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a b s t r a c t 

Vision-based tracking in an important component for building computer assisted interventions in min- 

imally invasive surgery as it facilitates estimation of motion for instruments and anatomical targets. 

Tracking-by-detection algorithms are widely used for visual tracking, where the problem is treated as a 

classification task and a tracking target appearance model is updated over time using online learning. In 

challenging conditions, like surgical scenes, where tracking targets deform and vary in scale, the update 

step is prone to include background information in model appearance or to lack the ability to estimate 

change of scale, which degrades the performance of classifier. In this paper, we propose a Patch-based 

Adaptive Weighting with Segmentation and Scale (PAWSS) tracking framework that tackles both scale 

and background problems. A simple but effective colour-based segmentation model is used to suppress 

background information and multi-scale samples are extracted to enrich the training pool, which allows 

the tracker to handle both incremental and abrupt scale variations between frames. Experimentally, we 

evaluate our approach on Online Tracking Benchmark (OTB) dataset and Visual Object Tracking (VOT) 

challenge datasets, showing that our approach outperforms recent state-of-the-art trackers, and it espe- 

cially improves successful rate score on OTB dataset, while on VOT datasets, PAWSS ranks among the top 

trackers while operating at real-time frame rates. Focusing on the application of PAWSS to surgical scenes, 

we evaluate on MICCAI 2015 challenge instrument tracking challenge and in vivo datasets, showing that 

our approach performs the best among all submitted methods and also has promising performance on in 

vivo surgical instrument tracking. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Minimally invasive surgery (MIS) relies on endoscopic and la-

paroscopic video cameras to provide the surgeon with vision in-

side the body. Developing computer assistance for such procedures

with multi-modal image overlays, robotics or novel imaging re-

quires tracking of a variety of structures within the surgical site

to estimate their motion and update their position. Visual tracking

in an appealing approach for this task because it relies only on the
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xisting camera and it provides information within the surgeon’s

eference view. But visual tracking in surgical scenes involves sig-

ificant challenges, especially for long term targets. Several frame

amples are displayed in Fig. 1 . Take the surgical instrument as a

racking target, it may disappear from the scene or be occluded

y tissue via manipulation, also its appearance may significantly

hanges due to image blurring, bleeding, lighting and scale varia-

ions. 

The key components of a successful tracking algorithm includes

he target representation and how to update the representation

ver time. In this paper, we incorporate a Patch-based Adaptive

eighting with Segmentation and Scale (PAWSS) into tracking-

y-detection, resulting a pragmatic framework, focusing on sim-

le but effective algorithms. Given the initial position (bounding

ox) of a target, PAWSS divides the target into non-overlapping
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Fig. 1. Challenges of object tracking in surgical scenes, including image blur, tissue occlusion, dramatic scale and lighting variations. 

p  

t  

b  

s  

s  

t  

m  

p  

m  

h  

m  

P  

t

2

o  

o  

l  

(  

n  

a  

f  

f  

o  

t  

b  

c  

T  

t  

p  

d  

2  

t

h  

2  

b  

t  

r  

b  

i  

g  

c  

t  

t  

w  

l  

S  

R  

t  

b  

a  

l  

g  

f  

d  

c  

a  

G  

s  

f  

s  

a

 

i  

t  

C  

T  

a  

n  

t  

s  

P  

a  

s  

i  

t  

d  

p  

T  

t  

fi  

s  

w  

s  

s  

2  

r  

l  

k  

3

3

 

r  

s  

p  

p  

n  

g  

w  

e  

t  

d

�  

w

atches. By using a simple but effective colour-based segmenta-

ion model, each patch is assigned with a weight which decreases

ackground information influences within the bounding box. Be-

ides, a two-level sampling strategy is introduced to extract multi-

cale samples, which enables the tracker to handle both incremen-

al and abrupt scale variations between frames. To reference our

ethod to general tracking approaches, we evaluated and com-

ared it with state-of-the-art methods on Online Tracking Bench-

ark (OTB) ( Wu et al., 2013 ) and VOT challenge datasets. To show

ow it performs for surgical scenes, we used MICCAI 2015 instru-

ent tracking datasets with promising results demonstrating that

AWSS is the best performing tracker, which also works in real-

ime without any specific code optimisation. 

. Related work 

Tracking-by-detection: Recently, inspired by the success 

f object detection algorithms, tracking-by-detection meth-

ds has been taking inspiration from advances in machine

earning, such as structured output support vector machines

SVM) ( Tsochantaridis et al., 2005 ), boosting ( Avidan, 2007; Grab-

er et al., 2006 ), Gaussian process regression ( Gao et al., 2014 )

nd deep learning ( Wang et al., 2015 ). Tracking-by-detection

rameworks build a classifier to distinguish the tracked object

rom background and update this classifier with new positive

bservations as well as with negative information. It is inevitable

hat falsely labelled samples will appear and degrade the model

ecause wrongly labelled samples of background confuse the

lassifier ultimately leading to drift or failure. Structured Output

racking with Kernels (Struck) ( Hare et al., 2011 ) adopts a struc-

ured output SVM and circumvents the traditional collection of

ositive and negative samples by integrating the labelling proce-

ure within the learning process. In recent benchmark ( Wu et al.,

013 ) Struck has shown excellent tracking performance compared

o prior work. 

Patch-based Representations: Recently patch-wise descriptors 

ave been exploited to represent the object appearance ( Kim et al.,

015; Chen et al., 2013; Zhang and van der Maaten, 2014 ). A

ounding box is divided into cells or patches and low-level fea-

ures are used to construct features of these patches, which rep-

esent local structural information. A major challenge for tracking-

y-detection methods is that the bounding box usually not only

ncludes the object but also some background information. Back-

round changes differently to the moving object and causes inac-

urate information transfer through the model update. To address

his problem, different methods have been proposed to decrease

he effects of background information such as assigning different

eights based on the pixel spatial location or appearance simi-

arity ( Comaniciu et al., 2003; He et al., 2013; Lee et al., 2014 ).

OWP ( Kim et al., 2015 ) exploits this concept by incorporating

andom Walk with Restart (RWR) simulations to assign weights

o patches. RWR simulations exploit the similarity between neigh-

ouring patches and their relevance or self-similarity to the object

ppearance. Stationary distributions can be obtained to represent

ikelihoods that each patch belongs to either foreground or back-

round. Patch weights are designed according to likelihoods so that
oreground patches would have relatively larger weights. We intro-

uce a different weighting method to patches by incorporating a

olour-based segmentation model. Previous papers have integrated

 segmentation step into tracking ( Godec et al., 2013; Duffner and

arcia, 2013 ), but these methods are sensitive to segmentation re-

ults since they directly track the segmented object patches free

rom the constraints of bounding box. By applying a segmentation

tep to patch weights instead we manage to enhance performance

nd avoid this sensitivity. 

Surgical instrument tracking: For surgical instrument tracking,

nformation from different sources has been used for instrument

racking. Typically colour, gradient or texture ( Uecker et al., 1995;

ano et al., 2008 ) is employed to represent the appearance model.

he work ( Reiter and Allen, 2010 ) proposed to learn the instrument

ppearance online by combining multiple features, and explores

ew areas as the instrument moves in or out of view. To make fea-

ure of the instrument more distinctive, artificial markers were de-

igned and mounted to the instrument ( Wei et al., 1997; Zhang and

ayandeh, 2002; Tonet et al., 2007; Zhang et al., 2017 ). Although

ttaching markers on instrument makes tracking more robust and

imple, the idea of modifying instruments is usually avoided since

t changes the surgical procedure. Also, artificial markers may in-

roduce inconvenience, such as biological hazard or retrofittable

ifficulty. Instrument shape can be simplified or explored using a

rior model to confine the search space ( Pezzementi et al., 2009 ).

o classify the target from background, a random forest was learnt

o classify instrument in pixel-wise fashion, then the binary classi-

cation output was used to estimate the pose of a prior 3D in-

trument model through optimization within a level set frame-

ork ( Allan et al., 2013 ). Then, it was improved by combining con-

traints from feature points, temporal motion model with stereo

etup ( Allan et al., 2014 ). Multi-part appearance model ( Allan et al.,

015 ) and articulated degrees-of-freedom ( Allan et al., 2018 ) of

obotic instruments can be used to align the prior model with

ow level optical flow constraints. In addition, cues such as robotic

inematics ( Ye et al., 2016 ) can also be used as external constraints.

. Proposed algorithm 

.1. Patch-based descriptor 

Given the location (bounding box �) of the object, to rep-

esent the object appearance, we used patch-based descriptor

hown in Fig. 2 . � is evenly decomposed into n ϕ non-overlapping

atches { ϕ i } n ϕ i =1 
. Low-level feature vector �

 φ is extracted for each

atch. Patch-based descriptor of � can be constructed by concate-

ating features of all the patches in their spatial order. Since back-

round information is potentially included in the bounding box,

e incorporate an global probabilistic segmentation model ( Collins

t al., 2005; Duffner and Garcia, 2013 ) to assign weights { w i } n ϕ i =1 
to

he patches based on their colour appearance, resulting a weighted

escriptor: 

�
 

� = [ w 1 
�
 φ1 , . . . , w n ϕ 

�
 φn ϕ ] (1)

here w is the weight of the feature � φ of the i -th patch ϕ . 
i i i 
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Fig. 2. Patch-based descriptor � �� . Given a bounding box �, it is equally decomposed into n ϕ patches { ϕ i } n ϕ i =1 
. For the i-th patch ϕ i , low-level feature vector φ i is extracted, 

and is assigned with a weight w i . Then, the descriptor �
 �� is constructed by concatenating features of all patches, weighted by patch weights. Note that example patch 

weights are shown by the highlighted bounding box. Warmer colour indicates higher weight value. 
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3.2. Probabilistic segmentation model for patch weighting 

The global segmentation model is based on colour histogram by

using a recursive Bayesian formulation to discriminate foreground

and background. Let y 1: t be the colour observation of a pixel from

frame 1 to t, c be the class of a pixel. In our application, a pixel is

classified as foreground ( c = 1 ) or background ( c = 0 ) by its colour

observation. The foreground probability distribution p(c t = 1 | y 1: t )

at frame t is based on tracked results from previous frames 

p(c t = 1 | y 1: t ) = Z −1 p(y t | c t = 1) ∑ 

c t−1 

p(c t = 1 | c t−1 ) p(c t−1 | y 1: t−1 ) 

p(c t = 1 | c t−1 = 1) = 0 . 6 p(c t = 1 | c t−1 = 0) = 0 . 4 (2)

where c t is the class of a pixel at frame t : 0 for background, and

1 for foreground, and Z is a normalization constant, which can

be ignored in practice. The transition probabilities for foreground

and background p(c t | c t−1 ) where c ∈ {0, 1} are empirical choices

as in Duffner and Garcia (2013) . Foreground histogram p(y t | c t = 1)

and background histogram p(y t | c t = 0) are initialized from all the

pixels inside the bounding box and from those which are sur-

rounding the bounding box (with some margin between) in the

first frame, respectively. For the following frames, the colour his-

togram distributions are updated using tracked result. 

p(y t | c t = 1) = δp(y t | y t ∈ �t )) + (1 − δ) p(y t−1 | c t−1 = 1) (3)

where 0 ≤ δ ≤ 1 is the model update factor. �t represents tracked

bounding box in frame t . Instead of treating every pixel equal, the

weighting of a pixel also depends on the patch where it is located.

Patches with higher weight are more likely to contain object pixels

and vice versa. So the colour histogram update for colour observa-

tion y t of current frame t is defined as 

p(y t | y t ∈ �t ) = 

∑ n ϕ 
i =1 

w i,t−1 N y t ∈ ϕ i,t ∑ n ϕ 
i =1 

w i,t−1 

∑ 

x t 
N x t ∈ ϕ i,t 

(4)

where N y t ∈ ϕ i,t represents the number of pixels with colour ob-

servation y t in the i -th patch ϕi,t in frame t , and x t represents

any colour observation in frame t , so the denominator means the

weighted number of all the pixel colour observations in the bound-

ing box �t . 

The weights w i , 1 for all the patches are initialized as 1 at

the first frame, and then are updated based on the segmentation

model 

w i,t = δw̄ i,t + (1 − δ) w i,t−1 (5)

w̄ i,t = 

� i,t 

max 1 ≤i ≤n ϕ � i,t 

(6)

� i,t = 

∑ 

x t 
p(x t | c t = 1) N x t ∈ ϕ i,t ∑ 

x N x t ∈ ϕ i,t 
(7)
t m  
here ϖi,t denotes the average foreground probability of all pix-

ls in the patch ϕi,t in the current frame t , it is normalized so the

ighest weight update w̄ i,t equals 1. The patch weight w i, t is then

pdated gradually over time. We omit background probability dis-

ribution p(c t = 0 | y 1: t ) since it is similar to Eq. (2) . 

Unlike the weighting strategy in other patch-based meth-

ds ( Chen et al., 2013; Kim et al., 2015 ) by analysing the similar-

ties between neighbouring patches, our patch weighting method

s simple and straightforward to implement, the weight update

or each patch is independent from each other, and only relies on

he colour histogram based segmentation model. We show exam-

les of the patch weight development in Fig. 3 . The patch weight

humbnails are displayed on the top corner of each frame, which

ndicate the objectness in the bounding box and also reflect the

bject deformation over time. Since we update the segmentation

odel based on previous patch weights, and in turn the segmen-

ation model facilitates updating the weight of all patches. This co-

raining strategy enhances the weight contrast between foreground

nd occluded patches, which suppresses background information

fficiently. 

.3. Two-level sampling for scale estimation 

The tracked object often undergoes complicated transforma-

ions during tracking, for example, deformation, scale variations,

cclusion, etc. Fixed-scale bounding box estimation is ill-equipped

o capture the accurate extents of the object, which would degrade

he classifier performance by providing samples which are either

artial cropped or include background information. 

When locating the object in a new frame, all the bounding box

andidates are collected within a search window, and the bound-

ng box with the maximum classification score is selected to up-

ate the object location. Rather than making a suboptimal decision

y choosing from fixed-scale samples, we augment training sam-

le pool with multi-scale candidates, which is referred as two-level

ampling strategy (see Fig. 4 ). On the first level, all the bounding

ox samples are extracted with fixed-scale s t−1 (the object scale

n frame t − 1 ). The search window is centered at the �t−1 with

 height/width of r w 

, then the weighted patch-based descriptor of

ll candidates { �′ } are fed into the classifier, and we select the

ounding box �′ 
t with the maximum classification score not as

he final decision, but as the search center for our second level.

fter first level, the rough location of the object is narrowed to a

maller area. We then set a smaller search window with search

eight/width of r s , centring at the bounding box �′ 
t selected in the

rst level, and we construct multi-scale candidates { �} within the

earch window. All the samples are evaluated by the classifier, and

e select the bounding box �t of the sample with the maximum

core as the final location of the object. 

Obviously, the scales of augmented samples are critical. We

onsider two complementary strategies that handle both incre-

ental and abrupt scale variations. Firstly, to deal with relatively
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Fig. 3. Example patch weights are shown for the highlighted bounding box displayed in the top corner of the image. Warmer colour indicates higher foreground possibility. 
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mall scale changes between frames, we build a scale set S r 

 r = { s | s = λm s t−1 } m ∈ 

[ 
−n r − 1 

2 

, . . . , 
n r − 1 

2 

] 
(8)

here λ is a fixed value which is slightly larger than 1.0. It is set

o accurately search the scale change. n r is the scale number in the

cale set S r . s t−1 is the scale of the object in frame t − 1 compared

ith the initial bounding box in the first frame. Considering object

cale usually does not vary too much between frames, scale set S r 
ncludes scales which are close to the previous frame. 

Secondly, when object undergoes abrupt scale changes between

rames, scale set S r is unable to keep pace with the speed of the

cale variations. To address this problem, we build an additional

cale set S p by incorporating Lucas–Kanade tracker (KLT) ( Bouguet,
001; Shi and Tomasi, 1994 ), which helps us estimate the scale

hange explicitly. We randomly pick n pt points from each patch in

he bounding box �t−1 of frame t − 1 , and tracked all these points

n the next frame t . With sufficient well-tracked points, we can es-

imate the scale variation between frames by comparing the dis-

ance changes of the tracked point pairs. 

We illustrated the scale estimation by KLT tracker in Fig. 5 . Let

p i 
t−1 

denotes one picked point in the previous frame t − 1 and its

atched point p i t in the current frame t . We compute the dis-

ance d 
i j 
t−1 

between point-pair (p i 
t−1 

, p 
j 
t−1 

) , and the distance d 
i j 
t 

etween the matched point-pair (p i t , p 
j 
t ) . For all the matched point

airs, we compute the distance ratio between the two frames 

 = { s | s = d i j 
t /d i j 

t−1 
} i � = j (9)
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Fig. 4. Two-level sampling strategy workflow. 

Fig. 5. Illustration of scale estimation by using the KLT tracker. Random points located on the patches are picked in frame t − 1 , and are tracked in the next frame t by the 

KLT tracker, the distance ratio of point pairs ( p i , p j ) between two frames are used for scale estimation. We use 7 × 7 patch grids, resulting n ϕ= 49 in the illustration. 
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where V is the set with all the distance ratios. We sort V by value

and pick the median element s p = V sorted ( 
n 
2 ) as the potential scale

change of the object. To make scale estimation more robust, we

uniformly sample the scales ranging between [1, s p ] or [ s p , 1] to

construct the scale set S p . 

S p = 

{
s | s = 1 + i 

s p − 1 

n p − 1 

}
0 ≤ i < n p (10)

where n p is the scale number in the scale set S p . When the ob-

ject is out-of-view, occluded or abruptly deforms, the ratio of well-

tracked points will be low. In that case, the estimation from the

KLT tracker will be unreliable. In our implementation, when the

ratio is lower than 0.5, we then set s p = 1 , therefore the scale set

S p will only add samples with the previous scale into the candi-

date pool. Only when there are enough points well tracked, the

estimation from the KLT tracker will be trusted. We fuse these two

complementary scale sets S r and S p into S f = S r ∪ S p to enrich our

sample candidate pool. To show the effectiveness, we evaluate our

proposed tracker in Section 4 with or without scale set S p esti-

mated by the KLT tracker. 

3.4. Tracking framework 

PAWSS can be combined with any tracking-by-detection

method. We show the pipeline of the whole framework in Fig. 6 . It

includes two phases: evaluation and learning . The evaluation phase

is to find the target in a new frame. Given the bounding box �t−1 
n the previous frame t − 1 , sample candidates are extracted in a

earch window, which centers at �t−1 in the current frame t , un-

ike other tracking-by-detection approaches, we adapt a two-level

ampling strategy for accurate scale estimation ( Section 3.3 ). Via

he colour-based segmentation model, weights of all patches are

pdated as in Section 3.2 , and the descriptors of all samples are

omputed via patch weighting. Descriptors of all samples are fed

nto classifier and the one with the highest output score is picked

s the best sample. The location �t of the best sample shows

here the target is in the current frame at time t . Between frames,

he target appearance changes due to deformation, occlusions, light

nd scale variations, therefore, the classifier and the segmentation

odel needs to be learnt online to keep up with the changes. The

est sample among all samples represents the most similar one

ompared to the target. For one thing, pixel colour distribution of

he best sample is used to update the segmentation model. For an-

ther, samples are extracted around the best sample in order to

ollect foreground and background information. Descriptors of all

amples are computed and used to train the classifier online to

etter discriminate the target from neighbouring background. The

rocedure starts again for the next frame. 

In our implementation, we incorporate PAWSS into

truck Hare et al. (2011) . The algorithm relies on an online

tructured output SVM learning framework which integrates

earning and tracking. It directly predicts the location displace-

ent between frame, avoiding the heuristic intermediate step for

ssigning binary labels to training samples, which achieves top

erformance in OTB dataset Wu et al. (2013) . 
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Fig. 6. Tracking framework. Given the target location �t−1 in the previous frame at time t − 1 , the framework is to predict the target location �t in the current frame at 

time t . The framework includes evaluation and learning phases. In evaluation phase, multi-scale samples are extracted via two-level sampling strategy, and then are fed into 

the classifier to pick the one with the highest score. The location of the sample is considered as the new location �t . The sample is also used for updating the segmentation 

model and the classifier in the learning phase. 

Table 1 

Parameter setting of the framework in all experiments. 

Number of patches n ϕ 7 × 7 = 49 

Base of scale estimation λ 1.003 

Number of scales for small scale changes n r 11 

Number of scales for abrupt scale changes n p 11 

Updating factor of classifier η 0.3 

Updating factor of segmentation model δ 0.1 
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. Results 

Implementation details: Our algorithm is publicly available on-

ine 1 and is implemented in C++ and performs at about 7 frames 

er second with an i7-2.5 GHz CPU without any optimisation. We

isted the parameter setting in Table 1 . To illustrate the generaliza-

ion of our proposed framework, we use the same parameter set-

ing through all experiments. For structured output SVM, we are

sing a linear kernel and the parameters are empirically set as δ =
 . 1 in Eqs. (3) and (5) , λ = 1 . 003 in Eq. (8) , the scale numbers of

he scale set are n r = n p = 11 . The number of extracted points from

ach patch n pt = 5 . The updating threshold for the classifier is set

s η = 0 . 3 . For each sequence, we scale a frame to make sure the

inimum side length of the bounding box is larger than 32 pixels,

nd the search window r w 

is fixed to (W + H) / 2 , where W and H

epresents the width and height of the scaled bounding box, re-

pectively, and the search window r s is fixed to 5 pixels. We tested

ifferent low-level feature combinations in Section 4.1 and found

hat the combination of HSV colour and gradient features (HSV+G)

chieves the best results. The patch number affects the tracking

erformance, too many patches increase the computation and too

ess patches do not robustly reflect the local appearance of the ob-

ect. We tested different patch numbers, and selected n ϕ = 49 to

trike a performance balance. 

.1. Online Tracking Benchmark (OTB) 

OTB dataset ( Wu et al., 2013 ) includes 50 sequences tagged

ith 11 attributes, which represent the challenging aspects for
1 https://github.com/surgical-vision/PAWSS . 

t

 

u  
racking such as illumination variation, occlusion, deformation

t al. The tracking performance is quantitatively evaluated us-

ng both precision rate (PR) and success rate (SR), as defined

n ( Wu et al., 2013 ). PR/SR scores are depicted using precision plot

nd success plot, respectively. The precision plot shows the per-

entage of frames whose tracked centre is within certain Euclidean

istance (20 pixels) from the centre of the ground truth. Success

lot computes the percentage of frames whose intersection over

nion overlap with the ground truth annotation is within a thresh-

ld varying between 0 and 1, and the area under curve (AUC) is

sed for SR score. To evaluate the effectiveness of incorporating

he scale set proposed by the KLT tracker, we provide two versions

f our tracker as PAWSSa and PAWSSb: PAWSSa only includes scale

et S r , while PAWSSb includes both S r and S p for scale estimation. 

Comparison using different features: Selecting right features

o describe the object appearance plays a critical role in tracking.

he most desirable feature property is its uniqueness so that the

bject can be distinguished from background. Raw intensities or

olour features are usually used for histogram-based appearance

epresentations, while edge or gradient information are less sensi-

ive to illumination changes. Generally, many tracking approaches

se a combination of these diverse features to represent the ob-

ect ( Hare et al., 2011; Grabner et al., 2006; Li et al., 2013 ). To

valuate the performance of our proposed approach, we tested dif-

erent low-level features such as HSV colour, RGB colour, the com-

ination of colour and gradient features (HSV+G, RGB+G) for con-

tructing the descriptor in Table 5.1. The RGB histogram is 24-

imensional with 8 bins for each channel, and the HSV colour

istogram is 20-dimensional including 8 bins for H and S chan-

els respectively and 4 separate bins for V channel. The gradi-

nt histogram is 16-dimensional signed gradients ranging from

 to 360 ◦. We also compared our tracker PAWSSa and PAWSSb

ith Struck ( Hare et al., 2011 ) and SOWP ( Kim et al., 2015 ). From

able 2 , we observe: Augmenting colour with gradient histogram

mproves the tracking performance by providing diverse structural

nformation of the object. In our experiments, the descriptor com-

rising combination of HSV colour and gradient features achieves

he best results, we use this setting in the following evaluation. 

Comparison with state-of-the-art trackers: We use the eval-

ation toolkit provided by Wu et al. (2013) to generate the

https://github.com/surgical-vision/PAWSS
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Fig. 7. Comparison of precision and success plots on OTB with the top 10 trackers; PR scores are illustrated with the threshold at 20 pixels and SR scores with the average 

overlap (AUC) in the legend. 

Table 2 

The performance of the proposed algorithm 

compared with different low-level features. 

PAWSSa and PAWSSb tracker represents our 

tracker without and with the KLT tracker, re- 

spectively. 

PAWSSa PAWSSb 

HSV 0.731 / 0.528 0.742 / 0.545 

RGB 0.764 / 0.552 0.749 / 0.544 

RGB + G 0.838 / 0.605 0.840 / 0.607 

HSV + G 0.889 / 0.635 0.897 / 0.649 
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which means it is more robust than the other trackers. 

2 http://www.votchallenge.net/ . 
precision and success plots for the one pass evaluation (OPE) of

the top 10 algorithms in Fig. 7 . The toolkit includes 29 benchmark

trackers, besides that we also include SOWP tracker. It is shown

that PAWSSb achieves the best PR/SR scores among all the trackers.

For a more detailed evaluation, we also compared our tracker with

state-of-the-art trackers in Table 3 . Notice that in all the attribute

field, our tracker achieves either the best or the second best PR/SR

scores. Our tracker achieves 36.7% gain in PR and 36.9% gain in SR

over Struck ( Hare et al., 2011 ). By using a simple patch weighting

strategy and training with adaptive scale samples, the performance

shows that our tracker provides comparable PR scores, and higher

SR score compared with SOWP ( Kim et al., 2015 ). PAWSSa tracker

improves SR score by 2.6% considering gradually small changes be-

tween frames, PAWSSb improves SR score by 4.8% by incorporating

scales estimated by the external KLT tracker. Specifically, when the

object undergoes scare variation PAWSS achieves a performance

gain of 10.3% in SR over SOWP. 

We show tracking results in Figs. 8 and 9 with the top track-

ers including TLD ( Kalal et al., 2012 ), SCM ( Zhong et al., 2012 ),

Struck ( Hare et al., 2011 ), SOWP ( Kim et al., 2015 ) and the pro-

posed PAWSSa and PAWSSb. In Fig. 8 , five challenging sequences

are selected from the benchmark dataset, which include illumi-

nation variation, scale variations, deformation, occlusion or back-

ground clusters. PAWSS can adapt when the object deforms in a

complicated scene and track the target accurately. In Fig. 9 , we se-

lect five representative sequences with different scale variations.

PAWSS can well track the object with scale variation, while other

trackers drift away. The results show that our proposed tracking

framework PAWSS can track the object robustly through sequence
y using the weighting strategy to suppress background informa-

ion within the bounding box, and also by incorporating scale esti-

ation allowing the classifier to train with adaptive scale samples.

lease see the supplementary video for more sequence tracking

esults. 

.2. Visual Object Tracking (VOT) challenges 

For completeness, we also validated our algorithm on VOT2014

25 sequences) and VOT2015 (60 sequences) datasets. VOT datasets

se ranking-based evaluation methodology: Accuracy and robust-

ess. Similar to SR rate for OTB dataset, the accuracy measures

verlap of the predicted result and the ground truth bounding

ox, while the robustness measures how many times the tracker

ails during tracking. A failure is indicated whenever the tracker

oses the target object which means the overlap becomes zero, and

t will be re-initialized afterwards. All the trackers are evaluated,

ompared and ranked based on with respect to each measure sep-

rately using the official evaluation toolkit from the challenge. 2 

VOT2014 VOT2014 challenge includes two experiments: Base-

ine experiment and region-noise experiment. In baseline experi-

ent, a tracker runs on all the sequences by initializing with the

round truth bounding box on the first frame; while in the region-

oise experiment, the tracker is initialized with a random noisy

ounding box with the perturbation in the 10% of the ground truth

ounding box size. ( Kristan et al., 2015b ). The ranking plots with

8 trackers are shown in Fig. 10 for comparing PAWSS with the

op three trackers: DSST ( Danelljan et al., 2014 ), SAMF ( Li and

hu, 2014 ), KCF ( Henriques et al., 2015 ) in Table 4 . For both the

xperiments our PAWSS has lower accuracy score 0.58/0.55, but

ess failures 0.88/0.78 and have a second average rank. But con-

idering the tracking process of the experiments: once a failure is

etected, the tracker will be re-initialized, to eliminate the effect of

chieving higher accuracy score by more re-initialization steps, we

erformed experiments without the re-initialization, also shown in

able 4 . The results show that PAWSS has the highest accuracy

core 0.51/0.48 among all the trackers without re-initialization,

http://www.votchallenge.net/
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Table 3 

Comparison of PR/SR score with state-of-the-art trackers including Struck ( Hare et al., 2011 ), DSST ( Danelljan et al., 2014 ), SAMF ( Li and Zhu, 2014 ), 

FCNT ( Wang et al., 2015 ) and SOWP ( Kim et al., 2015 ) in the OPE based on the 11 sequence attributes: illumination variation (IV), scale variation (SV), occlusion 

(OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV), background cluttered (BC) 

and low resolution (LR). The best and the second best results are shown in red and blue colours respectively. 

Table 4 

The Accuracy (Acc.) and Robustness (Rob.) results of VOT2014 baseline and region-noise experiments with and without-re-initialization 

compared with the top trackers DSST ( Danelljan et al., 2014 ), SAMF ( Li and Zhu, 2014 ) and KCF ( Henriques et al., 2015 ). The best and the 

second best results are shown in red and blue colours respectively. 

Fig. 8. Comparison of the tracking results of our proposed tracker PAWSS with SOWP ( Kim et al., 2015 ) and three conventional trackers: TLD ( Kalal et al., 2012 ), 

SCM ( Zhong et al., 2012 ) and Struck ( Hare et al., 2011 ) on some especially challenging sequences in the benchmark. 
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Fig. 9. Comparison of the tracking results of our proposed tracker PAWSS with SOWP ( Kim et al., 2015 ) and three conventional trackers: TLD ( Kalal et al., 2012 ), 

SCM ( Zhong et al., 2012 ) and Struck ( Hare et al., 2011 ) on some sequences with scale variations in the benchmark. 

Fig. 10. The accuracy-robustness score and ranking plots with respect to the baseline and region-noise experiments of VOT2014 dataset. Tracker is better if its result is closer 

to the top-right corner of the plot. 
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VOT2015 Finally, we evaluated and compared PAWSS with 62

trackers on VOT2015 dataset. VOT2015 challenge only includes

baseline experiment, and the ranking plots are shown in Fig. 11 .

In VOT2013 and VOT2014, average ranking measure is used to de-

termine the performance of the trackers. Although average rank-

ing has taken both accuracy and robustness measure into consid-

eration, it is not theoretically representative as a concrete tracking

performance. In VOT2015 ( Kristan et al., 2015a ), expected average

overlap measure is introduced which combines both per-frame ac-

curacies and failures in a principled manner. Compared with the

average rank, expected overlap has a more clear practical interpre-

tation. 
We list the score / rank and expected overlap of the top

rackers from VOT2015 ( Kristan et al., 2015a ) which are either

uite robust or accurate, the above VOT2014 top three track-

rs DSST ( Danelljan et al., 2014 ), SAMF ( Li and Zhu, 2014 ),

CF ( Henriques et al., 2015 ), 3 and the baseline NCC tracker in

able 5 and also shown in the expected average overlap plot

ig. 11 . It can be shown that the average rank is not always

onsistent with the expected overlap. According to the paper

 Kristan et al., 2015a ), a VOT2015 published sota bound criteria (0.2)
This is an improved version of the original tracker. 
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Fig. 11. The accuracy-robustness ranking plots and the expected overlap score ranking plot of VOT2015 dataset. Tracker is better if its result is closer to the top-right corner 

of the plot. The published sota bound is established based on top trackers in recent years. Any tracker with performance over the boundary is considered as a state-of-the-art 

tracker. 

Table 5 

VOT2015 Accuracy (Acc.), Robustness (Rob.), Score/Ranking and expected overlap results from the 

top trackers of VOT2014, VOT2015 and the baseline tracker. The NCC tracker is VOT2015 baseline 

tracker. Trackers marked with † are submitted to VOT2015 without publication. 

Baseline 

Avg 

rank 

Exp 

overlap 
Acc. Rob. 

Score Rank Failure Rank 

MDNet Nam and Han (2015) 0.59 2.03 0.77 5.68 3.86 0.378 

DeepSRDCF Danelljan et al. (2015a) 0.56 5.92 1.00 8.38 7.15 0.318 

EBT Wang and Yeung (2014) 0.45 15.48 0.81 7.23 11.36 0.313 

SRDCT Danelljan et al. (2015b) 0.55 5.25 1.18 9.83 7.54 0.288 

LDP Lukeži ̌c et al. (2016) 0.49 12.08 1.30 13.07 12.58 0.279 

sPST Hua et al. (2015) 0.54 6.57 1.42 12.57 9.57 0.277 

PAWSSb 0.53 7.75 1.28 11.22 9.49 0.266 

NSAMF † 0.53 7.02 1.45 10.1 8.56 0.254 

RAJSSC Zhang et al. (2015) 0.57 4.23 1.75 13.87 9.05 0.242 

RobStruck † 0.49 11.45 1.58 14.82 13.14 0.220 

DSST Danelljan et al. (2014) 0.53 8.05 2.72 26.02 17.04 0.172 

SAMF Li and Zhu (2014) 0.51 7.98 2.08 18.08 13.03 0.202 

KCF Henriques et al. (2015) 0.47 12.83 2.43 21.85 17.34 0.171 

NCC ∗ 0.48 12.47 8.18 50.33 31.4 0.080 
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s established by averaging the tracker performance published in

014/2015 from top computer vision conferences and journals. The

racker will be considered as a state-of-the-art tracker with per-

ormance over this boundary criteria. Our tracker PAWSS is well

bove the criteria, and is among those top trackers (ranks the 7-th,

utperforming 54 trackers), also PAWSS achieves better than any

f VOT2014 top trackers on VOT2015 dataset. 

.3. Surgical instrument tracking 

PAWSS is a general tracking framework, we also want to

valuate its performance on both ex vivo and in vivo surgical

nstrument sequences. In the Endoscopic vision MICCAI2015 Chal-

enge., 4 one of the sub-challenge focuses on comparing differ-
4 https://endovissub- instrument.grand- challenge.org/ . 

r

T  
nt vision-based methods for tracking conventional and artic-

lated laparoscopic instruments in robotic surgery. The dataset

as not released ground truth for test data. The official eval-

ation categorized conventional laparoscopic instrument test set

ccording to the challenging factors including bleeding (C blood ),

moke (C smoke ), instrument occlusions (C occlusion ), multiple instru-

ents (C multiple ) and surgical objects such as meshes and clips

C objects ). And the robotic laparoscopic instrument dataset in-

ludes sequences with multiple instruments (C multiple ). For evalu-

ting the tracking performance, Euclidean distance of the centre

oint between the ground truth and the tracking result of train-

ng data is computed and compared separately for these chal-

enging factors. We submitted our proposed method to the chal-

enge, and obtained the performance comparison from the official

eport. 

EndoVis Articulated Robotic Laparoscopic instrument dataset 

he articulated instrument dataset is from ex vivo interventions,

https://endovissub-instrument.grand-challenge.org/
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Fig. 12. (a) Example frame from each sequence of EndoVis articulated surgical instrument dataset; (b) The original annotation includes the position of the tracked point, in 

our annotation, we relabeled the tracked point and also added new annotations for the Head and Shaft points. 

Fig. 13. Result example frames from each sequence of the EndoVis articulated robotic surgical instrument dataset. The result bounding box and centre point is represented 

in cyan colour, and the ground truth centre point is represented in green colour. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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and the sequences are collected using the da Vinci ® (Intuitive

Surgical Inc., CA) system with porcine tissue samples. Example

frames from each sequence are shown in Fig. 12 (a). The dataset is

divided into training and test data. Training data contains four 45

seconds surgery video sequences. For each instrument, the tracked

point of the instrument is defined as the intersection between the

instrument axis and the border between the shaft and the ma-

nipulator. The annotation includes pixel coordinates of the tracked

point ( Fig. 12 (b)). Test data is composed of 15 additional seconds

video from each of the training sequence, and two additional new

60 s video sequences. 
Original annotation We have summarized the frame number

or each sequence and have shown the accuracy evaluation sepa-

ately in the original annotation section of Table 6 and Fig. 14 Left.

he accuracy is defined as the percentage of tracked frames within

he error threshold. Distance (pixels) is averaged over correctly

racked frames. In Fig. 14 , it shows accuracy under different thresh-

ld. In four train sequences, there are five instruments to be

racked. The average accuracy score for train data is 79.01% for

0 pixel threshold, with a distance error of 8.00 pixels. It is noted

hat the accuracy score (36.55% for 20 pixel threshold) for se-

uence 4 is relatively lower compared with the rest sequences.



X. Du, M. Allan and S. Bodenstedt et al. / Medical Image Analysis 57 (2019) 120–135 131 

Fig. 14. Tracking accuracy of EndoVis Articulated Robotic Surgical Instrument training data under different accuracy threshold with the original and high-quality annotations. 

Fig. 15. Accuracy of EndoVis Articulated Robotic Surgical Instrument training data under different accuracy threshold with high quality annotation. 

Table 6 

Accuracy of EndoVis articulated robotic surgical instrument training data 

for the tracked point. 

Seq 1L Seq 1R Seq 2 Seq 3 Seq 4 Whole 

Original annotation 

In-view (IV) and Out-of-view (OV) Frame Number 

IV 1107 1107 1096 1118 1056 5484 

OV 0 0 29 6 67 102 

Total 1107 1107 1125 1124 1123 5586 

Accuracy ( T hres = 20 px) 

Acc. (%) 85.00 92.86 90.60 88.10 36.55 79.01 

Dist. (px) 7.42 7.07 7.41 9.64 9.26 8.00 

Accuracy ( T hres = 30 px) 

Acc. (%) 99.37 96.93 96.35 95.80 82.67 94.33 

Dist. (px) 9.76 7.80 8.36 10.71 18.07 10.67 

High quality annotation 

In-view (IV) and Out-of-view (OV) frame number 

IV 1107 1107 1099 1105 1066 5484 

OV 0 0 26 19 57 102 

Total 1107 1107 1125 1124 1123 5586 

Accuracy ( T hres = 20 px) 

Acc. (%) 100.0 99.73 98.91 98.28 95.78 98.56 

Dist. (px) 4.89 9.87 3.29 4.31 11.13 6.65 

Accuracy ( T hres = 30 px) 

Acc. (%) 100.0 100.0 99.36 99.46 99.72 99.71 

Dist. (px) 4.89 9.90 3.38 4.56 11.57 6.83 
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s we have summarized, the target is out of view several times

n sequence 4, reaching 67 frames out of 1123 frames. Tracking-

y-detection methods typically cannot handle out-of-view scenario

ithout additional re-detection module. The underlying assump-

ion is that the target is always in frame view, which means When-

ver the target is out of frame, the tracker will gradually drift away.

his explains the low accuracy of the performance, if the thresh-

ld is increased to 30 pixels, the performance has significantly im-

roved, achieving 82.67% for accuracy. 

We show some tracking result examples in Fig. 13 . The tracked

oint and bounding box are shown in cyan colour, with the ground

ruth point shown in green colour. The first column is the first

rame of each sequence. As we can see, the quality of the anno-

ation is not consistent through the whole sequence. On certain

rames, the annotation is drifted and is not labelled where it is

upposed to be. This would certainly affect our performance eval-

ation result. It is also observed that whenever the instrument is

lose to the frame border, the tracker will stick to the border and

ot track the instrument well. 

High quality annotation The original annotation is retrieved

rom the robotic system, which includes the location of the inter-

ection point between the instrument axis and the border between

lastic and metal on the shaft, normalized Shaft-to-Head axis
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Fig. 16. (a) Example frame from each sequence of EndoVis articulated surgical instrument training dataset; (b) The annotation includes the position of the tracked point. 

Fig. 17. Result example frames from each test sequence of the EndoVis conventional surgical instrument dataset. The result bounding box is represented in cyan colour. 
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Fig. 18. Instrument Tracking result with patch weight displayed in the top corner of the image. 

Table 7 

Accuracy of EndoVis articulated robotic surgical instrument train data for 

Head and Shaft points with high quality annotation. 

Seq 1L Seq 1R Seq 2 Seq 3 Seq 4 Whole 

In-view (IV) and Out-of-view (OV) frame number 

IV 1107 1107 1125 1124 1123 5586 

OV 0 0 0 0 0 0 

Total 1107 1107 1125 1124 1123 5586 

Head accuracy ( T hres = 20 px) 

Acc. (%) 100.0 100.0 99.82 100.0 100.0 99.96 

Dist. (px) 3.06 4.10 10.32 4.52 6.33 5.68 

Shaft accuracy ( T hres = 20 px) 

Acc. (%) 100.0 98.46 100 99.91 100 99.68 

Dist. (px) 2.48 12.08 6.82 4.79 6.48 6.51 

Table 8 

Distance (pixel) comparison with all the submitted methods 

for the tracked Point of the robotic laparoscopic instrument 

test set. Multiple instrument challenging subset is evaluated 

separately. 

C multiple Whole 

KIT 113.91 106.60 

UGA 40.73 34.94 

MOD 45.12 40.16 

PAWSS 38.36 29.66 
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Table 9 

Distance (pixel) comparison with all the submitted methods for the tracked 

point of the conventional laparoscopic instrument test set. Various challeng- 

ing subsets are evaluated separately. 

C blood C multiple C objects C occlusion C smoke Whole 

KIT 233.62 220.87 117.23 225.58 193.85 178.89 

UGA 276.44 235.42 228.04 193.82 231.87 217.91 

PAWSS 181.59 110.85 68.29 87.11 96.31 96.78 
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ector and the clasper angle. Since the original annotation does

ot provide consistent ground truth, the accuracy result does not

eflect true performance. We manually labelled the training data,

nd construct a high quality annotation. In this annotation, we

abelled multiple joints of the instrument including the original

racked point, the Head and Shaft point. The original and our pro-

osed annotations are demonstrated in Fig. 12 (b). 

We also tracked and evaluated on the Head and Shaft points we

efined in our high quality annotation in the high quality annota-

ion section of Table 6 and Fig. 14 right. With new annotation, our

verage accuracy has increased to 98.56% for 20 pixel threshold,

ith distance error of 6.65 pixels. 

The tracking accuracy evaluation results are displayed in Table 7

nd Fig. 15 . Our average accuracy has reached 99.96% and 99.68%

or 20 pixels threshold, with distance error of 5.68 and 6.51 pixels,

espectively. 

Comparison performance In Table 8 , the distance error (pixel)

as computed and compared separately for challenging factor

ultiple instrument (C multiple ) with all the submitted methods KIT,

GA, MOD and our method PAWSS. From official report, PAWSS
utperforms all the other methods with the lowest average dis-

ance error 29.66 pixels. 

EndoVis Conventional Laparoscopic Instrument Dataset The 

onventional instrument dataset contains six in vivo sequences,

hich are collected from complete laparoscopic colorectal inter-

entions. Similar to the robotic instrument dataset, training data

ontains 45 s video sequences, and test data is made up of 15 addi-

ional seconds videos for each sequence and two new 60 s videos.

ompared to ex vivo robotic instrument dataset, these sequences

eflect complex challenges during surgery, including smoke, bleed-

ng, blurry and various kinds of instruments. In Table 9 , the dis-

ance error (pixel) was computed and compared separately for

ach challenging factor with all the submitted methods KIT, UGA

nd our method PAWSS. From the official report, PAWSS outper-

orms all the other methods in every challenging subset with the

owest average distance error 96.78 pixels. We show some track-

ng result examples in Fig. 17 . The tracked point is shown in cyan

olour, and the first column is the first frame of each sequence in

est set. ( Fig. 16 ) 

In vivo surgical instrument experiments We also test on some

ther in vivo sequences and show the result in Fig. 18 . As we can

ee, the tracker works well even under complex in vivo environ-

ent. The video is submitted to display the tracking results for the

hole sequences. 

. Conclusions 

In this paper, we propose a tracking-by-detection framework,

alled PAWSS, for online object tracking. It uses a colour-based seg-

entation model to suppress background information by assigning

eights to the patch-wise descriptor. We incorporate scale estima-

ion into the framework, allowing the tracker to handle both in-

remental and abrupt scale variations between frames. The learn-

ng component in our framework is based on Struck, but we would

ike to point out that theoretically our proposed method can also

upport other online learning techniques with effective background

uppression and scale adaption. 
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The performance of our tracker is thoroughly evaluated on OTB,

VOT2014 and VOT2015 datasets and compared with recent state-

of-the-art trackers. Results demonstrate that PAWSS achieves the

best performance in both PR and SR in OPE for OTB dataset. It

outperforms Struck by 36.7% and 36.9% in PR/SR scores. Also, it

provides a comparable PR score, and improves SR score by 4.8%

over SOWP. On VOT2014 dataset, PAWSS has relatively lower ac-

curacies but the lowest failure rate among the top trackers, we

evaluated without re-initialization, and achieves the highest per-

formance. Also on VOT2015 dataset, PAWSS is considered state-of-

the-art and is among the top trackers. 

For instrument tracking, we also qualitatively and quantita-

tively evaluated our tracker on public EndoVis robotic and con-

ventional surgical instrument datasets, and in vivo surgical instru-

ment sequences. We compared our result with the official GT for

the Tracked Point on the robotic instrument dataset, and track-

ing accuracy reached 79.01% with 20 pixel threshold. As we have

shown, the official annotation is not quality consistent, we manu-

ally created a high quality multi joint annotation for the dataset.

We tested multiple joints (Tracked Point, Head and Shaft Point) on

the dataset, and our performance accuracy increased over 98% for

all the joints with 20 pixel threshold. From the official challenge

report, Our method has shown the lowest tracking error for both

robotic and conventional instrument datasets, and it also shown

its excellent tracking ability with in vivo sequences dealing with

complicated surgical environment. Our framework is designed for

general single object tracking. It does not require prior information

about the target or any offline training to achieve robust and real-

time performance. We would also like to discuss the limitations of

our framework. First, if the target disappears and reappears from

the scene, the framework does not recover. Second, the target po-

sition is represented by rectangle bounding box. Even with the as-

sistance of the segmentation model to distinguish foreground and

background, the assumption is that the target occupies most area

of the bounding box. If the target only occupies small fraction, the

classifier would be polluted and misled by background information

and can easily cause tracking failure. In the future, we would like

to focus on re-detection module and semantic foreground segmen-

tation. 
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