
DePaul University DePaul University 

Via Sapientiae Via Sapientiae 

College of Science and Health Theses and 
Dissertations College of Science and Health 

Spring 6-14-2019 

WAVELET ANALYSIS OF SHORT GLOBULAR HOMOLOGOUS WAVELET ANALYSIS OF SHORT GLOBULAR HOMOLOGOUS 

PROTEINS IN MESOPHILE AND THERMOPHILE PROKARYOTES PROTEINS IN MESOPHILE AND THERMOPHILE PROKARYOTES 

John B. Linehan 
DePaul University, jack.linehan.18@gmail.com 

Follow this and additional works at: https://via.library.depaul.edu/csh_etd 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Linehan, John B., "WAVELET ANALYSIS OF SHORT GLOBULAR HOMOLOGOUS PROTEINS IN MESOPHILE 
AND THERMOPHILE PROKARYOTES" (2019). College of Science and Health Theses and Dissertations. 
305. 
https://via.library.depaul.edu/csh_etd/305 

This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It 
has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized 
administrator of Via Sapientiae. For more information, please contact digitalservices@depaul.edu. 

https://via.library.depaul.edu/
https://via.library.depaul.edu/csh_etd
https://via.library.depaul.edu/csh_etd
https://via.library.depaul.edu/csh
https://via.library.depaul.edu/csh_etd?utm_source=via.library.depaul.edu%2Fcsh_etd%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=via.library.depaul.edu%2Fcsh_etd%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/csh_etd/305?utm_source=via.library.depaul.edu%2Fcsh_etd%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu


WAVELET ANALYSIS OF SHORT GLOBULAR HOMOLOGOUS
PROTEINS IN MESOPHILE AND THERMOPHILE

PROKARYOTES

A Thesis

Presented in

Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

June, 2 0 1 9

BY

John B. Linehan

PHYSICS DEPARTMENT

College of Liberal Arts and Sciences

DePaul University

Chicago, Illinois



2

ABSTRACT

This study looked to identify features related to thermal stability and function in the

amino acid chains of short globular proteins from mesophile and thermophile species,

within the constraint that the protein fold to perform a specific function. To do so

540 homologous pairs of proteins were studied. The amino acid chains were con-

verted to hydrophobicity signals by assigning a hydropathy score to each residue in

the polypeptide. The hydrophobicity signals were passed through a wavelet packet

transform and the resulting spectra analyzed. Bootstrapping was used to gener-

ate a control data set to determine if the true ordering of amino acids codes for

a non-random fluctuation in hydropathy along the length of the polypeptide. A

method to relate the spectral characteristics to the function of a protein making

use of gene ontologies was developed as a proof of concept. As a group, mesophile

and thermophile proteins have very similar total power. However, on a protein-to-

protein basis the thermophile contains a greater total power in 489 of the 540 pairs

(90.56%). The hydrophobicity scale used in this study is strongly correlated with

Gibbs free energy. The total power of a protein is also strongly correlated to the

Gibbs free energy, so that the thermophile protein contains a greater free energy

than its corresponding mesophile partner. It has been noted in the experimental

literature that thermophile proteins are stabilized by increasing their Gibbs free en-

ergy. The statistical measures skew and kurtosis were adapted so that a spectrum of

skew and kurtosis values were generated for each protein. These values indicate that

the fluctuation in hydropathy is non random and position dependent. Thermophile

proteins have larger power at frequency bands 21 through 31 (average intervals of

100 to 77 amino acids), and 44 to 56 (on average 46 to 19 amino acids), which

may contribute to their having greater total power in 90.56% of the pairs. Increases

to the fluctuation in hydropathy within certain lengths throughout the total amino

acid chain of a protein may be a means of raising the temperature at which a protein

denatures.
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CHAPTER 1

Introduction

1.1 Life in Extreme Conditions

A protein that maintains its conformation, or structure, through alterations in the

temperature of its environment is thermal stable [1]. The focus of this study is to

determine how the major driving force behind protein folding, the hydrophobic ef-

fect, is encoded into the linear amino acid chain of homolog short globular proteins

in organisms with non-overlapping optimal growth temperatures. This problem

is interesting since proteins with similar function are expressed in prokaryotic or-

ganisms occupying different ecological niches, characterized by drastically different

temperature regimes. This study looks to determine the way natural selection has

acted on the proteins of the thermophiles to allow for their occupation of ecological

niches inaccessible to their mesophile counterparts through a comparative analysis of

similarly(homologous) functioning proteins. Determining the relationship between

amino acid content, ordering, and the hydrophobic effect can help investigators de-

sign proteins that denature at higher temperatures.

Hydrophobicity describes a molecule’s response to suspension in a liquid water

solution. The molecule acts to change the hydrogen bond network of the surround-

ing water molecules [2]. If the molecule has neither hydrophobic or hydrophillic

qualities, then the surrounding water molecules adapt a cage-like structure around

the molecule. If the molecule is hydrophobic, the number of hydrogen bonds shared

by each water molecule decreases as the molecule folds over itself, occupying a larger

volume [2]. If the molecule is hydrophylic, the average number of hydrogen bonds

increases. This process is entropic, and the magnitude of hydrophobic effect is di-
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rectly related to temperature. The hydrophobic molecule rearranges the surrounding

water molecules by adjusting the hydrogen bond network [2].

The hydrophobic effect is temperature dependent, and acts to reduce the number

of conformations accessible to the protein [3]. In this way the total number of

configurations accessible to the linear amino acid chain is reduced, and the net

force of other interactions causes the protein to fold into its native state [3]. These

additional forces, excluded in this study, include the electrostatic and Van Der Waals

forces as well as hydrogen bonding [3].

Short globular proteins are composed of a single chain of bonded amino acids.

This chain folds over itself to reach its native state. The native state is the con-

formation, or folding pattern, coded by the DNA as a result of natural selection

[4]. The proteins used in this study come from two general groupings of organisms:

mesophile and thermophile. Mesophile proteins are taken from species of bacteria

living in environments with temperatures between 20 and 45 degrees Celsius (68

- 113 degrees Fahrenheit). Thermophile, and hyper-thermophile organisms, mem-

bers of the Domains Archea and Bacteria, occupy ecological niches characterized

by temperatures between 41 and 122 degrees C (105-251 degrees Fahrenheit) [1].

The proteins of mesophile organisms unfold, referred to as denaturing, in the ther-

mophile’s environment. The hypothesis of this study is that the net hydrophobic

effect, resulting from the hydropathy of each amino acid residue in the polypeptide,

is encoded into the linear amino acid chain through the ordering and prevalence of

each amino acid. The encoding is thought to reflect both the protein’s function and

thermal stability.

This study looks to see how the net hydrophobic effect is encoded into proteins

with similar function in prokaryotes occupying niches with dichotomous temperature

regimes. It may be that these proteins take close to or the same conformation, or

entirely different conformations to perform the same function. Through use of the

wavelet packet transform and spectral analysis measures, this study looks to identify

characteristics in the hydrophobic free energy of the primary chains of short globular

proteins.
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1.2 Protein Overview

The proteins used in this study consist of one long amino acid chain that folds

over itself to achieve a native conformation. Proteins are long strands of amino

acids linked by bonds formed between the amide group of one amino acid with

the carboxyl group of another. There are twenty amino acids, each composed of

an amide group (-CONH2) and a carboxyl group (COOH) [5]. The distinguishing

feature for these molecules is its residue (R), this feature dictates the amino acid’s

response in an aqueous solution. The residues are used to group amino acids into

five categories: the polar group (uncharged R group), negatively charged group,

non-polar aliphatic group, the aromatic group, and the positively charged group [5].

Figure(1) provides illustrations of each amino acid’s chemical structure. The amino

acids in this figure are broken up by group, and the reisude of each amino acid is

highlighted in pink [5]. The residue is the distinguishing feature of the amino acid

molecule.

A protein’s conformation is a complex pattern of folds and twists that can involve

interactions with other proteins and molecules expressed inside a cell. In this study

we focus on short globular proteins consisting of a single primary chain of amino

acids under 600 residues in length. The study ignores the possibility of interactions

that may occur beyond those of the primary chain with itself and a liquid water

solution. Protein structure is categorized in four tiers: the primary, secondary,

tertiary and quaternary. The primary structure consists of the indexed order of

amino acids from the n-terminal to c-terminal ends of the polypeptide. Proteins are

long chains of amino acids that bind to one another from carboxyl group to amide

group. The polypeptide chain starts with an exposed amide group and ends with an

exposed carboxyl group. This is the level of interest in this study. The secondary

level considers the folds and twists the primary chain makes. This level contains

two major features, alpha helixes and beta sheets. The alpha helix consists of the

primary chain coiling over itself to resemble a helix (like that of Euckaryote DNA).

If the primary chain folds itself into a sheet, so that the primary chain is folded into
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Figure 1.1: Structure of 20 amino acids. Includes the residue highlighted in pink.
Broken up into: polar group, negatively charged group, non-polar aliphatic group,
aromatic group, and positively charged group [5].
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similar lengths lying along a plane, it is in a beta-sheet.

The tertiary structure consists of the protein in its native state, the conformation

consisting of a three dimensional folded pattern containing within it the secondary

structure. The quaternary structure describes the shape taken by the protein when

its native structure interacts with other primary chains in their native state. In this

way the protein is made up of multiple primary chains, referred to as sub-units.

Proteins with these complex structures are excluded from this study.

1.3 Natural Selection and the Thermodynamic Hypothesis

Proteins are not randomly generated molecules. They are acted on by evolution

through natural selection to fold into a specific conformation that determines the

protein’s function. The term native structure, or native state, describes the pattern

of twists, turns, and folds a polypeptide takes that result in its ability to perform

useful activity. This state is only reached when the polypeptide is expressed in the

solution in which natural selection has acted on it. This concept is referred to as the

thermodynamic hypothesis [4]. The conformation of the protein acts as a constraint

for evolutionary processes. Mutations can increase interactions within the chain

resulting in increased internal packing. If mutations made in the genome result in a

protein that folds improperly, then this molecule is denatured, and does not result

in a phenotype on which the environment can act.

In this study a temperature adaptation is a characteristic that raises the dena-

turing temperature of a protein. This characteristic must be encoded by the DNA,

and thus is an evolutionary adaptation. Such adaptations allow a prokaryote to

occupy niches that require a higher optimal growth temperature, above 41 degrees

celsius. Temperature is considered to be a selective measure that either allows for or

restricts the development of microbial communities by acting on the proteins within

these organisms. In addition to this, individual organisms can implement various

molecular mechanisms in response to fluctuations in the temperature of the envi-

ronment [1]. These molecular mechanisms are crucial for the organism to maintain
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a lifestyle suited to high temperature environments, and go hand in hand with the

thermal adaptations made to their proteins [1].

Temperature adaptations go beyond thermo-tolerant proteins. For an organism

to live in any environment it must be able to handle changes in temperature. These

adaptations are critical for maintaining the cellular membrane and in preventing de-

naturation of DNA [1]. Mechanisms common to both mesophiles and thermophiles

include the expression of heat shock proteins. These proteins are termed chaper-

ones and aid in the folding of proteins immediately after transcription, and rescue

denatured proteins after activity or in conditions stressful to the organism. These

proteins consist of large complexes made up of multiple subunits lending to their

stability in times of stress [1].

To maintain the integrity of the membrane a single-celled organism will increase

the expression of branched fatty acids. The cell membrane is a lipid bilayer pop-

ulated by transmembrane proteins and lipid rafts that help the cell communicate

with its environment and exchange materials. To handle rising temperature bacte-

ria will alter the make up of the membrane by increasing production of branched

fatty acids [1][6][7]. The extent to which a bacteria can survive alterations to the

temperature of its environment depends on the types of branched fatty acids it is

able to produce. This makes it possible to identify differences in the make up of

mesophile and thermophile cell membranes, and can help to determine those fatty

acids that are produced by organisms that have adapted to life in high temperatures

[1][6][7].

The ability to both protect and repair DNA is necessary and apparent in all

domains of life. However demand is increased in thermophiles, since DNA and RNA

structure are temperature dependent [1]. To repair damaged DNA organisms utilize

homologous recombination [1]. This process is used to repair breaks in the DNA by

swapping nucleotide sequences between identical strands. Recombination events are

measured in terms of the ratio of nucleotide changes introduced by recombination

to point mutations. Higher levels of homologous recombination, ranging from 24 -

100 nucleotide changes to point mutations, have been observed in the thermophile
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genus Thermotoga [1][8]. Measures made in mesophiles range from 0.02 - 64 nu-

cleotide changes to point mutations. Generally instances over 10 for this measure

are considered to be high [1]. Higher rates of recombination have been observed in

thermophiles Pyrococcus furiosus [8], Sulfolobus islandicus [9], and Persephonella

[10][1]. This is evidence that thermophiles have increased rates of homologous re-

combination allowing for survival in higher temperature regimes.

Protective methods include raising the melting temperature of DNA through the

expression of thermostable proteins that bind to DNA [1]. This process has been

observed in Thermococcus Kodakaraensis to raise the melting temperature of DNA

by 20◦C [1][11]. Observations of Thermotoga species has shown that concentrations

of the polyamines (molecules containing an amide group at both ends) caldopen-

tamine and caldohexamine increase with temperature [1][12]. In addition, it has

been found that the expression of the reverse gyrase protein, which binds to DNA,

is predominately expressed in thermophile organisms. Knockout studies of this gene

show that growth rates are inhibited for knockout genotypes as compared to wild

type in Thermococcus Kodakaraensis. The study showed that knockout Thermo-

coccus Kodakaraensis were unable to grow at temperatures above 90◦C, where wild

types exhibit continued growth [1][11].

Since the thermophiles are living in environments of extreme temperature, the

entirety of their proteome (those proteins expressed by the organism), is thermally

stable at high temperatures. Adaptations to thermal stability have been made at

all levels or protein structure and are specific to the function of the protein [1]. The

proteins of mesophile and thermophile prokarytoes overall tend to be very similar

from analysis of the alignment of their chains. It is thought that thermophiles tend to

have a larger percentage of their primary chain composed of aspartic acid, glutamic

acid, lysine and arginine and decreased numbers of asparagine, glutamine, serine,

and threonine [1]. It is believed that this may show that ionic interactions between

amino acids contribute more to stability at higher temperatures than hydrogen

bonding [1]. At the secondary level, thermostable proteins tend to more α-helices

than mesophiles. At the tertiary level, thermophile proteins appear to be more
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tightly packed, with reduced entropy of unfolding [1].

Additionally, it has been noted that proteins most affected by thermal adap-

tation are involved with transcription factors for chaperones and other stabilizing

molecules. A transcription factor is a protein that controls the expression of a gene.

This has been shown by lowering the optimal growth temperature of Bacillus subtilis

168 by replacing its copy of the groEL, which codes for a chaperone, with a copy

from another extremophile living in mesophilic conditions [1][13]. As well, inserting

a heat shock protein gene from the thermophile species Caenorhabditis elegans into

E. Coli increased the range of its growth temperature 3◦C [1][14].

Prokaryotes have adapted a variety of mechanisms to handle fluctuations in

the temperature of their environment and other forms of stress. Although these

mechanisms are expressed in both mesophiles and thermophiles, alterations have

been made that reflect the conditions of their respective niches. For thermophiles

to live they must be totally adapted to living in these extreme conditions. By

comparing similar mechanisms, for instance the composition of the cell membranes,

between groups further insights can be made into adaptations that result in these

organisms occupying these niches.

1.4 Hydrophobic Effect

The hydrophobic effect is commonly used to described a molecules affinity for water.

Either the molecule is attracted to (hydrophilic) or repelled from (hydrophobic)

water molecules. Solutes that are polar and contain charged groups will be attracted

to water, and apolar solutes (even distribution of charges, so that there is no polarity)

will be repelled from water [2].

The mechanism behind the hydrophobic effect consists of two physical compo-

nents. The water molecules surrounding the molecule, or solvent, must be close

to their phase coexistence with vapor[2]. This has to do with the spacing between

water molecules and the likelihood of a hydrogen bond forming between any two

molecules. The second is that the water molecules are more attracted to one another
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than they are to the solute[2].

A large hydrophobic molecule will induce an interface around itself by re-

orienting the surrounding water molecules[2]. The solvation free energy of this

interface is proportional to the surface area of the molecule. Solvation free energy is

a macroscopic measure of the free energy required to transform a system from one

state to another[2]. The free energy is the amount of work the system did to reorient

the water molecules. The solvation free energy is calculated as the change in the

Gibbs free energy between two states, where the partition function Z is introduced

to quantify the effects of molecular interactions between water molecules and solute

∆G = G2 −G1 = −kBT ln(Z2/Z1) = −kBT ln < exp(−∆E/kbT ) >1≈< ∆E >1 [2].

(1.1)

The ∆E term is the difference in the energies of macro-states 1 and 2 where

< ... >1 indicates the equilibrium ensemble average over the micro-states of macro-

state 1 [2]. The Boltzmann weight exp(−E/kBT ) is proportionately equivalent to

the probability that a system is in a state with energy E in thermal equilibrium[2].

The term kBT has units of energy and is used to compare quantities as being large

or small. A system that has similar energy levels across its micro-states will have

a large entropy, this is indicated by small values for ∆E and < ∆E >. Since each

micro-state has a similar energy, there are many ways to configure the micro-states

for a given macro-state. Z, the partition function, is computed for a macro-state by

summing over all micro-states as

Z =
n∑
i=1

exp(−Ei/kBT ). (1.2)

In this way the solute rearranges the surrounding water molecules into an interface

[2].

Water molecules can form a maximum of four hydrogen bonds. In an ice state,

water molecules will have four hydrogen bonds. In liquid state, the average number

of hydrogen bonds drops to 3.4. Around a solute, water will adapt a cage like
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structure, and the number of hydrogen bonds will change depending on the nature of

the molecule, or in the case of proteins the volume of its conformation [2]. Therefore

the water molecules surrounding a hydrophobic molecule are close to their phase

coexistence with vapor, since the average number of hydrogen bonds of the water

molecules in the interface is less than 3.4 [2].

1.5 Hydrophobicity Scales

The hydrophobicity scale used in this study comes from the work of Kyte and

Doolittle [15]. This scale was determined using a computational method calculating

the average hydropathy of a moving segment along a protein from the n to c terminal

ends. These values were compared with the structures of those proteins to determine

if the average hydropathy of each section calculated agreed with data. For instance,

Kyte and Doolittle checked to see if a segment that was calculated to be hydrophilic

matched with structural data showing the segment to reside on the exterior of the

protein. The hydropathy of each amino acid was determined by taking the average

of three different scales. Two that used structural information, and one based off

the calculation of free energy [15]. The authors of the hydrophobicity scale made

adjustments to one of these scales, as well as their own calculated values. The

method and reasoning they followed is detailed below.

Hydrophobicity scales attempt to quantify the hydropathy, the affinity for water,

of an amino acid residue. Proteins are amphipathic molecules, meaning that they

have both hydrophobic and hydrophilic regions. Hydrophobicity scales are generated

off the assumption that the hydrophobic regions of the protein are found on the

interior of its native structure, while hydrophilic regions will reside on the exterior

[15]. Three methods are described to determine these quantities. One of which

involve the calculation of the hydrophobic free energy of an amino acid [15].

The hydrophobic free energy for an amino acid is determined by calculating the

work done to move the amino acid from water to another solution that has similar

properties to the interior of a folded protein. It is determined by the free energy,
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equations 1.1, 1.2, 1.3. The first method uses ethanol as a solvent representing the

interior of a protein. Kyte and Doolittle were critical of this approach. To calculate

the free energy one must consider ethanol to be a neutral (pH of 7), non-interacting

media (no internal forces due to interactions between particles). Kyte and Doolittle

did not feel that this criterion can be met by any substance and that interactions

between particles in the media will affect the hydrophobic free energies calculated.

This will prevent them from being an adequate measure of the hydropathy of each

amino acid, because these values will include the energy of the two solutions, water

and ethanol, mixing together [15].

The second method instead uses the transfer free energy for water from liquid to

vapor. This allows for the elimination of energy due to mixing, and is a simpler way

of computing the hydrophobic free energy. The energy added from the mixing of the

two solutes is computed as the product of the increased entropy and temperature.

To perform this calculation Kyte and Doolittle note the following. The transfer

of the residue between states has to occur at standard pressure and temperature.

This is done so that the entropy of mixing between states can be calculated. The

amino acid must be moving between equal volumes, so that the only interactions

considered in the free energy coefficient are due to the amino acid and the water. To

account for this in their hydrophobicity scale, Kyte and Doolittle made a correction

to the work done by Wolfden et al 1979 in computing the transfer free energy for

fourteen of the amino acids’ residues [15]. The correction consists of the following

adjustment. The free energy should be calculated from the relation of changing

volume of an ideal as

∆G = −RT ln(V2/V1). (1.3)

The formula used to implement this correction is

∆G = −RT ln(
NwVg
Ngφ

) = −RT ln(
18.07γ

φ
). (1.4)

Nw is the equilibrium mole fraction in aqueous phase, Ng is the equilibrium mole

fraction in vapor phase, and Vg is the volume of the vapor phase, at standard

temperature and pressure [15]. γ is the partition coefficient for that residue, and
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φ is the apparent molar volume, or the volume of the amino acid residue given the

condition of standard temperature and pressure. Kyte and Doolittle remark that

this equation for the given states allows for the calculation of free energy exclusively

for the amino acid residue and the water [15].

The third method looks at the actual position of each amino acid in the three

dimensional structure of a protein. This method utilizes the known structures of

proteins by taking the atomic coordinate of each amino acid in the structure. It

checks to see if any amino acid appears to have a preference for location, either

inside the conformation or on the outside. Those amino acids that are most likely

found on the exposed regions of a protein are considered to be hydrophilic, while

those amino acids found on the interior of the protein are considered hydrophobic

[15].

Chothia determined the ensemble average of amino acid location in 12 globular

proteins in 1976 [16]. These values are presented as the fraction of amino acids

that are more than the 95% and 100% buried. Meaning that for the total number

of occurrences of a given amino acid from n to c terminal ends of the protein, if

the amino acid is on the outside facing the solution, subtract one, if its facing

another amino acid add 1. Divide that number by the total number of amino

acids that are buried, for the fraction that are 100% buried, and by 95% for that

fractional percentage. If a specific amino acid occurs mostly on the exterior of the

conformation, this value will be negative, since we’ve driven that running sum into

the negative values. This indicates that the amino acid is hydrophilic. Large positive

numbers indicate that this amino acid might be forcing the proteins conformation

to fold inwards [15].

Kyte and Doolittle note that the hydropathy character of an amino acid is far

less impacted by the tenths and one hundredths places, than the ones place. Because

of this, Kyte and Doolittle made adjustments to their scale subjectively. The values

for valine, phenylalanine, threonine, serine, and histidine were taken as the average

value for the hydrophobic free energy, 95% and 100% buried values. Essentially they

were left alone after calculation. Kyte and Doolittle decided that glutamic acid,
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aspartic acid, asparagine, and glutamine all had the same hydropathic character,

and determined their values by taking the the average of all their values across

each scale. Tryptophan was assigned its values based off its normalized free energy

due to lack of structural information. Glycine’s value was determined by taking

the weighted value of all sequences measured in the data set, they felt it is neither

hydrophobic or hydrophylic. The hydropathy value for alanine was lowered, because

it was originally determined to be more hydrophobic than leucine. This decision was

made because leucine has four methyl groups and alanine has only one, Kyte and

Doolittle felt that leucine should be more hydrophobic because it has more methyl

groups. The value assigned to alanine is half the average of glycine and the original

value determined for alanine. For reference, lysine has a hydropathy value of 3.8,

glycine -0.4, and alanine 1.8. Proline was made more hydrophobic than its original

value because it has 3 methyl groups. Arginine was made the lowest point on the

scale. The values for tyrosine and leucine were negligibly raised, and the value for

lysine was lowered in the same way [15].

The Kyte-Doolittle hydropathy index is presented in figure 1.2. This index

assigns a value for the tendency of each amino acid to be either attracted to or

repelled from water. This scale is used to generate hydrophobicity signals for the

linear amino acid chains of homologous short globular proteins in mesophile and

thermophile proteins [15].

It should be noted that to date there are over 90 hydrophobicity scales avail-

able in the literature [17]. The scale used in this study was published in 1982 and

since then, new experimental and computational methods have been refined and

developed. These more modern scales have made use of advances in x-ray crystal-

lography, molecular dynamic simulations (i.e. increased computational power), and

Grid Inhomogenous Solvation Theory to name a few. However they have a tendency

to be designed around a very specific criterion, structure identification, for instance

finding α-helicies and β-sheets within the primary structure [17].

A hydrophobicity scale’s effectiveness at identifying secondary structure deter-

mines whether the authors of those scales make additional refinements to the values
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Figure 1.2: Kyte-Doolittle Hydrophobic Free Energy Scale

they come up with. This study is not focused on developing a method to identify

secondary or tertiary structures from a protein’s amino acid chain. Neither is it

focused on generating a molecular dynamics simulation to understand folding path-

ways. This study is designed to be a comparison between homologous proteins with

well-separated melting points to identify evolutionary adaptations in the hydropho-

bic free energy of a protein that raises its melting point within the constraint that

it must fold to perform a specific function. As such, the Kyte-Doolittle hydropathy

index takes into consideration those factors most important to this study. Even

more importantly it presents a line of clear reasoning I can follow to interpret my

data.
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CHAPTER 2

Methods

2.1 Introduction

This project’s focus is to identify aspects of the linear amino acid chain of short

globular proteins related to thermal stability and function. To do so, a method has

been developed that uses the amino acid chains of homolog short globular proteins

from prokaryotic organisms occupying ecological niches with different temperature

regimes. The primary chains of both organisms are converted to hydrophobicity

signals through a mapping using the Kyte-Doolittle hydropathy index that scores

the hydrophobic tendency of each residue. The proteins with similar function, one

from mesophile and the other from thermophile, are considered to be a homologous

pair.

The first step in this process is to develop a measure to classify one of the

members of a homologous pair as a thermophile, a protein expressed by an organism

living in an environment with a temperature regime between 41 and 122 degrees

Celsius [1]. This measure is a pair specific and distinguishing measure. Pair specific

in this study is used to describe features of a specific homologous pair. Distinguishing

is a measure that is different for each of the members of a homologous pair.

Next is to identify features common to both hydrophobicity signals within the

pair. These features are considered to be pair specific and similar, where similar

is a measure whose value is about the same between the members of a pair. To

determine if the features identified in this study thought to be related to the function

of a protein are function specific all pairs found to have the same pair specific and

similar features are grouped. A gene ontology is then performed on these groups

to determine if they carry out similar functions. Function Specific is a term used in

this study to describe those features found at the pair specific level that are similar.
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A pair specific similar measure is only function specific if it can be found through

a literature search using gene ontology that the pairs grouped by this measure have

similar molecular function. Finally a thermal specific feature is one that can be found

to have a similar value in one of the two temperature classifications used in this study

(mesophile and thermophile). This measure is pair specific and distinguishing.

To achieve these goals an algorithm has been developed considering both the

amino acid content of a protein, and the ordering of amino acids within the chain

(or hydrophobic content of each residue within the hydrophobicity signal, and the

ordering of the hydrophobic values within the signal). This project began with

hypothesis tests, scatter plots of average hydrophobicity, and the alignments of

proteins in a pair. It was determined that these methods are insufficient to classify

the temperature regime in which the proteins were expressed. Also, they did not

provide information related to the function of the proteins in a pair in comparison

to other pairs within the data set.

The next step implemented a wavelet packet transformation of the hydrophobic-

ity signals. Earlier work was carried out evaluating a number of wavelet variants,

in which the study concluded that the wavelet packet transformation presented the

best representation of localized hydrophobic content for the aims of this study. Spec-

tral analysis methods are then applied to the wavelet decomposed hydrophobicity

signals. An earlier study was carried out to develop a pair specific distinguishing

feature, but the measure presented in that study failed to distinguish thermophile

from mesophile.

2.2 Alignments

A first test of similarity is to compare the alignment of the amino acids in each chain

of the proteins composing a homologous pair. For every location in the sequence

we check to see if the same amino acid occupies the corresponding location in the

other chain. Because the lengths of the proteins are often different, we look for

sequence alignment within the length of the shorter of the two proteins. Alignment
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is computed as a percentage, for each location in the sequence where there is a

matching amino acid, a score of one is given, while a mismatch is given a score of

zero. The total score is computed as a sum of all the matches, and divided by the

length of the shorter of the two proteins.

2.3 Hypothesis Testing

Initial work evaluated several traditional methods of statistical analysis to compare

the hydrophobicity signals of the homologous pairs. This included using statistical

hypothesis tests to establish a baseline of general inferences. Tests included scatter

plots of the ratio of mean hydrophobicity, the Anderson-Darling test of normality

[22], and the two sample Kolmogorov-Smirnov test [18].

A quick measure of information content in the hydrophobicity signals is to find

the average hydrophobicity in each signal within a pair. These values were then

plotted against one another to make a scatter plot. The spread of values in this plot

can be used to qualitatively asses the correlation between the two values throughout

the entire data set. Homologous pairs with similar values will be clustered in the

scatter plot. Because the mean value is so often close to zero, the ratio of mean

hydropathy of mesophile and thermophile is excluded.

Figures 2.1 and 2.2 provide examples of typical scatter plots. The usefulness of

a scatter plot is that it allows for a comparison of the distribution of two values in

comparison to one another. Figure 2.1 provides an example of the spread of values

for two normally distributed values x and y. The number density of values decreases

as you move away from zero in any direction. The number density in the scatter

plot decreases with the percentiles of the normal distributions used to generate

this figure. Sixty eight percent of values in a normal distribution fall within one

standard deviation on either side of the expected value. The percentage of values

two standard deviations away is twenty six percent. Thus the number of values

either more negative or more positive than expected decreases moving away from

the center of the cluster.
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Figure 2.1: Scatter plots are useful tools to determine the spread of sets of values.
This figure presents a scatter plot of two normally distributed values. Scatter plots
emphasize the spacing between data points. Points closer together are more likely
related. In this case the values are normally distributed around zero.

Figure 2.2 provides an example of clusters. This figure was produced by gener-

ating three different normal distributions for both x and y. The spread of values in

x is determined by the standard deviation of the normal distribution. The spread in

y is determined by that variables normal distribution’s standard deviation. Scatter

plots allow for a qualitative analysis of the spread of values, their center, and if

sections of the data have similar values. In this example it can be seen that the

data appears in three groupings. These groupings have values dispersed around a

central value given by the mean of both the x and y normal distribution used to

generate them. The spacing between groups shows that they were generated by

different processes, in this case, by normal distributions with different means and

standard deviations. The statistical parameters used to describe these distributions

are the same, but their values are different.

The Anderson Darling (AD) test is a hypothesis test used to determine if a

set of values are normally distributed [22]. For normally distributed values, the

difference in the ordered values from smallest to largest is approximately uniform.
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Figure 2.2: This scatter plot presents an example of clustered data. Each of the
three clusters were generated from normal distributions with different means and
standard deviations. Scatter plots are useful to determine the number of groupings
that might exist in a data set. This plot was generated using six separate normal
distributions, three for the x variable and 3 for the y.

By assuming the test data comes from a normal distribution, the AD test is able

to measure the distance between consecutive values of the cumulative distribution

function for a data set. The test statistic is calculated as

A2
n = −n− Σn

i=1

2i− 1

n
[ln(F (Xi)) + (1− F (Xn+1−i))] (2.1)

where n is the number of values in the set, F (Xi) is the cumulative distribution

function evaluated at sample Xi, and X is the set of values sorted from lowest to

highest [23]. The decision to reject or accept the null hypothesis is determined by

comparing a p-value to a significance level (taken to be 0.05). The first step to

determine the p-value is to compute a test statistic

D = A(1 +
.75

n
+ 2.25n) (2.2)

with the assumption that the values in the data set are normally distributed [23].

The value of D determines the way the p-value is computed. Table 2.1 presents



32

D p-value

D ≤.2 1 - exp (−13.436 + 101.140D − 223.73D2)
.2 < D ≤ .34 1 - exp (−8.318 + 42.796D − 59.938D2)
.34< D < .6 exp (0.9177− 4.279D − 1.38D2)

D ≥ .6 exp (1.2937− 5.709D + 0.0186D2)

Table 2.1: Calculations of p-value given some value of D. The Anderson Darling test
of normality assumes that a set of values is normally distributed. The alternative
hypothesis is that the data are not normally distributed [23].

the different equations used to compute the p-value for the AD test based of the

D test statistic. The method of computing the p-value depends on the value of D.

Once the p-value is computed it is compared to a specific significance level (0.05).

If p is greater than 0.05 the null hypothesis that the data is normally distributed is

accepted [23].

The two sample Kolmogorov-Smirnov takes two sets of values and determines

whether or not they come from the same underlying distribution [18]. To do this

the test computes the empirical distribution functions for each of the data sets.

The empirical distribution function is a function that collects a running tab on the

number of values less than or equal to some value in the data set [24]. For example

take a set of values Y = Yi,...,Yn. Compute

En =
ni
N

(2.3)

where ni is the number of elements of Y less than or equal to Yi. The empirical

distribution is a step function, so that E(i + 1) > E(i). Perform the same routine

for a set of values X = Xi, ... , Xn to compute the empirical distribution function

for that data set [24]. Now find the distance between the empirical distribution

functions for Y and X as

D = max|EY (i)− EX(i)| (2.4)

to determine the distance between the values of the empirical distribution functions

for X and Y. The absolute difference in the empirical distribution functions of each
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N(0, 1) Gamma(1, 1) En(i) Eg(i) |En(i)− Eg(i)|
2.02 0.00 1 0.1 0.9
0.68 1.84 0.8 0.8 0
1.02 0.35 0.9 0.5 0.4
0.25 0.19 0.7 0.3 0.4
−1.01 0.23 0.1 0.4 0.3
0.01 0.14 0.5 0.2 0.3
−0.69 1.11 0.2 0.7 0.5
−0.06 0.45 0.4 0.6 0.2
0.05 1.99 0.6 1.0 0.4
−0.39 1.92 0.3 0.9 0.6

Table 2.2: Two sample KS Test example. Column 1 is normal distribution, column 2
is gamma distribution. Empirical distribution functions for both sets are calculated
(column 3 and 4) and the absolute difference taken (column 5).

of the two data sets is the test statistic. The p-value for the two sample Kolmogorov-

Smirnov test is the measure D which is compared to a significance level, α = 0.01.

If D is greater than α the null hypothesis that the two data sets have the same

underlying distribution is rejected [24].

For instance consider the following two sets of data generated from two differ-

ent distribution functions presented in Table 2.2. The first comes from a normal

distribution centered about zero with a standard deviation of 1. The second was

generated using a gamma random number generator with shape parameter one and

scale parameter one. The steps involved in calculating the two sample KS test

are provided in each column of the table. The first column shows the normally

distributed values. The second column shows the gamma distributed values. The

third and fourth are the associated empirical distribution functions. The fifth is

the absolute difference in the empirical distribution functions for each set of values.

The maximum value of the absolute difference in empirical distribution functions

0.9, well above the significance level of α = 0.01. Thus we reject the null hypothesis

that the two sets of values have the same underlying distribution.
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2.4 Signals and their Analysis

The proteins in this study are represented as hydrophobicity signals. This means

that for every amino acid in a polypeptide a signal was generated using the Kyte-

Doolittle scale. Each amino acid is represented by a numeric value from the Kyte-

Doolittle hydrophobicity scale rather than an abbreviation. It is this mapping that

creates a discrete signal. A signal is a recording of events that occur over some

period of time, known as a time series. For instance, a song consists of specific notes

played in an exact sequence over some period of time, which causes the listener to

react. Thus a piece of music is a signal with localized frequency information. The

hydrophobicity signals considered in this study are analogous to electronic signals.

The specific ordering of hydrophobicity values mimics the way time series informa-

tion is recorded in a manner similar to reading values off of a voltmeter, displayed

on an oscilloscope, or produced by a speaker. It is the index ordering of values in a

sequence that is considered to be the time component in the hydrophobicity signals.

Since proteins are amphipathic molecules, containing both hydrophobic and hy-

drophilic regions, it would be useful to determine localized hydropathy frequency

components. This study makes use of the wavelet transformation to do this.

Wavelets have been developed from other methods of signal analysis such as the

Fourier transformation. With the Fourier method, frequency components can be

extracted from a signal. A Fourier analysis of some piece of music could tell you

how often each note is played but does not provide any information regarding when

the notes were played. This changes the meaning of the signal, by only seeing

the amount of each frequency component, information regarding when each note is

played is lost. Two pieces of music may contain the same frequency components but

elicit different emotional responses in the audience based of the ordering of those

notes. This is the difference between hearing Don’t Stop believing by Journey and

Barbie Girl by Aqua.

For instance consider the signal presented in Figure 2.3. This signal is the

combination of frequency components given by



35

Figure 2.3: This figure displays a signal made up of a single function S with added
white noise. The first three terms in Equation 2.5 generate the shape of the function.
The noise contributes to oscillations about that function’s shape. The presence of
noise makes it look as if a highlighter has been used to extend the width of the
function. This width is referred to as the envelope of the function. The purpose
of this example is to show that through the use of the Fourier transform the noise
can be identified and removed. This should result in a decreased envelope in the
reconstructed signal.
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S ′ = 0.7 sin 12πt+ 0.7 cos 4πt+ 0.7 sin 2πt exp cos t︸ ︷︷ ︸
S

+ε (2.5)

where ε represents a white noise process. S ′ is the signal with noise and S is

the true signal without the ε term. This signal will be considered to be an audio

sample, containing very clear sine and cosine components. However the information

contained in the signal is obstructed by the presence of noise. In this example, the

Fourier transformation will be used to clean the signal, removing the fuzzy noise

from the audio. When played aloud the noise can act to essentially mask those

frequency components in S ′ due to S. The Fourier transformation can be used to

extract S from S ′. To do so one must compute the Fourier coefficients in the form

Y (k) = Σn
j=1S

′jW (j−1)(k−1)
n (2.6)

where Y (k) is the Fourier coefficient in frequency space, n is the length of the signal,

k is the wave number, and S ′ is the signal with noise [25]. Wn is an exponential

function defined as Wn = exp (−2πi/n). The exponential can be expanded in terms

of sine and cosine functions as exp (−2πi/n) = cos (2π/n) + i sin (2π/n). The sine

and cosine functions span all of space and are the bases used to extract frequency

components. In this way we sum over the entirety of the signal’s length to compute

each frequency component.

Figure 2.4 represents the Fourier transformation of the signal S ′. The figure was

computed using the fft function in MatLab. The x -axis is frequency and the y-axis is

the single sided spectrum of values. The Fourier transform is limited by the Nyquist

frequency, which is the upper most sampling rate of a signal (anything greater

results in oversampling, and this creates redundancy). The redundant information

has been excluded from this figure, this is indicated by the term single sided [25].

The components of each frequency was determined by taking the absolute value of

the Fourier transformation and dividing by signal length [25].

The figure shows the dominant frequencies, the S part of S ′. It also shows the

white noise process as those frequencies with components approximately zero. A
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white noise process is one in which there is no dominant frequency, each contributes

an equally small part to the signal. With the information presented in Figure

2.4 S can be recovered by setting those frequency components that do not have a

strong peak to zero, and performing the inverse Fourier transform. Only the first 25

frequencies are included in Figure 2.4. This is done because it is clear from Figure

2.3 that the signal only contains lower frequency components.

To filter the white noise from the signal, and improve audio quality, identify the

value of the lowest peak that represents a component from S (this is approximately

.15). Now set all frequencies with components less than .15 to zero and compute

the inverse Fourier transform given by

X(k) =
1

n
Σn
k=1Y jW

−(j−1)(k−1)
n (2.7)

where X gives back a signal close to S from S ′, and Y is the frequency components

computed with the Fourier transform [25]. In this way the Fourier transformation

can be used to determine the dominant frequencies contained in a signal. In this

example, noise was removed from a signal presented in Figure 2.3, the components

of that signal were analyzed using Figure 2.4. Those frequencies with components

below .15 were set to zero and the inverse Fourier transform was taken to produce a

scrubbed version of the original signal. Figure 2.5 contains the signal resulting from

the ifft function in Matlab and the original function S is included for comparison.

The cleaned signal contains fewer oscillations around the waveform produced by S

than the waveform produced in Figure 2.3. The envelope of the function has been

shrunk. The envelope is used to describe the width of the oscillations about the

shape of the function S, the first three terms in equation 2.5. The cleaned function

more closely matches S than the original function S ′.

The Fourier Transformation can be adjusted to provide localized information

through windowing. This method is useful for analyzing non-stationary signals,

those signals that have different statistical features throughout their lengths. For

instance, the average value of a signal can be computed along equally sized sections

of its length. Suppose a discrete signal is 25 elements in length. Then the average
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Figure 2.4: Results of the Fourier transformation on the white noise signal with
added frequency components. The x -axis is the frequency spectrum and the y-
axis is the amount that the frequency contributes to the signal. The sharp peaks
are those frequencies that were added into the signal, and the white noise are the
frequency components close to zero.
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Figure 2.5: Signal with noise removed using the Fourier and Inverse Fourier trans-
forms is in black. The blue waveform is the signal S ′. By using the Fourier transform,
white noise components were identified and excluded from the frequency spectrum.
These corrections result in a new signal with fewer oscillations about the main
waveform that more closely matches the true signal given by the first three terms
in equation 2.5. This can be seen as original signal appears to be a backdrop on the
new filtered signal.
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of each fifth of the signal can be computed without redundancy (i.e the first fifth

and second fifth contain information about different parts of the signal). If any

of these sections have a mean value that is different than the others, the signal is

non-stationary. If each section’s mean value is the same, the signal is stationary in

regards to the moving average taken over each fifth.

Since the Fourier bases are sine and cosine these signals span all space. In the

Fourier transform, one takes the convolution of a signal

∫ b

a
g(t)FWdt (2.8)

where g(t) is the signal, F its Fourier transform, and W the window that determines

the limits of integration. The Fourier coefficients consist of an infinite series of sine

and cosine terms that span all space. The choice of window is arbitrary, meaning the

user selects the shape and length of the window to apply. The wavelet transformation

generates localized bases, making it better suited to capturing frequencies in certain

sections of the signal. The wavelet performs a multiresolution analysis naturally.

Both methods provide the same information, the wavelet transformation presents a

structure within which the information is stored in a more useful form.

2.5 Discrete Wavelet

The discrete wavelet is a signal analysis tool used to resolve localized frequency

components within a signal. This study deals in one dimensional hydrophobicity

signals generated by mapping each amino acid of a short globular protein to its

corresponding hydropathy value as determined by the Kyte-Doolittle scale [15]. The

discrete wavelet transformation takes a signal and applies a low and high pass filter

to it. The application of each filter produces two new sets of coefficients. Each set of

coefficients is a frequency band containing a section of the span of frequencies from

zero to pi. Each coefficient within the frequency band represents the contributions to

the signal from each frequency within a section of signal. The filters are then applied

to the low pass frequency band, producing two new sets of coefficients, increasing
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resolution in the frequency domain [21][26].

The filters are given by

φ(x) =
√

2
∑
τ

hτφ(2x− τ) (2.9)

ψ(x) =
√

2
∑
τ

gτφ(2x− τ), (2.10)

where φ is the low pass filter, and ψ the high pass [21]. τ is the translation parameter,

moving the wavelet along the signal in discrete steps, and hτ and gτ are coefficients

representing the type of wavelet transformation used [26]. In this study the coef-

ficients represent the average value, and average difference of successive elements

of the initial signal. This study makes use of the Daubechies One (db1) wavelet

transformation bases, which takes the average value, and average difference in value

between successive elements of the initial signal, and its resulting frequency bands.

The application of the filters to the signal results in frequency bands, each contain-

ing a number of coefficients that is half the original signal length. The application

of the filters requires that the initial signal be of length power 2 (2n) [21].

In this study hydrophobicity signals are zero padded, meaning that zeros are

added to the end of the signal till they are of length power 2. Each of the frequency

bands resulting from a pass of the filters will contain coefficients affected by this edge

extension. The zeros can make regions of the signal appear to fluctuate less than they

actually do. This edge extension is uniformly applied to every hydrophobicity signal

in the data set. Coefficients within the frequency bands computed over the extended

edge can be identified and removed from the frequency bands. This study did not

remove coefficients due to time constraints, but zero padding is used uniformly

throughout the homologous pairs.

To achieve a multiresolution analysis, these filters are applied to the resulting

low pass frequency band. The functions for each filter are adapted as

φjτ (t) = 2
j
2φ(2jt− τ) (2.11)
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and

ψjτ (t) = 2
j
2ψ(2jt− τ). (2.12)

to represent application at a subsequent level. j indicates what is called the level of

the decomposition, where level indicates the resulting low and high pass frequency

bands after a pass through the filters. Passing the signal through the filters once

results in level j = 1. t is used to indicate the filters are now being applied to the

coefficients within the low pass frequency band. Figure 2.6 shows an example of

how the filters extract information from a signal [21].

The signal in Figure (2.6) is fourteen elements long. Each filter is applied to the

signal to extract localized frequency components along its length, without overlap.

This is achieved by fitting the signal to the bases defined by the transformation.

In this study, the average value is taken by the low pass filter, and the average

difference in successive values is determined by the high pass. The figure shows that

application of the filters takes a signal and generates two new sets of coefficients.

These coefficients represent the average value and average difference of successive

pairs along the length of the signal. This is indicated by the width of the bars for

the low and high pass filter coefficient values. The high pass filter contains seven

coefficients even though the visual makes it seem there are fourteen. The visual

shows the values used to reconstruct the original signal by taking the sum of the

coefficients in the low pass with the high. The first coefficient in the low pass filter

is added to the first coefficient in the high pass filter twice. The first coefficient of

the high pass filter is shown to account for this. For example add the first bar in

the high pass with the first bar in the low pass to reproduce the first value in the

original signal. To compute the second, one must take the negative of the high pass

coefficient and add it to the low pass value, returning a value of two, the magnitude

of the second value in the signal. This representation allows for the visualization of

the reconstruction process.

The wavelet is a short oscillation in time that rapidly collapses to zero outside

its support. Whereas sine and cosine span the entirety of the space, the wavelet

is finite. This allows for the wavelet to be stretched or compressed in space. A
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Figure 2.6: Application of low and high pass filters to a signal. The initial signal
is presented at the top of the figure. The application of the filters results in two
sets of coefficients. The first set is the result of the low pass filter. This study uses
the Daubechies’ One wavelet bases. The low pass filter finds the average value of
a pair of signal values, and the high pass takes the average of the difference. The
resulting sets are half the length of the original signal. The high pass filter shows the
values needed to reconstruct the initial signal. The original signal can be obtained
by adding the low and high pass coefficients.
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stretched wavelet is used to determine oscillations that occur over longer intervals,

while a compressed wavelet can capture rapid oscillations [21]. Since the wavelet’s

support is finite, it can be shifted across the length of the signal. In this case the

shift occurs in steps, so that the first coefficient in either frequency band resulting

from the initial application of the filters is taken over the first and second element,

third and fourth, fifth and sixth, and so on. This shows that the bases used is

orthogonal [21].

Each of the coefficients within and between frequency bands are orthogonal to

one another. In this context orthogonal means that each application of the filter

to the coefficients making up a signal comes with zero overlap. The coefficients in

each frequency band do not contain the same information about the signal. The

translation ensures that previous sections of the signal that have been covered in a

previous application of filters are not double counted as the filter moves along the

signal. This is a result of shifting, or translating, the bases of the transform. The

bases of the transform is the wavelet. This study uses the Daubechies 1 wavelet

basis. This bases finds the average value and average difference of a signal along its

length [21].

In this study the hydrophobicity signals were considered a pair between the

homologous proteins from mesophile and thermophile. To prevent oversampling, the

homologous pair was decomposed to one level above the maximum decomposition

level of the shorter of the two proteins. The maximum decomposition is determined

to be the number of applications of filters that results in a frequency band containing

a single coefficient. The Wavelet Transformation requires a signal to be of length

power 2. In this study hydrophobicity signals were zero padded. This means that

zeros were added to the end of a signal extending it to some length power 2. This

edge extension was used throughout the study.
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2.6 Wavelet Packet Transformation

The wavelet is a powerful tool in this investigation. The method provides informa-

tion about localized hydrophobic content. This offers the opportunity to look at

the hydrophobic content of the polypeptides in terms of specific regions within the

sequence, or more globally in terms of the information content within each similarly

sized section of the protein.

The Wavelet Packet Transformation (WPT) is a signal analysis tool used to

resolve localized frequency information [21]. The WPT is useful in that it performs a

multi-resolution analysis of the hydrophobic free energy signals, achieving a purpose

similar to a windowed Fourier Transform. It differs from the windowed Fourier

transformation by expressing the original signal in terms of localized bases. The

wavelet transformation determines localized frequency components by fitting bases

to the signal through the use of a wavelet. Fitting means that the wavelet forces

the values within a specific region of the signal to take on its shape, stretching or

compressing the form of the signal. This is achieved through a convolution with the

signal. Convolution means that the integral of the product of the initial signal with

the wavelet is taken with limits determined by the translation parameter τ [21].

In the WPT the same filters as given by Equations (2.9) and (2.10) are applied to

the original signal. This is followed by the application of the filters given by Equa-

tions (2.11) and (2.12) to both of the resulting frequency bands. Each application of

the filters is given by j. At each level there are 2j frequency bands, each containing

a set of coefficients quantifying the fluctuation in hydrophobic free energy within a

unit length along the protein. These frequency bands are referred to as leaves, or

nodes, of the WPT tree. The low and high pass filters are applied to the signal. This

results in two frequency bands each with their own set of coefficients. Subsequent

applications of the filters are applied to both frequency bands. This decreases the

range of frequencies in each band, while decreasing localization. The entire wavelet

packet tree structure is recorded.

Figure 2.7 details the steps necessary to perform a wavelet packet transformation
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on an example signal. The first step is to determine the length of the signal. If the

signal is not of length power 2, then it must be extended. In this study signals

are extended using zero padding, and an example is provided. The next step is

to determine the max decomposition level, which is the number of times the filters

need to be applied to result in leaf with a single coefficient. To apply the filters to

each frequency band, the set of coefficients within that band must be of power 2

as well. For longer signals that can be decomposed to higher levels, this requires

that subsequent applications of zero padding be applied to the frequency bands, in

addition to zero padding the signal. The orange brackets indicate the orthogonality

of the wavelet bases. A bases is applied to each of the brackets separately with zero

overlap. The filters with their specified coefficients g and h then act to take the

average and average difference of each of the bracketed values. This results in the

set of coefficients at the bottom of the figure.

Figure 2.8 presents the entire wavelet packet tree structure and the corresponding

frequency range contained within each leaf. A color coding scheme is used to help

explain the wavelet’s ability to extract localized frequency information, and the

orthogonality of the bases. The initial signal is presented at the top of the figure,

as indicated by j = 0. The first application of the low and high pass filters act

on the pairs of values indicated by orange brackets. The coefficients of the average

and average difference of these values are printed in orange and immediately follow

below. The range of frequencies captured by the application of the filters is indicated

by black brackets next to the filter value.

The second application of the filters act on the values bracketed in purple. The

coefficients resulting from the application of the filters are in purple, the frequency

spectrum range captured by the filters is in black. The level is indicated by j =

2. The first element of each frequency band corresponds to the first bracket of

its corresponding color and so on. At level j = 2 it can be seen that successive

application of the filters results in a rearrangement of the frequency bands, they are

no longer in rank order (from lowest to highest frequency). Each application of the

filters, increasing j, further deviates the order of leafs from rank order. To account
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for this, the terminal leaves of a WPT applied to the hydrophobicity signal were

placed in rank order using the otnodes function in Matlab.

The rank ordering of frequency bands is lost as the wavelet is stretched and

compressed through the application of the filters. A stretched wavelet captures lower

level frequencies while a compressed wavelet captures higher frequencies. When the

high pass filter is applied, it uses a compressed wavelet to capture high frequencies in

a section of the signal. To increase the resolution of that filters frequency spectrum,

both the low pass and high pass filters are applied. So that a new wavelet is applied

and stretched to a section of the signal that was just compressed. In this way the

rank ordering of frequency bands is lost.

The successive application of wavelet bases to the signal causes it to be reshaped.

This reshaping results in the subsequent applications of the filters to pick out fre-

quency ranges that deviate from rank order. For example, in Figure 2.8 it can be

seen that the deviation from rank order occurs at level j = 2. The coefficients within

the high pass filter at level j = 1 represent the compressed signal. Those coefficients

are then stretched when convoluted with the next iteration’s low pass filter. This

results in the low-pass filter picking out high frequency components.

At the third level of the decomposition presented in Figure 2.8 it can be seen

that increasing resolution in frequency space decreases resolution in physical space.

At the lowest level j = 3 each of the leaves capture a portion of the span from zero to

π of size π
8

in width. To achieve this resolution required that each coefficient of the

terminal nodes be computed over a fourth of the original signal with zero padding.

In addition to this, at every level there are coefficients that take into account edge

effects. Their values represent the addition of zeros and not characteristics of the

original signal. Other methods of edge extension are available, for instance period

wrapping, which repeats the signal until it is of length power 2. Zero padding

was used in this study since the amino acid chains of proteins are finite in length.

In addition to this, the study goal is to understand how the hydrophobic effect is

encoded into the linear amino acid chains to reflect thermal stability and function

through a comparative analysis of homologous proteins expressed in prokaryotes



48

with non-overlapping optimal growth temperatures. Since the same edge extension

is used for both the mesophile and thermophile proteins in each pair, the effects of

edge extension are uniformly represented in each of the homologous pairs.
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Figure 2.7: Steps to carrying out a Wavelet Packet Transformation of a signal. The
figure also includes descriptions of the maximum decomposition level, orthogonality
(orange brackets), and edge extensions. In addition to this, it presents a calcula-
tion of the coefficients in the first two frequency bands of each leaf resulting from
application of the low and high pass filters to the zero padded signal.
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2.7 Spectral Analysis

The conversion of the amino acid chains to hydrophobicity signals produces a dis-

crete time series that, when passed through the WPT, produces a spectrum of values.

These values represent the fluctuation in hydrophobic free energy along the signal.

This data type can be analyzed by looking at the mathematical analogs of physical

quantities such as energy and power. The energy of a signal is a means of measuring

its activity, or how quickly its values change. This quantity is traditionally applied

directly to the signal, where the signal takes the form x(t) over all space. To mea-

sure the energy in a signal define an interval of time such that −T ≤ t ≤ T . Then

integrate so that

Energy of x(t) =
∫ T

−T
x2(t)dx (2.13)

determines the energy of the signal [20].

The energy of a signal can be informative so long as the signal is of finite length

and non-stationary, meaning that different sections of the signal have unique statis-

tical properties. Often a signal is stationary, it has the same statistical properties

throughout its length, and can be considered to come from a signal that spans

throughout time. In this case, the energy of the signal will be infinite [20]. To

adjust for this, one can compute the average energy per unit time, or power of the

signal within a given region, or over its entire length. Mathematically this value

gives us units of energy per unit time, or watts which is the unit of power[20]. In

the continuous case the power is computed as

Power of x(t) = lim
T→∞

1

2T

∫ T

−T
x2(t)dx[20]. (2.14)

The spectral analysis used in this study examines the terminal nodes of the wavelet

packet decomposition. Figure 2.8 is a representation of the wavelet packet tree

structure where the lowest level, the leaves of the wavelet packet tree, are the av-

erage fluctuation in the difference in hydrophobic free energy per residue per unit

width. At this level, we apply the concept of power from signal analysis to these

coefficients. This measures the average variance in the fluctuation of the difference
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Figure 2.8: This figure goes through the application of both the low and high pass
filters for a signal using the db1 transformation. This transformation results in the
average and difference of sections of the signal. The WPT is limited by the Nyquist
frequency, for instance if a signal contains frequency components from zero to 2π,
the WPT measures components from 0 to π. The orange brackets indicate the
orthogonality of the wavelet bases on the first pass. The values bracketed in orange
are used to compute the first sets of coefficients. The purple brackets indicate the
range of values used to compute the frequency bands at j = 2, the second level.
Red indicates those values used to compute the leaves of the third level of the
decomposition. Through the use of color coding and bracketing the location of each
frequency component can be identified at each level and between leaves. It can be
seen that as resolution is increased in frequency space, resolution is lost in physical
space.
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in hydrophobic free energy per residue per unit length squared. This measure can be

used to compare the fluctuation in hydrophobic free energy per unit length, across

all unit lengths (or frequencies) throughout the entirety of the signal. Plotting these

values in respect to frequency ordering allows for a qualitative comparison of how

the fluctuation of hydrophobic free energy changes with frequency band.

In this study, we compute the power of the wavelet packet tree coefficients two

levels above the maximum decomposition level. The method used here is imple-

mented in the same manner as that presented in Equation (2.14), which deals with

the power of the actual signal, not its frequency components. The extension of power

from time series to frequency was shown by the French mathematician Marc-Antoine

Parseval for the Fourier transform. Parselval’s theorem shows that the integral of

the square of a Fourier transform coefficient is the same as the integrated square of

the original function. Parselval’s theorem can be extended to the WPT to show that

the integrated square of each frequency band is the same as the integrated square

of the original function.

The sum of the power series coefficients gives the total power of the signal at the

WPT level. This measure is interesting and different from power at each frequency

in that it is independent of the ordering of the values within the original signal.

2.8 Spectral Methods as Measures of Similarity and Differences

Statistical tests were also run on the terminal nodes of the wavelet packet tree.

These tests were skew and kurtosis. Skew is used to determine if there are regions

of the hydrophobicity signal contributing more to the power of that frequency than

others. The skew of each terminal node can then be compared to one another to see

if some frequency bands have larger contributions being made by certain sections

of the hydrophobicity signal [27]. Kurtosis was used to compare the number of

outliers present in each terminal node’s coefficients with one another [27]. In this

study, skew, kurtosis, and power are functions of frequency. In this way, additional

information is provided for the frequencies within the hydrophobicity signals.
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Skew measures how spread out the values in a set are from the average. This

value was calculated for each leaf of the WPT using the skewness function in Mat-

Lab. This calculation takes the form

s =
E(x− µ)

σ3
(2.15)

µ is the average of the set of values x, and σ is the standard deviation of x [27].

Since each of the coefficients within the leaf (frequency band) are determined by

localized wavelets, the skew can be used to determine the balance of the frequencies

along the length of the signal [27].

The kurtosis of the terminal leaves was computed as well. This measure was used

to determine if the power measured at some frequency was influenced by outlying

values. Kurtosis is computed as

k =
E(x− µ)4

σ4
(2.16)

where µ is the mean value of the set x, σ is the standard deviation of x, and E

indicates the expected value [27]. The kurtosis of a normal distribution is 3, for a

set x with a larger number of outlying values k > 3 and with fewer outliers, or a

sharper curve k < 3 [27].

Because the wavelet has a value of zero outside its support, and is translated

across the length of the signal in non-overlapping steps, each of the coefficients

within the frequency bands are orthogonal to one another, meaning they contain

information about different parts of the signal. This relationship holds with succes-

sive applications of the filters so that each of the frequency bands at every level are

orthogonal. Because of this, the skew and kurtosis of each band can be taken as a

function of frequency. This results in a skew and frequency spectra for each protein

in the data set.

The power of each terminal leaf of a WPT decomposed hydrohpobicity signal

was computed. Both proteins in the homologous pair were decomposed to the same

level so that they would have the same number of terminal leaves. Each terminal

leaf contains the amount of a certain frequency range present in a portion of a signal.
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By finding the square of each coefficient in the leaf, and then taking the average,

the power within that frequency range for the entire signal is calculated.

To determine how similar the power is at each frequency band within the ho-

mologous pair, the absolute difference was taken between the proteins in the pair

at that frequency. If the difference in power was less than .99 joules, the value was

recorded. The same procedure was performed on the bootstrapped control data

(detailed in the following section). In this way, the number of homologous pairs

that have similar power at any given frequency range within the entirety of the data

set can be determined and compared with control data testing for the effects of

amino acid ordering. In addition to this, the total power of a signal was computed.

This measure is determined by summing the power of every frequency band, and is

independent of the ordering of amino acids, and decomposition level.

2.9 Confidence Intervals

A control data set was constructed to determine the effect of amino acid ordering on

the wavelet packet decomposed hydrophobicity signal. This was done by generating

299 permutations of each signal, maintaining amino acid content while removing

position dependence. The sequence of hydrophobicity values was reordered using

the randperm function in MatLab. Each permutation was determined using the

Mersenne Twister pseudo-random number generator.

Each of these 299 permutations is passed through the WPT, and the coefficients

at each frequency recorded. These data were then treated to the same spectral anal-

ysis methods as applied to the “native” ordering of amino acids. For instance, each

frequency band had 299 permutations of power along the entirety of the decomposed

signal.

These control data were then used to construct confidence intervals. To deter-

mine the confidence intervals, histograms were generated of the values computed at

each frequency band and were used to eliminate those distributions that by visual

inspection did not fit the data. Cumulative distribution functions were generated
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for the best looking fits to the true distribution, and used as the expectation value

in a chi-square test against the values recorded at each frequency band. In this way,

the distribution function was tested against each of the bootstrapped spectra. The

best fitting distribution was determined to be the one that accepted the chi square

test most often.

Three spectral analysis methods were applied to the terminal leaves of the WPT

of each hydrophobicity signal, power, skew and kurtosis. The Gamma distribution

was determined to be the best fitting CDF to describe the distribution of power

measured at each frequency band for the bootstrapped data. For skew, the normal

distribution fit the bootstrapped data. For kurtosis the lognormal distribution was

used to construct confidence intervals.

Expectation values and confidence intervals were computed in Matlab based of

the best fitting distributions as determined above. This was done using the fitdist

distribution function to generate descriptive parameters for the distributions. The

paramci function was then used to determine the upper and lower level confidence

intervals at each frequency.

A second control data set was generated where the number of iterations was

unique to each hydrophobicity signal. Each signal was shuffled ten times its length

to generate a sample of the set of all possible amino acid combinations within the

length of that protein. The purpose of this bootstrapping routine was to determine

the distribution function of the power for each frequency band.

2.10 Summary

This study focuses on identifying adaptations made to the linear amino acid chains

of short globular proteins related to thermal stability in prokaryotes with non-

overlapping optimal growth temperatures, within the constraint that the protein

must fold to perform a specific function. In this way alterations made to the hy-

dropathy of a protein related to thermal stability are identified. The analysis meth-

ods aim to identify pair specific similar and pair specific distinguishing features.
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Pair specific similar features are thought to be due to the homology of function be-

tween the proteins in a pair. Identification of these features leads to the formation

of subgroups that can include all pairs with that feature. These groupings are then

used to perform a gene ontology to determine if the feature is function specific. Pair

specific distinguishing features are thought to be a result of thermal adaptation.

The first method used in this study was an alignment of the amino acid chains

of the proteins composing a homologous pair. This was followed by tests of the

hydrophobicity signal of each amino acid chain. The tests used included a scatter

plot of the mean hydropathy of each signal pair, and the two sample Kolmogorov-

Smirnov test. The Anderson Darling test was used to see if the content of hydropathy

values in either hydrophobicity signal were normally distributed. These tests were

followed by the application of the Wavelet Packet Transformation to each of the

hydrophobicity signals in a pair. Spectral analysis methods were then applied to

the resulting frequency bands produced by the transformation. Spectral analysis

methods included finding the power of each frequency band, and then comparing

the power of each band in rank order between the two members of a pair to determine

if any had similar values. The same procedure was performed on the bootstrapped

control data to determine a baseline likelihood of randomly encountering a matching

power for some frequency band across the data set. Next, the total power was

computed and compared between each of the members of a pair. This measure

is invariant of the ordering of hydropathy values in a signal. Confidence intervals

were determined for each frequency band’s power for each protein in a pair using

bootstrapped control data.

The skew of each of the frequency bands was determined, and confidence inter-

vals were calculated using bootstrapped control data. The kurtosis of each frequency

band was determined, and bootstrapped control data was again used to calculate

confidence intervals. In both the skew and kurtosis, confidence intervals were cal-

culated to determine if the ordering of hydropathy values in the signals determined

the calculated value.

Figure 2.9 presents a flow chart consisting of the analysis methods used in this



57

Figure 2.9: A flow chart of the analysis methods is presented. This chart details
the methods used, and the experimental groups. The methods include alignment,
scatter plots of mean hydropathy, the Anderson Darling test of Normality and the
Two Sample Kolmogorov-Smirnov test. Spectral Methods were applied to the results
of a wavelet packet transformation and include the total power of each signal, the
power of each frequency band, and the skew and kurtosis of each frequency band.

study. Largely the methods can be broken up into two groups, statistical and hy-

pothesis tests, and spectral analysis methods. The study uses both the amino acid

chains of the proteins, the hydrophobicity signals themselves, and the frequency

bands that result from a wavelet packet transformation applied to the hydrophobic-

ity signals. In Chapter 4, these methods are applied to the hydrophobicity signals

of short globular proteins from mesophile and thermophile prokaryotes.
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CHAPTER 3

Data Overview

3.1 Overview

The data used in this study consists of the primary amino acid chains of homol-

ogous proteins in mesophile and thermophile prokaryotes. The polypeptides were

converted to hydrophobicity signals by mapping each amino acid residue to a hy-

dropathy value using the Kyte-Doolittle scale, maintaining the ordering of the amino

acids. The species and protein function were unknown at the start of the study and

were queried using Basic Local Alignment and Search tool from the National Center

for Biotechnology Information through packages in R. In this way, the species and

protein name were recorded. With this information, a gene ontology was performed

on a subset of grouped homologous pairs.

This study consists of a comparative analysis of homologous pairs of proteins. In

total there are 1080 short globular proteins analyzed in this study. These proteins

are used to construct 540 homologous pairs, so that both mesophile and thermophile

classifications contribute 540 proteins to the data set. The pair is constructed so

that a procedure can be developed to identify characteristics in the linear amino

acid chain related to thermal stability and function.

Both pre and post processing steps are performed on the data. These steps

are used to test common assumptions made about thermal stability present in the

literature, evaluate the use of spectral analysis methods and the results they produce,

and determine what organisms contributed to the data set.

3.2 Data Structure

The proteins used in this study are short globular proteins, consisting of a single

primary amino acid chain less than 600 amino acids (residues) in length. The
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proteins in this study were collected by collaborators at the University of Colorado

Denver. The data were stored in two text files, one containing the amino acid

sequence of all mesophile, and another containing the amino acid chains of the

thermophiles. Amino acids chains were separated by white space within the text

file. The files were organized so that the first amino acid chain in the mesophile

data set was the partner of the first amino acid chain in the thermophile text file,

and so on.

The data consists of various species of Bacteria and Archea. This information

can allow for species specific groupings and better contextualizes the results of this

study. This information also allows for the implementation of a Gene Ontology.

Table 3.1 presents those species contributing proteins to the thermophile data set.

Six species of prokaryotes were identified, four from domain Bacteria, and two from

domain Archea. In total there are 540 thermophile proteins. There are 16 proteins

in the data set that could not be matched to a species or genus. For instance one of

these proteins is classified as ”RecName: Full = Uncharacterized protease MJ0090”.

There are 98 proteins that could only be associated with the genus Thermotoga.

Overall 426 of the proteins have both species and genus information associated with

them.

Table 3.2 presents those species contributing proteins to the mesophile data

set. Thirteen species of bacteria were identified. There are 540 proteins in the

mesophile data set. These thirteen species contribute 310 proteins. There are 7

entries containing only the genus of the organism a protein comes from. These 7

genus contribute 208 proteins to the data set. There are 22 proteins that could

not be associated with a species or genus. For instance one of these proteins in the

mesophile data set is classified as ”MULTISPECIES: NADH-quinone oxidoreductase

subunit E”.
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—Thermophile Species— —Domain— —Number of Proteins—
Pyrococcus abyssi Archea 62
Aquifex aeolicus Bacteria 197

Thermotoga maritima Bacteira 128
Thermotoga(unclassified) Bacteria 98
Thermotoga neapolitano Bacteria 1

Thermotoga naphthophila Bacteria 1
Methanocaldococcus jannaschii Archea 37

No Species Info — 16

Table 3.1: This table displays the Species and Domain of each of the thermophile
proteins. The third column contains the number of proteins each species contributes
to the data set. The best represented species comes from Aquifex aeolicus which is
a member of Domain Bacteria. Thermotoga is a genus of bacteria and is only used
because no further species specific information was provided by the Blastp query.

3.3 Amino Acid Sequencing

This study relies on the biochemistry of protein sequencing. The general idea behind

sequencing a protein consists of three parts. The first is to determine the amino

acid content within the polypeptide. This is done by denaturing the protein at high

temperatures and then hydrolyzing it [28]. Hydrolyze means to separate a molecule

into its constituent components by stress in water. The next step is to determine

the n-terminal amino acid. Polypeptides are formed by linking the amide group of

one amino acid to the carboxyl group of another, producing a water molecule. In

this way, the start of an amino acid sequence is considered to be the exposed amide

group [28].

The process of identifying the n-terminal amino acid is known as Edman degra-

dation. This entails removing one amino acid from the polypeptide at a time. Dabsyl

chloride is commonly used to perform this operation. The process is not 100% ef-

ficient, and for proteins containing more than 50 amino acids, an additional step

is made [28]. The protein is cleaved into smaller pieces through a cleavage enzyme

that acts at certain sites along the polypeptide chain. A common cleavage enzyme is

Cyanogen bromide which splits the polypeptide on the carboxyl side of a methionine.
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—Mesophile Species— —Domain— —Number of Proteins—
Mycobacterium tuberculosis Bacteria 24

Bacillus halodurans Bacteria 164
Streptococcus pneumoniae Bacteria 46

Streptococcus Bacteria 12
Escheria coli Bacteria 55

Proteobacteria Bacteria 45
Bacillus Bacteria 128

Corynebacterium Bacteria 15
Corynebacterium glutamicum Bacteria 11

Mycobacterium shimoidei Bacteria 1
Bacillaceae Bacteria 2

Bacillus okuhidensis Bacteria 2
Shigella sonnei Ss046 Bacteria 2

Shigella flexneri Bacteria 1
Enterobacter hormaechei Bacteria 1

Enterobacteriaceae Bacteria 5
Escherichia fergusonii Bacteria 1

Salmonella enterica Bacteria 1
Cronobacter sakazakii Bacteria 1

Enterobacterales Bacteria 1
No Species Info — 22

Table 3.2: This table displays the Species and Domain of each of the mesophile
proteins. The third column contains the number of proteins each species contributes
to the data set. The best represented species come from Bacillus. This study
differentiates between Bacillus and Bacillus halodurans so that proteins are not
over counted. Bacillus is a genus of bacteria, and is only used because no further
species specific information was provided by the Blastp query.
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This step is followed by the use of a second cleavage enzyme that acts at another

amino acid [28]. Edman degradation is followed by peptide overlap. The strands

produced by the various clevage enzymes will contain overlaps in the amino acid

sequence. By aligning these overlaps, the full sequence of the polypeptide can be

deduced. The various segments are separated using chromotography. This process

causes different sized molecules to move in solution at different speeds, separating

them [28].

3.4 Polypeptide Chains

The total power of a signal is dependent on its length. To determine if this measure

is biologically significant as a means of distinguishing mesophile from thermophile,

it is necessary to know both the length of the proteins in the data, and the difference

in the lengths of each protein in a homologous pair. The proteins used in this study

are under 600 amino acids long, and only one protein is less than 50 amino acids

long. Table 3.3 contains the number of proteins that fall into a range of lengths.

Most proteins in the data set are between 300 and 350 amino acids in length.

Figure 3.1 shows the distribution of the difference in the lengths of amino acid

chains in a homologous pair. This difference was calculated by finding the length of

the thermophile and subtracting from it the length of its corresponding mesophile

protein. The histogram appears to be normally distributed, however the distribution

deviates from normality at its tails. The Anderson Darling test showed that this

data is not normally distributed. The median of this distribution is -1 amino acid,

meaning that the mesophile is one amino acid longer then the thermophile. The

skew is -0.05, while the skew of an ideal normal distribution is zero. Since the skew

is so close to zero the distribution of the difference in length is balanced. Further

more, the 95 percentile of the absolute value of the difference in length is 15 amino

acids. 513 of the pairs are less than 15 amino acids different in length. The 75

percentile is 8 amino acids, and the 50 percentile is four amino acids. Since neither

thermophile or mesophile groupings have a tendency to be longer than their partner
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protein, the total power of a hydrophobicity signal is computed. In addition to

this, the histogram shows that increasing the length of a protein does not add to

its thermal tolerance within the constraint that the protein must fold to perform a

specific function. Percentiles were determined using the prctile function in Matlab.

Table 3.4 presents the one letter code for amino acids. It appears that cysteine

(C), methionine (M), asparagine (N), proline (P), arginine (R), leucine (L) and

tryptophan (W) contribute equally to the total length of mesophile and thermophile

proteins. Figure 3.2 presents the average percentage each amino acid contributes to

the length the mesophile and thermophile proteins. These values were computed by

determining the amino acid content in each protein in the data set. In this way the

percentage of length occupied by a specific amino acid is calculated for each protein.

The average percent length is taken for all mesophile proteins and all thermophile

proteins. The x -axis is the amino acid and the y-axis is the average percentage

length for thermophile and mesophile.

It has been noted that thermophiles tend to have an increased number of aspartic

acid (amino acid one letter code: D, KD scale value: -3.5), glutamic acid (E,-3.5),

lysine (K,-3.4), and arginine (R,-4.5), in their amino acid chains as compared to

mesophiles [1]. In addition to this it is believed that they have decreased numbers

of asparagine (N,-3.5), glutamine (Q,-3.5), serine (S,-0.8), and threonine (T,-0.7) [1].

Because of this, the amino acid content of each protein was computed, and taken

as a percentage of that proteins total length. The average percent length was then

computed for each amino acid within mesophile and thermophile groupings. This

data is displayed in Figure 3.2.

The average content of the four amino acids thought to be over expressed in ther-

mophiles follows. Aspartic acid on average makes up 5.71% of a mesophile protein

and 5.04% of a thermophile. Glutamic acid had a value of 7.88% in mesophiles and

9.70% in thermophiles. Lysine makes up on average 6.02% of mesophiles and 9.14%

of thermophile chains. Arginine makes up 5.50% of mesophile chains and 5.58% of

thermophiles. For those amino acids that are thought to make up a smaller per-

centage of the chain it was found that: asparagine makes up 3.52% of mesophiles
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and 3.51% of thermophiles. Glutamine makes up 3.65% of mesophiles and 1.95%

of thermophiles. Serine makes up 4.95% of mesophiles and 4.40% of thermophiles.

Threonine makes up 5.52% of mesophiles and 4.23% of thermophiles.

This study shows that aspartic acid on average composes a smaller portion of

the amino acid chain of thermophiles than originally thought. Arginine was found

to have the same level of expression in thermophiles as mesophiles. Glutamic acid

and lysine appear to support the original conclusion. Glutamic acid makes up 1.81%

more of the average thermophile amino acid chain and lysine makes up 3.11% more of

the thermophile chain. These data show that on average aspartic acid and arginine

do not make up a significantly larger portion of a thermophile’s amino acid chain in

comparison to a mesophile.

Of those amino acids thought to be under-expressed in thermophiles, aspargi-

nine on average made up the same amount of a proteins length in both mesophile

and thermophiles. The number of serine amino acids in a amino acid chain ap-

pears to be very similar between the two gropus, with a difference of 1.55% between

mesophile and thermophile. Threonine on average makes up 1.24% less of a ther-

mophile’s amino acid chain than a mesophile’s. Glutamine makes up 1.71% less of

a thermophile’s amino acid chain than it does a mesophile’s.

This data set shows that of those amino acids thought to be more prevalent in

thermophiles, only glutamic acid and lysine made up a larger percentage of the total

amino acid chain length in thermophiles. For those amino acids thought to make up

a smaller portion of a thermophile’s protein, the largest difference was found to be

in glutamine. Asparagine on average makes up the same amount of a thermophile

and mesophiles’ chain length. Serine and threonine made up only slightly less of the

average thermophile amino acid chain than in mesophiles. Comparing the average

amino acid content of the thermophile proteins to the mesophile proteins shows that

amino acid content is fairly similar between the two groups. There is a small amount

of variation in the amino acid content, however this difference is below 5%.
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Figure 3.1: Histogram of the difference in amino acid chain length between the
mesophile and thermophile members of a homologous pair. The histogram appears
to be normally distributed, however it deviates from normality in its tails. Use of the
Anderson Darling test confirms this. The skew of the histogram is -0.05. There is
no trend for either a mesophile or thermophile protein to be longer than its partner
in the homologous pair. Length does not appear to be a feature related to thermal
stability.
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Length Range (Residues) Mesophile Proteins Thermophile Proteins
0-50 1 0

50-100 23 26
100-150 57 52
150-200 74 79

200 - 250 63 62
250-300 66 70
300-350 82 77
350-400 46 48
400-450 56 60
450-500 43 43
500-550 18 15
550-600 11 8

Table 3.3: The length of each protein in amino acids is presented. The first column
is a range of values for the number of amino acids in the chain. The second column
is the total number of mesophile proteins that fall within these lengths. The third
column is the number of thermophile proteins that fall within these lengths.

Figure 3.2: Average percentage chain length of each amino acid across mesophile
and thermophile groupings. X and U are used to indicate that the amino acid at
some location is unknown, there are only two of these in the entire data set.
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Alanine A
Arginine R

Asparagine N
Aspartic acid D

Cysteine C
Glutamic acid E

Glutamine Q
Glycine G

Histidine H
Isoleucine I
Leucine L
Lysine K

Methionine M
Phenylalanine F

Proline P
Serine S

Threonine T
Tryptophan W

Tyrosine Y
Valine V

Table 3.4: One letter amino acid code. The letters X and U are used to indicate
that the identity of the amino acid at the location is unknown. There is only one
instance of X and one of U in the entire data set. The hydropathy for these two
entries was set to zero.
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3.5 Bioinformatics

The species and protein function were unknown and had to be looked up using the

Protein Basic Local Alignment Tool (BLASTp) provided by NCBI. This was done

in R using the blastsequences function from the annotate package. BLASTp queries

a database containing known amino acid chains of proteins, and aligns the queried

amino acid chain sequence with those in its database [29]. It then returns a list of

hits, containing those proteins that have high scoring alignments, making it likely

that the proteins are either the same or have similar function [29]. The top scoring

result from this list was taken for the protein name and species information.

BLAST stands for the basic local alignment search tool and is used to determine

sequence similarity [29]. BLAST is operated by the National Center for Biotechnol-

ogy Information and offers sequence alignment for both amino acid and nucleotide se-

quences. The search algorithm operated by BLAST consists of three phases, the first

is the set up. This involves reading in the query, search parameters and database. It

then reduces the input sequence into ”words” by breaking it into predefined lengths

based on the query. A word is just a short sequence of amino acids. The preliminary

search takes these words and compares them to the database for matching words.

It takes that sequence of amino acids and looks for similar sequences in other amino

acid chains [29]. Proteins have conserved regions called domains that correspond to

specific function. The words are designed to find sequences with similar domains. If

in the search the program finds a partial alignment, one containing a gap between

the word and sequence from the library, a penalty is applied to the alignment score.

The alignment score is used to rank potential matching sequences. The final phase is

traceback. This phase determines insertions or deletions within the sequence. This

study made use of the BLASTp algorithim to perform a protein-protein sequence

comparison. [29]

The open source bioconductor project was used to query the BLASTp database.

This software project provides statistical packages in R for bioinformatics work.

The annotate package provided by bioconductor was used to run the blastsequence
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function [30]. This function takes a sequence and submits it to BLASTp database.

To do so, the user has to specify the database, program and output formats. In this

study, the first output was collected from querying the Prokaryotic RefSeq database

using BLASTp. These data were returned in XML format and saved to a matrix in

R. The information was then saved to two separate text files, one for the mesophiles

and another for the thermophiles.

The text files were used to determine the different species present in each of

the data sets manually. This information was then used in a Matlab program to

determine the number of proteins present from each species. To do this, the program

converted the text information provided by BLASTp containing the protein function

and species information to an aggregate character array. The name of each species

present was then counted using the find function in Matlab. This process was used

to determine the total number of proteins each species contributed to the data set.

3.6 Gene Ontology

The Gene Ontology was developed to aid investigations like this, where similarly

functioning genes, and their products (proteins), are compared between organisms.

A gene ontology (GO) is a controlled vocabulary used to structure biological in-

formation. Its focus is to take information from disparate databases and combine

them. In doing so, the hope is that newly discovered genes can be better categorized.

For instance, if a new gene is discovered in the Tardigrade (water bear), then that

gene can be compared to the human genome to infer its function. This can help the

investigator develop a study to further knowledge of that gene, and evaluate its use

as a model for human health.

An Ontology is created to determine relationships between entities and a spe-

cific interest [31]. It creates a hierarchy from general to specific terms populated at

each level by classes. These classes within the structure of the hierarchy are used

to organize data, and can help aggregate information across platforms. To do so

relationship types were generated to better describe the interconnections that exist
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within the hierarchy of terms. The first relationship is part of, which is a relation

of parenthood. The level follows from the one above. The second is derives from

which means that one entity is made up of the product of another that occurred ear-

lier in time [31]. The third is has participated which relates entities contributing

to or apart of the same process. This entity would be linked back to a more general

term. For instance, L-plastin and actin participate in regulating the cytoskeleton, so

they would both contain the has participated link to cytoskeleton regulation. The

final and most specific level is has function. This relation links the entity to its

supposed function [31].

The concept of function is one that needs definition. GO defines function as

a selected effect function meaning that the function of a biological entitity is the

one for which it was selected during evolution. The second is causal role function,

that the function is determined in regards its contribution to a system. Selected

effect function considers an entity’s function within evolutionary constraints and

considers the function to be selected by evolution for the survival of the organism,

making it more biologically meaningful. In addition to this investigations performed

to understand a gene product are structured to determine its role in the survival of

an organism. The literature GO uses to describe a gene already uses the selected

effect function definition [31].

There are three aspects to GO: biological processes, molecular function, and

cellular components. These aspects are built around the dogma that a gene codes

a protein to perform some function. GO was developed so that a common language

could be used to describe similar genes across species. Biological processes is the

largest of the three aspects, and can contain information regarding molecular actions

of a gene product, to the gene products’ role in complex processes like cell migration.

A biological process is defined by its end product, and contains specific processes to

reach that end. The annotation for a protein coming from some gene product in the

biological process category would say that the gene product does something that is

a part of a process [31].

Molecular function is the activity of a gene product that can be carried out
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by a single protein by directly interacting with other entities. For instance, the

gene LCP1 codes for L-plastin, an f-actin binding protein, whose GO molecular

function terms include: actin binding, integrin binding, and protein binding. The

cellular components aspect details the location of the protein relative to organelle

or other structure inside the cell, where the gene product is thought to carry out

its function. For instance, cell component terms for L-plastin include podosome,

cytosol, cytoplasm, and cytoskeleton.

In this study, GO is used to determine if homologous pairs found to have simi-

larities in the power spectrum of their wavelet decomposed hydrophobicity signals

are known to have similar function. To determine this, a gene ontology must be

carried out to gather information about the function of each of the homolog pairs,

and determine if the groupings are biologically relevant.

The GO was carried out for this study by looking up the gene IDs of a protein

using the Ensembl Bacteria. Emsembl is a genome browser that provides detailed

information about a region of DNA. Since proteins are gene products, GO anno-

tations are associated with the IDs of the protein that gene encodes. Ensemble

bacteria contains annotations for the genomes of both Bacteria and Archea. The

protein name was queried to determine the gene ID. This returns a list of potential

matches, and the option coming from either the exact species, or if not species then

genus, was selected. This allows the user to navigate to the genes biological process,

molecular function and cellular component annotations.

3.7 Summary

Figure 3.3 provides information regarding the pre-processing steps performed on

the data before application of the methods detailed in chapter 2. The length of

each protein was determined, and the difference in the lengths of each protein in

a pair was calculated. There is no tendency for one member of a homologous pair

to be longer than the other. This allows for the calculation of total power as a

pair specific distinguishing feature. The amino acid content of each protein was
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determined as a percentage of total polypeptide length. It was found that glutamic

acid and lysine make up a larger percentage of the amino acid chain of thermophiles

than mesophiles, and that glutamine makes up a smaller portion of the thermophile

polypeptide than the mesophile.

The species, genus and domain of the proteins were looked up using the protein

basic local alignment search tool provided by the National Center for Biotechnology

Information. Figure 3.4 provides information regarding the post-processing proce-

dures, those steps carried out after the application of methods detailed in Chapter

2. A pair-specific similar feature was found by comparing the power of the ranked

order frequency bands resulting from the WPT between members of a homologous

pair. Pairs where similar power was found were grouped by the frequency band.

These steps would be included in the purple box, under the label Spectral Analysis

Methods. Using the protein name, species, and genus information, a gene ontology

can be carried out to determine if this feature is function specific. This is done by

collecting gene IDs for the proteins in the subgroup and looking up GO annotations

for biological process and molecular function. In this way the groupings are evalu-

ated based of the characterization of the proteins from the literature. The literature

definition of function is selected effect function, that defines the molecular function

of a protein to be the one for which it was selected by evolution for the survival

of the organisms. These annotations are used to determine if the groupings are

biologically meaningful and function specific.
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Figure 3.3: The data was pre-processed to determine the amino acid content and
length of each protein. The difference in the lengths of each protein in a homologous
pair was also determined. This measure is used to determine if the total power
in a hydrophobicity signal can be used as a pair specific distinguishing measure.
The protein name, species and genus which produces that protein were determined
using the Protein Basic Local Alignment Search Tool from the National Center of
Biotechnology Information.
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Figure 3.4: Homologous pairs were grouped together based of a pair specific similar
feature. The methods used to create the groupings are described in Chapter 2.
To determine if this feature is function specific, a gene ontology is performed to
gather information about each protein in the sub-groupings molecular function and
biological process. These data are then analyzed either manually or pragmatically to
determine if the proteins share anything in common beyond the pair specific similar
measure.
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CHAPTER 4

Results

4.1 Introduction

The focus of this study is to identify features related to thermal stability and function

in the amino acid chains of short globular proteins from mesophile and thermophile

prokaryotes. To do so, 540 homologous pairs of proteins, one from mesophile and the

other from thermophile, were constructed. The proteins composing a pair perform

similar functions in different temperature regimes. In this way, adaptations made

to the linear amino acid chain related to thermal stability can be identified, since

the proteins must fold within the constraint that they perform a certain function,

through a comparison between members of a pair. Characteristics related to thermal

stability are considered to be pair specific and distinguishing, while aspects related

to function are pair specific and similar.

The hydrophobic effect is the variable being tested in this study. Each amino

acid contains a residue with a hydropathy value scored by the Kyte-Doolittle hy-

dropathy scale. This scale was developed taking into account both structural data

and thermodynamic calculations. A description of the scale and the methods used

to derive it can be found in Chapter 1 Section 4. A hydrophobicity signal is gener-

ated by assigning a value to each of the amino acids in a linear chain. To determine

features related to thermal stability and function, both the amino acid content (hy-

dorpathy content) and ordering of amino acids (hydropathy values) within the chain

are considered.

An alignment was run to determine how similar the linear amino acid chains of

each protein are to one another within a pair. Following this, the Anderson Dar-

ling test was used to see if the hydrophobic values within the chains are normally

distributed. Next, the two sample Kolmogorov-Smirnov test was used to determine
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if the hydrophobicity signals within each pair have similar distributions of values

within their lengths. These tests were followed by a scatter plot of the mean hy-

dropathy of the mesophile versus the thermophile.

The hydrophobicity signals were then treated to a Wavelet Packet Decomposi-

tion. This methods generates localized frequency bands containing the fluctuation in

the hydropathy along various lengths of the hydrophobicity signals. Spectral analy-

sis methods were then used to determine how the coefficients within each band were

distributed. These measures included finding the skew and kurtosis of coefficients

within each leaf. This was followed by calculating the power, or average variance in

the fluctuation in hydrophobic free energy, of each frequency band. The total power

of each hydrophobicity signal was computed by summing the powers for each of the

frequency bands resulting from the Wavelet Packet Transformation.

A comparison of total power was then performed by finding the difference in the

total value of power between members of each pair. This was done by subtracting the

mesophile total power away from the thermophile. Next, the power of each frequency

band was compared between mesophile and thermophile. This was done by finding

the difference in the power of each frequency band. Pair specific similar features were

used to create groupings that included all pairs with those values. These subgroups

were then used to perform a gene ontology to determine the molecular function and

biological process of each protein in the group. This is done to determine if the pair

specific similar measure is related to the function of the protein.
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Percentage Aligned Count Percentage Aligned Count
0 - 5 32 40 - 45 9
5 - 10 322 45 - 50 6
10 - 15 59 50 - 55 6
15 - 20 27 55 - 60 5
20 - 25 19 60 - 65 7
25 - 30 17 65 - 70 2
30 - 35 10 70 - 75 6
35 - 40 12 75 - 80 1

Table 4.1: Results of the Alignment. The majority of pairs have dissimilar amino
acids chains, 322 pairs are less than 10% similar. Only one pair is between 75% and
80% similar. 459 of the pairs are less than 25% similar. This means that ordering
of amino acids within each of the polypeptides of a pair are dissimilar.

4.2 Hypothesis Tests

Alignment is a measure of the similarity in the ordering of amino acids between

proteins composing a homologous pair. This measure checks to see if the n-terminal

amino acid in the mesophile is the same as the n-terminal amino acid in the ther-

mophile and so on through the length of the shorter of the two proteins. If the amino

acids are the same at that location a score of one is given, if they are different a

score of zero is assigned. The total score is computed by summing the number of

ones assigned, and that number is divided by the length of the shorter of the two

proteins.

Table 4.1 shows the number of pairs that fall within a given percentage alignment.

The vast majority of pairs have dissimilar orderings of amino acids, slightly more

than 60% (322) of the proteins are less than 10% similar. 459 of the pairs are

less than 25% similar. Different orderings of amino acids can be used to generate

proteins with a certain function.

The Anderson Darling test (discussed in Chapter 2 Section 3) was used on the

hydrophobicity signals generated for each polypeptide to determine if the hydropa-

thy values within each signal were normally distributed. If the hydropathy values are

normally distributed, then certain hydropathys contribute more to the linear amino



78

— Accept Reject
Anderson Darling 0 540 (mesophile and thermophile)

Two-Sample Kolmogorov-Smirnov 530 10

Table 4.2: Results of Anderson Darling and Two Sample Kolmogorov-Smirnov tests.
No hydrophobicity signal is normally distributed. 530 of the homolog hydrophobicity
scales accepted the null hypothesis of the KS test. The distribution of hydropathy
values in both members of a pair have the same underlying distribution. 10 pairs
rejected the null hypothesis for the test, and have different distributions of hydropa-
thy values within their lengths. The Anderson Darling and two sample Kolmogorov
Smirnov tests are discussed in Section 2.3.

acid chain than others. Meaning that certain values of hydropathy may contribute

more to thermal stability and function than others.

The first row of Table 4.2 presents the results of the Anderson Darling test, as

discussed in Chapter 2 Section 3. The hydropathy values within the amino acid

chains of the proteins are not normally distributed, making it unlikely that there is

a specific value that can be used as a pair specific measure.

The Kolmogorov Smirnov Test was used to determine if the distribution of hy-

dropathy values in the amino acid chains composing a homologous pair had similar

distributions. The second row of Table 4.2 presents the results of the two sample

KS test. 530 of the pairs accept the null hypothesis that the two hydrophobicity

signals have the same distribution of hydropahty values. Only ten proteins (1.8% of

the data set) rejected the null hypothesis that the two signals have the same under-

lying distribution of hydropathy values within their lengths. There is no significant

difference in the distribution of hydrophobic content in the hydrophobicity signals

within each pair. The distribution of hydropathy values within the hydrophobicity

signals cannot be used as a pair specific distinguishing feature.

Figure 4.1 displays a scatter plot of the mean hydropathy of the thermophile

hydrophobicity signal versus the mean hydropathy values for the mesophile signal.

The distribution appears to be centered at (−0.2,−0.2). The majority of points lie

in the third quadrant, indicating that both the mesophile and thermophile average

value are negative. The data appear to follow a linear trend, indicating that the
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Figure 4.1: Thermophile mean hydropathy versus Mesophile mean hydropathy scat-
ter plot. There is a single cluster of values centered around (−.2,−.2). There is no
tendency for either a mesophile or thermophile to have a larger average hydropathy.

average hydropathy of the mesophile and thermophile are similar.

4.3 Total Power

Spectral analysis methods were applied to the resulting frequency bands of a wavelet

packet transformation (WPT) applied to each of the members of the homologous

pairs. The wavelet and wavelet packet transform are detailed in Sections 2.5 and

2.6 of Chapter 2. The first measure was to determine the power of each frequency

band resulting from the WPT. Next, the sum of each of the powers was taken to

determine the total power of the hydrophobicity signal. This measure was used to

determine the difference in power between members of a pair, and to see if it could

be used as a pair specific distinguishing feature.
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Figure 4.2: Histograms for the total power in the mesophile and thermophile hy-
drophobicity signals. The mesophile total power distribution is in blue, and the
thermophile distribution is in red. The two distributions overlap, the thermophile
distribution is translucent, and makes it appear that there is a third distribution.
There is no tendency for either a mesophile or thermophile protein to take on a
specific value for total power.

Figure 4.2 displays the distribution of the total powers in the mesophile and

thermophile proteins. The mesophile total power distribution is in blue, and the

thermophile distribution is in red. The two distributions overlap, and there is no

tendency for a mesophile or thermophile protein to have a specific value for total

power.

Figure 4.3 is a histogram of the difference in total power of each pair, computed

as the total power in the thermophile minus the total power in the mesophile. This

figure shows that the thermophile member of each pair has a tendency to contain

more power in its hydrophobicity signal than the mesophile. There are 489 values

greater than zero, meaning that the thermophile contains a greater total power

in 90.56% of the pairs. Total power is a pair specific distinguishing feature. It

is interesting to note that the largest positive difference is 2.37 while the most
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negative difference is −0.69. This shows that the total power of the mesophile and

thermophile in each pair is very similar, but that there is a dominant trend for the

thermophile to be more powerful than the mesophile.

Figure 3.3 in Chapter 3: Data Overview, shows that there is no trend for either

the mesophile or thermophile protein to be longer than the other member of its pair.

The difference in total power is then due the amino acid content within each of the

polypeptides. The magnitude of the total power can only be used to distinguish

members of a pair, there is no tendency for thermophiles to take on a specific value.

It is possible that the total power is encoded to reflect thermal tolerance within the

constraint that the protein folds to perform a certain function, and is not directly

related to thermal stability. The distribution of total power of the mesophile proteins

overlaps with the distribution of the total power of the thermophile. The total power

of the thermophile is only larger in comparison to a similarly functioning mesophile

protein, not just any mesophile protein.

Figure 4.4 provides a scatter plot of total power for each of the pairs, thermophile

versus mesophile. The values seem to be increasing linearly so that the value of the

total power in the thermophile is matched by the mesophile. The data in this scatter

plot shows that the total power tends to be very similar between the mesophile and

thermophile. There appears to be a single cluster of values centered around (10,

10.5). This shows that neither mesophile nor thermophile has a tendency to contain

a certain value for total power. Rather total power seems to be related to the

function of the protein.

The data presented in Figures 4.2 and 4.3 show that the thermophile hydropho-

bicity signal contains a greater total power in 90% of the data. However the ther-

mophile contains only slightly more power, at most by a value of 2.37, and in some

cases the mesophile contains more power (in one instance by 0.69). The distribu-

tions of the total power in the thermophile proteins overlaps with the distribution

of total power in the mesophile proteins, as shown in Figure 4.2. This makes total

power a pair specific distinguishing feature, meaning that a thermophile protein only

contains a greater total power than a similarly functioning mesophile protein. To
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Figure 4.3: Difference in the total power of each hydrophobicity signal in a pair.
The value was computed by subtracting the total power of the mesophile signal from
the thermophile. Positive values indicate that the thermophile is the more powerful
signal. The thermophile is the more powerful signal in 489 of the pairs (90.5%).
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better understand the reason for this small difference in total power, a skew spectra,

kurtosis spectra, and power spectra were generated for each of the proteins.

4.4 Spectral Analysis

To better understand how hydrophobic information is encoded into the hydropho-

bicity signals, a spectral analysis is performed. This allows for an analysis of the

various frequencies making up the signal at locations along its length. Three spec-

tral analysis methods were used in this study: power, skew, and kurtosis. For each

of these three measures confidence intervals were generated by shuffling the ordering

of hydropathy values within the signal and performing the wavelet packet transfor-

mation on that iteration. This procedure was run 299 times for each hydrophobicity

signal. Each spectral analysis method was then preformed on the frequency bands

resulting from the WPT so that each frequency band for every protein has 299 boot-

strapped replicates. In this way a distribution function was chosen by analyzing the

distribution of values at each frequency. The expectation value was computed using

the descriptive parameters for the specific distributions, and the lower and upper

intervals were determined by using the corresponding values of the descriptive pa-

rameters.

Figure 4.5 provides the power of each frequency band for the proteins of pair

ten. The top graph is the mesophile hydrophobicity signal and the bottom graph is

the thermophile. Both hydrophobicity signals were decomposed to the same level,

determined to be two above the maximum decomposition level of the shorter of the

two proteins, so that they contain the same number of frequency bands. The confi-

dence intervals for the proteins were determined using the gamma function, whose

expectation values is computed as the product of its shape and scale parameter. The

gamma function was chosen using the method detailed in Section 2.9. The power

of each frequency band was computed as the mean of the square of each coefficient

in the frequency band, so that power is a positive quantity. Normalization was per-

formed so that the values of power at each level could be compared. This is done by
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Figure 4.4: Total Power Scatter Plot, Thermophile versus Mesophile. The ther-
mophile member of each homologous pair is more powerful than the mesophile mem-
ber in 90% of the pairs. This scatter plot appears to have similar characteristics
as the scatter plot of mean hydropathy of mesophile versus thermophile. However
the mean hydropathy could not be used to determine a pair specific distinguishing
feature.
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multiplying the power of each leaf by 1
2j

, where j indicates the decomposition level.

Comparing the confidence intervals to the actual value for power in Figure 4.5

shows that the ordering of amino acids within the polypeptide codes for a specific

value of power that depends on the ordering of amino acids. Power, as computed in

this study, is the average of the squared fluctuation in hydropathy at some frequency,

for the entire protein. So each value of power describes the average fluctuation

in hydropathy for that frequency band through the length of the polypeptide. A

random sequence of amino acids produces a power that is close to zero. While the

sequence of amino acids in the proteins used in this study, most often encodes a

value that is significantly non-zero. It appears that the fluctuation in hydropathy

along the length of the protein is non-random, and may encode information related

to function and thermal stability.

Figure 4.6 provides the skew of the values within each frequency band. The skew

was computed on the frequency bands to determine the balance of the values of the

coefficients within that leaf. Skew is discussed in Section 2.7. In this study skew

becomes a function of frequency. In this way additional information is provided

regarding the symmetry of the distribution of the fluctuation in hydropathy along

the length of the protein. The number of coefficients within the leaf depends on the

level of the decomposition, which was determined by the length of the shorter of the

two proteins in the pair. The decomposition level varies across the 540 groupings,

but at a minimum there are at least 11 coefficients in the leaf where skew is being

measured. Skew is used to see if the distribution function of the coefficients within

the leaves is asymmetric. If there are more coefficients that have values less than the

expected value, the distribution is negatively skewed. If there are a larger number

of coefficients with values greater than expected, the skew is positive.

The expectation values and confidence intervals for the skew of each frequency

band were generated using a normal distribution. These data show that a random

sequence of amino acids produces a frequency band with a skew value given by

a normal distribution centered about zero. The ordering of amino acids in the

polypeptides produces a distribution of coefficients within the leaves that are most
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Figure 4.5: Power of each frequency band for the members of homologous pair 10.
A control data set was generated by shuffling the ordering of amino acids in the
linear chain 299 times, and then treating each iteration with the WPT. A random
ordering of amino acids will most often produce a value for power that is near zero.
The amino acid chain of each of the polypeptides codes for a non-random value of
power. The variance in the fluctuation of hydropathy is non random and encoded
by the linear amino acid chain.
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often asymmetric. The asymmetry indicates that the fluctuation in hydropathy

varies, and the value of the coefficients depends on the locations along the length of

the protein at which they were calculated. This shows that fluctuation in hydropathy

varies along the different lengths over which the coefficients were calculated.

Figure 4.7 provides the kurtosis of each of the frequency bands for the proteins

of pair ten (kurtosis is discussed in Section 2.7). This study takes the kurtosis of

each frequency band that results from the WPT. In this way kurtosis becomes a

function of frequency, and additional information becomes available in regards to the

spread of the value of the fluctuation in hydropathy within the hydrophobicity signal.

The top graph is the mesophile and the bottom is the thermophile. Confidence

intervals were generated based off a log normal distribution as determined by the

values generated from the control data. The expected values generated from the

bootstrapped data indicate that a random order of amino acids will produce a

distribution of values in the frequency bands that has fewer outliers than normal.

Most of the coefficients are similar in value, and are close to the expected value. The

kurtosis values generated from the frequency bands of the actual proteins are non-

random. The ordering of the amino acids in the polypeptides produce frequency

bands with kurtosis indicating that the fluctuation in hydropathy changes along

the amino acid chain. Values of kurtosis that are greater than two and less than

or equal to three indicate that the spread of coefficients in the frequency bands

approach normality. Values less than two indicate that the values in that frequency

band are fairly similar. While values of kurtosis greater than three indicate that

the coefficients in the frequency band have a wider range of values. For those

values less than two, the coefficients are more similar, meaning that the fluctuation

in hydropathy is fairly consistent at that frequency band across the length of the

protein. Those values of kurtosis greater than two indicate that the fluctuation in

hydropathy within that frequency band varies more across the length of the protein.
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Figure 4.6: Skew of each frequency band for the members of homologous pair 10.
Skew in this study is used to determine the symmetry of the distribution of coeffi-
cients within each frequency band. A non-zero skew indicates that the fluctuation
in hydropathy varies within the protein, and that the values of the coefficients de-
pends on the location within the hydrophobicity signal where the fluctuation was
calculated.
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Figure 4.7: Kurtosis of each frequency band for the members of homologous pair
10. Confidence intervals were determined using a control data set consisting of 299
bootstrapped iterations of kurtosis for each frequency band. Kurtosis is used to
understand the range of values included in each of the frequency bands. Values
of kurtosis less than three indicate that the values within the frequency bands are
similar. Values of kurtosis greater than three indicate that there is a greater spread
in the values within a frequency band. Kurtosis is a measure of how the fluctuation
in hydropathy changes along the length of the protein given some unit interval of
amino acids.
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4.5 Power and Thermo-tolerance

Knowing that thermophiles contain a slightly greater total power than their corre-

sponding mesophile partner, the next step is to determine how each of the frequency

bands contribute to this total. The goal is to see how the power of each frequency

band varies with temperature. To do so, the powers of each hydrophobicity signal

were collected for a specific frequency band, and then ranked in ascending order. So

that there are 540 values of power coming from the mesophile ranked from smallest

to largest, and 540 values of power from the thermophile ordered in the same way.

These values are then used to generate plots of the mesophile power versus ther-

mophile power at a single frequency band. This analysis tests how the temperature

of a prokaryote’s environment affects the power in its protein at a specific frequency

band, ignoring the function of the proteins. This analysis was run for the first 64

frequency bands. Not all of the pairs contribute to every frequency band’s plot since

one of the members of the pair is not long enough to be decomposed to the sixth

level.

Figure 4.8 shows the plots of thermophile power versus mesophile power ranked

in ascending order for frequency bands 7, 15, 16, and 20. These plots include a

line with a slope of one for reference. The frequency bands included were chosen

at random to provide an overview of the method. The x-axis in these figures is the

mesophile power, and the y-axis is the thermophile power. It can be seen in all four

of the graphs that as the power in the mesophile increases there is an associated

increase in power in the thermophile. The plots show that the majority of data

follow a linear relationship. At higher levels of power the data deviate from linearity,

in frequency band 7 the data follows a straight line with a slope of one until the

mesophile power reaches 0.4. After this point the mesophile power increases more

rapidly than the thermophile. The slope of the best fit line for this frequency band

is 0.98.

In frequency band 15, the data deviate from a straight line with slope one around

a power with magnitude .18. This shows that the thermophile power increases more
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rapidly than the mesophile. The slope of the best fit line for this is 0.96. Frequency

band 16 shows similar features as frequency band 15. At first the values seem to

track one another, and then the thermophile power grows more quickly than the

mesophile. The slope of the best fit line is 1.11. Frequency band 20 shows a similar

trend, where the values begin to diverge from linearity around 0.2. The thermophiles

appear to have slightly more power at this frequency band than the mesophile. The

slope of this frequency band’s best fit line is 1.08.

The slopes of the best fit line for each frequency band are displayed in Figure

4.9. There are 46 frequency bands with slopes greater than one, indicating that the

thermophile proteins at those bands have slightly more power than the corresponding

mesophile protein. 18 of the slopes are less than one, indicating that the mesophile

proteins have greater power than the thermophile. The smallest value of slope is

0.72 and the largest is 1.28. There are 23 slopes that have a value between 1 and 1.1

(about 36% of the frequency bands), 15 slopes that are between 1.1 and 1.2 (23% of

frequency bands), and 8 that fall between 1.2 and 1.3 (12.5% of frequency bands).

There are 13 slopes whose value fall between .9 and 1 ( 20% of the frequency bands),

3 that fall between 0.8 and 0.9 (4.7% of frequency bands) and two that fall between

0.7 and 0.8 (3.1% of frequency bands).

In addition to this, it appears that thermophile proteins consistently contain

more power at certain ranges of frequency bands. There appears to be two general

groups in this figure that show this. Those groups include frequency bands from 21 to

31 (specifically frequency bands 22, 24, 25, 26, 27, 28, 29, 30, and 31) corresponding to

roughly 100 to 77 amino acid long unit intervals and between frequency bands 44 to

56 (specifically frequency bands 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56) corresponding

to roughly 44 to 19 amino acid long unit intervals. There appears to be one group

of frequency bands where the mesophile contains more power, between 18 and 22

(specifically frequency bands 18, 19, 21, 22) corresponding to unit lengths of 107 to

97 amino acids.

An additional test was run to examine the power of each frequency band that

considers the function of the protein. This was done by taking the difference in power
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Figure 4.8: Four scatter plots of the value of power for each mesophile and ther-
mophile protein. Frequency bands include bands 7, 16, 15, and 20. The values of
power were ranked in ascending order and plotted. The purpose of these plots was
to determine if the slopes of the line of best fit is one. A slope that is greater than
one indicates that the thermophile tends to have a greater power than the mesophile
at that frequency band. A slope less than one indicates that the mesophile contains
a larger power.
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Figure 4.9: A plot of the slope of the best fit line for each frequency band. Ther-
mophile proteins have a larger power than the mesophile in 46 of the frequency
bands, as indicated by the slope being greater than one. There appear to be two
groups of frequency bands, 22 to 31 and 44 to 56 where the thermophile consisting
has more power.
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at each frequency and finding the number of positive values at each frequency. A

positive difference indicates that the thermophile contains a greater power at that

frequency band. The number of positive difference in power at each frequency band

is presented in Figure 4.10.

The orange line in Figure 4.10 indicates that in 270 of the pairs the mesophile

contained a greater power than the thermophile. If the ratio is above 0.5 than the

thermophile partner contained a greater power at that frequency band in more than

270 of the pairs. The largest ratio is about .58, and the smallest is about .47. The

ratios are scattered around .5, however there is a dominant trend for the ratios to be

above .5, indicating that the thermophile partner of the homologous pair contained

more power than the mesophile.

4.6 Pair Specific Similar Features

To determine if the power of any frequency band could be used to infer the function of

the proteins, the difference in non-normalized power was taken between the members

of the pair at each of the frequency bands. This method compares the power of

the frequency bands in each pair by taking the difference between the two. If the

difference in power was less than one, the index order of that frequency band, i.e

1,2,3,..., was recorded. This was done to test whether certain frequency bands in the

wavelet packet decomposed hydrophobicity signals were similar, and if this similarity

could be used to infer function. In this way, power is evaluated as a pair specific

similar measure related to the function of the homologous pair.

Figure 4.11 provides the number of pairs that had similar power at every fre-

quency band, where each protein pair was decomposed to one level above maximum.

The orange line was generated using the bootstrapped control data. It shows the

number of matches at each frequency band that can be expected by a random order-

ing of amino acids. The orange line, which is the baseline likelihood that a random

ordering of amino acids will result in similar power between members of a pair, was

generated using control data. The same treatment was applied to the control data,
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Figure 4.10: Ratio of the number of positive differences in power for 64 frequency
bands. The difference in power at each frequency band was taken between members
of a homologous pair. A value of 0.5 indicates that 270 of the pairs had a mesophile
member with more power at that frequency, and in 270 the thermophile contained
more power. This test is included to see how power at each frequency band compares
when the function of the protein is taken into account.
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and the number of counts was divided by the number of iterations run on this data.

For instance, each protein was shuffled 200 times, and treated to the wavelet

packet decomposition. For each of those iterations the comparison was run. For

each iteration of the bootstrapping procedure, the frequency bands that had similar

power was recorded. This was done for every pair in the data set. The total number

of matches for all bootstrapped iterations for every pair was then broken down by

frequency band. So that the total number of matches across the 540 pairs for each of

the 200 iterations was recorded. This number was then divided by 200 to account for

the number of iterations. Figure 4.11 was generated using an earlier experimental

design that ran the bootstrapping routine 200 times.

The black dots in Figure 4.11 are the number of pairs in the experimental data

that had similar power at the frequency band given by the x-axis. The true ordering

of the amino acids in the proteins generates a larger number of matches in power

than if the amino acids were ordered randomly. In addition to this, at the highest

frequency bands (above 120) there are instances where the experimental data do

not contain any matches. There are only 16 homologous pairs long enough to be

decomposed to this level. The homologous pairs tend to have a number of frequency

bands with similar power, but that number is still a fraction of the total number of

frequency bands they contain.

To generate groupings of homologous pairs containing similar power at a fre-

quency band, an additional control data set was run. This was done to prune out

those pairs that matched due to random chance. For instance, at frequency band

1 there are over 60 matches in the experimental data set. The control data, given

by the orange line, indicates that about 20 of these matches are due to random

chance. To flush out those pairs that match due to chance, the likelihood of finding

the magnitude of the power at that frequency band was determined. This was done

by generating an additional control data set.

This control data was run through a bootstrapping routine with a number of

iterations given by ten times the length of the protein. This was done so that a

sample could be generated containing the same characteristics as the population of
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Figure 4.11: Number of instances at each frequency where members of a homologous
pair have similar power.
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all possible arrangements of hydropathy values within the signal. In this way, each

protein had a number that is ten times its length for the power of that frequency band

where there was a match. This was done so that the likelihood of measuring the value

of power in the hydrophobicity signal at that frequency band could be determined.

This was done by counting the number of times that specific value of power was

calculated in the bootstrapped control data. If the likelihood of measuring that

value for the power of the frequency band was less than 7% in either the mesophile

or the thermophile, the pair was discarded from the subgroup. The most frequent

value for power in the bootstrapped data had a likelihood of being found about 18%

of the time for each protein.

A threshold of 7% was chosen as the cutoff for the following reason. If the

magnitude of the power of a certain frequency band is related to the function of the

protein, then evolution would act so that point mutations, which act similarly to the

reordering of amino acids used in the bootstrapping routine, will have a negligible

effect on the magnitude of the power at that frequency band. Otherwise once the

protein is expressed, it will either denature, or have functioned differently. The

mutation would then either prevent the protein from functioning, and would result

in a phenotype onto which selective pressures would not act, or, be adapted for

another function.

To determine if similarity in power at a specific frequency band is related to the

function of the homologous pair, all the pairs that had similar power at the same

frequency band were grouped together. This was done by generating a spreadsheet

in excel that contained all the pairs, after pruning, that had been found to have

similar power at a certain frequency band. A gene ontology was performed on two

of these subgroups. Those pairs that had similar power at frequency bands 1 and

10.

The gene ontology was carried out manually. The first step involved querying the

protein name and species info in Ensembl Bacteria. This resulted in a list of genes

and species that were most similar to the query. The ID for the gene that codes for

the protein was recorded. This was then used to query Ensembl Bacteria to look
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up molecular function and biological process gene annotations. This procedure was

performed for the mesophile protein since the study assumes that members of the

pair have the same function.

4.7 Gene Ontology: Frequency band 1 and 10

A gene ontology (GO) was performed on two of the subgroups generated from the

matching power experiment. These subgroups are the proteins, after pruning, that

had similar power at frequency band 1 and 10. The GO was performed to determine

if similarity in power at certain frequency bands can be used to infer the function of

the proteins. Figures 4.12 and 4.13 contain the information for those homolog pairs

that had similar power at frequency band 1. Figure 4.12 provides the pair number,

protein name, species, genus, and gene ID for that grouping. The gene ontology

was performed on the mesophile species, since the thermophile has a homologous

function. The species, genus, and protein name were obtained by querying the amino

acid chain sequence in the Protein Basic Local Alignment Search Tool (BLASTp)

maintained by the National Center for Biotechnology Information.

There are 35 pairs in the frequency band 1 grouping. There were 61 pairs

that had similar power at this frequency band initially and 26 of these pairs were

removed through pruning. Figure 4.13 contains the pair number, molecular function

annotation, and biological process annotations for these proteins. Some proteins had

multiple annotations for different processes, each of these terms were collected. In

addition to this, an annotation for function rests inside a tree structure of other

related terms. The terms immediately above the protein’s annotation were included

as well. In some instances, no information was available for a protein’s molecular

function and/or biological process. There are 3 proteins that could not be associated

with a gene ID.

The second column of Figure 4.11 contains the molecular function of those pro-

teins in the frequency band 1 group, six of them do not contain annotations for

molecular function. There are 13 proteins that contain annotations for binding, this
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includes RNA binding, DNA binding, ion binding, and metal ion binding. There

are 5 proteins that are structural constituents of ribosome, and one of these in-

cludes an annotation for binding activity. The third column of Figure 4.11 contains

the biological process annotation for the proteins in this group. There are 10 pro-

teins that do not have annotations for biological process. There are 5 proteins that

have annotations for biosynthetic process. Five of the proteins have annotations for

translation.

Figure 4.14 contains the pair number, protein name, genus, species, and gene id

for the frequency band 10 grouping. There were 45 initial matches in this group, 19

of these pairs were pruned out. The gene ontology was performed on 26 proteins.

Two of the proteins in this group, pair numbers 323 and 491 were not associated with

a gene ID. Figure 4.15 contains the pair number, molecular function, and biological

process annotations for these proteins. Three of the proteins in this group did not

have annotations for molecular function. There are 12 proteins associated with the

term binding, these annotations include ATP binding, pyridoxal phosphate binding,

4 iron, 4 sulfur cluster binding and nucleotide binding. Six proteins have annotations

associated with lyase activity; these include hydro-lyase activity and lyase activity.

Three of the proteins are associated with structural constituent of ribosome.

The third column of Figure 4.15 contains the biological process annotations

for the proteins in the frequency band 10 grouping. Six of the proteins do not

have biological process annotations. There are five proteins with annotations for

translation, and four with annotations related to RNA. There are 8 proteins with

annotations for biosynthetic process. There are 7 proteins with annotations for

metabolic process.

There are a number of annotations that overlap between the two groups. This

may mean that there is little variation in the 540 homologous pairs used in this

data set in terms of function. Further work must be done to fully flesh out the gene

ontology process included in this study. For instance, many of the biological process

annotations are a part of a much larger tree containing multiple branches. As well

there are four relationship types used in GO. These are part of, derives from,
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has participated, and has function. Including these relationships may help to

infer the function and biological context for which these proteins are expressed in

the prokaryotes.

The data presented in this gene ontology is the first iteration of the process of

identifying characteristics in the spectra of the proteins related to function. The

purpose of the gene ontology was to evaluate its ability to provide information

related to the proteins used in this study. It appears that the gene ontology is a

useful tool and should be expanded moving forward. The process of identifying

similarities in the spectra of WPT decomposed protein pairs will require further

computational methods, and a more developed gene ontology. This should further

the aim of identifying pair specific similar features related to the function of these

proteins.
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Figure 4.12: Mesophile Proteins from pairs with similar power at frequency band
1. Included are the pair number, protein name, species and genus information, and
gene ID.
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Figure 4.13: Molecular function and biological process annotations for those proteins
in the frequency band 1 group.
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Figure 4.14: Mesophile Proteins from pairs with similar power at frequency band
10. Included are the pair number, protein name, species and genus information, and
gene ID.
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Figure 4.15: Molecular function and biological process annotations for those proteins
in the frequency band 10 group.



106

CHAPTER 5

Discussion

5.1 Life In Extreme Conditions

A thermophile is a prokaryotic organism occupying an ecological niche with tem-

peratures ranging from 41◦C to 122◦C. A mesophile is a prokaryote living in envi-

ronments with temperatures ranging from 20◦C to 45◦C. The proteins expressed by

a mesophile organism would denature in the environment of the thermophile. Thus

thermophiles have adapted to life in extreme temperature. This study looked to

identify features related to thermal stability and function in the amino acid chains

of short globular proteins from mesophile and thermophile species, within the con-

straint that the proteins fold to perform a specific function.

To do so, 540 homologous pairs of proteins were generated. A homologous pair

consists of one protein from the mesophile and another from the thermophile that

have similar function. The amino acid chains are then converted to hydrophobicity

signals by assigning a hydropathy score from the Kyte-Doolittle hydropathy scale

to each of the amino acids in the chain. The hydrophobic effect is temperature

dependent and is the driving force behind protein folding. It is thought that the

hydrophobic effect essentially limits the number of conformation accessible to the

amino acid chain of a short globular protein. This allows for the sum of all other

forces acting on the molecule, such as the electrostatic force, to dictate the native

conformation. The linear amino acid chain of a short globular protein contains all

the information necessary for the polypeptide to fold in the proper conditions. This

statement is referred to as the Thermodynamic Hypothesis.

This study looked to identify features related to the temperature of the envi-

ronment in which the protein is expressed. The study consisted of a comparative

analysis of the amino acid chains of short globular proteins in mesophile and ther-
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mophile bacteria and Archea with similar function. The experiments performed

were aimed at generating a procedure allowing for the identification of certain fea-

tures related to thermal stability and function. These features are classified as pair

specific and distinguishing or similar. These are features that are found within a

pair. The next classification is function specific this feature is generated from pair

specific similar features through computational methods, and is confirmed through

the use of a gene ontology. The next measure is thermal specific, this is a measure

found to be similar throughout one of the two temperature classifications.

5.2 Methods

Several methods were used to determine the relationship between hydropathy, func-

tion, and thermotolerance. The first of which was to determine how similar the

amino acid chains of each pair are with one another. The next step was to deter-

mine the amino acid content within each protein. These were followed by statistical

hypothesis tests to determine if they hydropathy values in the signals were nor-

mally distributed, and if members of a pair had the same underlying distribution

of hydropathy values in their signals. This was followed by a scatter plot of the

mean hydropathies of the mesophile proteins versus the mean hydropathy of the

thermophiles.

Both of the hydrophobicity signals composing a homologous pair were passed

through a wavelet packet transformation. This was done to determine the fluctua-

tion in hydropathy along different regions of the hydrophobicity signals at various

frequency bands. This allowed for the use of spectral analysis methods to determine

the average variance in the fluctuation in hydropathy at certain frequency bands

along the length of the entire hydrophobicty signal, referred to in this study as

power.

Each of the frequency bands resulting from the WPT contained a number of

coefficients containing localized information about the fluctuation in hydropathy

within certain regions of the protein. The skew of the frequency bands was taken to
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see if the distribution of coefficients within that band was asymmetric. The presence

of an asymmetry within the bands would indicate that the fluctuation in hydropathy

along a unit length throughout the protein varies depending on location. A skewed

distribution would also indicate that the power of that frequency band was being

driven by outliers. The kurtosis of each frequency band was calculated to determine

the degree to which the fluctuation in hydropathy varies throughout the length of

the signal.

A control data set was generated by shuffling the order of hydropathy values

within the signals 299 times. Each iteration of this bootstrapping procedure was

passed through the wavelet packet transformation, and spectral analysis methods

were applied to the resulting frequency bands. This data set was used to generate

confidence intervals for the power, skew, and kurtosis of each leaf.

The total power was calculated for each hydrophobicity signal, and the difference

was taken between members of a homologous pair. This was followed by collecting

the powers from every protein for each frequency band, and ranking them in or-

der from least to greatest and generating a scatter plot of mesophile power versus

thermophile power. A linear regression was performed to determine the relationship

between power and temperature regime.

The non-normalized power of each frequency band was compared between mem-

bers of a homologous pair to determine if they were similar. The same procedure

was applied to the bootstrapped control data to determine a baseline likelihood of

finding similar power at any frequency band across the data set. Homologous pairs

with similar power at the same frequency band were then grouped together. A sec-

ond control data set was generated to prune out those pairs that matched due to

random chance.

5.3 Discussion of Results

The results of the amino acid chain alignment show that majority of protein pairs

have dissimilar orderings of amino acids. This indicates that evolutionary processes
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have produced proteins with similar function using different orderings of amino acids.

It appears that the information necessary to satisfy the thermodynamic hypothesis

can be encoded into proteins using different amino acid combinations.

Four amino acids have been referenced in the literature as making up a larger

percentage of the amino acid chains of thermophiles than mesophiles. These amino

acids are aspartic acid, glutamic acid, lysine and arginine. This study calculated the

percent make up of each amino acid in every protein, and then calculated the av-

erage percent make up for both the mesophile and thermophile groups. Comparing

the average percentage of the thermophile to the mesophile it was found that as-

partic acid made up 0.67% less of the average thermophile protein than the average

mesophile protein. Glutamic acid makes up 1.81% more of the average thermophile

protein than mesophile, lysine makes us 3.11% more of the average thermophile,

and arginine makes up 0.08% more of the average thermophile.

There are four amino acids that are thought to make up less of a thermophile

protein in comparison to mesophile. These amino acids are asparagine, glutamine,

serine, and threonine. Asparagine was found to make up 0.01% less of the average

thermophile than the average mesophile. The percentage difference for Glutamine

is 1.71% less, serine 0.55% less and threonine 1.29% less. It appears that of those

amino acids thought to make up a larger percentage of thermophile proteins, only

glutamic acid and lysine had percentage differences between the average thermophile

and mesophile greater than 1.00%. For those amino acids thought to make up a

smaller portion of the average thermophile, glutamine and threonine made up more

than 1.00% more of the thermophile than the mesophile.

The results of this test show that the variation in amino acid content of the

average thermophile and mesophile protein are greatest in lysine, glutamic acid,

glutamine, and threonine. While aspartic acid, arginine, asparagine, and serine

showed differences that were less than 1.00%. In addition to this, alanine was found

to make up 2.39% more of the average mesophile than the average thermophile.

Because of the similarity in the percent make up of each amino acid in the chain of

the average mesophile and thermophile protein, amino acid content cannot be used
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as a thermal specific identifying feature.

A comparison of the lengths of the proteins did not reveal a tendency for either

the mesophile or thermophile protein to be longer than its partner. It does not

appear that thermal stability is achieved through the addition of amino acids to

the polypeptide. Adaptations made to thermal stability must occur within the

constraint that the protein fold to a conformation specific to its function. The

addition of amino acids to extend the length of the protein is not a strategy employed

in this data set. There is no tendency for one member of a homologous pair to be

longer than its partner, and there is little difference in the amino acid content

between the average mesophile and the average thermophile protein. This means

that the ordering of the amino acids within the polypeptide encodes information

critical to the function and thermal tolerance of that protein.

The results of the Anderson Darling test showed that none of the proteins have

normally distributed hydropathy values within their lengths. In addition to this,

530 of the pairs have the same underlying distribution of hydropathy values within

their lengths. The distribution of hydropathy values in the hydrophobicity signals

cannot be used to distinguish the mesophile protein from the thermophile. Neither

can the prevalence of a single hydropathy value be used to distinguish the two.

The scatter plot of mean hydropathy of the mesophile versus thermophile, Figure

4.1, showed that the average value could not be used as a means of distinguishing the

proteins. Each data point appeared to be clustered about a single value, indicating

that the average hydropathy is not an indicator of function either. The values

appear to be distributed about (−.2,−.2). There appears to be a linear relationship

between the pairs, an increase in the average hydropathy of a mesophile is matched

by an increase in average hydropathy in its thermophile partner.

The total power of each hydrophobicity signal was calculated and the difference

taken between members of a pair. It was found that 90.56% of thermophile proteins

contain more power in their hydrophobicity signals than their mesophile partner.

The spread of the difference in total power indicated that the total power between

the members of a homologous pair is quite similar. This shows that the total power



111

can only be used as a pair specific distinguishing feature. A thermophile protein has

a larger total power when compared to a similarly functioning mesophile protein.

This indicates that variation in hydropathy along the length of a protein is related

to thermal stability, but is adapted within the constraint that the protein fold to

perform a specific function. Thus increasing the fluctuation in hydropathy along

the length of a protein will only raise the denaturing temperature of a protein if it

is encoded in a way to reflect the function of that protein.

At any frequency band, a random ordering of the amino acids making up a

protein will produce a near zero power and skew. The true ordering of amino

acid produces a value of power that is significantly non zero. Thus the ordering of

amino acids throughout the length of the protein is significant to the structure of

that protein. The amino acids are ordered in a way that produces a non-random

fluctuation in hydropathy. In addition to this, the ordering within the amino acid

chain is arranged so that various regions of the protein differ in regards to the

fluctuation in hydropathy. The fluctuation in hydropathy at any frequency band

and along the length of the protein varies in a way that is related to the function of

that protein.

For instance Figure 4.6 contains the power of each frequency band for the pro-

teins in homologous pair 10. A control data set was run to determine the value of

power measured from 200 random permutations of the amino acids for both pro-

teins at each frequency band. The results of the control data were used to generate

confidence intervals showing that a random ordering of amino acids will produce a

near zero value of power. The actual powers calculated from the experimental data

are significantly non-zero, indicating that the fluctuation in the hydropathy of the

amino acid chain is not due to random chance.

The kurtosis of each frequency band was calculated to compare the magnitude of

the fluctuation in hydropathy along the length of the signal. The results of this test

show that frequency components fluctuate in value along the length of the signal,

and that the degree to which they vary is dependent on the location within the

amino acid chain, and the number of amino acids taken into account. The ordering
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of amino acids is organized in a non-random way, and different regions of the protein

contain different fluctuations in hydropathy.

The power at every frequency band was collected from all the mesophile and

thermophile hydrophobicity signals and ranked from smallest to largest. These val-

ues were then used to generate scatter plots of the power in the mesophile frequency

band versus the power in the thermophile frequency band for the first 64 frequency

bands. A linear regression was performed on each of these plots and the slopes

collected. It appears that the thermophiles contain more power at frequency bands

between 21 and 31 and 44 through 56. While the mesophiles appear to contain more

power at frequency bands between 18 and 22. It appears that the trend for the ther-

mophile to contain more power than its mesophile partner is due to increased power

at frequency bands between [21 − 31] and [44 − 56]. It may be that increasing the

fluctuation in hydropathy at these unit lengths will result in increased thermal tol-

erance. By analyzing the distribution of power at these frequency bands it may be

possible to develop a numeric value that can be used as a thermal specific indicator.

The difference in power at each frequency band was taken between members of

the homologous pairs. The differences at each frequency band were collected, and

the number of positive values counted. The ratio of positive values to the number of

pairs that contained that frequency band was then computed. This method looked

at the similarity in power at each frequency between a pair across the entire data

set incorporating the function of the proteins into the measurement. The majority

of ratios are close to but slightly greater than 0.5. This indicates that a larger power

at certain frequency bands may be a means of increasing denaturing temperature,

but that the specific frequency band is dependent on the function of the protein.

The hydrophobicity scale used in this study is strongly correlated with the Gibbs

free energy of moving an amino acid from a liquid water to vapor state. Because

of this the total power of a protein is also strongly correlated with Gibss free en-

ergy. This indicates that thermophile proteins have a greater Gibbs free energy in

comparison to a similarly functioning mesophile protein.

It has been noted in the literature that thermophile proteins implement strategies
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to increase their Gibbs free energy to increase their denaturing temperature. The

authors Abbas Razvi and J. Martin Scholtz make note of this in the review article

Lessons in stability from thermophilic proteins. In this paper Razvi and Scholtz

note a variety of mechanisms to increase the denaturing temperature of a protein

that involve increases to free energy [32]. The total power is an informatics method

that can distinguish members of a pair, and its physical significance is related to

the Gibbs free energy of the protein. Thermophile proteins require a larger amount

of energy to unfold in comparison to similarly functioning mesophile proteins.

A comparison of the non-normalized power between the frequency bands of a

homologous pair showed that the experimental data is more than twice as likely to

generate similar power than a random bootstrapped sequence. This may indicate

that the power of a certain frequency band is related to the function of a protein and

can be used as a function specific measure. To evaluate the use of this method in

identifying similarly functioning proteins a gene ontology was carried out on those

pairs, after pruning, that had similar power at frequency bands 1 and 10. It was

found that there was a large degree of overlap between these two groups in the

annotations for both molecular function and biological process.

It may be that the 540 protein pairs used in this study only fall within a small

number of protein families. To improve the procedure, the pruning method must be

refined, for instance by analyzing the distribution of powers at that frequency band

where there is a match generated by the bootstrapped control data to determine

a less arbitrary threshold value. The majority of pairs in the data set had similar

non-normalized power at multiple frequencies. So after pruning, it may be better to

group homologous pairs that have similar power at multiple frequency bands, rather

than just one. In addition to this, only the first few annotations were collected for

the proteins within the grouping. GO presents a larger framework within which the

molecular function and biological process of a protein can be understood. Expanding

the gene ontology to take advantage of this additional information will help to

contextualize the role of each of the proteins in every grouping, and will be the

natural complement to the computational methods used in this study.
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5.4 Summary

This study looked to determine how the hydrophobic effect is encoded into the

linear amino acid chains of proteins from mesophile and thermophile prokaryotes to

reflect thermal stability and function. Five hundred and forty homologous pairs were

generated containing a protein from each group with similar function. It was found

that different orderings of amino acids can be used to generate proteins with similar

function. A pair specific distinguishing feature was identified in the difference in

total power between members of a pair. A thermophile protein contains more power

than a mesophile protein with similar function. The difference in power is small and

appears to be due mainly to certain frequency bands contained within the chains.

The amino acid chains of both proteins code for specific fluctuations in hydropathy

along the lengths of the protein.

The hydrophobicity scale used in this study is strongly correlated with Gibbs free

energy. It appears that the method presented in this thesis can be used to determine

the way Gibbs free energy is encoded into the amino acid chain of a protein to reflect

its function and denaturing temperature.

It appears that the fluctuation in hydropathy is a characteristic related to ther-

mal stability and function. It may be that the difference in total power changes

the number of conformations accessible to the linear amino acid chain, and that in-

creasing the fluctuation in hydropathy within the length of the protein can be used

to increase thermal tolerance. Because the fluctuaion in hydropathy is different,

and it is clear that the ordering of amino acids codes for a specific variance in the

fluctuation in hydropathy, the amino acid chains between each pair are dissimilar.

This may mean that the information most necessary to the folding of a protein is

the fluctuation in hydropathy along various unit lengths throughout the amino acid

chain. It may be possible to raise the denaturing temperature of a protein by in-

creasing the fluctuation in its hydropathy along certain unit lengths throughout its

amino acid chain, and maintain its function.
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