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ABSTRACT 

The bacterium Stenotrophomonas maltophilia is an emerging infectious pathogen of 

global concern. Due to its drug-resistant nature, there are limited treatment options available. A 

potential option for combating S. maltophilia infections is phage therapy, the medicinal use of 

viruses to treat bacterial infections. Stenotrophomonas phage Bfi1 was isolated from a soil 

sample using S. maltophilia clinical strain S18202. Transmission electron microscopy provided 

evidence that this phage is a member of the Siphoviridae family. Host range analysis showed that 

the phage successfully infected and lysed 30% of the S. maltophilia strains tested. Genomic 

analysis revealed that the phage contains approximately 32.2-56.5 kbp dsDNA. This phage was 

assessed for its ability to affect biofilm formation. At an MOI≥103, the phage inhibited S18202 

biofilm formation after 24 h incubation with the phage. To the best of our knowledge, this is the 

first time the effects of a bacteriophage on S. maltophilia biofilms have been studied. 
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I. INTRODUCTION 

Stenotrophomonas maltophilia: An Opportunistic Pathogen 

Stenotrophomonas maltophilia is a species with a complex taxonomic history. This species of 

bacteria was first described in 1943 by J.L. Edwards (Hugh and Ryschenkow, 1961). At the 

time, the species was named Bacterium bookeri (Hugh and Ryschenkow, 1961). Since its 

original characterization, it was reclassified as Pseudomonas maltophilia due to its physiological 

characteristics, including multitrichous flagella (Hugh and Ryschenkow, 1961). Later, the 

species was classified as a Xanthomonas sp. (Swings et al., 1983). The authors cited DNA-rRNA 

hybridization data, among other genotypic and phenotypic characteristics, as major influences 

for this reclassification. Because of the unique phenotypes of P. maltophilia, adding it to the 

taxonomic group, Xanthomonas, altered the definition of this genus (Palleroni and Bradbury, 

1993). To resolve this conflict, a new bacterial genus, Stenotrophomonas, was named; this is 

where S. maltophilia is currently classified. This history is important as earlier publications use 

these different names in their work. Additionally, it demonstrates the relatedness of S. 

maltophilia to other bacterial pathogens, such as Pseudomonas aeruginosa or Xanthomonas 

campestris, a human and plant pathogen, respectively. 

S. maltophilia is found throughout the world (Brooke, 2012). There is evidence that the 

species can live in a wide range of moist environments. It has been isolated from many 

environments, including plant roots and soil, river water, tap water, vertebrates, and invertebrates 

(Nakatsu et al., 1995; Denton et al., 2003; Hejnar et al., 2007; Romanenko, 2008; Berg, 2009). 

Its ability to live in diverse environments makes it a concern, because there are many sources 

from which an infection can be acquired. While nosocomial infections are common, a review of 

several studies from various health networks (United States, Australia, Taiwan, Canada, 
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Germany) estimated that 22 % of S. maltophilia infection cases are community-acquired 

(Falagas et al., 2009). 

This bacterium is an opportunistic pathogen. This means it is not highly infectious, but it 

can cause disease in humans when the normal host barriers have been penetrated (Brooke, 

2012). S. maltophilia causes diseases in patients with compromised immune systems, such as 

patients with cancer or cystic fibrosis (CF) (Chang et al., 2015). It has been the causative agent 

of bacteremia, biliary sepsis, meningitis, and urinary tract infections, among other infections 

(Nguyen and Muder, 1994; Papadakis et al., 1995; Vartivarian et al., 1996; Araoka et al., 2010). 

In general, these infections are life-threatening. In one hospital survey of S. maltophilia 

infections, the reported mortality rate was 60% (Nseir et al., 2006). 

As a pathogen, evidence indicates that S. maltophilia is a growing concern. SENTRY 

Antimicrobial Surveillance Program studies show that over time the prevalence rates of        

S. maltophilia respiratory tract infections (RTIs) increased from 3.3%-3.5% during 1997-2004 

to 4.4% during 2009-2012 (Gales et al., 2001; Hoban et al., 2003; Jones, 2010; Sader et al., 

2014). These studies showed that S. maltophilia moved from the eighth most common cause 

of RTIs to the sixth in the United States. Additionally, of non-enteric Gram-negative bacilli, 

S. maltophilia ranks globally as the third most commonly isolated pathogen from any 

infection (Sader and Jones, 2005). These data demonstrate that S. maltophilia should not be 

overlooked, because a significant number of infections result from this pathogen with 

increasing frequency. 
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Use of Antibiotics 

The primary treatment for S. maltophilia infections is antibiotic therapy. Currently healthcare 

professionals recommend trimethoprim-sulfamethoxazole (TMP-SMX) (Chang et al., 2015). 

This antibiotic is used primarily because resistance to TMP-SMX is not common. One 

surveillance study (2009-2012) found that 96% of US isolates and 98% of European isolates 

were susceptible to TMP-SMX (Sader et al., 2014). For patients with contraindications for TMP-

SMX, the fluoroquinolone levofloxacin is recommended (Chang et al., 2015). There are concerns 

that the efficacy of levofloxacin is not as high as TMP-SMX. However, two retrospective studies 

reported no statistical difference in outcome between these two antibiotic approaches (Cho et al., 

2014; Wang et al., 2014). These two antibiotics are currently considered to be effective therapies 

for S. maltophilia infections. 

Despite the efficacy of levofloxacin and TMP-SMX, there are long-term concerns with 

antibiotic therapy. Worldwide susceptibility of S. maltophilia to levofloxacin has decreased 

from 83.4 % (2003-2008) to 77.3% (2011) (Farrell et al., 2010; Sader et al., 2013). Additionally, 

resistance to TMP-SMX has been identified (Toleman et al., 2007). As S. maltophilia infection 

rates increase, one can expect that antibiotic resistance will rise. 

 

Antibiotic Resistance Genes of S. maltophilia 

S. maltophilia is naturally resistant to many antibiotics. It has been suggested that this natural 

resistance may arise from selection pressures that arise from a plant commensal lifestyle. High 

levels of competition and exposure to natural antibiotics and secondary antimicrobial metabolites 

are strong evolutionary drivers that contribute to this resistance (Berg and Martinez, 2015).  
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Within the genome of S. maltophilia, the genes that facilitate the breakdown or removal 

of antibiotics play a major role in antibiotic resistance. L1 and L2 are β-lactamases encoded in 

the S. maltophilia genome (Crossman et al., 2008). L1 hydrolyses all β-lactams except aztreonam 

(a monobactam) (Paton et al., 1994). L2 hydrolyses all penicillins, all cephalosporins in the first, 

second and third generations, and aztreonam (Walsh et al., 1997). Several aminoglycoside-

modifying enzymes have been described in S. maltophilia strains. These enzymes include 

AAC(6’)Iz, APH(3’)-IIc, AAC(6’)-Iak, and AAC(6’)-Iam (Li et al., 2003; Okazaki and Avison, 

2007; Crossman et al., 2008; Tada et al., 2014). Drug efflux pumps also play a major role in 

antibiotic resistance. A recent analysis of the genome of S. maltophilia K279a identified four 

efflux pumps involved in antibiotic resistance: SmeABC SmeDEF, SmeIJK, and SmeYZ 

(Alonso and Martinez, 2000; Li et al., 2002; Crossman et al., 2008). These efflux pumps 

contribute to resistance of a broad range of antibiotics, including β-lactams, aminoglycosides, 

quinolones, tetracyclines, macrolides, chloramphenicol, novobiocin, and TMP-SMX (Wang et 

al., 2018). 

While some resistance mechanisms involve the breakdown or effluxion of antibiotics, the 

S. maltophilia genome also contains genes whose encoded proteins resist the mechanisms of 

action of antibiotics. The sul2 gene encodes for a dihydropteroate synthase which is not 

inhibited by sulfonamides. Strains that have class 1 integrons and insertion sequence common 

region elements that were linked to the gene sul2 are resistant to TMP-SMX (Toleman et al., 

2007). Sulfonamides, like sulfamethoxazole ,work by binding to the active site of 

dihydropteroate synthase, which is involved in folic acid synthesis, converting p-aminbenzoate 

to dihydropteroic acid. The sul2 codes for a dihydropteroate synthase that has a weak binding 

affinity for sulfonamides (Sköld, 2000). Variants of dfr genes, that code for dihydrofolate 
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reductase, are also associated with high levels of resistance to TMP-SMX (Hu et al., 2011). 

Dihydrofolate reductase is an enzyme involved in DNA synthesis. Trimethoprim binds to 

dihydrofolate reductase to inhibit its function. Variants in the dfr genes lead to weaker binding 

by this enzyme to trimethoprim and consequently lead to resistance to this drug (Sköld and 

Widh, 1974). 

The chromosomal qnr gene has been associated with quinolone resistance in 

S. maltophilia. Quinolones target DNA gyrase, an enzyme that relieves tension of supercoiling 

during DNA replication (Champoux, 2001). The antibiotic forms a stable complex with the DNA 

and DNA gyrase, preventing the progression of DNA replication (Hiasa and Shea, 2000). The 

qnr gene encodes a protein that can bind specifically to the gyrase holoenzyme in the DNA 

binding groove. This prevents the deleterious effects of the stabilized quinolone, DNA, and 

DNA gyrase complex (Hooper and Jacoby, 2015). By doing so, Qnr has demonstrated its 

importance in low-level resistance to quinolones (Sánchez and Martínez, 2010). 

Resistance to polymyxins can be attributed to the gene, spgM. This gene encodes a 

phosphoglucomutase involved in lipopolysaccharide (LPS) synthesis. Bacterial mutants that lack 

spgM have less LPS when compared to SpgM+ cells (McKay et al., 2003). Polymyxin selectively 

binds to LPS and destabilizes the outer membrane enough to penetrate. Ultimately, the antibiotic 

causes lysis of the host by destroying the integrity of the cell’s inner membrane (Yu et al., 2015; 

Malinowski et al., 2017). With less LPS, there are fewer targets for the antibiotic’s action. 

 

Biofilms of S. maltophilia 

Along with possessing antibiotic resistance genes, S. maltophilia can form biofilms. A biofilm is 

an accumulation of microbial cells that are associated with a surface and enclosed in a 
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polysaccharide matrix (Donlan, 2002). Biofilms are formed when, individual, free-floating cells 

(referred to as planktonic cells), adhere to a surface. The cells replicate, form a monolayer, and 

begin to secrete a polysaccharide matrix (extracellular polymeric substance) outside of the cell 

(Gupta et al., 2016). S. maltophilia can form biofilms on a variety of surfaces. S. maltophilia can 

form biofilms on glass, plastics, and host tissue (Jucker et al., 1996; de Oliveira-Garcia et al., 

2003). 

Biofilms have been shown to facilitate antibiotic resistance in two ways. First, 

extracellular polymeric matrices act as a physical barrier. For example, extracellular matrix 

components in P. aeruginosa biofilms can impede penetration of the antibiotic ciprofloxacin 

into cells living within the biofilm (Suci et al., 1994). The biofilm acts to shield the cells within 

the structure. 

The second mechanism of biofilm resistance relates to variation in the cell populations of 

a biofilm. Because cells in a biofilm have access to differing nutrient levels, there is 

heterogeneity in the cellular metabolic rates within the population (Burrowes et al., 2011). Some 

cells with little nutrient access exist in slow-growing or starved states. These are referred to as 

persister cells. Since antibiotics often target the pathways involved in actively growing and 

dividing cells, persister cells are not affected by these antimicrobials (Costerton et al., 1999). 

 

Bacteriophages 

The ability for S. maltophilia to persist, despite antibiotic treatments has led to a need for 

alternative therapies, and directed an interest in the research of bacteriophages. Often referred 

to as phages, they are defined as viruses that infect a bacterial host (Labrie et al., 2010). They 

usually come in two forms, lytic (or virulent) and lysogenic (or temperate). Upon infection by a 
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lytic phage, the virus takes over the host’s machinery and replicates itself (Labrie et al., 2010). 

At the end of the lytic cycle, the host cell is lysed to release viral progeny (Labrie et al., 2010). 

When a temperate phage infects their host, the phage DNA is incorporated into the 

genome of the host, becoming a prophage (Labrie et al., 2010). Inside the host, the virus can 

remain dormant and is transmitted vertically to host daughter cells (Labrie et al., 2010). Under 

certain conditions, the prophage can be activated via induction to enter into a lytic cycle and lyse 

the host cell (Labrie et al., 2010). 

A third, less common form of phage infection is known as pseudolysogeny. During 

pseudolysogeny, the infection of the host is stalled. The viral nucleic acids do not replicate as it 

would in a lytic cycle or integrate as it would in a lysogenic cycle (Ripp and Miller, 1997). It is 

present in the host in an inactive state. 

Lytic phages have drawn a lot of interest from researchers concerned with antibiotic 

resistance. Because the lytic cycle is inherently lethal to the bacterial host, physicians could 

potentially use phages to treat and prevent bacterial infections in humans. Prior to the discovery 

of antibiotics, phages were documented as being used in the treatment of infections (Abedon et 

al., 2011). This legacy has continued in several countries in Western Europe, including Georgia 

and Poland (Abedon et al., 2011). 

Phage therapies may offer many advantages over antibiotic therapies. A major benefit is 

that phages have a limited effect on resident flora. Phages usually only infect organisms of the 

same species. The breadth of strains or species which can be infected by a virus is referred to as 

the viral host range. The fact that many phages are shown to have limited host ranges means the 

killing of off-target bacteria is minimized (Abedon et al., 2011). This results in a lower potential 
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for side effects brought about by dysbiosis, the disturbance to gut microbiota homeostasis 

(DeGruttola et al., 2016). 

The abundance of phages is another benefit to be considered. Estimations by phage 

ecologists have determined that the number of phage particles found in soil is on average 1.5 x 

108 g-1 (Ashelford et al., 2003). In aquatic environments, it has been estimated that there are 

approximately 100-300 phage strains ml-1 (Wommack et al., 1999). This means that there are 

potentially many undescribed phages in these habitats that have yet to be assessed for 

therapeutic use. In the case that a bacterial pathogen develops resistance to one phage, there are 

many other phages that may cause host lysis. 

 

S. maltophilia Phages 

To the best of our knowledge, there have been six lytic and pseudolysogenic S. maltophilia 

bacteriophages described in the literature to date. Of the described lytic phages, four are 

myoviruses, phiSMA5 (Chang et al., 2005), Smp14 (Chen et al., 2007), and S3 (García et al., 

2008), DLP6 (Peters et al., 2017), one is a podovirus, IME15 (Huang et al., 2012), and one is a 

siphovirus DLP2 (Peters et al., 2015). Each of these phages has a double stranded (ds) DNA 

genome. At the time of writing, these reported phages represent the entire library of phages with 

potential to be used in treatments for S. maltophilia infections. 

The first lytic phage to be characterized was phiSMA5 (Chang et al., 2005). The phage 

was determined to have a dsDNA genome that is ~250 kbp and contains at least 25 proteins 

(Chang et al., 2005). Smp14 was the first phage to have its genome partially sequenced (Chen et 

al., 2007). The genome is estimated to be ~160 kbp and consists of at least 20 unique proteins. 

Phage S3 was found to have a genome of ~33 kbp (García et al., 2008). The DNA of phage S3 
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was resistant to digestion by restriction enzymes, which suggests that it might contain atypical 

bases or be enzymatically modified. IME15 was the first phage to have its full genome 

sequenced, with a genome of ~39 kbp. The second potentially lytic phage to have its whole 

genome sequenced was DLP2 with a genome of ~42 kbp in size (Peters et al., 2015). The final 

phage described was DLP6. This T4-like phage undergoes pseudolysogeny prior to lytic 

activation. The phage genome does not integrate into the host DNA, but proceeds into the lytic 

cycle following activation. The genome of DLP6 was sequenced and found to be ~168 kbp 

(Peters et al., 2017). 

The first step in this thesis research was to isolate a Stenotrophomonas phage from an 

environmental sample. Upon isolation, the phage was characterized using molecular and 

microbiological techniques. At the time of writing, this thesis research provides the first 

assessment of a Stenotrophomonas phage’s effect on its bacterial host’s biofilm. Using an in 

vitro model of biofilm formation in the presence or absence of phage, we hypothesized that the 

presence of phage significantly inhibits biofilm formation by S. maltophilia 
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II. METHODS 

Maintenance and Growth of Bacteria  

S. maltophilia S18202 was grown and stored on LB (Luria-Bertani) agar. S. maltophilia cultures 

were prepared by growing them overnight in LB broth at 37°C with shaking at 235 rpm. Cultures 

were standardized to OD600   1.0. Dilutions of culture were added to fresh LB broth and 

incubated with agitation at 37°C until exponential growth was obtained (2h). Overnight cultures 

were used for phage isolation, plaque enumeration assays, biofilm assays, and host range spot 

tests. 

 

Isolation of Bacteriophage 

Soil samples were taken from landscaping mulch on the north side of the William G. McGowan 

Building on the DePaul University Lincoln Park campus, in Chicago, Illinois. A 10 g sample of 

the soil was added to 15 ml of a modified LB suspension medium (SM) (Peters et al., 2015). 

After mixing for 1 h on a Stovall Belly Dancer (IBI Scientific) at room temperature (25C), the 

sample was centrifuged at 12,000 x g at 25C to remove excess soil debris. The supernatant was 

filter sterilized (0.45 m pore size). One hundred microliters of an overnight culture of               

S. maltophilia S18202 was added to the filtrate, and was incubated at 37C overnight (Van Twest 

and Kropinski, 2009). The mixture was then centrifuged at 12,000 x g for 5 min at 25C. The 

liquid supernatant was filter sterilized (0.45 m pore size) and stored at 4C. This preparation 

was used as a phage stock for plaque purification.  
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Plaque Purification 

To purify the virus, a soft agar overlay of the phage sample was performed according to 

Kropinski et al. (2009) with modifications from Peters et al. (2015). In microfuge tubes, a 200 l 

preparation of S. maltophilia was added to 100 l of phage from a serial dilution of the phage 

stock. The virus and bacteria were incubated statically for 8-10 min at 25C. The phage-bacteria 

mixture was added to 4 ml of molten soft LB agar (0.4% agar). This was gently swirled and 

poured over an LB agar plate. After the soft agar was allowed to solidify, the plates were 

incubated at 37C overnight. A single plaque was picked from a plate with isolated plaques by 

touching a sterile glass pipette tip to it. The pipette tip was immersed in 500 l of SM with 20 l 

of chloroform for 1 h statically at 25C. The chloroform was used to kill any living bacteria 

present in the sample. The plaque isolation and purification steps were repeated two subsequent 

times to obtain purified phage. The plaque purified stock was used to prepare a high titer stock. 

 

Preparation of High Titer Phage 

A soft agar overlay plate with a confluent lawn of plaques (obtained after overnight incubation) 

was selected to make the phage stock. Ten milliliters of SM was added to the plate. The plate 

was gently agitated on a Stovall Belly Dancer for 1 h. The SM was then removed and added to 

microfuge tubes. The tubes were centrifuged at 12,000 x g at 25C for 2 min and the supernatant 

was filter sterilized (0.45 m pore size). The purified high titer phage stock was stored at 4C. 

This stock was used for the enumeration of the phage. For long-term storage of phage stocks, 

purified phage was prepared in 50% glycerol/SM and stored at –80C according to Fortier and 

Moineau (2009). 
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Enumeration of Phage 

Phage titer determination used the soft agar overlay technique and a serial dilution of the high 

titer purified phage stock (Kropinski et al., 2009). To a set of microfuge tubes, 200 l of            

S. maltophilia was mixed with 100 l of serially diluted phage stock. The samples were 

incubated statically for 8-10 min at 25C. The mixture of phage and bacteria was transferred to a 

test tube containing 4 ml of molten soft LB agar. The tube contents were then poured over a plate 

of LB agar and allowed to solidify. The plates were incubated at 37C overnight. The number of 

plaques was recorded and the original concentration of phage stock was determined according to 

Equation 1. 

 

Equation 1 
 

 
𝑝𝑙𝑎𝑞𝑢𝑒 𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠

𝑚𝑙
=  

(𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ×  # 𝑝𝑙𝑎𝑞𝑢𝑒𝑠 𝑝𝑒𝑟 𝑝𝑙𝑎𝑡𝑒)

𝑝𝑙𝑎𝑡𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒
  

 

Determining Plaque Size 

A plaque assay was performed (see Enumeration of Phage). Plates were incubated overnight at 

37 C. The plates were then digitally photographed with a 50 mm ruler for reference. Images of 

plaques on a lawn of S. maltophilia S18202 were analyzed using tpsDig software (by F. James 

Rohlf, Stony Brook Morphometrics).  

 

Transmission Electron Microscopy 

The ultrastructure of the phage was analyzed using the Imaging Facility at the Loyola University 

Chicago Health Sciences Campus, Maywood, Illinois. Carbon-coated 200 mesh copper grids 
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(Ted Pella, Inc) were treated with 0.002% Alcian Blue in 0.03% acetic acid (Electron 

Microscopy Sciences) for 5 min then incubated with distilled water for 5 min to increase the 

hydrophilicity of the grids (Chattoraj et al., 1988). Grids were incubated with a high titer sample 

of phage (2 x 1011 pfu/ml) in SM for 1 min then stained with filtered 1% uranyl acetate for 1 

min.  A Philips CM120 transmission electron microscope (voltage = 80 kV) equipped with an 

AMT BioSprint camera was used to image the samples. Images of 15 phage particles were used 

to acquire measurements of phage ultrastructure. Tail length, tail width, and head diameter were 

measured using ImageJ (Schneider et al., 2012). 

 

Phage DNA Analysis 

S. maltophilia phage DNA was extracted using the Phage DNA Isolation Kit according to the 

manufacturer’s instructions (Norgen Biotek Corporation) and stored at -20°C. The concentration 

of purified DNA was determined using a NanoDrop 2000c (Thermo Scientific). Phage DNA was 

subjected to restriction enzyme digestion (Table 1). Type II restriction enzymes were used due to 

their ability to digest dsDNA. To prepare each restriction enzyme digest, approximately 150-200 

ng of DNA were used. The phage DNA digests were subjected to agarose gel electrophoresis at 

80V for about 1 h and then visualized using a FlourChem HD2 system (Bio-Techne). Alphaview 

software (Bio-Techne) was used to analyze the DNA digests.  

Table 1: Restriction enzymes used  

BglII PvuII 

ClaI SalI 

EcoRI SmaI  

KpnI SphI 

PstI XhoI 
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Host Range Analysis 

The host range analysis of the S. maltophilia phage was performed according to García et al. 

(2008) with the following modifications. The bacterial strains used for the tests are listed in 

Table 2. The clinical strains of S. maltophilia were kindly provided by Dr. Stanford Shulman 

(Northwestern University). Lawns (confluent growth) of each strain on LB agar plates were 

prepared using overnight cultures. Four 5 l drops of phage (~109 pfu/ml) were placed on top of 

each agar plate. Plates were incubated at 37C overnight and the presence of clearings were 

recorded . Each bacterium was tested in two independent experiments.  

 

Table 2: Bacterial strains used  

for host range tests 

S. maltophilia  

ATCC 13637 H2138 

ATCC 17807 H43306 

ATCC BAA-2423 H59296 

F64644 S18202 

F7221 X26332 

P. aeruginosa  E. coli  

ATCC 27853 ATCC 23922 

ATCC 22580 S. aureus  

ATCC BAA-47 ATCC 29213 

 

Biofilm Assays 

To determine if the purified S. maltophilia phage inhibited biofilm formation of S. maltophilia 

S18202, biofilm assays were performed according to Malinowski et al. (2017) with the following 



 15 

modifications. After determining the phage titer (see Enumeration of Phage), a dilution was 

made to achieve a multiplicity of infection (MOI) of 10, 103, or 105. The MOI is a measure of the 

ratio of the number of plaque-forming units to number of colony-forming units (pfu/cfu). To 

each well of a 96-well polyvinyl chloride (PVC) microtiter plate (BD Falcon), 50 l of phage in 

SM (10mM MgSO4, 50mM Tris-HCl pH 7.5, 100mM NaCl, 50% LB) diluted in LB broth were 

added. Fifty microliters of S. maltophilia culture were added to each well. Negative control wells 

contained 100 l of LB broth only (no cells or phage). Biofilm plates were incubated statically 

for 24 h at 37C. Planktonic cells were removed to a new microtiter plate and the bacterial 

culture density was recorded using a spectrophotometer (OD595). Adhered biofilms were washed 

twice with sterile distilled water (dH2O), stained with 0.1% crystal violet for 10 min, washed 

three times with sterile dH2O, and air dried overnight at room temperature with minimal light 

exposure. The crystal violet was thoroughly resuspended in 30% acetic acid and the amount of 

biofilm was recorded at OD560. 

When performing the experiments at the MOIs of 10 and 105, each biofilm assay was 

performed once, with 5 and 4 replicates, respectively. For the experiment at the MOI of 103, the 

biofilm assay was performed in two independent experiments, each with 5 replicates.  

 

Statistical Analysis 

In all the biofilm assays, we used a paired t-test to compare means of each treated subculture 

with the untreated subculture. The α-values were adjusted using the sequential Bonferroni test 

(Holms, 1979). Statistical analyses were performed using Microsoft Excel.  
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III RESULTS 

Isolation of a S. maltophilia Phage 

A S. maltophilia phage was isolated from soil acquired from a horticultural flower bed adjacent 

to McGowan North, on DePaul University – Lincoln Park campus. In soft agar overlays of S. 

maltophilia S18202 with phage after overnight incubation at 37°C, the phage produced clear 

plaques. The size of the plaques ranged from 0.5 – 2.0 mm in diameter (Figure 1). Some plaques 

had surrounding halos that were turbid in appearance (Figure 2). The plaque purified phage was 

named Stenotrophomonas virus Bfi1 (Biofilm formation inhibitor 1). 

 

 

Figure 1: Phage plaques formed on a lawn of S. maltophilia S18202. The plate was incubated at 

37C overnight on LB agar with a 10-8 dilution of the phage stock. Scale bar = 50 mm. 
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Figure 2: Plaque morphology of isolated phage Bfi1. Black arrows highlight plaques with turbid 

halos. White arrows highlight plaques without halos. Scale bar = 2 mm.  

 

 

Bfi1 Ultrastructure 

Ultrastructure morphological examination revealed that the phage has a head and an unsheathed 

flexible non-contractile tail (Figure 3). The head has an isometric icosahedral shape, with a 

diameter of 50.8 ± 5.7 nm. The tail length measures 197.0 ± 31.7 nm. The tail width measures 

10.4 ± 1.7 nm.  
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Figure 3: Transmission electron micrograph of Stenotrophomonas phage Bfi1, negatively stained 

with 1% uranyl acetate. Scale bar = 100 nm.  

 

Phage Genome Analysis 

Restriction enzyme (RE) digestion followed with agarose gel electrophoresis demonstrated that 

the S. maltophilia phage contains dsDNA. RE analysis of the DNA showed 5 of the 10 type II 
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restriction enzymes were able to digest the phage genome: EcoRI, KpnI, SalI, SmaI, and SphI 

(Figure 4).  

 

Figure 4: Agarose gel (1%) electrophoresis showing single RE digests of Stenotrophomonas 

phage DNA. Lanes: (1) 1 kbp marker, (2) uncut phage DNA, (3) EcoRI, (4) KpnI, (5) SalI, (6) 

SmaI, (7) SphI, (8)  phage HindIII marker. 
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Digestion of the genome by type II restriction enzymes (EcoRI, KpnI, SalI, SmaI, and 

SphI) produced large, well-separated DNA bands (Table 3). Using the AlphaView software to 

analyze the DNA fragments, the size of the phage genome was estimated to be 32.2-56.5 kbp. 

This was done by adding the fragment sizes of each band from individual digests to get a total 

DNA size.  

 

Table 3: Bfi1 single RE digest DNA sizes 

Band 
DNA fragment length (bp) 

EcoRI KpnI SalI SmaI SphI 

1 19027 19027 7067 8083 9833 

2 14377   7800 5800 5000 8833 

3   6800   7000 4333 4700 7467 

4   5550   6267 3825 4267 6467 

5   4567   5700 1550 3725 5400 

6   2833   2307 1447 3211 3625 

7   1950 - 1340 2409 2648 

8   1436 - 1048 2307 2027 

9 - -   936 2170 1858 

10 - -   801 1517 1583 

11 - -   736 1000 1330 

12 - -   656   881 1074 

13 - -   594   771   949 

14 - -   534   588   831 

15 - -   458   460 - 

16 - -   402   428 - 

17 - -   366   306 - 

18 - -   314 - - 

Total  56540 48101  32207     41823    53925 

 

Host Range Analysis 

The host range of this phage was assessed using available strains of S. maltophilia,                     

P. aeruginosa, Escherichia coli, and Staphylococcus aureus (Table 4 and Figure 5). Of the 
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bacteria tested, 30% of the S. maltophilia strains (S18202, H2138, H43306) were infected by the 

phage (as indicated by phage generated clearings formed within the lawn of bacteria), and the 

remainder of the bacteria were resistant to infection (as indicated by the absence of clearings). 

These observations indicate that S. maltophilia phage Bfi1 has a moderate host range.  

 

Table 4. Host range of Bfi1 

Bacterial strain Infection by phage* 

S. maltophilia   

ATCC 13637 - 

ATCC 17807 - 

ATCC BAA-2423 - 

F64644 - 

F7221 - 

H2138 + 

H43306 + 

H59296 - 

S18202 + 

X26332 - 

P. aeruginosa   

ATCC 27853 - 

ATCC 22580 - 

ATCC BAA-47 - 

E. coli   

ATCC 23922 - 

S. aureus   

ATCC 29213 - 

* + phage infection, -  no infection 
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Figure 5: Bfi1 spot tests of S. maltophilia strains. (A) Strain H2138 shows infectivity and (B) 

strain H59269 shows no infectivity by the phage. 

 

Phage Inhibition of S. maltophilia Biofilm Formation 

Following a 24 h incubation of S18202 in a microtiter plate, liquid medium containing 

planktonic cells was removed and the cell density of the media quantified by spectrophotometry 

(OD595). At an MOI=10 (actual MOI≈5.1) a significant inhibition of planktonic cell culture 

density was observed (Figure 6A). Inhibition of planktonic cell growth was also observed at an 

MOI=103 (actual MOI≈1.8x103) and an MOI=105 (actual MOI≈1.5x105) (Figure 6B, C).  

The amount of biofilm formed on the microtiter plate surface was determined using the 

crystal violet assay. The difference in the amount of biofilm formed was not statistically 

significant at MOI=10 (Figure 7A). At MOI=103 and MOI=105, the amount of biofilm formed 

was significantly reduced in the phage treatment groups (Figure 7B, C).  

 

A B 
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Figure 6: Planktonic cell culture density (OD595) of S. maltophilia after 24 h treatment with 

phage Bfi1, (A) MOI=10 (B) MOI=103 (C) MOI=105 . Vertical bars represent standard error.  

(*) indicates statistical significance of paired t-tests adjusted using a sequential Bonferroni test 

for multiple comparisons. (A) p = 2.1 x 10-2, (B) p = 5.7 x 10-8, (C) p = 1.1 x 10-3  
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Figure 7: Amount of biofilm formed (OD560) of S. maltophilia after 24 h treatment with phage 

Bfi1, (A) MOI=10 (B) MOI=103 (C) MOI=105 . Vertical bars represent standard error.  

(*) indicates statistical significance of paired t-tests adjusted using a sequential Bonferroni test 

for multiple comparisons. (A) p = 0.75, (B) p = 5.9 x 10-4, (C) p = 1.2 x 10-3 
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IV. DISCUSSION 

S. maltophilia Bacteriophage Bfi1 

S. maltophilia bacteriophage, Bfi1, was successfully isolated from a local soil sample. Initially, 

plaques were harvested and purified. The purified phage was further characterized using 

transmission electron microscopy, and its genome was analyzed using restriction enzyme 

digestion with agarose gel electrophoresis.  

 

Plaque Morphology 

Phage Bfi1 was able to form circular plaques, ranging from 0.5 – 2.0 mm in diameter (Figure 1). 

Plaque size is affected by a variety of factors including the virus’s diffusivity, adsorption rate, 

latent period, and burst size (Abedon and Yin, 2009; Gallet et al., 2011). Diffusivity is a measure 

of the capability for a particle to be diffused. Adsorption rate is the rate at which plaque-forming 

units attach to susceptible host cells. The latent period is the infection time, between adsorption 

and host cell lysis. Burst size is defined as the number of new plaque-forming units produced 

when an infected cell lyses. The variation in plaque size within a single phage strain may be due 

to subtle differences in the genotypes that resulted from random mutations during replication. 

These differences could affect the burst size, adsorption rate, latent period and diffusivity of the 

phage. 

Some phages can reduce biofilms by producing enzymes that break up extracellular 

polymers. These enzymes, called depolymerases have been shown to be important in biofilm 

penetration (Casey et al., 2018). One indicator that a phage may possess a depolymerase is 

through analysis of plaque morphology. The plaques of depolymerase-expressing phages are 

often surrounded by a large halo, which indicates depolymerase activity (Hughes et al., 1998). 
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Since there were halos surrounding some of the phage derived plaques (Figure 2), S. maltophilia 

phage Bfi1 may produce depolymerases. 

 

Ultrastructure of Bfi1 

Table 5 shows the ultrastructural diversity of bacteriophages. One third of the phages shown 

contain a tail. Tailed phages (Order: Caudovirales) are considered the most abundant phages 

found in nature (Ackermann, 2007). Of ~5500 phages documented using electron microscopy 

and submitted to the Félix d’Hérelle Reference Center for Bacterial Viruses, 96% of them were 

described as tailed phages (Ackermann, 2007). The phage tail is an appendage that is used in 

host receptor recognition, penetration of the cell wall and ejection of the virus genome into the 

host cell (Fokine and Rossman, 2014). 

The Caudovirales order is divided into four families, Ackermannviridae, Myoviridae, 

Podoviridae, and Siphoviridae (Ackermann, 2009; Adriaenssens et al., 2018) Morphologically, 

Ackermannviridae and Myoviridae are indistinguishable, both possessing long sheathed 

contractile tails (Adriaenssens et al., 2018). Podoviridae possess short stubby non-contractile 

tails. Long unsheathed flexible non-contractile tails are a hallmark of the Siphoviridae family 

(Ackermann, 2009).  

We compared the tail ultrastructure of 15 Bfi1 virions to the four families of 

Caudovirales. The tail length of Bfi1 is 197.0 ± 31.7 nm , which is much longer than the tail 

length of Podoviridae phages (20 nm) (King et al., 2012). Therefore, it is unlikely that Bfi1 

belongs to Podoviridae. The tail width of Bfi1 is 10.4 ± 1.7 nm. This falls within the description 

of Siphoviridae phages, which have tail widths of 7-10 nm (King et al., 2012). The tail widths of 

Myoviridae and Ackermannviridae phages (16-20 nm) are much thicker than the tail of Bfi1 
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(King et al., 2012). When considering that Bfi1 also has a flexible tail (Figure 3), our 

observations lead us to conclude that Bfi1 is most likely a member of the Siphoviridae family 

within the Caudovirales order. 

 

 

 

Table 5: Overview of bacteriophage families 

Family Description of Ultrastructure Nucleic Acid 

 

Myoviridae 

 

long sheathed contractile tail 

length: 80-455 nm; width:16-20 nm 

 

 

dsDNA linear 

Ackermannviridae long sheathed contractile tail 

length: 80-455 nm; width: 16-20 nm 

 

dsDNA linear 

Siphoviridae long unsheathed flexible non-contractile tail 

length: 65-570 nm; width: 7-10 nm 

 

dsDNA linear 

Podoviridae short non-contractile tail 

length: 20 nm; width: 8 nm 

 

dsDNA linear 

Tectiviridae 

 

isometric, double capsid dsDNA linear 

Corticoviridae 

 

isometric capsid dsDNA circular 

Plasmaviridae 

 

enveloped, no capsid, pleomorphic dsDNA circular 

Sphaerolipoviridae 

 

isometric capsid dsDNA linear 

Inoviridae 

 

long filaments or short rods ssDNA circular 

Microviridae 

 

conspicuous capsomers, isometric capsid ssDNA circular 

Leviviridae 

 

isometric capsid ssRNA linear 

Cystoviridae 

 

enveloped, spherical dsRNA segmented 

(Ackermann, 2009; King et al., 2012; Adriessens et al., 2018) 

 



 28 

S. maltophilia Phage Bfi1 Genome  

The Caudovirales order is additionally unique in that their dsDNA is linear (Ackermann, 

2009). This appears to be a result of the virion structure. To package DNA into a capsid and eject 

the genome from it, the DNA must be threaded through a narrow passage in the head portal. This 

passage is too small to accommodate two parallel dsDNAs simultaneously (as would be needed 

in the case of a circular genome) (Casjens and Gilcrease 2009). As S. maltophilia phage Bfi1 

appears to be a member of the Caudovirales order, we can infer that the phage in this study is 

likely to have a linear genome.  

The type II restriction enzyme digestions of the S. maltophilia phage Bfi1 genome 

indicate that the phage genome is dsDNA, as these enzymes are only able to cut this type of 

nucleic acid (Figure 4). Restriction enzyme analysis determined the size of the genome to 32.2-

56.5 kb (Table 3). A more accurate determination of the size would result from fully sequencing 

the genome. Genomic sequencing can be done using a shotgun cloning protocol (Lynch et al., 

2010).  

Without genomic sequencing, this DNA analysis did not generate enough information for 

us to conclusively identify the novelty of this phage. According to the International Committee 

on the Taxonomy of Viruses (ICTV), the major basis for distinguishing a new species of virus 

requires evidence that its genome sequence identity be less than 95% similar to its closest 

taxonomic relative (Adriaenssens and Brister, 2017). Until the genome of this phage is 

sequenced, the Bacterial and Archaeal Virus Subcommittees within the ICTV will not be able to 

affirm the novelty of this phage.  

Taken together, the ultrastructure and genome analyses of S. maltophilia phage Bfi1 

support its classification as a siphovirus within the Caudovirales order.  
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S. maltophilia Siphoviruses 

At the time of writing, Bfi1 is the sixth Siphoviridae phage to be characterized that 

infects S. maltophilia. Table 6 describes all S. maltophilia siphoviruses described in the 

literature. 

Table 6: S. maltophilia siphoviruses 

Phage 
Head Diameter 

(nm) 

Tail Length 

(nm) 

Tail Width 

(nm) 

Genome 

size (kbp) 
Reference 

S1 61.4 ± 1.35 129.2 ± 1.3 9.93 ± 0.66 40.287 García et al., 2008 

S4 87.5 ± 1.5 201.87 ± 1.22 10.7 ± 0.24 ~200 García et al., 2008 

DLP1 ~70 ~175 NA 42.887 Peters et al., 2015 

DLP2 ~70 ~205 NA 42.593 Peters et al., 2015 

DLP5 NA NA NA 96.542 Peters and Dennis, 2018 

Bfi1 50.8 ± 5.7 197.0 ±31.7 10.4 ± 1.7 32.2-56.5 This study 

     *NA, not available 

 

García et al. (2008) reported two temperate siphoviruses that have a S. maltophilia host, 

S1 and S4. S1 was discovered by induction of a lysogen using mitomycin C. S4 was acquired 

from sewage samples. Peters et al. (2015) identified two S. maltophilia siphoviruses, DLP1 and 

DLP2. DLP1 was isolated from river sediment DLP2 was isolated from soil. DLP1 has a unique 

plaque development; at high titers (1010 pfu/ml) no plaques form. At lower titers, plaques were 

turbid with no distinct borders. DLP2 produces plaques with distinct borders. Neither phages 

contain any recognizable lysogeny-associated proteins in its genome. However, due to the 

irregular plaque formation, DLP1 is likely a lysogenic phage. Based on this data, DLP2 might be 

lytic, but this has not been confirmed experimentally. As of the writing of this thesis, there is not 

much information available on DLP5, but it was shown to be lysogenic (Peters and Dennis, 

2018). 
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In comparing Bfi1 to other siphoviruses, we can see that our phage appears similar to 

others in tail size and length, while it has a smaller head diameter (Table 6). There is a large 

range of genome sizes for S. maltophilia siphoviruses, but Bfi1 falls within this range. With the 

current data, it is not possible to determine if Bfi1 is lytic or lysogenic. However, it is possible 

that this represents the first lytic  S. maltophilia siphovirus to be described.  

Lysogenic abilities can be assessed by characterizing the phage genome. Lysogeny-

associated proteins, such as integrases and lytic cycle repressors are often readily identifiable 

(Casey et al., 2018). Lysogeny can also be tested experimentally by taking colonies that acquire 

phage resistance and testing the host genome for the presence of a prophage.  

 

Host Range of Bfi1 

The process of host cell lysis involves the adsorption of the phage to the host receptor (Labrie et 

al., 2010). After adsorption, the phage genome is ejected into the host. Replication of the phage 

genome and virion structure occurs during the latent period. Lysis occurs at the end of infection 

and viral progeny are released into the surrounding media (Labrie et al., 2010). The progeny 

viruses start the infection process over in neighboring host cells. Eventually enough cells are 

killed that a clearing is visible to the naked eye. The exact timing of this process, can be 

determined by performing a one-step growth assay. This can be useful information when looking 

at lytic activity of a phage and is an important feature of phage characterization.  

The first step in the phage infection cycle, adsorption, is the initial point of contact 

between virus and host and dictates host range specificity (Silva et al., 2016). Caudovirales 

phages recognize hosts using their tail structures, which have phage receptor-binding proteins 

(RBPs) which can recognize specific peptide sequences or polysaccharide moieties (Silva et al., 
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2016). A phage fails to effectively infect a strain when the host receptors are inaccessible or non-

complementary to the phage RBPs (Silva et al., 2016). Of Siphoviridae phages studied with 

Gram-negative bacterial hosts, 16 recognized proteinaceous receptors and 3 required a 

combination of proteins and sugar moieties (Silva et al., 2016). 

The moderate host range of 30% for S. maltophilia phage Bfi1 is based on only 10 strains 

of S. maltophilia (Table 4). Because the number of strains tested in this research was relatively 

small, it may not be reflective of the true host range of this phage. Ideally, we would develop an 

expansive S. maltophilia collection, containing a variety of pathogenic strains which would 

represent a breadth of genetic diversity within this species. 

The host ranges of other Stenotrophomonas lytic phages are highlighted in Table 7. These 

host ranges could all be described as moderate, ranging from 30% to 70% of strains tested. It 

should be remarked that DLP2 formed plaques on two P. aeruginosa strains as well (Peters et al., 

2015). The ability of the mentioned phages to infect hosts from different taxonomic orders is not 

typical. 

 

Table 7: Host range of lytic and pseudolysogenic S. maltophilia phages 

Phage  Family Host Range Strains Tested       Reference 

phiSMA5 Myoviridae 70% 10 Chang et al., 2005 

Smp14 Myoviridae 56% 87 Chen et al., 2007 

S3 Myoviridae 46% 26 García et al., 2008 

DLP2 Siphoviridae 33% 27 Peters et al., 2015 

DLP6 Myoviridae 48% 27 Peters et al., 2017 

Bfi1 Siphoviridae 30% 10 This Study 

 

The limited host range of S. maltophilia phages might be attributed to the considerable 

diversity of this host species. In comparing the genome of ATCC BAA-2423 (K279a, a 
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pathogenic strain) to R551-3 (a plant endosymbiotic strain), approximately 85% of the R551-3 

strain’s 4,175 genes were homologous to the pathogenic strain (Ryan et al., 2009). This leaves 

hundreds of divergent genes between these two strains. Even between pathogenic isolates there is 

considerable diversity. A study of 139 S. maltophilia isolates from the same hospital found that 

there was considerable phylogenetic and phenotypic variability between isolates (Valdezate et 

al., 2004). If host susceptibility can be blocked by modifications to a single receptor gene, then 

the diversity within the species S. maltophilia may explain the limits to the host range of these 

Stenotrophomonas phages. 

The type of host receptor that is recognized by S. maltophilia phage Bfi1 has not been 

determined. Understanding the host receptors needed for phage infection of Stenotrophomonas 

maltophilia may be informative in understanding why the host range is moderate. This could be 

tested by developing a mutant library of S18202 and determining which gene(s) is/are necessary 

for phage infection. 

Host receptor recognition is not the only component of host range specificity, but it is a 

major avenue to acquire resistance against viral infections (Rodriguez-Valera et al., 2009). 

Bacterial hosts can employ a variety of other mechanisms to block phage infection. These 

include: superinfection exclusion systems, restriction-modification systems, Argonaute proteins, 

CRISPR-Cas systems, abortive infection systems, and toxin-antitoxin systems (Dy et al., 2014). 

S. maltophilia phage Bfi1 was tested against P. aeruginosa, a related pathogen (Williams 

et al., 2010). Based on observations by Peters et al. (2015) we know that there are some phages 

that infect both S. maltophilia and P. aeruginosa. There are limited examples of phages with this 

wide of a host range, so we did not expect to observe plaque formation by Bfi1 on P. aeruginosa. 

Regardless of our expectations, it is medically relevant to test this because P. aeruginosa and    
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S. maltophilia are often found together in polymicrobial communities (Berg et al., 2005). Most 

notably these bacteria can coinfect the CF patient’s lungs (Graff and Burn, 2002).  

Other organisms that are phylogenetically related to Stenotrophomonas maltophilia, may 

also be susceptible to phage Bfi1, including those of the Xanthomonas and Xylella genera 

(Williams et al., 2010). Both these genera harbor debilitating plant pathogens of agricultural 

significance, such as black rot (affecting cruciferous vegetables like cabbage and broccoli) 

(Williams, 1980) and Pierce’s disease (a lethal grapevine disease) (Hopkins and Purcell, 2002). It 

may be significant to consider the effect of Bfi1 on these pathogens due to their economic and 

agricultural harm. 

 

Phage-Biofilm Interactions 

To the best of our knowledge, this is the first time the effects of a phage on S. maltophilia 

biofilms have been studied. From the biofilm assays, we demonstrated that the phage, at an 

MOI=103, inhibits the development of biofilms when it is introduced simultaneously with 

planktonic cells in culture (Figure 7B). This effect is even greater at MOI=105 (Figure 7C). At 

MOI=10 there was only a small effect on the planktonic cell culture of the bacteria (Figure 6A). 

There is no effect on the S. maltophilia biofilms at MOI=10 (Figure 7A). One explanation is that 

at a lower titer the host has enough time to begin to form phage-resistant biofilms. A higher titer 

of phages kills more cells before biofilm formation is underway, whereas a lower titer of phages 

allows more cells to begin to establish biofilms on the polyvinyl chloride surface. 
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Potential Use in Therapy 

At the time of writing this thesis, no S. maltophilia phages have been used in any form of 

therapy. There is still much more information needed to determine if this phage should be 

recommended therapeutically. First, it will be necessary to confirm that the phage is lytic. At this 

point, the phage has not been definitively shown to be lytic or lysogenic. This is a significant 

consideration because lysogenic phages are not considered good candidates for phage therapy. 

Lysogenic phages can convert hosts into lysogens, preventing these hosts from undergoing 

immediate lysis and making the host phage-resistant (Casey et al., 2018). 

Lysogens can also result in other phenotypic changes to their host that may enhance host 

virulence. For example, the Liverpool Epidemic Strain of P. aeruginosa contains multiple 

prophages that have been shown to confer enhanced virulence to their host (Salunkhe et al., 

2005). In the same way, the Vibrio phage CTXphi carries the cholera toxin, which is required for 

the pathogen, Vibrio cholerae, to trigger toxin-mediated epidemic cholera (Waldor and 

Mekalanos, 1996). 

A similar but separate concern in identifying phages useful in therapy is the horizontal 

gene transfer of virulence factors such as toxins (Pirnay et al., 2015). Genome sequencing may 

also allow us to rule out phages that carry toxins or antibiotic resistance factors. Even if a phage 

is not lysogenic, it may be risky to introduce a genetic element that could exacerbate an 

infection. Many bacteria, including S. maltophilia, are naturally competent and able to take up 

DNA from their environment (Berg and Martínez, 2015). Therefore, there is a risk that virulence 

genes could be acquired from a phage without lysogenic conversion. 
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Phage Resistance of Biofilms 

The steps towards effective therapies require evidence of the efficacy of a phage treatment. This 

research has shown that biofilm formation is significantly affected by S. maltophilia phage Bfi1. 

However, the biofilm experiments in this thesis were performed in vitro, and in a patient, S. 

maltophilia biofilms may respond differently to phage treatment. Research on other bacterial 

pathogens indicate that biofilms may demonstrate resistance to phage. An in vivo mouse study 

using P. aeruginosa strain PAK demonstrated that a phage treatment 2 h post-infection resulted 

in 100% survival. However, this survival rate dropped down to 20% at 6 h post-infection 

(Debarbieux et al., 2010). The data in this study suggest that immature biofilms may be more 

susceptible to phage than fully developed mature biofilms. Therefore, it is important to design a 

therapy that anticipates the different stages of a biofilm. Future research with the S. maltophilia 

phage Bfi1 can address this by assessing the phage’s effect on a mature biofilm, or through a 

time-course study of biofilm development. 

There are a few reasons to explain why a biofilm might confer viral resistance. In some 

cases, biofilms cause phage resistance by preventing phage from reaching the host cells. 

Between the lytic T7 phage and its host E. coli biofilm, the protection from phage was due to 

prevention of phage transport into the biofilm and through competitive inhibition of the phage 

receptor by curli polymers (an amyloid fiber network) (Vidakovic et al., 2017). In other words, 

the phage was adhering to the extracellular polymers instead of adsorbing to the cells. 

Phase variation observed during biofilm maturation may also be involved in phage 

resistance. Phase variation involves changes of protein expression within a bacterial population. 

As the biofilm-forming phenotypes will involve changes in the proteins expressed on the cell 

surface, the proteins required for adsorption may not be present on cells within a biofilm. As an 
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example of phase variation resistance, Bordetella species is 106 times more susceptible to phage 

BPP1 when pertactin, an adhesion protein, is expressed (Liu et al., 2002). This protein is 

expressed in much higher quantities during the virulent phase, when certain adhesins, toxins, and 

secretion systems are activated (Liu et al., 2002).  

 

Phage Therapy 

The research on phage therapy for treatment of bacterial infections has grown substantially in 

recent years. S. maltophilia phage Bfi1 may be useful in such treatments. While it may not 

demonstrate a broad host range, this phage could be tested in combination with other approaches 

to treat Stenotrophomonas infections. 

Using multiple phages in a phage cocktail (termed polyphage therapy) may offer benefits 

that a monophage treatment cannot. Use of phage cocktails can solve two difficulties presented 

to clinicians: the limited host range and the development of phage resistance. By combining 

multiple phages that each have a different host range, there are greater chances that a strain of 

bacteria will be susceptible to one or more of the phages in the cocktail. For example, Alves et 

al. (2015) reported that a phage cocktail in vitro led to 100% inhibition of Pseudomonas PAO1 

after 24 h. In contrast, Pseudomonas PAO1 began re-growing after 8 h following each 

monophage treatment. Phage resistance can evolve naturally among host bacteria through genetic 

mutation, but using multiple phages should reduce the possibility that bacterial mutants become 

multi-phage resistant. 

It is important to acknowledge that polyphage therapy is not a perfect solution. In a study 

by Gu et al. (2012), the authors demonstrated the development of phage-resistant mutants of 

Klebsiella pneumoniae strain K7, even when treated with a three phage cocktail. It should be 
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noted that regrowth of K. pneumoniae from individual phage treatments was detected between 6-

8 h, while regrowth from the phage cocktail occurred at 26 h. Although phage-resistance remains 

a concern in polyphage therapy, it is greatly reduced. 

Another consideration, which was highlighted earlier, is that not all phages are 

innocuous. Some bacterial viruses can enhance the virulence of their hosts. This same concern 

exists and could be heightened in polyphage treatments. For example, one phage may confer 

resistance to other phages in a cocktail. This concern can be alleviated by requiring substantial 

characterization of prospective phages prior to their application. Bioinformatic techniques, which 

allow for rapid identification of undesirable genetic elements, can begin to eliminate phages from 

use that possess such characteristics (Chan et al., 2013).  

Another emerging approach to phage therapy is the combination of phages with 

antibiotics to enhance phage virulence. The addition of a low dosage of the cephalosporin, 

cefotaxime with Escherichia phage phiMFP results a seven-fold increase in burst size compared 

to the phage by itself (Comeau et al., 2007). This phenomenon, referred to as phage-antibiotic 

synergy (PAS), has been demonstrated in phages of P. aeruginosa and Burkholderia cepacia 

complex, as well (Knezevic et al., 2013; Kamal and Dennis, 2015). It is difficult to identify the 

benefit and drawbacks for this approach currently, due to the limited data available.  

In the United States, the pathway for phage therapy development includes a series of 

steps that have not yet been surmounted. The current process for the development of 

conventional medicinal products may not be compatible with timely phage therapy development 

(Pirnay et al., 2015). But most experts can agree that phages used in therapies require a complete 

characterization of their physiology, genetics, and pharmacological potential (Forde and Hill, 

2018). Only after these steps, should the production and regulation of a therapy be considered. 
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Conclusion 

There are still important research questions that must be addressed before we can 

definitively recommend this phage for such a therapy. We need to show that the phage is lytic, 

that its genome does not carry virulence factors, and demonstrate that it can be useful in treating 

biofilms, either by itself or in combination with other phages or antibiotics. With a growing 

prevalence of S. maltophilia infections, and the steady rise of antibiotic resistance, there is an 

urgent need for alternative treatments of this pathogen.  
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