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A Search Model of the Aggregate Demand

for Safe and Liquid Assets

Abstract

Safe and liquid assets, such as Treasury bonds, are money-like instruments that command a

convenience yield. We analyze this in a search model of two assets that differ in liquidity and safety.

In contrast to the reduced-form approach, which puts the safe and liquid asset in utility function,

we explicitly model investors’ trading needs and the trading friction. One new implication from

this approach is that the marginal investor’s preference for safety and liquidity is not enough in

determining the premium. Instead, the distribution of investors’ preferences plays a direct role.

Our model implies that an increase in the supply of the liquid asset may increase or decrease the

liquidity premium, depending on the distribution of investors’ liquidity preference. Our model

shows that investors may over- or underinvest in the search technology relative to a central planner,

and that overinvestment occurs when investors’ expected trading frequency is in the intermediate

region.

JEL Classification Numbers: G11, G23.

Keywords: Convenience Yield, Safe and Liquid Asset, Search.



1 Introduction

There has been growing interest in the role of “safe and liquid assets” in a financial system,

especially since the recent financial crisis. One finding that emerges from these studies is that safe

and liquid assets, such as Treasury bonds, are like money, commanding a sizeable premium for their

safety and liquidity (Krishnamurthy and Vissing-Jorgensen 2012). What are the determinants of

this premium? How does the supply of Treasury bonds affect the premium? When risky assets

become more liquid, how does it affect their own prices, as well as the Treasury price? What is

the welfare implication when traders invest to improve the liquidity of risky assets?

One framework for addressing these questions is a representative agent model. For example,

Krishnamurthy and Vissing-Jorgensen (2012) follow the tradition of money-in-the-utility-function

formulation (e.g., Sidrauski 1967) and include the Treasury holding in the representative investor’s

utility function. In equilibrium, the liquidity premium is determined such that the representative

agent is indifferent between holding the Treasury and a less liquid asset. That is, the representative

agent is the marginal investor whose indifference condition determines the liquidity premium.

The appeal of this approach is its simplicity, and one can analyze the liquidity premium without

explicitly modeling investors’ trading needs and trading frictions.

We adopt an alternative framework, and explicitly model investors’ trading needs and trading

frictions. Not only does this make it possible to directly connect liquidity premium to trading

frictions—it also leads to new implications that are absent in the representative agent framework.

Specifically, the marginal investor’s liquidity preference is no longer enough to determine the

premium. Instead, the distribution of investors’ liquidity preferences also plays a direct role. For

example, we find that an increase in the supply of Treasury bonds may increase or decrease their

liquidity premium, depending on the distribution of investors’ liquidity preferences.

The intuition is as follows. Suppose assets 1 and 2 have identical cash flows, but asset 2 is

“more liquid” than asset 1. In the reduced-form approach, asset 2 being more liquid is modeled as

investors deriving a “convenience yield” from holding asset 2 (i.e., putting the holding of asset 2 in

an investor’s utility function). Let P1 and P2 be the prices of assets 1 and 2, respectively. The liq-
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uidity premium, P2−P1, is determined by the present value of the marginal investor’s convenience

yield. Hence, the marginal investor’s liquidity preference fully determines the premium.

However, this is no longer the case once we explicitly take trading frictions into account.

Suppose that asset 2 is perfectly liquid, and that the friction for trading asset 1 is that investors

need to search in the market and can trade only when they meet their counterparties. In this

case, the marginal investor’s liquidity preference cannot fully determine the premium. To see this,

suppose that P1 decreases by one dollar due to a reduction of demand from its investors. We will

see that, if the marginal investor between assets 1 and 2 remains the same, P2 will decrease by

less than one dollar, and hence the liquidity premium P2 − P1 will increase. The reason is that

the marginal investor’s value function is less sensitive to P1 than to P2: Intuitively, since asset 2

is perfectly liquid, P2 is the price at which an investor can transact right away. So, a one-dollar

drop in P2 leads to a one-dollar increase in his value function. In contrast, a one-dollar drop in P1

leads to a less-than-one-dollar increase in his value function. This is due to the trading friction:

P1 is the price at which the investor can transact only when he meets his counterparty. There

is a chance that the investor cannot find his counterparty before his trading need disappears.

This point arises naturally once we explicitly account for the trading friction, but is absent in the

reduced-form approach that abstracts away from trading frictions.

In essence, the notion of “market price” is different in a setup where frictions are modeled

explicitly than in a setup that treats frictions implicitly. In a model which treats frictions only

implicitly, the market price is the price at which investors can transact at immediately. However,

this is not the case in models with explicit trading frictions.

We formalize the above intuition by extending the over-the-counter (OTC) market model of

Duffie, Garleanu, and Pedersen (2005) by introducing two assets. In the baseline model, the two

assets are claims to identical cash flows but have different liquidity. Asset 1 (e.g., agency debt) is

less liquid, and trade occurs only when a buyer meets a seller. In contrast, asset 2 (e.g., Treasury)

is perfectly liquid and transactions occur without any delay. There is a continuum of investors,

whose trading needs are due to the changes of their valuations of the two assets. In particular,

when a type-∆ investor receives $1 from asset 1 or 2, he derives a utility of 1 +∆. We normalize
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the region for investors’ possible types to [0,∆]. An investor’s type stays constant until the arrival

of a shock. Once the shock arrives, his new type is drawn from a random variable, which has a

density function of f(·) on [0,∆]. Investors’ types are independent from one another. Hence, in

the steady state, f(·) is also the cross-sectional distribution of investors’ types.

We show that, in equilibrium, there are two cutoff points, ∆∗ and ∆∗∗, with 0 < ∆∗ < ∆∗∗ <

∆. Investors with high types (i.e., ∆ ∈ (∆∗∗,∆]) choose to buy asset 2, those with intermediate

types (i.e., ∆ ∈ (∆∗,∆∗∗)) choose to buy asset 1, and those with low types (i.e., ∆ ∈ [0,∆∗))

choose not to buy any asset. Investors ∆∗ and ∆∗∗ are marginal investors: investor-∆∗∗ is

indifferent between buying asset 1 and buying asset 2, while investor-∆∗ is indifferent between

buying asset 1 and not buying any asset.

The liquidity preference of the marginal investor between the two assets (i.e., ∆∗∗) affects

the liquidity premium, but, as explained earlier, it cannot fully pin down the liquidity premium.

We find that the liquidity premium increases in ∆∗∗ but decreases in ∆∗. Intuitively, a higher

∆∗∗ means that trading delay is more costly for the investor. Hence, asset 2 commands a higher

premium. How does ∆∗ affect the liquidity premium? Since investor-∆∗ is the marginal investor

between investing asset 1 and not investing, holding everything else constant, a decrease in ∆∗

decreases P1. In response to this drop in P1, as noted earlier, P2 would decrease less than P1

does. That is, the liquidity premium P2 − P1 increases when ∆∗ decreases.

Our model implies that an increase in the supply of asset 2 may increase or decrease the

liquidity premium, depending on the distribution f(·). Intuitively, when the supply of asset 2

increases, it attracts more investors with high ∆, pushing down both ∆∗∗ and ∆∗. As noted

earlier, the liquidity premium increases in ∆∗∗ but decreases in ∆∗. In the case illustrated in

Panel A of Figure 1, for example, f(∆∗) is significantly larger than f(∆∗∗). That is, there are

many investors whose ∆ is around ∆∗, but very few investors around ∆∗∗. When the supply of

asset 2 increases, ∆∗∗ decreases significantly, but ∆∗ decreases only slightly. Hence, the impact

from ∆∗∗ dominates, and the increase in the supply of asset 2 decreases the liquidity premium.

Similarly, in the case illustrated in Panel B of Figure 1, f(∆∗) is significantly lower than f(∆∗∗).

The impact from ∆∗ dominates, and the increase in the supply of asset 2 increases the liquidity
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premium.
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Figure 1: Distribution of liquidity preferences across investors f(·).

What are the empirical implications from this result? Suppose we interpret asset 2 as Treasury

bonds and asset 1 as agency bonds or highly rated corporate bonds. Then, it might be reasonable

to think this case is summarized by Panel A: a small fraction of investors have very high ∆. For

example, commercial banks can use Treasury securities as collateral to issue checking accounts,

and hedge funds can use them as collateral for their derivative positions. For most investors,

however, their ∆ is modest. In this case, the increase in Treasury supply decreases the yield

spreads between Treasury and highly rated bonds, as documented in Krishnamurthy and Vissing-

Jorgensen (2012). On the other hand, if we interpret asset 1 as junk bonds and asset 2 as

bonds with investment-grades and above (e.g., investment-grade rated corporate bonds, agency

bonds and Treasury securities), the case is more likely to correspond to Panel B, where very

few specialized investors (such as hedge funds) are the marginal investors for asset 1 (i.e., f(∆∗)

is small). With this interpretation, our model implies that the increase of the supply of bonds

with investment-grades and above increases the spread between junk bonds and investment-grade

bonds.

When the search friction in market 1 is alleviated, how does it affect P1 and P2? Our model

shows that it decreases P2, because when trading asset 1 is easier, asset 2 becomes relatively less

appealing. Moreover, the liquidity improvement in market 1 has a mixed effect on the price of

asset 1. Intuitively, when search becomes slower, sellers in market 1 are willing to accept a lower
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price to speed up their transactions. Similarly, buyers are willing to offer a higher price to reduce

their waiting time. Hence, the total impact is mixed, and depends on which side is more eager to

speed up the transaction.

Our welfare analysis on the investment in the search technology for market 1 shows that

investors may over- or underinvest relative to a central planner. The reason is that the investment

has two externalities. First, when an investor improves his search technology, it not only benefits

himself, but also benefits his potential trading partners. This leads to a free-riding problem and

underinvestment. Second, investment in the search technology helps more investors to execute

their trades, and so reduces the number of investors in the market, making it more difficult for all

investors to meet their counterparties. Investors don’t internalize this negative externality and so

overinvest relative to a central planner. Hence, the tradeoff between the two effects determines

whether investors over- or underinvest in their search technology. We find that overinvestment

tends to occur when investors’ expected trading frequency is in the intermediate region.

1.1 Related Literature

Our paper belongs to the recent literature that analyzes OTC markets in the search framework

developed by Duffie, Garleanu, and Pedersen (2005). This framework has been extended to include

risk-averse agents (Duffie, Garleanu, and Pedersen (2007)), unrestricted asset holdings (Lagos

and Rocheteau (2009)). It has also been adopted to analyze a number of issues, such as security

lending (Duffie, Garleanu, and Pedersen (2002)), liquidity provision (Weill (2007)), on-the-run

premium (Vayanos and Wang (2007), Vayanos and Weill (2008)), cross-sectional returns (Weill

(2008)), portfolio choices (Garleanu (2009)), liquidity during a financial crisis (Lagos, Rocheteau,

and Weill (2011)), price pressure (Feldhutter (2012)), order flows in an OTC market (Lester,

Rocheteau, and Weill, (2014)), commercial aircraft leasing (Gavazza 2011), high frequency trading

(Pagnotta and Philippon (2013)), the roles of benchmarks in OTC markets (Duffie, Dworczak,

and Zhu (2014)), adverse selection and repeated contacts in opaque OTC markets (Zhu (2012)),

intermediation chains (Afonso and Lagos (2015), Hugonnier, Lester, and Weill (2014), Shen,

Wei, and Yan (2015)), trading network structure (Neklyudov (2014)), as well as the interaction
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between corporate default decision and liquidity (He and Milbradt (2013)). Another literature

follows Kiyotaki and Wright (1993) to analyze the liquidity value of money. In particular, Lagos

and Wright (2005) develop a tractable framework that has been adopted to analyze liquidity and

asset pricing (e.g., Lagos (2010), Lester, Postlewaite, and Wright (2012), and Li, Rocheteau, and

Weill (2012), Lagos and Zhang (2014)). Trejos and Wright (2014) synthesize this literature with

the studies under the framework of Duffie, Garleanu, and Pedersen (2005).

Our paper is related to these studies, and one distinctive feature is our analysis of the supply

effect on the premium. Another insight from our model is the contrast between the reduced-form

approach and the search approach that explicitly accounts for trading frictions. This is parallel to

the point stressed in the classical search-theoretical model of Kiyotaki and Wright (1989), which

emphasizes the importance of explicitly modeling the frictions that render money essential. This

idea has led to the so-called New Monetarist Economics, which emphasize that assets are valued

not only for their fundamentals (i.e., claims to consumption goods) but also for their liquidity—

the extent to which they facilitate exchange in an imperfect market (see Williamson and Wright

(2010, 2011) for recent surveys).

2 The Model

Time is continuous and goes from 0 to ∞. There is a continuum of investors, and the total

population size is N . They have access to a riskless bank account with an interest rate r. There

are two assets, assets 1 and 2, which are traded in two separate markets. The supplies for assets

1 and 2 are X1 and X2, respectively, and X1+X2 < N . The two assets have the same cash flows,

and each unit of the asset pays $1 per unit of time until infinity. However, asset 1 is less liquid

than asset 2.

Our formulation of the market for asset 1 follows Garleanu (2009) and Lagos and Rocheteau

(2009). In this market, investors face a potential delay in finding market makers. Once they meet

a market maker, they can execute their trades and take the price P1 as given. The potential delay

is as follows. Let µb
1 and µs

1 be the measures of buyers and sellers in the market for asset 1, and

both will be determined endogenously in equilibrium. A buyer meets a market maker at the rate
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λµs
1, where λ > 0 is a constant. That is, during [t, t + dt) a buyer meets a market maker with

a probability λµs
1dt. Similarly, a seller meets a market maker who can buy his asset at the rate

λµb
1. Hence, the total number of trades per unit of time is λµs

1µ
b
1. The search friction reduces

when λ increases, and completely disappears when λ goes to infinity.

This formulation is a slight modification of that in Garleanu (2009) and Lagos and Rocheteau

(2009). Specifically, we assume that the arrival rate of the market maker depends on the popu-

lation size of the investors on the other size of the market. For example, for a buyer, the larger

the seller population µs
1, the quicker the buyer is expected to find a market maker to sell him the

asset. This captures the notion that an investor faces a shorter delay if there are more investors

trying to be on the other side of the transaction.1

The market for asset 2 is more liquid. To simplify our analysis, we let the search technology

in market 2 go to perfection, i.e., investors in market 2 can trade instantly.2

2.1 Trading needs

Investors have different types, and their types may change over time. If an investor’s current type

is ∆, he derives a utility 1+∆ when receiving the $1 coupon from either asset. One interpretation

for a positive ∆ is that some investors, such as insurance companies, have a strong preference for

long-term bonds, as modeled in Vayanos and Vila (2009). Another interpretation is that some

investors can benefit from using those assets as collateral and so value them more, as discussed

in Bansal and Coleman (1996) and Gorton (2010). An interpretation of a negative ∆ can be that

the investor suffers a liquidity shock and so finds it costly to carry the asset on his balance sheet.

We assume that ∆ can take any value in a closed interval. Without loss of generality, we can

normalize the interval to
[
0,∆

]
.

Each investor’s type changes independently with intensity κ. That is, during [t, t+ dt), with

a probability κdt, an investor’s type changes and is independently drawn from a random variable,

which has a probability density function f (·) on the support
[
0,∆

]
, with f (∆) < ∞ for any

1We also solve our model without this modification. All our main results, except for the welfare implication in
Section 2.8, remain similar.

2We also solved a version of the model in which the search technology in market 2 is imperfect but is better
than the one in market 1. All our results remain similar.
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∆ ∈
[
0,∆

]
. We use F (·) to denote the corresponding cumulative distribution function.

The changes in investors’ types make them trade the two assets. Following Duffie, Garleanu,

and Pedersen (2005) and Vayanos and Wang (2007), we assume each investor can hold either 0 or

1 unit of only one of the assets.3 Hence, an investor can buy an asset only when he currently does

not hold either asset, and can sell an asset only if he is currently holding the asset. All investors

are risk-neutral and share the same time discount rate r. An investor’s objective function is given

by

sup
θ1τ ,θ2τ

Et

[∫ ∞

t
e−r(τ−t) ((θ1τ + θ2τ ) (1 + ∆τ )dτ − P1τdθ1τ − P2τdθ2τ )

]
,

where θ1τ and θ2τ are the investor’s holdings in assets 1 and 2 at time τ ; ∆τ is the investor’s type

at time τ ; and Piτ , for i = 1, 2, is asset i’s price at time τ and will be determined in equilibrium.

2.2 Demographics

Investors can be classified into three categories: owners of asset 1 (θ1t = 1 and θ2t = 0), owners

of asset 2 (θ1t = 0 and θ2t = 1), and non-owners (i.e., θ1t = θ2t = 0). This section describes each

category in detail.

A non-owner with a type ∆ has three choices: search to buy asset 1, buy asset 2, or stay

inactive. We conjecture and verify later that a non-owner’s optimal choice can be summarized as
stay inactive if ∆ ∈ [0,∆∗

0),
search to buy asset 1 if ∆ ∈ (∆∗

0,∆
∗∗
0 ),

buy asset 2 if ∆ ∈ (∆∗∗
0 ,∆].

(1)

That is, he buys asset 2 if ∆ > ∆∗∗
0 , searches to buy asset 1 if ∆ ∈ (∆∗

0,∆
∗∗
0 ), and stays inactive

if ∆ < ∆∗
0. A non-owner is indifferent between staying inactive and searching to buy asset 1 at

∆∗
0, and is indifferent between searching to buy asset 1 and buying asset 2 at ∆∗∗

0 . Note that due

to the search friction in market 1, the buyers of asset 1 face a delay in their transactions. In the

meantime, their types may change, and then they will adjust their actions accordingly. In market

2, however, the buyers become owners of asset 2 instantly.

3This deviates from the formulation in Garleanu (2009) and Lagos and Rocheteau (2009), where the asset
holdings are not restricted. We keep this traditional assumption on asset holdings for tractability. We impose the
same asset holding restriction in both markets to isolate the effects from the search friction in market 1. More
generally, in the case where the search technology in market 2 is imperfect, this formulation isolates the effects from
the difference in the search frictions across the two markets.
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An owner of asset 1 has two choices: search to sell asset 1 or hold on to it. We conjecture and

later verify that this investor’s optimal choice can be summarized as{
search to sell his asset if ∆ ∈ [0,∆∗

1),

hold on to his asset if ∆ ∈ (∆∗
1,∆].

(2)

That is, he searches to sell asset 1 if ∆ < ∆∗
1, holds on to the asset if ∆ > ∆∗

1, and is indifferent

between the two actions if his type is ∆∗
1. Moreover, investors face a delay in selling their asset 1.

In the meantime, their types may change, and they may need to adjust their actions accordingly.

If an investor succeeds in selling his asset 1, he becomes a non-owner and faces the three choices

described in equation (1).

An owner of asset 2 also has two choices: sell it or hold on to it. We conjecture and later

verify that this investor’s optimal choice can be summarized as{
sell his asset if ∆ ∈ [0,∆∗

2),

hold on to his asset if ∆ ∈ (∆∗
2,∆].

(3)

That is, he sells asset 2 if ∆ < ∆∗
2, holds on to the asset if ∆ > ∆∗

2, and is indifferent between the

two actions if his type is ∆∗
2. Since there is no search friction in market 2, investors can execute

their transactions right away.

Due to the change in ∆ and execution of his trade, an investor’s status changes over time.

We now describe the evolution of the population sizes of each category of investors. Since we will

focus on the steady-state equilibrium, we will omit the time subscript for the population size of

each group of investors. For i = 1, 2, we use µs
i to denote the population size of the sellers for

asset i, and use µb
i to denote the population size of the buyers for asset i. Similarly, we use µh

i ,

for i = 0, 1, 2, to denote the population sizes of the inactive investors who are non-owners, owners

of asset 1, and owners of asset 2, respectively. Hence, there are seven groups of investors.

Figure 2 illustrates investors’ migration across the seven groups. For sellers of asset 1, for

example, the inflow to this group during the period [t, t + dt) is µh
1κF (∆∗

1)dt, since κF (∆∗
1) is

the intensity for an inactive asset 1 holder to become a seller (i.e., his type becomes lower than

∆∗
1). The outflow from the group of asset-1 sellers has two components. First, during the period

[t, t + dt), λµb
1µ

s
1dt investors succeed in selling their asset 1 and become inactive non-owners.

Second, κµs
1 [1− F (∆∗

1)] dt investors do not want to sell asset 1 any more because their types now

9



become higher than ∆∗
1. In the steady state, the inflow equals the outflow:

µh
1κF (∆∗

1) = λµb
1µ

s
1 + κµs

1 [1− F (∆∗
1)] . (4)

Figure 2: This plot illustrates each investor group’s size and inflows and outflows. The black solid

arrows denote the flows induced by trading, and the blue dash arrows denote the flows due to the

changes in investors’ types.

Applying the same logic to the buyers of asset 1, inactive owners of asset 1, and inactive

non-owners, we obtain the following:

κµh
0 [F (∆∗∗

0 )−F (∆∗
0)] + κµh

2 [F (∆∗
2)−F (∆∗

0)] = λµb
1µ

s
1 + κµb

1[F (∆∗
0) + 1−F (∆∗∗

0 )], (5)

κµs
1 [1− F (∆∗

1)] + λµb
1µ

s
1 = κµh

1F (∆∗
1), (6)

λµb
1µ

s
1 + κ

(
µb
1 + µh

2

)
F (∆∗

0) = κµh
0 [1− F (∆∗

0)]. (7)

Following Garleanu (2009) and Lagos and Rocheteau (2009), we also assume that the market

makers do not hold inventory and simply serve as match makers. This implies that

µb
1 = µs

1. (8)

Market 2 has no search friction, the measures of buyers and sellers are infinitesimal,

µb
2 = κ

(
µh
0 + µb

1

)
[1− F (∆∗∗

0 )]dt (9)

µs
2 = κµh

2F (∆∗
2)dt, (10)
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and during each instant [t, t+ dt), the flow of buyers is equal to the flow of sellers(
µh
0 + µb

1

)
[1− F (∆∗∗

0 )] = µh
2F (∆∗

2). (11)

Finally, the investors in all groups add up to the total population:

µh
1 + µs

1 + µb
1 + µh

2 + µs
2 + µb

2 + µh
0 = N. (12)

2.3 Value functions

For the case θ1t = θ2t = 0 (i.e., the investor is a non-owner), we use V b
1 (∆), V b

2 (∆), and V h
0 (∆) to

denote the investor’s expected utility if he chooses to buy asset 2, to search to buy asset 1, and

to stay inactive, respectively. For the case θ1t = 1 and θ2t = 0 (i.e., the investor is an owner of

asset 1), we use V s
1 (∆) and V h

1 (∆) to denote the investor’s expected utility if he searches to sell

asset 1, and to keep asset 1, respectively. For the case θ1t = 0 and θ2t = 1 (i.e., the investor is an

owner of asset 2), we use V s
2 (∆) and V h

2 (∆) to denote the investor’s expected utility if he chooses

to sell asset 2, and to keep asset 2, respectively. In the steady state, these expected utilities are

time-invariant, implying the following:

V b
1 (∆) =

λµs
1

[
V h
1 (∆)− P1

]
+ κE

[
max

{
V b
1 (∆′) , V b

2 (∆′) , V h
0 (∆′)

}]
λµs

1 + κ+ r
, (13)

V h
1 (∆) =

1 +∆+ κE
[
max

{
V s
1 (∆′) , V h

1 (∆′)
}]

κ+ r
, (14)

V s
1 (∆) =

1+∆+ λµb
1max

{
V h
0 (∆) , V b

2(∆)
}
+λµb

1P1+κE
[
max

{
V s
1(∆

′) , V h
1 (∆

′)
}]

λµb
1 + κ+ r

, (15)

V b
2 (∆) = V h

2 (∆)− P2, (16)

V s
2 (∆) = max

{
V h
0 (∆) , V b

1 (∆)
}
+ P2, (17)

V h
2 (∆) =

1 +∆+ κE
[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
, (18)

V h
0 (∆) =

κ

κ+ r
E
[
max

{
V b
1

(
∆′) , V b

2

(
∆′) , V h

0

(
∆′)}] . (19)

2.4 Prices with trading fictions

Once we explicitly account for the trading friction, the notion of the price of an asset is different

that in a reduced-form model. For example, an holder of asset 1 can no longer exchange the asset

for P1 instantly. This straight forward but easy-to-overlook feature implies that investors’ value

11



functions have different sensitivities to P1 and P2. From equation (13), we obtain the following

lemma.

Lemma 1 An investor’s expected utility is more sensitive to P2 than to P1:
∂V b

2 (∆)
∂P2

= −1 and

∂V b
1 (∆)
∂P1

= − λµs
1

λµs
1+κ+r .

The intuition is the following. The market for asset 2 is perfectly liquid, i.e., a buyer can pay P2 to

get asset 2 right away. Hence, holding everything else constant, a one-dollar drop in P2 increases

the investor’s expected utility by one dollar. In contrast, a one-dollar drop in P1 does not mean

the investor gets a one-dollar benefit. This is because the market for asset 1 is illiquid, and the

investor may not be able to benefit fully from the price drop. Due to the delay in searching,

the investor can only enjoy the benefit in the future. Moreover, the investor may not be able to

benefit at all if he cannot meet a seller before his ∆ changes and his demand disappears. As a

result, the investor’s expected utility is less sensitive to P1.

This intuition is absent in the money-in-the-utility-function formulation, where the trading

friction is not explicitly modeled and the notion of liquidity is captured by putting the liquid asset

directly into investors’ utility function. Hence, the sensitivity of the buyer’s expected utility to

price is still one-to-one: a one-dollar drop in price increases the expected utility by one dollar.

The essence is that the notion of market price is different in a setup where frictions are modeled

explicitly than in a setup that treats frictions implicitly. In models with explicit trading frictions,

the market price is not the price at which investors can transact at immediately.

2.5 Equilibrium

Definition 1 A steady-state equilibrium consists of asset prices P1 and P2, the cutoff points

(∆∗
0,∆

∗∗
0 ,∆∗

1,∆
∗
2), such that

1) the sizes of each group (µh
1 , µ

s
1, µ

b
1, µ

h
2 , µ

s
2, µ

b
2, µ

h
0) remain constants over time, i.e., satisfy

(4)–(12);

2) the choices implied by (1)–(3) and (13)–(19) are optimal for all investors;

12



3) both markets clear:

X1 = µh
1 + µs

1. (20)

X2 = µh
2 . (21)

Proposition 1 The steady-state equilibrium for the above economy is the following. The cutoff

points are given by

∆∗
0 = ∆∗

1 = ∆∗,

∆∗
2 = ∆∗∗

0 = ∆∗∗,

where

∆∗ = F−1

(
1− X1 +X2

N

)
, (22)

∆∗∗ = F−1

(
1− X2

N −X1

)
. (23)

The population sizes for each group are given by

µs
1 = µb

1 = µ1, (24)

µh
1 = X1 − µ1, (25)

µh
0 = N −X2 −X1 − µ1, (26)

µh
2 = X2, (27)

µb
2 = κX2

(
1− X2

N −X1

)
dt (28)

µs
2 = κX2

(
1− X2

N −X1

)
dt, (29)

where

µ1 ≡

√( κ

2λ

)2
+

κX1

λ

(
1− X1 +X2

N

)
− κ

2λ
. (30)

The asset prices are given by

P1 =
1 +∆∗

r
+

κ

r

∫ ∆∗∗

∆∗ [1− F (∆)] d∆

λµ1 + κ+ r
− κ

r

∫ ∆∗

0 F (∆) d∆

λµ1 + κ+ r
, (31)

P2 =
1 +∆∗∗

r
− λµ1

λµ1 + κ+ r

∆∗∗ −∆∗

r
. (32)

13



This proposition shows that, the four cutoff points collapse into two: ∆∗ and ∆∗∗. A non-owner

with a type ∆∗ is indifferent from buying asset 1 and not buying any asset. A holder of asset 1

with a type ∆∗ is indifferent between holding the asset and selling it. Similarly, a non-owner with

a type ∆∗∗ is indifferent from buying asset 1 and buying asset 2; a holder of asset 2 with a type

∆∗∗ is indifferent between holding the asset and selling it.

Equations (24)–(29) characterize the population size of each group. In particular, equation

(24) shows that the buyers and sellers for asset 1 have the same population size. Moreover, since

there is no delay in trading asset 2, at each point in time, the groups of investors who need to

buy or sell asset 2 (i.e., µb
2 and µs

2) are infinitesimal, as shown in equations (28) and (29). Hence,

virtually all the supply of asset 2 is held by inactive holders, as shown in equation (27).

Equation (31) shows that asset 1’s price has three components. The first term, 1+∆∗

r , is the

marginal investor’s present value of the cash flow and convenience yield ∆∗ from the asset. The

second term reflects the liquidity effect from the buyers, whose types range from ∆∗ to ∆∗∗. Eager

to get the asset, they are willing to pay a higher price. On the other hand, the trading friction

makes sellers, whose types range from 0 to ∆∗, willing to sell at a low price. This effect is captured

by the third term. When the search friction disappears, i.e., λ goes to infinity, the last two terms

converge to 0 and P1 converges to 1+∆∗

r .

The price of asset 2 is in equation (32). The first term, 1+∆∗∗

r , is the marginal investor’s

present value of the cash flow and convenience yield ∆∗∗ from the asset. The second term reflects

the discount due to the investors’ outside option of buying asset 1. Asset 1 is cheaper, but one

has to face a delay in the transaction. The higher the search friction, the less valuable the outside

option of buying asset 1 is. When the search friction goes to infinity (i.e., λ goes to 0), the outside

option value goes to 0 and the second term becomes 0. On the other hand, when the search

friction disappears, i.e., λ goes to infinity, P2 converges to 1+∆∗

r . That is, when the search friction

disappears, the two assets become the same and have the same price.

14



Proposition 2 The effect of the search friction on asset prices is as follows:

∂P1

∂λ
< 0 if ∆∗∗ −∆∗ >

∫ ∆∗∗

0
F (∆) d∆,

∂P1

∂λ
> 0 if ∆∗∗ −∆∗ <

∫ ∆∗∗

0
F (∆) d∆,

∂P2

∂λ
< 0.

When the search technology in market 1 improves, its effect on P1 depends on the tradeoff between

the effect on buyers and the effect on sellers, which are captured by the second and third terms

in equation (31). Note that the condition ∆∗∗ −∆∗ >
∫ ∆∗∗

0 F (∆) d∆ is equivalent to the second

term being larger than the third term, that is, the effect on buyers dominates. In this case, due

to the search friction, buyers push up P1. Hence, when the search technology improves, this effect

weakens and P1 decreases. Similarly, in the other case, ∆∗∗ −∆∗ <
∫ ∆∗∗

0 F (∆) d∆, the effect on

sellers dominates and P1 increases when the search techonology improves.

Finally, when the search technology improves, it increases asset 2 buyers’ outside option value,

since they can more easily obtain asset 1. This reduces the comparative advantage of asset 2 and

so reduces P2.

2.6 The liquidity premium

Since assets 1 and 2 have identical cash flows, the price difference, P2 − P1, reflects the liquidity

premium. From (31) and (32), the liquidity premium is given by

LP =
∆∗∗ −∆∗ + κ

r

∫ ∆∗∗

0 F (∆) d∆

λµ1 + κ+ r
. (33)

The above expression immediately shows that the liquidity premium is always positive and de-

creases when the search friction decreases (i.e., when λ increases). As λ goes to infinity, the

friction in market 1 disappears, and the liquidity premium converges to 0.

Another observation from (33) is that the liquidity premium depends on not only the marginal

investor’s liquidity preference ∆∗∗, but also the distribution of all investors’ preferences F (·). In

particular, the liquidity premium is increasing in ∆∗∗ but decreasing in ∆∗. Intuitively, investor

∆∗∗ is the marginal investor who is indifferent between buying assets 1 and 2. He can pay P2
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to obtain asset 2 right away. Asset 1 is cheaper, but he has to face a delay in the transaction.

In the meantime, he is giving up his convenience ∆∗∗. The investor is indifferent about the two

assets if the price difference (i.e., the liquidity premium) is the same as the present value of the

convenience that the marginal investor expects to lose during his search. Hence, the liquidity

premium increases in ∆∗∗.

It is less obvious that the liquidity premium also depends on ∆∗. The intuition is the following.

Suppose ∆∗ decreases. This reduces P1 since the type-∆
∗ investor is the marginal investor between

buying asset 1 and not buying any asset. How does P2 respond to the drop in P1? For investor-

∆∗∗ to be indifferent between assets 1 and 2, P2 has to decrease. If P1 drops by one dollar, how

much should P2 decrease to keep investor-∆∗∗ indifferent? The answer is less than one dollar.

The reason is that, as noted in Lemma 1, an investor’s expected utility is more sensitive to P2

than to P1. That is, after a one-dollar drop in P1, it takes a smaller drop in P2 to keep the investor

indifferent between the two assets. Therefore, a decrease in ∆∗ increases the liquidity premium.

The above result naturally leads to the following proposition.

Proposition 3 The liquidity premium decreases in X2 (i.e., ∂LP
∂X2

< 0) if

1

f (∆∗)
+

λκX1

[
∆∗∗ −∆∗ + κ

r

∫ ∆∗∗

0 F (∆) d∆
]

(2λµ1 + κ) (λµ1 + κ+ r)
<

N
(
1 + κ

rF (∆∗∗)
)

N −X1

1

f (∆∗∗)
, (34)

but increases in X2 (i.e., ∂LP
∂X2

> 0) if

1

f (∆∗)
+

λκX1

[
∆∗∗ −∆∗ + κ

r

∫ ∆∗∗

0 F (∆) d∆
]

(2λµ1 + κ) (λµ1 + κ+ r)
>

N
(
1 + κ

rF (∆∗∗)
)

N −X1

1

f (∆∗∗)
. (35)

This proposition shows that the supply of asset 2 may increase or decrease the liquidity

premium, depending on the distribution of the investors’ liquidity preferences. Intuitively, since

an increase in X2 attracts more investors with high ∆, it pushes down both ∆∗ and ∆∗∗. That is,

the increase in X2 has two effects. First, it decreases ∆∗∗ and so decreases the premium. Second,

it decreases ∆∗ and so increases the liquidity premium. The strength of the two effects depends
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on the sensitivity of ∆∗ and ∆∗∗ to X2. From (22) and (23), we have

∂∆∗

∂X2
= − 1

Nf(∆∗)
,

∂∆∗∗

∂X2
= − 1

(N −X1) f(∆∗∗)
.

So, the strength of the two effects is decreasing in f(∆∗) and f(∆∗∗), respectively.

Intuitively, a higher f(∆∗∗) means that there are more investors whose types are around ∆∗∗.

Hence, an increase in X2 pushes down ∆∗∗ less, and so the first effect (i.e., the effect through

∆∗∗) is weaker. Similarly, the strength of the second effect is weaker if f(∆∗) is larger. This is

illustrated in Figure 1. Panel A reflects condition (34): f(∆∗) is high relative to f(∆∗∗). Hence,

the first effect (i.e., the effect through ∆∗∗) dominates and the supply of asset 2 decreases the

liquidity premium. Similarly, under condition (35), as illustrated in Panel B, f(∆∗∗) is high

relative to f(∆∗). The second effect (i.e., the effect through ∆∗) dominates and an increase in X2

increases the liquidity premium.

To better illustrate the result in Proposition 3, and also demonstrate that conditions (34) and

(35) are both attainable, we parameterize the density function f(·) as

f (∆) = a∆a−1, (36)

for ∆ ∈ (0, 1), where a is a constant and a > 0. The case a = 1 corresponds the uniform

distribution. When a increases, the slope of f(·) increases. So, a small a corresponds to the case

in Panel A of Figure 1, and a large a represents the case in Panel B.

Corollary 1 For the distribution in (36), ∂LP
∂X2

< 0 if a < â, and ∂LP
∂X2

> 0 if a > â, where â is a

constant and given by equation (76) in the Appendix.

In the uniform distribution case, i.e., a = 1, the liquidity premium is decreasing in X2, since

we can see from the Appendix that the constant â is larger than 2. The corollary shows that the

liquidity premium becomes increasing in X2 only when the slope of f(·) is sufficiently large, i.e.,

a > â, as illustrated in Panel B of Figure 1.

The empirical evidence in Krishnamurthy and Vissing-Jorgensen (2012) suggests that the
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supply of Treasury securities decreases their premium. This is consistent with the implication

from the case a < â or Panel A in Figure 1. That is, the liquidity preference among investors is

such that many investors have a modest convenience (i.e., ∆), while some other investors have

large ∆. One can think of these investors with large ∆ as banks, which can use Treasury securities

as collateral to issue checking accounts, or hedge funds that use Treasury securities as collateral

for their derivative positions. Normal investors, however, do not benefit as much from the liquidity

and safety in Treasury securities.

The case where a > â (i.e., Panel B in Figure 1) may be relevant for some other occasions.

For example, if one interprets asset 1 as junk bonds and asset 2 as bonds with investment grade

and above, such as investment-grade corporate bonds, agency bonds and Treasury securities etc.

Hence, most investors hold asset 2 for its liquidity and safety, and only a small of investors

with expertise (e.g., hedge funds) are marginal investors for junk bonds. That is, f(∆∗) is small

relative to f(∆∗∗), as in Panel B. In this case, the novel prediction from our model is that when

the supply of Treasury or investment-grade bonds increases, the spread between junk bonds and

investment-grade bonds should go up.4

2.7 Trading needs and asset prices

How do investors’ trading needs affect the asset prices and liquidity premium? In the model,

investors’ trading needs are summarized by κ. The higher κ is, the more frequently each investor’s

type changes, and hence the stronger the trading need. From Proposition 1, we obtain the

following.

Proposition 4

∂P1

∂κ

{
> 0 if ∆∗∗ −∆∗ <

∫ ∆∗∗

0 F (∆) d∆

< 0 if ∆∗∗ −∆∗ >
∫ ∆∗∗

0 F (∆) d∆

∂P2

∂κ

{
< 0 if κ < κ∗,
> 0 if κ > κ∗,

4We run regressions similar to those in Krishnamurthy and Vissing-Jorgensen (2012). However, the high yield
index is available only after 1997. Perhaps due to the short sample period, we do not find a significant relation
between the Treasury supply and the spread between junk bonds and investment-grade bonds.
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where

κ∗ ≡ r

1 +
√

rN
λX1(N−X1−X2)

.

This proposition shows that the impact of trading need on P1 depends on the impacts of the

buyers and sellers in market 1. As noted in Proposition 2, ∆∗∗ − ∆∗ <
∫ ∆∗∗

0 F (∆) d∆ implies

that the buyers’ impact dominates. In this case, more trading need increases P1. Similarly, if the

sellers’ impact dominates, i.e., ∆∗∗ −∆∗ >
∫ ∆∗∗

0 F (∆) d∆, more trading need decreases P1.

The effect of κ on P2 is more subtle. When κ increases, it has two effects. First, it means

more investors search in market 1, making it more liquid. This reduces asset 2’s advantage and

decreases P2. Second, a higher κ also means that investors expect a shorter holding period. This

makes the delay in trading asset 1 even less appealing, and hence increases P2. When κ is smaller

than κ∗, the first effect dominates and ∂P2
∂κ < 0. In fact, when κ goes to 0, both µs

1 and µb
1 go to

0, that is, market 1 becomes completely illiquid and ∂P2
∂κ converges to −∞. On the other hand,

when κ > κ∗, investors expect to hold an asset only for a short period of time. This makes the

delay in market 1 less tolerable. Hence, the second effect dominates and ∂P2
∂κ > 0. Taken together,

it is easy to see that the effect of κ on the liquidity premium is mixed and depends on the relative

strength of the four effects discussed above.

2.8 Welfare

This section endogenizes the investment in the search technology, and analyzes the welfare im-

plications. In particular, we specify the cost of investing in the search technology and the cor-

responding matching function as the following. Investor i has to pay Γ(λi) to obtain a search

technology λi, where Γ(·) is continuous, differentiable, increasing, and convex, with Γ(0) = 0,

Γ′(∞) = ∞. For simplicity, the cost Γ(λi) is paid at t = 0 before the investor knows his type,

and there is no further cost to maintain the technology and investors cannot make adjustments

to their technology after t = 0. Suppose investor i is a buyer in market 1. Let λ̄ denote the

average technology chosen by sellers. Then, during [t, t + dt) this buyer meets a seller with a

probability
[
αλi + (1− α)λ̄

]
µs
1dt. That is, the matching intensity is a linear combination of the

buyer’s technology λi and the average technology of all sellers λ̄. Similarly, suppose that investor
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i is a seller in market 1 and that λ̄ is buyers’ average technology. Then, during [t, t + dt) this

seller meets a buyer with a probability
[
αλi + (1− α)λ̄

]
µb
1dt.

An investor’s objective function is

max
λi

E[V (∆)]− Γ(λi) (37)

where E[V (∆)] is an investor’s expected value function across states in the steady states. We

consider a symmetric equilibrium, in which all investors choose the same level of technology. One

degenerate equilibrium is that all investors choose not to invest in their search technology at

all and the market for asset 1 is shut down. In the following, we focus on the more interesting

equilibrium where investors choose to invest, and denote this decentralized choice as λd.

As a comparison, we also analyze the choice of a central planner, who chooses the technology

investment for all investors to maximize

max
λ

E[V (∆)]− Γ(λ). (38)

We denote this centralized choice as λc. The difference between (37) and (38) is that when

an investor makes a decentralized decision in (37), he takes other investors’ choice λ̄ and the

population distribution (e.g., µb
1 and µs

1) as given. In (38), however, the central planner internalizes

the consequences of investors’ decisions. The following proposition compares the investment

choices across the two cases.

Proposition 5 There are unique solutions λd and λc to (37) and (38), respectively. If α ≤ 1
2 ,

decentralized decisions lead to underinvest, i.e., λd < λc. If α > 1
2 , decentralized decisions may

lead to over- or underinvestment.

There are two externalities in this economy. First, an investor’s investment in his technology

also benefits his potential future trading partners. This positive externality leads to a free-riding

problem, and hence underinvestment relative to the first best. Second, as the search technology

improves, more investors’ trading needs get matched, and hence fewer investors are left searching in

the market, reducing the marginal benefit of searching for all investors. This negative externality

leads to overinvestment.
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The strength of the first externality is determined by α. The smaller the α, the stronger the

free riding problem. The proposition shows that in the case of α ≤ 1
2 , the free-riding problem

always dominates and leads to underinvestment relative to the central planning case. In the case

of α > 1
2 , however, the second externality may dominate. In particular, Panel A of Figure 3 plots

the sensitivity of the population size to the search technology, −∂µb
1/∂λ, against κ. It shows

that this sensitivity is the strongest when κ is in the intermediate region. This is the region

where the second externality is the strongest. Hence, as shown in Panel B, in the intermediate

region for κ, we have λd > λc, i.e., investors overinvest relative to a central planner in this region.

That is, decentralized decisions lead to underinvestment in the matching technology in markets

where investors expect to trade very infrequently or very frequently, but lead to overinvestment

in markets where the trading frequency is intermediate.

Panel A Panel B
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Figure 3: Panel A plots −∂µb
1/∂λ, against κ. Panel B plots λd − λc, against κ. Parameters for

both panels: X1 = 10, X2 = 10, N = 22. Other parameters for Panel B: α = 0.7, r = 0.02, ∆ = 1,

Γ(λ) = 0.1λ4.

3 The safety premium

The analysis so far has focused on the liquidity premium. We now move on to analyze the safety

premium. In particular, we modify the model by introducing a default risk to asset 1. Specifically,

asset 1 pays a constant cash flow of $1 per unit of time, until default, which has an intensity of

π. That is, during [t, t+ dt), a fraction πdt of asset-1 holders lose their holdings in asset 1, while
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the remaining asset-1 holders are intact. If default happens to an investor who is trying to sell

his asset 1, he becomes an inactive non-owner. Alternatively, if an investor is an inactive holder

of asset 1 when default happens to his holding, he then chooses his optimal strategy (buy asset

1, buy asset 2, or stay inactive) according to his current type ∆.

To keep the steady state stable, we assume that X1πdt units of asset 1 are issued to market

1 during [t, t+ dt), so that the total amount of asset 1 outstanding remains a constant over time.

We can think of the sellers of the newly issued asset 1 as investment bankers. They are treated

the same as other sellers in market 1. The only difference is that the investment bankers leave the

market after they sell their assets. Hence, at each point in time, some investment bankers leave

and market and other investment bankers enter the market with newly issued asset 1. In the

steady state, the population size of investment bankers in the market remain constant over time.

The steady-state equilibrium is defined analogously to that in Definition 1, and is characterized

in the following proposition.

Proposition 6 The steady-state equilibrium is given by

P1 =
1 +∆†

π + r
+

κ

π + r

∆†† −∆† −
∫ ∆†

0 F (∆) d∆

λµb
1 + κ+ π + r

, (39)

P2 =
1 +∆††

r
− λµb

1

λµb
1 + κ+ π + r

∆†† −∆†

r
, (40)

where µb
1 is the solution to

1

κ

(
µb
1 +

κ+ π

λ

)[
λµb

1 + π

X1
− π

µb
1

]
= 1−

1
π+κλ

(
µb
1

)2
+ µb

1 +X2

N − κ
π+κ

λµb
1

λµb
1+π

X1

, (41)

and

F
(
∆††
)

= 1− X2

N − κ
π+κ

λµb
1

λµb
1+π

X1

,

F (∆†) =
1

κ

(
µb
1 +

κ+ π

λ

)(
λµb

1 + π

X1
− π

µb
1

)
,

µs
1 = µb

1 −
πX1

λµb
1 + π

,

µh
1 = X1 − µb

1,

µh
0 = N −X2 −

λµb
1

λµb
1 + π

X1 − µb
1.
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The equilibrium shares many similar properties to those in Proposition 1. For example,

similar to the two cutoff points in the baseline model, we now have two cutoff points ∆† and ∆††.

Investor-∆† is indifferent between searching to buy asset 1 and staying inactive, and investor-∆††

is indifferent between searching to buy asset 1 and buying asset 2.

The price of asset 1 is determined by the valuation of the marginal investor ∆† (i.e., 1+∆†

π+r )

and the illiquidity effect from the buyers and sellers (i.e., the last term in equation (39)). The

price of asset 2 is determined by its marginal investor’s valuation 1+∆††

r , and the discount due to

the investor’s outside option of buying asset 1 (i.e., the last term in equation (40)). When the

search friction disappears, i.e., λ goes to infinity, asset 1 becomes perfectly liquid and its price P1

converges to 1+∆∗

π+r , and P2 converges to 1+∆∗

r .

The price difference, P2 − P1, is due to the better liquidity and safety of asset 2. To isolate

the impact from safety, we define the safety premium as

SP ≡ lim
π→0

P1 − P1,

where limπ→0 P1 is the limit of the price of asset 1 when the default intensity converges to 0. One

can think of limπ→0 P1 as the price of an asset that is as liquid as asset 1, but as safe as asset

2. Hence, SP reflects the safety premium that asset 2 commands. The following proposition

characterizes the properties of the safety premium.

Proposition 7 If λ is sufficiently large, the safety premium decreases with the supply of asset 2,

∂SP
∂X2

< 0, and this impact is stronger when the default intensity is higher, ∂2SP
∂X2∂π

< 0.

Due to the default risk, the expected cash flow from asset 1 is lower. So, it is not surprising

that there is a safety premium. However, the above proposition shows that the safety premium

is related to the supply of asset 2. Intuitively, in the absence of default, the marginal investor of

asset 1 enjoys a convenience yield of ∆†. The default risk, however, means that he can get only

a fraction of it in expectation. That is, the safety premium reflects a fraction of the convenience

yield ∆† that is expected to be wiped out by default. Hence, the safety premium increases in

∆†. When the supply of asset 2 increaes, it attracts more investors with high types, and so

reduces ∆† and the safety premium. Moreover, when the default intensity π is higher, the safety
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premium reflects a larger fraction of the convenience yields ∆†, and hence is more sensitive to ∆†.

Therefore, the effect of supply of asset 2 on the safety premium is stronger.

4 Conclusion

We have analyzed a micro-founded model of the safety and liquidity premium. Relative to the

reduced-form money-in-the-utility-function approach, our model explicitly examines investors’

trading needs and trading frictions. One new insight from our approach is that the marginal

investor’s preference for safety and liquidity is no longer enough in determining the premium.

Instead, the distribution of all investors’ preferences plays a direct role. The model implies that

an increase in the supply of Treasury securities decreases the credit spread of investment-grade

bonds, but may increase the spread between junk bonds and investment-grade bonds. Our analysis

highlights the importance of explicitly modeling trading frictions. This is parallel to the point

stressed in the classical search-theoretical model of Kiyotaki and Wright (1989), which emphasizes

the importance of explicitly modeling the frictions that render money essential.
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Appendix

In the following, we sketch the proofs of our main results and leave the details of some derivations

to our online appendix at http://faculty.som.yale.edu/hongjunyan/.

Proof of Propositions 1–4

Step I. Non-owner’s optimal strategy. Equation (19) implies that V h
0 (∆) is a constant for all ∆.

We denote it by U ≡ V h
0 (∆). Differentiating (16) and (13), we obtain

dV b
2 (∆)

d∆
=

dV h
2 (∆)

d∆
=

1

κ+ r
, (42)

dV b
1 (∆)

d∆
=

λµs
1

λµs
1 + κ+ r

dV h
1 (∆)

d∆
=

λµs
1

λµs
1 + κ+ r

1

κ+ r
. (43)

Hence, V b
2 (∆) and V b

1 (∆) are linear in ∆ and
dV b

2 (∆)
d∆ >

dV b
1 (∆)
d∆ > 0 =

dV h
0 (∆)
d∆ , for any ∆. We thus

conjecture that there exist two cutoff points, ∆∗
0 and ∆∗∗

0 , such that

max{V h
0 (∆) , V b

1 (∆) , V b
2 (∆)} =


U , if ∆ ∈ [0,∆∗

0) ,
V b
1 (∆) , if ∆ ∈ (∆∗

0,∆
∗∗
0 ) ,

V b
2 (∆) , if ∆ ∈

(
∆∗∗

0 ,∆
]
,

(44)

V b
1 (∆∗

0) = V h
0 (∆∗

0) = U, (45)

V b
1 (∆∗∗

0 ) = V b
2 (∆∗∗

0 ) . (46)

From (45) and (46), we can write V b
1 (∆) and V b

2 (∆) as

V b
1 (∆) = V b

1 (∆∗
0) +

λµs
1

λµs
1 + κ+ r

∆−∆∗
0

κ+ r
= U +

λµs
1

λµs
1 + κ+ r

∆−∆∗
0

κ+ r
, (47)

V b
2 (∆) = V b

2 (∆∗∗
0 ) +

∆−∆∗∗
0

κ+ r
= U +

λµs
1

λµs
1 + κ+ r

∆∗∗
0 −∆∗

0

κ+ r
+

∆−∆∗∗
0

κ+ r
, (48)

where have used V b
1 (∆∗

0) = U in (47) and V b
2 (∆∗∗

0 ) = U +
λµs

1
λµs

1+κ+r
∆∗∗

0 −∆∗
0

κ+r in (48).

From (19) and the optimal strategy specified in (44), we have

U =
κ

κ+ r

[∫ ∆∗
0

0
UdF (∆) +

∫ ∆∗∗
0

∆∗
0

V b
1 (∆) dF (∆) +

∫ ∆

∆∗∗
0

V b
2 (∆) dF (∆)

]
.

Substituting (47) and (48) into the above equation and rearranging, we obtain

U =
κ

r

 λµs
1

λµs
1 + κ+ r

∫ ∆∗∗
0

∆∗
0

[1− F (∆)] d∆

κ+ r
+

∫ ∆
∆∗∗

0
[1− F (∆)] d∆

κ+ r

 . (49)
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Step II. Asset 2 owner’s optimal strategy. Differentiating (18), we obtain

dV h
2 (∆)

d∆
=

1

κ+ r
. (50)

Equations (17) and (44) imply that

V s
2 (∆) =

{
U + P2, if ∆ < ∆∗

0,

U + P2 +
λµs

1
λµs

1+κ+r
∆−∆∗

0
κ+r , if ∆ ≥ ∆∗

0.
(51)

Since the slope of V h
2 (∆) is larger than that of V s

2 (∆) for all ∆, we conjecture that there

exists a cutoff point ∆∗
2 such that

max{V s
2 (∆) , V h

2 (∆)} =

{
V s
2 (∆) , if ∆ < ∆∗

2,
V h
2 (∆) , if ∆ ≥ ∆∗

2,
(52)

V s
2 (∆∗

2) = V h
2 (∆∗

2) . (53)

We have the following chain of equalities:

U +
λµs

1

λµs
1 + κ+ r

∆∗∗
0 −∆∗

0

κ+ r

(a)
= V b

1 (∆∗∗
0 )

(b)
= V b

2 (∆∗∗
0 )

(c)
= V h

2 (∆∗∗
0 )− P2

(d)
=

1 +∆∗∗
0 + κE

[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
− P2,

where (a) is due to (47), (b) is due to (46), (c) is due to (16), and (d) is due to (18). Rearranging,

we have

U + P2 =
1 +∆∗∗

0 + κE
[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
− λµs

1

λµs
1 + κ+ r

∆∗∗
0 −∆∗

0

κ+ r
. (54)

It is easy to verify that ∆∗
2 > ∆∗

0. Hence, equation (51) implies

V s
2 (∆∗

2) = U + P2 +
λµs

1

λµs
1 + κ+ r

∆∗
2 −∆∗

0

κ+ r
.

The above equation, (18), and (53) imply

U + P2 =
1 +∆∗

2 + κE
[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
− λµs

1

λµs
1 + κ+ r

∆∗
2 −∆∗

0

κ+ r
. (55)

From equations (54) and (55) we have ∆∗
2 = ∆∗∗

0 ≡ ∆∗∗.

Step III. Asset 1 owner’s optimal strategy. Differentiating (14) and (15), we obtain

dV h
1 (∆)

d∆
=

1

κ+ r
, (56)
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dV s
1 (∆)

d∆
=

{
1

λµb
1+κ+r

, if ∆ < ∆̂0,

1
κ+r , if ∆ > ∆̂0,

(57)

where ∆̂0 =
λµs

1∆
∗
0+(κ+r)∆∗∗

0
λµs

1+κ+r ∈ (∆∗
0,∆

∗∗
0 ).

The slope of V s
1 (∆) and V h

1 (∆) are the same for the region ∆ > ∆̂0. We must have V s
1 (∆̂0) ≤

V h
1 (∆̂0), because otherwise it implies V s

1 (∆) > V h
1 (∆) for all ∆, i.e., no investors want to hold

asset 1. Hence, there should be a cutoff point ∆∗
1, such that ∆∗

1 ≤ ∆̂0 and

max{V s
1 (∆) , V h

1 (∆)} =

{
V s
1 (∆) , if ∆ < ∆∗

1,
V h
1 (∆) , if ∆ ≥ ∆∗

1,
(58)

V s
1 (∆∗

1) = V h
1 (∆∗

1) . (59)

From (57), we obtain

V s
1 (∆) =

 V s
1 (∆∗

1) +
∆−∆∗

1

λµb
1+κ+r

, if ∆ ≤ ∆̂0,

V s
1 (∆∗

1) +
∆̂0−∆∗

1

λµb
1+κ+r

+ ∆−∆̂0
κ+r , if ∆ > ∆̂0.

(60)

Since ∆∗
1 ≤ ∆̂0, we have the following chain of equalities:

V s
1 (∆∗

1)
(a)
=

(b)
=(κ+r)V h

1 (∆∗
1)

(c)
=(κ+r)V s

1 (∆∗
1)︷ ︸︸ ︷

1 + ∆∗
1 + κE

[
max

{
V s
1

(
∆′) , V h

1

(
∆′)}]+ λµb

1 (U + P1)

λµb
1 + κ+ r

=
(κ+ r)V s

1 (∆∗
1) + λµb

1 (U + P1)

λµb
1 + κ+ r

(d)
= U + P1, (61)

where (a) is due to (15), (b) is due to (14), (c) is due to (59), and (d) is the result after some

algebra. Therefore, (61) and (59) lead to

V h
1 (∆∗

1) = U + P1. (62)

Because V h
1 (∆) is linear in ∆ as shown in (56), we have

V h
1 (∆∗

0) = V h
1 (∆∗

1) +
∆∗

0 −∆∗
1

κ+ r
= U + P1 +

∆∗
0 −∆∗

1

κ+ r
. (63)

On the other hand,

U
(a)
= V b

1 (∆∗
0)

(b)
=

λµs
1

[
V h
1 (∆∗

0)− P1

]
+

(c)
=(κ+r)U︷ ︸︸ ︷

κE
[
max

{
V b
1

(
∆′) , V b

2

(
∆′) , V h

0

(
∆′)}]

λµs
1 + κ+ r

=
λµs

1

[
V h
1 (∆∗

0)− P1

]
+ (κ+ r)U

λµs
1 + κ+ r

(d)
= V h

1 (∆∗
0)− P1, (64)
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where (a) is due to (45), (b) is due to (13), (c) is due to (15), and (d) can be obtained after some

algebra. Substituting (63) into the above equation and rearranging, we find

∆∗
0 = ∆∗

1 ≡ ∆∗. (65)

Step IV. From (58), we have

E
[
max

{
V s
1 (∆) , V h

1 (∆)
}]

=

∫ ∆∗

0
V s
1 (∆) dF (∆) +

∫ ∆

∆∗
V h
1 (∆) dF (∆) . (66)

Here, V h
1 (∆) can be expressed as

V h
1 (∆) = V h

1 (∆∗) +
∆−∆∗

κ+ r
.

Substituting the above expression and (60) into (66), after some algebra, we have

E
[
max

{
V s
1 (∆) , V h

1 (∆)
}]

= V h
1 (∆∗)−

∫ ∆∗

0 F (∆) d∆

λµb
1 + κ+ r

+

∫ ∆
∆∗ [1− F (∆)] d∆

κ+ r
. (67)

From (14), we have

V h
1 (∆∗) =

1 +∆∗ + κE
[
max

{
V s
1 (∆′) , V h

1 (∆′)
}]

κ+ r
, (68)

Substituting this into (67) and rearranging, we have

E
[
max

{
V s
1 (∆) , V h

1 (∆)
}]

=
κ+ r

r

1 + ∆∗

κ+ r
−
∫ ∆∗

0 F (∆) d∆

λµb
1 + κ+ r

+

∫ ∆
∆∗ [1− F (∆)] d∆

κ+ r

 .

The above equation, (49), (62) , and (68) imply

P1 =
1 +∆∗

r
+

κ

r

[∫ ∆∗∗

∆∗ [1− F (∆)] d∆

λµ1 + κ+ r
−
∫ ∆∗

0 F (∆) d∆

λµ1 + κ+ r

]
.

Step V. From (52), we have

E
[
max

{
V s
2 (∆) , V h

2 (∆)
}]

=

∫ ∆∗∗

0
V s
2 (∆) dF (∆) +

∫ ∆

∆∗∗
V h
2 (∆) dF (∆) .

From (53) and (51), we obtain

V h
2 (∆) = U + P2 +

λµs
1

λµs
1 + κ+ r

∆∗∗ −∆∗

κ+ r
+

∆−∆∗∗

κ+ r
.

28



Substituting the above equation and V s
2 (∆) in (51), we obtain

E
[
max

{
V s
2 (∆) ,V h

2 (∆)
}]

= U + P2 +
λµs

1

λµs
1 + κ+ r

∫ ∆∗∗

∆∗ [1− F (∆)] d∆

κ+ r
+

∫ ∆
∆∗∗ [1− F (∆)] d∆

κ+ r
.

The above equation, (54), and (49) imply

P2 =
1 +∆∗∗

r
− λµ1

λµ1 + κ+ r

∆∗∗ −∆∗

r
. (69)

Step VI. Substituting (21) into (5) and (7), we have

κ
(
µh
0 +X2 + µb

1

)
F (∆∗∗)− κµb

1 = λµb
1µ

s
1 + κ

(
µh
0 + µb

1 +X2

)
F (∆∗) ,

κµh
0 = λµb

1µ
s
1 + κ

(
µh
0 + µb

1 +X2

)
F (∆∗) . (70)

The above two equations imply

F (∆∗∗) = 1− X2

µh
0 +X2 + µb

1

.

Substituting (12) and (20) into the above equation, we have (23). Substituting (12) and (20) in

(70), we obtain

κ (N −X1 −X2)− κµ1 = λ (µ1)
2 + κ (N −X1)F (∆∗) . (71)

From (20) and (6), we have

κµ1 + λ (µ1)
2 = κX1F (∆∗) . (72)

From (71) and (72), we obtain a quadratic equation of µ1:

(µ1)
2 +

κ

λ
µ1 −

κX1

λ

(
1− X1 +X2

N

)
= 0. (73)

The positive root is (30). Substituting it into (71), we have (22). It is straightforward to obtain

the comparative statics in Propositions 2–4.

Proof of Corollary 1

With f(·) in (36), Proposition 3 implies that LP is increasing in X2 if and only if

1
a −B

N
1
a

>

1
a −B + (1−B)a+1

a(a+1)
κ
rF (∆∗∗)

(N −X1)
1
a

, (74)
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where B ∈
(
0, 12
)
is given by

B =
λκX1

2 F (∆∗)(
κ
2

)2
+ λκX1F (∆∗) +

(
κ
2 + r

)√(
κ
2

)2
+ λκX1F (∆∗)

.

There are 3 cases. Case 1: If a < 1
B , (74) can be rewritten as

1
a −B

1
a −B + (1−B)a+1

a(a+1)
κ
rF (∆∗∗)

>
N

1
a

(N −X1)
1
a

.

The left hand side (LHS) of the above inequality is smaller than 1, while the right hand side

(RHS) is larger than 1. So, the inequality never holds and LP is decreasing in X2.

Case 2: If 1
B ≤ a < a1, where a1 is given by

a1 =
1−B

2B

(
1 +

κ

r
F (∆∗∗)

)
+

√(
1−B

2B

)2 (
1 +

κ

r
F (∆∗∗)

)2
+

1

B

(
1 +

κ

r
F (∆∗∗)

)
,

the LHS of (74) is negative while the RHS of (74) is positive, so the inequality never holds.

Therefore, LP is decreasing in X2.

Case 3: If a ≥ a1, (74) holds if and only if

N −X1

N
<

[
1− (1−B) a+ 1

(a+ 1) (aB − 1)

κ

r
F (∆∗∗)

]a
, (75)

Note that the LHS of (75) is between 0 and 1. The RHS of (75) is increasing in a. Moreover,

RHS = 0 if a = a1 and RHS>1 if a is sufficiently large. Hence, there exists a unique â > a1 such

that

N −X1

N
=

[
1− (1−B) â+ 1

(â+ 1) (âB − 1)

κ

r
F (∆∗∗)

]â
(76)

and inequality (75) holds if and only if a > â.

Therefore, combining all three cases, we obtain that the liquidity premium is decreasing in X2

for a < â and increasing in X2 for a > â.

Proof of Proposition 5

We first compute an investor’s average value function across ∆ in the steady state. For this,

we use gxi (∆), where x = b, s, h and i = 0, 1, 2, to denote the density of investors with value

function V x
i (∆). Since one can sell or buy asset 2 immediately, we have gb2 (∆) = o (1) and
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gs2 (∆) = o (1) for all ∆. In the steady state, the density and value function for other types of

investors are the following: i) inactive non-owners: V h
0 (∆) = U is given by (49) and gh0 (∆) =

(N −X1 −X2 − µ1)
f(∆)
F (∆∗) for ∆ ∈ [0,∆∗]; ii) buyers of asset 1: V b

1 (∆) is given by (47) and

gb1 (∆) = µ1
f(∆)

F (∆∗∗)−F (∆∗) for ∆ ∈ [∆∗,∆∗∗]; iii) inactive owners of asset 1: V h
1 (∆) = U+P1+

∆−∆∗

κ+r

for ∆ ∈ [∆∗,∆∗∗], and

gh1 (∆) =

{ [
N − µ1

F (∆∗∗)−F (∆∗)

]
f (∆) , for ∆ ∈ [∆∗,∆∗∗] ,

X1f (∆) , for ∆ ∈
[
∆∗∗,∆

]
;

iv) sellers of asset 1: V s
1 (∆) = U + P1 + ∆−∆∗

λµ1+κ+r for ∆ ∈ [∆,∆∗] and gs1 (∆) = µ1
f(∆)
F (∆∗) for

∆ ∈ [∆,∆∗]; v) owners of asset 2: V h
2 (∆) = U+P2+

∆−∆∗

κ+r − ∆∗∗−∆∗

λµ1+κ+r and gh2 (∆) = (N −X1) f (∆)

for ∆ ∈
[
∆∗∗,∆

]
. The expected welfare is given by

E [V (∆)] =
1

N

[∫ ∆∗

0
V h
0 (∆) gh0 (∆) d∆+

∫ ∆∗∗

∆∗
V b
1 (∆) gb1 (∆) d∆

+

∫ ∆∗

∆
V s
1 (∆) gs1 (∆) d∆+

∫ ∆

∆∗
V h
1 (∆) gh1 (∆) d∆+

∫ ∆

∆∗∗
V h
2 (∆) gh2 (∆) d∆

]

=
1

r

[
X1 +X2

N
+

∫ ∆

∆∗
∆dF (∆)

]
−

κ
r I1 + µ1I2

λµ1 + κ+ r
, (77)

where

I1 =

(
1− X1

N

)∫ ∆∗∗

∆∗
[F (∆∗∗)− F (∆)] d∆+

X1

N

∫ ∆∗

0
F (∆) d∆,

I2 =
1

N

[∫ ∆∗∗

∆∗

F (∆)− F (∆∗)

F (∆∗∗)− F (∆∗)
d∆+

∫ ∆∗

∆

F (∆)

F (∆∗)
d∆

]
.

Note that the first term in (77) is the expected utility with no friction, and the second term is the

welfare loss due to search friction. Since µ1 itself is also a function of λ, we will use the notation

µ1 (λ) to make it explicit. We define the following function

G (x, y) ≡ −
κ
r I1 + I2y

x+ κ+ r
, for x > 0, y > 0,

and so the welfare loss is −G (λµ1 (λ) , µ1 (λ)). It is easy to see that G (λµ1 (λ) , µ1 (λ)) is strictly

increasing in λ and strictly concave in λ and converges to zero when λ → ∞.

The optimization problem (37) is equivalent to

max
λi

G
([
αλi + (1− α)λ

]
µ1

(
λ
)
, µ1

(
λ
))

− Γ (λi) .

31



The decentralized choice λd is characterized by the following first order condition:

αµ1

(
λd
) ∂G

∂x

(
λdµ1

(
λd
)
, µ1

(
λd
))

= Γ′
(
λd
)
. (78)

The optimization problem (38) is equivalent to

max
λi

G (λµ1 (λ) , µ1 (λ))− Γ (λ) .

The centralized choice λc is characterized by the following first order condition:[
∂G (λµ1 (λ) , µ1 (λ))

∂x

d [λµ1 (λ)]

dλ
+

∂G (λµ1 (λ) , µ1 (λ))

∂y

dµ1 (λ)

dλ

]∣∣∣∣
λ=λc

= Γ′ (λc) . (79)

Define

H (λ) ≡ αµ1 (λ)
∂G

∂x
(λµ1 (λ) , µ1 (λ)) = αµ1 (λ)

−G (λµ1 (λ) , µ1 (λ))

λµ1 (λ) + κ+ r
,

K (λ) ≡ µ1 (λ)

2

λµ1 (λ) + κ

λµ1 (λ) +
κ
2

−G (λµ1 (λ) , µ1 (λ))

λµ1 (λ) + κ+ r
+

(µ1 (λ))
2

2λµ1 (λ) + κ
I2,

then (79) and (78) can be rewritten as

H
(
λd
)

= Γ′
(
λd
)
,

K (λc) = Γ′ (λc) ,

and

K (λ)−H (λ) =
µ1 (λ)

[λµ1 (λ) + κ+ r]2
J (λ) ,

where

J (λ) ≡
[
1

2
− α+

κ
2

2λµ1 (λ) + κ

]
κ

r
I1 +

[
1− α+

κ+ r

2λµ1 (λ) + κ

]
µ1 (λ) I2.

It can be shown that J (λ) is decreasing in λ, and

J (λ)|λ=0 = (1− α)
κ

r
I1 +

(
2− α+

r

κ

)
I2X1F (∆∗) > 0,

J (λ)|λ=∞ =

(
1

2
− α

)
κ

r
I1.

If α ≤ 1
2 , then J (λ)|λ=∞ > 0 and J (λ) > J (λ)|λ=∞ > 0 for any finite λ because J (λ) is

decreasing in λ. That is, K (λ) > H (λ) for any finite λ. In this case, we have λc > λd. To see
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this, we suppose λc < λd. We then have

Γ′
(
λd
)
= H

(
λd
)
< H (λc) < K (λc) = Γ′ (λc) .

However, Γ′′ (·) > 0 implies that Γ′ (λc) < Γ′ (λd
)
. This results in a contradiction.

For the case of α > 1
2 , Figure 3 is sufficient to show that both over- and underinvestment are

possible. In the online appendix, we characterize the necessary and sufficient condition for over-

and underinvestment.

Proof of Proposition 6

The proof of this proposition is parallel to that of Proposition 1. The extra feature is that during

each instant, a fraction πX1dt of asset 1 is wiped out, and the same amount of asset 1 is issued into

the economy. Instead of the quadratic equation (73) in the baseline model, we now have a more

general equation (41) to determine µb
1. Details for the calculations are in the online appendix.

Proof of Proposition 7

From (41), we expand µb
1 as

µb
1 = mb

1/
√
λ+ o

(
1/

√
λ
)
, (80)

where

mb
1 =

√
X1

[
π + κ

(
1− X1 +X2

N

)]
.

From (80), we can obtain

∆† = ∆∗ + o
(
1/
√
λ
)
,

∆†† = F−1

(
1− X2

N − κ
π+κX1

)
+ o (1) ,

where ∆∗ is given by (22). We can thus expand P1 and the safety premium as

P1 =
1 +∆†

π + r
+ o (1) ,

SP =
π
(
1 + ∆†)

r (π + r)
+ o (1) .
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Therefore, when λ is sufficiently large, we have

∂SP

∂X2
= − π

r (π + r)Nf (∆†)
< 0,

∂2SP

∂X2∂π
= − 1

(π + r)2Nf (∆†)
< 0.
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