as for the definitions of
∨
x and

∧
x above, we may use iterated operators with

various limit formats, implicitly assuming that these are definable in uC.

I Example 23 (A program for sorting). Notice that the recurrence in (1), while an instance
of BRN, is not an instance of uBRN, since it is not uniform. However, we may give a positive
definition by uBRN based, once again, on the recurrence (2):

sort(ε) = ε

sort(six) =
⊙
j<|x|

(bit(j + 1, s1sort(x)) ∨ (i ∧ bit(j, s1sort(x))))
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5.2 uC is closed under simultaneous uBRN
To exemplify the robustness of the algebra uC it is natural to show closure under certain
variants of recursion. While we do not explicitly use these results later, the technique should
exemplify how other textbook-style results may be obtained for uC. We also point out that
the ideas herein are implicitly used in Sect. 6 where we inline a treatment of a restricted
version of “course-of-values” recursion.

One of the difficulties in reasoning about uC is that it is not clear how to define appropriate
(monotone) (de)pairing functions, which are usually necessary for such results. Instead, we
rely on analogous results for E2, before “lifting” them to uC, thanks to Thm. 21 and Prop. 2.
We give a self-contained exposition for the benefit of the reader but, since FLINSPACE
and algebras like E2 are well known, we will proceed swiftly; see, e.g., [5] for more details.

Notice that we have the following functions in E2,

n .−m := max(n−m, 0) and cond0(x, y, z) :=
{
y if x = 0
z otherwise

thanks to Thm. 21 and the fact that msp(|x|, y) and condε are in uC. Thus we may define,

le(m,n) :=
{

0 if n .−m = 0
1 otherwise

and
⌊n

2

⌋
:=

∑
i<n

le(2i+ 1, n)

by bounded recursion. This allows us to define in E2 a simple pairing function:

I Proposition 24 (Pairing in E2). The following function is in E2:

〈n0, n1〉 :=
⌊

(n0 + n1)(n0 + n1 + 1)
2

⌋
+ n0

We now show that we have the analogous depairing functions, due to the fact that
bounded minimisation is available in FLINSPACE.

I Lemma 25 (Bounded minimisation, [12]). E2 is closed under bounded minimisation: if
f(n,~n) ∈ E2 then so is the following function:

s(µm < n).(f(m,~n) = 0) :=
{
m+ 1 m < n is least s.t. f(m,~n) = 0
0 f(m,~n) > 0 for all m < n

Proof. Appealing to BR, we have s(µm < 0).(f(m,~n) = 0) = 0 and,

s(µm < n+ 1).(f(m,~n) = 0)

=


n+ 1 if s(µm < n).(f(m,~n) = 0) = 0 , f(n,~n) = 0
0 if s(µm < n).(f(m,~n) = 0) = 0 , f(n,~n) 6= 0
s(µm < n).(f(m,~n) = 0) if s(µm < n).(f(m,~n) = 0) 6= 0

by two applications of the conditional cond0. J

I Proposition 26 (Depairing). For i ∈ {0, 1}, the function βi with βi(〈n0, n1〉) = ni is in E2.

Proof. We have β0(n) = s(µn0 < n).(s(µn1 < n).(〈n0, n1〉 = n) 6= 0) .− 1, which is definable
by bounded minimisation and appropriate conditionals.7 β1(n) is defined analogously, by
switching s(µn0 < n) and s(µn1 < n). J

7 Notice that 〈n0, n1〉 = n iff max(〈n0, n1〉 .− n, n .− 〈n0, n1〉) = 0.

CSL 2018



18:12 A Recursion-Theoretic Characterisation of the Positive Polynomial-Time Functions

Thanks to (de)pairing, we have the following (well-known) result:

I Proposition 27. E2 is closed under simultaneous bounded recursion: we may define
f1, . . . , fp from g1, h1, k1 . . . , gp, hp, kp if fj(n,~n) ≤ kj(n,~n) for all n,~n, for 1 ≤ j ≤ p, and:

fj(0, ~n) = gj(~n)
fj(n+ 1, ~n) = hj(n,~n, f1(n,~n), · · · , fp(n,~n))

This result, along with Lemma 20, allows us to show that uC is closed under the simultaneous
form of uBRN, by using concatenation instead of pairing:

I Theorem 28. uC is closed under simultaneous uBRN: we may define f1, . . . , fp from
g1, h1, k1 . . . , gp, hp, kp if |fj(x, ~x)| ≤ |kj(x, ~x)| for all x, ~x, for 1 ≤ j ≤ p, and:

fj(ε, ~x) = gj(~x)
fj(six, ~x) = hj(i, x, ~x, f1(x, ~x), . . . , fp(x, ~x))

Proof sketch. For 1 ≤ j ≤ p, we have gj , hj , kj are in uC, therefore by Lemma 20 there
exist, in E2, functions lgj

, lhj
and lkj

computing their output lengths in terms of their input
lengths. Appealing to simultaneous bounded recursion (Prop. 27), we may define in the
natural way functions lfj

∈ E2 such that |fj(x, ~x)| = lfj
(|x|, |~x|) for all x, ~x.

Now, using concatenation, we define the following function in uC by uBRN,

F (ε, ~x) = g1(~x) · · · · · gp(~x)
F (six, ~x) = h1(i, x, ~x, ~F (x, ~x)) · · · · · hp(i, x, ~x, ~F (x, ~x)),

where ~F = (F1, . . . Fp) and each Fj(x, ~x) is F (x, ~x) without its leftmost lf1(|x|, |~x|) + · · ·+
lfj−1(|x|, |~x|) and its rightmost lfj+1(|x|, |~x|) + · · ·+ lfp

(|x|, |~x|) bits, i.e.,

Fj(x, ~x) = msp
(
lfj+1(|x|, |~x|) + · · ·+ lfp

(|x|, |~x|), F (x, ~x)
)
∧ lfj

(|x|, |~x|)

The bounding function is just the concatenation of all the kj(x, ~x), for 1 ≤ j ≤ p. Now we
may conclude by noticing that fj(x, ~x) = Fj(x, ~x), for 1 ≤ j ≤ p. J

6 uC contains posFP

We are now ready to present our proof of the converse to Thm. 17. For this we appeal to the
characterisation (1) from Thm. 7 of posFP as ∆0-uniform families of ¬-free circuits. Since
∆0 formulae compute just the predicates of the linear-time hierarchy, the following result is
not surprising, though we include it for completeness of the exposition:

I Lemma 29 (Characteristic functions of ∆0 sets). Let ϕ be a ∆0-formula with free variables
amongst ~n. There is a function fϕ(~n) ∈ E2 such that:

fϕ(~n) =
{

0 N 2 ϕ(~n)
1 N � ϕ(~n)

Proof. We already have functions for all terms (written s, t, etc.), i.e. polynomials, due to
the definition of E2. We proceed by induction on the structure of ϕ, which we assume by De
Morgan duality is written over the logical basis {¬,∧,∀}:

For atomic formulae we use the length conditional to define appropriate functions:

fs<t(~n) :=
{

1 s .− (t+ 1) = 0
0 otherwise

fs=t(~n) :=
{

1 max(s .− t, t .− s) = 0
0 otherwise
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If ϕ is ¬ψ then we define fϕ, using the conditional, as follows:

fϕ(~n) :=
{

1 fψ(~n) = 0
0 otherwise

If ϕ is ψ ∧ χ then we define fϕ as follows:

fϕ(~n) := min(fψ(~n), fχ(~n))

If ϕ is ∀n < t.ψ(n,~n) then we define fϕ(t, ~n), by BR, as follows:

fϕ(0, ~n) := 1
fϕ(n+ 1, ~n) := min (fψ(n,~n), fϕ(n,~n)) J

Using this result, we may argue for the converse of Thm. 17.

I Theorem 30. posFP ⊆ uC.

Proof. Working with the characterisation (1) from Thm. 7 of posFP, we use Lemma 29
above to recover characteristic functions of sets specifying a ¬-free circuit family C(~n) in E2.
Writing N,D,E, I1, . . . , Ik, O for the associated characteristic functions (in E2), we define
an “evaluator” program in uC, taking advantage of Thm. 21, that progressively evaluates the
circuit as follows. Given inputs ~x of lengths ~n, we will define a function Val(n, ~x) that returns
the concatenation of the outputs of the gates < n in C(~n), by length iteration, cf. Obs. 22.

The base case of the iteration is simple, with Val(0, ~x) := ε. For the inductive step we
need to set up some intermediate functions. Suppressing the parameters ~n, we define the
function ι(n, ~x) returning the concatenation of input bits sent to the nth gate:

ι(n, ~x) :=
⊙

m<|x1|

(
I1(m,n) ∧ bit(m,x1)

)
· · · · ·

⊙
m<|xk|

(
Ik(m,n) ∧ bit(m,xk)

)
Now we define the value val(n, ~x) of the nth gate in terms of Val(n, ~x), appealing again to
the iterated operators from Rmk. 5.1, and testing for the empty string:8

val(n, ~x) :=


∧
ι(n, ~x) ∧

∧
m<n

(
(1 .− E(m,n)) ∨ bit(m,Val(~n, ~x))

)
if D(n) = 0∨

ι(n, ~x) ∨
∨
m<n

(
E(m,n) ∧ bit(m,Val(~n, ~x))

)
if D(n) = 1

Finally we may define Val (n+ 1, ~x) := val(n, ~x) ·Val(n, ~x). At this point we may define the
output C(~x) of the circuit as

⊙
m<N

(
O(m) ∧ bit(m,Val(N,~x))

)
. J

7 A characterisation based on safe recursion

In [3] Bellantoni and Cook give an implicit function algebra for FP, not mentioning any
explicit bounds, following seminal work by Leivant, [16, 17], who first gave a logical implicit
characterisation of FP. In this section we give another function algebra for posFP in the
style of Bellantoni and Cook’s, using “safe recursion”. Our argument follows closely the
structure of the original argument in [3]; it is necessary only to verify that those results
go through once an appropriate uniformity constraint is imposed. We write normal-safe
functions as usual: f(~x; ~y) where ~x are the normal inputs and ~y are the safe inputs.

8 Formally, here we follow the usual convention that
∨

ε = 0 and
∧

ε = 1.
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I Definition 31 (Function algebra uB). We say that f is defined by safe composition, written
scomp, from functions g, ~r, ~s if: f(~x; ~y) = g(~r(~x; );~s(~x; ~y)). We say that f is defined by
uniform safe recursion on notation (uSRN) from functions g and h if:

f(ε, ~x; ~y) = g(ε, ~x; ~y)
f(six, ~x; ~y) = h(x, ~x; i, ~y, f(x, ~x; ~y))

We define uB := [ε, s;1
0 , s

;1
1 , π

l;k
j ,∧;2,∨;2, p;1, cond ;3

ε ; scomp, uSRN]. Here, superscripts
indicate the arity of the function, which we often omit. We will show that the normal part
of uB computes precisely posFP, following the same argument structure as [3].

I Lemma 32 (Bounding lemma). For all f ∈ uB, there is a polynomial bf (~m,~n) (with natural
coefficients) such that, for all ~x, ~y, |f(~x; ~y)| ≤ bf (|~x|, |~y|).

Proof idea. We show by that for f ∈ uB, by induction on its definition, there exists a
polynomial qf (~n) such that, for all ~x, ~y, |f(~x; ~y)| ≤ qf (|~x|) + maxj(|yj |). (This is just a
special case of the same property for B from [3].) J

I Proposition 33. If f(~x; ~y) ∈ uB, then we have f(~x, ~y) ∈ uC.

Proof sketch. We proceed by induction on the definition of f ; the only interesting case
is when f is defined by uSRN. In this case we define f analogously to uBRN, taking the
bounding function to be bf (|~x|, |~y|), where bf is obtained from Lemma 32 above. J

Therefore we have that uB is contained in uC, and consequently in posFP. In order
to establish the other inclusion we slightly reformulate the function algebra uC. We write
uC′ := [ε, s0, s1, π

n
j ,∧,∨; comp, uBRN′], where uBRN′ is defined as uBRN but with the

bounding polynomial k ∈ [ε, s1, π
n
j , ·,#; comp]. It is clear that uC is contained in uC′; namely

the function # can easily be defined (as in, e.g., the proof of Prop. 35 later). We will prove
that uC′ is contained in uB.

I Lemma 34. For all f ∈ uC′ there is a polynomial pf (n) and some f ′(w; ~x) ∈ uB such
that, for all ~x,w, (|w| ≥ pf (|~x|)⇒ f(~x) = f ′(w; ~x)).

Proof sketch. The proof is similar to the proof of the analogous statement for FP given
in [3], with routine adaptations to deal with uniformity. We proceed by induction on the
definition of f in uC′, with the interesting case being when f is defined by uBRN′, say from
functions g, h and k. Let g′, pg, h′ and ph be the appropriate functions and polynomials
obtained by the inductive hypothesis. We would like to define f ′ ∈ uB and a polynomial
pf such that, for all w, x, ~x, whenever |w| ≥ pf (|x|, |~x|) one has f(x, ~x) = f ′(w;x, ~x). The
problem is that in uB, due to the normal-safe constraints, one cannot define f ′ directly by
recursion on x. Therefore we introduce in uB some auxiliary functions. Define,

msp(|ε|; y) := y

msp(|six|; y) := p(; msp(|x|; y))

msp(|x|, y; ) := msp(|x|; y)
X(z, w;x) := msp(|msp(|z|, w; )|;x)
I(z, w;x) := X(s1z, w;x) ∧ 1

by uSRN and by safe composition. The function X is used to “simulate” the recursion over
x, with x in a safe input position. Now, by uSRN, we define F (ε, w;x, ~x) := ε and,

F (siz, w;x, ~x)

:=
{
g′(w; ~x) if X(s1z, w;x) = ε

h′(w; I(z, w;x), X(z, w;x), ~x, F (z, w;x, ~x)) otherwise
(6)
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using a length conditional, cf. Prop. 16. From here we set f ′(w;x) := F (w,w;x, ~x) and also,

pf (|x|, |~x|) := ph(1, |x|, |~x|, bf (|x|, |~x|)) + pg(|~x|) + |x|+ 1,

where bf is a polynomial bounding the length of the outputs of f (which exists since f ∈ uC′.)
Given x, ~x, take w such that |w| ≥ pf (|x|, |~x|). We will prove, by subinduction on |u|,

that, if |w| − |x| ≤ |u| ≤ |w|, then F (u,w;x, ~x) = f(X(u,w;x), ~x). Since X(w,w;x) = x, we
thus obtain that f ′(w;x, ~x) = F (w,w;x, ~x) = f(x, ~x), as required.

Let us take an arbitrary u such that |w| − |x| ≤ |u| ≤ |w|. Note that |w| − |x| ≥ 1, and
thus we may write u = siz for some z. We have two cases:

If |siz| = |w| − |x| then X(siz, w;x) = ε, and so F (siz, w;x, ~x) = g′(w; ~x) = g(~x) =
f(ε, ~x) = f(X(siz, w;x), ~x).
If |siz| > |w| − |x| then X(siz, w;x) 6= ε and so:

F (siz, w; x, ~x) = h′(w; I(z, w; x), X(z, w; x), ~x, F (z, w; x, ~x)) by (6)
= h(I(z, w; x), X(z, w; x), ~x, F (z, w; x, ~x)) by inductive hypothesis
= h(I(z, w; x), X(z, w; x), ~x, f(X(z, w; x), ~x)) by subinductive hypothesis
= f(X(siz, w; x), ~x) by definition of f .

J

I Proposition 35. If f(~x) in uC, then we have f(~x; ) ∈ uB.

Proof. For f in uC, recalling that uC ⊆ uC′, take f ′ ∈ uB and a polynomial pf given by
Lemma 34 above. It suffices to prove that there exists r ∈ uB such that |r(~x; )| ≥ pf (|~x|),
for all ~x, whence we have f ′(r(~x; ); ~x) = f(~x) as required, cf. Lemma 34 above. For this we
simply notice that the usual definitions of polynomial growth rate functions, e.g. from [3],
can be conducted in unary, using only uniform recursion. Namely, define ⊕ and ⊗ in uB as
follows, by uSRN,

⊕(ε; y) := y

⊕(six; y) := s1(⊕(x; y))
⊗(ε, y; ) := ε

⊗(six, y; ) := ⊕(y;⊗(x; y))

so that | ⊕ (x; y)| = |x|+ |y| and | ⊗ (x, y; )| = |x| × |y|. By safe composition we may also
write ⊕(x, y; ) in uB, yielding an appropriate function r(~x; ) ∈ uB. J

As a consequence of Props. 33 and 35 in this section, and Thms. 17 and 30 earlier, we
summarise the contributions of this work in the following characterisation:

I Theorem 36. uB = uC = posFP.

8 Conclusions

In this work we observed that characterisations of “positive” polynomial-time computation
in [14] are similarly robust in the functional setting. We gave a function algebra uC for
posFP by uniformising the recursion scheme in Cobham’s characterisation for FP, and gave
a characterisation based on safe recursion too. We also observed that the tally functions of
posFP are precisely the unary encodings of FLINSPACE functions on N.

uC has a natural generalisation for arbitrary ordered alphabets, not just {0, 1}. This
is similarly the case for the circuit families and machine model we presented in Sect. 2.
We believe these, again, induce the same class of functions, and can even be embedded
monotonically into {0, 1}, thanks to appropriate variants of uBRN in uC, e.g. Thm. 28.

CSL 2018



18:16 A Recursion-Theoretic Characterisation of the Positive Polynomial-Time Functions

Unlike for non-monotone functions, there is an interesting divergence between the mono-
tone functions on binary words and those on the integers. Viewing the latter as finite
sets, characterised by their binary representaion, we see that the notion of monotonicity
induced by ⊆ is actually more restrictive than the one studied here on binary words. For
example, natural numbers of different lengths may be compared, and the bit function is no
longer monotone. In fact, a natural way to characterise such functions would be to further
uniformise recursion schemes, by also relating the base case to the inductive step, e.g.:

f(0, ~x) = h(0, 0, ~x, 0)
f(six, ~x) = h(i, x, ~x, f(x, ~x))

Adapting such recursion schemes to provide a “natural” formulation of the positive polynomial-
time predicates and functions on N is the subject of ongoing work.

Finally, this work serves as a stepping stone towards providing logical theories whose
provably recursive functions correspond to natural monotone complexity classes. Witnessing
theorems for logical theories typically compile to function algebras on the computation
side, and in particular it would be interesting to see if existing theories for monotone proof
complexity from [8] appropriately characterise positive complexity classes. We aim to explore
this direction in future work.
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