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Global Perspective or Local Knowledge: 
The Macro-information in the Sovereign CDS Market 

 

 

Abstract 

 

This paper shows that sovereign CDS spreads can predict future stock index returns, sovereign 

bond yields, as well as real macroeconomic variables such as GDP and PMI. The predictive 

power comes almost entirely from the global, rather than country-specific, component of 

sovereign CDS spreads. This is consistent with the interpretation that the information advantage 

of sovereign CDS investors is derived from their global perspective rather than their local 

knowledge about individual countries. Stock and sovereign bond market indices gradually “catch 

up” with sovereign CDS spreads, mostly during the days surrounding credit rating or outlook 

changes, and especially for downgrades. 
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I. Introduction 

The sovereign CDS market has been developing rapidly since the early 2000s. By 2015, the 

market had an aggregate notional amount of around $2 trillion, and covered 91 countries.1 What 

informational role does this market play? Does it aggregate new information, or merely 

repackage information in other financial markets, such as the stock and bond markets of the 

underlying countries? If it does aggregate new information, what is the nature of this information?  

Is it country-specific, or is it about global factors? Given the large and rapidly growing size of 

the sovereign debt markets and their systemic importance for the global economy, the answers to 

these questions are important in and of themselves. The answers can also help improve our 

understanding of the interconnections among global financial markets and economies. Finally, 

the answers have direct implications for global investors’ asset allocation, as well as capital 

flows across countries.  

Our main finding is that sovereign CDS spreads possess information that has not been 

fully reflected in the stock and sovereign bond markets of the underlying countries, and that this 

information is about global factors, rather than country-specific variables. In other words, 

sovereign CDS spreads can predict future stock index returns and sovereign bond yields of the 

underlying countries, and the predictive power comes almost entirely from the global, rather than 

country-specific, component of sovereign CDS spreads. This is consistent with the interpretation 

that the information advantage of sovereign CDS investors is derived from their “global 

perspective” rather than their local knowledge about individual countries. For example, relative 

to the local stock and bond investors in a country, say, Spain, the financial institutions (e.g., 

global macro hedge funds) in the sovereign CDS market might have a better understanding of the 

influences of global factors (e.g., the U.S. monetary policy) on the future of the Spanish 

economy. In contrast, those financial institutions do not seem to have an information edge over 

local investors about country-specific factors, such as the Spanish government’s policies. 

                                                           
1 Based on the data from the Depository Trust & Clearing Corporation (DTCC) and Markit Inc. 
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Specifically, to examine whether sovereign CDS spreads can predict future stock index 

returns, we sort countries into 5 quintiles based on their past 3-month sovereign CDS 

performances. The sovereign creditworthiness of quintile-1 countries has improved the most 

according to the sovereign CDS market, while that of quintile-5 countries has deteriorated the 

most. That is, the sovereign CDS market indicates “good news” for quintile-1 countries and “bad 

news” for quintile-5 ones during the past 3 months. If this information is not fully reflected in 

stock prices, the stock indices of quintile-1 countries would outperform those of quintile 5 when 

the information is eventually incorporated into stock prices in the coming months.   

This is indeed the case. For each quintile, we first form an equal-weighted portfolio of 

stock indices, and construct its dollar-denominated returns. During the month after the sorting, 

the quintile-1 portfolio outperforms the quintile-5 portfolio by 1.25% per month (t=3.80), or 15% 

per year. After accounting for the factors of international stock and currency markets, the alpha 

of the long-short strategy is still 1.01% per month (t= 2.89). 

To give smaller stock markets less weight, we also form market-capitalization-weighted 

portfolios for each quintile, and find that the average return of the long-short portfolio, which is 

long in quintile 1 and short in quintile 5, is 1.10% per month (t=2.43). After adjusting for the 

factors of international stock and currency markets, the alpha of the long-short strategy is still 

0.90% per month (t=2.17).  

Similarly, if sovereign bond markets do not fully reflect the good news from the 

sovereign CDS market regarding quintile-1 countries, their bond prices will tend to go up in the 

coming months, i.e., their yields will fall. On the other hand, the bond yields of quintile-5 

countries will tend to rise. Indeed, during the month after the sorting, the average of 5-year 

sovereign bond yield indices of quintile-1 countries decreases by 7.04 basis points while that of 

quintile-5 countries increases by 4.90 basis points. The difference in the bond yield changes 

across these two quintiles is 11.87 basis points per month (t=3.15). After accounting for market 

and momentum factors in bond markets, this difference in yield changes is still 6.85 basis points 

per month (t=2.26).  
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We also construct value-weighted portfolios to give smaller economies less weight. Due 

to the lack of data for the size of sovereign bond markets for a large cross section of countries, 

we construct GDP-weighted averages of yield changes instead. The difference in this value-

weighted average bond yield changes across the top and bottom quintiles is 6.42 basis points per 

month (t=2.37), and is 4.45 basis points per month (t=2.06) after accounting for market and 

momentum factors in bond markets. 

Importantly, the above results are not due to the small countries in our sample. In fact, we 

find qualitatively similar results for both stock and sovereign bond markets when we restrict our 

sample to G20 countries, which account for around 90% of the global GDP.2 For example, the 

long-short stock index return for the G20 sample is 1.01% (t=2.07) and 0.87% (t=2.04) per 

month for the equal and market-cap-weighted portfolios, respectively. 

What is the nature of the information that is more efficiently captured by the sovereign 

CDS market? We conjecture that it is about global factors, rather than country-specific variables. 

This is because the investors in the sovereign CDS market are mostly sophisticated financial 

institutions, while those in the stock and bond markets are predominately local investors, as is 

known in the international finance literature.3 Sovereign CDS investors’ advantage over local 

stock and bond investors is perhaps their superior capacity in gathering and analyzing global, 

rather than country-specific, information. For example, sovereign CDS investors may have 

advantages in predicting future risk tolerance of global investors and their capital flows to 

individual countries, which may have significant effects on the future prospects of those 

economies. Or, they may be better at analyzing the prospects of the future global economy and 

their influences on individual countries. For example, they may be better at predicting the future 

of the monetary policy in the U.S. and its implications on the future individual economies. In 

contrast, sovereign CDS investors probably do not have advantage over local investors in 

obtaining country-specific information such as the information on local economic policies. In 

                                                           
2 See, e.g., http://www.oecd.org/g20/. 
3 See Karolyi and Stulz (2003) for a review. 
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other words, our conjecture is that the sovereign CDS investors’ advantage is due to their global 

perspective, rather than their local knowledge. 

To test this conjecture, we decompose sovereign CDS spreads into a “global” component 

and a “country-specific” component, and examine which one has predictive power for future 

stock returns and bond yields. Consistent with the conjecture, our evidence shows that the 

predictive power of sovereign CDS spreads is almost entirely from the global component.  

Our interpretation of these results is that the sovereign CDS market is more efficient at 

aggregating global macro information, and its implications on countries around the world. Stock 

and bond markets only gradually “catch up” with the sovereign CDS market, i.e., the information 

in sovereign CDS spreads is gradually incorporated into stock and bond prices. Consistent with 

this interpretation, we find that the sovereign CDS market can predict the global, but not the 

country-specific, component of future stock returns and bond yield changes. Moreover, our 

interpretation is further supported by the following evidence. 

First, the cumulative alphas during the holding period of the previously-described long-

short strategies in both stock and bond markets increase with the holding period, and do not 

appear to mean revert. For instance, when the holding period increases to 6 months, the 

cumulative alphas are around 2% and 30 basis points for stock and bond markets, respectively. 

When we further increase the holding period, the cumulative alpha stabilizes and there is no sign 

of reversal. This is consistent with our interpretation that stock and bond markets gradually catch 

up with the information in sovereign CDS spreads, and that there is no overshooting and reversal. 

Second, stock and bond prices appear to catch up with the sovereign CDS market “at the 

right time.” Recall that our interpretation is that the sovereign CDS market contains some 

information that is not yet fully reflected in stock and bond prices. What is this information? A 

natural candidate is the sovereign creditworthiness. The previous long-short strategies generate 

profits when the information is eventually incorporated into stock and bond prices. When should 

that happen? A conjecture is perhaps when that information becomes public, i.e., when credit 

rating or outlook changes are announced by rating agencies. Hence, our interpretation implies 
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that those long-short strategies should be more profitable around the time when credit rating or 

outlook changes are announced. 

Before testing this prediction, it is worth clarifying a potential confusion. One might 

think that credit rating and outlook changes are mostly country specific and hence there is some 

tension between this prediction and our global-perspective interpretation. However, it is not the 

case that credit rating and outlook changes are mostly country specific. On the contrary, 

sovereign credit risks have a large systematic component. For example, Longstaff et al. (2011) 

find that the first principal component of sovereign credit spreads explains 64% the credit spread 

variations in their sample.4 This first principal component is highly correlated with the U.S. 

stock market return and volatility. This large systematic component can be due to the monetary 

policy in the U.S., which drives both the global capital flows and demand, and hence 

significantly affects the creditworthiness of countries around the world. Another important driver 

for systematic variations of sovereign credit risks is perhaps the growth of the global economy, 

which significantly influences the balance sheets of countries around the world. Even the 

influence of natural disasters on sovereign credit risks has a strong systematic component. For 

example, rating agencies have long recognized the systematic nature of natural disasters due to 

climate changes.5 Even idiosyncratic natural disaster may have a systematic effect on global 

economies through the international trade network (see, e.g., Du et al. 2018). 

To test the prediction that the long-short strategies should be more profitable around the 

time when credit rating or outlook changes are announced, we run a predictive panel regression 

with an interaction term. Specifically, we regress the return of stock index of country i in month t 

on a return predictor, which is constructed from the sovereign CDS data during the previous 

three months, and a credit event dummy variable, which is 1 if country i has a credit rating or 

outlook change in month t and 0 otherwise. Our focus is on the coefficient of the interaction term 

                                                           
4 The global component for local currency sovereign credit spread is also substantial. For example, Du 
and Schreger (2016) find that the first principal component of local currency sovereign credit spreads 
explains 54% of the variation across countries. 
5 See, e.g., Climate Risk: Rising Tides Raise the Stakes, Standard and Poor’s, Insights, December 2015. 
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between of the predictor and this credit event dummy. Our estimates show that the interaction 

coefficient is twice as large as the coefficient of the predictor. That is, the sovereign CDS 

market’s predictive power for future stock returns is two times stronger during announcement 

months than during other periods. We also run similar regressions for bond markets and find that 

the sovereign CDS market’s predictive power for future bond yield changes is 5 to 7 times 

stronger during announcement months than during other periods. Moreover, to conduct a more 

granular analysis of the timing of the information flow from the sovereign CDS market to stock 

and bond markets, we run similar regressions using daily data, and find that the long-short 

strategies are especially profitable during the several days around the announcements of credit 

rating or outlook changes. That is, stock and bond prices appear to catch up with the sovereign 

CDS market “at the right time.” 

Third, our interpretation implies an asymmetry between positive and negative news. If 

stock and bond prices fail to reflect the information in the sovereign CDS market, arbitrageurs 

can profit from trading stocks and bonds. Due to short sales constraints, however, it is more 

costly for arbitrageurs to exploit negative, rather than positive, information. Hence, less negative 

information is incorporated into stock and bond prices, and when it eventually becomes public, 

stock and bond prices will respond more strongly. Consistent with this prediction, we find that 

when a credit rating or outlook change is announced, stock and bond prices respond more 

strongly if the sovereign CDS market has been anticipating negative, rather than positive, news.  

Fourth, the above logic also implies that the predictive power of the sovereign CDS 

market should be weaker if it is easier for arbitrageurs to trade in the stock and bond markets, for 

example, if there are stock or bond futures markets. Hence, we partition our sample based on 

whether there are futures markets for stock and sovereign bonds of the underlying countries, and 

examine the predictive power in both subsamples. Consistent with this interpretation, we find 

that the predictive power of the sovereign CDS market is indeed substantially stronger for 

countries without futures markets for stock indices or sovereign bonds. 
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Finally, in addition to the forecasting power for financial variables, sovereign CDS 

spreads can also forecast future real macroeconomic activities. Specifically, we run panel 

regressions of GDP growth and PMI index on the returns in stock, bond, and sovereign CDS 

markets during the previous quarter. Our evidence shows that the sovereign CDS market does 

possess unique predictive power for future GDP growth and PMI index. Interestingly, as in the 

case for financial variables, the predictive power for future real economic activities is also 

mostly from the global component of sovereign CDS spreads. 

A. Literature review 

Our paper adds to the growing literature on the sovereign CDS market. One main empirical fact 

in this literature is that there is a prominent global factor in sovereign CDS spreads (see, e.g., Pan 

and Singleton (2008) and Ang and Longstaff (2013), and Longstaff et al. (2011)). This leads to 

the conclusion in Longstaff et al. (2011) that “global investors play a predominant role” in the 

sovereign CDS market.6 Our study adds to this literature by showing that those global investors 

appear to be more capable of processing world-wide information whose implications for stock 

and bond markets are only gradually appreciated by local stock and bond investors. 

Our paper also adds to the growing literature on slow information diffusion in financial 

markets. It demonstrates return predictability when financial markets are slow in incorporating 

subtle information implied by economic links (Cohen and Frazzini (2008), Menzly and Ozbas 

(2010)), trade credit (Albuquerque, Ramadorai and Watugala (2015)), complexity (Cohen and 

Lou (2012)), and incremental information (Da, Gurun and Warachka (2014)). While these 

studies focus on various aspects of firm level information, our paper demonstrates the slow 

diffusion of global macro information across countries and asset classes.   

                                                           
6  Interestingly, the global factor explains little variation in sovereign CDS net notional amounts 
outstanding (Augustin et al. (2018)). 
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Our paper is also related to the literature on the informational role of derivative markets. 

These studies primarily focus on firm-level information,7 and the evidence is often mixed. For 

example, a number of studies have examined the lead-lag relation between individual stock and 

option prices. While many studies (e.g., Chakravarty, Gulen, and Mayhew (2004)) conclude that 

option prices lead stock prices, Muravyev, Pearson, and Broussard (2013) reach the opposite 

conclusion using a different methodology. This literature often utilizes intra-day data to examine 

price discovery in order to address the asynchronous trading issue. At the monthly frequency, 

several studies show that individual options can predict future stock returns (e.g., Bali and 

Hovakimian (2009), Cremers and Weinbaum (2010), and An, Ang, Bali, and Cakici (2014)), and 

that options trading volume can predict future stock returns (e.g., Easley, O’Hara and Srinivas 

(1998) and Pan and Poteshman (2006)). Goyal and Saretto (2009), however, find that underlying 

stock prices lead option prices. The direction of the information flow between the individual 

stocks and corporate CDSs is also mixed. Acharya and Johnson (2007) find that the CDS market 

appears to be able to forecast future negative credit news. Lee, Naranjo, and Sirmans (2014) find 

that the corporate CDS market can improve the momentum trading strategy in the stock market. 

However, Hilscher, Pollet, and Wilson (2014) find that information flows from the equity to the 

CDS market. The lead-lag relations have also been analyzed between corporate CDSs and 

corporate bonds (Blanco et al. (2005)) and CDOs versus stocks (Longstaff (2010)). 

While these studies primarily focus on firm-level information, our paper adds to this 

literature by focusing on macro information. There are important differences between 

aggregating micro and macro information. For the former, private information perhaps plays an 

important role. For the latter, however, since arguably most of the information is publicly 

available, investors’ sophistication and information-processing capacity are likely to be more 

important. In fact, Paul Samuelson conjectured that there might be more informational 

                                                           
7 Several exceptions analyze index futures and options, e.g., Kawaller, Koch, and Kock. (1987), Chan, 
Chan, and Karolyi (1991), and Chordia et al. (2016). 
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inefficiency at the macro level than at the micro level. 8 Our setup also enables us to study the 

nature of the information that is better aggregated by sovereign CDSs, and their informational 

role for real macroeconomic activities. Several studies examine whether the sovereign CDS 

market and its corresponding sovereign bond market are co-integrated to determine if there is 

information flow and lead-lag relationship between these two markets. The results are mixed. 

Augustin (2014) reviews those studies and argues that the discrepancies may be related to the 

different samples, time periods, sampling frequency and data sources, and concludes that there is 

more price discovery in the credit derivative market as the market matures.  

There has also been a literature examining the spillover effects from the sovereign CDS 

market to the financial sector (Gennaioli et al. (2014), Acharya, Drechsler, and Schnabl (2014)), 

and to the corporate credit markets (Bocola (2016), Corsetti et al. (2014), and Corsetti et al. 

(2013), Lee et al. (2016), Almeida et al. (2017), Adelino and Ferreira (2016), Bedendo and Colla 

(2015) and Augustin et al. (2018)). Della Corte et al. (2016) decompose CDS spreads into a 

global and a local component, and find that the global component has a stronger 

contemporaneous correlation with currency excess returns than the local component.  

The rest of the paper is organized as follows. Section II describes the data. Sections III 

and IV report the main empirical results and their interpretation.  The analysis on real economic 

activities is reported in Section V, and Section VI concludes.   

 

II. Data 

A sovereign CDS contract allows market participants to purchase or sell protection against the 

risk of default of a sovereign government. During the term of the contract, the buyer makes 

quarterly payments, which are called CDS coupons or spreads, to the seller in exchange for the 

                                                           
8 In a letter to John Campbell and Robert Shiller, as discussed in Shiller (2001, p. 243), Paul Samuelson 
states that “Modern markets show considerable micro efficiency … In no contradiction to the previous 
sentence, I had hypothesized considerable macro inefficiency, in the sense of long waves in the time 
series of aggregate indexes of security prices below and above various definitions of fundamental values.” 
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seller’s promise of protection. If a credit event occurs, the protection buyer will be compensated 

by the seller for the loss during the credit event.9 The sovereign CDS market has been growing 

rapidly in the past decade, especially during the recent sovereign debt crisis. According to the 

Depository Trust & Clearing Corporation, the aggregate notional amount of sovereign CDS 

contracts was around $2 trillion in 2015, accounting for around 15% of all credit derivatives. 

Our sovereign CDS data are from the Markit Ltd., which collects daily sovereign CDS 

quotation data from major CDS dealers to construct average CDS spreads. Our sample is from 

January 2001 to September 2015. As shown in Figure 1, there are 29 countries in our sample in 

2001. This number has been growing steadily and reaches 91 by 2015. The list of countries and 

the starting dates of the data for each country are listed in the appendix. We focus on US-dollar-

denominated CDS contracts with a five-year maturity and default tier being the senior unsecured 

debt, as these contracts are most widely traded and have the highest market liquidity. 

Following Berndt and Obreja (2010), we construct the monthly sovereign “CDS returns,” 

which effectively measure the sovereign CDS market implied excess returns from the exposure 

to the underlying sovereign debts. Specifically, the “return” of a CDS contract during a period of 

time is the ratio of the mark-to-market profit/loss during that period to the notional amount. The 

mark-to-market profit/loss is computed from the protection seller’s perspective, and is estimated 

based on the widely used ISDA CDS model, which is standard in the industry and is described in 

detail in O’Kane (2008). To implement this valuation model, we assume a constant hazard rate 

and a 40% recovery rate, and use the LIBOR term structure as the discount rates. As pointed out 

in Longstaff et al. (2011), sovereign CDS data have a number of advantages over sovereign bond 

data for the estimation of credit spreads and returns. 

                                                           
9 The credit event includes failure to pay, moratorium, obligation acceleration, and restructuring, and is 
determined by the ISDA Determinations Committee. In most cases, the parties use “cash settlement” with 
an auction process, in which the CDS seller makes a cash payment based on an auction-generated market 
price of certain eligible debt obligation of the sovereign government. An alternative settlement is the 
“physical settlement,” in which the protection buyers tender an eligible bond to the sellers and receive the 
par value of the bond.   
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Several points are worth noting. First, a high sovereign CDS return is “good news,” i.e., 

the sovereign CDS return increases when the underlying country’s creditworthiness improves. 

Second, we compute the monthly CDS returns based on the spreads on the 20th of a month and 

on the 19th of the next month to make sure that these two spreads are from two CDS contracts 

that expire on the same day. Specifically, there are four CDS spread payment dates (i.e., the so-

called IMM dates) each year: March 20, June 20, September 20 and December 20. All contracts 

initiated between two IMM dates expire on the same day. After each IMM date, contracts with a 

new maturity date start trading. These new contracts are said to be “on-the-run” until the next 

IMM date. Our sovereign CDS data are based on on-the-run contracts. Hence, a CDS contract on 

the 20th of a month and the contract on the 19th of the next month always expire on the same 

day.10 Third, there are two credit events in our analysis, one for Greece and one for Argentina. 

Both were auction-settled and the recovery rates are 21.5% and 39.5% for Greece and Argentina, 

respectively. 11  They led to two large negative monthly returns, which are included in our 

analysis. Due to our large sample size, however, these two observations have only a negligible 

effect on our estimates. Table 1 provides summary statistics of our sovereign CDS data. The 

average CDS spread is 240 bps with a standard deviation of 557 bps. The monthly average 

SCDS return is 0.02%, with a standard deviation of 2.59%.  

For each country, we obtain, from Bloomberg, its daily stock index returns, which are 

denominated in U.S. dollars and include dividends. As illustrated in Figure 1, the total number of 

countries for which we have both CDS and stock data is 28 in 2001 and 75 in 2015. The 

complete list of countries with stock index data is provided in the appendix. To be consistent 

with our CDS return data, we construct the monthly stock index return also as the return from the 

20th of a month to the 19th of the next month from daily stock index returns. As shown in Table 1, 

the average monthly stock index return is 1.00%, with a standard deviation of 7.99%.  
                                                           
10 As a counter example, a contract on the 15th of a month and a contract on the 14th of the next month do 
not always have the same expiration date. For instance, a contract on March 15 and a contract on April 14 
have different expiration dates, since there is an IMM date (March 20) between these two dates. 
11 Other credit events (e.g., Ecuador in 2008) are not in our sample due to the lack of data for their stock 
and bond indices. 
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We obtain daily yield to maturity of 5-year domestic-currency-denominated sovereign 

bond indices from Bloomberg. As illustrated in Figure 1, the number of countries with both bond 

yields and CDS data has grown from 17 in 2001 to 51 by 2015. The complete list of countries 

with bond index data is provided in the appendix. To be consistent with the timing for the 

sovereign CDS and stock returns, the monthly yield changes are calculated based on the yield on 

the 20th of a month and that on the 19th of the next month. The average of the monthly yield 

changes is -1.62 bps, with a standard deviation of 54 bps.  

Finally, the rating and outlook of senior unsecured foreign currency debt are obtained 

from Standard and Poor’s. They cover all the countries on which we have sovereign CDS data. 

The median rating for all our observations is BBB+.  

 

III. Main Results 

A. Using the sovereign CDS market to predict stock returns 

We first examine whether the sovereign CDS market can predict future stock returns. This is 

motivated by the fact that sovereign CDS investors are mostly sophisticated financial institutions, 

while stock and bond investors are predominately local. For firm-level variables, some local 

investors might have better access to private information, which can potentially overcome their 

disadvantage relative to sophisticated institutions. For macro variables, however, since arguably 

most of the information is publicly available, sophistication and information-processing capacity 

play a more important role. Hence, the sovereign CDS market is expected to aggregate 

information more efficiently. In the presence of market frictions, stock prices may fail to fully 

reflect the information in the sovereign CDS market. Hence, sovereign CDS spreads can predict 

future stock returns. 

To test this conjecture, we sort countries into five quintiles based on their past 3-month 

sovereign CDS returns, and update the quintiles each month. The countries in quintile 1 have the 

highest CDS returns, i.e., according to the sovereign CDS market, their creditworthiness has 
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improved the most. Similarly, the creditworthiness of quintile-5 countries has deteriorated the 

most. That is, the sovereign CDS market indicates good news for quintile-1 countries and bad 

news for quintile-5 ones during the past 3 months. If this information is not fully reflected in 

stock prices, the stock indices of quintile-1 countries would outperform those of quintile 5 when 

this information is eventually incorporated into stock prices in the coming months. 

That is indeed the case. We first form an equal-weighted portfolio of stock indices for the 

countries in each quintile, and construct their dollar-denominated returns. Panel A of Table 2 

reports the average excess return of each portfolio over the 1-month US Treasury yield. In our 

full sample, as shown in the first row, the excess return of the quintile-1 portfolio is 1.34% per 

month, while that of the quintile-5 portfolio is only 0.09%. The difference is 1.25% per month, 

or 15% per year, with a t-statistic of 3.80. We then obtain market capitalization data from the 

World Development Indicators database from the World Bank, and form a market-cap-weighted 

portfolio for each quintile, and find that the quintile-1 portfolio outperforms the quintile-5 

portfolio by 1.10% per month (t=2.43). 

To account for the risk premium, we construct a number of factors. We first compute the 

global stock market factor as the equal weighted return of all stock indices. Second, our long-

short return should have a positive loading on the international momentum factor (Richards 

(1997), Rouwenhorst (1998)), because the good news in the sovereign CDS market about a 

country is likely accompanied by high stock returns in that country. Hence, we construct the 

stock index momentum strategy return factor, MOM_stock, as follows. We sort countries into 

five quintiles based on their past three-month stock index returns. MOM_stock is computed as 

the one-month return of the equal-weighted portfolio that is long in the winner quintile countries 

and short in the loser quintile ones. Finally, since our stock index returns are denominated in U.S 

dollars, foreign exchange exposures might have contributed to our long-short portfolio return. 

Hence, we obtain the two currency factors in Lustig, Roussanov and Verdelhan (2011), 

MKT_FX and HML_FX, which are currency market factor and the carry trade risk factor, 

respectively, from the author’s website. We also construct the currency momentum return factor, 
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MOM_FX, based on a momentum trading strategy in the currency market with a 3-month 

formation period and a 1-month holding period.  

We regress our long-short returns (i.e., quintile 1 minus quintile 5) on the above factors. 

The results based on the equal-weighted portfolios are reported in the first column of Panel B of 

Table 2. As expected, our long-short strategy return has a strong positive loading on the 

momentum factor. Nevertheless, the resulting alpha of our long-short strategy remains highly 

significant, and is 1.01% per month (t=2.89). In the second column, we include the global value 

and momentum factors in Asness, Moskowitz and Pederson (2013), VAL_global and 

MOM_global, which are obtained from AQR data library. Our long-short strategy alpha is 1.27% 

per month (t=3.50). The results based on the market-cap-weighted portfolios are reported in the 

third and fourth columns. The alphas are somewhat smaller, but remain statistically significant.  

We conduct subsample analyses by partitioning our sample by time. The first half of the 

sample covers the data from January 2001 to December 2007, and the second half January 2008 

to September 2015. The second and third rows of Panel A report the results based on equal 

weighted portfolios, showing that sovereign CDS spreads have predictive power in stock markets 

in both subsample periods. The long-short strategy return is 1.94% per month (t=3.51) for the 

first half of the sample, and 0.58% per month (t=2.10) for the second half.  

One might be concerned that the above results are driven by countries with very small 

economies and stock markets: quintiles 1 and 5 might be dominated by emerging countries since 

their sovereign CDS returns tend to be more volatile than those of developed countries. However, 

this is not the case. Every country in our sample has been sorted into each of the 5 quintiles at 

some point in time. In addition, our previous results based on market-cap-weighted portfolios 

partially alleviate these concerns. More importantly, we repeat our analysis on the subsample of 

G20 countries, which overwhelmingly dominate the global economy.12 As shown in Panel A, the 

long-short stock index return for G20 countries is 1.01% (t=2.07) and 0.87% (t=2.04) per month 

                                                           
12 According to the data from the Organization for Economic Co-operation and Development (OECD), 
the G20 countries represent 90% of the global GDP in 2018. 
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for the equal and value weighted portfolios, respectively. These are comparable to the results in 

the sample of non-G20 countries, where the long-short returns are 0.92% (t=3.38) and 0.99% 

(t=2.69) for the equal and value weighted portfolios, respectively.  

The above analysis is based on a three-month sorting period and a one-month holding 

period. To examine the robustness of those results, we repeat the analysis by varying the sorting 

and holding periods. The upper part of Panel C reports the results based on equal-weighted 

portfolios. It shows that, for the one-month holding period, the long-short strategy alphas are 

significant when we vary the sorting period from one month to six months. For example, the 

long-short strategy alpha is 0.83% per month (t=2.71) when the sorting period is 6 months. 

Moreover, the monthly long-short return appears to decrease with the holding period. For 

example, when the sorting period is three months, the long-short strategy alpha is 1.01%, 0.45% 

and 0.32% per month when the holding period is 1, 3 and 6 months, respectively. The value-

weighted results, reported in the lower part of Panel C, show a similar pattern. 

B. Using the sovereign CDS market to predict bond yields 

We now examine whether sovereign CDS spreads contain information that can predict future 

bond returns. It is important to note that although there is a “no-arbitrage relation” between a 

sovereign CDS spread and the sovereign credit spread of the underlying country, it has been 

understood that the two variables do not track each other closely due to the costs and risks of 

arbitrage, as well as the differences between the bond index and the underlying for the CDS 

contract. As noted in Longstaff et al. (2011), sovereign CDSs and sovereign bonds have different 

embedded leverage and market liquidity and hence the prices in these two markets may contain 

different information.  

Our bond data from Bloomberg provide the yields to maturity, but not returns, of 5-year 

domestic currency denominated sovereign bond indices. Since the return of a bond is 

approximately the negative of yield change multiplied by its duration, we simply use yield 
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changes to approximate bond returns.13 To simplify our discussion, when there is no potential for 

confusion, we will refer to yield changes as if they are bond returns.  

As in the previous section, we sort countries into 5 quintiles based on their past 3-month 

sovereign CDS returns, and update the quintiles each month. The sovereign CDS market implies 

that the creditworthiness of the quintile-1 countries improved the most, while that of quintile-5 

countries deteriorated the most. If the good news about quintile-1 countries has not been fully 

reflected in the bond markets, we would expect the borrowing costs of the governments in those 

countries to go down in the future. Similarly, we would expect the future borrowing costs of the 

governments of quintile-5 countries to go up.  

This conjecture is confirmed by our evidence. Specifically, we compute the equal-

weighted average of bond yield changes for the countries in each quintile.  As shown in the first 

row of Panel A in Table 3, on average, the bond yield of quintile-1 countries decreases by 7.04 

basis points, while that of quintile-5 countries increases by 4.90 basis points. The difference 

between the two yield changes is 11.87 basis points (t=3.15). Due to the difficulty of obtaining 

sovereign bond market sizes for a large cross section of countries, we construct GDP-weighted 

average of yield changes instead. The value weighted results are qualitatively similar but smaller 

in magnitude. The difference in weighted average yield changes between quintiles 1 and 5 is 

6.42 basis points (t=2.37).   

In order to control for the factors that might have contributed to the yield change 

difference, we regress it on a market factor, MKT_bond, which is computed as the equal 

weighted yield changes across all countries, and the momentum factor, MOM_bond, which is the 

counterpart of the momentum return in sovereign bond markets, with a 3-month formation period 

and a 1-month holding period, using yield changes as proxies for bond returns. 

                                                           
13 As a robustness check, we obtain monthly excess returns of U.S. dollar-denominated sovereign bonds 
of developing countries from Borri and Verdelhan (2015). The analysis based on this smaller sample 
leads to similar results.  
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As shown in the first column of Panel B of Table 3, the market and momentum factors 

cannot account for the difference in bond yield changes between quintiles 1 and 5. The estimated 

“alpha” is 6.85 basis points (t=2.26). That is, if the duration of the five-year bonds is 4 years, 

then the alpha from the long-short strategy in the sovereign bond markets is roughly 27.4 

(=6.85×4) basis points per month. In the second column, we find that the global value and 

momentum factors in Asness, Moskowitz, and Pedersen (2013) cannot explain the difference in 

yield changes either. The estimated alpha is 11.16 basis points (t=2.47). The value-weighted 

results, reported in the last two columns of Panel B, are weaker but qualitatively similar.   

We repeat our analysis for the two subsample periods, January 2001 to December 2007 

and January 2008 to September 2015. The second and third rows of Panel A of Table 3 show that 

the sovereign CDS market has predictive power in the sovereign bond markets for both periods. 

The yield change difference between the top and bottom quintiles is 7.75 basis points per month 

(t=1.75) for the first half of the sample, and 15.63 basis points per month (t=2.82) for the second 

half. The value-weighted effects, reported in the bottom half of Panel A, are smaller but 

qualitatively similar.  

To address the concern that the above results are driven by countries with very small 

economies and sovereign bond markets, we repeat our analysis on the subsample of G20 

countries. As shown in Panel A of Table 3, the yield change difference for G20 countries is 6.76 

basis points (t=2.69) and 5.39 basis points (t=1.96) per month for the equal and value weighted 

portfolios, respectively. Hence, our main results also hold for the major economies of G20 

countries. In comparison, the results for the subsample of non-G20 countries are much stronger. 

The yield change difference is 16.36 (t=2.67) and 18.68 (t=2.59) for equal and value weighted 

portfolios, respectively.  

We repeat our analysis by varying the sorting period n and holding period h. The results, 

reported in Panel C, remain quite similar. For example, as shown in the upper half of Panel C, 

which reports the results based on equal-weighted portfolios, for the case of n=3 months, the 

long-short strategy alpha is 5.33 basis points (t=2.49) and 4.54 basis points (t=2.19) for h=3 
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months and h=6 months, respectively. The results based on value-weighted portfolios, reported 

in the lower half of Panel C, remain similar.  

C. The direction of information flow  

Our previous evidence shows that the sovereign CDS market appears to contain information that 

can predict future stock and sovereign bond index returns. A natural question is whether there is 

information dissemination in the opposite direction. That is, can stock or bond markets predict 

future returns in the sovereign CDS market?  

Note that there is momentum in all three markets.14 In order to examine if market A has 

marginal predictive power for market B, it is important to control for the past return in market B. 

Hence, to examine the direction of information flow, we conduct the following sequential sorting. 

We first sort countries into 5 quintiles based on their past 3-month stock index returns. Then, for 

each quintile, we sort countries into 2 halves based on their past 3-month sovereign CDS returns, 

and compute the return from the equal-weighted long-short portfolio that buys stock indices of 

countries with high past CDS returns and sells those of countries with low past CDS returns. We 

then equally weight these 5 long-short portfolios. The return from this strategy thus reflects 

sovereign CDS markets’ marginal predictive power for future stock returns, after controlling for 

the past stock returns. As shown in Panel A of Table 4, for our full sample, the strategy return is 

51 basis points per month (t=3.17). After controlling for the market factor, the alpha remains at 

49 basis points per month (t=2.75). This is consistent with our evidence in Table 2 that the 

sovereign CDS market can predict future stock returns. Columns two and three report the 

strategy returns for the first and second half of our sample, and demonstrate that the predictive 

power of Sovereign CDS spreads is present in both subsamples.   

We now examine whether there is information flowing in the opposite direction, that is, if 

stock returns can predict future sovereign CDS returns after controlling for past CDS returns. We 

                                                           
14 For the momentum effect in stock indices and sovereign bonds, see, for example, Asness, Moskowitz, 
and Pedersen (2013). Xiao, Yan and Zhang (2019) document the momentum effect in the sovereign CDS 
market. 
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conduct similar 5 by 2 sequential sorting, first based on the past 3-month CDS returns and then 

based on the past 3-month stock returns. As shown in the last three columns of Panel A, the 

average strategy returns are very close to zero, for both the full sample and the two subsamples. 

The largest t-statistic is merely 0.55. Hence, we don’t find any evidence that stock markets have 

marginal predictive power for future sovereign CDS returns.   

Our analysis of the direction of the information flow between sovereign CDS markets 

and bond markets is based on similar 5-by-2 sequential sorting. As shown in Panel B of Table 4, 

the sovereign CDS market has strong predictive power for future bond yield changes, after 

controlling for past bond yield changes. The alpha for our full sample is 5.73 basis points per 

month (t=2.88). On the other hand, the predictive power of bond yields for sovereign CDS 

returns is marginal. The t-statistic for the alpha is 1.68 for the full sample, and the predictive 

power is mostly concentrated in the second half of the sample.  

D. Global perspective vs. local knowledge 

What is the nature of the information that is more efficiently aggregated by the sovereign CDS 

market relative to local stock and bond markets? Is it about country-specific factors, or global 

ones? We conjecture that it is mostly about global factors, rather than country-specific variables. 

This is because sovereign CDS investors’ advantage over local stock and bond investors is 

perhaps their superior capacity in gathering and analyzing global, rather than country-specific, 

information. For example, sovereign CDS investors may have advantages in predicting future 

risk tolerance of global investors and their capital flows to individual countries, which may have 

significant effects on the future prospects of those economies. Or, they may be better at 

analyzing the prospects of the future global economy and their influences on individual countries. 

For example, they may be better at predicting the future of the monetary policies in the U.S. and 

their implications on the future individual economies. In other words, our conjecture is that the 

sovereign CDS investors’ advantage is due to their global perspective, rather than their local 

knowledge.  
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To test this conjecture, we decompose the monthly sovereign CDS returns into a “global” 

component and a “country-specific” component, and examine which component has predictive 

power for future stock and bond returns. Specifically, we regress sovereign CDS returns on the 

average sovereign CDS returns across all countries in our sample. The regression residuals are 

classified as the country-specific component of sovereign CDS returns. The remaining portion of 

CDS returns is the global component. Which component has predictive power for future stock 

and bond returns? To answer this, we repeat our analyses in Tables 2 and 3, using the two 

components as predictors. The results are summarized in Table 5.  

As shown in the first row of Panel A, the global component of the CDS returns can 

predict future stock returns. The long-short strategy sorted by the global component of sovereign 

CDS returns generates 81 basis points per month (t=3.20). Adjusting for risk factors leads to an 

alpha of 69 basis points per month (t=2.75). In contrast, there is no evidence that the country-

specific component has predictive power for future stock index returns. As shown in the second 

row of Panel A, the long-short strategy sorted by the country-specific component of sovereign 

CDS returns has a return of -7 basis points per month (t=0.21), and an alpha of 4 basis points per 

month (t=0.12). As a comparison, we report in the third row the returns of the portfolios sorted 

by total sovereign CDS returns for the same sample period. It shows that both the long-short 

return and alpha are virtually the same as those from the sorting based on the global components. 

That is, the predictive power of sovereign CDS returns is almost entirely from the global, rather 

than country-specific, component.  

Similar results hold also for bond markets. As shown in Panel B of Table 5, if we sort 

countries based on the global component of sovereign CDS returns, the difference in bond yield 

changes between the top and bottom quintiles is 11.61 basis points per month (t=2.78), and is 

7.77 basis points (t=2.84) after accounting for risk factors. In contrast, this difference in bond 

yield changes is 6.11 basis points (t=1.71), and is 3.28 basis points (t=1.06) after adjusting for 

risk factors, if the countries are sorted based on the country-specific component of sovereign 

CDS returns. As a comparison, we report in the third row the results from total-sovereign-CDS-
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return-based sorting. Similar to the results for stock returns, the comparison shows that the 

predictive power of sovereign CDS returns is mostly from their global component.     

The above results support the interpretation that the information advantage of the 

investors in the sovereign CDS market is mostly from their advantage in global information.  

This interpretation further implies that the predictive power of the sovereign CDS market should 

come mostly from its ability to predict the global, rather than the country-specific, component of 

future stock and bond returns.  

To test this, we decompose stock and bond returns based on similar 12-month rolling 

window regressions. Specifically, we regress excess stock index returns on the excess returns of 

the global stock index, which are obtained from Kenneth French’s website. The idiosyncratic 

component is the regression residuals and the remaining portion of the stock index returns is the 

global component. Countries are sorted into 5 quintiles based on their past 3-month sovereign 

CDS returns. We compute the average global component stock return for each quintile and the 

long-short strategy that is long in quintile 1 and short in quintile 5. As shown in the first row of 

Panel C, the long-short return is 1.08% per month (t=6.83) and the alpha is 0.96% per month 

(t=5.15). Similarly, we compute the country-specific component of stock returns for each 

quintile and the long-short strategy. The second row of Panel C shows that this long-short return 

is -0.23% per month (t=0.84) and the alpha is -0.26% per month (t=0.82). That is, the predictive 

power of the sovereign CDS market comes almost entirely from its ability to predict the future 

global, rather than the country-specific, component of stock returns.   

The results based on bond yield changes are very similar. The bond yield change 

decomposition is based on a similar regression of bond yield changes on the bond yield changes 

in the U.S., which serves as a proxy for the global market factor. We compute the average global 

component bond yield change for each quintile and the long-short strategy that is long in quintile 

1 and short in quintile 5. As shown in the first row of Panel D, the difference between the global 

component bond yield changes of quintiles 1 and 5 is 10.18 basis points per month (t=4.54), and 

is 8.82 basis points per month (t=5.18) after accounting for risk factors. In contrast, as shown in 
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the second row, the difference between the country-specific component bond yield changes of 

quintiles 1 and 5 is only 3.24 basis points per month (t=0.88), and is -0.60 basis points per month 

(t=0.19) after accounting for risk factors. Hence, the predictive power of the sovereign CDS 

market is also almost entirely due to its ability to predict the future global, rather than the 

country-specific, component.15  

The above evidence is consistent with the view in Longstaff, Pan, Pedersen, and 

Singleton (2011) that “global investors play a predominant role” in the sovereign CDS market. 

Our results suggest that those global investors appear to be more capable of processing world-

wide information, whose implication on local stock and bond markets is only gradually 

appreciated by local investors. 

 

IV. Interpretation 

Our interpretation of the above results is as follows. Relative to stock and bond markets, the 

sovereign CDS market is better at aggregating certain macro information about its underlying 

countries. When this information gradually becomes public, stock and bond prices catch up with 

the sovereign CDS market. This interpretation is motivated by the fact that the investors in the 

sovereign CDS market are mostly sophisticated financial institutions, while those in the stock 

and bond markets are predominately local investors, as is known in the international finance 

literature. For firm-level variables, some local investors might have better access to private 

information, which can potentially overcome their disadvantage relative to sophisticated 

investors. This may explain the mixed results in the literature on whether local investors know 

                                                           
15 We conducted a variety of robustness checks. First, we explored alternative market factors in our 
decomposition. For example, we used the equal-weighted average return of all stock indices as the stock 
market factor, and the average bond yield change as the bond market factor. Second, we repeat the 
analysis with value-weighted portfolios for stock returns and bond yield changes. Third, we repeat our 
analysis based on decompositions from 24-month rolling window regressions. The results based on all 
these alternative specifications remain the same qualitatively.  
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more.16 For macro variables, however, sophistication and information-processing capacity plays 

a more important role, since arguably most of the information is publicly available. Hence, in our 

macro information setup, the sovereign CDS market should aggregate information more 

efficiently. Moreover, our interpretation is also motivated by the insight in Black (1975) that 

derivatives often have embedded leverage, allowing investors to trade on their information more 

aggressively. Shen, Yan and Zhang (2014) show that due to collateral netting frictions, optimal 

derivative contracts are designed so that they are the most efficient in facilitating investors’ 

speculation or hedging. This provides a foundation for the conjecture that the sovereign CDS 

market might be more efficient in aggregating certain macro information than stock and bond 

markets. We have the following evidence to further support this interpretation.  

A. Persistence 

Our interpretation suggests that the sovereign CDS market contains information that is only 

gradually incorporated into stock and bond prices over time. That is, stock and bond markets 

gradually “catch up” with the sovereign CDS market. This interpretation implies that when we 

increase the holding period of the long-short portfolios in Tables 2 and 3, the cumulative alphas 

during the holding period should increase and stabilize, but not revert back to zero.   

This is indeed the case. We repeat the analysis in Table 2 by extending the holding period, 

and the results are summarized in Panel A of Figure 2. It shows that, in stock markets, the 

cumulative alpha of the long-short strategy during the holding period gradually increases when 

the holding period increases to around 6 months. The cumulative alpha stabilizes when the 

holding period increases further, and does not revert back to zero. Similarly, we repeat the bond 

market analysis in Table 3 by extending the holding period. As shown in Panel B of Figure 2, the 

cumulative yield change difference during the holding period gradually increases when the 

holding period increases to around 6 months, and then stays roughly there when we further 

increase the holding period.  

                                                           
16 See, for example, Bae, Stulz, and Tan (2008) and its references.  
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B. Timing of the predictability 

Our interpretation is that the sovereign CDS market contains some information that is not 

reflected in stock and bond prices. What kind of information? A natural candidate is perhaps the 

sovereign creditworthiness. The above long-short strategies generate profits when the 

information is eventually incorporated into stock and bond prices. When should that happen? A 

conjecture is perhaps when that information becomes public, e.g., when credit rating or outlook 

changes are announced. Hence, our interpretation implies that the previous long-short strategies 

should be more profitable around the time when credit rating or outlook changes are announced. 

Intuitively, one reason that our long-short strategies in stock and bond markets are profitable is 

that the sovereign CDS market can anticipate future rating or outlook changes and position the 

portfolios in advance, which reap profits when those events eventually become public.  

Before testing this prediction, it is worth clarifying a potential confusion. One might 

think that credit rating and outlook changes are mostly country specific. Hence, the above 

prediction seems to imply that the country-specific component of sovereign CDS returns should 

have predictive power for future stock and bond returns, which is inconsistent with our evidence 

in Section III.D. However, it is not the case that credit rating and outlook changes are mostly 

country specific. On the contrary, these changes have a significant global component.  For 

example, Longstaff et al. (2011) find that the first principal component of sovereign credit 

spreads explains 64% the credit spread variations in their sample. This first principle component 

is highly correlated with the U.S. market, and has a correlation of −74% with U.S. stock market 

returns, and a correlation of 61% with changes in the VIX index. Intuitively, this large global 

component can be due to the monetary policy in the U.S., which drives both the global capital 

flows and demand, and hence significantly affects the creditworthiness of countries around the 

world. Another important driver for global variations of sovereign credit risks is perhaps the 

growth of the global economy, which significantly influences the balance sheets of countries 

around the world. Even the influence of natural disasters on sovereign credit risks has a strong 

systematic component. For example, rating agencies have long recognized the systematic nature 



25 
 

of natural disasters due to climate changes. 17  Finally, as shown in Du et al. (2018), even 

idiosyncratic natural disasters may have systematic effects on global economies through the 

international trade network. 

To test the prediction that sovereign CDS spreads have a stronger predictive power for 

stock returns around announcements, we run a predictive panel regression of the stock index 

return of country i in month t on an indicator variable, I_CDSi,t, a dummy variable Dit, and their 

interaction term. The indicator variable I_CDSi,t is 1 if country i is in quintile 1 according to the 

sorting by sovereign CDS returns during months t-3 to t-1 (i.e., the sovereign CDS market 

indicates that the creditworthiness of country i improved the most during the previous three 

months), is -1 if country i is in quintile 5, and is 0 if country i is in the other three quintiles. The 

dummy variable Di,t is 1 if there is a credit rating or outlook change by Standard & Poor’s on 

country i in month t, and is 0 otherwise. Our prediction that sovereign CDS returns have a 

stronger predictive power for stock returns in announcement months implies that the coefficient 

of the interaction term should be positive.  

This is indeed the case. As shown in the first column of Panel A Table 6, the coefficient 

of I_CDSi,t is 0.38 (t=2.81). The coefficient of the interaction term I_CDSi,t×Di,t is 0.84 (t=1.70), 

which is more than twice the coefficient for I_CDSi,t. That is, the sovereign CDS market’s 

predictive power is more than twice as strong during announcement months than during other 

periods. In column two, we control for the stock momentum by including a momentum indicator 

variable I_MOMi,t, which is 1 if country i is in the top quintile based on the stock returns during 

months t-3 to t-1, is -1 if country i is in the bottom quintile, and is 0 otherwise. The interaction 

coefficient is still twice as large as the coefficient for I_CDSi,t.18 

We run similar predictive panel regressions for bond yield changes. Since yield change 

and bond return are negatively related, our interpretation implies that the coefficient of the 

                                                           
17 See, e.g., Climate Risk: Rising Tides Raise the Stakes, Standard and Poor’s, Insights, December 2015. 
18 The interaction coefficient is statistically insignificant. This is perhaps due to the lack of statistical 
power. As is shown in Panel A of Table 7, the interaction coefficient becomes significant when we focus 
on shorter event windows.  
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interaction term should be negative. Indeed, as shown in the third column, the coefficient for 

I_CDSi,t×Di,t is -29.28 (t=2.36) and that for I_CDSi,t is -4.11 (t=1.51). That is, the sovereign CDS 

market’s predictive power for future bond yield changes is 7 times stronger during 

announcement months than other periods. The last column shows that the results remain similar 

after controlling for the bond market momentum.     

C. Daily analysis of the timing of the predictability 

The above evidence has been based on monthly data, which do not allow for a more detailed 

analysis of the timing of the predictability. We now utilize daily data to conduct a more granular 

analysis of the timing of when stock and bond markets catch up with the sovereign CDS market. 

The idea is to examine whether stock and bond prices catch up with the sovereign CDS market 

during a short time window around the credit event day.  

Specifically, we run the regressions in Panel A of Table 6 at daily frequency. The 

indicator variable I_CDS𝑖,𝑡 is now replaced by its daily-frequency counterparts, I_CDS𝑖,𝑡𝑑 , which is 

1 if country i is in quintile 1 on day t according to the sorting by sovereign CDS returns during 

the previous three months, is -1 if country i is in quintile 5, and is 0 if country i is in the other 

three quintiles. The dummy variable 𝐷𝑖,𝑡 is now replaced by 𝐷𝑖,𝑡𝑛 , which is 1 if country i has an 

S&P credit rating change or outlook change during the (2n+1)-day window around day t (i.e., 

from day t-n to day t+n), and is 0 otherwise. That is, 𝐷𝑖,𝑡𝑛  is meant to indicate whether there is a 

credit event for country i during a short time window around day t.  

Our daily regressions examine whether stock and bond prices catch up with the sovereign 

CDS market during the (2n+1)-day window around the credit event day. In the case of n=10, for 

example, the coefficient of the interaction term I_CDS𝑖,𝑡𝑑 × 𝐷𝑖,𝑡𝑛  captures the effect during the 21-

day window around credit event days. When we decrease the value of n, the event window gets 

shorter. In the case of n=0, the interaction coefficient captures the effect on credit event days 

only. Hence, by varying the value of n from 20 to 0, we can “zoom in” to examine the timing of 

the stock and bond markets catching up with the sovereign CDS market.  
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If stock and bond markets catch up quickly with the sovereign CDS market around the 

announcements of credit rating or outlook changes, the interaction coefficient should be large for 

narrow event windows surrounding announcement days (i.e., when n is small), but should decay 

towards zero when the event window expands (i.e., when n increases). 

This is indeed the case. For the case n=0 in stock return regressions, as shown in Panel A 

of Table 7, the coefficients of I_CDS𝑖,𝑡𝑑  and the interaction term I_CDS𝑖,𝑡𝑑 × 𝐷𝑖𝑡𝑛  are 1.11 (t=2.37) 

and 22.91 (t=1.69), respectively. That is, the sovereign CDS market’s predictive power for stock 

returns is over 20 times stronger on credit event days than on other days. This extra predictive 

power decays quickly when we expand the event window. For example, during the 3-day 

window around the credit event day (i.e., n=1), the interaction coefficient is 12.04 basis points 

(t=1.76), suggesting that the sovereign CDS market’s predictive power is around 12 times 

stronger during the 3-day window than in other periods. For the case of n=5, for example, the 

interaction coefficient is only 2.60, and is insignificantly different from zero. A similar pattern 

exists for bond markets. Since yield change and return are negatively related, the interaction 

coefficient is negative, and converges to zero when n increases. For example, as shown in Panel 

B, the interaction coefficient is -4.74 (t=2.77) for the case of n=0, is -2.58 (t=2.58) for the case 

of n=1, and is only -1.01 (t=1.46) for the case of n=5. 

In summary, the above evidence lends further support to our interpretation by showing 

that the predictability is concentrated around the days surrounding the announcements of rating 

or outlook changes. That is, stock and bond markets appear to catch up with the sovereign CDS 

market at the “right time”—when credit-related information becomes public.  

D. Asymmetry in predictability 

Our interpretation implies an asymmetry between catching up with positive and negative 

information. If stock and bond prices fail to reflect the information in sovereign CDS spreads, 

arbitrageurs can profit from trading stocks and bonds. In the presence of short sales constraints, 

however, it is more costly to exploit negative information than positive. Hence, less negative 
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information is incorporated into stock and bond prices. When the negative information 

eventually becomes public, stock and bond prices should respond more strongly. In other words, 

catchup should be stronger around announcements of negative information.  

To test this implication, we decompose the indicator I_CDSi,t into two variables. The first 

one, Good_CDSit, is 1 if country i is in quintile 1 according to the sorting based on sovereign 

CDS returns from month t-3 to month t-1, and is 0 otherwise. That is, Good_CDSi,t is an 

indicator for “good news” for country i during the previous three months. Similarly, the second 

variable, Bad_CDSit, is an indicator for “bad news”, which is -1 if country i is in quintile 5, and 

is 0 otherwise.  

Note that I_CDSi,t is the sum of Good_CDSi,t and Bad_CDSi,t. Hence, one can view our 

earlier regressions in Panel A of Table 6 as restricted regressions where the coefficients for 

Good_CDSi,t and Bad_CDSi,t are restricted to be the same, and the coefficients for 

Bad_CDSi,t×Dit and Good_CDSi,t×Di,t are also restricted to be the same. We now allow these 

coefficients to be separately estimated. Our interpretation that catchup to bad news is stronger 

implies that the coefficient for Bad_CDSi,t×Di,t should be larger than that for Good_CDSi,t×Di,t.  

Our evidence is consistent with this implication. For stock markets, as shown in the first 

column of Panel B of Table 6, the coefficient of Bad_CDSit×Dit is 2.46 (t=2.48), while that of 

Good_CDSit×Dit is -0.82 (t=1.08). This is consistent with the interpretation that stock markets 

catch up with bad news more strongly. A similar pattern exists for the bond markets. Since yield 

change and bond return are negatively related, our interpretation implies that the two interaction 

coefficients should be negative and that the coefficient of Bad_CDSit×Dit should be larger in 

absolute value. Indeed, as shown in column three, the coefficient of Bad_CDSit×Dit is -50.47 

(t=2.25) while that of Good_CDSit×Dit is -4.26 (t=0.47). Finally, we control for momentum 

effects in the regressions. As shown in columns two and four, the results remain very similar.  

We also run daily regressions to conduct a more granular analysis on the timing of the 

catchup to the sovereign CDS market. Specifically, we rerun the above regressions at daily 



29 
 

frequency. The indicators Good_CDSi,t and Bad_CDSi,t are now replaced by their daily-

frequency counterparts, Good_CDS𝑖,𝑡𝑑  and Bad_CDS𝑖,𝑡𝑑 . Good_CDS𝑖,𝑡𝑑  is 1 if country i is in quintile 

1 according to the sorting based on sovereign CDS returns during the previous three months, and 

is 0 otherwise. Similarly, Bad_CDS𝑖,𝑡𝑑  is 1 if country i is in quintile 5 according to the sorting 

based on sovereign CDS returns during the previous three months, and is 0 otherwise.  

Our evidence shows that the stronger catchup to bad news is concentrated around the 

days surrounding the credit events. As shown in the second row of Panel C of Table 7, the 

coefficient for Bad_CDS𝑖𝑡𝑑 × 𝐷𝑖𝑡𝑛 is 37.97 (t=1.53) for the case of n=0. For the case of n=2, for 

example, the interactive coefficient is 21.06 basis points (t=2.50). For the case of n=20, the 

interactive coefficient is only 5.32 basis points per day (t=2.04). In contrast, the catching up with 

good news is not detectable: all the coefficient estimates for Good_CDS𝑖𝑡𝑑 × 𝐷𝑖𝑡𝑛  are 

insignificantly different from 0. Similar patterns hold for bond markets. As shown in Panel D, 

the coefficients for the interaction term Bad_CDS𝑖𝑡𝑑 × 𝐷𝑖𝑡𝑛 are highly significant and they decay 

towards zero when n increases. In contrast, all the coefficients for Good_CDS𝑖𝑡𝑑 × 𝐷𝑖𝑡𝑛  are 

insignificantly different from zero.  

The above evidence suggests that, perhaps due to short sales constraints, stock and bond 

markets are less effective in incorporating negative information from the sovereign CDS market. 

If the sovereign CDS market was anticipating negative information, when it eventually arrives 

(i.e., a credit event is announced) stock and bond markets respond strongly since they have not 

yet fully incorporated it. In contrast, if the sovereign CDS market was anticipating positive 

information, when it eventually arrives, stock and bond markets barely respond since they have 

already incorporated most of the positive information in the sovereign CDS market.    

E. Futures markets 

The intuition in the previous section also implies that the predictive power of the sovereign CDS 

market should be weaker if it is easier for investors to trade in the stock and bond markets, for 

example, if there are stock or bond futures markets.  
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From Datastream, we obtain information on whether there exist stock index futures 

markets for each country during our sample period. At the beginning of our sample, there are 9 

countries with stock index futures markets and 7 countries with sovereign bond or interest rate 

futures markets. In 2015, the end of our sample, there are 33 countries with stock index futures 

markets and 27 countries with sovereign bond or interest rate futures markets. 

We partition our stock index return sample according to whether there exists a stock 

index futures market for the country’s main stock index. We then repeat our analysis in Panel A 

of Table 2 for each of the two subsamples. The results are reported in Panel A of Table 8. As 

shown in the first row, the equal-weighted long-short portfolio return is 0.58% per month (t=2.06) 

in the subsample of countries with stock index futures markets. In contrast, in the second row, 

where the sample consists of countries without stock index futures markets, the long-short return 

is almost twice as large, and is 1.26% per month (t=2.61). As shown in the last two rows, the 

results based on value-weighted portfolios are qualitatively the same. The evidence on the bond 

market is similar. For the subsample of countries without sovereign bond or interest rate futures 

markets, as shown in Panel B of Table 8, the difference in bond yield changes between the top 

and bottom quintiles is 19.38 basis points (t=2.98) for equal-weighted portfolios and 25.45 basis 

points (t=2.86) for value-weighted portfolios. In contrast, for the subsample of countries with 

sovereign bond or interest rate futures markets, the difference in bond yield changes between the 

top and bottom quintiles is only 2.42 (t=0.92) basis points for equal-weighted portfolios and 4.23 

basis points (t=1.68) for value-weighted portfolios. These results are consistent with the 

interpretation that predictive power of the sovereign CDS market is weaker in the presence of 

futures markets for stock and bond indices.  

 

V. Real Macroeconomic Activities 

In this section, we examine whether the sovereign CDS market can predict future real 

macroeconomic activities. Specifically, we run panel regressions of quarterly year over year 
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GDP growth on the returns in the stock, bond, and sovereign CDS markets during the previous 

quarter, after controlling for the GDP growth in the previous quarter. As shown in Panel A of 

Table 9, despite the short sample period for quarterly observations, the estimates are still 

statistically significant. In the first column, the coefficient for CDS return is 1.18 (t=2.03), 

suggesting that sovereign CDS returns have marginal predictive power for future GDP growth: a 

higher sovereign CDS return implies a higher GDP growth rate next quarter. The coefficients for 

stock return and yield change are 0.97 (t=2.05) and -13.66 (t=1.12). That is, the stock markets 

possess additional information that is relevant for predicting future GDP growth, but the 

information in bond markets does not appear to have additional predictive power. 

Our evidence in Section III.D suggests that the information advantage of the sovereign 

CDS market is due to its superior capacity to incorporate global information. We further examine 

this interpretation for GDP forecasting. Specifically, we decompose sovereign CDS returns into a 

global component and a country-specific one. Under the hypothesis that sovereign CDS investors 

have an advantage in analyzing global information and its implications for individual countries, 

the marginal predictive power of sovereign CDS returns should come mostly from their 

systematic component. This is indeed the case. As shown in the second column, the coefficient 

for the global component of sovereign CDS returns is 4.98 (t=1.71). On the other hand, the 

coefficient for the country-specific component, -1.58 (t=0.91), has a wrong sign. That is, the 

unique forecasting power in sovereign CDS returns is due to their global component.    

We run similar regressions for the Purchasing Managers' Index (PMI), which is a 

monthly indicator of the manufacturing activity in private sectors. Perhaps due to the higher 

frequency of the observations, the statistical significance of our evidence is substantially stronger. 

As shown in column one of Panel B, the coefficient for the CDS return is 6.10 (t=3.55) and the 

coefficients of both stock and bond returns are insignificant. This suggests that sovereign CDS 

returns contain unique information that has predictive power for future PMI index. The 

improvement in the creditworthiness in the sovereign CDS market predicts that manufacturing 

activity will speed up next month. Column two shows that the coefficients for the global and 
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country-specific components of the sovereign CDS returns are 14.23 (t=2.18) and 2.29 (t=1.01), 

respectively. That is, once again, the unique information in sovereign CDS returns that can 

predict future PMI comes mostly from its global component. 

 

VI. Conclusion 

We show that sovereign CDS spreads can predict future stock index returns, government bond 

yields, as well as real macroeconomic activities. This predictive power is almost entirely from 

the global, rather than country-specific, component of sovereign CDS spreads. Our evidence is 

consistent with the interpretation that the sovereign CDS market contains information, especially 

global information, which is only gradually reflected in future stock and bond prices, especially 

during the few days around credit rating or outlook changes.  
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Figure 1. Number of countries 

This figure plots the number of countries in our sovereign CDS sample, the sample with both sovereign 

CDSs and stock indices, and the sample with both sovereign CDSs and sovereign bond indices.   
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Figure 2. Cumulative alphas 

Panel A plots the holding period cumulative alpha of the long-short strategy in stock markets against the 

holding period, after controlling for MKT_stock, MOM_stock, MKT_FX, HML_FX, and MOM_FX. 

Panel B plots the cumulative yield change during the holding period in sovereign bond markets against 

the holding period, after controlling for MKT_bond and MOM_bond. All the risk factors and the details 

of the long-short strategies are described in Table 2. 
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Table 1. Summary statistics 

This table reports the summary statistics of main variables in the paper. CDS spread is the sovereign CDS 
spread, and is from Markit Ltd. Following Berndt and Obreja (2010), we compute the monthly CDS 
return from the CDS spreads on the 20th of a month and on the 19th of the next month. Stock index return 
is the monthly US-dollar-denominated return of the main stock index of a country, dividend included, 
from the 20th of a month to the 19th of the next month, and is from Bloomberg. Bond yield change is the 
monthly yield change, from the 20th of a month to the 19th of the next month, of the 5-year local-currency-
denominated sovereign bond index, which is constructed by Bloomberg. The quarterly year-over-year 
GDP growth data are from the IMF World Economic Outlook Database. The seasonally adjusted Product 
Manager Index (PMI) data are from Markit Ltd. The list of stock indices and bond yield indices is 
reported in the appendix. The last column reports the number of observations for each variable. The 
sample period is from January 2001 to September 2015.  

 

  Mean Std Dev 1st 25th 50th 75th 99th N 
CDS spread (bps) 240.40  556.66  1.74  36.45  118.79  276.17 1975.68  12193  
CDS return (%) 0.02  2.59  -7.83  -0.22  -0.01  0.37  6.64  12065 
Stock index return (%) 1.00  7.99  -21.70  -3.01  1.12  5.18  22.14  11196  
Bond yield change (bps)  -1.62  54.01  -130.00  -17.00  -2.40  13.30  140.00  6375  
PMI 52.57  6.38  31.88  49.41  52.88  56.40  67.59  5051  
GDP growth (%) 3.12  4.13  -9.11  1.19  3.09  5.43  12.55  3559  
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Table 2. Using sovereign CDSs to predict stock returns 

Countries are sorted into 5 quintiles based on their past 3-month sovereign CDS returns. Those in quintile 
1 (5) have the highest (lowest) CDS returns. Then, for each quintile, we form portfolios of stock indices. 
In panels A and B, portfolios are held for one month before rebalancing. Panel A reports the average 
excess return over the 1-month US Treasury yield for each of the 5 portfolios, and the long-short portfolio 
that is long in quintile 1 and short in quintile 5. The upper half is based on equal weighted portfolios. The 
first row is for the full sample, from January 2001 to September 2015. The second and third rows are 
based on subsamples partitioned by time. The fourth and fifth rows report the results for the G-20 and 
non-G20 subsamples, respectively. The lower half reports the results based on market-cap weighted 
portfolios. Panel B reports the results from the regression of the long-short returns on various factors. 
MKT_stock is the equal-weighted return across all stock indices. MOM_stock and MOM_FX are the 
momentum returns for stock indices and currency market, respectively. Both are constructed based on a 
3-month sorting period and a 1-month holding period. MKT_FX and HML_FX are the currency factors in 
Lustig, Roussanov and Verdelhan (2011), and are obtained from the authors’ website. VAL_global and 
MOM_global are the global value and momentum factors in Asness, Moskowitz and Pederson (2013), 
and are from the AQR data library. Panel C reports the alphas from the long-short strategies, with an n-
month sorting period and an h-month holding period, for various values for n and h. All t-statistics are 
based on standard errors that are Newey-West (1987) adjusted with 12 lags, and are reported in 
parentheses. ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 

Panel A: Returns of stock index portfolios (%) 

  1 (good) 2 3 4 5 (bad) 1-5 
Equal weight Full sample  1.34** 1.41** 0.89* 0.76 0.09 1.25*** 
  (2.34) (2.46) (1.73) (1.53) (0.15) (3.80) 
 2001-2007 2.56*** 2.82*** 1.54*** 1.73*** 0.62 1.94*** 
  (4.27) (6.04) (3.01) (4.04) (0.63) (3.51) 
 2008-2015 0.27  0.22  0.38  -0.07  -0.31  0.58**  
  (0.36)  (0.30)  (0.47)  (0.10)  (0.40)  (2.10)  
 G20  1.48** 0.86* 0.65 0.52 0.47 1.01** 
  (2.22) (1.67) (1.23) (0.99) (0.82) (2.07) 
 Non-G20 1.39** 1.46** 1.12** 0.67 0.48 0.92*** 
  (2.38) (2.43) (2.10) (1.30) (0.84) (3.38) 
Value weight Full sample  1.14** 0.82* 0.54 0.82 0.04 1.10** 
  (2.15) (1.77) (1.22) (1.85) (0.06) (2.43) 
 2001-2007 2.12*** 1.68*** 0.92 1.10** 0.44 1.68** 
  (2.94) (2.73) (1.39) (2.12) (0.43) (1.96) 
 2008-2015 0.28 0.15 0.26 0.56 -0.22 0.51* 
  (0.33) (0.21) (0.31) (0.9) (0.28) (1.77) 
 G20 1.30** 0.80 0.53 0.54 0.43 0.87** 
  (1.96) (1.49) (1.01) (1.09) (0.74) (2.04) 
 Non-G20 1.23** 1.12** 0.70 0.79 0.26 0.99*** 
  (1.98) (2.10) (1.20) (1.59) (0.50) (2.69) 
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Panel B: Dependent variable: return of quintile 1 – quintile 5 (%) 

 Equal weight Value weight 
Alpha 1.01*** 1.27*** 0.90** 0.99** 

 
(2.89) (3.50) (2.17) (2.23) 

MKT_stock (%) -0.048 -0.063 0.018 -0.10 

 
(0.53) (0.57) (0.20) (1.17) 

MOM_stock (%) 0.263** 
 

0.32***  

 
(2.30) 

 
(4.08)  

MKT_FX (%) -0.10 
 

-0.30  

 (0.57) 
 

(1.06)  
HML_FX (%) 0.40*** 

 
0.060  

 
(2.61) 

 
(0.30)  

MOM_FX (%) -0.155 
 

0.26  

 
(1.34) 

 
(1.11)  

VAL_global (%)  0.31  0.66 

 
 (0.69)  (1.23) 

MOM_global (%)  -0.040  0.18 

 
 (0.21)  (0.61) 

     
Observations 175 175 175 175 
R-Square 0.12 0.02 0.13 0.02 

 

Panel C: Long-short strategy alpha (%). n: sorting period, h: holding period (months) 

  h=1  h=3  h=6  
Equal weight n=1  0.59** 0.36* 0.27 
 

 
(2.17) (1.74) (1.47) 

 n=3  1.01*** 0.45** 0.32* 
 

 
(2.89) (2.25) (1.81) 

 n=6  0.83*** 0.43** 0.32 
 

 
(2.71) (2.00) (1.51) 

Value weight n=1  1.12** 0.66** 0.22 
 

 
(2.49) (2.53) (1.34) 

 n=3  0.90** 0.36 0.11 
 

 
(2.17) (1.54) (0.38) 

 n=6  0.11 -0.23 -0.06 
 

 
(0.24) (0.68) (0.21) 
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Table 3 Using sovereign CDSs to predict bond yield changes 

Countries are sorted into 5 quintiles based on their past 3-month sovereign CDS returns. Those in quintile 
1 (5) have the highest (lowest) CDS returns. We then form a portfolio for each quintile. In panels A and B, 
portfolios are held for one month before rebalancing. Panel A reports the average bond yield change, 
∆Yield, for each of the 5 quintiles and the difference in ∆Yield between quintiles 1 and 5. The upper half 
is based on equal weighted averages. The first row is for the full sample, from January 2001 to September 
2015. The second and third rows are based on subsamples partitioned by time. The fourth and fifth rows 
report the results for the G20 and non-G20 subsamples, respectively. The lower half report the results 
based on GDP-weighted averages. Panel B reports the results from the regression of the difference in 
∆Yield between quintiles 1 and 5 on various factors. The results based on equal weighted yield changes 
are reported in columns 1 and 2, while those based on GDP-weighted are reported in columns 3 and 4. 
MKT_bond is the equal-weighted yield changes across all countries. MOM_bond is equivalent to the 
momentum return in the sovereign bond market, with a 3-month sorting period and a 1-month holding 
period, with yield changes as proxies for bond returns. VAL_global and MOM_global are the global 
value and momentum factors in Asness, Moskowitz and Pederson (2013), and are from the AQR data 
library. Panel C reports the alphas from the long-short strategies, with an n-month sorting period and an 
h-month holding period, for various values of n and h. All t-statistics are based on standard errors that are 
Newey-West (1987) adjusted with 12 lags, and are reported in parentheses. ***, **, and * indicate 
significance levels of 1%, 5%, and 10%, respectively. 

Panel A: Yield changes of bond index portfolios (bps) 

  1 (good) 2 3 4 5 (bad) 5-1 
Equal weight Full sample  -7.04*** -3.85*** -2.28 -3.38* 4.90 11.87*** 
  (2.76) (2.59) (1.61) (1.87) (1.46) (3.15) 
 2001-2007 -8.24* -3.04 -0.42 -1.39 -0.30 7.75* 
  (1.78) (1.26) (0.20) (0.58) (0.15) (1.75) 
 2008-2015 -5.81** -4.36** -3.7** -4.59* 9.82* 15.63*** 
  (2.32) (2.32) (2.10) (1.77) (1.73) (2.82) 
 G20  -5.16* -4.44** -2.64* -1.44 1.03 6.76*** 
  (1.92) (2.30) (1.81) (0.69) (0.64) (2.69) 
 Non-G20 -7.01** -2.60 -2.09 -2.31 9.36* 16.36*** 
  (2.36) (1.58) (1.32) (1.28) (1.79) (2.67) 
Value weight Full sample  -6.12** -4.40*** -1.71 -3.15 0.31 6.42** 
  (2.38) (3.01) (1.26) (1.44) (0.14) (2.37) 
 2001-2007 -8.48** -3.07 -0.38 -1.25 -3.10 5.39* 
  (1.96) (1.49) (0.18) (0.45) (1.02) (1.72) 
 2008-2015 -4.02 -4.68** -2.38 -4.33 3.73 7.75** 
  (1.40) (2.65) (1.31) (1.34) (1.32) (2.59) 
 G20 -4.57* -4.01** -1.95 -1.31 0.56 5.39** 
  (1.76) (2.23) (1.44) (0.56) (0.36) (1.96) 
 Non-G20 -7.36** -1.80 -2.51* -3.88* 11.32 18.69** 
  (2.22) (1.28) (1.73) (1.83) (1.79) (2.59) 
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Panel B: Dependent variable: ∆Yield of quintile 5 – ∆Yield of quintile 1 (bps) 

 Equal weight Value weight 
Alpha 6.85** 11.16** 4.45** 6.14** 

 (2.26) (2.47) (2.06) (2.40) 
MKT_bond (%) 14.36 79.51** 18.11 7.99 

 
(0.74) (2.06) (0.78) (0.45) 

MOM_bond (%) 69.81*** 
 

59.67***  

 
(6.60) 

 
(8.19)  

VAL_global (%)  6.69***  5.82** 

  (2.79)  (1.98) 
MOM_global (%) 

 
3.88**  2.18 

  
(2.32)  (1.19) 

   
  

Observations 175 175 175 175 
R-Square 0.42 0.10 0.32 0.02 

 

 

Panel C: Long-short strategy alpha (bps) n: sorting period, h: holding period (months) 

  h=1  h=3  h=6  
Equal weight n=1  4.35 3.17* 2.45** 
 

 
(1.52) (1.84) (2.04) 

 n=3  6.85** 5.33** 4.54** 
 

 
(2.26) (2.49) (2.19) 

 n=6  4.76** 4.27** 3.71** 
 

 
(2.08) (2.36) (2.04) 

Value weight n=1  1.36 3.23** 2.16 
 

 
(0.69) (2.29) (1.61) 

 n=3  4.45** 3.60** 3.08* 
 

 
(2.06) (2.15) (1.80) 

 n=6  5.66*** 4.59* 3.56 
 

 
(2.66) (1.92) (1.43) 
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Table 4. The direction of information flow  

Panel A reports the sequential sort results for stock and sovereign CDS markets. In the first 3 columns, 
we first sort countries into 5 quintiles by their past 3-month stock index returns. Then, for each quintile, 
we sort countries into 2 halves based on their past 3-month sovereign CDS returns, and compute the 
return from the equal-weighted stock portfolio that is long in countries with high past CDS returns and 
short in countries with low past CDS returns. Finally, we compute the equal-weighted average return 
across the five long-short stock portfolios. The table reports the average returns and alphas of these long-
short strategies for the full sample (January 2001 to September 2015) and the two subsamples (2001-2007 
and 2008-2015). The results in the last 3 columns are based on similar 5-by-2 sequential sorting for CDS 
returns, first based on the past 3-month CDS returns and then based on the past 3-month stock returns. 
The analysis in Panel B is analogous to that in Panel A, with bond yield changes replacing stock returns. 
T-statistics are based on standard errors that are Newey-West (1987) adjusted with 12 lags, and are 
reported in parentheses. ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively.      

  

Panel A: Sovereign CDSs vs. stocks 

 
CDSs to Stocks (%) 

 
Stocks to CDSs (%) 

 
Full sample First Half Second half 

 
Full sample First Half Second half 

Mean 0.51*** 0.77*** 0.32** 
 

0.01 0.04 -0.02 

 (3.17) (2.82) (2.08) 
 

(0.15) (0.46) (0.20) 
Alpha  0.49*** 1.03*** 0.31** 

 
0.01 0.05 -0.02 

 
(2.75) (3.77) (1.99) 

 
(0.1) (0.55) (0.28) 

 

Panel B: Sovereign CDSs vs. bond yields 

 
CDSs to Bond Yields (bps) 

 
Bond Yields to CDSs (%) 

 
Full sample First Half Second half 

 
Full sample First Half Second half 

Mean 5.46*** 4.28* 6.59**  0.21* 0.02 0.38* 

 (2.96) (1.68) (2.53)  (1.72) (0.8) (1.74) 
Alpha  5.73*** 3.55* 7.12***  0.21* 0.02 0.38* 

 
(2.88) (1.73) (2.65)  (1.68) (0.83) (1.67) 
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Table 5. Global vs. country-specific  

Sovereign CDS returns are decomposed into a global component and a country-specific component from 
12-month rolling window regressions of CDS return on the average CDS return across all countries. The 
regression residuals are classified as the country-specific component. The remaining portion of CDS 
returns is the global component. Panels A and B examine which component of sovereign CDS returns has 
the predictive power for future stock returns and bond yields, respectively. Countries are sorted into 5 
quintiles based on their past 3-month global component, country-specific component, or total sovereign 
CDS returns (denoted as “Global”, “Country-specific”, and “Total”, respectively). Quintile-1 (-5) 
countries have the highest (lowest) returns. For each quintile, we form an equal-weighted portfolio of 
stock indices. Panel A reports the average excess return of the portfolio over the 1-month US Treasury 
yield for each of the 5 portfolios, and for the long-short portfolio that is long in quintile 1 and short in 
quintile 5. Similarly, for each quintile, we form an equal-weighted portfolio of bond indices. Panel B 
reports the average bond yield change for each quintile and the long-short portfolio. Panels C and D 
examine which component of stock index returns and bond yield changes can be predicted by sovereign 
CDSs. The stock index return decomposition is based on 12-month rolling window regressions of excess 
stock index returns on the excess returns of the global stock index, which are obtained from Kenneth 
French’s website. Bond yield change decomposition is based on similar 12-month rolling window 
regressions of bond yield changes on the U.S. yield changes. Countries are sorted into 5 quintiles based 
on their past 3-month sovereign CDS returns. Panel C (D) reports the average of the global and country-
specific components of the stock index returns (bond yield changes) for each of the 5 portfolios, and for 
the long-short portfolio that is long in quintile 1 and short in quintile 5. For Panels A and C, the “alpha” 
column reports the alpha of the long-short strategy after adjusting for MKT_stock, MOM_stock, 
MOM_FX, MKT_FX and HML_FX, all of which are defined in Table 2. For Panels B and D, the “alpha” 
column reports the estimates of the constant term from the regression of the difference in yield changes 
between quintiles 1 and 5 on MKT_bond and MOM_bond, both of which are defined in Table 3. Since 
we need 12-month data to estimate the decomposition regressions, the sample period of the portfolio 
returns is from January 2002 to September 2015. T-statistics are based on standard errors that are Newey-
West (1987) adjusted with 12 lags, and are reported in parentheses. ***, **, and * indicate significance 
levels of 1%, 5%, and 10%, respectively.  

Panel A: Using sovereign CDSs to predict stock returns (%) 

Sorting variable 1 (good) 2 3 4 5 (bad) 1 - 5 alpha 
Global 1.51** 1.25** 0.70 0.68 0.69 0.81*** 0.69*** 

 
(2.20) (2.10) (1.42) (1.23) (1.13) (3.20) (2.75) 

Country-specific 1.07 0.85 0.82 0.95 1.14 -0.07 0.04 

 
(1.61) (1.73) (1.51) (1.63) (1.58) (0.21) (0.12) 

Total 1.36** 1.42** 0.96* 0.79 0.54 0.81*** 0.69** 
 (2.23) (2.34) (1.77) (1.50) (0.97) (3.82) (2.37) 
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Panel B: Using CDS returns to predict bond yield changes (bps) 

Sorting variable 1 (good) 2 3 4 5 (bad) 5 - 1 alpha 
Global -5.35** -3.68** -2.64* -3.42* 6.08 11.61*** 7.77*** 

 
(2.41) (2.45) (1.71) (1.76) (1.48) (2.78) (2.84) 

Country-specific -3.19 -3.65** -2.20 -3.20** 2.92 6.11* 3.28 

 
(0.92) (2.35) (1.52) (2.00) (0.90) (1.71) (1.06) 

Total -7.31*** -3.16** -2.46* -2.67 6.23* 13.54*** 8.51*** 
 (2.88) (2.25) (1.69) (1.45) (1.81) (3.54) (2.88) 

 
 
 

Panel C: Predicting the global and country-specific components of stock returns (%) 

 1 (good) 2 3 4 5 (bad) 1 - 5 alpha 
Global 1.65*** 1.37*** 1.18*** 1.03** 0.57 1.08*** 0.96*** 

 
(3.08) (2.76) (2.83) (2.27) (1.07) (6.83) (5.15) 

Country-specific -0.27 0.03 -0.20 -0.26 -0.04 -0.23 -0.26 

 
(1.26) (0.16) (1.03) (1.44) (0.15) (0.84) (0.82) 

 
 
 

Panel D: Predicting the global and country-specific components of bond yield changes (bps) 

 1 (good) 2 3 4 5 (bad) 5 - 1 alpha 
Global -5.79*** -3.69*** -1.73* -1.39 4.42* 10.18*** 8.82*** 

 
(3.39) (4.58) (1.89) (1.54) (1.69) (4.54) (5.18) 

Country-specific -0.87 0.59 -0.69 -1.69 2.33 3.24 -0.60 

 
(0.37) (0.46) (0.67) (1.10) (0.84) (0.88) (0.19) 
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Table 6. The timing of predictability 

This table reports the results from predictive panel regressions. For both panels, the dependent variable is 
the monthly excess stock index returns in the first two columns, and the changes in 5-year bond yields in 
columns 3 and 4. I_CDSi,t is 1 if country i is in quintile 1 in month t according to the sorting based on 
sovereign CDS returns during the previous three months, is -1 if country i is in quintile 5, and is 0 if 
country i is in the other three quintiles. Di,t is 1 if Standard & Poor’s announces a credit rating or outlook 
change for country i in month t, and is 0 otherwise. I_MOMi,t is an indicator for momentum: for the 
second column in Panel A, I_MOMi,t is 1 if country i is in the top quintile according to the sorting by the 
returns of stock indices during the previous three months, is -1 if country i is in the bottom quintile, and is 
0 otherwise. For the last column, I_MOMi,t is similarly constructed based on yield changes. In Panel B, 
Good_CDSi,t is 1 if country i is in the top quintile according to the sorting based on sovereign CDS 
returns during the previous three months (i.e., country i had “good news”), and is 0 otherwise. Similarly, 
Bad_CDSi,t is -1 if country i is in the bottom quintile, and is 0 otherwise. Winneri,t is a dummy variable, 
which is 1  if country i is in the top quintile according to the sorting based on stock index returns for the 
second column, and yield change for the last column, during the previous three months, and is 0 otherwise. 
Similarly, Loseri,t is a dummy variable, which is 1 if country i is in the bottom quintile, and is 0 otherwise. 
T-statistics, in parentheses, are based on standard errors that are clustered by month. ***, **, and * 
indicate significance levels of 1%, 5%, and 10%, respectively.  

Panel A 

  Return (%) Return (%) ∆Yield (bps) ∆Yield (bps) 
I_CDSi,t 0.38*** 0.31** -4.11 -3.57 

 
(2.81) (2.23) (-1.51) (-1.49) 

I_CDSi,t×Di,t 0.84* 0.59 -29.28** -20.33** 

 
(1.70) (1.10) (-2.36) (-1.98) 

I_MOMi,t  
0.35* 

 
1.70 

 
 

(1.93) 
 

(0.93) 
I_MOMi,t×Di,t  

0.87 
 

18.55** 

 
 

(1.47) 
 

(2.40) 
Di,t -0.26 -0.19 10.33 8.31 

 
(0.77) (0.53) (1.52) (1.32) 

     Country Fixed Effects Yes Yes Yes Yes 
Month Fixed Effects Yes Yes Yes Yes 
Observations 10,161 10,161 5,696 5,696 
R-squared 0.4056 0.4071 0.162 0.164 
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Panel B 

 Return (%) Return (%) ∆Yield (bps) ∆Yield (bps) 

 
(1) (2) (3) (4) 

Bad_CDSi,t 0.43** 0.35* -5.73* -5.30* 

 
(2.22) (1.80) (1.80) (1.71) 

Bad_CDSi,t × Di,t 2.46** 2.12** -50.47** -38.40** 

 
(2.48) (2.17) (2.25) (1.98) 

Good_CDSi,t 0.33 0.27 -2.29 -1.57 

 
(1.58) (1.29) (0.65) (0.46) 

Good_CDSi,t × Di,t -0.82 -1.00 -4.26 -3.39 

 
(1.08) (1.30) (0.47) (0.41) 

Winneri,t  
0.45*  1.33 

 
 (1.85)  (0.38) 

Winneri,t × Di,t  0.76  33.45** 

  
(0.77)  (2.46) 

Loseri,t  
-0.24  -2.15 

 
 (1.01)  (1.18) 

Loseri,t × Di,t  -0.83  2.58 

  (0.94)  (0.33) 
Di,t 0.59 0.63 1.18 -7.69 

 
(1.48) (1.43) (0.21) (1.25) 

     Country Fixed Effects Yes Yes Yes Yes 
Month Fixed Effects Yes Yes Yes Yes 
Observations 10,161 10,161 5,696 5,696 
R-squared 0.406 0.408 0.164 0.167 
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Table 7. Daily regressions 

The regressions in columns 2 and 4 of both panels of Table 6 are estimated with daily data. The 
dependent variable is the daily stock index return in Panels A and C, and is the daily change in the 5-year 
bond yield indices in Panels B and D. The dummy variable in Table 6, 𝐷𝑖𝑡, is now replaced by its daily-
frequency counterpart, 𝐷𝑖,𝑡𝑛 , which is 1 if country i has an S&P credit rating or outlook change during the 
(2n+1)-day window around day t (i.e., from day t-n to day t+n), and is 0 otherwise. We adjust all other 
independent variables in Table 6 (I_CDSi,t, Bad_CDSi,t, Good_CDSi,t, Winneri,t and Loseri,t) into daily 
frequency to obtain I_CDS𝑖,𝑡𝑑 , Bad_CDS𝑖,𝑡𝑑 , Good_CDS𝑖,𝑡𝑑 , Winner𝑖,𝑡𝑑  and Loser𝑖,𝑡𝑑 , respectively. For example, 
for country i on day t, I_CDS𝑖,𝑡𝑑  is 1 if country i is in quintile 1 according to the sorting by sovereign CDS 
returns during the previous three months, is -1 if country i is in quintile 5, and is 0 if country i is in the 
other three quintiles. Bad_CDS𝑖,𝑡𝑑 , Good_CDS𝑖,𝑡𝑑 , Winner𝑖,𝑡𝑑  and Loser𝑖𝑡𝑑  are defined analogously. The table 
only reports the estimated coefficients of I_CDS𝑖,𝑡𝑑 , Bad_CDS𝑖,𝑡𝑑 , Good_CDS𝑖,𝑡𝑑 , and their interaction terms 
with 𝐷𝑖,𝑡𝑛  for various values of n. T-statistics are based on standard errors that are clustered by day. ***, 
**, and * indicate significance levels of 1%, 5%, and 10%, respectively. 

Panel A: Dependent variable: daily stock index return (bps) 

 
n=0 n=1 n=2 n=5 n=10 n=20 

I_CDS𝑖,𝑡𝑑  1.11** 1.07** 1.07** 1.11** 1.01** 0.96** 
 (2.37) (2.29) (2.28) (2.36) (2.16) (2.03) 
I_CDS𝑖,𝑡𝑑 × 𝐷𝑖,𝑡𝑛  22.91* 12.04* 7.93* 2.60 3.47 2.06 
 (1.69) (1.76) (1.65) (0.84) (1.55) (1.32) 

 

Panel B: Dependent variable: daily yield change (bps) 

 
n=0 n=1 n=2 n=5 n=10 n=20 

I_CDS𝑖,𝑡𝑑  -0.15*** -0.15*** -0.14*** -0.14*** -0.12** -0.13** 
 (-2.88) (-2.74) (-2.70) (-2.61) (-2.32) (-2.53) 

I_CDS𝑖,𝑡𝑑 × 𝐷𝑖,𝑡𝑛  -4.74*** -2.58** -1.57* -1.01 -0.82* -0.34 
 (-2.77) (-2.58) (-1.80) (-1.46) (-1.88) (-1.05) 
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Panel C: Dependent variable: daily stock index return (bps) 

 
n=0 n=1 n=2 n=5 n=10 n=20 

Bad_CDS𝑖,𝑡𝑑  1.48** 1.41** 1.34** 1.32* 1.12* 1.09 
 (2.16) (2.06) (1.96) (1.93) (1.64) (1.60) 

Bad_CDS𝑖,𝑡𝑑 × 𝐷𝑖,𝑡𝑛  37.97 23.11* 21.06** 11.17** 10.35*** 5.32** 

 
(1.53) (1.89) (2.50) (2.08) (2.65) (2.04) 

Good_CDS𝑖,𝑡𝑑  0.74 0.74 0.79 0.89 0.90 0.83 
 (1.04) (1.04) (1.11) (1.23) (1.25) (1.13) 

Good_CDS𝑖,𝑡𝑑 × 𝐷𝑖,𝑡𝑛  8.55 1.13 -5.14 -5.93 -3.33 -1.21 

 
(0.52) (0.13) (-0.81) (-1.4) (-1.06) (-0.54) 

 

 
Panel D: Dependent variable: daily yield change (bps) 

 
n=0 n=1 n=2 n=5 n=10 n=20 

Bad_CDS𝑖,𝑡𝑑  -0.30*** -0.29*** -0.28*** -0.26*** -0.22** -0.23*** 
 (-3.35) (-3.20) (-3.15) (-2.88) (-2.54) (-2.82) 

Bad_CDS𝑖,𝑡𝑑 × 𝐷𝑖,𝑡𝑛  -10.42*** -5.55*** -3.52** -2.94*** -2.27*** -1.13* 

 
(-2.83) (-2.85) (-2.28) (-2.66) (-3.05) (-1.83) 

Good_CDS𝑖,𝑡𝑑  0.01 0.01 0.00 0.01 0.01 0.02 
 (0.07) (0.08) (0.07) (-0.12) (-0.17) (-0.29) 

Good_CDS𝑖,𝑡𝑑 × 𝐷𝑖,𝑡𝑛  1.35 0.37 0.30 0.90 0.64 0.48 

 
(0.55) (0.33) (0.30) (1.10) (1.32) (1.38) 
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Table 8. Futures markets 

In Panel A, the stock index return sample is partitioned according to whether there exists a stock index 
futures market for the country’s main stock index. Then, for each of the two subsamples, countries are 
sorted into 5 quintiles based on their past 3-month sovereign CDS returns. Those in quintile 1 (5) have the 
lowest (highest) CDS returns. For each quintile, we form two portfolios of stock indices, one equal 
weighted and one market-cap weighted. Panel A reports the average excess return over the 1-month US 
Treasury yield for each of the 5 portfolios, and the long-short portfolio that is long in quintile 1 and short 
in quintile 5. Panel B is constructed similarly, where the bond yield index sample is partitioned according 
to whether there exists a bond futures market or interest rate futures market for the country’s sovereign 
bonds. All t-statistics are based on standard errors that are Newey-West (1987) adjusted with 12 lags, and 
are reported in parentheses. ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 

  Panel A: Returns of stock index portfolios (%) 

    1 (good) 2 3 4 5 (bad)  1-5 
Equal weight With futures 1.07* 0.88 0.91* 0.80 0.50 0.58** 
    (1.78) (1.51) (1.92) (1.53) (0.80) (2.06) 
  Without futures 1.59** 1.40** 1.00* 0.95 0.33 1.26*** 
    (2.45) (2.27) (1.89) (1.63) (0.50) (2.61) 
Value weight With futures 1.13** 0.80 0.74 0.71 0.34 0.79** 
    (1.97) (1.22) (1.57) (1.39) (0.59) (2.03) 
  Without futures 1.57** 0.84 0.89* 0.69 0.42 1.15* 
    (2.08) (1.34) (1.72) (1.21) (0.57) (1.77) 

  

Panel B: Yield changes of bond index portfolios (bps) 

    1 (good) 2 3 4 5 (bad)  5-1 
Equal weight With futures -4.61** -3.07* -2.24 -3.16* -2.77 2.42 
    (2.25) (1.93) (0.97) (1.84) (1.34) (0.92) 
  Without futures -8.32** -3.94** -2.34 -1.00 10.88* 19.38*** 
    (2.64) (2.40) (1.59) (1.28) (1.82) (2.98) 
Value weight With futures -6.11*** -3.99** -3.46* -2.95 -2.38 4.23* 
    (2.85) (2.43) (1.92) (1.28) (1.10) (1.68) 
  Without futures -8.99** -1.63 -2.71* -1.44 16.15** 25.45*** 
    (2.64) (1.15) (1.74) (1.55) (1.97) (2.86) 
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Table 9. Predicting real economic activities 

This table reports the results from panel regressions for the full sample, from January 2001 to September 
2015. In Panel A, the dependent variable is the quarterly GDP year over year growth rate. CDS returnt-1, 
Stock returni,t-1, ∆Yieldi,t-1 and  GDPi,t-1  are country i’s sovereign CDS return, stock index return, 5-year 
bond yield index change, and GDP growth rate respectively, during the previous quarter. Globali,t-1 and 
Countryi,t-1 are the global and country-specific components of country i’s CDS returns in the previous 
quarter, respectively. The CDS return decomposition is described in Table 5. In Panel B, the dependent 
variable is the monthly PMI index on output. CDS returni,t-3,t-1, Stock return i,t-3,t-1, ∆Yield i,t-3,t-1 are the 
sovereign CDS return, stock index return, and the change in the 5-year bond yield index of country i, 
respectively, during the previous three months. PMIi,t-1 is country i’s PMI index in the previous month. 
Globali,t-3,t-1 and Countryi,t-3,t-1 are country i’s global and country specific components of its CDS returns 
during the previous three months. T-statistics, in parentheses, are based on standard errors that are 
clustered by country. ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 

Panel A: GDP Growth Rate 

CDS returni,t-1 1.18** 
 

 
(2.03) 

 Globali,t-1 
 

4.98* 

  
(1.71) 

Countryi,t-1 
 

-1.58 

  
(-0.91) 

∆Yield i,t-1 -13.66 -9.57 

 
(-1.12) (-0.47) 

Stock return i,t-1 0.97** 0.79 

 
(2.05) (1.50) 

GDPi,t-1 0.822*** 0.83*** 

 
(18.83) (17.56) 

Constant 13.49 10.36 

 
(1.10) (0.51) 

   Country fixed effects Yes Yes 
Quarter fixed effects Yes Yes 

   Observations 1,891 1,702 
R-squared 0.866 0.872 
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Panel B: PMI 

CDS returni,t-3,t-1 6.10*** 
 

 
(3.55) 

 Globali,t-3,t-1 
 

14.23** 

  
(2.18) 

Countryi,t-3,t-1 
 

2.29 

  
(1.01) 

∆Yield i,t-3,t-1 -6.33 -2.03 

 
(-1.05) (-0.38) 

Stock return i,t-3,t-1 0.83 0.97 

 
(1.06) (1.13) 

PMI i,t-1 0.61*** 0.59*** 

 
(7.84) (7.81) 

Constant 27.53*** 27.85*** 

 
(6.72) (4.91) 

   Country fixed effects Yes Yes 
Month fixed effects Yes Yes 

   Observations 3,538 3,215 
R-squared 0.754 0.759 
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Appendix: List of countries and indices  
Country CDS Stock Bond PMI GDP 
  Index name Start  Index name Start    
Algeria Sep-2008 

     
2008Q1 

Angola Oct-2009 
     

2009Q1 
Argentina Apr-2001 MERVAL Apr-2001 

   
2001Q1 

Austria Jul-2001 ATX Jul-2001 GAGB5YR  Jul-2001 Jul-2001 2001Q1 
Australia Oct-2003 AS51 Oct-2003 GACGB5  Oct-2003 Oct-2003 2003Q1 
Barbados Jul-2006 

     
2006Q1 

Belgium Mar-2001 BEL20 Mar-2001 GBGB5YR  Mar-2001 
 

2001Q1 
Bulgaria May-2001 SOFIX May-2001 GBBP05  Aug-2008 

 
2001Q1 

Bahrain Aug-2004 BHSEASI Aug-2004 
   

2004Q1 
Belize Jan-2010 

     
2010Q1 

Brazil Feb-2001 IBOV Feb-2001 GEBR5Y  Feb-2007 Feb-2001 2001Q1 
Tunisia Dec-2003 TUSISE Dec-2003 

   
2003Q1 

Canada Oct-2003 SPTSX Oct-2003 GCAN5YR  Oct-2003 Oct-2003 2003Q1 
Chile Mar-2002 IGPA Mar-2002 CLGB5Y  Jul-2014 

 
2002Q1 

China Feb-2001 SHSZ300 Feb-2001 GCNY5YR  Jul-2005 Feb-2001 2001Q1 
Hong Kong Sep-2004 HSCI Sep-2004 HKGG5Y  Sep-2004 Sep-2004 2004Q1 
Colombia Apr-2001 COLCAP Apr-2001 COGR5Y  Dec-2009 

 
2001Q1 

Costa Rica Sep-2003 CRSMBCT Sep-2003 
   

2003Q1 
Croatia Feb-2001 CRO Feb-2001 HRKGGR05  Aug-2008 

 
2001Q1 

Cyprus Aug-2002 CYSMMAPA Aug-2002 
   

2002Q1 
Czech Apr-2001 PX Apr-2001 CZGB5YR  Apr-2001 Apr-2001 2001Q1 
Germany Nov-2002 DAX Nov-2002 GDBR5  Nov-2002 Nov-2002 2002Q1 
Denmark Dec-2002 KFX Dec-2002 GDGB5YR  Dec-2002 Dec-2002 2002Q1 
Dominica Aug-2003 

     
2003Q1 

Ecuador Jul-2003 
     

2003Q1 
Egypt Apr-2002 HERMES Apr-2002 

  
Apr-2002 2002Q1 

El Salvador Jul-2003 
     

2003Q1 
Estonia Jul-2004 TALSE Jul-2004 

   
2004Q1 

Fiji Jul-2007 
     

2007Q1 
Finland Aug-2002 HEX Aug-2002 GFIN5YR  Aug-2002 

 
2002Q1 

France May-2002 CAC May-2002 GFRN5  May-2002 May-2002 2002Q1 
Greece Feb-2001 ASE Feb-2001 GGGB5YR  Feb-2001 Feb-2001 2001Q1 
Guatemala Sep-2003 

     
2003Q1 

Iceland Apr-2004 
     

2004Q1 
India Aug-2003 SENSEX Aug-2003 GIND5YR  Aug-2003 Aug-2003 2003Q1 
Indonesia Jan-2002 JCI Jan-2002 GIDN5YR  Feb-2003 Jan-2002 2002Q1 
Iraq Mar-2006 

     
2006Q1 

Ireland Feb-2003 ISEQ Feb-2003 GIGB5YR  Feb-2003 Feb-2003 2003Q1 
Israel May-2001 TA-25 May-2001 GISR5YR  Jul-2001 May-2001 2001Q1 
Italy Mar-2001 FTSEMIB Mar-2001 GBTPGR5  Mar-2001 Mar-2001 2001Q1 
Jamaica Oct-2003 JMSMX Oct-2003 

   
2003Q1 

Japan Feb-2001 TPX Feb-2001 GJGB5  Feb-2001 Feb-2001 2001Q1 
Jordan Oct-2003 JOSMGNFF Oct-2003 

   
2003Q1 

Kazakhstan Feb-2004 KZKAK Feb-2004 
   

2004Q1 
South Korea May-2001 KRX100 May-2001 GVSK5YR  May-2001 May-2001 2001Q1 
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Latvia Sep-2004 RIGSE Sep-2004 
   

2004Q1 
Lebanon Apr-2003 BLOM Apr-2003 

  
Apr-2003 2003Q1 

Lithuania May-2002 VILSE May-2002 
   

2002Q1 
Malaysia May-2001 FBMKLCI May-2001 MGIY5Y  Aug-2005 May-2001 2001Q1 
Malta Aug-2004 MALTEX Aug-2004 

   
2004Q1 

Macedonia Oct-2011 MCTSTAT Oct-2011 
   

  
Mexico Feb-2001 MEXBOL Feb-2001 GMXN05YR  Jun-2001 Feb-2001 2001Q1 
Morocco May-2001 MCSINDEX May-2001 

   
2001Q1 

Netherlands Sep-2003 AEX Sep-2003 GNTH5YR  Sep-2003 Sep-2003 2003Q1 
Nigeria Jan-2007 NGSEINDX Jan-2007 

  
Jan-2007 2007Q1 

Norway Nov-2003 OBX Nov-2003 GNOR5YR  Nov-2003 
 

2003Q1 
New Zealand Jan-2004 NZSE50FG Jan-2004 GNZGB5  Jan-2004 Jan-2004 2004Q1 
Oman Dec-2008 MSM30 Dec-2008 

   
2008Q1 

Pakistan Aug-2004 KSE100 Aug-2004 PKRF/5Y  Aug-2004 
 

2004Q1 
Panama Mar-2002 BVPSBVPS Mar-2002 

   
2002Q1 

Peru Mar-2002 SPBLPGPT Mar-2002 GRPE5Y  Nov-2007 
 

2002Q1 
Philippines Apr-2001 PCOMP Apr-2001 PDSR5YR  Apr-2001 Apr-2001 2001Q1 
Poland Feb-2001 WIG Feb-2001 POGB5YR  Feb-2001 Feb-2001 2001Q1 
Portugal Mar-2002 BVLX Mar-2002 GSPT5YR  Mar-2002 

 
2002Q1 

Qatar Oct-2001 DSM Oct-2001 
   

2001Q1 
Hungary Apr-2001 BUX Apr-2001 GHGB5YR  Apr-2001 

 
2001Q1 

Georgia Jul-2015 
     

2015Q1 
Romania Apr-2002 BET Apr-2002 ROMGGR05 Aug-2011 

 
2002Q1 

Ghana Jun-2008 GGSECI Jun-2008 
   

2008Q1 
Russia Oct-2001 INDEXCF Oct-2001 RUGE7Y Oct-2001 Oct-2001 2001Q1 
Saudi Arabia Mar-2007 SASEIDX Mar-2007 

  
Mar-2007 2007Q1 

Singapore Aug-2003 STI Aug-2003 MASB5Y Aug-2003 Aug-2003 2003Q1 
Slovakia Jun-2001 SKSM Jun-2001 GRSK5Y Sep-2007 

 
2001Q1 

Slovenia Mar-2002  
    

2002Q1 
South Africa Feb-2001 TOP40 Feb-2001 GSAB5YR Feb-2001 Feb-2001 2001Q1 
Spain Mar-2001 IBEX Mar-2001 GSPG5YR Mar-2001 Mar-2001 2001Q1 
Serbia Jul-2006 BELEXLN Jul-2006 

   
2006Q1 

Sri Lanka Jan-2008 CSEALL Jan-2008 GGRSL5Y NTBA Aug-2011 
 

2008Q1 
Sweden Jul-2001 OMX Jul-2001 GSGB5YR Jul-2001 

 
2001Q1 

Switzerland Jul-2007 SMI Jul-2007 GSWISS05 Jul-2007 Jul-2007 2007Q1 
Taiwan Sep-2006 TWSE Sep-2006 GVTW5YR Sep-2006 Sep-2006 2006Q1 
Thailand Apr-2001 SET Apr-2001 GVTL5YR  Apr-2001 Apr-2001 2001Q1 
Trinidad and 
Tobago Dec-2004 

     
2004Q1 

Turkey Feb-2001 XU100 Feb-2001 IECM5Y  Aug-2007 Feb-2001 2001Q1 
UAE Mar-2007 DFMGI Mar-2007 

  
Mar-2007 2007Q1 

United Kingdom Apr-2006 UKX Apr-2006 GUKG5  Apr-2006 Apr-2006 2006Q1 
Ukraine Oct-2002 UX Oct-2002 GUAU5YR  Apr-2011 

 
2002Q1 

Uruguay Jun-2002 
     

2002Q1 
US Jan-2004 SPX Jan-2004 USGG5YR  Jan-2004 Jan-2004 2004Q1 
Venezuela Mar-2001 

     
2001Q1 

Vietnam Sep-2002 VNINDEX Sep-2002 GGVF5YR BIDV  Feb-2007 Sep-2002 2002Q1 
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