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Abstract

The capability of electrical stimulation (ES) in promoting bone regeneration has already

been addressed in clinical studies. However, its mechanism is still being investigated and

discussed. This study aims to investigate the responses of macrophages (J774A.1) and

preosteoblasts (MC3T3‐E1) to ES and the faradic by‐products from ES. It is found that

pH of the culture media was not significantly changed, whereas the average hydrogen

peroxide concentration was increased by 3.6 and 5.4 µM after 1 and 2 hr of ES,

respectively. The upregulation of Bmp2 and Spp1 messenger RNAs was observed after 3

days of stimulation, which is consistent among two cell types. It is also found that Spp1

expression of macrophages was partially enhanced by faradic by‐products. Osteogenic

differentiation of preosteoblasts was not observed during the early stage of ES as the

level of Runx2 expression remains unchanged. However, cell proliferation was impaired

by the excessive current density from the electrodes, and also faradic by‐products in the

case of macrophages. This study shows that macrophages could respond to ES and

potentially contribute to the bone formation alongside preosteoblasts. The upregulation

of Bmp2 and Spp1 expressions induced by ES could be one of the mechanisms behind the

electrically stimulated osteogenesis.

K E YWORD S

bone regeneration, electrical stimulation, faradic by‐products, macrophages, preosteoblasts

1 | INTRODUCTION

The use of electricity in bone injury treatment was first mentioned in

1816 (Behrens, Deren, & Monchik, 2013). Until now, it has already been

implemented as electrical stimulation (ES) in clinical trials and a number

of devices are available commercially, which could be worth around

$500 million in the US market (Haglin, Jain, Eltorai, & Daniels, 2017;

Mollon, da Silva, Busse, Einhorn, & Bhandari, 2008). ES can be applied

through a variety of techniques, including capacitive, inductive, direct,

and combined methods (Balint, Cassidy, & Cartmell, 2013).

Capacitive ES delivers electric field through the target, whilst

inductive ES delivers electromagnetic field generated by the current

flowing along the solenoid (Khalifeh et al., 2018). Direct ES delivers

electric field and current flow through the target alongside the

faradic by‐products generated from electrochemical reactions

between electrodes and the surroundings (Gan & Glazer, 2006).

These ES techniques have been shown to enhance osteogenesis by

promoting pro‐osteogenic protein expressions and mineralization in

both in vitro (Bodamyali et al., 1998; Griffin, Sebastian, Colthurst, &

Bayat, 2013; Kang et al., 2013; Mobini, Leppik, & Barker, 2016; Z. Y.
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Wang, Clark, & Brighton, 2006; Zhuang et al., 1997) and in vivo (P. G.

Cho, Ji, Ha, Lee, & Shin, 2019; Fredericks et al., 2007; Gan,

Fredericks, & Glazer, 2004; Leppik et al., 2018). However, despite

these claims, the mechanism of electrically induced osteogenesis has

not been fully understood yet (Khalifeh et al., 2018).

It has been shown that capacitive ES triggers calcium influx to the

bone cells, and inductive ES induces calcium release from intracellular

storage similar to combined ES (Brighton, Wang, Seldes, Zhang, & Pollack,

2001). These two ways of calcium movement result in an increase in

osteoblast proliferation. On the contrary, electric field from direct ES

causes transient increase in intracellular calcium and intracellular calcium

oscillation (Hammerick, Longaker, & Prinz, 2010; Khatib, Golan, & Cho,

2004; Ozkucur, Monsees, Perike, Do, & Funk, 2009; Sun, Liu, Lipsky, &

Cho, 2007), which could also promote osteogenic activities (Griffin et al.,

2013; Hammerick, James, Huang, Prinz, & Longaker, 2010; Sun et al.,

2007). Moreover, direct ES is capable of directing cell migration and

orientation through electrotaxis and cathodic reactions (Cortese, Palama,

D’Amone, & Gigli, 2014; Hammerick, James et al., 2010; Hammerick,

Longaker et al., 2010; Mobini, Talts, Xue, Cassidy, & Cartmell, 2017;

Tandon et al., 2009). It was also observed in vivo that new bone tissue

tends to form around the cathode after applying direct ES (Baranowski,

Black, Brighton, & Friedenberg, 1983; Bassett, Pawluk, & Becker, 1964;

Brighton et al., 1981; Yasuda, 1977). These findings have motivated the

characterization of cathodic reactions as well as their associated faradic

by‐products. It is shown that cathodic ES has increased the pH, reduced

O2 concentration, and generated reactive oxygen species (ROS) in the

form of hydrogen peroxide (H2O2) (Bodamyali, Kanczler, Simon, Blake, &

Stevens, 1999; Brighton, Adler, Black, Itada, & Friedenberg, 1975). These

faradic by‐products are then hypothesized to be involved in the

mechanisms that also support osteogenesis (Kuzyk & Schemitsch,

2009). However, it has not been tested by end‐to‐end experiment before.

The suggested mechanisms include the enhancement of osteo-

blastic activities at alkaline pH (Bodamyali et al., 1999; Fliefel et al.,

2016; Galow et al., 2017; Ramp, Lenz, & Kaysinger, 1994), and the

upregulation of vascular endothelial growth factor (Vegf) expression

from macrophages by the electrically generated H2O2, which is

beneficial for bone vascularization (M. Cho, Hunt, & Hussain, 2001;

Griffin & Bayat, 2011). We also thought that H2O2 may also induce

high‐mobility group box 1 (Hmgb1) protein from these inflammatory

cells, which could potentially be beneficial for bone healing and

regeneration (Meng et al., 2008; Tang et al., 2007). The involvement

of macrophages in osteogenesis has been reported that they are

requisite for in vivo bone healing and homeostasis, in which they

have enhanced osteogenic differentiation of osteoprogenitor cells

(Schlundt et al., 2015; Vi et al., 2015). Moreover, it has been shown

recently that macrophages are also responsive to the electric field.

Their migration, orientation, and intracellular calcium could be

altered by ES similar to other cell types as well as their phagocytosis

activities (Hoare, Rajnicek, McCaig, Barker, & Wilson, 2016).

However, their electrically stimulated activities relating to osteogen-

esis are not widely studied.

Hence, it is of interest to this study to characterize the in vitro

responses of macrophages to direct ES in comparison with

preosteoblasts to investigate whether or not electrically stimulated

macrophages could contribute to osteogenesis besides osteoblastic

cells, and whether the changes in their responses are induced by

faradic by‐products as hypothesized. This study provides initial

proof‐of‐concept results regarding the role of faradic by‐products,
which is beneficial for the future discussion regarding the mechanism

of electrically induced osteogenesis.

2 | MATERIALS AND METHODS

2.1 | Cell culture

J774A.1 murine macrophage and phenotypically heterogeneous

MC3T3‐E1 murine preosteoblastic cell lines were supplied from The

European Collection of Authenticated Cell Cultures and used as

received. The phenotype of J774A.1 cells used in this study were

91.4% M1 (CD11c positive), 0.6% M2 (CD206 positive), and the rest

were M0 (neither CD11c nor CD206 positive) (Ono et al., 2018;

Y. Zhu et al., 2017). Further details are described in the Supporting

Information. Cells were maintained in Dulbecco’s modified Eagle

medium (4.5 g/L glucose, 2mM L‐glutamine, without sodium

pyruvate) containing 10% fetal bovine serum and 1% antibiotic and

antimycotic solution. Cells were incubated at 37°C, 5% CO2, and

atmospheric O2 concentration. All reagents were purchased from

Sigma‐Aldrich, UK, unless stated otherwise. In the experiments, cells

were seeded into six‐well plates at the density of 50,000 cells per well

for macrophages and 100,000 cells per well for preosteoblasts, and the

media volume was kept at 3ml. Media change was carried out on the

following day after seeding before applying ES. Optical images of the

cells were taken using EVOS™ XL Imaging System (Life Technologies).

2.2 | Direct ES system

The system used in this study was 0.5mm 99.95% L‐shaped platinum

wire electrodes in six‐well plate arrangement (Leppik et al., 2019;

Mobini et al., 2016). Electrodes were wired in parallel circuit using

jumper cables, as shown in Figure 1. The devices were disinfected with

70% ethanol spray and UV irradiation before and after being used. ES

has been applied to the cells (Direct ES) for 1–2 hr daily at the constant

direct current (DC) voltage of 2.2 V (100mV/mm equivalent electric

field) using DC generator (B&K Precision). The total current passing

through each well once reaching steady state was 0.07 ± 0.01mA

(mean ± SD) measured by digital multimeter (M‐830B, Sinometer). In

faradic by‐product studies, acellular media were placed in a separate

six‐well plate (3ml per well) and incubated overnight before being

stimulated for 2 hr. The electrically stimulated media (ES media) were

transferred to the cells immediately after stimulation daily, and ES

media were changed every time of stimulation.

2.3 | pH measurement

Benchtop pH meter (Hanna Instruments) was used for measuring the

pH of culture media. pH probe was calibrated with pH buffer

2 | SRIRUSSAMEE ET AL.



between pH 4.0 and pH 10.0 (Fisher Scientific, UK) and washed with

deionized water before use. Acellular media were incubated over-

night before starting the experiment. The data were obtained by

submerging the probe into the acellular culture media right after

finishing the stimulation.

2.4 | Fluorometric H2O2 assay

Fluorimetric Hydrogen Peroxide Assay Kit (Sigma‐Aldrich, UK) was used
in this study. The reagent preparation was carried out following the

supplier’s instructions. Acellular media samples were incubated overnight

before applying ES, and the assay was performed immediately after

stimulation. The fluorescence intensity of the samples was measured

after 30min of room‐temperature incubation with the working solution

at excitation wavelength of 544nm and emission wavelength of 590nm

using microplate reader (FLUOstar® OPTIMA, BMG Labtech). The

measured intensity was subtracted by background readings from

nonstimulated media. H2O2 concentration was calculated using the

calibration curve from standard H2O2 solution supplied with the kit.

2.5 | Measurement of cell metabolic activity by
resazurin assay

Samples were incubated with 1ml of 10% resazurin solution (Deep

Blue™ Cell Viability Kit; BioLegend, UK) diluted in the complete

media for 1 hr. The fluorescence intensity of the supernatant was

measured by microplate reader at excitation wavelength of 544 nm

and emission wavelength of 590 nm. The background readings were

subsequently subtracted from the measured intensity before

analysis. The measurement was carried out the day after the final

stimulation or ES media treatment.

2.6 | Reverse transcription quantitative
polymerase chain reaction (RT‐qPCR)

Samples were washed three times with Dulbecco’s phosphate‐
buffered saline (DPBS) and collected immediately after the final

stimulation or after 2 hr of the final ES media treatment at similar

exposure time as its 2‐hr direct ES counterpart. Total RNA were

extracted from the samples using RNeasy Mini Kit (Qiagen, UK)

following the supplier’s instructions. The concentration and purity of

the extracted RNA samples were measured by NanoDrop™ Lite

Spectrophotometer (Thermo Fisher Scientific, UK). Complementary

DNA were synthesized from 9 ng of total RNA and undergone

thermal cycling following the supplier’s instructions using QuantiFast

SYBR® Green RT‐PCR Kit and QuantiTect Primer Assay (Qiagen, UK)

alongside StepOnePlus™ Real‐Time PCR System (Applied Biosys-

tems™, UK). Melt curves of the amplified samples were analyzed

using the supplier’s software. The messenger RNA (mRNA) fold

expression level was calculated by comparative ΔΔCt methods

relative to Gapdh and control samples. The details of each primer

are shown in Table 1. However, their exact sequences are

proprietary.

2.7 | Lipopolysaccharide (LPS) treatment

J774A.1 cells were exposed to the complete media containing LPS

from Escherichia coli O111:B4 (100 ng/ml) on the following day after

seeding. Tumor necrosis factor‐α (Tnfα) mRNA expression was

measured from the samples collected immediately after the first

2 hr of ES, LPS treatment, and LPS treatment with simultaneous ES as

this time point was shown to exhibit the maximal level of Tnfα mRNA

expression induced by LPS (Huang, Fletcher, Niu, Wang, & Yu, 2012).

2.8 | Statistical analysis

Data were collected from the samples which were stimulated by

different pairs of electrodes and statistically analyzed using GraphPad

Prism 7 software. The preliminary test for normal distribution was

conducted using Shapiro–Wilk normality test. The data that passed the

normal distribution test were analyzed using parametric approach. The

statistical test details are described in each figure caption. p< .05 are

considered statistical significant.

F IGURE 1 Direct electrical stimulation

device with L‐shaped platinum electrodes
in six‐well plate arrangement used in this
study. DC, direct current. The design is

adapted and modified from (Leppik et al.,
2019; Mobini et al., 2016) [Color figure can
be viewed at wileyonlinelibrary.com]
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3 | RESULTS

3.1 | pH and H2O2 measurements of acellular
media

Figure 2a shows the measured pH of the acellular media after 1 and

2 hr of ES. It is found that there was no significant change in pH of

the media after stimulation (p > .96). The measured H2O2 concentra-

tion of the media after stimulation is shown in Figure 2b. The average

concentration of H2O2 has increased by 3.6 and 5.4 µM after 1 and

2 hr of ES, respectively. Although the average H2O2 concentration

after 2 hr of ES are around 1.5 times higher than 1 hr, the difference

was not statistically significant (p = .06).

3.2 | Cell metabolic activity

The metabolic activity of macrophages and preosteoblasts measured

by resazurin assay after 3 days of stimulation are shown in Figure 3.

It is found that direct ES has significantly reduced the overall

metabolic activity of both cell types. However, changes in cell

metabolic activity of preosteoblasts were dependent on the stimula-

tion time, whereas those of macrophages between 1 and 2‐hr daily

ES were not significantly different.

3.3 | Cell morphology and distribution

The optical images of two cell types after 3 days of 2‐hr daily ES are

shown in Figure 4. It appears that the cell population were noticeably

lower at the area within 1,500 μm from the anodes and cathodes

than in the middle area of the well plate after 3 days of stimulation.

This distribution pattern is observable in both macrophages and

preosteoblasts. On the contrary, we do not observe any significant

changes in cell morphology in the middle area after stimulation when

compared with nonstimulated cells (control).

3.4 | mRNA expression from RT‐qPCR

The expression of mRNAs from macrophages and preosteoblasts, which

are responsible for translating Bmp2, Hmgb1, Vegfa, and Spp1 proteins,

were evaluated in this study as well as the expression of Runx2, from

preosteoblasts. It is found that Spp1 expression was upregulated after 3

days of 1‐hr daily ES in both cell types, as shown in Figure 5. Moreover,

an increase in Bmp2 expression has become significant when the cells

were stimulated for 2 hr daily, and the level of Spp1 expression was still

comparable to those stimulated for 1 hr daily. Likewise, the upregulation

of Bmp2 expression was also consistent between two cell types.

However, the expression of Hmgb1 and Vegfa from these two cells

were not affected by ES similarly to the Runx2 expression from

preosteoblasts. Furthermore, Figure 6 shows that Tnfα mRNA expres-

sion from macrophages was reduced by ES, whereas it was increased by

LPS after the first 2 hr of treatment. Besides, it is also found that the

LPS‐induced Tnfα expression could be mitigated by simultaneous ES.

3.5 | Effect of faradic by‐products

The influence of faradic by‐products as a whole was investigated by

treating the cells with ES media, in which the presence of electric

field, potential, and current were eliminated. The cellular responses

after being exposed to the ES media in terms of the overall metabolic

activity are shown in Figure 7. It can be seen that the faradic by‐
products generated during the 2‐hr ES has significantly reduced the

metabolic activity of macrophages after 3 days of treatment, whereas

that of preosteoblasts was not significantly changed (p = .06).

TABLE 1 Details of primers used in this study

Genes Assay IDs Translated proteins

Gapdh Mm_Gapdh_3_SG Glyceraldehyde 3‐phosphate
dehydrogenase (Gapdh)

Bmp2 Mm_Bmp2_1_SG Bone morphogenetic protein 2

(Bmp2)

Hmgb1 Mm_Hmgb1_1_SG High‐mobility group box 1

(Hmgb1)

Runx2 Mm_Runx2_1_SG Runt‐related transcription factor 2

(Runx2)

Spp1 Mm_Spp1_1_SG Osteopontin (Spp1)

Tnfα Mm_Tnf_1_SG Tumor necrosis factor‐α (Tnfα)

Vegfa Mm_Vegfa_1_SG Vascular endothelial growth factor

A (Vegfa)

F IGURE 2 (a) pH and (b) hydrogen peroxide (H2O2) concentration of the culture media after 1 and 2 hr of electrical stimulation (ES). Error

bars represent standard deviation (n = 6). Data were statistically analyzed by one‐way analysis of variance with Tukey’s multiple comparisons
test for pH and unpaired two‐tailed Student’s t test for H2O2 concentration
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Furthermore, the metabolic activity of both cell types after ES media

treatment were significantly different from direct ES group.

Changes in mRNA expressions induced by faradic by‐products
are shown in Figure 8. It is seen that the mRNA expressions from two

cell types were also significantly different from direct ES group. The

results show that faradic by‐products have significantly upregulated

the Spp1 expression of macrophages, whilst having no effect on their

F IGURE 3 Cell metabolic activity of J774A.1 macrophages and MC3T3‐E1 preosteoblasts after 3 days of 1 and 2‐hr daily direct electrical
stimulation (ES). Error bars represent standard deviation (n = 6). * and # represent p < .05 (one‐way analysis of variance with Tukey’s multiple

comparisons test) when compared with the control (nonstimulated) and 1‐hr daily stimulation groups, respectively

F IGURE 4 Representative optical images with ×10 objective
magnification of J774A.1 macrophages and MC3T3‐E1
preosteoblasts at the area within 1,500 μm from the anodes and
cathodes and in the middle of the culture area after 3 days of 2‐hr
daily direct electrical stimulation. Control images represent

nonstimulated cells. Scale bars = 500 μm. Dashed lines indicate
electrode position [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 Messenger RNA (mRNA) expression of J774A.1

macrophages and MC3T3‐E1 preosteoblasts after 3 days of 1 and
2‐hr daily direct electrical stimulation (ES). Error bars represent
upper and lower 95% confidence limits (n = 6). * represents p < .05

(one‐way analysis of varince with Tukey’s multiple comparisons test)
when compared with the control (nonstimulated) group

SRIRUSSAMEE ET AL. | 5



Bmp2 expression. Moreover, Bmp2 and Spp1 expressions from

preosteoblasts were not affected by faradic by‐products.

4 | DISCUSSION

This study has investigated the influence of direct DC ES and the

faradic by‐products on the cellular responses by applying direct ES to

the cells and comparing the responses with those treated with ES

media. We have characterized two forms of by‐products generated

during direct ES to correlate our findings with the hypothesized

mechanism from the literature, which are hydroxyl ion (OH−) and

H2O2. OH− is associated with pH of the culture media, whereas H2O2

is one of the ROS that could either be beneficial for cell signaling or

inducing cell oxidative stress (Bartosz, 2009). It has been studied

earlier that these by‐products were the results from the radical

generations through the reduction of water and oxygen during direct

ES (Bodamyali et al., 1999; Kalbacova et al., 2007). Changes in

extracellular environment due to these faradic by‐products could

affect cellular activities in terms of proliferation and differentiation

(Galow et al., 2017; Li et al., 2009). It was shown previously that

cathodic stimulation with titanium electrodes has reduced the

metabolic activity of osteoblasts and macrophages and increased

their intracellular ROS level (Kalbacova et al., 2007). In this study, we

have further discussed this finding in terms of their pro‐osteogenic
mRNA expressions and also demonstrated that the effects of faradic

by‐products on cellular activities are not dominant compared with

the effects of ES. Moreover, we also found that macrophages respond

to ES in a similar manner as preosteoblasts, and it is not only faradic

by‐products that stimulate macrophage activities during electrically

induced osteogenesis.

4.1 | Reduction in cell viability after stimulation

It was shown that pH changes after direct ES is dependent on the

stimulation regime and excessive increase in pH may lead to the

reduction in cell viability (Balint, Cassidy, Hidalgo‐Bastida, &

Cartmell, 2013). Although our results show that changes in pH are

not significant during stimulation, the reduction in overall cell

metabolic activity indicates that the population of metabolically

active cells, which are the viable cells, is still reduced after being

stimulated. This could be due to the other type of faradic by‐
products. However, the optical images at different areas of the

stimulated cells have shown that the apparent cell density at the

vicinity of the electrodes is noticeably lower than those in the middle

of the well. Besides, platinum electrodes have already been tested for

its biocompatibility (Geninatti et al., 2015). Therefore, we believe

that the excessive current density around the electrodes during

stimulation has significant effects on cell viability and proliferation in

our ES system (Balint, Cassidy, Hidalgo‐Bastida et al., 2013).

On the contrary, cell metabolic activity after being exposed to ES

media are significantly higher than those stimulated by direct ES. This

confirms the negative effects of excessive current density on cell

proliferation when the electrodes are present during direct ES. Moreover,

it is also found that faradic by‐products could also reduce macrophage

proliferation. We initially thought that H2O2 might be the reason behind

this; however, it has been reported that cell oxidative stress would occur

at H2O2 concentration above 10 μM, which is higher than those

generated from our ES system (Stone & Yang, 2006; X. Y. Wang et al.,

2015). Moreover, the preosteoblastic and macrophage cell lines are

F IGURE 6 Tnfα mRNA expression of J774A.1 macrophages after
2 hr of direct ES, LPS treatment, and LPS treatment with
simultaneous direct ES. Error bars represent upper and lower 95%

confidence limits (n = 6). *, #, and & represent p < .05 (two‐way
analysis of variance with Tukey’s multiple comparisons test) when
compared with the control (nonstimulated), 2‐hr ES, and LPS
Treatment groups, respectively. ES, electrical stimulation; LPS,

lipopolysaccharide; mRNA, messenger RNA

F IGURE 7 Cell metabolic activity of J774A.1 macrophages and MC3T3‐E1 preosteoblasts after 3 days of treatment with 2‐hr electrically
stimulated media (ES media). Error bars represent standard deviation (n = 6). * and # represent p < .05 (unpaired two‐tailed Student’s t test)
when compared with the control (nonstimulated media) and 2‐hr daily direct ES groups, respectively
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capable of tolerating more than 100 μM of exogenous H2O2 (Arai,

Shibata, Pugdee, Abiko, & Ogata, 2007; Tang et al., 2007). Hence, it is

possible that the reduction in macrophage proliferation could be due to

other type of faradic by‐products, which have not been characterized yet.

4.2 | Potential electrically stimulated osteogenesis
mechanism

The RT‐qPCR results have shown the similar changes in mRNA

expression pattern between macrophages and preosteoblast as a

result of ES. Spp1 expression has increased with 1‐hr daily

stimulation, whereas the expression of Bmp2 requires 2 hr of

stimulation daily. It is understood that 2 hr daily are the optimal

stimulation time for this system as it could induce the upregulation of

both Bmp2 and Spp1.

It has been reported that Bmp2 is essential for the early stage of

bone healing, which subsequently enhances differentiation of

osteoprogenitor cells and their migration towards the injury site as

well as bone formation (Knippenberg, Helder, Doulabi, Wuisman, &

Klein‐Nulend, 2006; Rickard, Sullivan, Shenker, Leboy, & Kazhdan,

1994; Tsuji et al., 2006; Wozney, 1992). Likewise, Spp1 was also

found in the early stage of bone healing reportedly secreted by

macrophages (McKee & Nanci, 1996; McKee, Pedraza, & Kaartinen,

2011). This Spp1 could also support the osteogenic differentiation of

osteoprogenitor cells (Chen et al., 2014). However, the upregulation

of Vegfa and Hmgb1 from macrophages were not observed, although

it is suggested earlier in the literature as well as being hypothesized

in this study. This could be due to the large difference between the

H2O2 concentration used in the literature (>100 μM) and those

generated from ES (<10 μM) (M. Cho et al., 2001; Tang et al., 2007).

The expression of Vegf from preosteoblasts may also be dependent

on ES regime. It has been shown that MC3T3‐E1 preosteoblastic cells

expressed higher level of Vegf after being stimulated by biphasic

pulses, which is not observed when stimulated with constant DC in

this study (Kim et al., 2006).

Furthermore, the level of Runx2 expression was not significantly

changed after 3 days of stimulation, which indicates that there was

no change in cellular activities related to the maturation of

preosteoblasts during this period (Komori, 2010). This suggests that

direct ES may not promote osteogenesis by inducing cellular

osteogenic differentiation or osteoblast maturation directly during

the early stage, but rather promote pro‐osteogenic mRNA expres-

sions from macrophages and preosteoblasts. In the case that these

differential mRNA changes have been translated into their associated

proteins, these proteins would then enhance bone regeneration from

the native tissues or cells. It is expected that the upregulation of

Bmp2 and Spp1 expressions would be one of the mechanisms behind

the electrically stimulated osteogenesis.

The upregulation of Bmp2 expression after direct ES is also

consistent with previous in vivo study. It was reported that the

fractured bone tissue expresses Bmp2 after applying direct ES, and

the expression of Vegf was not increased (Fredericks et al., 2007).

Furthermore, Bmp2 expression could also be enhanced by capacitive

ES technique in both in vitro and in vivo (Gan et al., 2004; Griffin

et al., 2013; Z. Y. Wang et al., 2006) as well as inductive ES in vitro

(Bodamyali et al., 1998). It was previously thought that Bmp2 was

produced by osteoblasts as a result of in vivo ES (Griffin & Bayat,

2011). However, it is found that Bmp2 and Spp1 are also expressed

from electrically stimulated mesenchymal stem cells as well as

macrophages observed in this study (Leppik et al., 2018; Mobini et al.,

2016; Mobini, Leppik, Parameswaran, & Barker, 2017).

Interestingly, this study shows that Bmp2 and Spp1 mRNA

expressions are primarily a result of ES, whereas faradic by‐products
have partially contributed to an increase in Spp1 expression from

macrophages, potentially involving 4EPB‐1 translation or nuclear

factor‐κB and AP‐1 transcription (Lyle et al., 2014). Apart from pH

and H2O2, faradic by‐products also include H2 generation, O2

reduction, and any other surrounding molecules generated by redox

F IGURE 8 Messenger RNA (mRNA) expression of J774A.1
macrophages and MC3T3‐E1 preosteoblasts after 3 days of

treatment with 2‐hr electrically stimulated media (ES media).
Error bars represent upper and lower 95% confidence limits (n = 6).
* and # represent p < .05 (unpaired two‐tailed Student’s t test) when
compared with the control (nonstimulated media) and 2‐hr daily
direct ES groups, respectively
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reactions during ES (Bodamyali et al., 1999; Brighton et al., 1975;

Brummer, Mchardy, & Turner, 1977; Merrill, Bikson, & Jefferys,

2005). These changes could affect cellular activities, and they have

not been fully characterized yet. Therefore, we are unable to confirm

whether it was H2O2 alone, or other faradic by‐products, or both,

which triggered this response based on our current results. Despite

the discussion that faradic by‐products could possibly be behind the

upregulation of Bmp2 mRNA expression after ES, we clearly

demonstrate that the increased Bmp2 mRNA expression is more

likely a result of ES than the by‐products (Fredericks et al., 2007; Gan
& Glazer, 2006). It would also be worth investigating further in

details regarding how ES interacted with cells, and whether or not it

is the interaction with voltage‐sensitive ion channels as discussed in

the literature that triggers these mRNA expressions from macro-

phages and preosteoblasts (Balint et al., 2013; Thrivikraman, Boda, &

Basu, 2018).

4.3 | Responses of macrophages to direct ES

Macrophages are well known for triggering inflammatory responses;

however, they could also be beneficial for wound healing and tissue

regeneration depending on their phenotypes. The proinflammatory

phenotype is M1 macrophages and wound‐healing phenotype is M2,

and the differentiation towards these two phenotypes is dependent

on their microenvironment and stimuli (Murray, 2017; Rőszer, 2015;

Y. Zhang et al., 2013). It is understandable that the increased Spp1

mRNA expression from preosteoblasts is the marker for their activity

along the osteoblastic lineage (Rutkovskiy, Stensløkken, & Vaage,

2016). However, Spp1 is also involved in the function, migration, and

differentiation of macrophages (Bruemmer et al., 2003; Lund,

Giachelli, & Scatena, 2009; Nyström, Dunér, & Hultgårdh‐Nilsson,

2007). Hence, the upregulation of Spp1 expression from macro-

phages could have diverse interpretation (Lund et al., 2009). Apart

from its roles in facilitating soft tissue and bone remodeling, Spp1

expression could also be a sign of macrophage maturation and

inflammation, which can lead to the adverse effects on osteogenesis

(Gilbert et al., 2000; Krause et al., 1996; Liaw et al., 1998; Lund et al.,

2009; Ogawa et al., 2005; Rittling et al., 1998; Saleh, Carles‐Carner,
& Bryant, 2018; Zhao et al., 2011).

It is found from this study that direct ES reduced Tnfα mRNA

expression from macrophages, which is a proinflammatory and anti‐
M2 macrophage marker that could be triggered by LPS (Huang et al.,

2012; Murray, 2017). In addition, it has also been shown previously

that the Bmp2 mRNA expression from J774A.1 cells was not from

proinflammatory activities (Champagne, Takebe, Offenbacher, &

Cooper, 2002). Therefore, it is plausible that the increased Spp1

and Bmp2 mRNA expressions after direct ES were not indicative of

the proinflammatory responses. Nonetheless, it could still be asked

whether the status of macrophages remained unchanged or polarized

towards M2 as the recent study has suggested that the increased

Spp1 mRNA expression is also a characteristic of the M2c subtype of

M2 macrophages, including J774A.1 cell lines (Capote et al., 2016).

In addition to the findings from this study, the recent in vivo

study also reports that ES has significantly reduced the inflammation

during bone injury, which is consistent with the conclusion from an

analysis of clinical studies suggesting that ES is effective in reducing

pain and radiographic nonunion‐healing rate (Aleem et al., 2016;

Fonseca et al., 2018). Moreover, the faradic by‐products generated

during direct ES also have potential antibacterial effects which could

be capable of reducing the risk of infection (Asadi & Torkaman,

2014). Hence, it would be worth investigating further on the anti‐
inflammatory effects of ES and to determine whether or not ES could

induce macrophage polarization towards any proregenerative M2

subtypes in future.

4.4 | Further optimization of direct ES system and
the limitations of this study

It is seen from this study that although the majority of cellular

responses are induced by ES, the faradic by‐products also have an

effect on cells. Therefore, further characterization of the ES media

may be requisite to explore the unidentified faradic by‐products
and their effects on cellular activities, such as the radicals present

during the process of H2O2 generation (Kalbacova et al., 2007).

The insulation of the electrodes could be implemented in future to

deconstruct the effects of direct ES and faradic by‐product
generation on cellular activities. At the same time, the current

density near the electrodes needs to be minimized. It was

suggested that the optimal current density for promoting

osteogenesis using platinum electrodes is between 1 and 5 A/m2,

and exceeding this range would result in tissue or cell necrosis

(Spadaro & Becker, 1979). Otherwise, novel techniques could be

developed and implemented to prevent cell penetration into the

invasive region, such as surface modification. The excessive

electrolysis of culture media should also be avoided during the

stimulation as it can cause adverse effects and cytotoxic

complications (Thrivikraman et al., 2018). Moreover, it is worth

investigating the electrically stimulated cells further, in terms of

their protein secretion and interactions with other osteoprogeni-

tor cells, as well as the variation in cellular activities between

tumor‐associated macrophage cell lines used in this study and

primary bone marrow macrophages present at bone injury sites

(Chamberlain, Godek, Gonzalez‐Juarrero, & Grainger, 2009;

Murray, 2017; Saleh et al., 2018). The incorporation of this direct

ES system with conductive scaffolds could also be a promising

approach as the recent studies show that it could have significant

improvement in promoting cell proliferation and/or osteogenic

activities (Hu, Chen, Tsao, & Cheng, 2019; J. Y. Zhang, Li, Kang, &

Neoh, 2016; S. Zhu et al., 2017).

5 | CONCLUSION

ES could promote bone regeneration by inducing Bmp2 and Spp1

mRNA expressions from macrophages and preosteoblasts.
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Preosteoblasts did not respond to faradic by‐products in terms of

Bmp2 and Spp1 mRNA expressions, whereas macrophages re-

sponded by increasing their Spp1 expression. We demonstrated that

the roles of faradic by‐products are not dominant, and the by‐
products alone would be less effective in promoting bone formation

without the presence of ES. The findings from this study also imply

that cellular responses from preosteoblasts and macrophages to ES

are predominantly triggered by the mechanism involving electric

field, potential, and/or current. On the contrary, Vegfa and Hmgb1

mRNA expressions from both types of cells and Runx2 expression

from preosteoblasts are not affected by the ES regime used in this

study. In addition, we showed that this ES system may need further

optimization to reduce the current density near the electrodes, which

locally impairs cell viability and proliferation.
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