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Abstract

The introduction of decentralized energy resources as well as energy storage systems to the
energy system calls for new control and coordination mechanisms and systems. This is also
true for buildings, which make up a significant share of the final energy consumption. In
the course of this energy transition from fossil energy carriers and centralized power plants
towards renewable energy sources and distributed generation more and more decentralized
energy resources, such as photovoltaic systems and battery energy storage systems, are
introduced to building energy systems. An optimized operation of buildings comprising
decentralized generation and energy storage systems can be achieved by a building energy
management system. They control and coordinate the operation of individual devices in a
building’s energy system to achieve given goals, such as the increase of energy efficiency, the
decrease of carbon emissions, the minimization of operating costs or the provision of demand
response measures. In recent years in particular, building energy management systems
that use predictions of the future energy generation and consumption in the building have
been investigated. These systems have proven to work particularly well in the presence of
time-dependent electricity consumption and feed-in tariffs.
This thesis picks up on this idea and extends the ongoing research by presenting an approach
to the optimized operation of building energy systems that includes the uncertainties in
the predictions of the future energy generation and consumption into the control scheme of
a building energy management system. To do so, this thesis identified the use of a scenario-
based consideration of the uncertainties to be best suited. Thus, the presented approach
uses a rolling horizon optimization approach with a stochastic two-stage optimization
problem, which considers several forecast scenarios in the optimization. It targets the
minimization of the average of the operating costs of the building’s energy system that
occur to in forecast scenarios. This thesis, only considers uncertainties in the forecasts
of the electricity generation of the photovoltaic system, and neglects the uncertainties in
the forecasts of the energy consumption. To do so, a suitable forecast mechanism has to
be developed, which generates several forecast scenarios based on historical data. In this
thesis, a probabilistic forecast that provides different forecast scenarios based on a quantile
regression is proposed. Its derived quantiles are used as forecast scenarios to approximate
the range possible electricity generation profiles of the photovoltaic system.
The presented approach is evaluated in nine evaluation scenarios using a specific building
configuration assuming the presence of time-dependent electricity consumption and feed-in
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tariffs. In each evaluation scenario the feed-in tariff and the season are varied. The
investigated building configuration comprises a controllable washing machine, a controllable
battery energy storage systems and a controllable micro combined heat and power plant as
well as additional electricity and heat consumption from non-controllable sources. In the
evaluation, the presented approach is compared to a reference control scheme, using a perfect
forecast of the electricity generation from the photovoltaic system, to a state-of-the-art
rolling horizon optimization that uses a single-point forecast and to a rule-based control
scheme.

The evaluation results show that in seven scenarios, the approach presented in this thesis
performs similar to the state-of-the-art approach, whereas in two scenarios it outperforms
the state-of-the-art approach. Both of these two scenarios are scenarios which have high
electricity generation from the photovoltaic system and a low heat consumption. They are
the scenarios with the highest load shifting potential as well as the tariffs that reward load
shifting the most. However, the presented approach leads to higher optimization times
than the state-of-the-art approach.

In conclusion, the presented approach yields a performance increase with respect to the
state-of-the-art approach in some scenarios but increases the computational effort. It is
in particular suitable in scenarios with a high electricity generation from a photovoltaic
system, which are scenarios that either have a large photovoltaic system or have a high
solar irradiation. Furthermore, it is suitable in scenarios with time dependent electricity
consumption and feed-in tariffs. Because only in these cases, the full load shifting potential of
a battery energy storage system can be utilized. Therefore, an application in a commercial
building energy system has to be well-considered. In addition, this thesis provides a
justification of the choice of single-point forecasts in building energy management systems
in scenarios with limited photovoltaic generation. Furthermore, the observed computational
efforts motivate the use of heuristics.
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1. Introduction

The fight against the climate change is currently one of the most important challenges for
society, politics and science [248]. Its main task is the reduction of greenhouse gas emissions,
which is supposed to be achieved by two means: the transition from carbon based energy
generation towards generation that harnesses Renewable Energy Sources (RESs), as well as
increasing the efficiency of energy usage [211].

An increased usage of RESs leads to a higher volatility in the electricity generation caused
by the intermittent availability of wind and solar radiation. This can lead to a situation
in which the electricity generation does no longer follow the consumption. Instead, the
conventional central paradigm of electricity distribution changes from “supply follows
demand” to “demand follows supply” [145, 195]. Here, Demand Side Management (DSM)
enables the demand side to respond to intermittent and decentralized energy feed-in from
RESs to balance the generation and consumption in a specific part of the electricity grid.
The resulting behavior is expected to increase the efficiency of the energy system, reduce
the electricity costs and support the operation of the electricity grids [98, 195]. Concrete
measures to adapt the generation and consumption are called Demand Response (DR)
measures. The application of DSM and DR measures is a recent field of research and
multiple different approaches are under investigation.

In order to provide DR measures, participants in a DR program have to adapt their
electricity consumption and generation based on external signals, e. g., direct control signals
for specific devices, power limit signals or time-dependent tariffs. The participants can be all
electric energy consumers and generators on the former demand side. However, the types of
DR measures a participant can provide depend on the flexibility of the participant’s energy
system. The flexibility of an energy system refers to an amount of possible ways it can be
operated to provide all mandatory energy services [162]. Based on the high contribution to
the whole energy consumption, building energy systems are promising participants in DR
programs [151]. In 2015, the share of the global final energy consumption of buildings has
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been 30 % [123]. To make the flexibility of building energy systems accessible, Building
Energy Management Systems (BEMSs) can be used [20]. BEMSs control all devices in a
building’s energy system to achieve given goals like the increase of energy efficiency [49],
the decrease of carbon emissions, the minimization of operating costs or the provision of
DR measures. Typically, energy systems in buildings include different devices and energy
carriers, such as electricity, hot water or natural gas [20]. The flexibility of a building’s
energy system can be harnessed most effectively when all devices and energy carriers are
included into a BEMS [163]. To do so, a multi-modal energy management is necessary
[163].

To enable communication between demand side managers, participants and grid operators,
a suitable Information and Communication Technology (ICT) infrastructure is needed [76].
This is one of the reasons for the development of a smart grid, as the combination of the
ICT infrastructure and the energy system in combination with novel control schemes is
often called [52].

1.1 Scope
BEMSs enable an optimized operation of building energy systems with respect to given
goals. Three objectives are commonly targeted in the optimal operation of a building energy
system. However, in the literature, the reduction of operating costs has been identified
to be the most discussed goal for building energy management. Costs can be seen as the
most compelling goal for the owner or the operator of a building, since costs are easy to
understand and consequences are evident. In addition, other goals, e. g., the reduction of
carbon dioxide emissions, can be modeled as costs by means of considering artificial or
actual costs. Therefore, this thesis defines an optimal system operation to be an operation
that leads to minimal operation costs in a given time interval.

Furthermore, optimized operation of a building’s energy system with respect to time-
dependent tariffs enables a potential participation in a DR program that uses these tariffs
as a measure of coordination. However, the explicit design of such a DR program is not
investigated in this thesis. An example of such a DR program is presented in [96].

In the literature, the rolling horizon optimization method is most often stated to provide the
best performance. The method uses generation and consumption forecasts in combination
with a model of the building energy system to determine the control inputs for the devices
that lead to minimal operating costs within a given time interval. The determination of
the control inputs is achieved by formulating an optimization problem that is then solved.
This problem is repetitively formulated and solved, typically in a distinct time interval. In
general, the forecasts are subject to a certain degree of uncertainty. This means that the
forecasts only provide an estimate of the future energy generation or consumption, whereas
the actual generation or consumption values become only known at the time of generation
or consumption. The state-of-art methods in building energy management use single point
forecasts [20, 163]. Thus, the optimization determines the schedule that is optimal with
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respect to a specific single forecast value. It is important to note that those schedules are
not necessarily optimal when the realizations of the uncertain parameters change from
the forecast. Therefore, the incorporation of additional knowledge of the uncertainties in
the forecasts and into the optimization in building energy management are expected to
increase the performance of a BEMS. This leads to the first research question addressed in
this thesis:

Research Question 1: How can uncertainties be included in the optimization in building
energy management?

An optimization-based operation of building energy systems uses forecasts of the energy
consumption and generation in the building. Here, it is important to choose suitable forecast
methods since the forecast quality and method is expected to influence the performance
of the control scheme. This also holds true when the uncertainties in the forecasts are
incorporated into the optimization. The uncertainties in the forecast have to be suitably
described and the chosen description has to be integrated with the approach to the
optimization. Consequently, the following research question has to be addressed in this
thesis:

Research Question 2: How can a suitable forecast for BEMSs be achieved?

The combination of the energy forecasts and the approach to the optimization of a building’s
energy system defines the presented approach to the optimization in building energy
management. To investigate the application of optimization under uncertainty in building
energy management, an evaluation scenario has to be defined. The evaluation scenario
includes a building configuration, i. e., a list of installed devices, present tariff schemes,
electricity and heat consumption profiles and Photovoltaic (PV) generation profiles. This
thesis targets on evaluating the presented approach in dependence on the tariff schemes as
well as the consumption and generation profiles for electricity and heat. Hence, this thesis
works on the following research question:

Research Question 3: What is the performance of the proposed approach?

Every control scheme that targets on minimizing the operating costs has to perform in
various conditions. Therefore, the performance of the presented approach is tested for
different conditions and scenarios.

1.2 Major Contributions
This thesis contributes to the field of energy informatics and in particular to the research
on BEMSs by investigating the application of optimization under uncertainty in building
energy management.

An optimized operation of Distributed Energy Resources (DERs) under presence of time-
dependent prices is one approach to DSM and one step towards smart grids. This thesis
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focuses on smart buildings as a form of DER or as a conglomerate of DERs that is operated
by an automated BEMS. The major contribution of this thesis is an optimization-based
control scheme that incorporates the uncertainties in the forecasts of the energy consumption
and generation to reduce the operating costs of a building energy system.

To this end, this thesis provides a literature review that gives insights into the current
state of the energy system and in particular building energy systems, their coordination
and their control schemes. In addition, appropriate models and modeling techniques are
investigated. Based on this, this thesis identified the use of a scenario-based consideration
of the uncertainties to be best suited. Thus, the presented approach uses a rolling horizon
optimization approach with a stochastic two-stage optimization problem, which considers
several forecast scenarios in the optimization. It targets the minimization of the average
operating costs of the building’s energy system that occur in forecast scenarios. The
presented approach uses a Mixed Integer Linear Programming (MILP) model of the building
energy system and a probabilistic PV generation forecast. The developed stochastic two-
stage rolling horizon optimization approach optimizes the joint operation of all devices and
energy systems in the building concurrently and exploits the flexibility of the building’s
devices and energy systems while considering the constraints of devices and energy flows
in a building. The first stage relates to the first time step in the optimization and uses a
single point forecast, whereas the second stage relates to all other time steps. The goal of
the optimization is then to minimize the operating costs in the first stage and the average
operating costs that occur in the forecast scenarios in the second stage. In general, a
large number of forecast scenarios lead to a good estimation of the range of possible PV
generations but leads to high computation times [226][227, p. 8]. Consequently, probabilistic
forecasts that provide low number of scenarios are needed. In the literature, this problem
is not yet solved in building energy management.

With regard to the second research question, this thesis presents a probabilistic forecast,
which generates several forecast scenarios based on historical data. This forecast provides
different forecast scenarios based on a quantile regression. Its derived quantiles are used as
forecast scenarios to approximate the range of possible electricity generation profiles of the
photovoltaic system.

To investigate the application of optimization under uncertainty in building energy man-
agement, an exemplary building energy system has been defined. It provides the basis
of the evaluation of the approach to the optimization under uncertainty presented as the
main contribution of this thesis. Based on an analysis of the most commonly addressed
devices in the literature, the considered building is defined with several controllable and
non-controllable devices, namely a PV system, a controllable washing machine, a control-
lable Battery Energy Storage System (BESS), a controllable Micro Combined Heat and
Power Plant (micro-CHP) and other non controllable appliances. In addition, electricity
and heat consumption profiles are defined that mimic the consumption in a residential
building. The building energy system has been modeled, providing individual models for the
devices, a model for the interaction of the devices and the energy grid, and models for the
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energy consumption and generation. The energy generation models include a probabilistic
forecast of the electricity generation of a PV system, whereas the forecast of the energy
consumption is defined to be perfect. The model of the building energy system is then
used in the approach to the optimization under uncertainty. A similar model is used in
a simulation of the building energy system, which is used to evaluate the optimization
approach.

The developed stochastic two-stage rolling horizon optimization approach has been evaluated
and compared to state-of-the-art as well as an artificial benchmark control scheme in
building energy management in nine evaluation scenarios using a specific smart building
configuration. In each evaluation scenario the feed-in tariff and the season are varied.
Furthermore, an analysis of the tuning parameters of the presented approach is performed,
analyzing the impact of the duration of the optimization window, the time step duration in
the optimization and the number of forecast scenarios on the performance of the approach.

The results show that the presented approach yields an advantage over a state-of-the-art
approach in some scenarios while in other scenarios simpler control schemes are superior. It
is in particular suitable in scenarios with a high electricity generation from a photovoltaic
system, because only in these cases the full load shifting potential of a battery energy storage
system can be utilized. These scenarios either have a large photovoltaic system or have a
high solar irradiation. Therefore, an application in a commercial building energy system
has to be well-considered. In addition, this thesis provides a justification of the choice of
single-point forecasts in building energy management systems in scenarios with limited
photovoltaic generation. Furthermore, an investigation of the optimization times shows
that the application of heuristics in combination with an associated modeling approach is
justified and could improve the performance. Additionally, this work proposes a suitable
approach to a PV generation forecast and motivates future investigations on the dependence
of the forecast scenario generation on the performance of the control scheme.

This thesis extends the literature on BEMS by the investigation of optimization approaches
that incorporate uncertainties in the forecast of energy generation and consumption and
by proposing a specific approach. Furthermore, it supports future work with making
the decisions on the approaches to the optimized operation of building energy systems
and BEMSs by presenting an analysis and comparison of several control schemes in nine
evaluation scenarios. The achieved lower operating costs support the realization of affordable
energy supply. Furthermore, the load profiles that are the result of the optimized operation
with respect to time-dependent tariffs are expected to contribute to the goals of DSM, for
example the balancing of energy generation and supply or the support of the technical
operation of the energy grids.

1.3 Related Publications by the Author
A list of related publications by the author of this thesis and their relation to this thesis is
presented in Table C.1.
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1.4 Structure
This thesis is structured as follows: In Chapter 2, background information on the topics
addressed in this thesis is given. In particular, the relevant context of the energy system
in Germany and Europe and building energy systems is presented. This includes an
introduction to their coordination and management and in particular building energy
management and the respective BEMSs. Chapter 3 gives an introduction to the theoretical
concepts and formulations related to the modeling of discrete time systems and their
optimized operation by a rolling horizon optimization. In Chapter 4, the related work in
the field of building energy management is presented and discussed. This includes related
work on the modeling of building energy systems and their devices as well as related work
on the optimization of the operation of building energy systems. Chapter 5 presents the
rolling horizon optimization approach to the optimization of the operation of a building
energy system that uses a stochastic two-stage optimization. This includes the description
of the scenario, the building simulation, the model of the devices in the building and
their interaction and in particular the stochastic two-stage optimization. In Chapter 6, an
evaluation of the performance of the stochastic two-stage rolling horizon optimization is
presented. The stochastic two-stage rolling horizon optimization is compared to a rolling
horizon optimization that uses perfect predictions as well as approaches that use controllers
for the BESS and the micro-CHP. Finally, Chapter 7 summarizes and concludes this thesis
and gives an outlook to potential further research.
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2. Background on Energy Systems

This chapter provides the relevant context on energy systems and in particular electric
energy systems in Europe and Germany.

2.1 Energy Policy
The European Union (EU) energy policy pursues the following three objectives [55, Sec-
tion II 28]:

1. Secure supply of energy.
2. Affordable energy.
3. Environmental sustainability.

These targets are also pursued by the energy policies of individual countries, e. g., Germany
(§ 1 EEG [2]).
The energy system is built to achieve these three objectives. When working in the field
of energy systems, e. g., by introducing new generation and consumption technologies, or
control policies, the three objectives of the energy system listed above have to be respected.
As a consequence, the participation in energy systems in the EU and Germany is regulated
by law. Usually, this influences the application of new business models and technologies.
The security of supply is secured while respecting the requirements on affordability and
environmental sustainability [209].

2.2 Generation, Transmission, Distribution and
Consumption of Energy

The main task of the energy system is to provide a secure supply of energy. In this context,
energy typically means secondary energy that can be used by end users, i. e., the consumers.
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The first step to provide secondary energy includes the conversion from primary energy to
secondary energy. Primary energy is energy which has not been subjected to any conversion
process. It includes, for example, energy from fuels, e. g., oil, coal, natural gas, or RESs,
e. g., wind power, hydro power or solar radiation. Secondary energy is energy which has
been subjected to conversion process in order to provide forms of energy that are easier to
transport or use. It includes, for example, electricity, heat, cold or gasoline. This step is
often called generation of energy or in the case of electric energy the step is called electricity
generation [221, p. 53].

In a second step, the secondary energy has to be distributed to the consumers. To achieve
this, often specialized transmission systems are used. Two prominent examples are the
electricity and the gas grid.

In the final step, the energy is used to provide energy services [103] to the end user. Energy
services include all services that are provided by the use of energy. They include heating,
lighting, transportation and the operation of machines. The provision of these energy
services is often called consumption1 and the users of the services are called consumers
[221, p. 53]. [52]

Because of the physical principle of conservation of energy, the amounts of energy generation
and consumption in an energy system, e. g., in the German electricity grid, have to be
equal at each point in time. Imbalances lead to a change in the frequency and to voltage
deviations in the electricity grid. In particular, frequency deviations can damage devices in
the energy system, for example by applying torsional moments to the axle in generators,
and hence cause blackouts [221, p. 918]. Thus, the balance of generation and consumption
is one of the main tasks of energy systems and various mechanisms are implemented to
achieve this balance (see Section 2.9).

2.3 Energy Transition
As described in Chapter 1 and Section 2.1, the EU decided to target environmental
sustainability and to change the energy generation towards RESs. This affects the energy
system in two ways: Firstly, the generation changes from large power plants using fossil
resources towards power plants using RESs like wind and solar power. However, wind and
solar power are intermittent energy sources, calling for some sort of energy storage. The
energy that is generated at times with a surplus of generation from intermittent RESs, has
to be shifted in time to be released at times with a deficit of generation from RESs [42].

This can be motivated by investigating the residual load, i. e., the difference between the
total electrical load and the electricity generation by renewables. If the residual energy is
lower or equal to zero at all times, the energy system does not need conventional generation.

1It has to be noted that because of the physical principle of conservation of energy, energy cannot be
generated, consumed or lost. However, these terms are used in the field of energy systems, emphasizing
the processes targeted by the energy system while omitting unwanted processes.
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Figure 2.1: Measured total load per hour in the year 2014, measured residual load per
hour in the year 2014 and predicted residual load per hour in 2050 in Germany.
The hours are ordered from the hour with the highest load to the hour with
the lowest load. The visualization is based on [218], the data of 2014 are
taken from [40], the data of 2050 are taken from [112].

It has a surplus of generation by renewables. Typically, this is considered as the ideal case
that is targeted by the energy policies as defined in Section 2.1. If the residual load is
larger or equal to zero at all times, the energy system utilizes all renewable generation, but
conventional generation is needed whenever the residual load is larger than zero. This is
the case in Germany in the year 2014 [40].

Several studies state that the residual load in Germany is expected to become negative in
some hours in a year while a similar number of hours with a positive residual load remain
(see Figure 2.1). This indicates a need of storage in the German energy system to shift the
energy surplus from hours with negative residual energy to times with positive residual
energy [40, 112, 217].

Secondly, the average generation per power plants becomes smaller. This is a consequence
of the increasing number of wind and solar power plants that are typically smaller than
conventional plants like coal or nuclear power plants. This leads to a high number of
devices that generate energy, often called DERs [125]. In contrast to the conventional power
plants, most of the renewable generation is not located at the extra high or high voltage
levels of the grid anymore, but at the medium and low voltage levels [92]. With rising
numbers and share of installed capacity, this Distributed (Electricity) Generation (DG) [4]
causes problems to the electricity grids, e. g., a reversal of power flows (see Figure 2.3) or
an impact in the local voltage level [200].
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Figure 2.2: Visualization of the classification and applications of energy storage systems.
The classification is based on the power rating and the discharge time at the
rated power (based on [122] and [8, p. 29]).

2.4 Energy Storage
As described above, a high penetration of RESs requires Energy Storage Systems (ESSs)
[46]. Various technologies have been developed to store energy from RESs [42, 46, 122, 249],
each focusing on a different application. ESSs differ in the energy they are supposed to
store, e. g., electric energy, chemical energy, thermal energy, potential energy, kinetic energy
or chemical energy. Often energy storage involves conversion processes, converting electric
energy to forms of energy that are easier to store. This leads to conversion losses and thus
to a reduced efficiency.

2.4.1 Electrical Energy Storage Systems
Electrical energy storage systems are ESSs designed to store electricity. Often, these systems
do not store the electricity itself, as it is done by a capacitor, but use conversion processes
to store types of energy that are easier to store. Examples are BESSs that store chemical
energy and pumped hydroelectric energy storage systems, which use potential energy.

In general, electrical energy storage systems can be categorized by power rating, i. e.,
the maximal charge and discharge values, and storage capacity [46, 122, 249]. Poten-
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tial applications range from the large scale, or sometimes called bulk, generation and
transmission-related systems to systems installed in residential buildings [46]. Vazquez
et al. [249] and Chen et al. [46] summarize various applications of ESSs, including:

Load Leveling Load leveling refers to the use of electricity stored during times of low
demand to supply peak electricity demand, which reduces the need to draw on electricity
from peaking power plants or increase the grid infrastructure [249].

Energy Arbitrage Energy arbitrage refers to earning a profit by charging electrical energy
storage systems with cheap electricity when the demand is low and selling the stored energy
at a higher price when the demand is high [249].

Primary Frequency Regulation This application refers to the utilization of energy
storage systems to provide grid frequency stability support [249].

Voltage Regulation Several techniques are used to mitigate several undesired grid voltage
effects at the end-user level [46, 249].

Power Reliability Storage provides emergency power and thus enables an uninterruptible
power supply in cases of blackouts [46].

Forecast Hedge Storage mitigates shortfalls in wind or solar energy generation predictions
prior to required delivery, thus reducing volatility of spot prices and mitigating risk exposure
of consumers to this volatility.

Even though, the definition and naming of application cases is not always consistent in
the literature (cf. [46, 249]) and the application cases sometimes overlap, the coverage of
the application cases is similar. In Figure 2.2, various storage technologies are arranged
depending on their power rating as well as their discharge time. Based on this inconsistency,
they have been further categorized into three application cases [8, p. 29][122]: Uninter-
ruptible Power Supply (UPS) and power quality, grid support and load shaping, and bulk
power management. In this figure, building energy management, as targeted in this thesis,
is located between UPS and power quality, and grid support, load shaping, ranging from a
power rating of 1 to 100 kW and a discharge time of minutes. In the meantime, lithium-ion
batteries are more and more popular than Lead-acid batteries.

2.4.2 Thermal Energy Storage Systems
In buildings, thermal energy storage systems are commonly used. In contrast to electrical
energy storage systems, technical solutions for thermal energy storage systems do not use
conversion processes but store the thermal energy directly [62]. In the simplest case the
thermal energy, i. e., the heat, is stored by raising the temperature of a specific material.
Dependent on the temperature and the application case, several materials are common.
The most common material is water. There are direct methods, where water is heated
directly, and there are indirect methods where storage material is heated up and the needed
hot water is heated up by flowing through that hot material, e. g., stones or salt. More
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Table 2.1: List of common classes of electricity grids and assigned levels and tasks. Com-
mon values in the German electricity grid [221, p. 39].

Class Levels Voltage Task
Transmission grid Extra high voltage 380 kV, 220 kV Transmission

High voltage 110 kV Subtransmission
Distribution grid Medium voltage 10 kV, 20 kV Distribution

6 kV Very large consumers
Low voltage 0.6 kV Large consumers

0.4 kV Small consumers

advanced approaches use the change in phase that occurs as a consequence of the deployed
heat [228], e. g., Phase-Change Materials (PCMs).

Similar to electrical energy storage systems, thermal energy storage systems are used to
decouple the generation and consumption of thermal energy. Hence, allowing for application
cases similar to ones of electrical energy storage systems. These application cases become
increasingly interesting when the heat and electricity systems are coupled, e. g., by the
application of electric heaters or Combined Heat and Power Plants (CHPs). These systems
are called multi-modal energy systems [163] or multi-energy systems [159].

2.5 Electricity Grid

The electricity grid connects electricity generators with consumers and takes care of
transmission, distribution and voltage transformation. Typically, the electricity grids can
be separated into two classes: the transmission grids and distribution grids. Each class can
be divided into two levels, resulting in four levels: the extra high, the high, the medium
and the low voltage level. The levels differ in voltage, power and task (see Tables 2.1
and Figure 2.3). Even though, this classification holds in the EU, the specific technical
implementation of the electricity grid differs between countries. [221, p. 37]

Except for specific lines, the European electricity grid is an interconnected Alternating
Current (AC) grid using a synchronized frequency of 50 Hz. This has the advantage of
connecting numerous generators and power reserves improving reliability as well as allowing
for an economy of scale. [221]

The transport of the electricity via the electricity grid is restricted. Firstly, the lines have
limited transmission capacities. This introduces the need of taking the topology of the
grid as well as the spatial allocation of generators and consumers into account. Secondly,
line impedances are larger than zero. Consequently, energy flows lead to energy losses and
voltage deviations. [221]
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Figure 2.3: Visualization of the general layout of electricity network as well as the types
and their respective location of electricity generation and consumption be-
fore (a) and after the energy transition (b).
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2.6 Microgrids
Microgrids are a special kind of electricity grid that become more and more interesting in
the context of DERs. However, the term microgrid is defined in various ways. The two
most common definitions are given by the U.S. Department of Energy Microgrid Exchange
Group and the CIGRÉ C6.22 Working Group. The former defines a microgrid as follows:

“A microgrid is a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that acts as a single
controllable entity with respect to the grid. A microgrid can connect and
disconnect from the grid to enable it to operate in both grid-connected or
island-mode.” [64]

The definition of the CIGRÉ C6.22 Working Group reads as follows:

“Microgrids are electricity distribution systems containing loads and dis-
tributed energy resources, (such as distributed generators, storage devices, or
controllable loads) that can be operated in a controlled, coordinated way either
while connected to the main power network or while islanded.” [50]

Both definitions highlight the clearly defined boundaries of the electrical grid and some
sort of balancing mechanism of local generation and consumption, leading to some sort
of islanding capability. The grid is limited to a small spatial area and only a few distinct
coupling points to a higher-level electricity grid are assumed.

Because of these special properties, Katiraei et al.[131] state that “Depending on the type
and depth of penetration of distributed energy resource (DER) units, load characteristics
and power quality constraints, and market participation strategies, the required control and
operational strategies of a microgrid can be significantly, and even conceptually different
from those of the conventional power systems”. The reasons they list for their statement
can be summarized as:

• Significant degree of imbalance due to the presence of single-phase loads and/or DER
units.

• Noticeable amount of “noncontrollable” energy sources, e. g., wind-based units.

• Presence of short- and long-term energy storage units.

Building energy systems that are the focus of this thesis are also referred to as a specific
kind of microgrid [131]. Because of that, the approaches to the operation and management
of building energy systems and other microgrids are often related and comparisons can be
valuable.

2.7 Smart Grid
In addition to the energy transition, the digitization enables new approaches to tackle
the challenges in the energy systems and energy grids. The most famous approach is
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Figure 2.4: Scheme of an exemplary smart building equipped with an Energy Management
System (EMS) (based on [165]).

the provision of communication networks to the energy grids to provide data for decision
making. This combination of an energy grid and a two-way communication network
between the utility and the consumer is commonly called smart grid [52]. The existence
of communication networks allows for various applications, e. g., advanced management
and control services, advanced grid reliability analysis, failure protection, and security and
privacy protection services [75].

2.8 Building Energy Systems
In 2017, residential and commercial buildings caused about 40 % of the final energy
consumption2 in the EU [63, p. 174]. This share motivates the close investigation of
building energy systems. While residential and commercial buildings differ in the temporal
distribution and amount of energy consumption, they share the need for heat, cold and
electricity. This allows for similar modeling and operating strategies. Hence, in the
following, the term building energy system is used for residential and commercial buildings
(see Figure 2.4).

Traditionally, building energy systems consist of local energy grids and consumers, commonly
in the domains of natural gas, hot and chilled water, and electricity. The corresponding
devices are designed to provide the energy services desired by the residents, e. g., heating,
cooling, lighting, cooking or entertainment. While the generation of heat and cold is a

2Sum of the residential and the service sector.
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traditional task of building energy systems, electricity generation systems have only become
popular in recent years. This results from the availability of economic PV systems as well
as the increasing cost-effectiveness of CHPs, in particular micro-CHPs, which are CHPs
with a maximum electricity generation of 50 kW [1]. In addition to the introduction of
local generation, the presence of other new technologies changes building energy systems,
notably Electric Vehicles (EVs), BESSs, smart electric heaters, micro-CHPs and heat
pumps. Except for buildings in remote locations [86], buildings are typically connected to
electricity grids, i. e., in the low or voltage level, as well as heat or natural gas grids.

While the design of building energy systems, i. e., the dimensioning and choice of devices, is
a field of research on its own, this thesis focuses on the operation of building energy systems.
In this context, four goals are targeted in recent research: energy efficiency, cost reduction,
the integration of renewables and potential provision of ancillary services [20, 195][163,
p. 76].

In addition to the operating costs, the self-consumption rate [154, 258] and the self-
sufficiency rate [163, p. 13] are performance indicators commonly used in the literature.
The self-consumption rate is defined as [163, p. 13]:

self-consumption rate = total generated energy− fed-in energy
total generated energy . (2.1)

The self-sufficiency rate is defined as [163, p. 13]:

self-sufficiency rate = total generated energy− fed-in energy
total consumed energy . (2.2)

This thesis targets the cost reduction by an optimized operation of the building’s energy
system. The increase of energy efficiency, the integration of renewables and ancillary
services are considered based on their potential contribution to the cost reduction. The
self-consumption rate and the self-sufficiency rate will be used to indicate consequences of
the approach presented in Chapter 5.

2.9 Coordination and Management
Various coordination mechanisms and management systems are used to match generation
and consumption of electricity. The mechanisms described in this section refer to the
German energy system.

2.9.1 Electricity Trading
To cover their electricity demand, consumers have to buy electricity from power plant
operators or electricity retailers. Depending on the amount of electricity and the maximum
power that is needed, there are several alternatives to buy electricity [221, p. 962].
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Over the Counter Trading

Consumers can buy the electricity directly from the power plant operator. This process
is called over the counter trading, a trade between two parties without any supervision
of a market place. Typically, this mechanism is used by large consumers or retailers to
buy a basic supply of electricity. Contracts are made for a long time period with fixed
consumption schedules [270, p. 283].

Electricity Market

Electricity markets provide platforms to trade electricity. This is done by trading specified
products. The definition of the electricity markets and the specified products depends on
the corresponding countries and energy systems. The largest energy market in Europe is
the European Energy Exchange (EEX), where deals reaching up to six years in the future
can be closed. Electricity for the near future can be traded at the EPEX SPOT exchange,
most commonly at the day-ahead and the intraday markets.
Typically, the access to electricity markets is heavily regulated, limiting the trading to large
electricity consumers, power plant operators and electricity retailers [270, p. 269].

End User Supply

End-users like households or small and medium-sized enterprises typically buy the electricity
from electricity retailers. Since the consumers do not have to provide a prediction of their
consumption, the electricity retailer has to predict the consumption on its own in order to
buy the needed amount of energy beforehand [221, pp. 962].

2.9.2 Electricity Tariffs
The simplest electricity tariff has an energy price that does not depend on the time of use.
This means that the electricity consumption of an end-user is charged based on the annual
energy consumption. In addition to this simple electricity tariff, other tariffs have been used
by the electricity retailers, in particular, time-dependent energy prices. Time-dependent
energy prices can be divided into three categories [150, p. 273]: Time-of-use (TOU) prices,
Real-time Pricing (RTP), Critical Peak Pricing (CPP).

Time-of-use Pricing TOU tariffs define different time periods, each having a different
energy price. The resulting price profile is typically defined for a rather long time period,
e. g., one year. The number of time periods is often limited to a few periods, e. g., peak,
partial-peak, and off-peak. The daily price profiles can vary between seasons and weekdays.
TOU tariffs are used to incentivize load shaping and do not necessarily reflect the market
prices [53, p. 203].
Real-time Pricing RTP also uses price profiles. However, RTP uses more time periods
than TOU pricing and the price profiles are defined for shorter time periods, e. g., one day,
and are regularly communicated at shorter notice, e. g., one day ahead. RTP tariffs reflect
the current market prices. [53, p. 204]
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Critical Peak Pricing CPP extends TOU and RTP tariffs by adding event based price
changes. The price changes are introduced based on specific trigger conditions and are
communicated at a short notice, e. g., minutes or hours ahead. CPP may reflect the current
state of the electricity grid as well as the current market prices [150, p. 273].

In addition to energy prices, capacity prices exist. Capacity prices depend on the power
drawn from the grid. Two types of capacity prices are common: Firstly, a fee that
dependents on the maximum power drawn from the grid during a specific time period.
Secondly, a power price that varies the energy price based on the power drawn from the
grid. For example, Allerding [9] notes energy prices that are dependent on the power drawn
from the grid. More precisely, the energy price increases when the power drawn from the
grid is higher than a specific power value. The specific power value is called power limit.

Especially the increasing popularity of small PV systems (see Section 2.8) increases the
number of end users that do not only consume but also generate and feed-in electricity. The
electricity that is fed into the grid is sold to energy retailers. To support the generation of
electricity from RESs, this sale is subsidized in some countries. Similar to TOU electricity
tariffs, time-dependent feed-in compensations are a viable method to value distributed
generation [72, 179]. Even though time-dependent feed-in compensations are not yet
popular in Europe or Germany, they are used in other areas like Victoria, Australia [72].

This thesis picks up on both of these approaches, TOU tariffs and time-dependent feed-in
compensations. A more detailed description and motivation of the tariffs that are used in
this thesis are presented in Chapter 5.

2.9.3 Balancing Groups and Power Plant Scheduling

As described in Section 2.2, the generation and consumption have to be equal at any time.
Since the prediction of the electricity consumption of stochastic consumers is uncertain,
imbalances will occur inevitably. Therefore, the electricity providers group consumers
to improve the predictions. These improvements are based on the superposition of the
stochastic behavior of the consumers, creating consumption profiles that are easy to predict.
In a next step, electricity is bought from the power plant operators to match the expected
consumption. Based on the expected consumption profiles, the power plant operators
schedule their power plants to provide the requested electricity cost-effectively. The sum of
the involved consumers and generators is called balancing group. Here, it is important to
note that a balancing group is a virtual aggregation that aims at easing the billing process.
[221, p. 800]

To incorporate the topology of the grid, the balancing group managers have to send the
expected load and generation profiles for the next 24 hours to the grid operators, which
then estimate possible violations of the constraints of the electricity grids, e. g., overload of
lines based on limited transmission capacities. If necessary, the grid operators request a
redispatch of the scheduled power plants to solve the expected problems. Even though the
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redispatch solves the expected problems, the new schedules can lead to higher electricity
costs [221, pp. 792].

The manager of the balancing group, e. g., the electricity retailer, is responsible to ensure the
balance of generation and consumption in the balancing group. The equality is monitored
by the grid operators. If necessary, they have to initiate measures to balance the generation
and consumption. [221, p. 800]

2.9.4 Operating Reserve

In case of deviations of generation and consumption, the operating reserve provides short-
term control power to balance generation and consumption. It is important to note that
there is positive and negative control power. Provision of positive control power describes
the additional feed-in of electricity (or, equivalently, a reduction of consumption) while
provision of negative control power describes a reduction of the feed-in of energy (or,
equivalently, an increase of consumption). Dependent on the time between request and
provision, three classes of operating reserve can be distinguished [221, p. 800]: primary,
secondary and tertiary reserve.

Primary Reserve

Primary reserve provides control power independently and automatically dependent on the
current power frequency. The control power has to be provided within 30 s and a provision
of up to 15 min has to be guaranteed. In the case of electrical machines, the provision of
primary control power is done by adapting the rotational speed of the generators. The
primary reserve is provided for the entire European grid system [221, p. 738]. Primary
reserve is also called Frequency Containment Reserve.

Secondary Reserve

Similar to primary reserve, the secondary reserve generates control power independently
and automatically dependent on the current power frequency and the balance of the control
area. In case of need, the full control power has to be provided after 5 min. In contrast to
the primary reserve, the secondary reserve is organized by the grid operators individually.
In the German power system this task is done by the managers of the four control areas
[221, p. 738]. Secondary reserve is also called Frequency Restoration Reserve.

Tertiary Reserve or Minutes Reserve

Tertiary reserve has to be provided after 15 min. In contrast to the primary and secondary
reserve, the tertiary reserve is retrieved individually when needed. The retrieval is performed
by the grid operator, using a specific signal, e. g., via telephone [221, p. 738].
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2.9.5 Demand Side Management and Demand Response

In addition to the control of power plants, the demand side can also be controlled to achieve
the balance of generation and consumption. Traditionally, utilities influence customers in
ways that will produce desired changes in load shapes. The planning and implementation of
these activities is called DSM [90, 91]. In this context, Gellings [91] defines six load-shape
objectives: peak clipping, valley filling, load shifting, strategic conservation, strategic load
growth and flexible load shape.

In the context of energy transition and the predicted decrease of large-scale power plants
and increase of DERs (see Section 2.3), Palensky et al. define DSM differently [195]. They
propose: “While DSM was ‘utility driven’ in the past, it might move a bit towards a
‘customer driven’ activity in the near future.” [195]. They define four categories of DSM
[195]: Energy Efficiency (EE), Time of Use (TOU), DR and Distributed Spinning Reserve.
This idea has been continued and enhanced in the literature, e. g., by [9, 163, 215, 240].
The four categories are shortly described in the following paragraphs.

Energy Efficiency Energy efficiency measures on the demand side focus on improving
the energy efficiency of buildings, i. e., reducing the quantity of energy used per unit service
provided [52]. Energy efficiency measures are also defined in ISO 50001 [61], which also
defines Energy Management Systems (EMSs) to implement concrete measures.

Time of Use Time of use refers to the use of TOU and RTP tariffs. The use of time-
depending tariffs targets on penalizing the electricity import from the grid in certain periods
in time, e. g., in the evening, while rewarding the electricity import from the grid in other
periods, e. g., periods of high renewable generation, by lower prices [195]. The use of TOU
and RTP tariffs is supposed to introduce a change in energy consumption by the customer,
especially in combination with automated EMSs.

Demand Response Demand Response (DR) refers to various measures that incentivize
the demand side to adapt their consumption in order to support the electricity system
or reflect market conditions [52, 195]. Even though the term demand response suggests
the limitation to demand and energy consumption, often DR measures also include the
adoption of the local generation or the sum of the local generation and consumption [163].
The measures of load adaption can be categorized using the load-shape objectives defined
by Gellings [91]. Typically, they include the scheduling of shiftable loads, i. e., devices of
which the operation can be shifted in time, e. g., intelligent appliances, CHPs [9, 163], heat
pumps [146] or EVs [181], or the usage of energy storage systems, e. g., batteries [179] or
thermal energy storage systems, e. g., Hot Water Tanks (HWTs) [9, 163].

Distributed Spinning Reserve Distributed spinning reserve aims at supporting the
providers of ancillary services by imitating their behavior. On the demand side, this means
that load can be reduced or increased in dependence on the grid frequency [195].
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2.10 Flexibility in Energy Systems
The balancing of the generation and consumption in an energy system typically uses the
flexibility of energy systems [18]. Thus, DSM and DR are often linked to the flexibility
of the energy system. The term flexibility is defined in various ways, depending on the
domain of the one who defines the term as well as the concrete application cases that are
investigated.

The definition of the CEN-CENELEC-ETSI Smart Grid Coordination Group [45] reads as
follows:

“The flexibility in demand and supply in the context of Smart Grids [...]
covers the changes in consumption/injection of electrical power from/to the
power system from their current/normal patterns in response to certain signals,
either voluntarily or mandatory.” [45, p. 12]

Here, the flexibility is defined as deviations from the usual behavior of demand and supply.
Roossien (2010) [212] and Neugebauer et al.(2015) [184] give the following similar definition:

“The possibility to influence the operation mode of energy producers or
consumers by shifting production or consumption under given constraints is
called flexibility[.]” [184, p. 1]

This definition emphasizes the ability to shift the operation of a producer or consumer.

In the context of this thesis, an additional definition [162] has been developed that is
inspired by the energy flexibility corridor [100], flexibility space [32] and the control space
[245], i. e., the set containing all feasible schedules for a source of flexibility (see Figure 2.5).
The definition reads as follows:

“The flexibility of an energy system is the collection of valid combinations of
system inputs and their state dependent outputs in terms of all energy carriers,
i. e., all combinations that provide all mandatory energy services in a manner
ensuring system stability.” [162]

To enable a comparison of the flexibilities of different energy systems, a quantitative
description of the flexibility is needed in addition.

2.11 Optimization in Building Energy Systems
Typically, optimization in building energy systems focuses on the following topics:

1. Technical design of the energy system

2. Economic design of the energy system

3. Optimized operation of the energy system
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Figure 2.5: Visualization of an energy system that provides internal energy services based
on its current state as well as the in- and outputs of energy carriers. The
system’s flexibility is defined as the set of possible in- and output combinations
that allow to provide the required energy services [162].

This work focuses on the third topic. However, all three topics often use similar modeling
techniques, energy system models and optimization algorithms. Thus, an analysis is
worthwhile.

The economic and technical design of a building energy system is the process of finding the
best combination of technical devices and subsystems for the defined task of the building.
Here, the best combination can be defined in several ways, targeting several goals, e. g.,
the provision of sufficient heat in cold winters or the provision of enough electric power.
The most important goal for a building energy system is to provide the necessary energy
services. The necessary energy services include all services that has to be provided by
the building and its energy system. Depending on the purpose of the building, they may
include lighting, heating, cooling, or the provision of electricity for plug loads. The goal
of the economic design of building energy systems is to find a combination of technical
devices that yield minimal costs while providing all necessary energy services.

In contrast, the optimization of the operation of the energy system targets the determination
of optimal operation strategies or control schemes for all devices in the energy system. The
three topics are described in the next sections.

2.12 Economic and Technical Design of the Building
Energy Systems

To ensure the provision of necessary energy services, the technical setup has to be designed
appropriately. Therefore, the expected usage, e. g., electricity consumption profiles, the
environment of the building, e. g., ambient temperature profiles or solar radiation profiles,
and the services, e. g., desired indoor temperatures, have to be defined. After this, the
energy system has to be designed and its performance in the given scenario has to be
evaluated (see Figure 2.6). This is done by solving an optimization problem in which the
environment, the usage profiles, and the building model are fixed while the technical setup
and the respective operation strategies are varied. The technical setup can include the
parameters of the devices in the building energy system, e. g., the size of a BESS, the
nominal power of a micro-CHP or the size of an HWT.
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Figure 2.6: Economic and technical design of the technical setup using a simulation model.
Typically, the environment, the usage profiles, and the building model are
assumed to be fixed while the technical setup and the respective operation
strategies are varied.

In the context of simulation-based models, various simulation programs for building energy
systems have been developed [56], e. g., EnergyPlus [57], the Transient System Simulation
Tool (TRNSYS) or ESP-r, that allow to evaluate the performance of a given energy system
in a given scenario [152, 158].

In the technical design, an optimization is performed to find suitable technical setups for
the building energy systems. This is important for buildings with specific needs, e. g.,
buildings in remote locations [86]. The technical design is often done in combination with
an economic design. This means that the composition of an energy system is chosen to
minimize the operating costs as well as the investment cost.

This can be done by formulating a two-stage decision problem [130, 222] (see Section 3.11.1).
In the first stage an investment problem is formulated. In the second stage the optimization
problem targeting the operation of the energy system is modeled. The second stage is
similar to the optimization problem targeted in this thesis. The economic design is an
off-line optimization problem that targets an optimal operation of an energy system over
a relatively long temporal period. Typically, one year or more is modeled with a low
temporal resolution of one hour or more. The optimization is performed to get an estimate
of the expected energy costs over the lifetime of the energy system. The resulting schedules
for the devices are not meant to be used for an actual control of the devices, because no
uncertainties are taken into account. Even though the approach presented in this thesis
is also utilizing a two-stage approach, it differs in the assignment of the stages. A more
detailed description of optimization approaches that target a predictive operation of a
building energy system is given in Section 2.13
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2 Background on Energy Systems

Sometimes also multi-objective optimization approaches are used during the design phase
of an energy system, taking technical, economic, environmental and additional goals into
account [79, 204].

2.13 Optimized Operation of Building Energy Systems
The optimized operation of building energy systems is an on-line optimization approach
that determines the optimal operation strategies or control schemes for all the devices in the
building energy system. As shown in Figure 2.7, the operation strategies can be split into
different tasks and the respective time-scales. In the context of this thesis, the optimized
operation of the building energy system is restricted to the planning of the scheduling of
the devices and their joint operation. When looking at Figure 2.7, this corresponds to the
“Real-time Optimization” and the “Advanced Control” layers. This focus typically results in
taking a time-scale of hours or minutes into account [20]. Hence, this thesis assumes that
the control algorithms in the devices are fixed and cannot be changed by the optimization.
The task of optimizing the operation of a building energy system is called building energy
management. A system that enables energy management in buildings is called BEMS.

2.14 Building Energy Management Systems
To enable local DSM and provide DR measures in buildings, the local energy system has to
be monitored and controlled. Systems that perform this task are called BEMSs. BEMSs
monitor and control associated energy systems to achieve a given goal. In general, the goals
are similar to the ones of DSM (see Section 2.9.5), often extended by goals addressing user
comfort [20, 66]. Here it is important to note that such a system should not be confused
with an EMS as defined by the ISO 50001 [61]. The ISO 50001 defines an EMS as follows:

“Set of interrelated or interacting elements of an organization to establish
energy policy and objectives and to achieve those objectives.” [61]

BEMSs as considered in this thesis are more related to the VDI Guideline 4602 [251] that
defines an EMS as a system that controls a corresponding energy system in order to achieve
given goals.

“The energy management system is a control loop in which, starting with
set targets, an energy task is performed and the results checked and evaluated.
[...] The term ‘energy management system’ covers not only the organisational
and information structures required for implementing the energy management
system but also the technical resources needed for this (software and hardware,
for example).” [251, p. 8]

In recent years, the design, development and evaluation of BEMSs have been active fields
of research [20, 66]. In addition to BEMSs developed by researchers, commercial BEMSs
occurred in recent time, e. g., the QIVICON Home Base by Deutsche Telekom, SMA Smart
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Figure 2.7: Layers for planning, scheduling, optimization, and control of building energy
systems (based on [71, 224]).
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Home, Innogy SmartHome or RWE easyOptimize. However, the commercial systems often
focus on energy efficiency and user comfort goals and lack other features like load shaping
to enable DR measures. The lack of sophisticated BEMSs deployed in the field, indicates
that this field of research is still relevant.

BEMSs differ in the chosen software architectures as well as in their optimization and
control [20, 66]. Some use rule-based approaches [65, 132], some use rolling horizon
optimization [269] or model predictive control approaches [191], others use metaheuristics
[9, 163, 165, 174, 179, 233]. Typically, BEMSs are used to plan the joint operation of
devices in a building’s energy system to minimize the operating costs while complying with
constraints, e. g., minimal and maximal room temperatures. In addition to the central
BEMS, other controllers may be present in energy systems in buildings. Examples are
hysteresis controllers in water boilers or battery management systems that coordinate
the cells in a BESS. The BEMS typically is limited to the joint operation of devices (see
Figure 2.7).

This thesis presents a rolling horizon optimization that considers the uncertainty in the local
generation and consumption by using a stochastic programming approach. The optimization
targets the minimization of operating costs that are based on TOU tariffs as well as the
maximization3 of the feed-in compensation from local generation of a micro-CHP and a PV
system that is compensated based on a time-dependent feed-in rate. The optimization is
used to determine the optimal schedule of the devices that can be controlled by the BEMS,
i. e., a BESS, a micro-CHP and shiftable loads, e. g., shiftable appliances.

A more detailed description and motivation of the optimization approach for energy systems
in buildings will be presented in Chapter 5. The next chapter introduces the theoretical
concepts and formulations that are used in the optimization of the BEMS developed in
this thesis.

Application of Building Energy Management and Operating Systems

To enable the application in real buildings, the actual devices have to be connected to the
optimization algorithm. This means, the states of the devices have to be communicated to
the optimizer and the determined schedules and control inputs have to be communicated
back to the devices (see Figure 2.8). However, the communication with devices in building
energy systems is not standardized. Therefore, the connected devices have to be abstracted
to ensure compatibility with the optimization model.

The standardization of communication and modeling of devices in building energy systems
is currently developing suitable approaches, e. g., the EEBus by the EEBus Initiative, but
no solution has established itself as a gold standard.

A data interface enables to incorporate signals and data from external entities (see
Figure 2.8), e. g., TOU tariffs or forecasts of the local generation and consumption as

3In this thesis, earnings from electricity that is fed into the grid are modeled as negative costs. Thus, the
resulting optimization problem is a single-objective minimization problem.
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Figure 2.8: Visualization of the information and control flows in a BEMS that controls
several devices. The communication between the optimization part and
the devices has to be abstracted to enable a standardized and integrated
optimization.

well as user preferences. In addition, the goals, i. e., the objective function, can be en-
tered by the user. This can be done for example by specific interfaces, e. g., the Energy
Management Panel (EMP) presented in [21].

BEMSs may be a part of a building operating system. These operating systems address
ICT related services other than energy management. Examples are assistance, comfort,
entertainment, health, information, safety, and security functionality [163, p. 86].

This thesis does not consider abstraction of devices and communication of data. Instead,
this thesis focuses on evaluation using simulations. In addition, the configuration of the
system, e. g., the adaption of the model to the real energy system and the specific devices
and the parameterization of the model, is not addressed in this thesis. As part of this
doctoral project, an approach that enables an efficient configuration of DERs and BEMSs
has been developed and is presented in [175].

2.15 Coordination and Building Energy Management
in Distribution Grids

BEMSs are a popular tool to enable customer driven DSM (see Section 2.9.5). They are
widely seen as a component to realize and support smart grids. BEMSs are typically used
to optimize the operating costs. They perform very well in the combination with TOU
tariffs and other more complicated tariff structures like power prices (see Sections 2.9.2 and
4.2.1). However, the shaping of energy profiles has been identified to support the operation
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Figure 2.9: Visualization of four coordination patterns for the exploitation of flexibility
that is provided to a demand side manager (based on [162]).

of distribution grids and to possibly provide ancillary services, in particular for electricity
generation and consumption profiles.

To achieve these goals, a suitable coordination method for buildings equipped with a
BEMS has to be introduced to the distribution grid. Here, different coordination methods
have been proposed in the literature. As part of this doctoral project, one approach has
been developed and is presented in [162]. It distinguishes between four categories (see
Figure 2.9): physical demand response, direct market demand response, indirect market
demand response and decentralized market demand response (see Figure 2.9).

Even though the coordination mechanisms do not cover the optimization in buildings
directly, the investigation of possible future mechanisms can be worthwhile, in particular
with regard to the design of BEMSs. Furthermore, BEMSs and an optimized operation of
building energy systems can be seen as enabler of DR [229].

Physical Demand Response

Physical demand response refers to an approach in which the DERs, e. g., the devices in
buildings, are controlled directly by a demand side manager, i. e., an entity that supervises
the DR efforts (see Figure 2.9a).

An exemplary approach that presents a direct load control model for virtual power plant
management has been published in [185]. Another approach to physical demand response
has been presented in [120], targeting direct load control and interruptible load management
to provide instantaneous reserves.
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2.15 Coordination and Building Energy Management in Distribution Grids

Direct Market Demand Response

Direct market demand response refers to approaches in which participants communicate
their flexibility in combination with some sort of realization costs in some predefined
abstracted way to a central demand side manager. In this process, the flexibility can, for
example, be modeled as a list of possible load profiles. A load profile is a time series of
energy consumption values, e. g., heat or electricity consumption values. Sometime load
profiles are also called load traces [133].
This central entity then determines the optimal load profiles for all participants and sends
them back, so that the participants can operate their energy systems in a way to realize
the proposed load profiles (see Figure 2.9d).
Hirsch [113] presents such a schedule-based coordination mechanism to coordinate buildings
in order to support the operation of a distribution grid, in particular to support voltage
maintenance. This is achieved by obtaining an optimal schedule for the distribution grid
using a multi-objective Evolutionary Algorithm (EA) to determine the optimal sum of
the individual schedules. Hirsch presents an integrated approach that utilizes concepts of
Organic Computing [180]. It includes ideas of the communication of data and implementation
of the software.

Indirect Market Demand Response

In indirect market demand response approaches a TOU tariff is used to incentivize par-
ticipants, e. g., buildings equipped with a BEMS, to perform load shaping. The demand
side manager determines and distributes the TOU tariffs. However, the reaction of the
participants is not known exactly. Therefore, models have to be derived that can predict
the stochastic behavior (see Figure 2.9c), e. g., data-driven models.
Gottwald et al. evaluate household behavior under variable prices using simulations [96, 97,
98]. They utilize power-based surcharges and group prices to avoid herding effects. The
results are compared to a physical demand response approach that solves an optimization
problem which covers all participating devices at once.
Rios [210] presents a method that targets the tracking of a predefined target profile by
giving households a RTP tariff-based incentive to shift their load profiles. However, the
method uses some sort of iterative approach that is stated to be a closed-loop approach
[210, p. 97].
Jargstorf et al. [124] investigate the user reaction on tariffs. The users are assumed to have
PV generation and BESSs. They investigate the influence of different tariff schemes on the
user reaction and possible consequences for the grid. In addition, tariff components related
to the grid upgrade costs are investigated.

Decentralized Market Demand Response

In contrast to the approaches above, decentralized market demand response does not include
a centralized entity that is responsible for the DR measures, e. g., a demand side manager
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(see Figure 2.9d). Related approaches are based on distributed optimization approaches,
like the one presented in [35], distributed auctions or peer-to-peer trading.

A peer-to-peer DR approach is presented by Mengelkamp et al. [168]. It presents a design
of energy markets that uses blockchain-based local energy trading. The design is evaluated
using a case study, the Brooklyn Microgrid.

Molina-Garćıa et al. [177] present a decentralized market demand response approach to
enable a decentralized demand-side contribution to primary frequency control.
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3. Theoretical Concepts of Modeling
and Optimization

In this chapter, theoretical concepts and formulations related to the modeling of discrete time
systems and their optimized operation by a rolling horizon optimization are introduced.
In addition, an introduction to decision-making under uncertainty and the respective
mathematical concepts is given. This is followed by the introduction of MILP and approaches
to the solving of such problems. The chapter ends with a discussion of the approaches to
the modeling of energy systems in buildings.

3.1 Model Building
The general approach to solving an optimization problem has several steps (see Figure 3.1).
Firstly, an initial problem definition using a verbal description or technical specification
has to be formalized. This step is often performed using mathematical relationships
such as equations, inequalities and logical dependencies [260, p. 3]. The collection of all
mathematical relationships is called model. Secondly, a suitable optimization algorithm has
to be found to solve the problem. Depending on the problem, analytical or computer-based,
numerical approaches can be used. If the problem cannot be solved in a given time, it
sometimes has to be transformed to obtain a problem more suitable to be solved. [196,
p. 5] However, it is important that the mathematical model describes the modeled system
adequately. Where adequately should always be defined with respect to the research
questions or the optimization objectives. Both goals, the ease of solving as well as the
model quality are often opposing. This leads to a trade-off in the choice of the model.

3.2 Optimization
Typically, the task of finding optimal solutions is synonymous with finding the minimum
or maximum of a given mathematical equation. The task of maximization can easily be
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Figure 3.1: Process of model building and problem definition based on [196, p. 5].

transformed into the task of minimization. In this thesis, the term optimization is defined
to be equal to the minimization of an optimization function.

An example of a generic optimization problem is given by [196, p. 11]:

min
x
g(x), x ∈ Rn (3.1)

subject to:

e(x) = 0 (3.2a)
i(x) ≤ 0 (3.2b)

where g is the objective function that has to be minimized, x is a vector of decision variables.
Equations 3.2a and 3.2b are the equality and inequality constraints, respectively.

3.3 Off-line and On-line Optimization
When considering optimization problems, a distinction is made between off-line and on-line
optimization. In the case of building energy systems, off-line optimization refers to problems
that have to be solved during the design of the building energy system (see Section 2.12).
In contrast, on-line optimization problems have to be solved during the run-time of the
energy system to find the optimal operation schedule.

Off-line and on-line calculations impose specific requirements on the choice of the system
model and the optimization algorithm. Often, off-line calculations are only performed once.
Therefore, long calculation times can be tolerated. In contrast, on-line calculations are
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typically performed regularly, and sometimes real-time requirements have to be considered.
[196, p. 6]

According to this categorization, investment and operating problems as defined in Section 2.11
can be characterized as follows: The technical and the economic design of the energy system
are off-line optimization approaches, while the optimized operation of the energy system
that is targeted by this thesis is an on-line optimization approach.

3.4 Optimization of Discrete Time Systems
In the domain of BEMSs as defined in Section 2.14, energy systems are often modeled as
discrete time systems. In the literature, this decision is not always motivated. However,
discrete time models are well suited because of the time-discrete behavior of several devices,
e. g., appliances, and because of the common time-discrete measurements of the local energy
states and power flows.

The goal of BEMSs is to find optimal control inputs for the corresponding building energy
system. Here, the optimality condition has to be defined by the designer of the BEMS. In
general, the optimality condition can be defined as the minimum of an objective function J .
In this thesis, the building energy system is described by a discrete time model. In general,
the temporal progression of a discrete time model is described by the state equation [196,
p. 343][102, p. 13][10, 12]:

xt+1 = f(xt,ut), ∀t ∈ {0, . . . , T − 1}, (3.3)

with the state of the energy system x ∈ X ⊂ Rn, the control input u ∈ U ⊂ Rm and the
state transition map f : X × U → X that connects the time step t with the next time step
t+ 1 [12]. Here, T is the number of time steps that is of interest in the model and each
time step has a duration of ∆t. The time period considered in the optimization is called
optimization window. In energy management, ∆t · T actually is the lifetime of the building
energy system or a shorter time that allows making inferences about the performance in
the lifetime of the building energy system. Here, often one year is chosen to include all
seasons.

The following matrices can be defined to ease the reading [196, p. 344]:

X = (x0, · · · ,xT ) ∈ X T+1, (3.4a)
U = (u0, · · · ,uT−1) ∈ UT . (3.4b)

Additionally, the temporal progression of the system (see Equation 3.3) can be subject to
constraints involving both system states and control inputs:

(xt,ut) ∈ Y , ∀t ∈ {0, . . . , T − 1}, (3.5)

for some compact set Y ⊂ X × U [12].

33



3 Theoretical Concepts of Modeling and Optimization

The task of the BEMS is to find the control inputs U ∗ that minimize the objective function,
J : X × U → R while fulfilling the constraints presented in Equations 3.3 and 3.5. The
objective function has to be chosen by the designer of the BEMS. Common objectives in
building energy management are the reduction of operating costs, carbon dioxide emission or
energy consumption. A detailed list of common objectives in building energy management
is presented in Section 4.2.1 and Table 4.1. Often, the objective function J is defined as a
sum of stage costs l(xt,ut) : X × U → R, i. e., the costs in each time step t (cf. [12]):

J(X,U) =
∑

t∈{0,...,T−1}
l(xt,ut). (3.6)

This leads to the optimization problem [10]:

J∗ = min
u∈UT

∑
t∈{0,...,T−1}

l(xt,ut), (3.7)

subject to:

(xt,ut) ∈ Y , ∀t ∈ {0, . . . , T − 1}, (3.8a)
xt+1 = f(xt,ut), ∀t ∈ {0, . . . , T − 1}. (3.8b)

In order to find the optimal control inputs, Equation 3.7 has to be solved. To do so,
firstly, the building energy system has to be modeled as a discrete time system to sat-
isfy Equation 3.8b and, secondly, additional constraints have to be formulated to obtain
Equation 3.8a. Here, the optimization is performed only once dealing with a time period of
∆t · T that represents the lifetime of the building energy system. This approach of finding
the optimal control inputs for a dynamic system based on a single off-line optimization is
often called optimal control [196, p. 343].

3.5 Rolling Horizon Optimization
The approach outlined in Section 3.4 enables the calculation of control inputs that are
optimal with respect to a given objective function. However, Equation 3.7 describes a rather
long time period that may lead to a computationally challenging optimization problem. In
addition, the approach presented in Section 3.4 is not able to react on possible deviations
from the predicted temporal evolution of the system to the real system.

The rolling horizon optimization approach addresses both points. To make the problem
computationally more tractable, the optimization window is reduced from T to N time
steps k ∈ {0, · · · , N − 1} [10] with N << T (see Figure 3.2). In so doing, the optimization
window considers a time period that begins at t0 ·∆t and ends at t0 ·∆t + k ·∆k. Here,
t0 ·∆t is called start time of the optimization and the end time of the optimization window
∆k ·N is called optimization horizon.

To differentiate between the variables in the rolling horizon optimization approach and
the variables in the actual system, the symbols z and v are chosen instead of x and u to
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Figure 3.2: Visualization of the rolling horizon optimization approach. (based on [174])

denote the system states z ∈ X ⊂ Rn and the control inputs v ∈ U ⊂ Rm in the rolling
horizon optimization approach1. To ease the reading, the following matrices are defined
[196, p. 344]:

Z = (z0, · · · , zN) ∈ XN+1, (3.9a)
V = (v0, · · · ,vN−1) ∈ UN . (3.9b)

Here, •k defines the value of the respective variable at the time t0 ·∆t + N ·∆k. Where,
t0 ·∆t is the starting time of the optimization window, ∆k is the length of a time step in
the optimization window, N is the number of time steps in the optimization and ∆k ·N is
the optimization horizon.
The resulting objective function is defined as:

JN(Z,V ) =
N−1∑
k=0

l(zk,vk) + C(zN), (3.10)

with the terminal costs C : X → R.
The initial system state in the optimization window z0 is initialized with the value of the
current state xt0 :

z0 = xt0 . (3.11)
This leads to the optimization problem [10]:

min
V ∈UN

JN(Z,V ), (3.12)

subject to:
(zk,vk ∈ Y , ∀k ∈ {0, · · · , N − 1}, (3.13a)
zk+1 = f(zk,vk), ∀k ∈ {0, · · · , N − 1}, (3.13b)
z0 = xt0 , zN ∈ XN. (3.13c)

1In the actual definition of the optimization approach for energy systems in buildings that is presented in
Chapter 5 this is done by marking the variables in the actual energy system with a tilde ( •̃ ).

35



3 Theoretical Concepts of Modeling and Optimization

with the terminal state zN being constrained to some set XN ⊂ X . Based on Equation 3.11,
the optimal system states Z∗ and the control inputs V ∗ are dependent on xt0 [10].

When V ∗ are found, the first control input is applied to the real system by setting

ût := v∗0, ∀t ∈ {t0, . . . , bt0 + ∆k

∆t
c − 1}. (3.14)

In time step bt0 + ∆k
∆t
c, the process is repeated and Equation 3.12 is solved with z(0) =

xbt0+ ∆k
∆t
c
2. This allows the rolling horizon optimization approach to react on the current

states of the real system. In addition, the optimization horizon is moved to a later point in
time. This behavior of moving the optimization horizon further in time leads to the name
Rolling Horizon Optimization.

In so doing, the problem defined in Section 3.4 can be approximated by finding the control
inputs ut for all time steps t ∈ {0, . . . , T − 1}.

The costs that result by applying the rolling horizon optimization Ĵ are given by:

Ĵ(X,U) =
∑

t∈{0,...,T−1}
l(x̂t, ût), (3.15)

with:
x̂t+1 = f(x̂t, ût), x̂0 = x0, ∀t ∈ {0, . . . , T − 1}, (3.16)

Here, the hat ‘ •̂ ’ indicates that Ĵ is an estimation for J∗ given in Equation 3.7 that
uses the rolling horizon approach to determine the control inputs instead of solving the
optimization problem for T time steps. The control inputs that are given by the rolling
horizon optimization are used to simulate the temporal progression of the energy system
based on the state equation given in Equation 3.3.

In Figure 3.2, a visualization of the process is presented. Depending on the scientific
domain, this approach is called rolling horizon optimization, receding horizon optimization,
on-line scheduling or Model Predictive Control (MPC) [20]. Following the terminology
defined in Section 3.3, the approach presented in this section is categorized as on-line
optimization.

As stated before, the approach presented in this section has various names. In the domain
of control engineering it is called MPC. Here, it is important to note that the approach
that is typically called MPC is tracking MPC. It differs from the approach pursued in this
thesis.

This thesis presents an approach to the optimization of the operation of an energy system
in buildings that is similar to Economic Model Predictive Control (EMPC).

Ellis et al. formulate the difference between tracking MPC and EMPC as follows [71, p. 5]:
2Here, b•c = floor(•) denotes the floor function in the square bracket notation introduced by Gauss.
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“The main difference between tracking MPC and economic MPC is that the
tracking MPC problem is formulated with a tracking cost functional, while the
economic MPC problem is formulated with an economic cost functional. The
tracking cost functional usually uses a quadratic stage cost that penalizes the
deviation of state and inputs from their corresponding steady-state, target, or
reference values. However, the EMPC cost functional may potentially use any
general stage cost that reflects the process/system economics. Since the idea
of EMPC is to compute control actions that directly account for the economic
performance, economic-oriented constraints may also be added.”

In other words, EMPC does not have the assumption that [11, 207]:

l(z∗k,v∗k) ≤ l(zk,vk) for all admissible (zk,vk), ∀k ∈ {0, . . . , N − 1}. (3.17)

where z∗k are the state vectors and v∗k are the control inputs that are optimal with respect
to Equation 3.12.

Here, it is important to note that the choice of N and ∆k has to be done by the designer of
the rolling horizon optimization approach. However, the choice affects the performance of
the rolling horizon optimization and the optimal choice is not obvious [88]. These parameters
are called tuning parameters and the process of estimating the tuning parameters is called
parameter tuning [88]. Typically, the tuning parameters are estimated in some sort of
off-line optimization, i. e., before the operation of the system starts [88]. In [261], it is
suggested that the optimization window should be chosen so large that further increment
has no significant effect on the performance of the rolling horizon approach. Although, the
optimization horizon and time resolution have to be chosen in a way that the computational
effort to solve the optimization problem stays manageable [88]. In addition to off-line
tuning method, self-tuning methods exist that update the tuning parameters during the
run-time of the system in an on-line optimization [88].

3.6 Time-Dependent Parameters and Stage Costs
In practical application, the stage costs in the rolling horizon optimization (see Equation 3.10)
can be dependent on time-dependent parameters. In building energy management, examples
for time-dependent parameters are the electricity tariffs and the forecast of the local energy
generation and consumption (see Figure 3.3). The time-dependent parameters described
by the vector θ ∈ B ⊂ Rp:

l(θk, zk,vk) : B × X × U → R. (3.18)

The temporal evolution of the parameter vector θ, i. e., its value in every time step k in
the optimization window, can also be dependent on the time of optimization t0, i. e., the
point in time in which the optimization is performed.

Θ = (θk, · · · ,θN−1) ∈ BN . (3.19)
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Figure 3.3: Visualization of time-dependent parameters. The two graphs show the tem-
poral evolution of the electricity tariff in two different optimization runs. The
electricity tariff is an example of a time-dependent parameter. The upper
figure shows the electricity tariff in an optimization started at midnight and
the lower figure shows the electricity tariff in an optimization run that is
started two hours later.

In this case, the objective function (see Equation 3.10) can be formulated as follows:

JN(Θ,Z,V ) =
N−1∑
k=0

l(θk, zk,vk) + C(zN). (3.20)

In the domain of building energy management systems, the constraints on the system states
and the control inputs (see Equation 3.8a) can also be dependent on the time-dependent
parameter vector θ:

(θk, zk,vk) ∈ Yθ, ∀k ∈ {0, . . . , N − 1}, (3.21)
for some compact set Yθ ⊂ B × X × U .

This leads to the following rolling horizon optimization problem:

min
V ∈UN

JN(Θ,Z,V ), (3.22)

subject to:

(θk, zk,vk) ∈ Yθ, ∀k ∈ {0, · · · , N − 1}, (3.23a)
zk+1 = f(θk, zk,vk), ∀k ∈ {0, · · · , N − 1}, (3.23b)
z0 = xt0 , zN ∈ XN. (3.23c)
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It is important to highlight that this means that the optimization problem varies over time.
Thus, the optimization problem is dependent on the time of optimization t0.

In the domain of BEMSs, time-dependent electricity tariffs or time-dependent electric-
ity generation or electricity and heat consumption are examples for the time-dependent
parameter vector θ.

3.7 Approximation and Numerical Solution

It is important to highlight that the costs that result by applying the rolling horizon
approach described in Section 3.5 (see Equation 3.15) are in general higher than the costs
defined by Equation 3.7. However, as described in Section 3.5, the application of the rolling
horizon approach is necessary in practical applications.

Often, it is not possible to find an analytic solution for the optimization problem in the
rolling horizon approach (see Equations 3.15 and 3.22) [196, p. 24]. Hence, numerical
methods have to be used to solve the optimization problem. It is often assumed that at
least one solution for the problem exists even if this is not explicitly proven. In the domain
of BEMSs, MILP models are common [20]. The literature states that these models describe
the building energy systems reasonably well and the time to solve the resulting optimization
problems is often appropriate for the applications [20]. In addition, solvers exist that are
easy to handle and work well out of the box, e. g., CPLEX or Gurobi. Typically, they
use the branch and bound and branch and cut methods. These methods also are able to
guarantee that the determined solution to an optimization problem is the global optimal
solution. Methods that can give this guarantee are called exact optimization methods [213,
p. 45].

To reduce the run-time of these methods, the optimization algorithm can be stopped before
it has found the optimal solution. For example, this can be done after a given optimality
gap3 [128, p. 95], i. e., the difference between the best-known solution to the optimization
problem and the best solution to the relaxed linear problem found so far, or when a given
time limit has been reached.

In addition to these exact optimization methods, heuristics can be used [230][213, p. 85].
Heuristics are optimization methods that use problem-specific knowledge to find a solution
to an optimization problem. Heuristics cannot give a guarantee that they find the optimal
solution. However, in practical applications approximate solutions often suffice. In addition
to these problem specific heuristics, metaheuristics exist, can be applied to a wider range of
problems [213, p. 92]. Examples for metaheuristics are genetic algorithms and particle swarm
optimization. Both optimization methods have been used in building energy management,
for example in [165, 198].

3The optimality gap is sometimes called duality gap, integrality gap or MILP gap (cf. [104, p. 557]).
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3.8 Decision Making Under Uncertainty
In general, all physical systems are subject to uncertainty. Hence, when modeling a physical
system like the energy system in a building, uncertainties have to be considered [253].
Depending on the influence of uncertainty on the system, the uncertainty can be included
in the model directly or may be omitted. A variety of theories and methodologies to cope
with these problems have been developed across various domains of research [214].
In a first step, the decision maker has to define the decision criteria and the environment
the decision has to be made in. The environment defines the sources and knowledge of
the uncertainty as well as the structure of the decision process, e. g., if the decision maker
is exclusively responsible for making the decision. According to Willett [259] as well as
Knight and Jones [134], a distinction can be made between measurable uncertainty, i. e.,
risk, and situations with non-quantitative knowledge. Willett as well as Knight and Jones
propose that the term uncertainty should be limited to the latter case and measurable
uncertainty should be called risk. However, in the literature the term uncertainty is often
used for both situations. Risk is typically limited to situations in which the probability
distributions are known to the decision maker.
Examples of processes in building energy systems that are subject to uncertainty are the
electricity generation from solar irradiation or the electricity consumption caused by the
actions of the inhabitants. When considering the task to find optimal schedules for the
devices in a building energy system, the future generated power can be predicted but
the amount of power that is actually generated is unknown before the time of generation.
In this situation, the decision on the schedule has to be made before the realization of
the random variables. Aside from building energy systems, a large variety of problems
requires that decisions are made under the presence of uncertainty, e. g., portfolio selection
or production scheduling.

3.8.1 Modeling of Uncertainty
The uncertainty in an energy system, e. g., the uncertainty in the prediction of the electricity
consumption, can be modeled by handling the respective parameters of the system model
as random variables. This approach can also be used to model other processes that are
subject to uncertainty [227, p.2].
When w is a continuous random variable distributed according to the Probability Density
Function (PDF) p(w), the expected value E(w) is defined by [254]:

E(w) =
∫ ∞
−∞
wp(w)dw. (3.24)

In case of a discrete random variable w ∈ W = {w1, . . . ,wM} with the uncertainty set W
(cf. [29]), the expected value is defined by:

E(w) =
M∑
m=1

wmp(wm), (3.25)
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where M is the number of possible outcomes of the random number w.
In the following, random variables wk ∈ W with the uncertainty set W and

W = (w0, · · · ,wN−1)ᵀ ∈ WN , (3.26)
are introduced4 to the system model. They can be seen as a disturbance of the known
time-dependent model parameters Θ as defined in Section 3.6. In this case, the state
equation is given by:

zk+1 = f(θk,wk, zk,vk), ∀k ∈ {0, . . . , N − 1}. (3.27)
In addition to the state equation, other constraints can be influenced by the disturbance:

(θk,wk, zk,vk) ∈ Yθ, ∀wk ∈ W , ∀k ∈ {0, · · · , N − 1}, (3.28)
The disturbance vector can also influence the stage costs:

l(θk,wk, zk,vk) :W ×B ×X × U → R. (3.29)

In the following, parameters that are subject to uncertainty are modeled as random variables.
When considering the rolling horizon approach described in Sections 3.5 and 3.6, the random
variables are introduced by replacing Equation 3.23b with Equation 3.27, Equation 3.23a
with Equation 3.28 and Equation 3.18 with Equation 3.29. This results in the following
optimization Problem:

min
V ∈UN

N−1∑
k=0

l(θk,wk, zk,vk) + C(zN), (3.30)

subject to:
(θk,wk, zk,vk) ∈ Yθ, ∀wk ∈ W , ∀k ∈ {0, · · · , N − 1}, (3.31a)
zk+1 = f(θk,wk, zk,vk), ∀wk ∈ W , ∀k ∈ {0, · · · , N − 1}, (3.31b)
z0 = xt0, zN ∈ XN. (3.31c)

As defined in Equations 3.31a and 3.31b, the constraints have to hold for all possible
outcomes of the random variables W . This can be modeled by introducing additional
constraints. More precisely, the number of constraints increases linearly with the number
of the possible outcomes of the random variables W .

3.8.2 Decision Criteria
When facing uncertainty, the preferences of the decision maker as well as the appropriate
decision criteria have to be defined. The decision criteria define which choice is considered
optimal. The choice of the decision criteria depends on the decision problem and the
preferences of the decision maker. Common choices of decision criteria [140, p. 84] are
described in this section. To be in line with the definition in Section 3.2, minimal objective
values will be regarded as optimal objective values in the following. Each decision criterion
can easily be adapted to maximization problems.

4In contrast to conventions in probability theory, random variables are not described by capital letters.
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Minimax Criterion

The minimax or Wald criterion [256] assesses the maximal objective value of the objective
function g(x,w), i. e., the worst possible outcome, that can occur based on the random
variable w with respect to a fixed decision variable x:

max
w

g(x,w). (3.32)

The decision variable x is then chosen in a way that Equation 3.32 becomes minimal [140,
p. 84]:

min
x

max
w

g(x,w). (3.33)

This decision criterion is only focused on the worst possible outcome of an uncertain
parameter and therefore suiting pessimistic decision makers. In the case of a maximization
problem, the minimax criterion translates into a maximin criterion.

Among other applications, the minimax decision criterion is sometimes used for robust MPC
that targets the minimization of the distance between a controlled variable and reference
value [149]. In the presence of uncertainty, minimax approaches to robust MPC target at
minimizing the worst-case performance of the system under control while complying with
all constraints. In the domain of energy systems, minimax or worst-case MPC is applied in
environments that are similar to the one discussed in this thesis while the application cases
differ [108, 183]. In algorithm engineering the minimax criterion relates to the worst case
[54, p. 27].

Minimin Criterion

In contrast to the pessimistic minimax criterion, the minimin criterion values only the
possible best-case performance. Hence, the decision variable x is chosen in a way that the
best-case outcome:

min
w
g(x,w), (3.34)

becomes minimal [140, p. 84]:
min
x

min
w
g(x,w). (3.35)

The minimin criterion suites an optimistic decision maker that targets the maximization of
the best possible outcome. In the case of a maximization problem, the minimin criterion
translates into a maximax criterion. In algorithm engineering The minimin criterion relates
to the best case [54, p. 27].

Bayes and Laplace Criteria

The downside of the minimax and minimin criteria is that they consider only one possible
outcome, the worst and the best, respectively. The Bayes criterion considers all possible
outcomes and their probability of occurrence by evaluating the expected outcome. Thus,
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the best decision variable x is defined to be the one that minimizes the expected objective
value g(x,w):

min
x

E(g(x,wm)) = min
x

M∑
m=1

p(wm) · g(x,wm), (3.36)

where w is a discrete random variable, {w1, . . . , wM} are its possible outcomes and p(wm)
the respective probability of occurrence.

The Laplace criterion is a special case of the Bayes criterion that can be used if the
probability of occurrence for the possible outcomes is not known. It assumes that the
probability of occurrence for every possible outcome is equal. This leads to a probability of
occurrence of:

p(wm) = 1
M
, ∀m ∈ {1, . . . ,M}. (3.37)

Equation 3.36 then turns into:

min
x

E(g(x,wm)) = min
x

1
M

M∑
m=1

g(x,wm). (3.38)

The Bayes and the Laplace criterion are suited for decision makers that target an average
performance of a decision. These criteria are widely used in economic decision-making,
especially in stochastic programming, which is used in this thesis to find optimal schedules
for the devices in a building energy system. Stochastic programming is described in detail
in Section 3.11. In algorithm engineering the Laplace criterion relates to the average case
[54, p. 28].

Other Criteria

In addition to the criteria listed above, more decision criteria have been developed that
target variations of worst-case, best-case and average performance [140, p. 84]. One example
is the Hurwicz criterion, which uses a weighted sum of the best-case and the worst-case
outcome of a decision. Whereby, the weights can be chosen to represent the preferences
of the decision maker [121]. The Niehans-Savage criterion targets the minimization of a
regret value instead of the performance of a decision [187, 216].

Jin and Branke [126] present a decision criterion that targets on finding a solution that
“should still work satisfactorily when the design variables change slightly”. It can be seen as
a special case of the Laplace criterion that only considers additive uncertain perturbations
on the decision variables. The authors of [126] call the solutions that are optimal with
respect to their decision criteria robust solutions. Here, it is important to note that this
naming is inconsistent to the usage of the term robust as defined in Section 3.10 since it
refers to solutions that are optimal with respect to the specific decision criterion in contrast
to solutions that are viable in all possible scenarios.

This thesis uses the Laplace decision criterion as a specific case of the Bayes criterion.
In contrast to the minimin, the maximin and the Hurwicz decision criteria, it accounts
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for all possible scenarios. It is also more general than the criterion defined in [126]. In
addition, it is assumed that the minimization of possible losses, i. e., regret, is less important
in building energy management than the minimization of the expected operating costs.
Also, the Bayes decision criterion does not need additional parameters from the decision
maker. This eases the handling of a BEMS that uses the approach presented in this thesis.
However, the investigation of other decision criteria can be useful in related scenarios. The
choice of the Bayes decision criterion also fits the assumption of a user that acts as a homo
economicus [202].

3.9 Optimization Under Uncertainty
The decision criterion, as described in Section 3.8.2, defines optimal decisions. This section
describes how the optimal decision is found. In the context of this thesis, the decision
problem is to find an optimal schedule that minimizes the expected operating costs and
maximizes the expected revenues from the compensation for the fed-in electricity when
considering the uncertainty in the predictions of the local consumption and generation.

There are various methods to find optimal decisions involving uncertainty targeting different
aspects of solving an optimization problem with uncertainty. Bertsimas et al. [30] distinguish
robust and stochastic optimization: In robust optimization “the decision-maker constructs a
solution that is feasible for any realization of the uncertainty in a given set” while stochastic
programming “is seeking to immunize the solution in some probabilistic sense to stochastic
uncertainty”. This definition is similar to the definition of proposed by Jin and Branke [126],
although they use the term robust. When looking at this definition of robust optimization,
the feasibility of a solution, i. e., decision, for any realization of the uncertainty is not taken
into account by the decision criteria defined in Section 3.8.2. However, the feasibility of a
solution is often an important issue in optimization under uncertainty. Another important
question is whether decisions have to be made here and now, i. e., have to persist, or if
decisions can be changed in the future. While robust optimization targets decisions that
have to be made here and now [27, p. xi], stochastic programming often handles decisions
that have multiple stages of decision-making [214].

3.10 Robust Optimization
Ben-Tal et al. define robust optimization on the basis of three assumptions on the underlying
decision environment [27, p. xii]:

Firstly, “all entries in the decision vector x represent ‘here and now’ decisions:
they should get specific numerical values as a result of solving the problem
before the actual data ‘reveals itself’ ”.

Secondly, “the decision maker is fully responsible for consequences of the
decisions to be made when, and only when, the actual data is within the
prespecified uncertainty set”.
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Finally, “the constraints [. . . ] in question are ‘hard’ – the decision maker
cannot tolerate violations of constraints when the data is in U”.

Thus, robust optimization targets decisions that have to be made here and now. In addition,
the decisions, i. e., solutions of the optimization problem, have to be made in such a way
that no constraints are violated for any expected outcome of the uncertainty. Hence, robust
optimization targets on giving a guarantee that a solution is viable.

In contrast to the definition by Ben-Tal et al., some approaches loosen the condition that
the constraints are not allowed to be violated for any expected outcome [227]. This is done
by allowing the violation of constraints in some cases. Thus, the decision maker can choose
the trade-off between robustness and performance and the corresponding level of protection
according to his preferences [30]. This is done by introducing chance constraints which
are also called probability constraints [227, p. 5]. In the case of an inequality constraint
g(x,w) ≤ 0, the corresponding chance constraint is [227, p. 5]:

p(g(x,w) ≤ 0) ≤ α. (3.39)

Here, x is the decision variable, w is a random variable and α is the significance level
defined by the decision maker. Probabilistic constraints give probabilistic guarantees.

Robust optimization is closely related to robust control [30], which is often used in the
optimization of energy systems and building energy systems [14, 108, 183]. However,
these applications typically do not focus on economic optimization. Examples include
the determination of optimal control parameters that enable an operation at predefined
operating points.

3.11 Stochastic Programming
Stochastic programming5 as defined in this thesis targets problems that have multiple
stages. In each stage, the respective decisions have to be made before the realization
of the respective uncertainty. This means that at a given time, only the variables that
belong to the next stage have to be decided on, while the variables that belong to all later
stages can be changed later on. Thereby, stochastic programming provides an approach
to consider the uncertainty in the later stages and the consequences of possible future
decisions [31, 214, 227].

Stochastic programming is based on Bellman’s principle of optimality [26, p. 83]:

“Principle of Optimality: An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision.”

5In the context of this thesis, the word programming refers to planning [25] and can be used as a synonym
for optimization. It should not be confused with computer programming.
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A more detailed description can be found in [196, p. 358]. It is important to note that the
terms stochastic programming, dynamic programming and stochastic dynamic programming
are not used consistently and often intended to mean the same while highlighting different
aspects (cf. [196, p. 357], [196, p. 433] and [p. 64][227]). Papageorgiou et al. [196] call
optimization approaches that are based on Bellman’s principle of optimality dynamic
programming while these approaches are called stochastic dynamic programming if random
variables are present. Following this convention, the approach presented in this thesis
is categorized as stochastic dynamic programming. However, the idea has been initially
presented by Bellman in 1952 [24]. Bellman used the term dynamic programming for the
optimization of dynamic stochastic processes and it was only later recognized that the
approach can also be used for deterministic problems [25].

3.11.1 Two-stage Problem
The simplest problem in stochastic programming is a two-stage problem [19, 58]. The idea
is that the variables that belong to the first stage have to be decided on immediately, here
and now, while the variables that belong to the second stage can be changed later on.

However, the first-stage decision variables are chosen by taking their future effects into
account. Typically, the first stage is assumed to have no uncertainty, while the second stage
is assumed to include uncertainty. The uncertainty is included via random variables with
known possible outcomes but unknown realizations. A standard formulation of a two-stage
problem is [31, 214, 227]:

min
x∈X

g1(x) + E(Q(x,w)), (3.40)

with Q(x,w) being the optimal value of the second-stage problem:

Q(x,w) = min
y∈Y

g2(y, w), (3.41)

subject to:
T (w) · x+D(w) · y ≤ h(w). (3.42)

Here, w is a random variable and x and y are the decision variables in the first-stage
problem and the second-stage problem, respectively. The respective objective functions are
g1(x) and g2(y, w). The constraints on the second-stage problem are given by the stochastic
parameters T (w), D(w) and h(w), where the term D(w) · y can be seen as a compensation
for a possible inconsistency of the system T (w) · x ≤ h(w) [31, p. 59].

The two-stage problem as defined in Equation 3.40 contains a deterministic term f1(x) and
a term E(Q(x,w)) that contains the expected value of f2(y, w) over all possible realizations
of the random variable w. For each possible realization of the random variable w, the
optimal value for y is a result of an optimization problem [31, p. 59].

For a given realization of w, Q(x,w) is defined as:

Q(x,w) = min
y∈Y
{g2(y, w) |T (w) · x+D(w) · y ≤ h(w)}. (3.43)
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Optimization window

Time step

First stage Second stage

Figure 3.4: Visualization of the two-stage problem in this thesis. The first time step
relates to the first stage, while all other time steps relate to the second-stage
(cf. [31, p. 65]).

The corresponding second-stage value function Q(x) is then given by [31, p. 59]:

Q(x) = E(Q(x,w)). (3.44)

Using this notation, the stochastic program in Equation 3.40 becomes:

min
x∈X

g1(x) + Q(x). (3.45)

This formulation is called the Deterministic Equivalent Program (DEP) [31]. If the
second-stage value function Q(x) is given, a stochastic program becomes a deterministic
optimization problem [31, p. 59]. This is also emphasized by the notation Q(x) that does
not show any dependence on random variables.

This thesis uses a two-stage approach in the rolling horizon optimization of energy systems
in buildings. The first stage refers to the first time step in the rolling horizon optimization
(see Figure 3.4). In Equation 3.10 the first time step is the one with k = 0. The first time
step differs from the other steps in the way that the respective control inputs have to be
applied to the energy system right after the end of the optimization. All other control
inputs can still be changed after the next optimization run. Thus, all other time steps
belong to the second stage. Typically, the first stage includes the first time step while the
second stage includes all other steps in the optimization window. In the first stage no
uncertainty is considered. However, this can be justified by the accurate forecasts for small
look-ahead times (see Section 4.1.5).

A more detailed description of the actual optimization problem and the definition of the
two stages is given in Chapter 5.

3.11.2 Multi-stage Problem

A two-stage problem is a special case of a multi-stage problem with an arbitrary number
of stages. For a problem with T stages that are numbered from t = 1 to t = T , the
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Figure 3.5: Visualization of the explosion in the number of realizations and corresponding
decisions that have to be made to solve a multi-stage stochastic problem. The
figure shows an exemplary three-stage problem with random variable wt that
has two possible outcomes in every stage t ∈ {1, 2, 3} . This problem leads to
8 possible decisions paths, i. e., the choice of the decision variables x1, x2, x3
and x4. (inspired by [20, 148])

optimization problem can be formulated similarly to Equation 3.40 [227, p. 63]:

min
x1∈X1

g1(x1) + E

 min
x2∈X2(x1,w1)

g2(x2, w2) + E
(
· · ·+ E

(
min

xT∈XT (xT −1,wT −1)
gT (xT , wT )

)).
(3.46)

A different formulation uses the corresponding dynamic programming equations initially
developed by Bellman [24] (see [227, p. 64]).

Assuming that every random variable has a finite number of outcomes that are not
correlated, the problem given in Equation 3.46 can be approximated by using the methods
of deterministic programming. However, the optimization problem in each stage has to be
solved for every possible outcomes of the previous stage’s random variable and choice of
decision variables recursively going backwards in the series of stages. For a large number of
variables, this approach becomes impractical (see Figure 3.5). This problem is called the
“curse of dimensionality”. [227, p. 8] [226]
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3.11.3 Sampling Methods
Using Equation 3.24 and the PDF p(w), the expected value in the definition of the value
function in Equation 3.44 is defined by:

Q(x) =
∫ ∞
−∞

Q(x,w)p(w)dw. (3.47)

To solve the integral in Equation 3.47, often sampling approaches are used [31, p. 389].
One sampling approach to the two-stage stochastic program is to replace the value function
Q(x) by a Monte Carlo estimate Q̃W (x):

Q̃MC(x) =
M∑
m=1

Q(x,wm)p(wm), (3.48)

When the sample of the random variable is assumed to be independent and identically
distributed, the corresponding value function QMC(x) is given by [31, p. 390]:

QMC(x) = 1
M

M∑
m=1

Q(x,wm), (3.49)

3.12 Mixed-integer Linear Programming
In Section 3.5 the objective function (as defined in Equation 3.10) and the constraints (as
defined in Equations 3.13a and 3.13b) are not defined in detail. These equations form
the model of the building energy system. As described in Section 3.1, the model has to
be chosen in a way that it describes the modeled system adequately. In addition, the
optimization problem has to be formulated in a way that it can be solved in an appropriate
time. In the domain of BEMS, often MILP models are used [20]. This thesis adopts this
approach.

MILP models consist of one linear objective function and linear constraints. The decision
variables are defined to be either continuous or integer variables. A linear objective function
g(x,y) has the form [28]:

g(x,y) = cᵀx+ dᵀy. (3.50)
The constraints have the form:

Ax+Ey = b, (3.51)
0 ≤ x (3.52)

and
α ≤ y ≤ β. (3.53)

Here, x ∈ Rm and y ∈ Zi are the decision variables and c ∈ Rn, A ∈ Rm×n, b ∈ Rm,
E ∈ Ri×n, α ∈ Zi and β ∈ Zi are the model parameters that are known before the
optimization process.
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The mixed-integer linear program is defined to be:

min
x,y

g(x,y) (3.54)

such that

Ax+Ey = b, (3.55a)
0 ≤ x, (3.55b)

α ≤ y ≤ β. (3.55c)

To obtain a MILP model, the state equation (as defined in Equation 3.13b) of the building
energy system has to be linear [196, p. 522]:

zk+1 = Akzk +BkvReal,k +CvInteger,k. (3.56)

Where, k ∈ {0, . . . , N − 1} is the time step, zk ∈ Rm are the states of the building energy
system, vReal,k ∈ Rm and vInteger,k ∈ Zm are the real valued and integer valued control
inputs. Ak ∈ Rm×n, B(k) ∈ Rm×n and Ck ∈ Rm×n are the model parameters. In the
stochastic case as defined in Equation 3.27, the linear state equation is [196, p. 522]:

zk+1 = Akzk +BkvReal,k +CkvInteger,k +D(k)wk. (3.57)

Here, w is a vector of random variables.

3.13 Modeling of Energy Systems in Buildings
To evaluate the performance of the energy system, various approaches to the modeling
of energy systems and in particular energy systems in buildings have been developed in
recent years. In the context of this thesis, these models can be divided into two categories
[153, 206], simulation-based models [163, 165] and mathematical programming models
[18, 130, 222]. A more detailed description of the specific device models in building energy
systems is given in Section 4.1.

Simulation-Based Models

Simulation based-models determine the temporal progression of the energy system, i. e.,
the energy consumption, electricity generation, storage states and operating times of the
devices based on predefined operation strategies. The predefined operation strategies can
include predefined schedules or rules. In general, simulation models can be formulated
in various ways. Typical formulations use recurrence relation equations or program code.
Simulation models also allow modeling stochastic processes using the Monte Carlo method
[139]. Like EnergyPlus [57], the simulation models often are black box models. Here, black
box models only provide an output based on a given input, but no internal variables and
specific functions implied by the simulation’s computer modules are known [85, p. 82].
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Since the objective function cannot be computed exactly, the optimization can only be
done with specific optimization algorithms [15, 85]. For simulation models that use the
Monte Carlo method, the objective function cannot be computed exactly. They can only
be estimated with some noise.

Such a problem using stochastic or Monte Carlo based simulation, is sometimes called
“stochastic optimization” [85, p. 1]. It is important to note that this stochastic optimization
is completely different from the stochastic programming described in Section 3.11.

Mathematical Programming Models

Mathematical programming models formulate the building energy system as an optimization
problem using an objective function and constraints. The temporal progression is then
obtained by solving the optimization problem. In contrast to the simulation model, this
approach gives the temporal progression that is optimal with respect to the given problem.
However, this approach is often limited in a way that only a simplified model of the building
energy system can be used. Typically, MILP models are used in the field of building energy
systems [18, 20]. Beaudin and Zareipour [20, Table 15] list 20 MILP models compared
to twelve Linear Programming (LP) models, six quadratic programming models and only
one Mixed Integer Non-linear Programming (MINP) model. This is supported by the
availability of suitable solvers, e. g., CPLEX or Gurobi, that are easy to use and have a
high out-of-the-box performance.

The optimization problem has to be solved to give any statement on the performance of
the energy system. Since the time to solve the optimization problem can be very long, the
temporal resolution and the considered time period are often limited. Common scheduling
windows are about 24 h, typical resolutions range from 1 min to 1 h [20]. According to [20],
the resulting number of time steps rarely exceeds 288.

In addition to optimization methods that provide exact solutions, meta-heuristics and heuris-
tics are used. Even though heuristics are not guaranteed to be optimal, the meta-heuristics
can often find good solutions with less computational effort than exact methods [20].
The review provided in [20, Table 15] lists 29 publications that utilize meta-heuristics
and heuristics. However, it is important to note that these approaches sometimes use
simulation-based models instead of mathematical programming models.

In addition to the approaches from research, commercial programs have been developed that
enable the modeling and optimization of energy systems using mathematical programming
models. Examples of these programs are BoFiT by ProCom, TOP Energy by gfai tech and
BelVis by Kisters.
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4. Related Work

This chapter presents an overview and discussion of the literature that is related to this thesis.
The chapter starts with related work on modeling in the domain of energy management.
In particular device models and the related literature are discussed in Section 4.1. This
section includes comments on the fundamentals of the devices and the respective models.
This topic is in particular important for the optimization approach presented in this thesis
because it serves as a basis for the model presented in Chapter 5. In Section 4.2 remarks
on BEMSs and concrete implementations of such are presented. After that, related work
in the field of building energy management and approaches to the optimization of the
operation of building energy systems are presented in Section 4.3. The presented models
and approaches are compared and contrasted to the approach presented in this thesis.

4.1 Related Work on Modeling in Building Energy Man-
agement

This section presents models from the literature which have been developed to enable the
optimization of the operation of energy systems. The models that are used in this thesis
are presented in detail in Chapter 5.

4.1.1 Electricity Consumption, User Behavior, and Electricity Con-
sumption Forecast

The electricity consumption of a building depends on the present loads. The loads that are
present in a building depend on the purpose of the building, its size and the number of
inhabitants and their needs [114]. Therefore, the electricity consumption of a commercial
building differs from the one of residential buildings. This is, amongst other reasons, based
on the different times of use. For example, a commercial building is mainly used during
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office times while residential buildings are quite often not used during the day. Other
reasons are different devices in the buildings. The devices can be divided into plug loads,
i. e., a product powered by means of an ordinary AC plug [190], and other loads. These
other loads include Heating, Ventilation, and Air-Conditioning (HVAC) systems, lighting
and large appliances. The electricity consumption in buildings can be modeled using either
top-down or bottom-up approaches [96, p. 33] [99, 242].

Top-down approaches consider the electricity as a whole. They do not distinguish between
individual users and devices in the building. Typically, top-down models use an average of
summed up historical electricity consumption as estimates for future energy consumption.
In addition, the models use other parameters to further specify the model. These parameters
include climatic conditions, estimates of appliance ownership and number of units [80].
The advantage of top-down models is that they only need aggregated data. However, the
reliance on historical data and the lack of detail do not allow for the incorporation of future
events such as advances in device technology. [242]

Bottom-up approaches model the electricity consumption profile as a sum of individual
devices and their electricity consumption profiles [194]. The device usage is based on user
behavior predictions [114] and statistical data [80, 238]. Thus, bottom-up models have the
ability to model technological options and they can include user preferences and behavior
to investigate possible improvements in the electricity usage. However, a much higher level
of detail in the input data is required than in top-down models. [242]

In addition, combinations of top-down and bottom-up models exist. For example, in
[9, 163, 165] the appliances are modeled individually by using individual load profiles and
usage probabilities [238] while all other loads are modeled using a top-down approach
based on German standard load profiles [250]. This thesis follows this approach. The
following sections provide an introduction to the modeling of the individual devices that
are considered in this thesis and present related work on the modeling of such devices.

4.1.2 Battery Energy Storage Systems

A BESS consists of a battery and a power converter. The power converter is used to convert
between the AC of the grid and Direct Current (DC) of the battery. Hence, the power
converter is a combination of a DC to AC and an AC to DC converter. In some cases, the
battery is connected to a power source generating DC, e. g., a PV system. This type of
wiring is not considered in this thesis. However, it can easily be included by adjusting the
efficiency of the charging process accordingly. Thus, the model of a BESS includes the
power converter as well as the battery.

Battery Models

This thesis focuses on lithium-ion batteries. However, the lithium-ion battery model that is
used in the optimization can be adopted to other types like lead–acid batteries.
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Figure 4.1: Exemplary visualization of the constant-current constant-voltage charging
based on [208, p. 15.18]. The charging time is divided into a constant current
(CC) and a constant voltage (CV) phase. In the case of lithium-ion batteries,
an SoC of about 80 % is achieved after the CC phase.

In recent years, various types of models have been developed to simulate batteries of all
kinds. The types of models differ based on the application area and the battery type.
Common models are electrochemical models, electrical circuit models, kinetic battery
models and buffer battery models. Electrochemical models are often used in battery
design [67]. Electrical circuit models focus on the electrical properties of the battery and
are often used in electrical engineering [47]. Analytical models describe the battery in a
more abstracted way. One is the kinetic battery model [160], which specifically considers
the apparent change in capacity as a function of (dis-)charge power.

However, in building energy management that relies on MILP models, often simplified
models are preferred [3, 14, 59, 179]. Typically, a battery is modeled using only a few model
parameters: the capacity, the charge and the discharge efficiencies, maximum and minimal
charging and discharging powers and a maximal and minimal State of Charge (SoC). To
prevent overcharging and to increase the lifetime, lithium-ion batteries are typically charged
using the Constant-Current Constant-Voltage (CCCV) charging strategy (see Figure 4.1)
[208, p. 15.18]. When applying CCCV charging, the maximum charging rate decreases
exponentially when the SoC reaches about 80 %. This leads to an overall nonlinear behavior
of the battery charging process. However, when using MILP models this behavior is often
not addressed. This can be motivated by only using 80 % of the battery capacity. In
addition, the modeling of individual cells and their internal voltages and currents are
omitted in MILP models. This is the subject of Battery Management Systems (BMSs)
which take care of the internal coordination of charging and discharging processes of the
individual cells, including thermal management. This can be essential with respect to aging
processes and lifetime considerations, but it is not in the scope of this thesis, which is
abstracting from the BMS.

Sometimes the battery degradation is considered additionally [3, 69, 178]. The degradation
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Figure 4.2: Visualization of the DC to AC power converter efficiency in dependence of
the part-load ratio. Black Xs represent the values taken from a data sheet of
a real power converter [84]). The dashed gray line represents a function that
is based on the method presented in [219] fitted to the data points.

can be divided into a calendar and a cycle aging. While calendar aging is often omitted
in building energy management, cycle aging is addressed in the literature [3]. Simplified
approaches reduce the capacity of the BESS by a fixed amount of energy per (dis-)charge
cycle [3]. Since, experimental research has shown that deep cycling causes the most
significant degradation whereas smaller cycles are less significant [69], more complicated
approaches have been developed that include the (dis-)charge power, the SoC and the
degree of discharge [178].

This thesis uses a MILP model of the battery that does not consider aging. The exact
model is described in detail in Section 5.6.1.

Power Converter Models

In building energy management, the power converter is typically modeled using (dis-)charge
efficiency and possible maximal and minimal (dis-)charge values. According to Schmidt
and Sauer [219], the power converter efficiency is dependent on the part-load ratio:

part-load ratio = current load
nominal load . (4.1)

The authors of [219] also give a method to model the power converter efficiency based on
the part-load ratio (see Figure 4.2)

However, typically the power converter losses are combined with the battery (dis-)charge
efficiency [3, 14, 59]. The same approach is applied in this thesis.
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4.1.3 Micro Combined Heat and Power Plants
To enable energy management in buildings with micro-CHPs, several models have been
developed in the past. They range from detailed models considering the electrical and
thermodynamic properties [118, 189] and more abstracted models that try to mimic the
unique behavior of real micro-CHPs [9, 78, 163] to abstract MILP models [43, 68, 119, 172].
This thesis uses the latter.

MILP models presented in the literature, e. g., [43, 68, 119, 172], cover numerous properties
of micro-CHPs including: ramping rates, required on and off times, predefined generation
sequences and varying efficiencies.

This thesis uses a MILP model of the micro-CHP that is based on the Senertec Dachs
micro-CHP located at the Energy Smart Home Lab (ESHL) in Karlsruhe, Germany. The
model is based on the publications that are listed above and extended to mimic the Senertec
Dachs G5.5. The exact model is described in detail in Section 5.6.2.

Heat-led and Power-led Micro-CHP Operation

Micro-CHPs that are sold today are typically operated by using a rule-based control
algorithm (see for example [225]). However, an optimized operation in which the operating
times of the micro-CHP are defined by a BEMS yield better results in specific scenarios
[9, 20, 163, 165]. The rule-based control algorithm targets either the provision of heat
or the provision of electricity while treating the generation of the other energy carrier
as a byproduct. When heat is the target parameter, the operation is called heat-led or
heat-driven. In the case of electricity being the target parameter, the operation is called
electricity-led or electricity-driven [111].

In [111], Hawkes and Leach present and compare typical heat- and electricity-led rule-based
control algorithms with an optimized operation. Based on a case study using typical UK
residential energy demand profiles, they conclude that the optimal operation strategy is
dependent on the tariff structure. However, they state that the optimized operation yields
the best cost-reduction potential. The optimized operation is further described in [109].
It minimizes the cost of meeting the given electricity and heat demand while meeting the
technical constraints of the system. The micro-CHP is used to charge and discharge a
thermal energy storage on a cost-optimal basis, while electricity is imported and exported
according to a combination of fuel prices, electricity import and export prices, and electrical
and overall efficiency profiles.

4.1.4 PV System
This thesis considers buildings with a local electricity generation by a PV system. The
generation profile of a PV system can be modeled based on the orientation of the solar
panels in combination with a simulation of the solar irradiation. These models are typically
called physical models. However, often a data-driven approach is used that models the
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generation profiles of the PV system using measurements [9, 163, 165, 174, 179]. This
thesis uses the latter approach (see Section 5.6.3).

In general, the electricity generation of a PV system can be reduced. However, this is only
beneficial if the generated energy is not needed or the connected grid is congested [239].
In addition to a local control, a possibility of a remote control of the PV systems can be
mandatory. For example, in Germany, all newly installed PV systems have to be equipped
with a remote control [239]. However, PV systems with a peak power of less than 30 kW
do not have to be equipped with a remote control if the active power feed-in to the grid is
limited to 70 % of the maximum capacity.

4.1.5 PV Generation Forecast

To be able to optimize building energy systems, the local generation and consumption have
to be predicted. In the case of electricity generation from the PV system, this can be done
by performing a forecast of the generation. The PV generation has to be modeled as a
discrete stochastic process that is a set of random variables observed at discrete points
in time. The prediction of the realizations of these random variables over time is called
forecast.

The PV system generation depends on several physical processes:

1. The solar irradiation that depends on the position of the sun related to the position
of the PV system [201].

2. The type and orientation of the PV system.

3. The size, motion and speed of clouds.

4. The ambient temperature of the PV system.

While the first two processes are mostly deterministic, the latter two processes are stochastic.
Hence, the first two processes can be included in the PV generation forecast easily, while
the latter are more challenging [70, 201]. In Figure 4.3 the effects of clouds on the PV
generation profiles are shown. When no clouds are present the PV generation profile is
only dependent on the solar irradiation and the type and orientation of the PV system. In
this case, the day-ahead PV generation profiles can be predicted based on historical data.
This condition is called clear sky [13]. In case of a low-level of cloudiness, the generation
power and thus the amount of generated energy decreases. This effect occurs on a time
scale down to days. Hence, the day-ahead PV generation profiles can be predicted based
on historical data. A partial cloudiness induced by the movement of individual clouds leads
to a high volatility of the PV generation profiles caused by short-time decreases of the PV
generation power. It happens on a time scale of days and lower and thus, a day-ahead
prediction based on historical data is not always possible. To predict these effects, further
information, e. g., short term and very local weather forecast data, is needed. [13]
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Figure 4.3: Effect of cloudiness on the PV system generation (based on [70])
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Figure 4.4: Example of scenario sampling based on Example of PV generation forecasts.
Two scenarios of a PV generation profile forecast are shown. The black line
represents a scenario with high solar irradiation during a whole day resulting
in an almost perfect PV generation profile. The gray line represents a scenario
with a predicted decrease in solar irradiation in the evening. Considering both
scenarios in building energy management instead of only the one with higher
probability can improve the performance of the BEMS.

Various forecasting methods have been developed in recent time. In general, the PV
generation forecast comes down to a time series forecast [107, p. 72]. In this fashion the
methodology is similar to wind power generation forecast or load forecast.

Forecasting methods can be divided into single point and probabilistic methods. Single
point methods or single-valued methods [115] predict one value that is expected to be
as close as possible to the realization of the considered random variable. In the case of
PV generation forecasts, this results in one generation power value per time step. The
single point prediction translates to the estimation of the most likely point of the PDF
of the considered random variable. Probabilistic forecast methods predict the PDF of
the considered random variable, in this case the PV generation in a time step. Hence,
probabilistic forecast methods give more information about the stochastic process than
single point methods. Hong and Fan [116] state that probabilistic forecasts can be used in
most, if not all, places where single-valued load forecasts can be applied [115]. To enable
optimization approaches like stochastic programming, often scenarios are sampled based
on probabilistic forecasts [223] (see Sections 3.11.3 and Figure 4.4).

The use of probabilistic PV generation forecast is expected to increase the performance of
building energy management. For example, in [70], El-Baz et al. state that a probabilistic
forecast can lead to an increase in self-sufficiency and self-consumption by 24.2 % and 17.7 %,
respectively. This is based on a case study with deferrable appliances in combination with
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a local PV system.

Furthermore, forecasting methods can be divided into methods that use autoregressive
models and in methods that do not (see Figure 4.5). Autoregressive models assume that
in every time step, a random variable depends on the values of previous time steps and
a stochastic term. Thus, the model is a stochastic difference equation. Examples are the
autoregressive–moving-average (ARMA) model [257] and the autoregressive integrated
moving average (ARIMA) model [34]. The ARMAX model extends both models, the
ARMA and the ARIMA, by the use of exogenous parameters [142].

Forecast methods can further be divided into methods that use exogenous parameters,
mostly weather forecasts [141, 167, 199] and methods that only use endogenous parameters.
To determine the prediction models, various data mining techniques have been used [116].
Examples are Artificial Neural Networks (ANNs) [81, 167, 193] and k-nearest neighbor
((k)-NN) models [116, 268]. In addition, combinations of autoregressive models and non-
autoregressive models also exist [138].

In the case of only using endogenous parameters, the prediction model that forecasts the
PV generation for every time step k ∈ {1, . . . , H} in a horizon H at time t0 is defined by
f(·) with [193]:

P̂PV,t0+k = f(PPV,t0+k−1, . . . , PPV,t0+k−S,θ) ∀k ∈ {1, · · · , H}. (4.2)

θ are the parameters of the model and S is the number of past time periods the model
uses in the prediction. The form of f(·) and the number of parameters θ depend on the
forecasting approach, In case of using exogenous parameters, the prediction model f(·) has
additional time series data like weather forecasts [192].

The most simple approach is to use persistence models [193] that assume the expected PV
generation power P̂PV,t+H in time step t + H is given by the measured generation PPV,t,
H time steps earlier, e. g., one time step or the number of time steps that are equal to a
temporal shift of 24 hours, here indicated by an offset of H time steps:

P̂PV,t+H = PPV,t. (4.3)

Krishna et al. [138] compare several PV generation single point forecasts with different
model types and input parameters. They state that persistence models perform very well
against all other methods for small look-ahead times.

In the review of photovoltaic power forecasting [13], the investigated publications on day-
ahead PV generation forecasts typically use a 1 h forecast resolution. Despite that, in the
literature publications that use lower resolutions can be found, for example, [193] uses
15 min or [163] uses 1 min.

61



4 Related Work

Probabilistic 
forecast

Autoregressive 
models

Non-autoregressive 
models

Exogenous
parameters

No exogenous 
Parameters

Single point 
forecast

or or or

Forecast method Model type Input parameters

Figure 4.5: Visualization of a possible decision process on a PV generation forecast
method.

Quantile Regression

One approach to generate probabilistic PV generation forecasts is quantile regression [137].
This approach has already been used successfully in wind power generation [38, 188] and
PV generation forecasting [192]. A quantile regression is a point forecast that gives an
approximation of a conditional quantile q instead of delivering the conditionally expected
value. The prediction model is similarly to Equation 4.2 given by:

P̂PV,q,,t+H = fq(PPV,t, . . . , PPV,t−H ,θq). (4.4)

The difference to Equation 4.2 is the way of obtaining the parameters θq. Typically, they
are obtained by minimizing the sum of the pinball-loss function [137, 192]. Since the
pinball-loss is not differentiable, the minimization with standard algorithms and data
mining techniques is a complicated task [192]. Hence, other approaches have been proposed
in the literature. For example, in [192] a data-driven quantile regression based on (k)-NNs
is presented. The data-driven quantile regression uses a training set of historical data
containing an approximation of all possible PV generation values in every time step of the
forecast horizon. Based on this training set, the Cumulative Distribution Functions (CDFs)
of all possible PV generation values in every time step of the forecast horizon are calculated.
They are then used to estimate the quantile PPV,q in the training set. The parameters θq
are then calculated by minimizing the distance of the prediction P̂PV,q from the quantiles
PPV,q in the training set with q ∈ (0, 1).

Based on the quantile regressions, intervals with a given nominal coverage of qu − ql can be
calculated, where P̂PV,qu and P̂PV,ql

are the upper interval bound and lower interval bound,
respectively:

P̂PV,(qu−ql) = (P̂PV,qu , P̂PV,ql
)ᵀ. (4.5)

If the stochastic model is correct, an interval with a nominal coverage of, for example, 50 %,
will contain 50 % of all PV generation values [137].
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Figure 4.6: Interval forecast of the PV generation for three exemplary days. The solid
line shows the realized PV generation. The four gray areas show four different
predicted intervals with a coverage of 20 %, 40 %, 60 % and 80 %. The pre-
sented data has been measured in the FZI Research Center for Information
Technology (FZI) House of Living Labs (HoLL) in Karlsruhe, Germany [22].
The figure only shows day-times, night values are erased to only use non-trivial
values in the training of the model.

Exemplary results of the quantile regression used in this thesis are presented in Figure 4.6.
The results of the quantile regression can then be used to create statistical scenarios [203]
or can be used directly in robust optimization approaches [14]. In this thesis, quantile
regressions are used to deduce statistical scenarios of the PV generation.

4.1.6 Deferrable Loads and Appliances

The use of deferrable loads is one of the earliest ideas of building energy management,
especially the use of appliances like washing machines, dryers and dish washers. Their
application has been evaluated in various publications [9, 98, 127, 163, 165, 236, 237].

Shiftable loads are loads with a defined load profile for a given energy service. The time
of execution of the service is restrained to a given time interval. If the time interval is
larger than the time of service, the performance of the service can be shifted in time
(see Figure 4.7a). Loads which have the possibility of interrupting the energy service
are additional devices that increase the flexibility in building energy management (see
Figure 4.7b). In addition to the two types of appliances mentioned above, there are
appliances that can change from one energy carrier to another, i. e., hybrid appliances, or
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Figure 4.7: Visualization of the load profile shaping for (a) deferrable and (b) interruptible
loads. The load profile shaping of hybrid appliances that are able to change
from one energy carrier (yellow) to another (red) is visualized in (c). (based
on [165])

that can adapt their load profile when necessary, e. g., use a longer heating phase with less
power consumption (see Figure 4.7c).
Shiftable appliances have been investigated by Sou et al. [236, 237], Kaczmarczyk et al. [127]
and Gottwald et al. [98] using MILP models. Tsui and Chen investigate the relaxation of
MILP formulations for several types of appliances [246] and specific assumptions on the
starting times. Allerding [9] and Mauser et al. [163, 165] use non-linear models to describe
a building energy system.
Typically, loads and in particular appliances are restricted to one energy carrier. Hybrid
appliances are special appliances that are able to exchange the use of electricity by the use
of heat [163, 166]. This increases the flexibility of the building energy system by means of
utilizing different energy carriers. Mauser et al. state that hybrid home appliances that are
managed by a BEMS reduce the energy costs by increasing the consumption of natural
gas and decreasing the consumption of electricity. This may leads to a decrease of the
self-consumption rate of locally generated electricity. In addition, the decrease of the total
electricity consumption may lead to an increase in the self-sufficiency rate of electricity.
This thesis solely considers deferrable appliances, which are modeled using an integer
programming approach. The model is defined in Section 5.6.4.

4.1.7 HVAC System
HVAC systems in buildings include combinations of the following devices: gas boilers,
electric heating elements, heat pumps, micro-CHPs, radiators, surface heating systems, hot
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and chilled water storages and Air-Conditionings (A/Cs). The devices are designed and
their combination is chosen to provide the necessary heat, ventilation, hot water and chilled
water in the building.

Heat Consumption

The heat consumption of a building can be categorized into space heating and Domestic
Hot Water (DHW) consumption.
The traditional approach to model the heat consumption for space heating uses knowledge
of the structure and physical and material properties of a building [206]. This knowledge is
then used to construct a detailed building model based on physically interacting subsystems.
Various simulation tools use this approach, for example, TRNSYS or EnergyPlus (see
Section 3.13). However, these simulation-based models are often not suitable for predictive
control purposes (see Section 3.13) [206]. In [206], various approaches that are more
appropriate for control purposes are presented and categorized. One prominent approach is
to use a resistance capacitance (RC) network analogously to electric circuitry to model the
process dynamics [157, 206]. In addition, data-driven models are common, e. g., ARIMA
models [206, 264]. A simple approach is to create a single-input single-output model that
connects the outdoor temperature to the heat demand of the building [9, 163, 164, 165]
The heat consumption for DHW supply can be modeled similarly to the space heating
demand. However, often top-down approaches are used. Some are directly based on own
measurements [16, 33] while other models [163, 165] are based on guidelines and standards
that utilize average or reference DHW consumption profiles, e. g., [252].

Thermal Energy Storage Systems

In addition to electrical energy storage systems, thermal energy storage systems are used
in building energy systems. One of the most well-established techniques for thermal energy
storage is the storage of hot and chilled water [17]. It is applied in domestic hot water
cylinders, bulk HWTs associated with micro-CHPs and district heating schemes as well as
in bulk storage of chilled water to reduce the peak loads of A/C systems. The design of
storage tanks has to respect levels of stratification in the storage tanks and the trade-off
between storage temperature and heat losses [17]. In addition to hot and chilled water
storage tanks, systems based on the latent heat capacity of materials are used in building
energy systems [17]. These systems include the use of various PCMs.
The heat losses of thermal energy storage systems are often modeled by introducing a
standing loss. In general, the standing loss of a thermal energy storage, like the HWT
considered in this thesis, is equal to the heat transfer ΦTransfer to the surrounding of the
thermal energy storage. It is dependent on the surface A of the thermal energy storage,
the thermal transmittance U and the inside ϑInside and outside ϑOutside temperatures of the
thermal energy storage [23, p. 26]. When assuming a homogeneous inside temperature and
homogeneous thermal transmittance, the heat transfer is given by:

ΦTransfer = U · A · (ϑInside − ϑOutside). (4.6)
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Models based on this assumption are commonly used in optimization approaches [163, 222].
Stratification models do not make assumption of a homogeneous inside temperature of
the thermal energy storage. They consider different levels, each with a homogeneous
temperature [23, p. 35][220]. Other models treat the thermal energy storage system very
similarly to an electric energy storage system [86, 267].

This thesis considers an HWT that uses a model based on Equation 4.6. The exact model
as well as the parameterization are presented in Section 5.6.8.

4.1.8 Tariffs

Today, flat electricity tariffs are common in Germany and other countries in the EU.
However, it is often expected that TOU tariffs will become more popular in future energy
systems (see Section 2.9.2).

Even though it is hard to predict exact future tariff structures, several predicted TOU
tariffs are used in the literature on building energy management. Typically, the tariffs
are based on the prices at the electricity markets in combination with a constant base
price including, amongst others, grid fees. For example, the publications [163, 174, 179]
use the TOU tariffs presented in [143]. In addition, tariff design is often considered in the
development of DSM coordination measures (see Section 2.15).

In addition to TOU tariffs, sometimes real-time pricing is assumed, e. g., in [48, 246].
Real-time pricing means that the electricity prices are only known for a short look-ahead
time. The electricity prices after that short look-ahead time are subject to uncertainty.

Since TOU feed-in tariffs become more popular (see [72]), they are also more and more
assumed in publications that investigate building energy management [174, 179].

4.2 Related Work on Building Energy Management
Systems

A BEMS is an EMS that optimizes the operation of the energy system in a building.
Sometimes BEMSs are also called Home Energy Management Systems (HEMSs) [20]. In
the literature, the buildings equipped with a BEMS are mostly called smart buildings [7, 9]
or intelligent buildings [186].

The optimized planning or scheduling of the devices is performed to achieve various goals.
Beaudin and Zareipour [20] as well as Mauser [163, p. 103] state that the most common
goal is the minimization of the operating costs of the energy system. A list of common
goals that are targeted by BEMSs is presented in Table 4.1.

When considering DR as defined in Section 2.9.5, a BEMS is a tool to shape the energy
consumption and generation profiles to, among other things, minimize the total costs. The
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Table 4.1: List of common objectives of BEMSs based on [20] and [163, p. 104].
Objectives Exemplary references

Cost [3],[5],[6],[9],[36],[37],[48],[144],[145],
[163],[165],[223],[244]

Carbon dioxide emission [36],[37],[106]
Energy consumption [36]

Grid stability [176]
Load limitation, load shaping, and overloads [9],[36],[163]

Self-consumption rate [70]
Self-reliance and self-sufficiency rate [70]

User comfort or discomfort [5],[37],[106],[145]

load shaping is done by deferring loads, scheduling the use of energy storage and deferring
and curtailing the local generation [20].

Numerous publications on EMSs have been released in the last years (see [20] and [163]).
Section 4.3 gives an overview of the field. Especially approaches to the optimization of the
operation of energy systems in buildings are presented.

In their review article [20], Beaudin and Zareipour state that the application of a BEMS
could reduce the electricity cost by 23.1 % (calculated as the mean of 25 reviewed references)
or reduce residential peak demand by 29.6 % (calculated as the mean of 18 reviewed
references).

4.2.1 Objectives in Building Energy Management
Beaudin and Zareipour [20] as well as Mauser [163, p. 104] performed extensive analyses on
the related work in the field of building energy management. Both publications identified
the minimization of costs as the most common goal of energy management in buildings.
In Table 4.1 a list of exemplary references is given for common objectives that have been
investigated as part of this doctoral project. Even though each list has no claims for
completeness, they indicate the importance of the specific goals. The choice of cost
minimization as the objective fits the assumption of a user that acts as a homo economicus.

Sometimes more than one objective is addressed [20, Table 10]. In the literature, different
techniques have been used to model these problems including the optimization of a weighted
sum as well as the performance of multi-objective optimization and the determination of
Pareto fronts, e. g., by Braun et al. [37].

However, this thesis focuses solely on the minimization of costs, assuming that all other
important objectives are already included in the design of the energy tariffs, including
the provision of services like the provision of ancillary services. This represents the most
common objective in literature (see Table 4.1).
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Table 4.2: List of commonly controlled devices in BEMSs based on [20] and [163, p. 103].
Devices Exemplary references

Shiftable appliances [5],[6],[9],[36],[37],[70],[98],[106],[127],[163],
[165],[236],[237]

Micro-CHP [9],[37],[48],[144],[163],[165],[176]
BESS [3],[6],[36],[106],[144],[145],[176],[179],[174],[223],[244]

EV [181],[244]
Smart electric heater [163],[165],[223]

Thermal energy storage systems [9],[36],[37],[106],[163],[165],[176],[223]
Gas heater [37],[144],[145],[163]

Fuel cell [244]
Adsorption chiller [163],[164]

4.2.2 Commonly Controlled Devices in Building Energy
Management

Table 4.2 lists commonly controlled devices in building energy management. Exemplary
references are assigned to the devices to indicate the number of publications that deal with
the specific device. The list has no claims for completeness. However, the extensive analyses
on the related work in the field of building energy management performed by Beaudin
and Zareipour [20] as well as Mauser [163, p. 104] show the same tendencies. In addition
to these controllable devices, often non-controllable devices are considered. For example,
almost all publications listed in Table 4.2 consider PV systems. The consideration of PV
system control is rare in the domain of building energy management. PV systems can only
reduce the generated power, which leads to a decrease of revenues in most cases.

Even though building energy management is a popular topic in the literature, the inves-
tigated scenarios and use cases often differ. In particular, the composition of the energy
systems and the present devices varies over the literature and no standardized scenarios are
present. However, several reference scenarios for electricity grids and the connected genera-
tion, energy storage systems and loads have been developed. They target the transmission
level [60] as well as the distribution level [89].

However, this thesis focuses on the optimization of deferrable appliances, a micro-CHP, a
BESS and a thermal energy storage system. The choice of the scenario is based on the
configuration of the ESHL on the campus of the Karlsruhe Institute of Technology (KIT)
in Karlsruhe, Germany (see Section 5.2). It comprises the devices that are most popular in
literature. EVs, heat pumps, smart electric heaters and other devices are not covered, but
can be added to the model.
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Figure 4.8: Visualization of averaging effects on two exemplary power consumption profiles.
The graphs each show one consumption profiles with four different resolutions
resembling the time step durations that are used in the evaluation: in the
simulations, ∆t = 1 s, and the optimization, ∆k = 3 min, ∆k = 5 min and
∆k = 15 min.

Time Step Durations and Averaging Effects

In optimizations, building energy systems are typically modeled as a time discrete system.
Within a time step, all values, e. g., the electricity generation and consumption, have a
constant value. They represent the average value of the values in the actual energy system
in each time step. This leads to averaging effects as depicted in Figure 4.8. Figure 4.8 shows
visualizations of two exemplary power consumption profiles each in 4 different resolutions
resembling the time step durations that are used in the evaluation: in the simulation
∆t = 1 s, and the optimization ∆k = 3 min, ∆k = 5 min and ∆k = 15 min.

These effects lead to an overestimation of the self-consumption and self-sufficiency rates,
because fluctuations in the energy consumption and generation are equalized [110, 154].
Consequently, a large time step duration in the optimization leads to a deviation of the
predicted behavior in the optimization window from the behavior of the actual building
energy system. Thus, short time step durations in the optimization are beneficial to reduce
averaging effects. However, various time step durations have been used in the literature on
building energy management, ranging from 1 min to 1 h [20, Table 16]. In this thesis, the
simulation and the optimization use different time step durations. The optimization uses
1 s, for the optimization time step durations of 3 min, 5 min and 15 min are investigated.
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4.3 Related Work on the Optimization of the Opera-
tion of Energy Systems in Buildings

When considering the optimization of the operation of building energy systems with respect
to the scheduling of device operation, various approaches have been developed utilizing
different control methods. This section gives an introduction to these methods and several
selected examples.

4.3.1 Controllers and Rule-based Approaches
In addition to the optimization approach presented in this work, controllers and rule-based
approaches have been applied to building energy systems and related fields. As described
in Figure 2.7, these regulatory control approaches are typically used to perform control
tasks inside of the devices. However, several approaches have been developed to coordinate
the interaction of devices to achieve a given goal and hold given constraints. Most common
applications are rule-based control strategies for the operation of BESSs and HVAC systems.

Battery Energy Storage System Control
In the state-of-the-art operation of BESSs, they are commonly controlled by a fixed closed-
loop controller targeting to minimize the net grid exchange power at the grid connection
point.
For instance, in [44], a controller is used to maximize the self-consumption by minimizing
the energy exchanges between the BESS and the grid. This is the conventional approach
towards the operation of BESSs. The performance of such a closed-loop controller in
combination with deferrable appliances and a scheduled micro-CHP is evaluated in [165].
In some cases, different closed-loop control strategies are compared with respect to costs and
their effects on distribution grids. For instance, in [266], two different operating strategies
are evaluated. Fleer and Stenzel [83] analyze the impact of different operation strategies to
provide primary control reserve by performing a battery simulation that includes battery
aging, focusing on large BESSs.
In other cases, the operation is defined by rules that consider a given time-dependent tariff.
An evaluation of such a battery operating strategy using different tariffs is presented in
[132]. The authors of [132] propose an operating strategy that does not rely on predictions
and evaluate it by means of recorded data, showing that their strategy is able to realize a
near-optimal performance in the evaluation scenario.
Finally, controllers are used to dimension BESSs and assess their economic benefits as well
as impacts on grids. For instance, in [255], the sizing of PV systems with BESSs and their
impact on grids in Germany and Australia is analyzed. In [247], a controller is used in the
comparison of the economic benefit of different battery technologies. The authors of [243]
developed a BESS control strategy that aims at supporting the dispatch of renewables.
The BESS is used to smooth the electricity generation from RESs based on the predicted
solar and wind conditions.
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Heating Ventilation and Cooling System

In the domain of HVAC systems in buildings many publications have been issued. For
example, Papantoniou et al. [197] present a BEMS that utilizes a set of control rules,
including closed-loop feedback control, to control the HVAC system including all subsystems.
Doukas et al. [65] present a similar model that also utilizes a set of control rules to, amongst
others, control the HVAC system. The goal of the system is to preserve the comfort
conditions of occupants while minimizing the energy consumption and costs.

4.3.2 Day-ahead Scheduling Approaches
Day-ahead scheduling approaches determine the optimal operation of a building energy
system by identifying the optimal operation schedule of all the devices in the building with
respect to a given optimization target, e. g., operating costs. In this context, day-ahead
refers to a daily optimization, typically one optimization is performed at midnight with an
optimization horizon of 24 h. The daily approach is similar to the rolling horizon approach
(see Section 3.5 and 4.3.3) but differs in the frequency and in the kind of the optimization.
The low number of optimizations reduces the possibility to change the schedule during the
operation time of the energy system. This may be necessary when the state of the energy
system differs from the expected states predicted by the building energy system model.

Typically, daily scheduling approaches are performed to optimize the energy costs at the
day-ahead market (see Section 2.9.1) [87, 94, 161]. Often this is done for energy systems
that are larger than building energy systems [161], e. g., hydro-generation plants [87],
wind and solar generation plants [77, 263] or Virtual Power Plants (VPPs) [94], which
potentially could comprise building energy systems. Some day-ahead scheduling approaches
are designed to take the network constraints into account [95, 234]. Hence, supporting the
operation of the grid and potentially providing ancillary services as DR.

4.3.3 Rolling Horizon Optimization in Buildings
Rolling horizon optimization (see Section 3.5) is one of the most common approaches
to the optimization of the operation of building energy systems [20]. Rolling horizon
optimization approaches enable the joint scheduling of the devices while considering the
predicted generation and consumption.

These approaches can be restricted to subsystems of a building energy system or target
the optimization of the whole building energy system (see Section 4.2.2). In this section,
different examples of rolling horizon optimization approaches in buildings are presented.
The examples are categorized by the main subsystems.

Heating Ventilation and Cooling System

Ma et al. [156] developed an economic model predictive control approach for the operation
of building cooling systems that minimizes the electricity bill and maximizes the Coefficient
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of Performance (COP) while satisfying the required cooling load. In addition, Široký
et al. [231] present a similar approach to minimize the operating costs of a heating system.
It has been tested in a two months experiment performed in a real building in Prague,
Czech Republic. In addition, tracking MPC is often used for the optimization of the heating
system. One example is presented by Oldenwurtel et al. [191]. They present a model
predictive control that uses weather forecasts to reduce the total energy consumption of
the HVAC system. Their approach targets the minimization of the energy consumption.
In [155], Ma et al. present an EMPC approach to reduce the energy consumption and costs
for HVAC systems. They evaluate their approach with an EnergyPlus building simulation
model. The EMPC approach leads to an energy savings of about 25 % and cost savings of
about 28 %.

Battery Energy Storage System and Electric Vehicles

In building energy systems, BESSs are often operated by rule-based or closed-loop controllers.
However, these controllers do not use a predictive optimization of the operation of BESSs
and are not able to optimize the operation in combination with other devices. This can be
achieved by utilizing a combination of scheduling and rule-based or closed-loop controllers
[59, 174, 179] or by optimizing the battery directly [51, 169, 232]. Here, optimizing the
battery directly means to determine the trace of charge and discharge power values for the
optimization horizon.
In [232], charge and discharge power profiles of a BESS are determined by an EA. The
authors of [169] compare a similar approach to optimization to three rule-based controllers.
A model predictive control approach for the optimization of a BESS and a PV system is
presented in [265]. Clastres et al. [51] present a MILP problem in which the objective is to
maximize the profits of a combination of a PV, a BESS and deferrable appliances. Both
approaches showed good results with slightly different focuses, models, temporal resolutions
and application scenarios.
An increasing number of publications also targets optimized EV charging in the context
of building energy systems and the incorporation of EVs in BEMSs. Some publications
only consider the charging of EVs [96, 136], treating the EV as a deferrable load, while
others also consider discharging, treating EVs similar to batteries [181, 223]. For example
Mültin [181] extended an existing BEMS to optimize the charging of EVs to minimize the
electricity costs. The optimization is done by using an EA in combination with a building
simulation model. This work was applied to a real building and EV. Scott et al. [223]
considers a building energy system with an EV that can be charged and discharged. The EV
is modeled similar to a BESS, but with additional constraints considering the availability
of the EV and a minimum energy that the EV battery should have in it at each time.

Complete Building Energy Systems

The Organic Smart Home (OSH) [9, 163, 165] is one example of a BEMS that is capable of
optimizing the operation of a complete building energy system. It can be used in simulations
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and in the operation of a real building while presenting an adaptive and flexible approach
to the optimization. The software is built on the principles of organic computing presenting
an open-source framework that can be expanded. Its optimization uses an EA that works
on a simulation model as described in Section 3.13. The framework has been expanded
to enable the optimization of various devices, e. g., EVs [181]. As part of this doctoral
project BESSs have been included into the OSH [174, 179]. In [105], a similar approach is
presented, it uses a multi-level control mechanism (see Figure 2.7).

Other approaches utilize MILP models. In [171], Missaoui et al. present a BEMS that
targets minimizing a linear combination of the daily energy costs and the user discomfort.
The controlled devices consist of a washing machine, a dish washer and the heating system.
The optimization uses a non-linear building model.

This work presents an approach to the optimization of complete building energy systems.
The exact scenario is presented in Section 5.2. However, this work incorporates the
uncertainty in the forecast of the local generation and consumption by the use of a
stochastic programming approach. The multiple levels of control (see Figure 2.7) are not
taken into account directly.

4.3.4 Optimization Under Uncertainty
The approaches mentioned above do not incorporate the uncertainties in the predictions
of the local energy generation and consumption directly. However, some approaches do
it indirectly. For example, the BEMS presented in [9, 163, 165], i. e., the OSH, does have
penalty costs that reward schedules leading to a behavior that is experienced to be robust to
small errors in the predictions. Other approaches use closed-loop controllers that can react
on the current states in the energy system reducing the reliance on predictions [59, 132, 174].

In contrast to these indirect measures, this work presents an approach that incorporates the
uncertainty directly, using means of stochastic programming (see Section 3.11) to optimize
the expected operating costs.

Soroudi and Amraee [235] present a state-of-the-art analysis of decision making under
uncertainty in energy systems. They list various methods and examples. In the remainder
of this section, related work in the two most common approaches, i. e., robust optimization
and stochastic programming are presented (see Section 3.9). In addition, publications are
discussed that use two-stage stochastic programming approaches that are closely related to
the approach presented in this thesis.

Robust Optimization

As described in Section 3.10, robust optimization approaches target on not violating any
constraints for all expected outcomes of the uncertainty.

Appino et al. [14] present an approach that uses a robust optimization formulation for
generating reliable schedules. The approach consists of an off-line optimization that
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determines dispatch schedules created in a way that an additional on-line optimization
approach can ensure the on-line feasibility of the dispatch schedule with a given security
level. The only controlled device is a BESS.

Liu and Fu [144] present an approach that considers uncertainty in the electric and thermal
loads and solar power generation in the economic optimization of a building energy system.
The considered building energy system comprises a BESS and a micro-CHP with a boiler
unit. However, the approach includes the uncertainty only by the introduction of one
additional constraint that considers the worst-case scenario. For the electric load balance,
the authors define the worst case as a maximum increase in the electric load and the
maximum decrease in solar power generation. For the thermal load balance, the worst case
is defined as the maximum thermal load possible.

El-Baz [70] investigate the potential of incorporating a probabilistic PV generation forecast
into building energy management and in particular day-ahead scheduling. They use an
exhaustive enumeration method, i. e., they evaluate all possible solutions, to find an optimal
schedule for household appliances in combination with PV generation. Here, an optimal
schedule is defined by a maximum self-consumption and self-sufficiency. The algorithm
considers a probabilistic PV generation forecast by using scenarios that represent the limits
of given prediction intervals. Based on a case study, they state that the incorporation
of a probabilistic PV generation forecast can lead to an increase in self-sufficiency and
self-consumption by 24.2 % and 17.7 %, respectively.

Stochastic Optimization

Abdulla et al. [3] present an approach to optimize the operation of a BESS that uses
dynamic stochastic programming in combination with a rolling horizon approach. The work
incorporates degradation of the battery. Uncertain parameters are the PV generation and
the electricity consumption. However, in the provided case study the number of possible
future generation and consumption scenarios is set to one. This leads to a deterministic
optimization not considering possible uncertainties directly as it is done in this thesis. In
contrast to this work, only the BESS is optimized, and no other devices are controlled.

In [244], Tischer and Verbic present a stochastic dynamic programming approach to the
optimization in BEMSs. The stochastic dynamic programming approach is then compared
to a deterministic approach that reduces the computational complexity by approximating
the random parameters by expected values. Based on a case study they state that the
stochastic dynamic programming approach does lead to the same costs as the approach
that only uses expected values.

A BEMS that uses a stochastic optimization, called Energy Box, is presented by Livengood
and Larson [145]. It targets on minimizing the operating costs of a smart home while
maximizing the user comfort. The BEMS uses an optimization horizon of 24 h and a time
step length of 1 h. It considers the uncertainties with three possible future scenarios.
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All three approaches state that the application of the stochastic optimization yields better
results than the application of a deterministic optimization that for example only considers
expected values of uncertain parameters. However, all state that a stochastic optimization
leads to a high computational effort that can cause optimization times that are inappropriate
for a BEMS.

Two-stage Stochastic Optimization

Some approaches, including this thesis, use a two-stage stochastic program as an approxima-
tion to a full multi-stage stochastic program [48, 223]. This can reduce the computational
effort of solving the optimization problem significantly since multi-stage stochastic programs
are computationally challenging [226] (see Section 3.11).

Chen et al. [48] compare two-stage stochastic programming and robust optimization tech-
niques to the scheduling of residential loads. However, they only consider uncertainty in
the RTP tariffs which are known exactly for the first time step of the optimization horizon
and have to be predicted with uncertainty for all other steps. The first-stage relates to
the first time step, the second-stage relates to all other time steps in the optimization
horizon. Their objective is to minimize the expected operating costs as well as the number
of possible scenarios whose operating costs exceed a given threshold. The results show that
two-stage stochastic programming provides benefits over robust scheduling in this setting.
Similar results are observed in this thesis.

Scott et al. [223] present an approach that is very similar to the one presented in this thesis.
They developed a rolling horizon approach for building energy management that schedules
an electrical HVAC system, hot water heating, a PV system, deferrable appliances, an EV
and a BESS. It uses a two-stage stochastic program that uses sampled scenarios in the
second-stage. In the paper, a reactive controller and an expected value based deterministic
rolling horizon optimization are compared to the two-stage stochastic programming rolling
horizon approach with probabilistic and perfect forecast. The rolling horizon approach
uses an optimization horizon of 16 hours. The first time step, i. e., the first stage, has
a duration of 15 min. All other steps have a duration of 30 min. They form the second
stage. The results show that the two-stage approach performs close to the controller with
perfect forecast. They achieve cost reductions over the two reactive controllers of 35 %.
The authors expect the two-stage approach to be more conservative than the approach that
uses the expected values and since it avoids having unmet demand of sampled upcoming
peak demands. The approach presented in [223] differs from the one presented in this
work by not considering a micro-CHP and TOU feed-in tariffs that lead to a need of smart
battery (dis-)charge schedules that are expected to reward the use of a two-stage approach.

A two-stage robust approach that combines stochastic and robust optimization is presented
in [241]. In the first stage, the decision maker observes demand and available wind power
and determines a dispatch schedule with minimal costs for the first time step. The second-
stage computes an optimal schedule that respects the worst-case dispatch cost for the
remaining time steps in the optimization horizon.
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4.3.5 Comparison
In Table 4.3, a selection of related work is listed. A comparison of the approaches shows
that cost reduction is the most frequent objective. The most frequent uncertain parameters
that are considered are the PV generation and the electric load. Most approaches target the
control of a BESS while the other controllable devices differ. The considered optimization
horizon is mostly 24 h. However, the number of time steps varies strongly. The number of
time steps is often chosen to achieve a manageable complexity of the optimization problem
and a suitable duration of the optimization process. The number of possible future scenarios,
i. e., the number of Monte Carlo estimates for the random variables, varies between 1 and
60. However, the method to derive the scenarios varies. Some approaches use random
scenarios with an equal probability of occurrence [48, 223], while others use scenarios that
represent the limits of given prediction intervals [14, 70]. For example, El-Baz et al. [70]
use PV generation scenarios that represent the limits of given prediction intervals of 70 %,
80 %, 90 %, 95 % and 99 %.

This thesis builds upon these approaches and extends them by presenting a two-stage
stochastic optimization approach that uses a rolling horizon optimization with appropriate
optimization horizon and resolution incorporating three classes of devices that can easily be
extended (see Section 5.5). In addition, this thesis addresses the electricity and the heating
system in a building.
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5. Model and Optimization Approach

This chapter presents the main contribution of this thesis: A rolling horizon optimization
approach to the optimization of the operation of a building energy system that uses a
stochastic two-stage optimization. Firstly, the notation is introduced in Section 5.1. After
that, a motivation of the scenario choice is presented Section 5.2. Then, the overall goal of
the optimization of the operation of the building energy management and at particular
the stochastic two-stage optimization is presented in Section 5.3. Section 5.4 presents the
simulation of the building energy system. After that, an overview of the rolling horizon
optimization approach and the simulation of the building energy system is presented in
Section 5.5. Then the models of the devices as well as the device interactions are presented
in detail in Section 5.6. Based on this, the optimization problem that has to be solved in
the rolling horizon optimization approach is presented. For the sake of clarity, first the
state-of-the-art one-stage optimization problem is presented in Section 5.7. In Section 5.8,
the two-stage stochastic optimization problem is presented. The chapter finishes with
remarks on the implementation of the approach and the used frameworks and tools, and
remarks on the adaptivity of the approach in Sections 5.9 and 5.10, respectively.

5.1 Notation and Introductory Remarks
To ease the reading of this chapter, first comments on the notation that is used to present the
simulation and the optimization models are presented. The definition of the rolling horizon
approach described in Section 3.5 and visualized in Figure 3.2 shows the difference between
the optimization and the simulation of the building energy system. The optimization
is carried out repetitively to calculate the control inputs for the devices. The control
inputs are then used to simulate the temporal progression of the building energy system.
To differentiate between variables and parameters that are used in the simulation and
optimization, variables and parameters that are used in the simulation are indicated by a
tilde (̃•). Predicted values are indicated by a hat (̂•). The simulation of the building energy
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Figure 5.1: Overview of the smart building scenario. The arrows indicate the power flows
while the labels show the corresponding symbols used in the definition of the
model.

system is performed over T discrete time steps. Each time step is indicated by the variable
t ∈ {1, . . . , T}. The duration of each time step is ∆t. In contrast, the optimization consists
of N discrete time steps. Each time step is indicated by the variable k ∈ {0, . . . , N}. The
duration of each time step is ∆k. Notably, the parameters ∆t and ∆k do not have to be
equal.

In addition to the main contribution of this thesis, the stochastic two-stage rolling horizon
optimization approach, a state-of-the-art one-stage approach as well as rule-based control
algorithms are investigated. These are used as benchmark scenarios in the evaluation of
the rolling horizon optimization approach that uses a stochastic two-stage optimization.
The rule-based control algorithms are described in Section 5.6.

5.2 Choice of Scenario
This thesis investigates approaches to the optimal operation of building energy systems. It
assumes a building that is equipped with an automated BEMS, forming a smart building.
The automated BEMS allows for an automated control of the devices of the building energy
system targeting the optimal operation of the building energy system. As described in
Section 4.2.1, the optimal operation can be defined in many ways. However, the analysis in
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Section 4.2.1 identifies the minimization of operating costs as the most common objective
in the literature. This thesis picks up on the minimization of operating costs, since other
objectives, e. g., the minimization of carbon dioxide emissions, can be included in the
operating costs by the introduction of additional costs. The choice of cost minimization as
the objective fits the assumption of a user that acts as a homo economicus. The provision
of additional ancillary services is not investigated in this thesis. However, this can lead to
further cost decreases.

As a main contribution, this thesis presents an approach to the optimization of the operation
of a building energy system that includes the consideration of uncertainty in the predictions
of generation and consumption. Here, the Laplace decision criterion is chosen to assess the
uncertain prediction of the operating costs.

The design of an approach to the optimization of the operation of building energy system
has to consider the targeted application scenarios, i. e., the building energy system and its
environment. Hence, the targeted application scenarios can be restricted to contain one
specific scenario, a specific range of scenarios or all possible scenarios. The approaches
presented in literature often target the applicability in a specific range of scenarios, however
they are often evaluated in a low number of evaluation scenarios or case studies. In
particular, the optimization models are tailored to a specific set of devices. This allows
for a clever choice of the optimization model leading to low optimization times. Generic
models that allow for an application in various scenarios are hard to tune and commonly
lead to longer optimization times. Thus, often heuristics are used when applicability is
focused.

This thesis investigates the performance of an approach to the optimization of energy
systems that considers uncertainty. Therefore, a specific application scenario has been
chosen. Even though this choice does not allow making statements on the performance in
various application scenarios or making statements on the general applicability, an in-depth
investigation is eased. A scenario is chosen that comprises the devices that have been
identified to be the most common in building energy management. Thus, it is assumed
that the application scenario is relevant, and an application of the approach presented in
this work is valuable. In addition, the scenario choice eases the comparison with other
publications.

5.2.1 Smart Building Configuration

The chosen scenario consists of a smart building that is equipped with a BESS, a micro-CHP,
an HWT, deferrable appliances and a PV system. In addition, other electric and thermal
loads are present that are not defined in detail. The sum of the additional electric loads
is called base load. The thermal loads are the heating system and a DHW consumption.
Controllable devices, i. e., devices that can be controlled by the BEMS, are the BESS, the
micro-CHP and the deferrable appliances. All other devices cannot be controlled by the
BEMS. An overview of the smart building is visualized in Figure 5.1 a list of the devices is
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Table 5.1: List of the devices in the investigated smart building configuration.
Device Controllable Description
Battery energy storage system 3 Section 5.6.1
Micro combined heat and power plant 3 Section 5.6.2
PV system 7 Section 5.6.3
Controllable appliances: Washing machine 3 Section 5.6.4
Non-controllable appliances: Dryer, dish washer,

7 Section 5.6.4induction hob, oven
Electric base load 7 Section 5.6.5
Space heating 7 Section 5.6.6
Domestic Hot Water Consumption 7 Section 5.6.7
Hot water tank 7 Section 5.6.8

presented in Table 5.1. In Section 5.6 the models of the individual devices that are used
in the simulation and the optimization of the building energy system are presented. The
choice of the individual parameters is covered in Section 6.1.

5.2.2 Assumptions
In this thesis some assumption and considerations are made to define the model of the
building energy system that is presented in Section 5.6. Firstly, the building is connected to
the electricity and the gas grid at all times and the electricity and gas needs can be satisfied
by the electricity and the gas grids at all times. Secondly, it is assumed that the micro-CHP
generates enough heat in all cases (see Section 5.6.8). Furthermore, it is assumed that
time-dependent electricity consumption tariffs and time-dependent electricity feed-in tariffs
are present (see Section 5.6.9). Here, it is assumed that the electricity consumption price
is always higher than the absolute value of the feed-in compensation (see Section 5.6.9).
Moreover, no feed-in from the BESS into the grid is considered Section 5.6.1.

5.2.3 Forecast Uncertainties
In the building energy system, the PV system generation (see Section 5.6.3), the electricity
consumption, the heat consumption and the tariffs have to be predicted. This thesis
assumes a perfect prediction for all except the PV system generation (see Figure 5.2). For
the PV system generation, a probabilistic forecast is used that is described in Section 5.6.3.
An overview of the predictions of generation and consumption is given in Table 5.2.

5.3 Overall Goal
The goal pursued in this thesis is to present an approach to minimize the operating costs for
the smart building configuration defined in Section 5.2. The operating costs are defined as
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Table 5.2: Overview of the predictions of generation and consumption.
Predicted value Method Description

PV system generation Probabilistic prediction Section 5.6.3
Electricity consumption Perfect prediction Section 5.6.5

Heat consumption Perfect prediction Sections 5.6.6 and 5.6.7
Tariffs Perfect prediction Section 5.6.9

the sum of the cost of the electricity import from the grid, the earnings from the electricity
export to the grid and the gas cost. The individual costs are calculated in every time step
t of the time-discrete simulation of the building energy system (see Section 5.4). Hence,
the total operating costs C̃T for an operating time of ∆t · T are given by:

C̃T =
T∑
t=1

∆t · [π̃Ex,t · P̃Ex,t + π̃Im,t · P̃Im,t + π̃Gas,t · G̃CHP,t]. (5.1)

π̃Ex,t is the compensation for the electricity export to the grid in time step t in cent/kWh,
π̃Im,t is the price for the electricity import at time step t in cent/kWh and π̃Gas,t is the price
for gas in time step t in cent/kWh. The parameters P̃Ex,t, P̃Im,t and G̃CHP,t are the power
that is fed into the grid in time step t in kW, the power that is drawn from the electricity
grid in time step t in kW and the power that is drawn from the gas grid in time step t in
kW, respectively. In Section 5.4, the simulation of the building energy system that is used
to determine the parameters P̃Ex,t, P̃Im,t and G̃CHP,t is presented.

When minimizing the operating costs of a building energy system, it is important to define
a timescale that is targeted. The most obvious approach is to minimize the operating
costs over the lifetime of the energy system. However, this can lead to long computation
times and thus typically shorter timescales are simulated (see Section 2.12). The simulation
results are used to estimate the expected energy costs over the lifetime of the energy system.
In Chapter 6, the timescales, i. e., the choices of T , that are used in the evaluation of the
approach are listed.

Equation 5.1 does not consider the value of the energy stored in the energy storage systems
in time step T+1, i. e., the energy stored in the BESS ẼBESS,T+1 and the energy stored in
the HWT:

ẼHWT,T+1 = (VHWT · ρWater · cWater) · (ϑ̃HWT,T+1 − ϑHWT). (5.2)

ϑHWT is the minimum temperature of the HWT, ρWater is the volumetric mass density of
water, the volume of the HWT VHWT and cWater is the specific heat capacity of water.

To enable an evaluation of approaches to the optimization of building energy systems, these
final states have to be considered. This is based on the value of the energy that is stored in
the energy storage systems. To do so, additional terms that are dependent on the final
storage states have to be added to Equation 5.1. The value of the energy stored in the
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BESS is approximated by applying the average electricity costs to the energy stored in the
BESS times the efficiency ηBESS. Then the resulting values are treated as earnings. The
value of the energy stored in the HWT is estimated by the cost that would occur when the
HWT is heated up from its minimum temperature ϑHWT to ϑ̃HWT,T+1 while considering
the efficiency of the micro-CHP. The resulting equation is given by:

C̃T =
T∑
t=1

∆t · [π̃Ex,t · P̃Ex,t + π̃Im,t · P̃Im,t + π̃Gas,t · G̃CHP,t]

−
T∑
i=1

π̃Gas,i

T
· GCHP,Nom

ΦCHP,Nom
· (ẼHWT,T+1 − ẼHWT,Initial)

−
T∑
i=1

π̃Im,i

T
· ηBESS · (ẼBESS,T+1 − ẼBESS,Initial). (5.3)

For the evaluation scenario of the approach, the parameters of the building energy system
as well as the tariff structure have to be chosen to represent a realistic scenario. However,
drawing conclusions based on the specific value of the costs is not the main target of this
thesis. It is rather about drawing conclusions on the performance of the approaches to
the operation of the building based on the differences of the operating costs for different
approaches. This means that the approach to the operation of the building that leads to
the lowest operating costs in the simulation period ∆T = ∆t · T , is assumed to perform
best.

5.4 Building Simulation
A building energy system is simulated using a time-discrete simulation. The simulation is
carried out for T time steps t ∈ {1, . . . , T} with each time step having a duration of ∆t
seconds. The temporal progression of a discrete time model is described by the following
state equation (see Section 3.4):

x̃t+1 = f̃(x̃t,ut), x̃1 = x̃Initial, ∀t ∈ {1, . . . , T}, (5.4)

The state of the building x̃t in time step t is given by:

x̃t = (ẼBESS,t, ϑ̃HWT,t)ᵀ, ∀t ∈ {2, . . . , T + 1}, (5.5)
x̃1 = (ẼBESS,Initial, ϑ̃HWT,Initial)ᵀ, (5.6)

ẼBESS,t is the energy that is stored in the BESS in time step t and ϑ̃HWT,t is the temperature
of the HWT in time step t. The control inputs ũt in time step t are given by:

ũt = (ũBESS,C,t, ũBESS,D,t, ũAppliances,t, ũCHP,t)ᵀ, ∀t ∈ {1, . . . , T}, (5.7)

where ũBESS,C,t ∈ [0, 1] and ũBESS,D,t ∈ [0, 1] are the charge and discharge control inputs for
the BESS in time step t, ũAppliances,t ∈ {0, 1} are the control inputs for the appliances in
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time step t and ũCHP,t ∈ {0, 1} is the control input of the micro-CHP in time step t. The
control inputs are determined by the rolling horizon optimization (see Section 5.5) or by a
rule-based controller in case of the benchmark scenarios.

The parameters P̃Ex,t, P̃Im,t and G̃CHP,t that define the operating costs of the building (see
Equations 5.1 and 5.3) are calculated by:

P̃Ex,t =
−1 · P̃Grid,t if P̃Grid,t ≤ 0

0 otherwise
, ∀t ∈ {1, . . . , T}, (5.8)

P̃Im,t =
P̃Grid,t if 0 < P̃Grid,t

0 otherwise
, ∀t ∈ {1, . . . , T} (5.9)

and
G̃CHP,t = ũCHP,t ·GCHP,Nom, ∀t ∈ {1, . . . , T}. (5.10)

P̃Grid,t is the power that is exchanged with the grid, i. e., the sum of all power flows in the
building. Depending on the sign of P̃Grid,t, the variable represents the power fed into the
grid or drawn from the grid:

P̃Grid,t =
J∑
j=1

P̃Appliances,j,t + P̃Base,t + P̃BESS,C,t − P̃PV,t − P̃CHP,t − P̃BESS,D,t,

∀t ∈ {1, . . . , T}. (5.11)

where P̃BESS,C,t and P̃BESS,D,t are the charge and discharge powers of the BESS in time step t,
P̃Base,t is the base load in time step t, P̃Appliances,j,t is the power consumption of appliance j
in time step t, P̃CHP,t is the power generation by the micro-CHP in time step t and P̃PV,t is
the generation by the PV system in time step t. The power flows and energy states of the
building simulation are listed in Table 5.3. The charge and discharge powers of the BESS,
i. e., P̃BESS,C,t and P̃BESS,C,t, the power consumption of the appliances, i. e., P̃Appliances,j,t,
and the power generation of the micro-CHP are dependent on the corresponding control
inputs. The control inputs that are defined by the optimization are listed in Table 5.4.
The definitions of the power generation or consumption of particular devices, i. e., the
simulation models of the individual devices, are presented in the corresponding subsections
of Section 5.6.

The process of the building simulation is presented in Algorithm 5.1. The functions that
are applied therein are defined as follows:

adjustOptimizationInputs(ũCHP,t−1 ẼBESS,t−1, ϑ̃HWT,t−1, kAppliances,kAppliances, bAppliances, t):
This function calculates the parameters that have to be passed to the optimization. The
parameters include the status of the appliances the kAppliances,kAppliances and bAppliances, the
current status of the micro-CHP that is given by uCHP,Initial and kCHP,Initial, the current
status of the BESS EBESS,Initial as well as the current state of the HWT ϑBESS,Initial. When
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Table 5.3: Energy generation and consumption, and energy storage system states in the
building simulation.

Parameter Symbol Unit
Grid exchange power in time step t P̃Grid,t W
Grid import power in time step t P̃Im,t W
Grid export power in time step t P̃Ex,t W
BESS charge power in time step t P̃BESS,C,t W

BESS discharge power in time step t P̃BESS,D,t W
Power consumption of appliance in time step t j P̃Appliances,j,t W

Electric power generation of the micro-CHP in time step t P̃CHP,t W
Heat generation of the micro-CHP in time step t Φ̃CHP,t W

Natural gas consumption of the micro-CHP in time step t G̃CHP,t W
Power generation of the PV system in time step t P̃PV,t W

Future power generation of the PV system predicted in time step t ˆ̃PPV,t W
Energy in the BESS in time step t ẼBESS,t Ws

Energy in the BESSenergy in the BESS ẼBESS,Initial Ws
Temperature of the HWT in time step t ϑHWT,t K

Initial temperature of the HWT ϑHWT,Initial K

Table 5.4: Control inputs in the building simulation. The control inputs are defined in
the optimization.

Control input Symbol
Control input to start Appliance j in time step t ũCHP,t ∈ [0, 1]
Control input to start micro-CHP in time step t ũAppliances,j,t ∈ [0, 1]
Control input to charge the BESS in time step t ũBESS,C,t ∈ {0, 1}

Control input to discharge the BESS in time step t ũBESS,D,t ∈ {0, 1}
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Algorithm 5.1: Process of the building simulation
1 function performBuildingSimulation( P̃PV, P̃Base, Φ̃HS, Φ̃DHW, ẼBESS,1, ϑ̃HWT,1,
π̃Ex, π̃Im, π̃Gas, ∆N, ∆k);

Input : PV generation profile P̃PV, electricity base load profile P̃Base, heat
consumption profiles Φ̃HS, Φ̃DHW, initial storage states ẼBESS,1, ϑ̃HWT,1,
price profiles π̃Ex, π̃Im, π̃Gas, optimization window ∆N, optimization time
step duration ∆k.

Output : Electricity costs, electricity feed-in compensation, gas costs, final storage
states, total costs

2 for t ∈ {1, . . . , T} do
3 if t mod ∆k

∆t
= 0 then

4 [kAppliances,kAppliances, bAppliances, kCHP,Initial, uCHP,Initial, EBESS,Initial, ϑHWT,Initial]
= adjustOptimizationInputs(ũCHP,t−1 ẼBESS,t−1, ϑ̃HWT,t−1,
kAppliances,kAppliances, bAppliances, t);

5 P̂PV = performPVGenerationPrediction(P̃PV, ∆N, ∆k);
6 [π̂Im, π̂Ex, π̂Gas] = performTariffPredictions(π̃Ex, π̃Im, π̃Gas, ∆N, ∆k);
7 [P̂Base, Φ̂HWT, Φ̂DHW] = performConsumptionPredictions(P̃Base, Φ̃DHW,

Φ̃HS, ∆N, ∆k);
8 ũt = doRollingHorizonOptimization(P̂Base, P̂PV, Φ̂HS, Φ̂DHW, π̂Im, π̂Ex, π̂Gas,

EBESS,Initial, ϑHWT,Initial, kAppliances, kAppliances, bAppliances, kCHP,Initial,
uCHP,Initial);

9 end
10 PBESS,D,Ref = ũBESS,D,t · PBESS,D;
11 PBESS,C,Ref = ũBESS,C,t · PBESS,C;
12 [P̃BESS,D,t, P̃BESS,C,t] = performUnderlyingBESSControl(PBESS,D,Ref, PBESS,C,Ref,

ẼBESS,t, P̃PV,t, P̃CHP,t, P̃Appliances,t, P̃Base,t, ηBESS, ∆t) ;
13 P̃Grid,t = ∑J

j=1 P̃Appliances,j,t + P̃Base,t + P̃BESS,C,t − P̃PV,t − P̃CHP,t − P̃BESS,D,t;
14 if P̃Grid,t ≤ 0 then
15 P̃Ex,t = −1 · P̃Grid,t;
16 P̃Im,t = 0 ;
17 end
18 else
19 P̃Ex,t = 0;
20 P̃Im,t = P̃Grid,t;
21 end
22 G̃CHP,t = ũCHP,t ·GCHP,Nom;
23 ũBESS,D,t = P̃BESS,D,t/PBESS,D;
24 ũBESS,C,t = P̃BESS,C,t/PBESS,C;
25 x̃t+1 = f(x̃t, ũt);
26 end
27 C̃T = calculateOperatingCosts(π̃Im, π̃Ex, π̃Gas, P̃Ex, P̃Im, G̃CHP, ∆t);
28 return C̃T;
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passed to the optimization, the current states of the micro-CHP, the BESS and HWT are
the initial states in the optimization model.

performPVGenerationPrediction(P̃PV, ∆N, ∆k): This function calculates the forecast of the
PV generation for the given optimization horizon. The forecast uses historic PV generation
values as input. The forecast algorithm works as described in Section 5.6.3.

performTariffPredictions(π̃Ex, π̃Im, π̃Gas, ∆N, ∆k): This function calculates the forecast of
the tariffs, i. e., the prices for the electricity imports, the electricity export compensation
and the gas prices, for the given optimization horizon. In this thesis, these parameters are
defined to be known. Thus, a perfect prediction is assumed. However, the parameters have
to be in the temporal resolution that is used in the optimization, i. e., N time steps that
represent a time period of ∆k.

performConsumptionPredictions(P̃Base, Φ̃DHW, Φ̃HS, ∆N, ∆k): This function calculates the
forecast of the electricity and heat consumption for the given optimization horizon. In
this thesis, a perfect forecast is used. However, any prediction algorithm can be used in
combination with the approach presented in this thesis, e. g., using historic consumption
values.

doRollingHorizonOptimization(P̂Base, P̂PV, Φ̂HS, Φ̂DHW, π̂Im, π̂Ex, π̂Gas, ẼBESS, ϑ̃HWT,
kAppliances, kAppliances, bAppliances, kCHP,Initial, ∆N, ∆k): This function calculates the control
inputs for the devices. The calculation is done by applying the rolling horizon approach
as defined in Section 5.5. The function uses the PV generation forecast, the energy
consumption forecast, the current state values of the BESS ẼBESS,t and the HWT ϑ̃HWT,t,
the variables that indicates the status of the appliances kAppliances,kAppliances and bAppliances
as well as the current status of the micro-CHP derived from uCHP,Initial and kCHP,Initial as
input.

performUnderlyingBESSControl(PBESS,D,Ref, PBESS,C,Ref, ẼBESS,t, P̃PV,t, P̃CHP,t, P̃Appliances,t,
P̃Base,t, ηBESS, ∆t): This function performs the underlying BESS control as defined in
Algorithm 5.3 in Section 5.6.1. It calculates the BESS charge and discharge control inputs
in dependence of the BESS state ẼBESS,t, the PV generation P̃PV,t, the micro-CHP generation
P̃CHP,t, the base load consumption P̃Base,t, the appliance consumption P̃Appliances,t and the
reference (dis-)charge powers defined by the optimization PBESS,D,Ref, PBESS,C,Ref.

calculateOperatingCosts(π̃Im, π̃Ex, π̃Gas, P̃Ex, P̃Im, G̃CHP, ∆t, ẼHWT,T+1, ẼBESS,T+1): This
function calculates the operating costs of the building that occur in the simulation period
of ∆t · T . The operating costs are calculated according to Equation 5.3. The inputs are
π̃Ex, P̃Ex, π̃Im, P̃Im, π̃Gas, G̃CHP, ẼHWT,T+1 and ẼBESS,T+1.

5.5 Rolling Horizon Optimization Approach
As stated in Section 5.3, the overall goal is to find an approach to the operation of a
building energy system to minimize the operating costs of the building energy system. As
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Algorithm 5.2: Process of the rolling horizon optimization to calculate the vector
of control variables.
1 function doRollingHorizonOptimization(P̂Base, P̂PV, Φ̂HWT, Φ̂DHW, π̂Im, π̂Ex, π̂Gas,

ẼBESS, ϑ̃HWT, kAppliances, kAppliances, bAppliances, kCHP,Initial, ∆N, ∆k);
Input : P̂Base, P̂PV, Φ̂HWT, Φ̂DHW, π̂Im, π̂Ex, π̂Gas, ẼBESS,t, ϑ̃HWT,t, kAppliances,

kAppliances, bAppliances, kCHP,Initial, ∆N, ∆k)
Output : Vector of control variables u0 = (uBESS,C,0, uBESS,D,0,uAppliances,0, uCHP,0)ᵀ

2 [x,u,a] = solveOptimizationProblem(P̂Base, P̂PV, Φ̂HWT, Φ̂DHW, π̂Im, π̂Ex, π̂Gas

ϑHWT,Initial, EBESS,Initial,kAppliances,kAppliances, bAppliances, kCHP,Initial, uCHP,Initial);
3 return u0 ;

its main contribution, this thesis presents a rolling horizon optimization approach that uses
a stochastic two-stage optimization.

As stated in Section 4.3, rolling horizon optimization approaches that optimize the oper-
ation of a building energy system have already been presented in the literature. These
approaches have shown comparatively good results. However, the related work presented
in Section 4.3 shows that the explicit consideration of the uncertainties of the energy gen-
eration and consumption forecasts in the optimization by means of stochastic optimization
is expected to further improve the performance of rolling horizon optimization approaches.
This thesis takes up this idea and further investigates the application of a stochastic
optimization in a rolling horizon optimization approach to the optimization of building
energy systems. As stated in Section 4.3.4, the formulation of a stochastic multi-stage
problem (see Section 3.11.2) is expected to be the best choice to include the forecast
uncertainties. However, the related work states that a stochastic multi-stage optimization
leads to a high computational effort causing optimization times that are inappropriate for
the optimization of building energy systems. To reduce the computational effort, stochastic
two-stage problems have been investigated in the literature as an approximation to a full
multi-stage stochastic program (see Section 4.3.4). They show an increase of performance
compared to deterministic state-of-the-art formulations that do not respect uncertainties
explicitly while still having reasonable computation times. However, there are only a few
approaches presented in the literature (see Table 4.3) which are either limited in the devices
they include or in the temporal resolution.

The rolling horizon approach performs an optimization to achieve optimal control inputs for
the controllable devices for a given optimization horizon of N time steps. The optimization
includes forecasts of the energy consumption and generation in the building. A rolling
horizon optimization run is performed with a time step duration of ∆k. This means that in
the optimization, a new optimization run is performed after ∆k

∆t
time steps. Or in other

words, an optimization run of the rolling horizon optimization is performed in every time
step t ∈ {1, . . . , T} in which t mod ∆k

∆t
= 0 holds true. The temporal duration of the

optimization horizon is ∆N = ∆k ·N .
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In the building simulation and in particular in Algorithm 5.1, the rolling horizon op-
timization is executed in function doRollingHorizonOptimization that is presented in
Algorithm 5.2. The used inputs are calculated using the following functions:

• adjustOptimizationInputs,
• performPVGenerationPrediction,
• performTariffPredictions,
• performConsumptionPredictions,
• doRollingHorizonOptimization.

They include the forecasts of the PV generation and energy consumption, the forecasts
of the prices as well as the initial states of the appliances, the micro-CHP and the energy
storage systems. These parameters are then used to instantiate the optimization problem
with the model presented in Section 5.8. The optimization problem is then passed to a
solver that solves the problem. These steps are done in function solveOptimizationProblem,
which gives the optimal values of the decision values as output. The exact process and
its implementation are described in Section 5.9. Since the purpose of the optimization is
to find the optimal control inputs for the building energy system, the optimal value of
the objective function is not important. The optimal values of the control variables that
correspond to the first time step are then returned to the simulation and used to calculate
the temporal progression of the building energy system.

To evaluate the performance of the rolling horizon optimization approach, it is compared
to rule-based control approaches (see Chapter 6). In addition, the performance of the
stochastic two stage approach is evaluated by a comparison to a rolling horizon optimization
approach that uses a state-of-the-art one-stage approach. More precisely, a one-stage rolling
horizon optimization approach that uses a perfect forecast of the PV generation and an
approach that uses an uncertain point forecast are used in a benchmark scenario. The
evaluation of the approaches is presented in Chapter 6.

5.6 Model of the Energy System
In this section, the mathematical models of the devices contained in the smart building
configuration (see Section 5.2.1) are presented. Each model is used in the rolling horizon
optimization approach as well as in the simulation of the building.

5.6.1 Batteries Energy Storage System
The building energy system includes an electrical energy storage system, i. e., a BESS.
The model presented in this section can be used to model various battery technologies,
e. g., lead-acid or lithium-ion batteries. However, different technologies lead to different
choices in the parameters. The battery is connected via a power converter to the electricity
grid of the building (see Figure 5.2), forming the BESS. The power converter losses are
combined with the battery (dis-)charge efficiency (see Section 4.1.2). Here, both efficiencies
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Figure 5.2: Overview of the PV system and the BESS.

Table 5.5: Parameters of the BESS model.
Parameter Symbol Value Unit

(Dis-)Charge efficiencies ηBESS 0.92 –
Maximum amount of energy in the BESS EBESS 7 kWh
Minimum amount of energy in the BESS EBESS 0 Ws

Energy stored in the BESS initially EBESS,Initial varies Ws
Maximum charge power PBESS,C 7 kW
Minimum charge power PBESS,C 0 kW

Maximum discharge power PBESS,D 7 kW
Minimum discharge power PBESS,D 0 kW
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are assumed to be constant. This is in line with other approaches (cf. [3, 14, 59]). A list of
the parameters of the BESS model is presented in Table 5.5.

The energy that is stored in the BESS is given by:

EBESS,k+1 = EBESS,k + ∆k · (ηBESS · PBESS,C,k

− η−1
BESSPBESS,D,k) ∀k ∈ {1, . . . , N}, (5.12a)

EBESS,1 = EBESS,Initial + ∆k · (ηBESS · PBESS,C, 0 − η−1
BESSPBESS,D,0). (5.12b)

EBESS,Initial is the initial state of the battery that is measured in the system1. The (dis-
)charge efficiencies of the BESS is denoted by ηBESS and the time step length is denoted
by ∆k. In this thesis, charge and the discharge efficiencies have been chosen to be
ηBESS = 0.92. This leads to an overall efficiency of 85 % which resembles an average
commercially available BESS [82, 182]. The usable capacity of the BESS is 7 kWh and
minimum and maximum limits of the energy stored in the BESS are assumed to be
EBESS = 0 kWh and EBESS = 7 kWh, respectively. [82]. The maximum charge power and
discharge power of the BESS is PBESS,C = 7 kW and PBESS,D = 7 kW. This relates to
a C rate of 1, which is typically used in BESS [41]. Hereby, no additional constraints
on the maximum charge power introduced by the power converter are considered. The
capacity of the BESS is chosen to be 7 kWh. In a large scale study of 16.000 BESS in
Germany, Figgener et al.state that 7 kWh is the average lithium-ion BESS capacity of the
investigated BESSs [82, p. 45]. The capacity is chosen to be 2 kWh per 1 kW peak of the PV
system. This reflects a slightly over-sized BESS that provides a high flexibility, which can
be harnessed by the optimization approach. However, the sizing of the BESS is dependent
on the tariff structures [117].

The energy that is stored in the BESS is given by EBESS = (EBESS,1, . . . , EBESS,N)ᵀ.The
amount of energy that is stored in the BESS is limited by the maximum amount of energy
EBESS and the minimum amount of energy EBESS that can be stored in the BESS. This is
ensured by the following constraints:

EBESS ≤ EBESS,k ≤ EBESS, ∀k ∈ {1, . . . , N}. (5.13)

The charge PBESS,C,k and the discharge powers PBESS,D,k of the BESS are defined as
a function of the control inputs uBESS,C = (uBESS,C,0, . . . , uBESS,C,N−1)ᵀ and uBESS,D =
(uBESS,D,0, . . . , uBESS,D,N−1)ᵀ as well as the maximum charge and discharge powers.

PBESS,C,k = uBESS,C,k · PBESS,C, ∀k ∈ {0, . . . , N − 1}, (5.14a)
PBESS,D,k = uBESS,D,k · PBESS,D, ∀k ∈ {0, . . . , N − 1}. (5.14b)

1The initial state EBESS,Initial can be seen as the state in time step k = 0. However, the notation
EBESS,Initial is chosen over EBESS,0 to emphasize that the initial state is no decision variable in the
optimization.
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Figure 5.3: Schema of the interaction of the rolling horizon optimization and the BESS
controller.

The control inputs are decision variables with uBESS,C ∈ [0, 1]N and uBESS,D ∈ [0, 1]N . The
charge and discharge powers are constrained to be between a minimum and a maximum
value:

PBESS,C ≤ PBESS,C,k ≤ PBESS,C, ∀k ∈ {0, . . . , N − 1}, (5.15a)
PBESS,D ≤ PBESS,D,k ≤ PBESS,D, ∀k ∈ {0, . . . , N − 1}. (5.15b)

After each optimization run in the rolling horizon optimization approach the optimal values
P ∗BESS,C,0 and P ∗BESS,D,0 are communicated to an underlying rule-based controller. The
underlying controller uses the optimal charge and discharge powers as reference values:

PBESS,C,Ref = P ∗BESS,C,k (5.16a)
PBESS,D,Ref = P ∗BESS,D,k (5.16b)

The underlying controller uses the reference values to define the charge and discharge
powers (see next section, Figures 5.3 and Algorithm 5.3). After every optimization run,
the reference values PBESS,C,Ref and PBESS,D,Ref are updated.

The formulation presented in Equation 5.15 is only capable of modeling minimum charge
and discharge powers that are equal to zero. If the BESS has minimum charge and discharge
powers that are greater than zero, typically an additional off-state or stand-by mode has to
be included. This can be achieved by the addition of one binary decision variable uBess,0
for every time step. This leads to N additional decision variables. Hence, Equation 5.15
would become:

PBESS,C · uBESS,0,k ≤ PBESS,C,k ≤ PBESS,C · uBESS,0,k, ∀k ∈ {0, . . . , N − 1}, (5.17a)
PBESS,D · uBESS,0,k ≤ PBESS,D,k ≤ PBESS,D · uBESS,0,k, ∀k ∈ {0, . . . , N − 1}. (5.17b)

This thesis only considers the case where PBESS,C = PBESS,D = 0. However, minimum
charge and discharge powers that are greater than zero can easily be added to the model
as shown above.
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It has to be noted that the model does not explicitly prohibit a simultaneous charging
and discharging of the BESS even though this is physically not possible. In the model, a
simultaneous charging and discharging of the BESS actually results in a waste of energy.
This is a consequence of the energy loss based on the efficiency of the BESS. In the
presented scenarios, a waste of energy is never beneficial. Thus, control inputs that lead to
a simultaneous charging and discharging of the BESS are not results of the rolling horizon
optimization. Consequently, the simultaneous charging and discharging does not have to
be prohibited explicitly, because it would lead to non-optimal solutions of the optimization
problem anyway. This has been proven in [93].
A simultaneous charging and discharging of the BESS can be explicitly prohibited by the
introduction of additional binary decision variables bBESS = (bBESS,0, . . . , bBESS,N−1)ᵀ with
bBESS ∈ {0, 1}N [132, 133]. Equation 5.15 would then change to:

PBESS,C · bBESS,k ≤ PBESS,C,k ≤ PBESS,C · bBESS,k, ∀k ∈ {0, . . . , N − 1},
(5.18a)

PBESS,D · (1− bBESS,k) ≤ PBESS,D,k ≤ PBESS,D · (1− bBESS,k), ∀k ∈ {0, . . . , N − 1}.
(5.18b)

In the case of a quadratic optimization problem, the following constraint can be introduced
instead:

PBESS,C,k · PBESS,D,k = 0, ∀k ∈ {0, . . . , N − 1}. (5.19)
For the sake of simplicity and to ease the model, the simultaneous charging and discharging
of the BESS is not prohibited explicitly in this thesis. This is also expected to lower the
time to solve the optimization problem [93].
The model presented above is similar but not equal to other models that are presented
in the literature on the optimization of the operation of a building energy system (cf.
[3, 14, 93, 132, 222]).
Beyond the scope of this thesis, scenarios exist in which a waste of energy could be beneficial.
Examples are scenarios with a negative electricity price πIm,k:

∃k ∈ {0, . . . , N − 1} : πIm,k < 0. (5.20)
In this case, the consumption of energy is rewarded. At the European energy markets this
case rarely occurs based on an underestimation of the electricity generation by renewables.
Even though end-user prices differ from market prices, for example because of additional
fees like the network fees, market prices are reflected in the end-user prices. This is expected
to become more relevant in the future (see Section 2.9). In the sense of ancillary services,
negative electricity prices can be used to encourage a change in behavior to resolve short
time deviations in the balance of generation and consumption (see Sections 2.9 and 2.15).
Another example is a scenario with a negative feed-in compensation, i. e.. a positive feed-in
price2 πEx,k:

∃k ∈ {0, . . . , N − 1} : 0 < πEx,k. (5.21)
2In this thesis, positive prices lead to costs while negative prices lead to earnings, i. e., a compensation.
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Algorithm 5.3: Underlying BESS control algorithm
1 function performUnderlyingBESSControl(PBESS,D,Ref, PBESS,C,Ref, ẼBESS,t, P̃PV,t,

P̃CHP,t, P̃Appliances,t, P̃Base,t, ηBESS, ∆t) ;
Input : BESS discharge power reference value PBESS,D,Ref, BESS charge power

reference value PBESS,C,Ref, BESS state ẼBESS,t, PV generation P̃PV,t,
micro-CHP generation P̃CHP,t, base load consumption P̃Base,t, appliances
consumption P̃Appliances,t, BESS efficiency ηBESS, time step duration ∆t

Output : BESS charge power P̃BESS,C,t and BESS discharge power P̃BESS,D,t
2 P̃BESS,D,t = PBESS,D,Ref;
3 P̃BESS,C,t = PBESS,C,Ref;
4 if PBESS,D,Ref > P̃Appliances,t + P̃Base,t then
5 P̃BESS,D,t = P̃Appliances,t + P̃Base,t;
6 end
7 if ẼBESS,t −∆t · ηBESS

−1 · P̃BESS,D,t < EBESS then
8 P̃BESS,D,t = ∆t · ηBESS · (ẼBESS,t − EBESS);
9 end

10 if PBESS,C,Ref > P̃CHP,t + P̃PV,t then
11 P̃BESS,C,t = P̃CHP,t + P̃PV,t;
12 end
13 if ẼBESS,t + ∆t · ηBESS · P̃BESS,C,t > EBESS then
14 P̃BESS,C,t = ∆t · η−1

BESS · (EBESS − ẼBESS,t));
15 end
16 return P̃BESS,D,t, P̃BESS,C,t;

In this case, the feed-in of energy is penalized. This case is connected to the one described
above (see Equation 5.20). It rarely occurs at the European energy markets and is based on
an underestimation of the electricity generation from renewables. In the sense of ancillary
services, the prices can express an overload of the electricity grid based on a too large
electricity generation (see Sections 2.9 and 2.15) and hence encourage a change in behavior
to lower the electricity feed-in. This can be done by raising the local consumption or
lowering the local generation.

Underlying BESS Controller

It is proposed that the BESS uses an underlying rule-based controller in addition to the
rolling horizon optimization. The BESS controller handles processes that happen on shorter
timescales than the rolling horizon optimization. It ensures that no energy from the BESS
is fed into the grid and that the battery is not charged by taking energy from the grid while
considering the (dis-)charge powers defined by the optimization. This approach is based on
[174, 179]. This combination of optimization and rule-based controllers is becoming more
popular in the field of energy management [14, 59] (see Section 4.3.3). The system schematic
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of the BESS controller is shown in Figure 5.3. The BESS controller computes the current
(dis-)charge powers in dependence on the current electricity generation and consumption that
is measured in the building and if necessary, overwrites the outcomes of the rolling horizon
optimization. The underlying control algorithm is presented in Algorithm 5.3. It uses
the BESS discharge power reference value PBESS,D,Ref, BESS charge power reference value
PBESS,C,Ref, the BESS state ẼBESS,t, the PV generation P̃PV,t, the micro-CHP generation
P̃CHP,t, the base load consumption P̃Base,t, the appliances consumption P̃Appliances,t, the
BESS efficiency ηBESS and the time step duration ∆t to determine the BESS charge power
P̃BESS,C,t and BESS discharge power P̃BESS,D,t. Certainly, the controller can be adapted to
suit different application cases, e. g., to support the feed-in of electricity from the BESS
into the grid.

Rule-based BESS Operation

In addition to the optimized operation of the BESS in which the charge and discharge powers
are determined by the rolling horizon optimization, this thesis investigates a rule-based
control algorithm. It is defined in Algorithm 5.4. The rule-based control algorithm only
uses the current BESS state ẼBESS,t, the PV generation P̃PV,t, the micro-CHP generation
P̃CHP,t, the base load consumption P̃Base,t, and the appliance consumption P̃Appliances,t as
inputs. No predictions of the electricity consumption or generation are considered. The
BESS discharge power P̃BESS,D,t and the BESS charge power P̃BESS,C,t are set according
to current electricity consumption and generation. Whenever a surplus of generation
occurs, the battery is charged and whenever a surplus of consumption occurs, the BESS is
discharged. This is done while complying with the constraints given in Equations 5.13 and
5.15. When the rule-based control algorithm is applied, the underlying BESS controller
(see Algorithm 5.3) is not used.

5.6.2 Micro Combined Heat and Power Plant
The micro-CHP that is considered in this thesis is based on the Senertec Dachs G5.5
with a nominal electric power generation of 5.5 kW and a nominal heat generation of
12.5 kW. The micro-CHP consumes 20.5 kW of input power, which is provided by natural
gas. The Senertec Dachs G5.5 can be integrated into a BEMS via a REST interface. This
is demonstrated in the ESHL at the KIT [9, 135, 163, 165, 174, 179] and the FZI HoLL
[22, 163]. The Senertec Dachs G5.5 serves as an exemplary micro-CHP that is designed for
the operation in buildings and has proven to work with a BEMS. This has been investigated
in various publications [9, 22, 135, 163, 165, 174, 179].

The MILP model that is presented in the following equations has been developed based
on the generic approaches presented in [43, 172]. The details of the Senertec Dachs G5.5
and the corresponding MILP model are presented in the following section. A list of all
parameters of the micro-CHP model is given in Table 5.6.

The electric power generation PCHP,k, the heat generation ΦCHP,k and the power provided
by the natural gas GCHP,k in time step k are modeled as a product of the corresponding
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Algorithm 5.4: Rule-based BESS control algorithm
1 function performRule-basedBESSControl(ẼBESS,t, P̃PV,t, P̃CHP,t, P̃Base,t,

P̃Appliances,t, P̃Appliances,t, ∆k);
Input : BESS state ẼBESS,t, PV generation P̃PV,t, micro-CHP generation P̃CHP,t,

base load consumption P̃Base,t, appliance consumption P̃Appliances,t, BESS
efficiency P̃Appliances,t, time step duration ∆k

Output : BESS discharge power P̃BESS,D,t, BESS charge power P̃BESS,C,t
2 P̃BESS,D,t = 0;
3 P̃BESS,C,t = 0;
4 if 0 ≤ P̃Appliances,t + P̃Base,t − P̃CHP,t − P̃PV,t then
5 P̃BESS,D,t = P̃Appliances,t + P̃Base,t − P̃CHP,t − P̃PV,t;
6 end
7 else
8 P̃BESS,C,t = P̃CHP,t + P̃PV,t − P̃Appliances,t − P̃Base,t;
9 end

10 if PBESS,C < P̃BESS,C,t then
11 P̃BESS,C,t = PBESS,C;
12 end
13 if PBESS,D < P̃BESS,D,t then
14 P̃BESS,D,t = PBESS,D;
15 end
16 if ẼBESS,t −∆k · ηBESS

−1 · P̃BESS,D,t < EBESS ∧ P̃BESS,D,t 6= 0 then
17 P̃BESS,D,t = ∆k · ηBESS · (ẼBESS,t − EBESS);
18 end
19 if ẼBESS,t + ∆k · ηBESS · P̃BESS,C,t > EBESS ∧ P̃BESS,C,t 6= 0 then
20 P̃BESS,C,t = ∆k · η−1

BESS · (EBESS − ẼBESS,t);
21 end
22 return P̃BESS,D,t, P̃BESS,C,t;

Table 5.6: Parameters of the micro-CHP model.
Parameter Symbol Value Unit

Nominal electricity generation PCHP,Nom 5.5 kW
Nominal heat generation ΦCHP,Nom 12.5 kW
Nominal gas consumption GCHP,Nom 20.5 kW

Minimum run-time after start kCHP,Min varies –
Initial state of the micro-CHP in the optimization run uCHP,Initial varies –

Initial forced run-time based on earlier starts kCHP,Initial varies –
Penalty costs per start πCHP,Start 1 cent
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binary control variable uCHP,k and the respective nominal powers PCHP,Nom, ΦCHP,Nom and
GCHP,Nom. This is expressed by the following shorthand notations:

PCHP,k = uCHP,k · PCHP,Nom ∀k ∈ {0, . . . , N − 1}, (5.22a)
ΦCHP,k = uCHP,k · ΦCHP,Nom ∀k ∈ {0, . . . , N − 1}, (5.22b)
GCHP,k = uCHP,k ·GCHP,Nom ∀k ∈ {0, . . . , N − 1}. (5.22c)

Hence, the micro-CHP is operating in all time steps k ∈ {0, . . . , N −1} in which uCHP,k = 1.
The control variables uCHP = (uCHP,0, . . . , uCHP,N−1)ᵀ are decision variables with uCHP ∈
{0, 1}N . This model is extended by the addition of a minimum number of consecutive
operating time steps kCHP,Min. Thus, it has to be taken into account if the minimal number
of consecutive operating time steps leads to a forced on-time in the first time steps in the
operating horizon. The initial number of time steps in which the micro-CHP is forced to
run based on earlier starts is given by kCHP,Initial. This number of time steps is determined
before the optimization and treated as a fixed parameter. The value of the control variable
in the time step previous to the optimization is given by uCHP,Initial.

The minimum number of consecutive time steps the micro-CHP has to run is taken into
account by the following constraints. Here, it is important to repeat that the optimization
problem that is solved in the rolling horizon optimization depends on the time and the
states of the system in the simulation. When the approach is applied in a real building,
the states that are measured in the real building are used in contrast to the states of the
simulation. In the case of the micro-CHP, the choice of constraints is dependent on the
operation of the micro-CHP before the start of the rolling horizon operation, i. e., if the
micro-CHP has been running and how long it has been running.

If kCHP,Initial 6= 0 the optimization problem contains the following constraints:

kCHP,Min · (uCHP,k − uCHP,k−1) ≤
k+kCHP,Min−1∑

i=k
uCHP,i,

∀k ∈ {kCHP,Initial, . . . , N − kCHP,Min} (5.23)

and

kCHP,Initial −
kCHP,Initial−1∑

i=0
uCHP,i = 0. (5.24)

The constraint presented in Equation 5.24 ensures that the micro-CHP runs in the number
of time steps kCHP,Initial in which the micro-CHP is forced to run based on earlier starts.

If kCHP,Initial = 0 the optimization problem contains the following constraints instead of the
ones presented in Equations 5.23 and 5.24:

kCHP,Min · (uCHP,k − uCHP,k−1) ≤
k+kCHP,Min−1∑

i=k
uCHP,i, ∀k ∈ {1, . . . , N − kCHP,Min}, (5.25a)
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Figure 5.4: Visualization of the electricity generation and consumption of the micro-CHP.
The solid black line indicates a measurement performed in the Senertec Dachs
G5.5 in the ESHL and the dashed line indicates the derived model used in this
thesis. Here, negative power values indicate an electricity generation while
positive power values indicate an electricity consumption.

kCHP,Min · (uCHP,0 − uCHP,Initial) ≤
kCHP,Min−1∑

i=0
uCHP,i (5.25b)

To ensure the minimum number of consecutive time steps at the end of the optimization
horizon, the following constraints are introduced independently of the value of kCHP,Initial:

0 ≤
N∑
i=k

uCHP,i − (N − k) · (uCHP,k − uCHP,k−1),

∀k ∈ {N − kCHP,Min + 1, . . . , N}. (5.26)

In Figure 5.4, the electric power generation that results from the MILP model is shown in
comparison to the electric power generation that is generated by a real Senertec Dachs G5.5
and measured in the ESHL. The comparison shows a good agreement between the model
and the measurement overall. However, the model overrates the electricity generation at
the beginning of the operation. To regard this as well as the fact that the wear of the
micro-CHP raises with the number of starts, a price πCHP,Start per start of the micro-CHP
is introduced. A start of the micro-CHP in time step k occurs when uCHP,k − uCHP,k−1 = 1.
The binary variable sCHP,k indicates if the micro-CHP starts in time step k. The penalty
cost cCHP resulting from the starts of the micro-CHP over the optimization horizon are
given by:

cCHP =
N−1∑
i=0

πCHP,Start · sCHP,i. (5.27)
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Algorithm 5.5: Heat-led micro-CHP control algorithm
1 function performCHPControl(·);

Input : Hot water tank temperature ϑ̃HWT,t, Last micro-CHP control input
ũCHP,t−1

Output : Micro-CHP control input ũCHP,t
2 if ϑ̃HWT,t ≤ ϑHWT then
3 ũCHP,t = 1;
4 end
5 else if ϑ̃HWT,t < ϑHWT ∧ ũCHP,t−1 = 1 then
6 ũCHP,t = 1;
7 end
8 else if ϑHWT ≤ ϑ̃HWT,t then
9 ũCHP,t = 0;

10 end
11 return ũCHP,t;

It is important to note that sCHP = (sCHP,0, . . . , sCHP,N−1)ᵀ is defined as a decision variable
with sCHP ∈ {0, 1}N . The number of starts of the micro-CHP is minimized with respect to
the following constraints:

(uCHP,k − uCHP,k−1) ≤ sCHP,k, ∀k ∈ {1, . . . , N − 1}, (5.28a)
(uCHP,0 − uCHP,Initial) ≤ sCHP,0. (5.28b)

This model can be extended to include other constraints, e. g., ramping constraints. This
can be done by the use of the extensive amount of modeling approaches that are for example
presented in [43, 172].

Heat-led Micro-CHP Operation

In addition to the optimized operation of the micro-CHP as described above, this thesis
investigates a rule-base control algorithm that operates in a heat-led mode. The rule-based
control algorithm loosely follows the one presented in [111].

Since this thesis assumes the existence of a heat storage, i. e., an HWT, the heat load of
the building is supplied by the HWT instead of being directly supplied by the micro-CHP.
Thus, the heat load that has to be provided by the micro-CHP is related to the state of
the heat storage. A common approach to the operation of the micro-CHP is to completely
charge the heat storage whenever it is empty. In the case of the HWT, this means: If the
temperature falls beneath a given minimal value, the water is heated up until it reaches a
given value. This control scheme is also known as bang–bang control or hysteresis control.
The rule-based control algorithm is presented in Algorithm 5.5.
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5.6.3 PV System
As defined in Section 5.2.1, this thesis considers buildings with a local electricity generation
by a PV system. As described in Section 4.1.4, this thesis uses a data-driven approach to
model the electricity generation of the PV system. This generation is modeled using a PV
generation profile that has been measured in the FZI HoLL in Karlsruhe, Germany [22].
The profile has been measured in the year 2013. The electricity generation profile is scaled
to match a given capacity of the PV system. The resolution of the measured profiles is one
minute and reflects seasonal as well as short-term intermittency.

The generated electric power in the optimization horizon, i. e., the electric generation profile,
is given by PPV = (PPV,0, . . . , PPV,N−1)ᵀ. These values are not assumed to be known exactly
but with some uncertainty. Hence, the electric generation profile is modeled as a vector of
random variables in the optimization.

In the optimization, predicted electricity generation profiles P̂PV = (P̂PV,0, . . . , P̂PV,N−1)ᵀ
are used to describe the electricity generation profiles:

PPV,k := P̂PV,k, ∀k ∈ {0, . . . , N − 1} (5.29)

It is assumed that the PV system cannot be controlled by the BEMS. In addition, no
remote control is considered. However, a potential control of the PV system can be included
in the model easily. It can be achieved by the introduction of additional decision variables
uPV = (uPV,0, . . . , uPV,N−1)ᵀ with uPV ∈ [0, 1]N . The variables uPV are defined as control
inputs of the PV system. The electric generation profile PPV is then given by:

PPV,k = uPV,k · P̂PV,k, ∀k ∈ {0, . . . , N − 1} (5.30)

In the simulation of the building, the realization of the electricity generation in time step
t is given by P̃PV,t. The values of P̃PV,t are given by the measured electricity generation
profiles. These are used in the forecast of the PV described in the following section.

Probabilistic PV Generation Forecast

To provide a probabilistic PV generation forecast, this thesis uses quantile regression as
described in Section 4.1.5. The approach used in this thesis follows the one presented in
[192]. It differs from the approach presented in [192] by not using a (k)-NN approach to
determine the training data. Instead, this thesis uses the last 30 days to train the model,
i. e., estimate the model parameters.

As described in Section 4.1.5, day-ahead PV generation forecasts typically use resolutions
of 1 h. However, publications that use higher resolutions exist in the literature. In [192],
a resolution of 15 min is used while good prediction quality is achieved. Based on this
knowledge, in this thesis a forecast resolution of 30 min is used, being in the middle between
1 h and 15 min.
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As stated in [192], it is beneficial to erase night values to only use non-trivial values in the
training of the model. Hence, only day times have been used to train the forecast model.
Therefore, time steps that have no PV generation in the corresponding time of day in the
last 30 days are removed from the training data. In the used data set, this leads to 33 time
steps of day time with each having a duration of 30 min.

In this thesis, the prediction function is a polynomial of degree one with four features. In
[192], this approach shows slightly worse results compared to more complicated approaches
like higher order polynomials, support vector regressions or ANNs. Thus, the simplest
approach is used. The approach used in this thesis is also used in other publications in the
domain of building energy management, for example in [14].

The models have been trained using the MATLAB data mining toolbox SciXMiner [170].
The selection of the features has been performed automatically by SciXMiner. One model
is trained for each season in the evaluation scenarios, i. e., winter, spring and summer. The
resulting model for the summer scenario is:

P̂PV,t0+k = θ1 + θ2 · PPV,t0+k−132 + θ3 · PPV,t0+k−115

+ θ4 · PPV,t0+k−50 + θ5 · PPV,t0+k−33, ∀k ∈ {1, · · · , 33}, (5.31)

with (θ1, θ2, θ3, θ4, θ5) = (756.271,−0.372553,−0.309879, 0.146567, 0.108794). This selection
of features is also used in the quantile regressions.

The quantile regressions are performed as described in [192]. A training set with 30 days
and HTr time steps is used. As described above, S = 4 features are used. The automatically
detected features are: PPV,t−33, PPV,t−132, PPV,t−115 and PPV,t−50 with (s1, s2, s3, s4) =
(−132,−115,−50,−33). The prediction model forecasts HFor = 33 time periods, i. e., the
number of time steps in 24 hours with PV generation.

As described in Section 4.1.5, the prediction model for every quantile q is given by:

P̂PV,q,t+H = fq(PPV,t, . . . , PPV,t−H ,θq). (5.32)

In this thesis, the functional relation fq(·) is a polynomial of degree one. Hence, five
parameters θq = (θ1,q, θ2,q, θ3,q, θ4,q, θ5,q)ᵀ have to be determined. The parameters are
determined by minimizing the distance between the predicted PV generation P̂PV,q and
the quantiles in the training set PPV,q. Here, P̂PV,q is given by:

P̂PV,q =


1, PPV,HFor+1−s1 , · · · , PPV,HFor+1−s4

...
1, PPV,HFor+HTr−s1 , · · · , PPV,HFor+HTr−s4



θ1,q

...
θ5,q

 . (5.33)

Thus, determining the parameters done by solving the following optimization problem for
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every q ∈ {0.01, 0.02, . . . , 0.99}:

minimize
θq

||PPV,q −PPVθq||2

subject to
0 ≤ PPVθq if q = 0.01
PPVθ(q−0.01) ≤ (1HTr ,PPV)θq otherwise

.
(5.34)

As introduced in [192], „the constraint avoids the problem of quantile crossing [74], in
which a quantile regression delivers values which are smaller than the ones provided by a
model representing a lower quantile [192]”. This approach results in a prediction model
for every quantile prediction. In Figure 4.6, interval forecasts of the PV generation for
three exemplary days are visualized. The figure shows four different predicted intervals
with a coverage of 20 %, 40 %, 60 % and 80 %. The figure only shows day times. Before the
quantiles can be used in the rolling horizon optimization, the night values, 15 zeros, have
to be added again. This results in 48 time steps each representing a 30 min time period. In
the optimization, the time step duration of 30 min has to be adjusted to ∆k by using every
time step value 30 min

∆k
times.

For the stochastic two-stage approach that is presented in this thesis, M PV generation
forecast scenarios are needed. Using the quantile regressions, probabilistic scenarios can be
constructed using sampling methods [38, 262]. However, this approach leads to prediction
scenarios with a high volatility. In order to cover the whole probability space of possible
prediction scenarios a high number of scenarios is needed [38]. When targeting a stochastic
optimization approach as it is done in this thesis, the use of a high number of scenarios
may lead to very high optimization times (see Section 3.11.2) and thus may be unfeasible.
To reduce the number of scenarios, a selection of the PV generation quantile regressions
described above is used. Each generation forecast scenario is assumed to have an equal
probability of occurrence. This is motivated by assuming that only the clear sky generation
and possible decreases in the generation based on a total cloudiness can be predicted by
the chosen prediction model (as described in Sections 4.1.5 and Figure 4.3). Both effects
are predicted by the prediction model described in this section (cf. Figures 4.3 and 4.6).
Furthermore, it is assumed that the information of the possible amount of energy generated
by the PV system as well as possible variations based on random processes have a higher
effect on the performance of the rolling horizon optimization than information considering
the possible volatility.

The first generation forecast scenario with m = 1 is given by the quantile regression with
q = 0.5. This represents the median PV generation forecast. The other M−1 PV generation
forecasts are given by the quantile regressions with qm:

qm = 0.01 ·m · d 99
M + 1e, ∀m ∈ {2, · · · ,M}. (5.35)

This sampling method of the profiles provided by the quantile regressions ensures an
approximation of the PDF of the PV generation.
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Here, it is important to note that the PV generation forecast as well as the sampling
method of the possible PV generation scenarios should be chosen in order to maximize the
performance of the rolling horizon optimization. The approaches that are the best with
respect to the performance of the rolling horizon optimization do not necessarily have to
be optimal with respect to other evaluation functions typically used in time series analysis,
for example the Mean Absolute Percent Error (MAPE) or the Root Mean Square Error
(RMSE).

When looking at the two-stage stochastic programming approach presented in this thesis,
the M PV generation forecast scenarios are in particular needed for the second stage. As
described in Section 3.11.1, the first-stage is assumed to have no uncertainty. Hence, only
one PV generation forecast scenario is needed in the first stage. This is given by the quantile
regression with q = 0.5. Thus, the forecast is equal to a point forecast when choosing
M = 1. The PV generation profile forecast has M · (N − 1) + 1 parameters.

5.6.4 Appliances
As defined in Section 5.2.1, this thesis investigates energy management in a building that
is equipped with appliances, which are a washing machine, a dryer, a dish washer, an
induction hob and an oven. The washing machine, the dryer and the dish washer are
controllable by the BEMS while the oven and the induction hob are not. In this thesis,
controllable means deferrable as defined in Section 4.1.6 and depicted in Figure 4.7. The
starting times of the appliances are simulated according to typical statistical values that
are based on data by [205, 238]. The corresponding PDFs are presented in Figures 5.5 and
5.6. This approach follows the one presented in [163, p. 139]. More precisely, the starting
times of the non-controllable appliances, i. e., the oven and the induction hob, are simulated
according to the PDFs. The starting times of the controllable devices, i. e., the washing
machine, the dryer and the dish washer are simulated according to the PDFs if they are not
scheduled, i. e., not controlled by the optimization. If the starting times are determined by
the optimization, the earliest (kAppliances,j) and the latest possible starting time (kAppliances,j)
of appliance j are chosen to have 24 h in between. More precisely, 24 h minus the duration
of the operation of the appliance. Devices that have been started according to a scheduling
of the optimization are scheduled again at midnight. This choice leads to the largest
load shifting potential while neglecting the realistic use of the appliances. However, this
approach allows for an evaluation of the energy management approaches and reduces the
complexity of the simulation. In addition, this choice allows for a simpler comparison to
the results from the literature [48, 223] which also use a scheduling time of 24 h.

In the following sections the modeling of the appliances is described in detail.

Deferrable Appliances

This thesis includes deferrable loads as defined in Section 4.1.6 and depicted in Figure 4.7.
The starting times of the appliances can be defined by the optimization. Deferrable
appliances are an example of general shiftable loads.
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Figure 5.5: PDFs of the number of starts of the appliances.
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Figure 5.6: PDFs of the times of usage the appliances.

Table 5.7: Parameters of the deferrable appliances.
Parameter Symbol Value Unit

Number of appliances J varies –
On-off parameter of appliance j bAppliances,j varies –

Earliest possible starting time of appliance j kAppliances,j varies –
Latest possible starting time of appliance j kAppliances,j varies –

Duration of the operating of appliance j lAppliances(j) varies –
Nominal electricity consumption of appliance j PAppliances,Nom,j varies W
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Figure 5.7: Load profiles of the five appliances. The figures show the measured electric
power consumption for the washing machine (a), the tumble dryer (b) the
dishwasher (c), the induction hob (d) and the oven (e) that are used in the
evaluation [163].
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Figure 5.8: Visualization of the connection of the control inputs and the resulting load
profiles. The control inputs for case 1 lead to the earliest possible start of the
appliance and thus the load profile depicted in solid gray. In case 2 the latest
possible time step has been chosen to start the optimization. The resulting
load profile is depicted by the gray line.

For each appliance one real consumption profile has been recorded (see Figure 5.7) using
a resolution of one second [163]. These load profiles are used to model the nominal load
profiles PAppliances,Nom,j, where j is the index of the appliance, i. e., the dishwasher, the
washing machine or the tumble dryer. In the evaluation, only one profile per appliance
is used in the evaluation. Different operation modes, for example, washing programs or
temperatures, are not considered. The nominal load profiles in the model have a time step
duration of ∆k. A visualization of the measured load profile and the model of the washing
machine is presented in Figure 5.9

If a control variable is equal to one, the respective appliance is started in this time step (see
Figure 5.8). The control variables uAppliances,j = (uAppliances,j,0, . . . , uAppliances,j,N−1)ᵀ, ∀j ∈
{1, . . . , J} are binary decision variables with uAppliances,j ∈ {0, 1}N , ∀j ∈ {1, . . . , J}
and uAppliances = (uAppliances,1, . . . ,uAppliances,J)ᵀ with uAppliances ∈ {0, 1}N×J . In addition,
the following vector can be defined uAppliances,k = (uAppliances,1,k, . . . , uAppliances,J,k)ᵀ, ∀k ∈
{0, . . . , N − 1} with uAppliances,k ∈ {0, 1}J , ∀k ∈ {0, . . . , N − 1}.

Consequently, only one of the control inputs can be equal to one for each appliance. This
is ensured by:

N−1∑
i=0

uAppliances,j,i = bAppliances,j, ∀j ∈ {1, . . . , J}. (5.36)

bAppliances,j ∈ {0, 1}, ∀j ∈ {1, . . . , J} is a parameter that defines whether appliance j is
scheduled within the optimization horizon. It is important to clarify that bAppliances,j is
determined before the optimization and constant within the optimization. If bAppliances,j = 1,
appliance j is scheduled and Equation 5.36 ensures that exactly one control input uAppliances,k
is equal to one. In contrast, a choice of bAppliances,j = 0 means that appliance j is not
scheduled or has already been started. Hence, Equation 5.36 ensures that uAppliances,k =
0, ∀k ∈ {0, . . . , N − 1}. Consequently, all decision variables uAppliances are fixed.
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Figure 5.9: Visualization of the washing machine model (dashed black line) in comparison
to the measurement (solid black line).

The electric power PAppliances,j,k that is consumed in time step k by appliance j is given by:

PAppliances,j,k =
k∑

i=k−lAppliances,j+1
uAppliances,j,i · PAppliances,Nom,j,k−i+1,

∀k ∈ {lAppliances,j, . . . , N − 1},∀j ∈ {1, . . . , J}, (5.37a)

PAppliances,j,k =
k∑
i=0

uAppliances,j,i · PAppliances,Nom,j,k−i+1,

∀k ∈ {0, . . . , lAppliances,j − 1}, ∀j ∈ {1, . . . , J}. (5.37b)

lAppliances,j is the duration of the operation of appliance j in time steps. The duration is equal
to the dimension of the vector resembling the given nominal load profile PAppliances,Nom,j ∈
RlAppliances,j , ∀j ∈ {1, . . . , J} of appliance j.

It is assumed that each appliance j has to be started between a given earliest starting time
kAppliances,j and a given latest starting time kAppliances,j:

kAppliances,j ≤
N−1∑
i=0

uAppliances,j,i · i ≤ kAppliances,j, ∀j ∈ {1, . . . , J}. (5.38)

Here, the earliest starting time kAppliances,j and the latest starting time kAppliances,j are
elements of the set {0, . . . , N − 1}. The latest starting time has to be larger than the
earliest starting time:

kAppliances,j ≤ kAppliances,j, ∀j ∈ {1, . . . , J}. (5.39)
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The constraints in Equations 5.36 and 5.38 fix the values of decision variables based on
the time of optimization. Because of this, several models can be introduced each with a
different number of decision variables. However, the approach presented in this section
aims at defining a general model that holds in all cases. Typically, fixed decision variables
are identified by the solver and are dealt with accordingly. In Section 5.9 more details of
the implementation of this are presented.

When an appliance j has been started, the parameter bAppliances,j that indicates whether
appliance j is scheduled will be set to 0. An appliance j is started when u∗Appliances,Nom,j,0 =
1. In addition, the remaining nominal load profile PAppliances,Nom of the appliance, i. e.,
components 2 to lAppliances,j, are added to the base load prediction. When the appliance j
is scheduled again, the parameter bAppliances,j is set to 1 and the parameters kAppliances,j and
kAppliances,j are updated as chosen by the user.

Non-Deferrable Appliances

In addition to the deferrable appliances that can be controlled by the BEMS, non-deferrable
appliances are considered. They cannot be controlled by the BEMS. The non-deferrable
appliances are treated as started by the inhabitants. The times of use are defined according
to the PDFs presented in Figures 5.5 and 5.6. However, as described in Section 5.4, in this
thesis a perfect forecast is used. Thus, the starting times are assumed to be known by the
BEMS.

The electricity consumption profiles of the non-deferrable appliances are added to the base
load profile (see Figure 5.7).

5.6.5 Electric Base Load
This thesis uses the approach presented in [163, p. 127]. The remaining electrical load,
which is not caused by the simulated major appliances, is simulated using the German
standard load profile of households H0. In particular, the representative load profiles that
have been developed by the Verband der Elektrizitätswirtschaft e. V. (VDEW) (English:
The Association of the German Electricity Industry) [250]. The VDEW representative load
profiles contain individual load profiles for workdays, Saturdays and Sundays. Each class
of day is varied three times to represent the winter, the summer, and a season in between,
resulting in nine different load profiles. In addition, the consumption in each day is scaled
by a factor α(d) that reflects seasonal influences on the electricity consumption. The factor
is given by a fourth-order polynomial equation that is dependent on the day of the year
d ∈ {1, . . . , 365} [163, p. 128]:

α(d) = −3.92 · 10−10 · d4 + 0.00000032 · d3 − 0.0000702 · d2 + 0.0021 · d+ 1.24. (5.40)

This function results in a factor α(d) that is between 0.78 and 1.25. All profiles used in the
simulations have a resolution of 15 min. The same approach has been used in [9, 163, 164,
165, 174, 179].
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Figure 5.10: Electricity consumption profiles for a workday, a Saturday and a Sunday in
the winter (a), in the spring and in the fall (b) as well as in the summer (c).
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Figure 5.11: Visualization of the average heating system heat consumption in every hour
in every month in a year.

Rule-based Appliance Operation

In the evaluation presented in Chapter 6, a rule-based operation approach is compared to
the two-stage stochastic rolling horizon approach. In the rule-based scenario, the deferrable
appliances are started at 12:00. This is done without considering any predictions. This
simple approach targets the operation of the appliance at times of high PV generation.

5.6.6 Space Heating
This thesis uses a static heat load profile to simulate the space heating of the building. The
heat load profile has been obtained by a thermal simulation of a building that resembles
the ESHL. The simulation has been performed by Gräßle et al. [101] using TRANSYS. In
[9], this load profile has been used to evaluate the performance of the OSH. Mauser [163,
p. 130] introduced further variations in the load profiles presented by Gräßle. The resulting
approach has then been implemented in the OSH framework to enable a realistic simulation
of a thermal building energy system. The approach has been presented and evaluated
in [163, 165]. This thesis uses the approach introduced by Mauser [163, p. 130]. More
precisely, the OSH has been used to obtain a heat load profile for a household with four
persons. This process leads to an individual heat load profile for every day in the year. The
obtained load profile has a resolution of 1 h. The space heating heat load profile is scaled
to an annual heat consumption of 2000 kWh per person in the household. It assumed that
the yearly Heating System (HS) heat load profiles include all losses in the DHW system. A
visualization of the average HS heat consumption in every hour in every month in a year is
presented in Figure 5.11.
The HS heat load in the simulation is given by Φ̃HS = (Φ̃HS,1, . . . , Φ̃HS,T )ᵀ. To translate
these parameters to the domain of the optimization, the time step lengths have to be
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Figure 5.12: Visualization of a DHW exemplary heat load profile in a day.

adjusted from ∆t in the simulation to ∆k in the rolling horizon optimization. For an
optimization that starts in the simulation time step t0, the HS heat load is given by:

ΦHS,k = Φ̃
HS,
(
bt0+k·∆k

∆t
c
), ∀k ∈ {0, . . . , N − 1} (5.41)

Where the HS heat load Φ̃HS,t is known for the simulation period with t ∈ {1, . . . , T}. In
the rolling horizon optimization, the heat loads from the HS ΦHS,k are treated as fixed
parameters.

5.6.7 Domestic Hot Water Consumption
Similarly to the space heating, the DHW consumption is simulated using static heat load
profiles. They are taken from the OSH, which uses an approach that is presented in [163,
p. 130]. The heat load profiles represent a household with four persons.

The simulation in the OSH uses 13 draw off profiles that are partially based on typical
draw off profiles provided in the regulation of the energy labeling of space heaters by the
European Commission [73]. Each draw off profile has a duration between 9 and 506 s, an
average heat load between 6.0 and 50.4 kW and a total energy consumption between 0.015
and 6.524 kWh per draw off period. Based on [73], every draw off profile has an assigned
probability of occurrence that is dependent on the hour of the day and the day of the week.
The DHW heat load profiles are computed by drawing draw off profiles according to these
probabilities. The resulting DHW heat load profiles are then corrected to include seasonal
changes according to [252, Figure D1] and daily changes according to [252, Figure D2]. A
detailed description of the simulation process of the DHW heat load profiles is given in [163,
p. 130]. The yearly DHW heat load profile is scaled to represent a yearly consumption of
700 kWh per person in the household. It assumed that the yearly DHW heat load profiles
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Table 5.8: Parameters of the hot water tank model.
Parameter Symbol Value Unit

Maximum temperature ϑHWT 80 ◦C
Minimum temperature ϑHWT 60 ◦C
Volume of the HWT VHWT 0.75 m3

Volumetric mass density of water ρWater 1000 kg m−3

Specific heat capacity of water cWater 4182 W s kg−1 K−1

Ambient temperature of the HWT ϑHWT,Ambient 20 ◦C
Heat loss factor 1 aHWT 12 W
Heat loss factor 2 bHWT 5.93 W
Heat loss factor 3 cHWT 1000 m−3

Heat loss factor 4 dHWT 40 K

include all losses in the DHW system. An exemplary DHW heat load profile is given in
Figure 5.12.
The DHW heat load in the simulation is given by Φ̃DHW = (Φ̃DHW,1, . . . , Φ̃DHW,T ). To
translate these parameters to the domain of the optimization, the time step lengths have
to be adjusted from ∆t in the simulation to ∆k in the rolling horizon optimization. For an
optimization that starts in the simulation time step t0, the DHW heat load for the HS is
given by:

ΦDHW,k = Φ̃
DHW,

(
bt0+k·∆k

∆t
c
), ∀k ∈ {0, . . . , N − 1}, (5.42)

where the DHW heat loads Φ̃DHW,t are known for the simulation period with t ∈ {1, . . . , T}.
In the rolling horizon optimization, the DHW heat loads ΦDHW,k are treated as fixed
parameters.

5.6.8 Hot Water Tank
This thesis considers an HWT that is used as a thermal energy storage. The amount of
stored energy can be expressed by the temperature of the stored water. In this thesis, the
temperature of the stored water ϑHWT,k+1 in time step k+ 1 is modeled as a linear function
of the temperature in the previous time step as well as the heat loss ΦHWT,Loss,k, the heat
generated by the micro-CHP ΦCHP,k, the heat consumed by the HS ΦHS,k and the heat
consumed by the domestic hot water system ΦDHW,k in the previous time step k:

ϑHWT,k+1 = ϑHWT,k + ∆k · [ΦCHP,k − ΦHWT,Loss,k

− ΦHS,k − ΦDHW,k]/(VHWT · ρWater · cWater), ∀k ∈ {1, . . . , N}, (5.43a)

ϑHWT,1 = ϑHWT,Initial + ∆k · [ΦCHP,0 − ΦHWT,Loss,0

− ΦHS,0 − ΦDHW,0]/(VHWT · ρWater · cWater). (5.43b)
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ϑHWT,Initial is the value of the tank temperature in time step 0. It is equal to the tank
temperature in the simulation or the tank temperature that is measured in a real system
before the start of the optimization. In order to calculate the temperature change, the
generated and consumed heat has to be divided by the volume of the HWT VHWT, the
volumetric mass density of water ρWater and the specific heat capacity of water cWater. The
values of the tank temperature are given by ϑHWT = (ϑHWT,1, . . . , ϑHWT,N)ᵀ.

The temperature of the water in the tank is not allowed to exceed a given maximum
temperature ϑHT or fall below a given minimum temperature ϑHT. This is modeled by the
introduction of the following constraints:

ϑHWT ≤ ϑHWT,k ≤ ϑHWT, ∀k ∈ {1, . . . , N}. (5.44)

It is assumed that the micro-CHP generates a suitable amount of heat that Equation 5.44
holds in all cases. In real systems, extreme circumstances, for example very low ambient
temperatures for a long time or a very high domestic hot water consumption, can lead to a
violation of the constraint given in Equation 5.44. This causes the optimization problem
to be infeasible, which means that no solution can be found that meet the constraints. To
include a possible violation of the limits of the tank temperature Equation 5.44 has to be
changed to a soft constraint that can be violated at a certain cost [260, p. 31]. This can be
done by the introduction of additional decision variables. These variables are called slack
variables [260, p. 31].

The model used in this thesis does not include constraints on maximum thermal energy
that can be drawn or stored in the HWT in one time step (cf. Equation 5.15). The use of
recorded heat consumption profiles allows the assumption that all thermal energy needs and
all the thermal energy that has been generated by the micro-CHP can be stored. However,
constraints on the maximum thermal energy exchange with the HWT can easily be added
using the approach presented in Equation 5.15.

Standing Loss

In this thesis, the standing loss of the HWT ΦHWT,Loss is modeled according to the EU
regulation of the energy efficiency classes of HWT classes [73, Annex II]. The regulation
provides a model that provides a heat loss depending solely on the volume of the tank
VHWT in m3:

ΦHWT,Loss,k = (aHWT + bHWT · (cHWT · VHWT)0.4), ∀k ∈ {0, . . . , N − 1}. (5.45)

aHWT and bHWT are the parameters that define the heat loss in the respective energy
efficiency class while cHWT is a fixed parameter [73, Annex II]. Mauser [163, p. 157]
extended this model to integrate the dependency of the water temperature in the tank on
the heat loss according to Equation 4.6. In this thesis, the heat loss of the HWT uses the
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same model as presented by Mauser. It is given by the following shorthand notation:

ΦHWT,Loss,k = (aHWT + bHWT · (cHWT · VHWT)0.4)

· (ϑHWT,k − ϑHWT,Ambient)
dHWT

, ∀k ∈ {1, . . . , N − 1}, (5.46a)

ΦHWT,Loss,0 = (aHWT + bHWT · (cHWT · VHWT)0.4) · (ϑHWT,Initial − ϑHWT,Ambient)
dHWT

. (5.46b)

This model is similar to other optimization approaches in the literature [164, 222]. The
parameters aHWT and bHWT are chosen to represent an HWT that resembles the transition
from energy efficiency classes B to C [73, Annex II]. The parameter cHWT is chosen based
on the assumption of a minimum temperature difference between the ambient temperature
of the HWT and the minimum water temperature of 40 K. The ambient temperature
ϑHWT,Ambient is chosen to be constant and equal to 20 ◦C. This choice of parameters results
in an average standing heat loss of 2.3 kWh per day when assuming a constant tank
temperature of 60 ◦C. For an HWT with a size of 750 L, this results in a temperature
decrement of about 2.5 K. This is comparable to real HWTs commonly used in combination
with the Senertec Dachs G5.5 micro-CHP [225, p. 47 & 89]. A list of the HWT model
parameters and the chosen values is presented in Table 5.8.

5.6.9 Tariffs
Future energy systems are assumed to have a high penetration of RESs (see Section 2.3).
Based on the volatility and intermittency of the electricity generation of RESs, the prices of
electric energy are assumed to become more time-dependent to mirror the time-dependent
generation. Often, it is assumed that these time-dependent prices will be offered to end
users. As described in Section 2.9.2, TOU electricity tariffs are tariffs with a time-dependent
electricity price. In this thesis, the presence of TOU electricity tariffs is assumed.

In addition, TOU electricity tariffs can be seen as a measure of DSM (see Sections 2.9.5
and 2.15). Following this viewpoint, TOU electricity tariffs can be used by demand side
managers to communicate with end users (see Figure 2.9c). The tariffs incentivize the end
users to shape their electricity consumption in order to minimize their costs. Hence, the
TOU electricity tariffs are not limited to represent the electricity prices in the wholesale
market but can also include other factors. Electricity tariffs can also be used as a measure
of DSM, for example to solve a temporary congestion of the grid. In summary, TOU
electricity tariffs reward the electricity consumption in steps of low prices and punish the
consumption at times of high prices.

In addition to time-dependent electricity prices, time-dependent feed-in compensations are
assumed (see Section 2.9.2). Time dependent feed-in compensations can be justified in an
analogous manner to the time-dependent electricity prices.

In this thesis, the electricity consumption price in each time step t in the simulation of
the building is given by π̃Im,t. The index Im stands for import, relating to the amount of
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Figure 5.13: Electricity consumption and feed-in tariffs.

energy that is imported from the grid into the build. In contrast, the index Ex stands
for export, relating to the amount of energy that is exported from the building to the
grid. It is important to note that this thesis uses a convention in which prices are positive
and rewards are negative. This is in-line with formulating the optimization problem as a
minimization problem that targets the minimization of costs.

In this thesis, it is assumed that the electricity consumption price is always higher than
the absolute value of the feed-in compensation (see also Section 5.6.10):

|π̃Ex,t| ≤ π̃Im,t, ∀t ∈ {1, . . . , T}. (5.47)

This can be motivated by assuming that the commodity electric energy at a given time in
a given spatial point has a given value. Then, the import price should be larger since it
includes grid fees, market fees, payment fees, etc. This assumption does not incorporate
any possible valuation of the source of the electric energy. An example of such a valuation
can be that electric energy from renewables is more valuable than the electric energy from
fossil resources based on being more environmentally friendly.

In the following sections, the time-dependent electricity prices and feed-in compensations
that are used in this thesis are described in detail. In Figure 5.13 all the electricity
consumption and feed-in tariffs used in this thesis are displayed.

Electricity Tariff

The TOU electricity tariff that is used in this thesis has originally been presented in [143].
It has been created to provide a realistic scenario to enable work in the field of future
energy systems, smart grids, economic optimization of energy systems (see Section 2.12)
and energy management. The temporal sequence of prices resembles the shape of the yearly
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average electricity price at the German day ahead auction at the EPEX SPOT market as
well as the German standard load profile of households H0 [250]. However, the absolute
prices are assumed be close to the ones common in Germany in the year 2015. This price
is assumed to include all fees, e. g., grid connection fees.

In this thesis, an average price of 30 cent/kWh is assumed. Hence, the TOU electricity
tariff presented in [163] is rescaled to have a daily average price of 30 cent/kWh.

The electricity consumption tariff is constant for the duration of each hour in the day.
However, each hour can have a different consumption price. In addition, the electricity con-
sumption tariff is assumed to be equal in each day of the year. The electricity consumption
tariff is displayed by the solid black line in Figure 5.13.

To translate these parameters to the domain of the optimization, the time step lengths
have to be adjusted from ∆t in the simulation to ∆k in the rolling horizon optimization.
For an optimization starting in the simulation time step t0, the electricity consumption
prices are given by:

πIm,k = π̃
Im,
(
bt0+k·∆k

∆t
c
), ∀k ∈ {0, . . . , N − 1}. (5.48)

The electricity consumption prices π̃Im,t are known for the simulation period with t ∈
{1, . . . , T}. In the rolling horizon optimization, the electricity consumption prices πIm,k are
treated as fixed parameters.

Feed-in Tariff

In addition to the TOU tariff for the electricity consumption, the electricity feed-in, i. e.,
export, to the grid is also assumed to be billed based on a time-dependent tariff. Since
time-dependent feed-in tariffs are not widely spread amongst end users and examples of
feed-in tariffs that can be used in this thesis are rare, this thesis uses two different artificial
time-dependent feed-in tariffs plus one feed-in tariff with a constant compensation. They
are chosen to represent three different scenarios: a scenario based on the current state-of
the art, a scenario that represents a realistic future feed-in tariff and an extreme scenario.
All three feed-in tariffs are given in Figure 5.13.

The constant feed-in tariff has a compensation of 12 cent/kWh. This resembles the current
situation in Germany for PV systems on residential buildings having a maximum power
of 10 kW [39]. The first time-dependent tariff resembles a possible future feed-in tariff. It
is created by multiplying the TOU electricity tariff by -1 and performing a linear shift of
21 cent/kWh to obtain an average compensation of 9 cent/kWh. The second time-dependent
tariff resembles an extreme feed-in tariff. It is based on an extreme day at the intra-day
market at the European Power Exchange in September 2015. The same choice of tariffs
has also been used in [174, 179].

For the sake of simplicity, this thesis assumes that the feed-in compensation does not
depend on the source of the energy that is fed into the grid. In addition, it is assumed
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that there are no compensations for the self-consumption of electricity generated by the
micro-CHP or the PV system. Furthermore, power prices and power limits as defined in
Section 2.9.2 are not considered in this thesis. However, power limits can be included in
the model by introducing additional decision variables following the approach presented
in [129, 132].

To translate these parameters to the domain of the optimization, the time step lengths
have to be adjusted from ∆t in the simulation to ∆k in the rolling horizon optimization.
For an optimization that starts in the simulation time step t0, the electricity consumption
prices are given by:

πEx,k = π̃
Ex,
(
bt0+k·∆k

∆t
c
), ∀k ∈ {0, . . . , N − 1}. (5.49)

The electricity feed-in compensations π̃Ex,t are known for the simulation period with
t ∈ {1, . . . , T}. In the rolling horizon optimization, the electricity feed-in compensations
πIm,k are treated as fixed parameters.

Gas Tariff

The scenario that is investigated in this thesis (see Section 5.2) includes a micro-CHP that
is run by natural gas. This thesis assumes a constant gas price of πGas,Flat = 9 cent/kWh.
This choice resembles the current situation in Germany.

Since the gas consumption price is not dependent on the time, the prices in the simulation
π̃Gas,t and the rolling horizon optimization πGas,k, respectively, are given by:

π̃Gas,t = πGas,Flat, ∀t ∈ {1, . . . , T}, (5.50)

πGas,k = πGas,Flat, ∀k ∈ {0, . . . , N − 1}. (5.51)

5.6.10 Device Interaction Model and Grid Interaction Model
In addition to the individual devices in the building energy system, the interaction of the
devices as well as the interaction with the electricity grid have to be modeled. Therefore,
the following constraints have been introduced.

The power balance has to be ensured in every time step. This means that the electricity
generation has to be equal to the electricity consumption. This requires that the sum of all
power flows to devices that consume electricity plus the grid export power is equal to the
sum of all power flows from devices that generate energy plus the grid import power in all
time steps k. This is addressed in the following constraints:

J∑
j=1

PAppliances,j,k + PBase,k + PBESS,C,k + PEx,k =

PIm,k + PPV,k + PCHP,k + PBESS,D,k, ∀k ∈ {0, . . . , N − 1} (5.52)
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PIm,k and PEx,k are the power that is imported from the grid and the power that is
exported to the grid, respectively. The imported power is treated as electricity generation
while the exported power is treated as electricity consumption. Both power flows, PIm =
(PIm,0, . . . , PIm,N−1)ᵀ and PEx = (PEx,0, . . . , PEx,N−1)ᵀ, are modeled to be decision variables
with PIm ∈ RN and PEx ∈ RN .

The interaction with the grid is assumed to have no constraints. This means there are no
maximum or minimum import and export powers. Hence, the following constraints are
used:

0 ≤ PIm,k, ∀k ∈ {0, . . . , N − 1} (5.53)

and
0 ≤ PEx,k, ∀k ∈ {0, . . . , N − 1}. (5.54)

In general, feed-in from the BESS is only beneficial in case of a time-varying feed in
compensation that has a spread between the different feed-in compensations that is so
high that it compensates the energy losses based on the non-perfect efficiency of the BESS.
Thus, the amount of energy that is fed into the grid from the BESS as well as the point in
time this is done is heavily dependent on the tariff structures.

However, the local government of Victoria, Australia, introduced a time-dependent feed-in
tariff [72] and explicitly encourages the feed-in from all sources, including a BESS, in
particular time steps of the day. In their opinion, the feed-in supports the grid operation
independently of its source.

Similarly to the feed-in from the BESS, the charging of the BESS using power that is drawn
from the grid can be beneficial in special cases. However, the amount of power that is
drawn from the grid to charge the BESS as well as the point in time this is done is heavily
dependent on the tariff structures.

In this thesis, only scenarios are evaluated, in which feed-in from the BESS into the grid as
well as power import from the grid to charge the BESS are not allowed. This allows for a
comparison to a state-of-the-art rule based approach that is used in commercially available
BESSs (see Section 5.6.1 and Algorithm 5.4). The feed-in from the BESS is prevented by
the following constraint:

0 ≤ PEx,k ≤ PPV,k + PCHP,k, ∀k ∈ {0, . . . , N − 1}. (5.55)

The power that is exported to the grid PEx,k is limited to the sum of the local generation
PPV,k+PCHP,k in every time step k. This has the same result as limiting the discharge power
of the BESS to the sum of the local electricity consumption ∑J

j=1 PAppliances,j,k + PBase,k in
every time step k:

PBESS,D,k ≤
J∑
j=1

PAppliances,j,k + PBase,k, ∀k ∈ {0, . . . , N − 1}. (5.56)
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To prohibit charging the BESS by taking power from the grid, the following constraints are
introduced similarly to Equation 5.55:

0 ≤ PIm,k ≤
J∑
j=1

PAppliances,j,k + PBase,k, ∀k ∈ {0, . . . , N − 1}. (5.57)

Here, the power that is imported from the grid PIm,k is limited to the sum of the local
consumption ∑J

j=1 PAppliances,j,k+PBase,k in every time step k. Analogously to Equation 5.56,
the following constraint can be introduced instead:

PBESS,C,k ≤ PPV,k + PCHP,k, ∀k ∈ {0, . . . , N − 1}. (5.58)

A simultaneous import and export of electricity is not explicitly prohibited by the model
even though this is physically not possible. This is based on the assumption that the
absolute value of the feed-in compensation πEx,k is lower than the electricity price πIm,k
(see Sections 5.6.9 and Equation 5.47). When this assumption holds true, electricity export
or feed-in is always preferred over import. Because of that, electricity import will only
happen when feed in is not possible.
In scenarios in which the absolute value of the feed-in compensation πEx,k is higher than
the electricity price πIm,k:

∃k ∈ {0, . . . , N − 1} : πIm,k ≤ |πEx,k|, (5.59)

a simultaneous electricity import and export occurs in the model. This happens because
the optimization takes cheaper electricity out of the grid and feeds it directly back into the
grid to create revenues. This is physically not possible and makes no sense economically
(see Section 5.6.9). In addition, the optimization problem becomes unconstrained when
PIm and PEx are not constrained individually (see Equation 5.55 and 5.57).
A simultaneous import and export of electricity can be explicitly prohibited by the in-
troduction of additional binary decision variables bGrid = (bGrid,0, . . . , bGrid,N−1)ᵀ with
bGrid ∈ {0, 1}N . Equation 5.15 would then change to:

0 ≤ PIm,k ≤ P Im · bGrid,k, ∀k ∈ {0, . . . , N − 1}, (5.60a)
0 ≤ PEx,k ≤ PEx · (1− bGrid,k), ∀k ∈ {0, . . . , N − 1}. (5.60b)

Here, P Im and PEx are the maximum powers that can be drawn from the grid and fed into
the grid, respectively. Both parameters can be chosen to resemble physical limits of the
grid connection or to be very large compared to the actual powers.

5.7 Formulation of the State-of-the-art One-stage Rolling
Horizon Optimization Problem

As described in Section 5.5, the goal of the rolling horizon optimization problem is to
determine the control inputs for the devices that are set to minimize the operating costs.
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Table 5.9: List of decision variables in the state-of-the-art one-stage rolling horizon opti-
mization problem

Decision variable Symbol Domain Unit Description
micro-CHP control inputs uCHP {0, 1}N – Control input
Appliances control inputs uAppliances {0, 1}N×J – Control input

BESS charge control inputs uBESS,C [0, 1]N – Control input
BESS charge control inputs uBESS,D [0, 1]N – Control input

Grid import power PIm RN kW Auxiliary variable
Grid export power PEx RN kW Auxiliary variable

Number of micro-CHP starts sCHP {0, 1}N – Auxiliary variable

The controlled devices are the BESS, the appliances and the micro-CHP. In the one-stage
rolling horizon optimization problem, the control inputs relate to the control variables:

uk = (uBESS,C,k, uBESS,D,k,uAppliances,k, uCHP,k)ᵀ, ∀k ∈ {0, . . . , N − 1}. (5.61)

In the optimization problem, the control variables are decision variables.

The auxiliary variables are additional decision variables. They are the grid export power,
the grid import power and the number of starts of the micro-CHP:

ak = (PEx,k, PIm,k, sCHP,k)ᵀ, ∀k ∈ {0, . . . , N − 1}. (5.62)

The state variables are defined for the time steps {1, . . . , N} while control and auxiliary
variables are defined for the time steps {0, . . . , N − 1}. This definition enables the usage of
the discrete time model as defined in Sections 3.4 and Equation 3.3.

Even though only the control variables are of interest in order to control the devices, the
other decision variables are needed to formulate the optimization problem as a mixed-integer
linear program. When using a different modeling approach, the additional decision variables
may be omitted. A detailed list of the decision variables that are used in the optimization
problem is presented in Table 5.9.

In addition to the decision variables, the optimization problem contains various parameters
that are fixed during the optimization. However, as described in Sections 3.5 and 5.5 the
parameters can change between the individual optimization runs of the rolling horizon
approach. This leads to a different optimization problem in every optimization run of the
rolling horizon optimization. However, the structure of the problem remains unchanged,
but the values of the parameters change. A list of all model parameters is presented in
Table 6.7.

When solving the optimization problem, it is assumed that a solution exists for all realistic
parameter combinations, i. e., parameter combinations that represent realistic scenarios.
This can be motivated by the fact that the building is always connected to the electricity
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grid as well as to the gas grid and the power import and export are not limited. For the HS
it is assumed that the heat load can always be satisfied by the combination of micro-CHP
and HWT.

5.7.1 Objective Function

The operating costs consist of three parts: the cost of importing the electricity from the
grid, the gas cost, and the compensation of the electricity that is fed into the grid. As
described in Section 5.6.9, this thesis assumes a time-dependent electricity tariff and a
time-dependent feed-in compensation. This leads to time variable stage costs as defined in
Section 3.6:

l(PEx,k, PIm,k, GCHP,k, sCHP,k) = ∆k · [πEx,k · PEx,k + πIm,k · PIm,k

+ πGas,k ·GCHP,k] + πCHP,Start · sCHP,k (5.63)

The objective function JN(PEx,PIm,GCHP, sCHP) for the optimization window of N time
steps is given by:

JN(PEx,PIm,GCHP, sCHP) =
N−1∑
k=0

∆k · [πEx,k · PEx,k + πIm,k · PIm,k

+ πGas,k ·GCHP,k] + πCHP,Start · sCHP,k. (5.64)

Here, πEx,k is the compensation for the electricity export in time step k, πIm,k is the price
for the electricity import in time step k and πGas,k is the price for gas in time step k.
Since πEx,k, πIm,k and πGas,k are given in cent/kWh, the grid import power PIm, the grid
export power PEx and the gas consumption power GCHP have to be multiplied by the time
step length ∆k in any time step k. The variables sCHP,k are the number of starts of the
micro-CHP. It is important to note that the optimization problem in the rolling horizon
approach does not necessarily have to be equal to the optimization of the operating costs of
the building (see Section 3.5). The costs for starting the micro-CHP can be seen as penalty
costs that encourage specific solutions (see Sections 3.4 and Equation 3.7). Even though a
start of the micro-CHP does not directly lead to costs, a higher number of starts is not
desired by the designer of the system. This is a consequence of the dependence between
the wear and the number of starts of the micro-CHP. Furthermore, terminal costs, i. e.,
a term in the objective function that is dependent on the final time step k = N , can be
added to the objective function (Section 3.5) to encourage specific solutions. The specific
solutions are chosen by the designer of the planning and optimization system. Based on
his knowledge of the expected future behavior of the building energy system beyond the
optimization horizon, the specific solutions are expected to lead to a high performance of
the rolling horizon optimization approach over a time period longer than the optimization
window. However, no terminal costs as defined in Section 3.5 are assumed in this thesis.
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5.7.2 Constraints
The constraints of the optimization problem result from the device and interaction models
presented in Section 5.6. In this section, the constraints that are described in detail in
Section 5.6 are summarized and recapitulated. A list of the decision variables is given in
Table 5.9 and a list of all the model parameters is presented in Table 6.7.

The state equations (see Section 3.3) of the BESS are given by

EBESS,k+1 = EBESS,k + ∆k · (ηBESS · PBESS,C,k

+ η−1
BESSPBESS,D,k) ∀k ∈ {1, . . . , N}, (5.65a)

EBESS,1 = EBESS,Initial + ∆k · (ηBESS · PBESS,C,0 + η−1
BESSPBESS,D,0). (5.65b)

The constraints limiting the BESS state variable to its maximum and minimum are:

EBESS ≤ EBESS,k ≤ EBESS, ∀k ∈ {1, . . . , N}. (5.66)

The control variables of the BESS are constrained by:

PBESS,C ≤ PBESS,C,k ≤ PBESS,C, ∀k ∈ {0, . . . , N − 1}, (5.67a)
PBESS,D ≤ PBESS,D,k ≤ PBESS,D, ∀k ∈ {0, . . . , N − 1}, (5.67b)

using the following shorthand notations:

PBESS,C,k = uBESS,C,k · PBESS,C, ∀k ∈ {0, . . . , N − 1}, (5.68a)
PBESS,D,k = uBESS,D,k · PBESS,D, ∀k ∈ {0, . . . , N − 1}. (5.68b)

The state equations of the HWT are given by:

ϑHWT,k+1 = ϑHWT,k + ∆k · [ΦCHP,k − ΦHWT,Loss,k

− ΦHS,k − ΦDHW,k]/(VHWT · ρWater · cWater), ∀k ∈ {1, . . . , N}, (5.69a)

ϑHWT,1 = ϑHWT,Initial + ∆k · [ΦCHP,0 − ΦHWT,Loss,0

− ΦHS,0 − ΦDHW,0]/(VHWT · ρWater · cWater), (5.69b)

using the following shorthand notations:

ΦHWT,Loss,k = (aHWT + bHWT · (cHWT · VHWT)0.4)

· (ϑHWT,k − ϑHWT,Ambient)
dHWT

, ∀k ∈ {1, . . . , N − 1}, (5.70a)

ΦHWT,Loss,0 = (aHWT + bHWT · (cHWT · VHWT)0.4) · (ϑHWT,Initial − ϑHWT,Ambient)
dHWT

. (5.70b)
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The control variables of the micro-CHP are constrained by:

0 ≤
N∑
i=k

uCHP,i − (N − k) · (uCHP,k − uCHP, k − 1),

∀k ∈ {N − kCHP,Min + 1, . . . , N}. (5.71)

If the parameter kCHP,Initial 6= 0, the optimization problem contains the following constraints:

kCHP,Min · (uCHP,k − uCHP,k−1) ≤
k+kCHP,Min−1∑

i=k
uCHP,i,

∀k ∈ {kCHP,Initial, . . . , N − kCHP,Min} (5.72)

and

kCHP,Initial −
kCHP,Initial−1∑

i=0
uCHP,i = 0. (5.73)

If kCHP,Initial = 0, the optimization problem contains the following constraints:

kCHP,Min · (uCHP,k − uCHP,k−1) ≤
k+kCHP,Min−1∑

i=k
uCHP,i,

∀k ∈ {1, . . . , N − kCHP,Min}, (5.74a)

kCHP,Min · (uCHP,0 − uCHP,Initial) ≤
kCHP,Min−1∑

i=0
uCHP,i. (5.74b)

To ease the handling of the control variables of the micro-CHP, the following shorthand
notations are introduced:

PCHP,k = uCHP,k · PCHP,Nom, ∀k ∈ {0, . . . , N − 1}, (5.75a)
ΦCHP,k = uCHP,k · ΦCHP,Nom, ∀k ∈ {0, . . . , N − 1}, (5.75b)
GCHP,k = uCHP,k ·GCHP,Nom, ∀k ∈ {0, . . . , N − 1}. (5.75c)

The auxiliary variables which consider the number of starts of the micro-CHP are constrained
by:

(uCHP,k − uCHP,k−1) ≤ sCHP,k, ∀k ∈ {1, . . . , N − 1}, (5.76a)
(uCHP,0 − uCHP,Initial) ≤ sCHP,0. (5.76b)

(5.76c)

The control variables of the appliances are constrained by:
N−1∑
i=0

uAppliances,j,i = bAppliances,j, ∀j ∈ {1, . . . , J} (5.77)
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and
kAppliances,j ≤

N−1∑
i=0

uAppliances,j,i · i ≤ kAppliances,j, ∀j ∈ {1, . . . , J}. (5.78)

To ease the handling of the control variables of the appliances, the following shorthand
notations are introduced:

PAppliances,j,k =
k∑

i=k−lAppliances,j

uAppliances,j,i · PAppliances,Nom,j,k−i+1,

∀k ∈ {lAppliances,j, . . . , N − 1},∀j ∈ {1, . . . , J}, (5.79a)

PAppliances,j,k =
k∑
i=0

uAppliances,j,i · PAppliances,Nom,j,k−i+1,

∀k ∈ {0, . . . , lAppliances,j − 1}, ∀j ∈ {1, . . . , J}. (5.79b)

The balance of the power flows is ensured by:
J∑
j=1

PAppliances,j,k + PBase,k + PBESS,C,k + PEx,k =

PIm,k + PPV,k + PCHP,k + PBESS,D,k, ∀k ∈ {0, . . . , N − 1}. (5.80)

The relationships between the auxiliary variables PEx,k and PIm,k and the control variables
are given by:

0 ≤ PEx,k ≤ PPV,k + PCHP,k, ∀k ∈ {0, . . . , N − 1} (5.81)
and

0 ≤ PIm,k ≤
J∑
j=1

PAppliances,j,k + PBase,k, ∀k ∈ {0, . . . , N − 1}. (5.82)

5.7.3 Summary of the Optimization Problem
The optimization problem that has to be solved in every optimization in the rolling horizon
optimization approach is:

minimize
uBESS,D ∈ [0,1]N
uBESS,C ∈ [0,1]N
uCHP ∈{0,1}N

uAppliances ∈{0,1}J×N

PIm ∈RN

PEx ∈RN

sCHP ∈RN

N−1∑
k=0

l(PEx, PIm,k, GCHP,k, sCHP,k)

subject to (5.65)− (5.82)

(5.83)

Here, it is important to note that the parameters N and ∆k are tuning parameters that
have to be chosen by the designer of the planning and optimization system. The choice of
the parameters in the evaluation scenario is motivated in Section 6.6.2.
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5.8 Formulation of the Stochastic Two-stage Rolling
Horizon Optimization Problem

The stochastic two-stage rolling horizon optimization problem is formulated according
to the definition presented in Sections 3.11.1 and Equation 3.40. The first stage relates
to the first time step of the state-of-the-art optimization problem defined in Section 5.7.
In case of the control and the auxiliary variables, the first time step is given by k = 0
and in case of the state variables the first time step is given by k = 1. The second stage
includes all other time steps. For the control and the auxiliary variables, these are defined
by k ∈ {1, . . . , N − 1} and for the state variables these are defined by k ∈ {2, . . . , N} In
the first stage, no uncertainties are considered, while the second stage includes uncertain
parameters. In this thesis, the uncertain parameters are the forecasts of the PV generation.
The formulation of the problem allows for an easy integration of other uncertainties, e. g.,
the uncertainties in the forecast of the electricity or heat consumptions. However, the
influence of the performance of the optimization approach are hard to estimate.
As defined in Section 3.11.1 and Equation 3.40, the objective function of the stochastic
two-stage rolling horizon optimization problem consists of the sum of the objective function
for the first-stage and the expected value of the optimal solution for the second-stage
problem. For a given realization of the uncertain parameters, the optimal solution for the
second-stage problem is found by minimizing the objective function of the second-stage
problem. For a number M ∈ N of possible realizations of the uncertain parameters, the
expected value of the optimal solution for the second-stage problem is given by the sum
over the optimal solutions for the second-stage problem for all possible realizations of the
uncertain parameters where every term is weighted by the probability of occurrence of the
respective possible realization (see Section 3.11.3 and Equation 3.49). In general, M gives
the number of forecast scenarios. In this thesis, the forecast scenarios relate to possible PV
generation scenarios.
As a consequence, the number of decision variables increases with respect to the formula-
tion of the state-of-the-art one-stage rolling horizon optimization problem as defined in
Section 5.7. More accurately, (M − 1) · (N − 1) additional decision variables are necessary
with respect to the state-of-the-art one-stage rolling horizon optimization problem. A list
of all decision variables in the stochastic two-stage rolling horizon optimization problem
is presented in Table 5.10. Here, it is important to note that for M = 1, the stochastic
two-stage rolling horizon optimization problem becomes equal to the one-stage rolling
horizon optimization problem.
The control variables in the stochastic two-stage rolling horizon optimization problem are
given by (cf. Equation 5.61):

u1ST = (u1ST
BESS,C, u

1ST
BESS,D,u

1ST
Appliances, u

1ST
CHP)ᵀ, (5.84)

u2ST
m,k = (u2ST

BESS,C,m,k, u
2ST
BESS,D,m,k,u

2ST
Appliances,m,k, u

2ST
CHP,m,k)ᵀ,

∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}. (5.85)

126



5.8 Formulation of the Stochastic Two-stage Rolling Horizon Optimization Problem

T
ab

le
5.

10
:

Li
st

of
de

ci
sio

n
va

ria
bl

es
in

th
e

st
oc

ha
st

ic
tw

o-
st

ag
e

ro
lli

ng
ho

riz
on

op
tim

iz
at

io
n

pr
ob

le
m

D
ec

isi
on

va
ria

bl
e

Sy
m

bo
l

D
om

ai
n

U
ni

t
D

es
cr

ip
tio

n
1.

st
ag

e
m

ic
ro

-C
H

P
co

nt
ro

li
np

ut
s

u
1S

T
C

H
P

{0
,1
}

–
C

on
tr

ol
in

pu
t

2.
st

ag
e

m
ic

ro
-C

H
P

co
nt

ro
li

np
ut

s
u

2S
T

C
H

P
{0
,1
}N
−

1×
M

–
C

on
tr

ol
in

pu
t

1.
st

ag
e

ap
pl

ia
nc

es
co

nt
ro

li
np

ut
s

u
1S

T
A

pp
lia

nc
es

{0
,1
}

–
C

on
tr

ol
in

pu
t

2.
st

ag
e

ap
pl

ia
nc

es
co

nt
ro

li
np

ut
s

u
2S

T
A

pp
lia

nc
es
{0
,1
}N
−

1×
M
×
J

–
C

on
tr

ol
in

pu
t

1.
st

ag
e

BE
SS

ch
ar

ge
co

nt
ro

li
np

ut
s

u
1S

T
B

E
SS

,C
[0
,1

]
–

C
on

tr
ol

in
pu

t
2.

st
ag

e
BE

SS
ch

ar
ge

co
nt

ro
li

np
ut

s
u

2S
T

B
E

SS
,C

[0
,1

]N
−

1×
M

–
C

on
tr

ol
in

pu
t

1.
st

ag
e

BE
SS

di
sc

ha
rg

e
co

nt
ro

li
np

ut
s

u
1S

T
B

E
SS

,D
[0
,1

]
–

C
on

tr
ol

in
pu

t
2.

st
ag

e
BE

SS
di

sc
ha

rg
e

co
nt

ro
li

np
ut

s
u

2S
T

B
E

SS
,D

[0
,1

]N
−

1×
M

–
C

on
tr

ol
in

pu
t

1.
st

ag
e

gr
id

im
po

rt
po

we
r

P
1S

T
Im

R
kW

A
ux

ili
ar

y
va

ria
bl

e
2.

st
ag

e
gr

id
im

po
rt

po
we

r
P

2S
T

Im
R
N
−

1×
M

kW
A

ux
ili

ar
y

va
ria

bl
e

1.
st

ag
e

gr
id

ex
po

rt
po

we
r

P
1S

T
E

x
R

kW
A

ux
ili

ar
y

va
ria

bl
e

2.
st

ag
e

gr
id

ex
po

rt
po

we
r

P
2S

T
E

x
R
N
−

1×
M

kW
A

ux
ili

ar
y

va
ria

bl
e

1.
st

ag
e

nu
m

be
r

of
m

ic
ro

-C
H

P
st

ar
ts

s1
ST C
H

P
{0
,1
}

–
A

ux
ili

ar
y

va
ria

bl
e

2.
st

ag
e

nu
m

be
r

of
m

ic
ro

-C
H

P
st

ar
ts

s
2S

T
C

H
P

{0
,1
}N
−

1×
M

–
A

ux
ili

ar
y

va
ria

bl
e

127



5 Model and Optimization Approach

The superscripts 1ST and 2ST are introduced for ease of reading. They refer to the first
and second stage, respectively. This nomenclature is applied to all variables. Hence, the
auxiliary variables are given by (cf. Equation 5.62):

a1ST = (P 1ST
Ex , P 1ST

Im , s1ST
CHP)ᵀ, (5.86)

a2ST
k = (P 2ST

Ex,m,k, P
2ST
Im,m,k, s

2ST
CHP,m,k)ᵀ, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}. (5.87)

Similarly to the state-of-the-art one-stage rolling horizon optimization problem, the opti-
mization problem has various parameters that are fixed during the optimization but can
change between the individual optimization runs of the rolling horizon approach. The
difference between the parameters of the state-of-the-art one-stage rolling horizon opti-
mization problem and the stochastic two-stage rolling horizon optimization problem is the
handling of the PV generation forecast. While the state-of-the-art one-stage rolling horizon
optimization problem considers only one predicted power value in every time step k, the
stochastic two-stage rolling horizon optimization problem considers M values P 2ST

PV,m,k with
m ∈ {1, . . . ,M}, i. e., the possible generation scenarios, in every time step in the second
stage k ∈ {1, . . . , N − 1}. All other parameters are equal to those in the state-of-the-art
one-stage rolling horizon optimization problem (see Table 6.7).

For the stochastic two-stage rolling horizon optimization problem, the same assumptions on
the existence of a solution are made as in the case of the state-of-the-art one-stage rolling
horizon optimization problem (see Section 5.7).

5.8.1 Objective Function

The introduction of the stochastic two-stage approach changes the objective function. In
addition to the objective function defined in the state-of-the-art one-stage rolling horizon
optimization problem, the objective function of the stochastic two-stage rolling horizon
optimization problem does not only include stage costs that are dependent on the time
step k ∈ {0, . . . , N − 1} but also those that are dependent on the PV generation scenario
m ∈ {1, . . . ,M}. The costs in time step k = 0, i. e., the first stage of the stochastic
two-stage rolling horizon optimization, are given by:

l1ST(P 1ST
Ex , P 1ST

Im , G1ST
CHP, s

1ST
CHP) = ∆k · [πEx,0 · P 1ST

Ex + πIm,0 · P 1ST
Im

+ πGas,0 ·G1ST
CHP] + πCHP,Start · s1ST

CHP (5.88)

The costs in every time step of the second stage are given by:

l2ST(P 2ST
Ex,k, P

2ST
Im,k, G

2ST
CHP,k, s

2ST
CHP,k,m) = ∆k · [πEx,k · P 2ST

Ex,m,k + πIm,m,k · P 2ST
Im,m,k

+ πGas,k ·G2ST
CHP,m,k] + πCHP,Start · s2ST

CHP,m,k (5.89)
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5.8 Formulation of the Stochastic Two-stage Rolling Horizon Optimization Problem

The objective function for the optimization window of N time steps is given by:

J1+2ST
N (P 1ST

Ex , P 1ST
Im , G1ST

CHP, s
1ST
CHP,P

2ST
Ex ,P ST

Im ,G2ST
CHP, s

2ST
CHP)

= ∆k · [πEx,0 · P 1ST
Ex + πIm,0 · P 1ST

Im + πGas,0 ·G1ST
CHP] + πCHP,Start · s1ST

CHP

+ 1
M

N−1∑
k=1

M∑
m=1

∆k · [πEx,k · P 2ST
Ex,m,k + πIm,k · P 2ST

Im,m,k

+ πGas,k ·G2ST
CHP,m,k] + πCHP,Start · s2ST

CHP,m,k (5.90)

When using the stage costs defined in Equations 5.88 and 5.89 the objective function
becomes:

J1+2ST
N (P 1ST

Ex , P 1ST
Im , G1ST

CHP, s
1ST
CHP,P

2ST
Ex ,P ST

Im ,G2ST
CHP, s

2ST
CHP)

= l1ST(P 1ST
Ex , P 1ST

Im , G1ST
CHP, s

1ST
CHP)

+ 1
M

N−1∑
k=1

M∑
m=1

l2ST(P 2ST
Ex,k, P

2ST
Im,k, G

2ST
CHP,k, s

2ST
CHP,k,m) (5.91)

5.8.2 Constraints

In addition to the number of decision variables, the number of constraints increases as
well. In this section all constraints are listed and the corresponding constraints of the
state-of-the-art one-stage rolling horizon optimization problem are referenced.

The state equations of the BESS are (cf. Equation 5.65):

E1ST
BESS = EBESS,Initial + ∆k · (ηBESS · P 1ST

BESS,C + η−1
BESSP

1ST
BESS,D), (5.92)

and

E2ST
BESS,m,k+1 = E2ST

BESS,m,k + ∆k · (ηBESS · P 2ST
BESS,C,m,k

+ η−1
BESSP

2ST
BESS,D,m,k) ∀k ∈ {2, . . . , N},∀m ∈ {1, . . . ,M}, (5.93a)

E2ST
BESS,m,2 = E1ST

BESS + ∆1 · (ηBESS · P 2ST
BESS,C,m,1

+ η−1
BESSP

2ST
BESS,D,m,1), ∀m ∈ {1, . . . ,M}. (5.93b)

The constraints limiting the BESS state variable to its maximum and minimum are (cf.
Equation 5.66):

EBESS ≤ E1ST
BESS ≤ EBESS (5.94)

and
EBESS ≤ E2ST

BESS,m,k ≤ EBESS, ∀k ∈ {2, . . . , N}, ∀m ∈ {1, . . . ,M}. (5.95)
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The control variables of the BESS are constrained by (cf. Equation 5.67):

PBESS,C ≤ P 1ST
BESS,C ≤ PBESS,C, (5.96a)

PBESS,D ≤ P 1ST
BESS,D ≤ PBESS,D (5.96b)

and

PBESS,C ≤ P 2ST
BESS,C,m,k ≤ PBESS,C, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.97a)

PBESS,D ≤ P 2ST
BESS,D,m,k ≤ PBESS,D, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.97b)

using the following shorthand notations (cf. Equation 5.68):

P 1ST
BESS,C = u1ST

BESS,C · PBESS,C, (5.98a)
P 1ST

BESS,D = u1ST
BESS,D · PBESS,D (5.98b)

and

P 2ST
BESS,C,m,k = u2ST

BESS,C,m,k · PBESS,C, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.99a)
P 2ST

BESS,D,m,k = u2ST
BESS,D,m,k · PBESS,D, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}. (5.99b)

The state equations of HWT are given by (cf. Equation 5.69):

ϑ1ST
HWT = ϑ1ST

HWT,Initial+∆k·[Φ1ST
CHP−Φ1ST

HWT,Loss−ΦHS,0−ΦDHW,0]/(VHWT·ρWater·cWater). (5.100)

and

ϑ2ST
HWT,m,k+1 = ϑ2ST

HWT,m,k + ∆k · [Φ2ST
CHP,m,k − Φ2ST

HWT,Loss,m,k

− ΦHS,k − ΦDHW,k]/(VHWT · ρWater · cWater),
∀k ∈ {2, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.101a)

ϑ2ST
HWT,m,2 = ϑ1ST

HWT + ∆k · [Φ2ST
CHP,m,1 − Φ2ST

HWT,Loss,m,1

− ΦHS,1 − ΦDHW,1]/(VHWT · ρWater · cWater),
,∀m ∈ {1, . . . ,M}. (5.101b)

The following shorthand notations are used (cf. Equation 5.70):

Φ1ST
HWT,Loss = (aHWT + bHWT · (cHWT · VHWT)0.4) · (ϑHWT,Initial − ϑHWT,Ambient)

dHWT
(5.102)

and

Φ2ST
HWT,Loss,m,k = (aHWT + bHWT · (cHWT · VHWT)0.4) ·

(ϑ2ST
HWT,m,k − ϑHWT,Ambient)

dHWT
,

∀k ∈ {2, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.103a)

130



5.8 Formulation of the Stochastic Two-stage Rolling Horizon Optimization Problem

Φ2ST
HWT,Loss,m,1 = (aHWT + bHWT · (cHWT · VHWT)0.4) · (ϑ1ST

HWT − ϑHWT,Ambient)
dHWT

,

, ∀m ∈ {1, . . . ,M}. (5.103b)

The control variables of the micro-CHP are constrained by (cf. Equation 5.71):

0 ≤
N∑
i=k

u2ST
CHP,m,k − (N − k) · (u2ST

CHP,m,k − u2ST
CHP,m,k−1),

∀k ∈ {N − kCHP,Min + 1, . . . , N},∀m ∈ {1, . . . ,M}. (5.104)

If 2 ≤ kCHP,Initial the optimization problem contains the following constraints (cf. Equa-
tions 5.72 and 5.73):

kCHP,Min · (u2ST
CHP,m,k − u2ST

CHP,m,k−1) ≤
k+kCHP,Min−1∑

i=k
u2ST

CHP,m,i,

∀k ∈ {kCHP,Initial, . . . , N − kCHP,Min},∀m ∈ {1, . . . ,M}, (5.105a)

kCHP,Initial − u1ST
CHP −

kCHP,Initial−1∑
i=1

u2ST
CHP,m,i = 0,∀m ∈ {1, . . . ,M}. (5.105b)

If kCHP,Initial = 1 the optimization problem contains the following constraints:

kCHP,Min · (u2ST
CHP,m,k − u2ST

CHP,m,k−1) ≤
k+kCHP,Min−1∑

i=k
u2ST

CHP,m,i,

∀k ∈ {kCHP,Initial + 1, . . . , N − kCHP,Min},∀m ∈ {1, . . . ,M}, (5.106a)

kCHP,Min · (u2ST
CHP,m,k − u1ST

CHP) ≤
k+kCHP,Min−1∑

i=k
u2ST

CHP,m,i,

∀k ∈ {kCHP,Initial},∀m ∈ {1, . . . ,M}, (5.106b)

kCHP,Initial − u1ST
CHP −

kCHP,Initial−1∑
i=1

u2ST
CHP,m,i = 0, ∀m ∈ {1, . . . ,M}. (5.106c)

If kCHP,Initial = 0 the optimization problem contains the following constraints (cf. Equation 5.74):

kCHP,Min · (u2ST
CHP,m,k − u2ST

CHP,m,k−1) ≤
k+kCHP,Min−1∑

i=k
u2ST

CHP,m,i,

∀k ∈ {2, . . . , N − kCHP,Min}, ∀m ∈ {1, . . . ,M}, (5.107a)
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kCHP,Min · (u2ST
CHP,m,1 − u1ST

CHP) ≤
1+kCHP,Min−1∑

i=k
u2ST

CHP,m,i, ∀m ∈ {1, . . . ,M}, (5.107b)

kCHP,Min · (u1ST
CHP − uCHP,Initial) ≤ u1ST

CHP +
kCHP,Min−1∑

i=1
u2ST

CHP,m,i, ∀m ∈ {1, . . . ,M}. (5.107c)

To ease the handling of the control variables of the micro-CHP, the following shorthand
notations are introduced (cf. Equation 5.75):

P 1ST
CHP = u1ST

CHP · PCHP,Nom, (5.108a)
Φ1ST

CHP = u1ST
CHP · ΦCHP,Nom, (5.108b)

G1ST
CHP = u1ST

CHP ·GCHP,Nom. (5.108c)

and

P 2ST
CHP,m,k = u2ST

CHP,m,k · PCHP,Nom, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.109a)
Φ2ST

CHP,m,k = u2ST
CHP,m,k · ΦCHP,Nom, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.109b)

G2ST
CHP,m,k = u2ST

CHP,m,k ·GCHP,Nom, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}. (5.109c)

The auxiliary variables which consider the number of starts of the micro-CHP are constrained
by (cf. Equation 5.76):

(u2ST
CHP,m,k − u2ST

CHP,m,k−1) ≤ s2ST
CHP,m,k, ∀k ∈ {2, . . . , N − 1},∀m ∈ {1, . . . ,M}, (5.110a)

(u2ST
CHP,m,1 − u1ST

CHP) ≤ s2ST
CHP,m,1, ∀m ∈ {1, . . . ,M}, (5.110b)

(u1ST
CHP − uCHP,Initial) ≤ s1ST

CHP. (5.110c)

The control variables of the appliances are constrained by (cf. Equations 5.77 and 5.78):

u1ST
Appliances,j +

N−1∑
i=1

u2ST
Appliances,j,m,i = bAppliances,j, ∀j ∈ {1, . . . , J},∀m ∈ {1, . . . ,M} (5.111)

and

kAppliances,j ≤
N−1∑
i=1

u2ST
Appliances,j,m,i · i ≤ kAppliances,j, ∀j ∈ {1, . . . , J}, ∀m ∈ {1, . . . ,M}.

(5.112)
To ease the handling of the control variables of the appliances, the following shorthand
notations are introduced (cf. Equation 5.79):

P 1ST
Appliances,j = u1ST

Appliances,j,i · PAppliances,Nom,j,1, ∀j ∈ {1, . . . , J}. (5.113a)
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P 2ST
Appliances,j,m,k =

k∑
i=k−lAppliances,j

u2ST
Appliances,j,m,i · PAppliances,Nom,j,k−i+1,

∀k ∈ {lAppliances,j, . . . , N − 1},∀j ∈ {1, . . . , J},∀m ∈ {1, . . . ,M}, (5.113b)

P 2ST
Appliances,j,m,k =

k∑
i=0

u2ST
Appliances,j,m,i · P 2ST

Appliances,Nom,j,k−i+1,

∀k ∈ {1, . . . , lAppliances,j − 1},∀j ∈ {1, . . . , J},∀m ∈ {1, . . . ,M}. (5.113c)

The balance of the power flows is ensured by (cf. Equation 5.80):

J∑
j=1

P 1ST
Appliances,j + PBase,0 + P 1ST

BESS,C + P 1ST
Ex = P 1ST

Im + P 1ST
PV + P 1ST

CHP + P 1ST
BESS,D, (5.114a)

J∑
j=1

P 2ST
Appliances,j,m,k + PBase,k + P 2ST

BESS,C,m,k + P 2ST
Ex,m,k = P 2ST

Im,m,k + P 2ST
PV,m,k

+ P 2ST
CHP,m,k + P 2ST

BESS,D,m,k, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}. (5.114b)

The relationships between the auxiliary variables and the control variables are given by (cf.
Equations 5.81 and 5.82):

0 ≤ P 1ST
Ex ≤ P 1ST

PV + P 1ST
CHP, (5.115a)

0 ≤ P 2ST
Ex,m,k ≤ P 2ST

PV,m,k + P 2ST
CHP,m,k,

∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M} (5.115b)

and

0 ≤ P 1ST
Im ≤

J∑
j=1

P 1ST
Appliances,j + PBase,0, (5.116a)

0 ≤ P 2ST
Im,m,k ≤

J∑
j=1

P 2ST
Appliances,j,m,k + PBase,k, ∀k ∈ {1, . . . , N − 1},∀m ∈ {1, . . . ,M}.

(5.116b)
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5.8.3 Summary of the Optimization Problem
The optimization problem that has to be solved in every optimization in the rolling horizon
optimization approach is:

minimize
u1ST

CHP ∈{0,1}
u2ST

CHP ∈{0,1}
N−1×M

u1ST
Appliances ∈{0,1}

u2ST
Appliances ∈{0,1}

N−1×M×J

u1ST
BESS,C ∈ [0,1]

u2ST
BESS,C ∈ [0,1]N−1×M

u1ST
BESS,D ∈ [0,1]

u2ST
BESS,D ∈ [0,1]N−1×M

P 1ST
Im ∈R

P 2ST
Im ∈RN−1×M

P 1ST
Ex ∈R

P 2ST
Ex ∈RN−1×M

s1ST
CHP ∈R

s2ST
CHP ∈R

N−1×M

J1+2ST
N (P 1ST

Ex , P 1ST
Im , G1ST

CHP, s
1ST
CHP,P

2ST
Ex ,P ST

Im ,G2ST
CHP, s

2ST
CHP)

subject to (5.92)− (5.116)

(5.117)

Here it is important to note that the parameters N , M and ∆k are tuning parameters that
have to be chosen by the designer of the planning and optimization system. The choice of
the parameters in the evaluation scenario is motivated in Section 6.6.2.

5.9 Implementation
The simulation of the building energy system has been implemented using MATLAB
2018a. It is implemented as described in Algorithm 5.1. The optimization problem has
been formulated using the YALMIP framework [147] in version R20181012. The YALMIP
framework allows for a formulation of the optimization problem in a language close to
a mathematical formulation as shown in Sections 5.7 and 5.8. The exact formulation of
the problem using the YALMIP framework is displayed in Appendix A. The YALMIP
framework also provides an interface to various solvers. In this thesis, the solver CPLEX
12.8.0 has been used in the evaluation of the approach.

In the solveOptimizationProblem(·) function, the CPLEX solver is interfaced from MATLAB
via the YALMIP framework. In this process, the formulation in the YALMIP language has
to be converted to a numerical format used by CPLEX. This conversion takes time. In the
case of the optimization problems that have to be solved in this thesis, the time is in the
magnitude of minutes. To reduce the number of conversions, the YALMIP framework allows
to compile the numerical models once and save it in order to reuse it in every optimization
run.

After that, only the parameters of the optimization have to be inserted into the optimization
model for every optimization run. However, this is only possible when the structure of

134



5.10 Adaptivity of the Approach

the optimization problem does not change over time. The structure of Equations 5.23
and 5.24 is dependent on kCHP,Initial, which changes over time. Hence, several optimization
problems have to be solved and thus several numerical models have to be compiled and
used in the particular time steps. More precisely kCHP,Min numerical models have to be
compiled. In general, other frameworks, programming languages or solvers can be used in
the implementation.
This thesis does not focus on the development of a BEMS that can be deployed to the
market. When doing so, the device abstraction as well as further data interfaces have to be
added. This is described in Section 2.14 and presented in Figure 2.8. An example for such
an interface is a Graphical User Interface (GUI) that allows the inhabitants to input user
preferences and provides visualization.

5.10 Adaptivity of the Approach
The optimization problem defined in Sections 5.7 and 5.8 represents a specific device
composition. However, devices that only differ in the choice of the parameters, e. g., BESSs
with different capacities, can be included by adapting the parameters of the model. The
inclusion of new devices, i. e., devices that have to be modeled differently from the ones
described in Section 5.6, for example heat pumps, in the stochastic rolling horizon approach
is possible in general. This leads to the inclusion of new constraints. In some cases,
the device interactions have to be adapted additionally. In the sum of power flows (see
Equation 5.52), new terms have to be added. There, it has to be respected whether the new
device generates or consumes power. If necessary, the power import and export constraints
have to be adapted in order to consider the new devices (see Equations 5.57 and 5.55).
In addition, the objective function (see Equation 5.90) has to be adapted by the addition
of new terms if necessary. In the case of heat generating or consuming devices, the heat
flows have to be adapted. This can be done by adapting the HWT state equation (see
Equation 5.43) or by adding a new constraint that considers the sum of heat flows similarly
to the sum of power flows presented in Equation 5.52. When a new type of energy carrier,
e. g., cold water, or other parameters, for example user comfort, should additionally be
respected in the optimization, new flow constraints (see Equation 5.52) have to be added.
In general, this process can be automated in a BEMS as it is described in [165] and [163].
However, this is not further discussed and analyzed in this thesis.
Even though an extension of the stochastic rolling horizon approach to the optimization of
the operation of building energy systems presented in this thesis is in general possible, it is
important to note that depending on the new devices, the performance of the optimization
approach can deviate from the one presented in this thesis (see Chapter 6). It is not possible
to make a statement on the performance of the stochastic rolling horizon approach to the
optimization of the operation of building energy systems presented in this thesis when new
devices are added. Thus, when adding new devices, the performance of the approach has
to be assessed newly and the tuning parameters of the approach have to be adapted when
necessary.
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6. Evaluation

In this chapter, the performance of the presented stochastic two-stage rolling horizon
optimization approach is evaluated by means of simulation-based case studies. Therein,
a smart building equipped with a BEMS is simulated, which uses the stochastic two-
stage rolling horizon optimization approach. The simulation is performed over a defined
simulation period and the resulting operating costs are calculated. To assess the performance
of the stochastic two-stage rolling horizon approach, smart buildings that use other control
schemes are simulated as well and the resulting costs are compared to each other.
The chapter starts with a detailed description of the evaluation scenarios. Then simulation
results are presented that motivate the choice of the parameters of the stochastic two-stage
rolling horizon optimization approach. Based on this, simulation results related to the
performance of the stochastic rolling horizon optimization approach and the benchmark
approaches are presented. The chapter ends with a discussion of the obtained results.

6.1 Smart Building Configuration
The investigated smart building configuration is presented in Section 5.2.1, Figure 5.1
presents a visualization. It comprises a smart building equipped with a BEMS that controls
a micro-CHP, a BESS and a deferrable washing machine. In addition, a PV system and an
HWT are present. Electricity consumption unrelated to the deferrable washing machine is
combined into a base load. The heat consumption is separated into a DHW consumption
and a heating system consumption. An overview of the smart building configuration which
is used in all evaluation scenarios is presented in Figure 5.1 and Table 6.1. The individual
devices are modeled according to the descriptions given in Section 5.6.

6.2 Smart Building Simulation
The evaluation process is based on the simulation of a building energy system. A detailed
description of the simulation is presented in Section 5.4 and Algorithm 5.1. For the
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Table 6.1: Overview of the evaluation scenario.
Annual electricity consumption 4700 kWh
Annual HS consumption 8000 kWh
Annual DHW consumption 2800 kWh
PV system Maximum generation: 3.7 kW

Yearly generation: 4000 kWh
Simulated appliances Non-controlled: tumble dryer,

dishwasher, induction hob, oven
Controlled: washing machine

BESS Capacity: 7 kWh
Max. charge power: 7 kW
Efficiency: 0.92

Micro-CHP Nominal electricity generation: 5.5 kW
Nominal heat generation: 12.5 kW
Nominal gas consumption: 20.5 kW

Hot water tank Volume of the HWT: 0.75 m3

Max. temperature: 80 ◦C
Min. temperature: 60 ◦C
Standing loss: see Eq. 5.46

Electricity tariff Time-dependent: see Figure 5.13
Feed-in tariff Time-dependent: see Figure 5.13
Gas tariff 8 cent/kWh
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6.2 Smart Building Simulation

Table 6.2: Parameters of the building energy system simulation. The given values are
used in all evaluation scenarios.

Parameter Symbol Value Unit
Simulation period ∆T 7 d
Time step duration ∆t 1 s
BESS initial state ẼBESS,Initial 0 kWh
HWT initial state ϑ̃HWT,Initial 60 ◦C

Table 6.3: Overview of the load profile resolutions used in the building energy system
simulation in the evaluation scenarios.

Load profile Profile resolution in s
Appliances 1

DHW consumption 1
HS consumption 1

PV system 60
Base load 900

evaluation process, the duration of the simulation ∆T and the time step duration ∆t in
the simulation have to be defined. A longer simulation period is beneficial to reduce the
influence of uncertainty in the PV generation forecasts based on an increased sample size,
where sample size refers to the number of days. However, to keep the simulation time1,
i. e., the processing time needed to perform the individual simulations, manageable and
enable the investigation of multiple scenarios, the simulation period is limited to ∆T = 7 d.
This is the same simulation period as in [223]. A time step duration of ∆t = 1 s is chosen,
to represent the lowest resolution that is present in the used load profiles (see Table 6.3).
The initial state values of the energy storage systems, i. e., the BESS and the HWT, are
chosen to correspond to the minimal energy storage charge as defined in Sections 5.6.1 and
5.6.8. This means the initial state of the BESS is ẼBESS,Initial = EBESS = 0 kWh and the
initial state of the HWT is ϑ̃HWT,Initial = ϑHWT = 60 ◦C.

A list of the simulation parameters and the corresponding values is given in Table 6.2. A
list of the load profile resolutions used in the simulation of the building energy system is
presented in Table 6.3. The load profile resolutions resemble the available load profiles as
defined in Section 5.6.

During the simulation of the building energy system, the rolling horizon optimization is
performed repetitively (see Sections 5.4 and 5.5). The parameters of the optimization
model correspond to the values given in Section 5.6. A list of the model parameters is

1A time step duration of 3 min leads to 3360 optimization runs. When each optimization takes 1 min this
results in a simulation time of 2.3 days.
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presented in Table 6.7.

6.3 Overview of the Evaluation Scenarios
To evaluate the stochastic two-stage rolling horizon optimization approach presented in
Section 5.8, several simulations are carried out. Each simulation is performed in a different
scenario. The scenarios differ in:

• the feed-in tariff (see Table 6.4, Figure 5.13 and Section 5.6.9) and

• the month of the year (see Table 6.5).

The resulting total number of scenarios is:

3 feed-in tariffs× 3 seasons = 9 scenarios.

As defined in Section 5.3, the goal of the optimized operation of building energy systems
investigated in this thesis is the minimization of operating costs. Consequently, the
performance of the approaches is dependent on the tariff structure present in the evaluation
scenario. However, future tariff structures in future energy systems are not known today.
As a consequence, specific feed-in tariffs have to be predefined in order to evaluate the
performance of the control schemes for different tariff structures. Thus, the range of all
possible future feed-in tariffs is approximated by defining three different feed-in tariffs:
the Constant Feed-in Tariff (FT-1), the Time-dependent Feed-in Tariff 1 (FT-2) and the
Time-dependent Feed-in Tariff 2 (FT-3). FT-1 resembles the current state of the art. It
has no time dependence. FT-2 resembles a possible time-dependent future tariff structure
that is inspired by the literature (cf. [143]). FT-3 is a time-dependent feed-in tariff with a
large spread. In the evaluation, it serves as a test case of an extreme feed-in tariff. A list of
the electricity and feed-in tariffs is presented in Table 6.4, a visualization is presented in
Figure 5.13. A detailed description is presented in Section 5.6.9.

To evaluate the effects of seasonal changes, three different simulations are carried out, each
starting in a different month of the year, i. e., January, March and July (Table 6.5).

To assess the performance of the stochastic two-stage optimization approach compared to
other approaches, it is compared to four other control schemes. These four control schemes
are: a reference control scheme, a state-of-the-art control scheme, a rule-based micro-CHP
control scheme and a rule-based control scheme.

The reference control scheme, the state-of-the-art control scheme and the stochastic control
scheme use the rolling horizon optimization as defined in Section 5.5. However, the reference
control scheme uses a perfect forecast of the electricity generation of the PV system, whereas
the state-of-the-art control scheme uses a single point forecast. The presented approach
uses a scenario-based probabilistic forecast. It is refereed to as the stochastic control scheme
in the following. The rule-based micro-CHP control scheme uses a rule-based control of
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Table 6.4: Overview of the electricity tariffs that are used in the evaluations. A detailed
description is presented in Section 5.6.9.

Abbreviation Description Spread in cent/kWh
ET TOU electricity consumption tariff. The tariff

resembles a possible future tariff structure [143].
12.65

FT-1 Feed-in tariff without time dependence. The
tariff resembles the current state of the art.

0

FT-2 Time-dependent feed-in tariff. The tariff resem-
bles a possible future tariff structure.

12.65

FT-3 Time-dependent feed-in tariff with large spread.
The tariff resembles a test scenario that encour-
ages load and generation shifting.

24.97

Table 6.5: Overview of the starting times of the simulations.
Season Month of the year

Summer July
Transitional season, spring March

Winter January

the micro-CHP in combination with an optimization-based control of the BESS and the
washing machine. The rule-based control scheme uses a rule-based control for every device.
These different control schemes allow for an estimation of a possible performance gain of
the approach presented in this thesis over other approaches presented in the literature in
the evaluation scenarios. In addition, the performance can be estimated in comparison
to a system with an artificial perfect forecast, which cannot be realized in a real building.
However, the perfect forecast scenario is expected to provide a high performance and thus
serves as a reference. The results of the simulations using the reference control scheme are
used as a benchmark in the evaluation of the investigated control schemes (see Table 6.6).
They are also used to choose the tuning parameters of the optimization approach in the
state-of-the-art, the stochastic and the rule-based micro-CHP control schemes.

The five control schemes are investigated in each scenario. This leads to:

3 feed-in tariffs× 5 control schemes× 3 seasons = 45 simulations.

This number does not include the variations in the tuning parameters of the optimization
approach.
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Table 6.6: Overview of the different device control schemes in the evaluation. The control
schemes of the devices are either Rule-based Control (RBC) or Optimization-
based Control (OBC)

Scenarios
Device control

PV generation forecastBESS Micro-CHP Appliances
Reference control scheme OBC OBC OBC perfect
State-of-the-art control scheme OBC OBC OBC single point
Stochastic control scheme OBC OBC OBC probabilistic
Rule-based micro-CHP OBC RBC OBC probabilisticcontrol scheme
Rule-based control scheme RBC RBC RBC –

Simulation period

Optimization window
𝑘𝑘 = 𝑁𝑁𝑘𝑘 = 0

𝑡𝑡 = 𝑇𝑇𝑡𝑡 = 1

Forecast beyond the 
simulation period

Figure 6.1: Visualization of an optimization window that exceeds the simulation period.

6.4 Simulation Process
All simulations are performed by using the BwUniCluster, a high performance computing
resource provided by the state of Baden-Württemberg. The simulations use 4 cores of an
Intel Xeon E5-2670 with 2.60 GHz and 24 GB of RAM.

In case of the optimization-based control of the devices, a rolling horizon optimization
is repeatedly carried out. Each rolling horizon optimization uses a specific optimization
window ∆N. The optimization uses the parameters and the values presented in Tables 6.7
and 6.8. The parameters for which the values are indicated by the word “varies” vary for
different optimization runs. Examples are the initial state of the micro-CHP and the on-off
parameter of the washing machine.

Each rolling horizon optimization run determines the optimal device control inputs with
respect to the forecasts. The rolling horizon optimization runs are performed repeatedly
during the simulation of the building energy system. Since the simulation period is finite,
this leads to the situation that the forecast and optimization horizon exceeds the simulation
period. A visualization of this case is presented in Figure 6.1.

This case does not occur in a real building. It only occurs in the artificial evaluation scenario
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Table 6.7: Parameters of the state-of-the-art and stochastic two-stage rolling horizon
optimization approach. The given values for the smart building configuration
apply to all evaluation scenarios.

Parameter Symbol Value Unit
Micro-CHP model parameters
Nominal electricity generation PCHP,Nom 5500 W
Nominal heat generation ΦCHP,Nom 12500 W
Nominal gas consumption GCHP,Nom 20500 W
Minimum run-time after start kCHP,Min 15 min/∆k –
Initial state of the micro-CHP uCHP,Initial varies –
Initial forced run-time based on earlier starts kCHP,Initial varies –
Costs per start πCHP 1 cent
BESS model parameters
Efficiency ηBESS 0.92 –
Maximum amount of energy stored in the BESS EBESS 7000 Wh
Minimum amount of energy stored in the BESS EBESS 0 Wh
Energy stored in the BESS initially EBESS,Initial varies Wh
Maximum charge power PBESS,C 7000 W
Minimum charge power PBESS,C 0 W
Maximum discharge power PBESS,D 7000 W
Minimum discharge power PBESS,D 0 W
Appliances model parameters
Number of appliances J 1 –
On-off parameter of appliance j bAppliances,j varies –
Earliest possible start time of appliance j kAppliances,j varies –
Latest possible start time of appliance j kAppliances,j varies –
Duration of the operation of appliance j lAppliances(j) varies –
Nominal electricity consumption of appliance j PAppliances,Nom,j Figure 5.7 W
PV system model parameters
PV generation in time step k PPV(k) varies W
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Table 6.8: Continuation of Table 6.7.
Parameter Symbol Value Unit

HWT model parameters
Maximum temperature ϑHWT 80 ◦C
Minimum temperature ϑHWT 60 ◦C
Volume of the HWT VHWT 0.75 m3

Volumetric mass density of water ρWater 1000 kg m−3

Specific heat capacity of water cWater 4182 W s kg−1 K−1

Ambient temperature of the HWT ϑHWT,Ambient 20 ◦C
Heat loss factor 1 aHWT 12 W
Heat loss factor 2 bHWT 5.93 W
Heat loss factor 3 cHWT 1000 m−3

Heat loss factor 4 dHWT 40 K
Tariff model parameters
Electricity import tariff in time step k πIm(k) varies cent W−1 s−1

Electricity export tariff in time step k πEx(k) varies cent W−1 s−1

Gas import tariff in time step k πGas(k) varies cent W−1 s−1

that is needed in the scientific evaluation. However, the case in which the forecast and
optimization horizon surpasses the simulation horizon has to be addressed in the evaluation.
In this thesis, each forecast value that targets a point in time after the simulation horizon
is defined to be equal to zero. This applies to the forecast of the electricity tariff, the
feed-in tariff, the gas tariff, the PV generation, the heat consumption and the electricity
consumption. In so doing, a low amount of energy stored in the ESS, i. e., the BESS and
the HWT, at the end of the simulation period is expected as a result of the optimization.
This allows for an easier comparison of the simulation runs as the value of the stored
energy is not straight forward to be estimated in the presence of time-dependent tariffs.
Nevertheless, the energy stored in the ESS at the end of the simulation can be non-zero.
This has two reasons. Firstly, the rule-based control approaches are not influenced by the
forecasts. They solely use instantaneous values and do not consider any knowledge of the
future. Secondly, the non-perfect forecast introduces uncertainty into the system that leads
to a non-optimal operation of the building energy system. This can lead to non-zero final
states of the energy storage systems. Finally, the averaging effects caused by different time
step durations in the optimization (see Section 4.2.2), the forecasts and the simulation
can introduce a non optimal behavior that can lead to a non-zero final states of the ESSs.
Thus, the operating costs calculated in the simulations have to be corrected in order to
account for the energy stored in the BESS and the HWT at the end of the simulation. The
correction is done as defined in Section 5.3 and Equation 5.3.

As described in Section 5.7, in each optimization run a different optimization problem has
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to be solved. Thus, it is hard to estimate the run-time of the optimization process, i. e.,
the time that is needed to find the optimal control inputs. In order to limit the simulation
times, the CPLEX solver is used with a time limit of 1 min. The time limit is chosen
in a way that the majority of the optimization problems in the state-of-the-art control
scheme are solved within the time limit (see Section 6.6.3). In doing so, the results that
are obtained for the state-of-the-art control scheme can be used as a benchmark for the
stochastic control scheme.

Choosing a time limit smaller than the time between two optimization runs also enables a
possible application in a real building. In addition, the time limit is introduced to limit
the time that is needed to carry out a simulation to enable the investigation of several
scenarios. The following sections that describe the evaluation of the approaches to the
operation of the building energy system provide a more detailed description of the duration
of the optimization processes. All other parameters of the CPLEX solver are left in their
standard configuration.

6.5 Parameter Tuning
The stochastic two-stage rolling horizon optimization approach uses two tuning parameters
that are free to choose. They have to be chosen by the designer of the system. As described
in Section 3.5, one approach to estimate suitable values is to choose an optimization window
∆N that is large enough that a further increment has no significant effect on the performance
of the rolling horizon approach. This holds for the resolution of the optimization window,
i. e., the reciprocal time step duration 1/∆k. However, the choice of the optimization
window and the time step duration is limited by the resulting optimization times. Longer
optimization windows and shorter time step duration lead to more time steps in the
optimization window and thus to more decision variables. This is expected to increase the
optimization time.

To find suitable values for the optimization window and the time step duration, a hyper-
parameter optimization is carried out by applying a grid search. Here, the grid points
are chosen to approximately cover the domain of sensible choices in the domain of the
optimization of the operation of building energy systems (see Section 4.3). The investigated
tuning parameters are chosen as follows:

N ∈ {18 h
∆k

,
24 h
∆k

,
30 h
∆k

,
36 h
∆k

,
42 h
∆k

,
48 h
∆k
},

∆k ∈ {3 min, 5 min, 15 min}.

The parameter tuning is performed by performing a simulation in the reference control
scheme for every parameter combination of N and ∆k. Then the resulting total costs as
well as the optimization times are compared.
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6.6 Evaluation Results
In the following sections, the results of the simulations described in Section 6.3 are presented.
The results are listed and interesting observations are briefly discussed. In Section 6.7, the
results are discussed in detail and conclusions on the stochastic two-stage rolling horizon
approach presented in this thesis are made. In this section the results in the summer
scenario with FT-2 are presented in detail, whereas the tables and figures for the other
scenarios can be found in Appendix B and are referenced in the corresponding sections.
The results of the other scenarios are described and differences between the scenarios are
analyzed.

6.6.1 Reference Control Scheme
The reference control scheme uses a perfect PV generation forecast. This forecast is used
in a rolling horizon optimization to determine the perfect control inputs for the devices.
Figure 6.2 shows the results of two exemplary optimization runs, one started at 00:00 and
one started at 12:00. More precisely, the graphs display the predicted behavior of the
building energy system with the control inputs determined by the optimization. Here,
negative power values indicate an electricity generation while positive power values indicate
an electricity consumption. This convention applies to all figures in this chapter.

Figure 6.2 shows that the BESS is planned to be charged using electricity generated by
the PV system in a time period with a relatively low feed-in compensation. Moreover,
the charging and discharging of the BESS are scheduled so that the energy stored in the
BESS in the final time step in the optimization window is EBESS,N = 0. This behavior
is a result of not considering terminal costs in the optimization (see Section 5.7.1). The
micro-CHP is scheduled to start in the time period with the maximum feed-in compensation.
Furthermore, the micro-CHP is scheduled to achieve a water temperature of the HWT of
ϑHWT,N = ϑHWT = 60 ◦C in the final time step in the optimization window.

Total Costs

The results of the summer scenario with FT-2 are listed in Table 6.9. The table lists the
electricity costs and the gas costs in the simulation period, the final states of the BESS
and the HWT and the total costs in the simulation period. The total costs are defined
in Section 5.3 and Equation 5.3. The results of the simulations of all other scenarios are
listed in Tables B.1 to B.9.

The corresponding visualizations of the total costs in dependence of the optimization
window and time step duration are shown in Figures 6.3, 6.4 and 6.5. The figures show the
trend that the total costs decrease with increasing optimization window ∆N. In addition,
the total costs decrease with decreasing time step duration. The total costs for ∆k = 3 min
and ∆k = 5 min are similar. These observations are made in all scenarios, i. e., for all
feed-in tariffs and all starting times of the simulations. However, single simulations deviate
from these observations. For example in the summer scenario with FT-2, the total costs for
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Optimization window

00:00

(a) Started at 00:00.

Optimization window

12:00

(b) Started at 12:00.

Figure 6.2: Visualization of the electrical loads and ESS states in the building energy
system using the reference control scheme. Exemplary results of two opti-
mization runs. The upper graph (a) shows the result of an optimization run
started 00:00 and the lower graph (b) shows the result of an optimization run
started 12:00.
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Table 6.9: Simulation results of the reference control scheme in the summer scenario with
FT-2.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -1408 902 317 63 -643
3 24 -1425 943 315 66 -739
3 30 -1435 910 334 63 -668
3 36 -1428 927 988 65 -711
3 42 -1438 935 312 66 -739
3 48 -1439 968 1058 68 -820
5 18 -1370 888 359 62 -564
5 24 -1408 916 577 64 -659
5 30 -1401 929 1031 65 -689
5 36 -1420 929 345 65 -707
5 42 -1410 943 1154 66 -729
5 48 -1435 943 353 67 -762
15 18 -1338 902 437 63 -552
15 24 -1357 943 437 66 -668
15 30 -1366 943 440 66 -669
15 36 -1385 943 436 66 -686
15 42 -1378 943 436 66 -688
15 48 -1383 943 293 66 -690
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∆k = 3 min and an optimization window of 24 h is lower than the total costs for ∆k = 3 min
and an optimization window of 30 h (see Figure 6.4c). This is caused by the 24-hour
periodicity of the energy consumption and generation caused by the day-night cycle.

When looking at the total costs in each scenario, it can be observed that the total costs in
the simulation period are dependent on the design parameters ∆k, the time step duration,
and N , the number of time steps in the optimization window. The dependence on the
optimization window ∆N can be explained by the use of additional information about the
future behavior of the building energy system leading to different device schedules. The
dependence on the time step duration ∆k can be explained by averaging effects.

The simulation results show non-zero final states of the BESS ẼBESS,T+1 (see Tables B.1 to
B.9), even though ẼBESS,T+1 = 0 is expected. In the simulations that use a perfect forecast
of the PV generation, ẼBESS,T+1 is expected to be zero. This results from not valuing
the energy stored in the ESSs at the end of the optimization window. This mismatch is
caused by time averaging effects. They lead to a behavior in the simulation that is different
to the one in the optimization. Another effect occurs in the scenarios with FT-3. These
scenarios have time steps with a feed-in compensation equal to zero. Thus, the feed-in of
electricity generated in this time interval, for example by the PV system, is not economical.
Consequently, the BESS is charged and the amount of energy can exceed the amount that
is expected to be needed in the optimization window. This can lead to a non-zero final
state of the BESS (see Figures B.3, B.6 and B.9). In the summer scenarios with FT-3,
the results of the simulations with ∆k = 15 min deviate from the ones with ∆k = 3 min
and 5 min (see Figure 6.5c). For ∆k = 15 min, the results for ∆N = 36 h and 42 h are worse
that the results for ∆N = 24 h and 48 h. This is based on a combination of the effects
described above. A detailed visualization of the resulting load profiles of the simulations
are presented in Figure B.1. The figure shows that for ∆N = 42 h the BESS is charged
more often in times of low feed-in compensation than for ∆N = 48 h, in particular during
the third day of the simulation period.

In order to find the optimal device schedules in the simulation, an optimization with a
time step duration of ∆k = ∆t = 1 s and an optimization window of ∆N = ∆T = 7 d has
to be performed (see Section 3.4). However, this problem could not be solved due to very
high memory requirements. Therefore, the minimal total costs of the reference control
scheme are used as a benchmark in the comparison of the control schemes presented in
Section 6.6.6.

Optimization Times

Figure 6.6 shows a visualization of the times the individual optimization runs need to find
the optimal results in the simulation of the summer scenario with FT-2 over seven days2.
To limit the simulation time, i. e., the time that is needed to perform the simulation, the

2The figure shows box plots: The black pluses are outliers that have a value grater than q3 + 1.5 · (q3–q1)
or less than q1–1.5 · (q3–q1), where q1 and q3 are the 25th and 75th percentiles of the sample data,
respectively. The lower and the upper whisker show the minimum and the maximum value of the data
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Figure 6.3: Visualization of the dependence of the total costs on the optimization window
in the reference control scheme with FT-1. The gray circles indicate an
optimization time step duration of ∆k = 3 min, the black Xs indicate ∆k =
5 min and the black crosses indicate ∆k = 15 min. (a) shows the winter, (b)
shows the spring, and (c) shows the summer scenario. The lines are a guide
to the eye.
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Figure 6.4: Visualization of the dependence of the total costs on the optimization window
in the reference control scheme with FT-2. The gray circles indicate an
optimization time step duration of ∆k = 3 min, the black Xs indicate ∆k =
5 min and the black crosses indicate ∆k = 15 min. (a) shows the winter, (b)
shows the spring, and (c) shows the summer scenario. The lines are a guide
to the eye.
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Figure 6.5: Visualization of the dependence of the totals costs on the optimization window
in the reference control scheme with FT-3. The gray circles indicate an
optimization time step duration of ∆k = 3 min, the black Xs indicate ∆k =
5 min and the black crosses indicate ∆k = 15 min. (a) shows the winter, (b)
shows the spring, and (c) shows the summer scenario. The lines are a guide
to the eye.
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optimization time is limited to one minute. The optimization time varies between the
optimization runs because in each optimization run a different optimization problem has to
be solved (see Section 3.6). In case of ∆k = 3 min (see Figure 6.6a), the optimization time
increases with increasing optimization window. For an increasing optimization window, the
75th percentile gets closer to optimization time limit of 1 min. For an optimization window
of 48 h, the 75th percentile is equal to the optimization time limit of 1 min. Here, it can
be assumed that the optimization time is limited by the optimization time limit and the
resulting solutions are not proven to be optimal.

In case of ∆k = 5 min (see Figure 6.6b) and ∆k = 15 min (see Figure 6.6c), most of the
optimization times are smaller than 1 min. In general, the median of the optimization times
decrease when the time step durations increase. This is caused by the decreasing number
of decision variables in the case of an increasing time step duration. In case of ∆k = 15 min
(see Figure 6.6c), the median optimization times decrease from an optimization window of
42 to 48 h.

The graphs displaying the optimization times in the other scenarios are presented in
Figure B.2 to Figure B.10. The observations described above can also be seen in the other
scenarios. In addition, the following two observations are made: Firstly, the optimization
times decrease from FT-1 to FT-2 to FT-3. Secondly, the optimization times increase from
summer to spring to winter. This indicates that the different feed-in tariffs as well as the
different generation and consumption profiles lead to different optimization problems. A
qualitative assessment of the dependency of the optimization time on the feed-in tariff
gives the following possible explanation: FT-1 has a time-independent tariff structure while
FT-2 and FT-3 have time-dependent tariff structures. FT-3 has a feed-in compensation
minimum that is equal to a feed-in compensation of zero. In case of FT-3, the feed-in at
times of no feed-in compensation is minimized. In case of PV generation, this is expected to
lead to an increase of consumption in the respective time period. Consequently, a distinct
device schedule is expected to be determined by the BEMS. In case of FT-1, no minimum
or maximum feed-in compensations exist and thus no distinct action of the BEMS is clearly
favorable. Consequently, many possible device schedules are expected to lead to similar or
even equal total costs. This ambiguity of an optimal device schedule is the source of the
increased optimization times in the reference control scheme with FT-1.

6.6.2 Choice of Tuning Parameters

Based on the results presented in Figures 6.3, 6.4 and 6.5, a time step duration of ∆k = 5 min
is chosen for the state-of-the-art and stochastic two-stage rolling horizon approach. In
addition, the optimization window is chosen to be ∆N = 24 h and ∆N = 30 h. These values
are chosen based on the total costs to optimization time ratio.

set excluding the outliers, respectively. The lower and the upper end of the box show the 25th and
75th percentiles, respectively. The middle line shows the median.
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(a) Summer scenario with FT-2 and ∆k = 3 min.
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(b) Summer scenario with FT-2 and ∆k = 5 min.
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(c) Summer scenario with FT-2 and ∆k = 15 min.

Figure 6.6: Visualization of the optimization times in dependence on the optimization
window and the time step duration in tin the reference control scheme in
the summer scenario with FT-2. (a) shows the optimization times in the
simulations with a time step duration of ∆k = 3 min, (b) shows ∆k = 5 min
and (c) shows ∆k = 15 min.154
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6.6.3 State-of-the-art and Stochastic Control Scheme
The state-of-the-art control scheme uses a single point forecast of the PV generation
while the stochastic control scheme uses a scenario-based probabilistic forecast of the PV
generation (see Section 5.6.3). While in the state-of-the-art control scheme the state-of-
the-art one-stage rolling horizon optimization approach presented in Section 5.7 is used,
the stochastic two-stage rolling horizon optimization approach presented in Section 5.8 is
used in the stochastic control scheme. As described in Section 5.8, the stochastic two-stage
rolling horizon optimization approach contains a design parameter that has to be chosen
by the designer of the system, which is the number of forecast scenarios M . In this thesis,
the forecast scenarios relate to possible PV generation scenarios. Here, no choice of the
number of forecast scenarios M is obvious. Therefore, several choices are evaluated using
simulations. The investigated choices of the tuning parameter M are:

M ∈ {1, 3, 5, 7, 9, 11, 13}.
For M = 1 the stochastic two-stage rolling horizon optimization approach is equal to the
state-of-the-art one-stage rolling horizon optimization approach. To ease the reading, the
state-of-the-art control scheme will be denoted by M = 1.
Figure 6.7 shows the results of an exemplary optimization run in the state-of-the-art control
scheme started at 00:00. The graphs show that the optimization chooses the control
variables similar to the reference control scheme (see Section 6.6.1 and Figure 6.2). One
can clearly see the different time resolutions of the PV system generation forecast compared
to the perfect forecast in the reference control scheme presented in Figure 6.2. The BESS
is planned to be charged using electricity generated by the PV system in a time period
with a relatively low feed-in compensation. Moreover, the charging and discharging of the
BESS is scheduled to achieve that the BESS is empty, EBESS,N = EBESS = 0, in the final
time step in the optimization window. The micro-CHP is scheduled to start in the time
period with the maximum feed-in compensation. Moreover, the schedule of the micro-CHP
leads to a water temperature of the HWT of ϑHWT,N = ϑHWT = 60 ◦C in the final time step
in the optimization window.
Figure 6.8 shows the nine PV generation forecast scenarios provided by the probabilistic
PV generation forecasts with M = 9 on an exemplary day. Moreover, the schedules for the
controlled devices and the resulting energy stored in the BESS are shown for all nine forecast
scenarios. The figures show that the individual devices are scheduled adjusted to the 9
different generation forecasts. In case of the BESS (see Figures 6.8b and c), the differences
in schedules, which are dependent on the forecast scenario of the PV generation, can be
distinguished. In the presented optimization run and the run-times of the micro-CHP (see
Figure 6.8d) and the washing machine do not differ between the forecast scenarios. In
general, the run-times of the micro-CHP and the washing machine can differ as well.

Total Costs
The results for the summer scenario with the feed-in tariff FT-2 are presented in Table 6.10.
The table lists the electricity costs and the gas costs in the simulation period, the final
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Optimization window

00:00

Figure 6.7: Visualization of the electrical loads and ESS states in the building energy
system with the state-of-the-art control scheme. The graph shows the result
of an optimization run started at 00:00.
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(a) Probabilistic PV generation forecasts.
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(b) BESS (dis-)charge powers.
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(c) Energy in the BESS
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(d) Micro-CHP generation.

Figure 6.8: Exemplary probabilistic PV generation forecasts (a) and resulting BESS
charge and discharge powers (b), energy stored in the BESS (c) and the
micro-CHP generation (d) for M = 9 on an exemplary day.
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Table 6.10: Simulation results of the state-of-the-art and stochastic control schemes in
the summer scenarios with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -1213 916 0 64 -455
24 3 -1248 929 0 65 -525
24 5 -1234 943 0 66 -546
24 7 -1234 916 13 65 -505
24 9 -1226 929 67 64 -478
24 11 No valid solution found
30 1 -1219 929 0 65 -493
30 3 -1249 929 0 65 -522
30 5 -1242 929 0 65 -532
30 7 -1243 916 0 64 -484
30 9 No valid solution found
30 11 No valid solution found

states of the BESS and the HWT and the total costs in the simulation period. The total
costs are defined in Section 5.3 and Equation 5.3. They include the feed-in compensation
and thus are negative in the summer scenario. The results of the simulations of all other
scenarios are listed in Tables B.10 to B.15. The corresponding visualizations of the total
costs in dependence of the optimization window and number of forecast scenarios are
shown in Figures 6.9, 6.10 and 6.11. In some simulations, for at least one of the emerging
optimization problems no valid solution has been found within the optimization time limit.
This happened for optimization problems with a high number of forecast scenarios and
longer optimization windows. In the tables listing the results, these simulations are marked
with the line: No valid solution found. In the Figures 6.9, 6.10 and 6.11 these simulations
are not presented.

The figures show that, in effect of increasing the numbers of forecast scenarios depends on
the season. In winter and spring, the total costs increase with increasing M . In summer,
the total costs decrease with increasing M and then increase again. In the scenarios with
FT-1 and FT-2, the total costs increase after M = 5. In the scenarios with FT-3, the total
costs increase after M = 9. The dependence on the duration of the optimization window
∆N is inconsistent. In some scenarios, the total costs increase with increasing ∆N, in others
the total costs decrease.

Optimization Times

Figure 6.12 shows a visualization of the times the individual optimization runs need to find
the optimal results in the simulation over seven days. The optimization times in the other
scenarios are presented in Figure B.12 and Figure B.13. To limit the simulation time, i. e.,
the time that is needed to perform the simulation, the optimization time is limited to one
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(b) Spring scenario.
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(c) Summer scenario

Figure 6.9: Visualization of the dependence of the total costs on the optimization window
and the number of forecast scenarios in the state-of-the-art and stochastic
control schemes in the scenarios with FT-1. The black Xs indicate an opti-
mization window duration of ∆N = 24 h the gray circles indicate ∆N = 30 h.
(a) shows the winter, (b) shows the spring, and (c) shows the summer scenario.
The lines are a guide to the eye.
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(b) Spring scenario.
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Figure 6.10: Visualization of the dependence of the total costs on the optimization
window and the number of forecast scenarios in the state-of-the-art and
stochastic control schemes in the scenarios with FT-2. The black Xs indicate
an optimization window duration of ∆N = 24 h the gray circles indicate
∆N = 30 h. (a) shows the winter, (b) shows the spring, and (c) shows the
summer scenario. The lines are a guide to the eye.
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(c) Summer scenario

Figure 6.11: Visualization of the dependence of the total costs on the optimization
window and the number of forecast scenarios in the state-of-the-art and
stochastic control schemes in the scenarios with FT-3. The black Xs indicate
an optimization window duration of ∆N = 24 h the gray circles indicate
∆N = 30 h. (a) shows the winter, (b) shows the spring, and (c) shows the
summer scenario. The lines are a guide to the eye.
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(a) Summer scenario with FT-1.
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(b) Summer scenario with FT-2.
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(c) Summer scenario with FT-3.

Figure 6.12: Visualization of the optimization times in dependence on the optimization
window and the time step duration in the state-of-the-art and stochastic
control schemes in the summer scenarios with FT-1 (a), FT-2 (b) and
FT-3 (c).
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minute. Similar to the reference control scheme, the optimization time varies between the
optimization runs. This is based on the different optimization problems that have to be
solved in the optimization runs (see Section 3.6). In general, the median of the optimization
times increase with increasing number of forecast scenarios M . For M = 1 all optimization
runs can be solved within the time limit, while in the simulations with a higher M some
optimization runs have to be stopped at the time limit. This is caused by the increasing
number of decision variables in the case of increasing M and ∆N. The optimization time
is also dependent on the feed-in tariff and the time for the year. The optimization times
decrease from FT-1 to FT-2 to FT-3. The same observations are also made in the reference
control scheme (see Section 6.6.1). Here, the same possible explanations as in the reference
control scheme can be made (see Section 6.6.1). In general, the optimization times are
higher than in the reference control scheme. However, the majority of the optimization
problems in the state-of-the-art control scheme are solved within the time limit, whereas
a large part of the optimizations in the stochastic control scheme are stopped because
of the time limit. Consequently, making a statement on the absolute performance of the
stochastic control scheme is problematic. However, the observed increase in performance in
some scenarios demonstrates the potential of the stochastic control scheme with respect to
the state-of-the-art control scheme.

6.6.4 Rule-based Micro-CHP Control Scheme

The rule-based micro-CHP control scheme uses the same forecasts as the state-of-the-art
and stochastic control schemes (see Section 6.6.3). They differ in the control of the micro-
CHP. In the rule-based micro-CHP control scheme, the micro-CHP is controlled using the
heat-led rule-based control defined in Section 5.6.2. The BESS and the appliance scheduled
according to the optimization. The optimization problem in the rule-based micro-CHP
control scheme is the same as defined in Section 5.8, however, all decision variables and
constraints which consider the micro-CHP and the HWT are omitted. This reduces the
number of decision variables, in particular the number of binary decision variables, as well
as the number of constraints. Similar to the stochastic control scheme, the rule-based
micro-CHP control scheme has the number of forecast scenarios M as a design parameter.
Here, the same choices of the tuning parameter M are investigated:

M ∈ {1, 3, 5, 7, 9, 11, 13}.

Figure 6.13 shows the results of an exemplary optimization run started at 00:00. The
graphs show that the optimization chooses the control variables similar to the stochastic
control scheme (see Section 6.6.3 and Figure 6.2). The BESS is scheduled to be charged
using electricity generated by the PV system in a time period with a relatively low feed-
in compensation. Moreover, the charging and discharging of the BESS is scheduled so
that the energy stored in the BESS in the final time step in the optimization window is
EBESS,N = 0. This behavior is a result of not considering terminal costs in the optimization
(see Section 5.7.1). The micro-CHP is scheduled using the heat-led rule based-control. This
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Optimization window

00:00

Figure 6.13: Visualization of the electrical loads and ESSs states in the building energy
system in the rule-based micro-CHP control scheme. The graph shows a
result of an exemplary optimization run started at 00:00.

means the micro-CHP is started whenever the HWT temperature is equal to or below its
minimum temperature, i. e., ϑ̃HWT,t ≤ ϑHWT. The micro-CHP is stopped when the HWT
temperature is equal to or above its maximum temperature, i. e., ϑHWT,Max ≤ ϑ̃HWT,t. This
leads to an HWT temperature above the minimum HWT temperature at the end of the
simulation period. In the optimization, a forecast of the run-times of the micro-CHP is
used. The washing machine is started at a point in time when the micro-CHP runs. Thus,
the electricity generated by the micro-CHP is used to run the washing machine.

Total Costs

The results of the simulations in the summer scenario with FT-2 are presented in Table 6.11.
The table lists the electricity costs and the gas costs in the simulation period, the final
states of the BESS and the HWT and the resulting total costs in the simulation period.
The results of the simulations of all other scenarios are listed in Tables B.19 to B.24. The
corresponding visualizations of the total costs in dependence of the optimization window
and number of forecast scenarios are shown in Figures 6.14, 6.15 and 6.16. Similar to
the observations in Section 6.6.3, for at least one of the emerging optimization problems
no valid solution has been found within the optimization time limit. This happened for
problems with high number of forecast scenarios and high optimization windows. In the
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Table 6.11: Simulation results of the rule-based micro-CHP control scheme in the summer
scenario with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -1091 938 0 64 -318
24 3 -1159 938 0 64 -386
24 5 -1164 938 113 64 -392
24 7 -1158 938 113 64 -385
24 9 -1152 938 106 64 -379
24 11 -1144 938 155 64 -371
30 1 -1092 938 0 64 -320
30 3 -1167 938 0 64 -394
30 5 -1158 938 114 64 -385
30 7 -1166 938 116 64 -393
30 9 -1102 938 474 64 -329
30 11 No valid solution found

tables listing the results, these simulations are marked with the line: No valid solution
found. In the Figures 6.9, 6.10 and 6.11 these simulations are not presented. In almost all
scenarios, the total costs decrease with increasing M . The only exception are the winter
and spring scenarios with FT-3. In the other scenarios, the total costs decrease from M = 1
to M = 3. For an increasing M the total costs stay at the same level. The dependence on
the optimization window is small and inconsistent through the scenarios. In general, the
total costs in simulations with ∆N = 24 h are very similar to the total costs in simulations
with ∆N = 30 h.

Optimization Times

Figure 6.17 shows a visualization of the times the individual optimization runs need to find
the optimal results in the simulation over seven days. The figures displaying the optimization
times in the other scenarios are presented in Figure B.15 and Figure B.16. Similar to the
reference control scheme, the optimization time varies between the optimization runs. In
general, the median of the optimization times increase with increasing M . In the simulations
with ∆N = 30 h and M = 11, in at least one optimization run no valid solution has been
found within the optimization time limit. In the simulations with ∆N = 24 h and M = 11
and the simulations with ∆N = 30 h and M = 9 some optimizations have to be stopped at
the time limit. In all other scenarios, optimal results could be found in all optimization
runs. This is expected to be caused by the increasing number of decision variables in the
case of increasing M and ∆N. However, the optimization times are lower than for the
state-of-the-art and stochastic control scheme. This is based on the reduced number of
decision variables compared to the state-of-the-art and stochastic control scheme.

The optimization time is also dependent on the feed-in tariff and the season. In the
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(a) Winter scenario.
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(b) Spring scenario.
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Figure 6.14: Visualization of the dependence of the total costs on the optimization window
and the number of forecast scenarios in the rule-based micro-CHP control
scheme in the scenarios with FT-1. The black Xs indicate an optimization
window duration of ∆N = 24 h the gray circles indicate ∆N = 30 h. (a) shows
the winter, (b) shows the spring, and (c) shows the summer scenario. The
lines are a guide to the eye.
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(a) Winter scenario.
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(b) Spring scenario.
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(c) Summer scenario

Figure 6.15: Visualization of the dependence of the total costs on the optimization window
and the number of forecast scenarios in the rule-based micro-CHP control
scheme in the scenarios with FT-2. The black Xs indicate an optimization
window duration of ∆N = 24 h the gray circles indicate ∆N = 30 h. (a) shows
the winter, (b) shows the spring, and (c) shows the summer scenario. The
lines are a guide to the eye.
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(a) Winter scenario.
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(b) Spring scenario.
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(c) Summer scenario

Figure 6.16: Visualization of the dependence of the total costs on the optimization window
and the number of forecast scenarios in the rule-based micro-CHP control
scheme in the scenarios with FT-3. The black Xs indicate an optimization
window duration of ∆N = 24 h the gray circles indicate ∆N = 30 h. (a) shows
the winter, (b) shows the spring, and (c) shows the summer scenario. The
lines are a guide to the eye.
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(a) Summer scenario with FT-1.
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(b) Summer scenario with FT-2.
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(c) Summer scenario with FT-3.

Figure 6.17: Visualization of the optimization times in dependence on the optimization
window and the time step duration in the rule-based micro-CHP control
scheme summer scenarios with FT-1 (a), FT-2 (b) and FT-3 (c).
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rule-based micro-CHP control scheme, the variations are not as high as in the reference,
state-of-the-art and stochastic control schemes. The dependence of the optimization time
on the feed-in tariffs is small. The same observation is made for the dependence of the
optimization time on the season year.

6.6.5 Rule-based Control Scheme
A visualization of the electrical loads and ESSs states in the building energy system in the
rule-based control scheme during one day is presented in Figure 6.18. The graph shows
that the HWT is charged whenever the temperature in the HWT falls below the given
minimum temperature of 60 ◦C. This means that the micro-CHP is started whenever the
HWT temperature is equal to or below its minimum temperature, i. e., ϑ̃HWT,t ≤ ϑHWT.
The micro-CHP is stopped when the HWT temperature is equal to or above its maximum
temperature, i. e., ϑHWT ≤ ϑ̃HWT,t. The BESS is charged whenever power at the grid
connection point minus the (dis-)charge power of the BESS is negative and discharged
whenever the grid connection point minus the (dis-)charge power of the BESS is positive.
This leads to a non-zero charging level of the ESSs, i. e., the BESS and the HWT, at the
end of the simulation period. The washing machine is started at 12:00. In summary, the
simulation shows the expected behavior defined in Sections 5.6.1, 5.6.4 and 5.6.2. The
rule-based control scheme does not use an optimization. Hence, no optimization times are
analyzed. The time to perform the rule based control can be neglected.

Total Costs

The results of the simulations in the rule based control scheme are listed in Table 6.12. The
dependence of the total costs on the starting times of the simulations as well as the feed-in
tariffs is visualized in Figure 6.19. For all three feed-in tariffs, the total costs decrease from
winter to summer. As described in Section 6.6.1, this is expected because of the increasing
PV generation. In the winter scenario, all three feed-in tariffs lead to similar total cost.
This is caused by the low PV generation. In the spring and summer scenario, FT-1 leads
to higher costs than FT-2 and FT-3.
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Simulation period

00:00

Figure 6.18: Visualization of the electrical loads and ESSs states in the building energy
system with the rule-based control scheme.

Table 6.12: Results of the simulations performed to evaluate the rule-based operation.
Season Feed-in Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs

Tariff in cent in cent in Ws in ◦C in cent
Winter 1 -785 5756 5411 69 4598
Spring 1 -1263 4046 6279 76 2114

Summer 1 -1350 938 1960 64 -578
Winter 2 -541 5756 5411 69 4842
Spring 2 -1115 4046 6279 76 2262

Summer 2 -1246 938 1960 64 -474
Winter 3 -845 5756 5411 69 4537
Spring 3 -801 4046 6279 76 2576

Summer 3 -648 938 1960 64 125
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Figure 6.19: Results of the rule-based operation. The lines are a guide to the eye.
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6.6.6 Scenario Comparison
Figure 6.20 shows a comparison of the absolute evaluation results in the different scenarios.
Therein, Figure 6.20a shows the total costs in simulations with the five different control
schemes in the winter scenarios. Figure 6.20b shows the results in spring scenarios and
Figure 6.20c shows the results in the summer scenarios. Each figure shows the total costs in
dependence on the control scheme and the feed-in tariff. In the figures, each bar shows the
best value, i. e., the lowest total cost, for all investigated tuning parameter combinations.
Here, lower values, i. e., lower total cost, indicate a higher performance. In Figure 6.21, a
comparison of the relative change in the results in the different scenarios is shown. Each
bar shows the relative change of the total costs with respect to the reference control
scheme3. Here, negative values mean that the respective control scheme performs better
than the reference control scheme in the respective scenario, positive values indicate a worse
performance with respect to the reference control scheme. Hence, higher values indicate
a better performance. Table 6.13 lists all scenario and control scheme combinations with
their best tuning parameter combinations.

When investigating the results, the following general observations can be made:

1. As expected, the winter scenarios have the highest total costs and the summer
scenarios have the lowest total costs for all three feed-in tariffs.

2. In all three season scenarios, the total costs slightly decrease from FT-1 to FT-2 to
FT-3.

3. The reference control scheme leads to the minimal total costs in every scenario except
in the spring scenario with FT-1.

4. No best tuning parameter combination can be found.

5. The majority of the optimization problems in the state-of-the-art control scheme
are solved within the time limit, whereas a large part of the optimizations in the
stochastic control scheme are stopped because of the time limit.

6. In the summer scenario, the stochastic control scheme outperforms the state-of-the-art
control scheme. In all other scenarios they perform similarly.

Based on the different energy consumption and PV generation profiles, the results for each
season are analyzed individually. This is also needed for the results of the three feed-in
tariffs. In the following sections, the results in the three season scenarios are discussed.

Winter Scenario

The results in the winter scenarios are visualized in Figures 6.20a and 6.21a. In the winter
scenarios with FT-1, the reference control scheme performs best, followed by the rule-based,

3Each bar shows the relative change of the total costs obtained in the simulation C to the total costs
obtained by the reference control scheme CRef. The relative change is defined by: C−CRef

|CRef| .
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(a) Winter results.
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(b) Spring results.
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(c) Summer results.

Figure 6.20: Comparison of the evaluation results for the different control schemes (CS)
in the different scenarios for winter (a), spring (b) and summer (c).
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(a) Winter results.
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(b) Spring results.
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Figure 6.21: Comparison of the evaluation results for the different control schemes (CS)
in the different scenarios for winter (a), spring (b) and summer (c).
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Table 6.13: List of the best tuning parameter combinations in the evaluation scenarios
for all control schemes.

Scenario Tuning parameters
Control scheme Season Feed-in tariff ∆k in min ∆N in h M

Reference Winter FT-1 3 48 –
Reference Winter FT-2 3 36 –
Reference Winter FT-3 3 48 –
Reference Spring FT-1 3 48 –
Reference Spring FT-2 3 30 –
Reference Spring FT-3 3 48 –
Reference Summer FT-1 3 36 –
Reference Summer FT-2 3 36 –
Reference Summer FT-3 3 48 –

State-of-the-art Winter FT-1 5 30 1
State-of-the-art Winter FT-2 5 24 1
State-of-the-art Winter FT-3 5 24 1
State-of-the-art Spring FT-1 5 30 1
State-of-the-art Spring FT-2 5 30 1
State-of-the-art Spring FT-3 5 24 1
State-of-the-art Summer FT-1 5 30 1
State-of-the-art Summer FT-2 5 30 1
State-of-the-art Summer FT-3 5 24 1

Stochastic Winter FT-1 5 24 3
Stochastic Winter FT-2 5 24 3
Stochastic Winter FT-3 5 24 3
Stochastic Spring FT-1 5 30 3
Stochastic Spring FT-2 5 30 5
Stochastic Spring FT-3 5 30 5
Stochastic Summer FT-1 5 30 3
Stochastic Summer FT-2 5 24 3
Stochastic Summer FT-3 5 30 7

Rule-based micro-CHP Winter FT-1 5 24 3
Rule-based micro-CHP Winter FT-2 5 24 3
Rule-based micro-CHP Winter FT-3 5 30 3
Rule-based micro-CHP Spring FT-1 5 24 7
Rule-based micro-CHP Spring FT-2 5 30 9
Rule-based micro-CHP Spring FT-3 5 24 1
Rule-based micro-CHP Summer FT-1 5 30 5
Rule-based micro-CHP Summer FT-2 5 30 3
Rule-based micro-CHP Summer FT-3 5 30 3
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the rule-based micro-CHP, the stochastic and lastly state-of-the-art control scheme. The
high performance of the rule-based control scheme is described in detail in the next section.
However, the relative changes are small compared to the other scenarios. This is caused by
the time-independent feed-in tariff.

In the winter scenarios with FT-2 and FT-3, the reference control scheme performs best
followed by the state-of-the-art, stochastic, rule-based micro-CHP and the rule-based
control scheme. Here, the state-of-the-art and the stochastic control schemes have a very
similar performance that is better than the rule-based micro-CHP and the rule-based
control schemes. Thus, it can be concluded that in these scenarios, the advantages of
the optimization-based control surpasses their disadvantages from averaging effects.The
stochastic control scheme yields no benefits over the state-of-the-art control scheme. This
is caused by the low PV generation in the winter scenario.

Spring Scenario

The results in the spring scenarios are visualized in Figures 6.20b and 6.21b. In the spring
scenario with FT-1, the rule-based control scheme performs better than the reference
control scheme. This can be explained by investigating the self-consumption and self-
sufficiency rates (see Section 2.8) as well as the grid exchange powers. Table 6.14 shows
the self-consumption and self-sufficiency rates for the reference and rule-based control
schemes in the spring scenario with FT-1. The self-consumption and self-sufficiency rates
for the state-of-the-art and stochastic control schemes are lower than the ones in the
reference and the rule-based control schemes. The self-consumption and the self-sufficiency
rates for the reference control scheme are higher than for the rule-based control scheme.
Figure 6.22 shows a visualization of the resulting grid exchange powers in the simulations
with state-of-the-art, stochastic and rule-based control schemes in the spring scenario with
FT-1. However, the time steps in which an energy import from the grid occurs differ. In
the optimization, the BESS schedule matches the energy consumption profile perfectly.
However, in the simulation, the integrated energy consumption and generation in the 5 min
time steps are equal to the optimization, the absolute values in the 1 s time steps can differ.
This is the case when appliances run and an additional energy import from the grid is
needed. The time-dependent electricity tariff penalizes the energy import from the grid
that occurs by applying the reference control scheme. This is caused by averaging effects.
This effect is higher than for the rule-based control scheme, even though, the absolute
energy import from the grid is smaller. The same effect occurs in the spring scenario with
FT-2 and the summer scenario with FT-1.

Furthermore, in the spring scenario with FT-1, FT-2 and FT-3, the rule-based micro-
CHP and the rule-based control scheme perform better than the state-of-the-art and the
stochastic control schemes. This can be explained by a bad PV generation forecast in the
simulation period in the spring scenario, which leads to a large deviation between predicted
and the actual behavior of the building energy system. In the spring scenario with FT-3,
all control schemes except for the reference control scheme perform similarly. Here, the
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(a) State-of-the-art control scheme.
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(b) Stochastic control scheme.
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(c) Rule-based control scheme.

Figure 6.22: Visualization of the grid exchange powers in the spring scenario with FT-1
and selected control schemes. (a) shows the reference control scheme, (b)
shows the state-of-the-art and (c) the rule-based control scheme.
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Table 6.14: Self-consumption and self-sufficiency rates for different control schemes in the
spring scenario with FT-1. The stochastic control scheme uses M = 3.
Control scheme Self-consumption rate Self-sufficiency rate

Reference 0.47 0.98
State-of-the-art 0.36 0.77

Stochastic 0.37 0.77
Rule-based 0.47 0.97

Table 6.15: Self-consumption and self-sufficiency rates for different control schemes in the
summer scenario with FT-1. The stochastic control scheme uses M = 3.
Control scheme Self-consumption rate Self-sufficiency rate

Reference 0.40 0.96
State-of-the-art 0.3534 0.86

Stochastic 0.36 0.87
Rule-based 0.42 0.99

disadvantages of the optimization-based control schemes induced by the bad PV generation
forecasts are canceled out by the advantages induced by the extreme nature of the feed-in
tariff FT-3 that rewards load shifting.

In the spring scenarios, the state-of-the-art and the stochastic control schemes have a very
similar performance that is better than the rule-based micro-CHP and the rule-based control
schemes. A similar performance of the stochastic and state-of-the-art control schemes are
observed. This is caused the bad PV generation forecasts.

Summer Scenario

The results in the summer scenarios are visualized in Figures 6.20c and 6.21c. In the
summer scenario with FT-1, the rule-based control scheme performs better than the state-
of-the-art and the stochastic control scheme. This can be explained by investigating the
self-consumption and self-sufficiency rates (see Section 2.8). Table 6.15 shows the self-
consumption and self-sufficiency rates for the reference and rule-based control schemes in
the summer scenario with FT-1. Here, the stochastic control scheme uses M = 3. The
self-consumption and the self-sufficiency rates for the rule-based control are higher than
for the other two optimization-based control schemes. This is caused by the higher energy
import from the grid in the two optimization-based control schemes. This results from
averaging effects as described in the last section discussing the spring scenarios with FT-1
and FT-2. In the optimization, the BESS schedule matches the energy consumption profile
perfectly. It can also be observed by investigating the resulting grid exchange powers.
Figure 6.23 shows a visualization of the resulting grid exchange powers in the simulations
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(a) State-of-the-art control scheme.
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(b) Stochastic control scheme.
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(c) Rule-based control scheme.

Figure 6.23: Visualization of the grid exchange powers in the summer scenario with FT-1
and selected control schemes. (c) shows the rule based control scheme, (a)
shows the state-of-the-art and (b) the stochastic rolling horizon approach
with M = 3.
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with state-of-the-art, stochastic and rule-based control schemes in the summer scenario
with FT-1.

In summary, the gain by performing load shifting is not enough compared to the loss
introduced by the averaging effects. This is, in particular, the case in the scenarios with FT-
1. Since FT-1, caused by the time-independent feed-in compensation, does not incentivize
load shifting. The effect of the time-averaging caused by the different time step durations
in the simulation and optimization, ∆t 6= ∆k, occurs in all scenarios. However, in the
scenarios with FT-2 and FT-3 the gains from load shifting exceed the losses introduced by
the averaging effects.

The rule-based micro-CHP performs the worst in the summer scenarios with FT-1 and FT-2.
In the summer scenario with FT-3, it performs the second worst, performing better than
the rule-based control. In all summer scenarios, the stochastic control scheme outperforms
the state-of-the-art control scheme. This effect increases from FT-1 to FT-2 to FT-3 Here,
FT-1 does not rewarding any load shifting, while FT-2 and FT-3 do. However, the feed-in
compensation profile of FT-3 yield higher rewards than the one of FT-2.

6.7 Discussion of the Results
The evaluation presented in this chapter targeted the assessment of the performance of
the stochastic two-stage rolling horizon approach presented in Section 5.8. To do so,
simulations of a smart building, which uses different control schemes, have been performed.
The performance of the control schemes is measured by total costs defined in Section 5.3.
To evaluate the dependence of the total costs on the season as well as the feed-in tariff,
both parameters are varied in the simulations.

The stochastic control scheme that uses the stochastic two-stage rolling horizon optimization
approach presented in this thesis (see Section 5.8) provides an increase in performance
with respect to the other control schemes in the evaluated smart building configuration
(see Figures 6.20 and 6.21). However, these improvements are limited to the summer
scenarios with time-dependent feed-in tariffs. In addition, the optimization problem that
has to be solved in the stochastic control scheme has more decision variables than the one
in the state-of-the-art control scheme (cf, Sections 5.7 and 5.8). This leads to a higher
computational effort to solve the optimization and thus longer optimization times (see
Figures 6.12, B.12 and B.13).

Additionally, the dependence of the performance of the control schemes on the tuning
parameters is investigated. In total there are three tuning parameters: the time step
duration, the duration of the optimization window and the number of forecast scenarios.
Here, the evaluation shows that shorter time step durations and longer optimization
windows lead to lower total cost. However, both, shorter time step durations and longer
optimization windows, lead to more decision variables and consequently the optimization
times increase. Here, the performance increases by decreasing the time step durations and
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increasing the duration of the optimization windows can be observed even if these measures
lead to optimization runs that are stopped by the time limit of the optimization.

In case of the number of forecast scenarios, no simple dependence can be observed (see
Table 6.13). In six scenarios, three forecast scenarios perform best, in three scenarios five
forecast scenarios perform best and in one scenario seven forecast scenarios perform best.
A similar result is observed for the rule-based micro-CHP control scheme. Here, three
reasons could be identified: Firstly, the computational effort that is introduced by increasing
the number of uncertainty parameters in combination with the time limit leads to poor
optimization results. Secondly, the simulation period is too short and the uncertainty in
the PV generation forecasts by chance leads to inferior results. Finally, the chosen PV
generation method leads to a specific number of forecast scenarios being optimal. Here,
other choices could be too pessimistic or too optimistic. This means that the performance
of the stochastic control scheme depends on the PV generation forecast.

In summary, when designing an optimization-based control scheme for smart buildings,
the designer of the system has to define three tuning parameters, ideally maximizing the
optimization window and minimizing the time step duration until no further improvement
of the performance of the optimization-based control scheme occurs. Additionally, the
number of forecast scenarios has to be chosen. In a real building, the computation power
is typically limited. Thus, the computing budget has to be utilized optimally and not all
values can be chosen optimally. When looking at the presented building configuration
and evaluation scenarios, the improvements gained by the stochastic control scheme are
limited to the summer scenarios with time-dependent feed-in tariffs while increasing the
computational effort significantly. Thus, the designer of the system has to weigh up the
potential performance increase and the increasing computational effort that results from
applying the stochastic control scheme instead of the state-of-the-art control scheme.

A similar observation has been made by Scott et al. [223]. They state that the stochastic
control scheme does not perform better than the state-of-the-art control scheme. Fur-
thermore, they state that the optimization-based control schemes always outperform the
rule-based control schemes in their evaluation. However, they only investigate time step
durations of 30 min.

To sum up, the stochastic control scheme that utilizes the stochastic two-stage rolling horizon
approach presented in this thesis (see Section 5.8) provides an increase in performance
with respect to the other control schemes in the evaluated smart building configuration.
However, these improvements are limited to the summer scenario with a time-dependent
feed-in tariff. This means that the presented approach is in particular suitable in scenarios
in which the full load shifting potential of a BESS can be utilized. These scenarios have
high electricity generation from a photovoltaic system, which are either results from a large
photovoltaic system or a high solar irradiation. Furthermore, they have time dependent
electricity consumption and feed-in tariffs.
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6.7.1 Limitations
The presented control scheme, the used models, the building configuration and the evaluation
scenarios are subject to limitations which are summarized in this section.

First of all, only the uncertainties in the PV generation are investigated. The uncertainty of
the energy consumption has not been addressed. Furthermore, a limited optimization time,
which limits the analysis of the full potential of the stochastic control scheme, has been
used in the evaluation. The optimization runs in the optimization-based control schemes
are coupled, which means the result of one optimization run influences the inputs for the
next optimization run. If one of the optimization run is not solved optimally, for example
due to the optimization time limit, the non-optimal result creates an input for the next
optimization run. Even if these next optimization runs are solved optimally, the error that
is made in the optimization run with a non-optimal solution can become larger over several
optimization runs, creating a chain reaction that is hard to investigate.

Moreover, due to the high optimization times, only a limited number of forecast scenarios is
used in the stochastic control scheme. Additionally, the specific tariff schemes are discussed
and specific relations are required (see Section 5.6.9). For example, a feed-in to the grid
from the BESS or power limits have not been investigated. Furthermore, only one building
configuration has been analyzed.

6.7.2 Future Opportunities
As described above, a suitable control scheme has to be chosen in every scenario. Thus, an
on-line choice on the control schemes could be beneficial. This means that an overlaying
control mechanism could choose a suitable control scheme for a specific situation during the
run-time of the building energy system. One example is a rule-based decision that chooses
different control schemes based on the season. However, more advanced approaches could
be used, for example optimization-based control mechanisms. Such an approach has been
proposed and investigated as part of this doctoral project [174]. Here, on-line choice of the
control schemes has been proposed in combination with a simulation-based optimization
that uses a Genetic Algorithm (GA).

The long optimization times that are needed to solve the optimization problems could be
reduced by applying a heuristic to solve the optimization problems. For example, a GA
has been successfully applied in the domain of smart buildings [165, 174, 179]. However, a
GA is not suitable to solve the optimization problems that arise from the building energy
system model that is presented in this thesis. Initial experiments showed that a GA hardly
finds valid solutions of the optimization problem due to the large number of constraints that
have to be defined in order to formulate a MILP model, Consequently, GAs should be used
with different models, for example with non-linear models as it is done in [165, 174, 179].
This can reduce the number of decision variables and reduce the limitations which are
introduced by the use of MILP models, e. g., additional constraints. For example, when
using a MILP model, the starting time of an appliance that can only be switched on or
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off has to be modeled using several binary or integer decision variables. In the case of
non-linear models, this can be modeled using one integer or real-valued decision variable
(cf. [9, 163, 165]). However, comparing an optimization-based control scheme that is using
a MILP model to one that is using a non-linear model is challenging. Assuming that
suitable optimization algorithms are available, it has to be ensured that both models lead
to the same behavior of the energy system. To do so, the optimal solutions of all possible
optimization problems that occur in the rolling horizon optimization have to be equal.

If an adapted optimization model in combination with a fast optimization algorithm can
be achieved, more forecast scenarios of the PV generation could be included to potentially
increase the performance of the stochastic control scheme.

In addition, the presented stochastic control scheme can be applied to other smart building
configurations. These could potentially benefit more from the stochastic two-stage rolling
horizon approach. The observations that are made for the rule-based micro-CHP control
scheme indicate that for other smart building configurations, the optimization time can
be reduced. For example, the micro-CHP considered in this thesis, i. e.the Senertec Dachs
G5.5 (see Section 5.6.2), can only be switched on or off. This has to be modeled with
binary decision variables, which leads to a combinatorial optimization problem. Other
micro-CHPs which allow for a continuous choice of the operating power can be modeled
using real-valued decision variables. This can lead to optimization problems that can be
solved much faster.

Even though, the stochastic control scheme that uses the stochastic two-stage rolling horizon
optimization approach does not provide a higher performance than the state-of-the-art
control scheme, it generates one predicted load profile for every forecast scenario. These
load profiles can be potentially used in combination with a higher-level DSM.
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After the evaluation of the proposed stochastic two-stage rolling horizon optimization
approach has been presented in Chapter 6, this chapter gives a final summary of the
content of this thesis and a final conclusion is drawn (see Section 7.1). After that, open
questions are named and potential further research is motivated (see Section 7.2).

7.1 Summary and Conclusion
The increased use of RESs as well as the introduction of DERs into the energy grids leads
to a change in the energy system, changing the conventional central paradigm of electricity
distribution from “supply follows demand” to “demand follows supply”. This change calls
for new control and coordination mechanisms and systems that ensure a secure supply of
affordable energy. BEMSs are an example for these systems. They enable smart buildings
to manage their energy system to increase their efficiency, reduce the operating costs and
provide DR measures.

This thesis focuses on increasing the performance of BEMSs by investigating the utilization
of the knowledge of uncertainties in the forecasts of energy generation and consumption in
optimization-based control schemes. To do so, three research questions have been compiled
(see Section 1.1). These questions have been addressed as follows:

Research Question 1: How can uncertainties be included in the optimization in building
energy management?

In Chapter 3, theoretical concepts and formulations related to the modeling of discrete
time systems and their optimized operation by a rolling horizon optimization are intro-
duced. Moreover, an introduction to decision-making under uncertainty and the respective
mathematical concepts is given. The modeling of energy systems in buildings is further
analyzed and related work in the literature is summarized in Chapter 4. This includes
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the design of PV generation forecasts and in particular probabilistic forecasts. After that,
remarks on BEMSs and implementations of such are presented. This is followed by a
detailed analysis of the related work in the field of optimizing the operation of energy
systems in buildings as well as the handling of uncertainties in the forecasts of the energy
generation and consumption. After analyzing these topics, a stochastic two-stage rolling
horizon optimization approach has been identified to yield the highest potential of including
uncertainties in the optimization in building energy management. It is presented in detail
in Chapter 5.

Research Question 2: How can a suitable forecast for BEMSs be achieved?

To enable the consideration of the uncertainties in the PV generation forecast in the
stochastic two-stage rolling horizon optimization approach, a probabilistic PV generation
forecast that generates forecast scenarios based on a quantile regression has been designed.
It is presented in Section 5.6.3.

Research Question 3: What is the performance of the proposed approach?

The proposed approach is evaluated in nine evaluation scenarios using a specific building
configuration assuming the presence of time-dependent electricity consumption and feed-in
tariffs. In each evaluation scenario the feed-in tariff and the season are varied. The
investigated building configuration comprises a controllable washing machine, a controllable
battery energy storage systems and a controllable micro combined heat and power plant
as well as additional electricity and heat consumption from non-controllable sources. In
the evaluation, the presented approach is compared to a reference control scheme, using a
perfect forecast of the electricity generation from the PV system, to a state-of-the-art rolling
horizon optimization that uses a single-point forecast and to a rule-based control scheme.
To identify the dependence on the tuning parameters in the optimization-based control
schemes, several parameter combinations have been investigated. The performance of the
control schemes is measured using the operating costs in a simulation of seven days. The
evaluation of the stochastic two-stage rolling horizon optimization approach is presented in
Chapter 6.
The discussion in Section 6.7 presents the results of the evaluations in detail as well as
limitations and opportunities for future research. The results state that the reference
control scheme performs best in all scenarios but one. In seven scenarios, the stochastic
two-stage rolling horizon optimization approach performs similarly to a one-stage rolling
horizon optimization approach that uses a single-point PV generation forecast. However,
in two scenarios it performs better. These are the scenarios with the highest expected DR
potential, or more precisely the summer scenarios with time-dependent feed-in tariffs. Here,
the summer scenario is the scenario with the highest PV generation and the lowest heat
consumption. However, the stochastic two-stage rolling horizon optimization approach
leads to higher optimization times than the one-stage rolling horizon optimization approach.
In conclusion, the stochastic two-stage rolling horizon optimization approach yields an
increase in performance with respect to the one-stage rolling horizon optimization approach
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in specific scenarios. Hence, an application of the approach can be worthwhile, while the
increased computational effort has to be respected.

7.2 Outlook
From the presented thesis three topics arise that lay the basis for potential future work.
Firstly, an improvement of the presented approach to the optimized operation of building
energy systems can be investigated. Other scenarios and other building configurations can
be explored. Furthermore, the PV generation forecast can be improved and the resulting
influence on the control schemes can be investigated. Moreover, the application of heuristics
yields a potential to decrease the optimization times. This can be combined with a different
building energy system model, for example by utilizing a non-linear model as it is done
in [165, 174, 179]. In addition, more forecast scenarios, which increases the sampling quality
of the PV generation, can be investigated to potentially increase the performance of the
stochastic two-stage rolling horizon optimization approach. As described in the last section,
a suitable control scheme as well as suitable choice of the tuning parameters has to be
chosen in every scenario. Thus, an on-line choice of the control schemes could be beneficial.
This approach has been proposed and investigated as part of this doctoral project [174].
Furthermore, this thesis is limited to single smart residential building configuration having
a specific set of devices and to an optimization of the operating costs. Therefore, future
work may investigate the performance of the proposed approach for different building
configurations and optimization goals. Additionally, more uncertainty sources can be
considered in the optimization, for example, the uncertainty in the energy consumption.

Secondly, this thesis only shortly discusses a possible application of the presented control
scheme. Here, future work is needed to finish the proposed concepts on the adaptivity of
the optimization model to enable the application in a commercial BEMS and real buildings.

The stochastic two-stage rolling horizon optimization approach as well as the other control
schemes investigated in this thesis focus on reducing the operating costs of building energy
systems in buildings equipped with an automated BEMS, i. e., smart buildings. The
final topic addresses the coordination of these buildings and their participation in DSM
measures is assumed to be realized through the use of time-dependent tariffs. However,
the generation of these time-dependent tariffs is an active field of research [96, 136] and
analyzing the potential application of the approaches presented in this thesis in combination
with tariff-based coordination schemes would be worthwhile. In particular, the potential
of generating one predicted load profile for every forecast scenario could potentially be
used in DSM, for example in direct market demand response methods. To enable the
coordination of DER as well as smart buildings in the sense of a smart grid, methods other
than the tariff-based coordination schemes could be used. The presented approach could
be adopted to allow for other coordination measures like physical or direct market demand
response methods. When adopting the approach of an on-line choice of the control schemes,
individual control schemes could be designed for each of these DSM methods.
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[14] R. R. Appino, J. Á. G. Ordiano, R. Mikut, T. Faulwasser, and V. Hagenmeyer, “On
the use of probabilistic forecasts in scheduling of renewable energy sources coupled to
storages,” Applied Energy, vol. 210, pp. 1207–1218, 2018.

[15] J. April, F. Glover, J. P. Kelly, and M. Laguna, “Practical Introduction to Simulation
Optimization,” in Proceedings of the 35th Conference on Winter Simulation: Driving
Innovation, ser. WSC ’03. Winter Simulation Conference, 2003, pp. 71–78.

[16] H. Bagge and D. Johansson, “Measurements of household electricity and domestic
hot water use in dwellings and the effect of different monitoring time resolution,”
Energy, vol. 36, no. 5, pp. 2943–2951, 2011.

[17] J. Baker, “New technology and possible advances in energy storage,” Energy Policy,
vol. 36, no. 12, pp. 4368–4373, 2008.

[18] L. Barth, N. Ludwig, E. Mengelkamp, and P. Staudt, “A comprehensive modelling
framework for demand side flexibility in smart grids,” Computer Science - Research
and Development, vol. 33, no. 1-2, pp. 13–23, 2017.

[19] E. M. L. Beale, “On Minimizing A Convex Function Subject to Linear Inequalities,”
Journal of the Royal Statistical Society. Series B (Methodological), vol. 17, no. 2, pp.
173–184, 1955.

[20] M. Beaudin and H. Zareipour, “Home energy management systems: A review of
modelling and complexity,” Renewable and Sustainable Energy Reviews, vol. 45, no.
Supplement C, pp. 318–335, 2015.

[21] B. Becker, A. Kellerer, and H. Schmeck, “User interaction interface for Energy Man-
agement in Smart Homes,” in 2012 IEEE PES Innovative Smart Grid Technologies
(ISGT). IEEE, 2012.

[22] B. Becker, F. Kern, M. Loesch, I. Mauser, and H. Schmeck, “Building Energy
Management in the FZI House of Living Labs,” in Energy Informatics, Chapter 9,
ser. Lecture Notes in Computer Science. Springer, 2015, vol. 9424.

190



Bibliography

[23] R. Becker, “Optimierung thermischer Systeme in dezentralen Energieversorgungsan-
lagen,” PhD thesis, University of Dortmund, Dortmund, Germany, 2006.

[24] R. Bellman, “On the Theory of Dynamic Programming,” Proceedings of the National
Academy of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[25] R. Bellman and E. Lee, “History and development of dynamic programming,” IEEE
Control Systems Magazine, vol. 4, no. 4, pp. 24–28, 1984.

[26] R. Bellman, Dynamic Programming. Princeton, NJ.: Princeton, University Press,
1957.

[27] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski, Robust Optimization (Princeton Series
in Applied Mathematics). Princeton University Press, 2009.

[28] M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent,
“Experiments in mixed-integer linear programming,” Mathematical Programming,
vol. 1, no. 1, pp. 76–94, 1971.

[29] D. Bertsimas and D. B. Brown, “Constructing Uncertainty Sets for Robust Linear
Optimization,” Operations Research, vol. 57, no. 6, pp. 1483–1495, 2009.

[30] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and Applications of Robust
Optimization,” SIAM Review, vol. 53, no. 3, pp. 464–501, 2011.

[31] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer,
2011.

[32] N. Blaauwbroek, P. H. Nguyen, H. Shi, I. G. Kamphuis, W. L. Kling, and M. J.
Konsman, “Optimal resource allocation and load scheduling for a multi-commodity
smart energy system,” in 2015 IEEE PowerTech, 2015.

[33] B. Bøhm, “Production and distribution of domestic hot water in selected Danish
apartment buildings and institutions. Analysis of consumption, energy efficiency and
the significance for energy design requirements of buildings,” Energy Conversion and
Management, vol. 67, pp. 152–159, 2013.

[34] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[35] S. Boyd, “Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers,” Foundations and Trends® in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2010.

[36] M. C. Bozchalui, S. A. Hashmi, H. Hassen, C. A. Canizares, and K. Bhattacharya,
“Optimal Operation of Residential Energy Hubs in Smart Grids,” IEEE Transactions
on Smart Grid, vol. 3, no. 4, pp. 1755–1766, 2012.

191



Bibliography

[37] M. Braun, T. Dengiz, I. Mauser, and H. Schmeck, “Comparison of Multi-objective
Evolutionary Optimization in Smart Building Scenarios,” in Applications of Evo-
lutionary Computation, G. Squillero and P. Burelli, Eds. Springer International
Publishing, 2016, pp. 443–458.

[38] J. B. Bremnes, “Probabilistic wind power forecasts using local quantile regression,”
Wind Energy, vol. 7, no. 1, pp. 47–54, 2004.
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A. Formulation of the Optimization
Problem

Listing A.1: Matlab class that provides the optimization model.
1 classdef StochasticControllerBuilder
2
3 properties
4 % Constants
5 intervall ;
6 horizon ;
7 numberOfDisturbances ;
8 u_CHP_Initial =0;
9 P_Im_Max = 100000000000;

10 V_HWT = 0.750; %mˆ3
11 rho_Water = 1000; %kg mˆ3
12 c_Water = 4182; %ws kgˆ-1 Kˆ-1
13 a_HWT= 1; %mˆ2
14 Q_GH_Nominal = 15000; %W
15 eta_GH = 1;
16 theta_In =20;%C
17 pi_s_HWT = 1000000000000;
18 eta_BESS = 0.92;
19 E_BESS_max = 7 *1000; %Wh
20 E_BESS_min = 0;%Wh
21 P_BESS_Charge_max = 7000; %W
22 P_BESS_Discharge_max = 7000; %W
23 k_CHP_Min ;
24 Phi_CHPRun = 12500; %W;
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25 P_CHPRun = 5500; %W
26 G_CHPRun = 20500; %W
27 P_Appliance_nom ;
28 l_Appliance ;
29 k_vector ;
30 theta_HWT_max = 80; %C
31 theta_HWT_min = 60; %C
32
33 % Parameters
34 P_Base;
35 P_PV_Prediction ;
36 Phi_HS ;
37 Phi_DHW ;
38 theta_HWT_Initial = sdpvar (1 ,1);
39 pi_Gas = sdpvar (1 ,1);
40 pi_CHP_Start = sdpvar (1 ,1);
41 pi_Ex ;
42 pi_Im ;
43 E_BESS_Initial = sdpvar (1 ,1);
44 r = sdpvar (1 ,1);
45 d = sdpvar (1 ,1);
46 k_CHP_Initail ;
47 Parameters ;
48 Delta_k ;
49 k_Appliance_max = sdpvar (1 ,1);
50 k_Appliance_min = sdpvar (1 ,1);
51
52 % Variables
53 Objective = 0;
54 Constraints = [];
55 P_Appliance ;
56 P_CHP;
57 Phi_CHP ;
58 G_CHP;
59 b_Appliance = binvar (1 ,1);
60 P_BESS_Charge ;
61 P_BESS_Discharge ;
62 Phi_HWT_Loss ;
63
64 %Design Variables
65 u_CHP ;
66 u_Appliance ;
67 u_BESS_Charge ;
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68 u_BESS_Discharge ;
69 P_Im ;
70 P_Ex ;
71 E_BESS;
72 E_BESS_end ;
73 theta_HWT ;
74 theta_HWT_end ;
75 s_CHP;
76
77 %For YALMIP
78 WantedVariables ;
79
80 end
81
82 methods
83 function obj = StochasticControllerBuilder (x,y,z,

numberOfDisturbances )
84
85 % Constants
86 obj. k_CHP_Min = 15/ x;
87 obj. k_CHP_Initail = z;
88 obj. intervall =x;
89 obj. Delta_k = obj. intervall /60;
90 obj. numberOfDisturbances = numberOfDisturbances ;
91 obj. horizon = y / obj. intervall ;
92 obj. P_Appliance_nom = mean( reshape ( dlmread (" Data/

applianceLog .csv",';'), obj. intervall *60 ,[])) ';
93 obj. l_Appliance = size(obj. P_Appliance_nom ,1);
94 obj. k_vector = 1: obj. horizon ;
95
96 % Parameters
97 obj.P_Base=sdpvar(obj.horizon ,1);
98 obj. P_PV_Prediction =sdpvar(obj.horizon ,obj.

numberOfDisturbances );
99 obj.Phi_HS = sdpvar(obj.horizon ,1);

100 obj. Phi_DHW = sdpvar(obj.horizon ,1);
101 obj.pi_Ex = sdpvar(obj.horizon ,1);
102 obj.pi_Im = sdpvar(obj.horizon ,1);
103 obj. Parameters ={ obj.P_Base ,...
104 obj. P_PV_Prediction ,...
105 obj.Phi_HS ,...
106 obj.Phi_DHW ,...
107 obj. theta_HWT_Initial ,...
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108 obj.pi_Ex ,...
109 obj.pi_Im ,...
110 obj.pi_Gas ,...
111 obj.pi_CHP_Start ,...
112 obj. E_BESS_Initial ,...
113 obj. k_Appliance_min ,...
114 obj. k_Appliance_max ,...
115 obj. b_Appliance };
116
117 % Variables
118 obj. P_Appliance = sdpvar(obj.horizon ,obj.

numberOfDisturbances );
119 obj.P_CHP= sdpvar(obj.horizon ,obj. numberOfDisturbances );
120 obj. Phi_CHP = sdpvar(obj.horizon ,obj. numberOfDisturbances );
121 obj.G_CHP= sdpvar(obj.horizon ,obj. numberOfDisturbances );
122 obj. P_BESS_Charge = sdpvar(obj.horizon ,obj.

numberOfDisturbances );
123 obj. P_BESS_Discharge = sdpvar(obj.horizon ,obj.

numberOfDisturbances );
124 obj. Phi_HWT_Loss = sdpvar(obj.horizon ,obj.

numberOfDisturbances );
125
126 %Design Variables
127 obj.u_CHP = binvar(obj.horizon ,obj. numberOfDisturbances );
128 obj. u_Appliance = binvar(obj.horizon ,obj.

numberOfDisturbances );
129 obj. u_BESS_Charge = sdpvar(obj.horizon ,obj.

numberOfDisturbances );
130 obj. u_BESS_Discharge = sdpvar(obj.horizon ,obj.

numberOfDisturbances );
131 obj.P_Im = sdpvar(obj.horizon ,obj. numberOfDisturbances );
132 obj.P_Ex = sdpvar(obj.horizon ,obj. numberOfDisturbances );
133 obj.E_BESS= sdpvar(obj.horizon ,obj. numberOfDisturbances );
134 obj. E_BESS_end = sdpvar (1,obj. numberOfDisturbances );
135 obj. theta_HWT = sdpvar(obj.horizon ,obj. numberOfDisturbances

);
136 obj. theta_HWT_end = sdpvar (1,obj. numberOfDisturbances );
137 obj.s_CHP=binvar(obj.horizon ,obj. numberOfDisturbances );
138
139 %for YALMIP
140 obj. WantedVariables = {obj.u_CHP ,...
141 obj.u_Appliance ,...
142 obj. u_BESS_Charge ,...
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143 obj. u_BESS_Discharge ,...
144 obj.P_Im ,...
145 obj.P_Ex ,...
146 obj.s_CHP ,...
147 obj. P_BESS_Charge ,...
148 obj. P_BESS_Discharge ,...
149 obj.E_BESS ,...
150 obj. theta_HWT };
151 end
152
153 function [controller ,model] = BuildController (obj)
154 for k = 1: obj. horizon
155 obj. Objective =0;
156 for i=1: obj. numberOfDisturbances
157 % Shorthand Notations for better reading
158 obj. Constraints = [obj.Constraints ,obj. Phi_CHP (k,i

) == obj.u_CHP(k,i)*obj. Phi_CHPRun ];
159 obj. Constraints = [obj.Constraints ,obj.G_CHP(k,i)

== obj.u_CHP(k,i)*obj. G_CHPRun ];
160 obj. Constraints = [obj.Constraints ,obj.P_CHP(k,i)

== obj.u_CHP(k,i)*obj. P_CHPRun ];
161 obj. Constraints = [obj.Constraints ,obj.

P_BESS_Charge == obj. u_BESS_Charge * obj.
P_BESS_Charge_max ];

162 obj. Constraints = [obj.Constraints ,obj.
P_BESS_Discharge == obj. u_BESS_Discharge * obj.
P_BESS_Discharge_max ];

163
164 if k==1
165 obj. Constraints = [obj.Constraints ,obj.

Phi_HWT_Loss (k,i) == obj.a_HWT *(12 + 5.93
*(1000* obj.V_HWT)ˆ(0.4)) ...

166 * (obj.
theta_HWT_Initial -

obj. theta_In )/40];
167 else
168 obj. Constraints = [obj.Constraints ,obj.

Phi_HWT_Loss (k,i) == obj.a_HWT *(12 + 5.93
*(1000* obj.V_HWT)ˆ(0.4)) ...

169 * (obj. theta_HWT (k,i)
- obj. theta_In )
/40];

170 end
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171
172 % Constraints
173 % Appliances
174 if k>obj.l_Appliance -1
175 obj. Constraints = [obj.Constraints ,obj.

P_Appliance (k,i) == obj. u_Appliance (k-obj.
l_Appliance +1:k,i)' * obj. P_Appliance_nom (
end : -1:1) ];

176 else
177 obj. Constraints = [obj.Constraints ,obj.

P_Appliance (k,i) == obj. u_Appliance (1:k,i)'
* obj. P_Appliance_nom (k: -1:1) ];

178 end
179
180 %Inital state of the energy storage systems
181 if k == 1
182 %HWT
183 obj. Constraints = [obj.Constraints ,obj.

theta_HWT (k,i) == obj. theta_HWT_Initial ];
184 obj. Constraints = [obj.Constraints ,obj.

theta_HWT (k+1,i) == obj. theta_HWT (k,i)...
185 + obj. Delta_k *60*60*( obj. Phi_CHP (k,i)

- obj. Phi_HWT_Loss (k,i) -obj.
Phi_HS(k) - obj. Phi_DHW (k)) ...

186 / (obj.V_HWT * obj. rho_Water * obj.
c_Water ) ];

187
188 %BESS
189 obj. Constraints = [obj.Constraints , obj.E_BESS

(k,i) == obj. E_BESS_Initial ];
190 obj. Constraints = [obj.Constraints , obj.E_BESS

(k+1,i) == obj.E_BESS(k,i) ...
191 + obj. Delta_k * (obj. eta_BESS *

obj. P_BESS_Charge (k,i)...
192 - obj. P_BESS_Discharge (k,i)/( obj.

eta_BESS ))];
193
194 %States of the energy storage systems
195 elseif k== obj. horizon
196 obj. Constraints = [obj.Constraints ,obj.

theta_HWT_end (i) == obj. theta_HWT (k,i)...
197 + obj. Delta_k *60*60*( obj. Phi_CHP (k,i)

- obj. Phi_HWT_Loss (k,i) -obj.
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Phi_HS(k) - obj. Phi_DHW (k)) ...
198 / (obj.V_HWT * obj. rho_Water * obj.

c_Water ) ] ;
199
200 obj. Constraints = [obj.Constraints , obj.

E_BESS_end (i) == obj.E_BESS(k,i) ...
201 + obj. Delta_k * (obj. eta_BESS *

obj. P_BESS_Charge (k,i)...
202 - obj. P_BESS_Discharge (k,i)/( obj.

eta_BESS ))];
203
204 %Final state of the energy storage systems
205 else
206 obj. Constraints = [obj.Constraints ,obj.

theta_HWT (k+1,i) == obj. theta_HWT (k,i)...
207 + obj. Delta_k *60*60*( obj. Phi_CHP (k,i)

- obj. Phi_HWT_Loss (k,i) -obj.
Phi_HS(k) - obj. Phi_DHW (k)) ...

208 / (obj.V_HWT * obj. rho_Water * obj.
c_Water ) ];

209 obj. Constraints = [obj.Constraints , obj.E_BESS
(k+1,i) == obj.E_BESS(k,i) ...

210 + obj. Delta_k * (obj. eta_BESS *
obj. P_BESS_Charge (k,i)...

211 - obj. P_BESS_Discharge (k,i)/( obj.
eta_BESS ))];

212 end
213
214 %CHP
215 if obj. k_CHP_Initail ˜=0
216 obj. Constraints = [obj.Constraints , obj.

k_CHP_Initail -sum(obj.u_CHP (1: obj.
k_CHP_Initail ,i)) == 0];

217 if (k >= obj. k_CHP_Initail +1) &&(k<= obj.horizon
-obj. k_CHP_Min +1)

218 obj. Constraints = [obj.Constraints , sum(
obj.u_CHP(k:k+obj.k_CHP_Min -1,i) ,1) >=
obj. k_CHP_Min *( obj.u_CHP(k)-obj.u_CHP(k
-1,i))];

219 end
220 else
221 if k ==1
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222 obj. Constraints = [obj.Constraints , sum(
obj.u_CHP(k:k+obj.k_CHP_Min -1,i) ,1) >=
obj. k_CHP_Min *( obj.u_CHP(k)-obj.
u_CHP_Initial )];

223 elseif (k<= obj.horizon -obj. k_CHP_Min +1)
224 obj. Constraints = [obj.Constraints , sum(

obj.u_CHP(k:k+obj.k_CHP_Min -1,i) ,1) >=
obj. k_CHP_Min *( obj.u_CHP(k)-obj.u_CHP(k
-1,i))];

225 end
226 end
227 if (k >= obj.horizon -obj. k_CHP_Min +2)
228 obj. Constraints = [obj.Constraints , sum(obj.

u_CHP(k:obj.horizon ,i)) - (obj.horizon -k)*(
obj.u_CHP(k,i)-obj.u_CHP(k-1,i)) >=0];

229 end
230 if k==1
231 obj. Constraints = [obj.Constraints , (obj.u_CHP

(k,i)-obj. u_CHP_Initial ) <= obj.s_CHP(k,i)];
232 else
233 obj. Constraints = [obj.Constraints , (obj.u_CHP

(k,i)-obj.u_CHP(k-1,i)) <= obj.s_CHP(k,i)];
234 end
235
236 %HWT
237 obj. Constraints = [obj.Constraints , obj.

theta_HWT_min <= obj. theta_HWT (k,i) <=obj.
theta_HWT_max ];

238
239 %BESS
240 obj. Constraints = [obj.Constraints , 0<= obj.

P_BESS_Charge (k,i) <= obj. P_BESS_Charge_max ];
241 obj. Constraints = [obj.Constraints , 0<= obj.

P_BESS_Discharge (k,i) <= obj.
P_BESS_Discharge_max ];

242 obj. Constraints = [obj.Constraints , obj. E_BESS_min
<= obj.E_BESS(k,i) <= obj. E_BESS_max ];

243
244 %Power flow
245 obj. Constraints = [obj.Constraints , obj.

P_Appliance (k,i) + obj.P_Base(k) + obj.
P_BESS_Charge (k,i) + obj.P_Ex(k,i)...
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246 == obj. P_PV_Prediction (k,i) + obj.
P_CHP(k,i)+ obj.
P_BESS_Discharge (k,i) + obj.
P_Im(k,i)];

247
248 % Interaction
249 obj. Constraints = [obj.Constraints , 0 <= obj.P_Ex(

k,i) <= obj. P_PV_Prediction (k,i)+ obj.P_CHP(k,i
)];

250 obj. Constraints = [obj.Constraints , 0 <= obj.P_Im(
k,i) <= obj. P_Appliance (k,i)+ obj.P_Base(k)];

251 end
252 end
253
254 for i=1: obj. numberOfDisturbances
255 % Storage terminal constraints
256 obj. Constraints = [obj.Constraints , obj. theta_HWT_min

<= obj. theta_HWT_end (i) <=obj. theta_HWT_max ];
257 obj. Constraints = [obj.Constraints , obj. E_BESS_min <=

obj. E_BESS_end (i) <= obj. E_BESS_max ];
258
259 % Appliances
260 obj. Constraints = [obj.Constraints , sum(obj.

u_Appliance (:,i) ,1) == obj. b_Appliance ];
261 obj. Constraints = [obj.Constraints , obj.

k_Appliance_min <= obj. k_vector * obj. u_Appliance
(:,i) <= obj. k_Appliance_max ];

262
263 % Objective function
264 obj. Objective = obj. Objective + (obj. Delta_k *obj.pi_Ex

'* obj.P_Ex (:,i)...
265 + obj. Delta_k *obj.pi_Im '* obj.P_Im (:,i

)...
266 + obj. Delta_k *obj.pi_Gas*sum(obj.

G_CHP (:,i) ,1)...
267 + obj. pi_CHP_Start * sum(obj.s_CHP (:,

i) ,1)) /obj. numberOfDisturbances ;
268 end
269
270 for i=1: obj. numberOfDisturbances -1
271 obj. Constraints = [obj.Constraints , obj.u_CHP (1,i)

== obj.u_CHP (1,i+1) ];
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272 obj. Constraints = [obj.Constraints , obj.
u_Appliance (1,i)== obj. u_Appliance (1,i+1) ];

273 obj. Constraints = [obj.Constraints , obj.
P_BESS_Charge (1,i)== obj. P_BESS_Charge (1,i+1) ];

274 obj. Constraints = [obj.Constraints , obj.
P_BESS_Discharge (1,i)== obj. P_BESS_Discharge (1,i
+1) ];

275 end
276
277 ops = sdpsettings ('solver ','cplex ', 'Cplex. timelimit ' ,60);
278 controller = optimizer (obj.Constraints ,obj.Objective ,ops ,

obj.Parameters , obj. WantedVariables );
279 end
280 end
281 end
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B. Additional Results

B.1 Reference Control Scheme

Table B.1: Simulation results of the reference control scheme in the summer scenario with
FT-1.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -1311 894 22 62 -518
3 24 -1328 918 28 64 -583
3 30 -1335 927 28 65 -600
3 36 -1346 951 26 67 -693
3 42 -1339 943 28 67 -667
3 48 -1343 951 41 67 -685
5 18 -1311 929 137 65 -606
5 24 -1306 902 11 63 -522
5 30 -1322 943 52 66 -633
5 36 -1330 957 0 68 -686
5 42 -1325 929 0 65 -617
5 48 -1332 957 0 67 -681
15 18 -1249 902 202 63 -466
15 24 -1292 943 248 65 -571
15 30 -1279 943 351 66 -585
15 36 -1301 943 214 66 -588
15 42 -1297 943 115 65 -568
15 48 -1295 943 114 66 -602
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B Additional Results

Table B.2: Simulation results of the reference control scheme in the summer scenario with
FT-2.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -1408 902 317 63 -643
3 24 -1425 943 315 66 -739
3 30 -1435 910 334 63 -668
3 36 -1428 927 988 65 -711
3 42 -1438 935 312 66 -739
3 48 -1439 968 1058 68 -820
5 18 -1370 888 359 62 -564
5 24 -1408 916 577 64 -659
5 30 -1401 929 1031 65 -689
5 36 -1420 929 345 65 -707
5 42 -1410 943 1154 66 -729
5 48 -1435 943 353 67 -762
15 18 -1338 902 437 63 -552
15 24 -1357 943 437 66 -668
15 30 -1366 943 440 66 -669
15 36 -1385 943 436 66 -686
15 42 -1378 943 436 66 -688
15 48 -1383 943 293 66 -690
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B.1 Reference Control Scheme

Table B.3: Simulation results of the reference control scheme in the summer scenario with
FT-3.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -1599 910 1872 64 -846
3 24 -1614 927 728 65 -895
3 30 -1622 935 1306 66 -923
3 36 -1678 927 448 65 -952
3 42 -1670 951 1258 67 -1010
3 48 -1685 959 963 68 -1045
5 18 -1552 916 1179 64 -817
5 24 -1593 929 1447 65 -877
5 30 -1609 943 2268 66 -921
5 36 -1627 943 597 66 -944
5 42 -1642 957 1338 67 -992
5 48 -1633 957 1578 67 -984
15 18 -1466 902 338 63 -668
15 24 -1485 943 260 66 -774
15 30 -1499 943 325 65 -766
15 36 -1438 943 324 65 -720
15 42 -1439 943 534 65 -721
15 48 -1574 984 3118 69 -962
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B Additional Results

Table B.4: Simulation results of the reference control scheme in the spring scenario with
FT-1.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -1296 3887 1 64 2419
3 24 -1305 3887 169 64 2416
3 30 -1301 3887 2 64 2416
3 36 -1294 3887 0 64 2414
3 42 -1318 3920 0 67 2305
3 48 -1325 3928 1 68 2272
5 18 -1283 3895 2 65 2409
5 24 -1298 3895 1 65 2408
5 30 -1291 3881 4 64 2427
5 36 -1286 3895 136 65 2400
5 42 -1294 3909 2 66 2368
5 48 -1298 3909 0 66 2360
15 18 -1240 3895 257 65 2466
15 24 -1262 3895 127 64 2449
15 30 -1267 3895 9 64 2446
15 36 -1249 3895 163 65 2452
15 42 -1279 3936 252 68 2328
15 48 -1267 3936 126 68 2327

224



B.1 Reference Control Scheme

Table B.5: Simulation results of the reference control scheme in the spring scenario with
FT-2.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -1444 3887 619 63 2317
3 24 -1445 3895 640 64 2293
3 30 -1457 3903 640 65 2252
3 36 -1456 3936 1 67 2171
3 42 -1462 3944 24 68 2137
3 48 -1475 3928 27 67 2173
5 18 -1411 3895 964 64 2334
5 24 -1427 3895 960 64 2306
5 30 -1430 3909 959 65 2260
5 36 -1434 3936 226 68 2189
5 42 -1441 3922 1037 66 2220
5 48 -1449 3922 7 66 2210
15 18 -1376 3895 256 64 2371
15 24 -1398 3895 267 64 2340
15 30 -1404 3895 256 64 2336
15 36 -1405 3936 270 67 2226
15 42 -1419 3936 354 67 2215
15 48 -1422 3936 252 67 2212
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B Additional Results

Table B.6: Simulation results of the reference control scheme in the spring scenario with
FT-3.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -2165 3903 171 64 1559
3 24 -2187 3903 168 64 1532
3 30 -2180 3903 168 64 1539
3 36 -2181 3903 185 64 1539
3 42 -2199 3944 190 68 1422
3 48 -2199 3944 190 68 1410
5 18 -2144 3909 227 65 1571
5 24 -2160 3909 230 65 1545
5 30 -2161 3909 90 65 1542
5 36 -2155 3909 170 65 1544
5 42 -2160 3909 107 65 1543
5 48 -2166 3922 38 66 1499
15 18 -2060 3895 346 63 1710
15 24 -2089 3895 346 64 1660
15 30 -2080 3895 345 63 1673
15 36 -2100 3936 346 67 1544
15 42 -2102 3936 346 67 1541
15 48 -2098 3936 154 67 1539
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B.1 Reference Control Scheme

Table B.7: Simulation results of the reference control scheme in the winter scenario with
FT-1.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -890 5666 1 63 4649
3 24 -889 5674 1 64 4639
3 30 -904 5707 30 67 4531
3 36 -900 5699 0 66 4532
3 42 -901 5691 0 66 4552
3 48 -908 5699 0 66 4528
5 18 -871 5685 0 65 4621
5 24 -875 5685 0 65 4612
5 30 -878 5685 4 65 4605
5 36 -880 5699 0 66 4568
5 42 -879 5699 3 66 4572
5 48 -880 5713 3 67 4533
15 18 -815 5658 34 62 4759
15 24 -840 5699 33 66 4626
15 30 -826 5699 33 66 4640
15 36 -829 5699 33 66 4633
15 42 -820 5699 33 66 4646
15 48 -829 5699 33 66 4638
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B Additional Results

Table B.8: Simulation results of the reference control scheme in the winter scenario with
FT-2.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -982 5691 5 64 4550
3 24 -992 5691 4 64 4529
3 30 -983 5707 1 66 4466
3 36 -995 5691 6 65 4505
3 42 -1012 5732 4 68 4380
3 48 -1005 5740 2 69 4366
5 18 -966 5699 11 65 4544
5 24 -967 5685 21 64 4560
5 30 -962 5685 9 64 4552
5 36 -973 5685 7 64 4541
5 42 -986 5713 8 66 4467
5 48 -975 5740 2 69 4395
15 18 -911 5699 33 65 4594
15 24 -917 5699 33 65 4593
15 30 -917 5699 33 65 4577
15 36 -930 5699 33 65 4560
15 42 -931 5699 33 65 4556
15 48 -940 5740 33 69 4440
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B.1 Reference Control Scheme

Table B.9: Simulation results of the reference control scheme in the winter scenario with
FT-3.

∆k ∆N Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in min in h in cent in cent in Ws in ◦C in cent

3 18 -1584 5683 80 63 3974
3 24 -1586 5683 12 63 3959
3 30 -1581 5683 2 63 3960
3 36 -1590 5691 6 64 3923
3 42 -1596 5699 2 65 3899
3 48 -1602 5715 2 66 3856
5 18 -1558 5699 11 65 3950
5 24 -1554 5685 4 63 3998
5 30 -1546 5685 4 64 3989
5 36 -1550 5699 4 65 3936
5 42 -1557 5699 4 65 3941
5 48 -1568 5713 4 66 3896
15 18 -1492 5699 40 64 4027
15 24 -1480 5699 40 65 4027
15 30 -1477 5699 40 64 4040
15 36 -1471 5699 40 65 4023
15 42 -1519 5740 290 68 3896
15 48 -1517 5740 290 68 3897
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B Additional Results

Simulation period

(a) Simulation results with ∆N = 42 h.
Simulation period

(b) Simulation results with ∆N = 42 h.

Figure B.1: Visualization of the electrical loads and ESS states in the building energy
system using the reference control scheme. Simulation results ion the summer
scenario with FT-3 for a simulation with ∆N = 42 h (a) and a simulation
with ∆N = 48 h (b).
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B.1 Reference Control Scheme
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(a) Summer scenario with FT-1 and ∆k = 3 min.
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(b) Summer scenario with FT-1 and ∆k = 5 min.
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(c) Summer scenario with FT-1 and ∆k = 15 min.

Figure B.2: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the reference control scheme in the
summer scenario with FT-1

.
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(a) Summer scenario with FT-2 and ∆k = 3 min.

18 24 30 36 42 48
Optimization interval in h

0

10

20

30

40

50

60

O
p

ti
m

iz
at

io
n

 t
im

e 
in

 s

(b) Summer scenario with FT-2 and ∆k = 5 min.
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(c) FT2-DeltaK15

(d) Summer scenario with FT-2 and ∆k = 15 min.

Figure B.3: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the reference control scheme in the
summer scenario with FT-2
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B.1 Reference Control Scheme
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(a) FT3-DeltaK3

(b) Summer scenario with FT-3 and ∆k = 3 min.
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(c) Summer scenario with FT-3 and ∆k = 5 min.
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(d) Summer scenario with FT-3 and ∆k = 15 min.

Figure B.4: Visualization of the optimization times in dependence on optimization interval
and the time step duration in the reference control scheme in the summer
scenario with FT-3
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(a) Winter scenario with FT-1 and ∆k = 3 min.
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(b) Winter scenario with FT-1 and ∆k = 5 min.
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(c) Winter scenario with FT-1 and ∆k = 15 min.

Figure B.5: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the reference control scheme in the
winter scenario with FT-1

.
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B.1 Reference Control Scheme
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(a) Winter scenario with FT-2 and ∆k = 3 min.
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(b) Winter scenario with FT-2 and ∆k = 5 min.
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(c) Winter scenario with FT-2 and ∆k = 15 min.

Figure B.6: Visualization of the optimization times in dependence on the tuning parame-
ters optimization interval and the time step duration in the reference control
scheme in the winter scenario with FT-2

.
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B Additional Results
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(a) Winter scenario with FT-3 and ∆k = 3 min.
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(b) Winter scenario with FT-3 and ∆k = 5 min.
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(c) Winter scenario with FT-3 and ∆k = 15 min.

Figure B.7: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the reference control scheme in the
winter scenario with FT-3

.
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B.1 Reference Control Scheme
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(a) Spring scenario with FT-1 and ∆k = 3 min.
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(b) Spring scenario with FT-1 and ∆k = 5 min.
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(c) Spring scenario with FT-1 and ∆k = 15 min.

Figure B.8: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the reference control scheme in the
spring scenario with FT-1

.
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(a) Spring scenario with FT-2 and ∆k = 3 min.

18 24 30 36 42 48
Optimization interval in h

0

10

20

30

40

50

60

O
p

ti
m

iz
at

io
n

 t
im

e 
in

 s

(b) Spring scenario with FT-2 and ∆k = 5 min.
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(c) Spring scenario with FT-2 and ∆k = 15 min.

Figure B.9: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the reference control scheme in the
spring scenario with FT-2

.
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B.1 Reference Control Scheme
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(a) Spring scenario with FT-3 and ∆k = 3 min.
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(b) Spring scenario with FT-3 and ∆k = 5 min.
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(c) Spring scenario with FT-3 and ∆k = 15 min.

Figure B.10: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the reference control scheme in the
spring scenario with FT-3

.
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B Additional Results

B.2 State-of-the-art and Stochastic Control Scheme

Table B.10: Simulation results of the state-of-the-art and stochastic control scheme in the
summer scenario with FT-1.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -1186 929 0 65 -447
24 3 -1198 916 0 64 -428
24 5 -1179 943 0 66 -490
24 7 -1175 929 0 65 -436
24 9 -1174 916 0 64 -406
24 11 -1092 943 0 64 -295
30 1 -1196 943 0 66 -497
30 3 -1208 943 0 66 -514
30 5 -1168 916 0 64 -411
30 7 -1158 916 0 64 -405
30 9 No valid solution found
30 11 No valid solution found

Table B.11: Simulation results of the state-of-the-art and stochastic control scheme in the
summer scenario with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -1213 916 0 64 -455
24 3 -1248 929 0 65 -525
24 5 -1234 943 0 66 -546
24 7 -1234 916 13 65 -505
24 9 -1226 929 67 64 -478
24 11 No valid solution found
30 1 -1219 929 0 65 -493
30 3 -1249 929 0 65 -522
30 5 -1242 929 0 65 -532
30 7 -1243 916 0 64 -484
30 9 No valid solution found
30 11 No valid solution found
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B.2 State-of-the-art and Stochastic Control Scheme

Table B.12: Simulation results of the state-of-the-art and stochastic control scheme the
summer scenario and with FT-3.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -1394 929 276 65 -677
24 3 -1460 929 1113 65 -743
24 5 -1463 929 2181 65 -743
24 7 -1489 916 1884 64 -729
24 9 -1468 929 2210 65 -742
24 11 -683 957 2727 66 32
30 1 -1390 929 1442 65 -667
30 3 -1465 916 1716 64 -710
30 5 -1477 929 1875 65 -756
30 7 -1470 943 2333 66 -780
30 9 No valid solution found
30 11 No valid solution found

Table B.13: Simulation results of the state-of-the-art and stochastic control scheme in the
winter scenario with FT-1.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -770 5672 1 64 4751
24 3 -765 5699 2 66 4681
24 5 -765 5699 7 66 4693
24 7 -728 5699 8 66 4740
24 9 No valid solution found
24 11 No valid solution found
30 1 -777 5699 0 66 4671
30 3 -762 5672 0 64 4760
30 5 -685 5672 0 64 4820
30 7 -550 5685 6 66 4883
30 9 No valid solution found
30 11 No valid solution found
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B Additional Results

Table B.14: Simulation results of the state-of-the-art and stochastic control scheme in the
winter scenario with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -867 5685 0 64 4667
24 3 -861 5685 9 64 4675
24 5 -844 5685 9 64 4686
24 7 -666 5685 11 64 4843
24 9 29 5672 11 64 5518
24 11 No valid solution found
30 1 -140 6478 0 64 6178
30 3 -134 6492 0 65 6156
30 5 -138 6492 0 66 6125
30 7 No valid solution found
30 9 No valid solution found
30 11 No valid solution found

Table B.15: Simulation results of the state-of-the-art and stochastic control scheme in the
winter scenario with FT-3.

∆N M Electricity cost Gas cost ẼBESS(T ) ϑ̃HWT Total costs
in h in cent in cent in W in ◦C in cent

24 1 -1440 5685 4 64 4101
24 3 -1443 5685 27 63 4114
24 5 -1366 5685 4 63 4191
24 7 -1084 5685 169 64 4453
24 9 No valid solution found
24 11 No valid solution found
30 1 -1438 5685 4 64 4102
30 3 -1403 5685 27 63 4138
30 5 -1202 5699 4 65 4278
30 7 -743 5672 26 65 4742
30 9 No valid solution found
30 11 No valid solution found
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B.2 State-of-the-art and Stochastic Control Scheme

Table B.16: Simulation results of the state-of-the-art and stochastic control scheme in the
spring scenario with FT-1.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -939 3881 1 64 2784
24 3 -939 3868 5 63 2818
24 5 -945 3909 5 66 2723
24 7 -959 3909 5 65 2727
24 9 No valid solution found
24 11 No valid solution found
30 1 -942 3895 1 65 2739
30 3 -955 3909 2 66 2690
30 5 -952 3909 3 66 2703
30 7 -963 3881 5 64 2756
30 9 No valid solution found
30 11 No valid solution found

Table B.17: Simulation results of the state-of-the-art and stochastic control scheme in the
spring scenario with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -1069 3909 1 65 2634
24 3 -1019 3881 5 63 2748
24 5 -1027 3895 2 64 2722
24 7 -1005 3895 5 63 2756
24 9 -617 3881 5 64 3118
24 11 No valid solution found
30 1 -1047 3922 1 66 2612
30 3 -1023 3922 2 66 2632
30 5 -1061 3909 3 65 2648
30 7 -1019 3922 5 67 2619
30 9 No valid solution found
30 11 No valid solution found
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B Additional Results

Table B.18: Simulation results of the state-of-the-art and stochastic control scheme in the
spring scenario with FT-3.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in W in ◦C in cent

24 1 -1184 3909 1 65 2520
24 3 -1151 3881 5 63 2612
24 5 -1167 3895 2 64 2576
24 7 -1115 3922 2 66 2562
24 9 No valid solution found
24 11 No valid solution found
30 1 -1182 3909 1 65 2527
30 3 -1165 3895 5 64 2564
30 5 -1159 3909 3 65 2557
30 7 -878 3895 2 64 2855
30 9 No valid solution found
30 11 No valid solution found
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(a) Summer scenario with FT-1.
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(b) Summer scenario with FT-2.
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(c) Summer scenario with FT-3.

Figure B.11: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the state-of-the-art and stochastic
control scheme in the summer scenario for FT-1 (a), FT-2 (b) and FT-3 (c).
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(a) Winter scenario with FT-1.
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(b) Winter scenario with FT-2.
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(c) Winter scenario with FT-3.

Figure B.12: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the state-of-the-art and stochastic
control scheme in the winter scenario for FT-1 (a), FT-2 (b) and FT-3 (c).
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(a) Spring scenario with FT-1.
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(b) Spring scenario with FT-2.
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(c) Spring scenario with FT-3.

Figure B.13: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the state-of-the-art and stochastic
control scheme in the spring scenario for FT-1 (a), FT-2 (b) and FT-3 (c).
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B Additional Results

B.3 Rule-based Micro-CHP Scenario

Table B.19: Simulation results of the rule-based micro-CHP control scheme in the summer
scenario with FT-1.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -1143 938 0 64 -370
24 3 -1156 938 0 64 -383
24 5 -1158 938 0 64 -385
24 7 -1158 938 0 64 -385
24 9 -1161 938 0 64 -389
24 11 -1155 938 0 64 -382
30 1 -1127 938 0 64 -354
30 3 -1161 938 0 64 -388
30 5 -1167 938 0 64 -395
30 7 -1164 938 0 64 -391
30 9 -1104 938 10 64 -332
30 11 No valid solution found

Table B.20: Simulation results of the rule-based micro-CHP control scheme in the summer
scenario with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -1091 938 0 64 -318
24 3 -1159 938 0 64 -386
24 5 -1164 938 113 64 -392
24 7 -1158 938 113 64 -385
24 9 -1152 938 106 64 -379
24 11 -1144 938 155 64 -371
30 1 -1092 938 0 64 -320
30 3 -1167 938 0 64 -394
30 5 -1158 938 114 64 -385
30 7 -1166 938 116 64 -393
30 9 -1102 938 474 64 -329
30 11 No valid solution found
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B.3 Rule-based Micro-CHP Scenario

Table B.21: Simulation results of the rule-based micro-CHP control scheme in the summer
scenario with FT-3.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -653 938 1859 64 119
24 3 -1021 938 1671 64 -249
24 5 -1111 938 1884 64 -338
24 7 -1092 938 1884 64 -319
24 9 -1084 938 1884 64 -311
24 11 -1084 938 1884 64 -311
30 1 -714 938 1406 64 59
30 3 -1117 938 1593 64 -344
30 5 -1102 938 1875 64 -329
30 7 -1086 938 1884 64 -313
30 9 -963 938 3122 64 -191
30 11 No valid solution found

Table B.22: Simulation results of the rule-based micro-CHP control scheme in the winter
scenario with FT-1.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -686 5756 0 69 4696
24 3 -696 5756 6 69 4686
24 5 -690 5756 7 69 4693
24 7 -693 5756 7 69 4689
24 9 -693 5756 9 69 4689
24 11 -574 5756 73 69 4808
30 1 -684 5756 0 69 4698
30 3 -691 5756 9 69 4692
30 5 -692 5756 7 69 4690
30 7 -692 5756 6 69 4690
30 9 -577 5756 1574 69 4806
30 11 No valid solution found
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B Additional Results

Table B.23: Simulation results of the rule-based micro-CHP control scheme in the winter
scenario with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -545 5756 7 69 4837
24 3 -560 5756 6 69 4822
24 5 -558 5756 7 69 4824
24 7 -559 5756 7 69 4824
24 9 -556 5756 9 69 4826
24 11 -557 5756 6 69 4826
30 1 -540 5756 5 69 4843
30 3 -559 5756 9 69 4824
30 5 -559 5756 7 69 4823
30 7 -558 5756 6 69 4824
30 9 -527 5756 8 69 4855
30 11 No valid solution found

Table B.24: Simulation results of the rule-based micro-CHP control scheme in the winter
scenario with FT-3.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -1003 5756 6 69 4380
24 3 -1008 5756 7 69 4374
24 5 -997 5756 8 69 4385
24 7 -992 5756 8 69 4390
24 9 -989 5756 9 69 4393
24 11 -986 5756 7 69 4396
30 1 -999 5756 4 69 4383
30 3 -1010 5756 9 69 4373
30 5 -985 5756 8 69 4398
30 7 -989 5756 5 69 4394
30 9 -612 5756 9 69 4770
30 11 No valid solution found
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B.3 Rule-based Micro-CHP Scenario

Table B.25: Simulation results of the rule-based micro-CHP control scheme in the spring
scenario with FT-1.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -930 4046 0 76 2447
24 3 -963 4046 2 76 2414
24 5 -967 4046 0 76 2410
24 7 -974 4046 0 76 2403
24 9 -973 4046 0 76 2404
24 11 -960 4046 2 76 2417
30 1 -917 4046 0 76 2460
30 3 -967 4046 2 76 2410
30 5 -970 4046 0 76 2407
30 7 -970 4046 2 76 2407
30 9 -970 4046 2 76 2407
30 11 No valid solution found

Table B.26: Simulation results of the rule-based micro-CHP control scheme in the spring
scenario with FT-2.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -873 4046 0 76 2504
24 3 -969 4046 0 76 2408
24 5 -958 4046 0 76 2419
24 7 -968 4046 0 76 2409
24 9 -972 4046 0 76 2405
24 11 -956 4046 0 76 2421
30 1 -876 4046 0 76 2501
30 3 -963 4046 0 76 2414
30 5 -964 4046 0 76 2413
30 7 -977 4046 0 76 2400
30 9 -982 4046 0 76 2395
30 11 No valid solution found
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B Additional Results

Table B.27: Simulation results of the rule-based micro-CHP control scheme spring in the
spring scenario with FT-3.

∆N M Electricity cost Gas cost ẼBESS,T+1 ϑ̃HWT,T+1 Total costs
in h in cent in cent in Ws in ◦C in cent

24 1 -887 4046 2 76 2490
24 3 -886 4046 32 76 2491
24 5 -870 4046 77 76 2507
24 7 -815 4046 3600 76 2562
24 9 -856 4046 1129 76 2521
24 11 -569 4046 275 76 2808
30 1 -884 4046 2 76 2493
30 3 -885 4046 45 76 2492
30 5 -844 4046 1551 76 2533
30 7 -869 4046 32 76 2508
30 9 -789 4046 274 76 2588
30 11 No valid solution found
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(a) Summer scenario with FT-1.
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(b) Summer scenario with FT-2.

Tuning parameters

0

10

20

30

40

50

60

O
p

ti
m

iz
at

io
n

 t
im

e 
in

 s

N
o

 v
al

id
 s

o
lu

ti
o

n
 f

o
u

n
d

(c) Summer scenario with FT-3.

Figure B.14: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the rule-based micro-CHP control
scheme spring in the summer scenario for FT-1 (a), FT-2 (b) and FT-3 (c).
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B Additional Results
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(a) Winter scenario with FT-1.
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(b) Winter scenario with FT-2.
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(c) Winter scenario with FT-3.

Figure B.15: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the rule-based micro-CHP control
scheme in the winter scenario for FT-1 (a), FT-2 (b) and FT-3 (c).
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B.3 Rule-based Micro-CHP Scenario
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(a) Spring scenario with FT-1.
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(b) Spring scenario with FT-2.
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(c) Spring scenario with FT-3.

Figure B.16: Visualization of the optimization times in dependence on the optimization
interval and the time step duration in the rule-based micro-CHP control
scheme in the spring scenario for FT-1 (a), FT-2 (b) and FT-3 (c).
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C. Related Publications by the
Author

Table C.1: List of related publications by the author.
2018 J. Müller, M. Ahrens, I. Mauser, and H. Schmeck, “Achieving Opti-

mized Decisions on Battery Operating Strategies in Smart Buildings,”
in Applications of Evolutionary Computation. Springer Interna-
tional Publishing, 2018, pp. 205–221

[174]

This publication extends the work presented in [179] by investigating
the use of different BESS control strategies to achieve a high per-
formance in the optimization of the operation of a building energy
system. Even though, the approaches presented in this publication
achieve a higher performance than the ones presented in [179], the
uncertainty in the PV generation is not addressed directly.
The publication motivates the stochastic rolling horizon optimization
approach that is presented in this thesis. In order to enable a
suitable environment to investigate the influence of uncertainties
and to provide a clear presentation of the building energy system
model, the mixed-integer linear model presented in this thesis has
been developed. The publication differs from this thesis in the model
of the energy system and in the approach to the optimization. In
contrast to this thesis, it uses the non-linear building energy system
model presented in [165].

257



C Related Publications by the Author

2017 J. Müller, “Evolutionary optimization under uncertainty in energy
management systems,” it - Information Technology, vol. 59, no. 1,
2017

[173]

In this publication, a first concept of the stochastic rolling horizon
optimization approach presented in this thesis has been developed.
The publication presents a first idea of the contribution of this thesis.
The publication differs from this thesis in the choice of the model
as well as in the choice of optimization algorithm. Furthermore, it
presents no evaluation results.

2016 J. Müller, C. Gitte, M. Winter, and J. van der Geest, “Advanced
configuration system for cost-effective integration of distributed
energy systems,” in 2016 IEEE Innovative Smart Grid Technologies
- Asia (ISGT-Asia). IEEE, 2016

[175]

In this publication, an approach to ease the configuration process
of DERs, e. g., PV systems or whole building energy systems, is
presented. The problems addressed in the publication are very
important with respect to a possible application of the stochastic
rolling horizon optimization approach in a product that can be sold
and used in real buildings.
The content of the publication is not part of the contribution of this
thesis. The publication is referenced in the related work chapter.

2016 J. Müller, M. März, I. Mauser, and H. Schmeck, “Optimization
of Operation and Control Strategies for Battery Energy Storage
Systems by Evolutionary Algorithms,” in Applications of Evolution-
ary Computation, A. M. Mora and G. Squillero, Eds. Springer
International Publishing, 2016, vol. 9598, pp. 507–522

[179]

This publication presents an approach to the optimization of the
parameters of a control strategy that is used by a BESS. It uses
a rolling horizon optimization approach and a genetic algorithm
to minimize the operation costs of a building energy system. The
results indicate that the performance of the optimization approach
is dependent on the uncertainty in the building energy system and
in particular in the PV generation.
The publication inspired the work on incorporating the uncertainty
in the PV generation into the optimization approach. The publica-
tion is referenced in the background in energy system and related
work chapter. The underlying BESS controller from this publication
is used in this thesis. Furthermore, the feed-in compensation tariffs
presented in the publication are used in this thesis.
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2017 I. Mauser, J. Müller, and H. Schmeck, “Utilizing Flexibility of
Hybrid Appliances in Local Multi-modal Energy Management,”
in Proceedings of the 9th International Conference EEDAL’2017 -
Energy Efficiency in Domestic Appliances and Lighting, ser. JRC
Conference and Workshop Report. Publications Office of the
European Union, 2017, Inproceedings, pp. 1282–1297

[166]

This publication investigates the optimization of a building energy
system by a BEMS, in particular the optimization of hybrid energy
systems in the form of hybrid appliances.
Such systems are a possible field of application of the stochastic
rolling horizon optimization approach presented in this thesis. The
content of the publication is not part of the contribution of this
thesis. The publication is referenced in the related work chapter.

2017 I. Mauser, J. Müller, K. Förderer, and H. Schmeck, “Definition,
Modeling, and Communication of Flexibility in Smart Buildings and
Smart Grid,” in International ETG Congress 2017, 2017, pp. 1–6

[162]

This publication presents a proposal of a general definition of the
term flexibility and the categorization of different approaches to the
representation and coordination of flexibility in smart grids, includ-
ing important aspects concerning communication and coordination.
This is not directly part of this thesis. However, the coordination of
BEMSs in order to provide measures of demand side management
is of high interests. Therefore, this paper discusses the background
and environment of BEMSs in general and the presented BEMS.
The content of the publication is not part of the contribution of this
thesis. The publication is referenced in the background on energy
systems and the related work chapter.
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C Related Publications by the Author

2015 I. Mauser, J. Feder, J. Müller, and H. Schmeck, “Evolutionary
Optimization of Smart Buildings with Interdependent Devices,”
in Applications of Evolutionary Computation, A. M. Mora and
G. Squillero, Eds. Springer International Publishing, 2015, vol.
9028, pp. 239–251

[164]

This publication investigates the optimization of a building energy
system by a BEMS. In particular, the optimization of a trigeneration
system consisting of an adsorption chiller, a hot water tank and a
micro-CHP. Such systems are a possible field of application of the
stochastic rolling horizon optimization approach presented in this
thesis.
The building energy system model used in this thesis is partially
based on the one presented in the publication. In particular, the
heating system and hot water tank models. Furthermore, the
publication is referenced in the related work chapter.

2015 I. Mauser, J. Müller, F. Allerding, and H. Schmeck, “Adaptive Build-
ing Energy Management with Multiple Commodities and Flexible
Evolutionary Optimization,” Renewable Energy, vol. 87, Part 2, pp.
911–921, 2016

[165]

This publication investigates the optimization of a building energy
system by a BEMS. It presents an approach to an adaptive building
energy system model, optimization algorithm and BEMS. Therein,
BESSs are not included in the optimization.
The building energy system model used in this thesis is partially
based on the one presented in the publication. The choice of the
building configuration used in this thesis is based on the publication.
Furthermore, the publication is referenced in the background on
energy systems, theory and the related work chapter.
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