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account, we find that the vacuum stability constraints have an important impact on the

phenomenology of the N2HDM.
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1 Introduction

The Higgs mechanism [1–5] has been introduced to generate particle masses without vio-

lating gauge symmetries. It is based on a sufficiently stable vacuum with non-zero vacuum

expectation value v ≈ 246 GeV. Within the Standard Model (SM), the stability of the elec-

troweak (EW) vacuum is guaranteed at lowest order as a consequence of the postulated

form of the Higgs potential. Through higher-order corrections, the stability of the EW vac-

uum becomes intimately related also to the other Standard Model (SM) parameters [6, 7],

in particular the top quark mass. When extrapolating the SM to high energy scales it

turns out that the EW vacuum is metastable for scales larger than about 1010 GeV, which

means that for these scales the vacuum is no longer absolutely stable but has a lifetime

that is longer than the age of the universe.

Extensions beyond the SM (BSM) typically introduce new additional scalar degrees

of freedom. While the loop contributions of these scalar particles may counteract the

impact of the top quark loop, the presence of the additional scalars modifies the structure

of the Higgs potential such that additional vacua can occur that are different from the one

related to the correct EW symmetry breaking (EWSB). There can be vacua that break
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the CP symmetry (CP breaking) or the conservation of electric charge (charge breaking),

in supersymmetric models even color breaking minima can occur. Moreover, there is the

possibility of a second EW minimum but with a wrong vacuum expectation value (VEV)

v 6= 246 GeV, as for example in the 2-Higgs Doublet Model (2HDM) where this situation

was named “panic vacuum” [8–12]. In case an additional vacuum is deeper than the EW one

then tunnelling can occur into dangerous non-physical vacuum configurations [13]. If this

happens at time scales beyond the lifetime of the universe the EW vacuum is considered as

metastable. However, parameter regions giving rise to faster vacuum decays are regarded

as unphysical and should be excluded. Hence the requirement of a stable EW vacuum at

cosmological time scales has immediate consequences for the allowed parameter space of

the models. A thorough analysis of their vacuum structure is therefore crucial to correctly

identify the allowed parameter space and consequently make appropriate predictions for

observables and signatures for the experimental studies.

The analysis of the 2HDM [8, 9, 14, 15] has shown that if a “normal” vacuum exists,

i.e. a vacuum that is EW breaking but charge and CP conserving, any stationary point

that is charge or CP breaking is necessarily a saddle point that lies above the normal

minimum. There is also the possibility to have a second normal minimum but with the

wrong VEV, i.e. a panic vacuum state. The Inert 2HDM, a 2HDM with an exact Z2 sym-

metry, can have two types — Inert and Inert-like — of minima which can coexist with

one another for certain parameter relations. The one-loop study, however, has shown [16]

that the parameter regions where this is the case can change at loop level. The analysis

of the possibility of a strong first order phase transition in the context of a CP-conserving

and CP-violating 2HDM conducted in [17, 18] revealed as a side product that the allowed

minima at leading order do not necessarily lead to stable physical configurations at next-

to-leading order (NLO) and vice versa. The developed code BSMPT [19] allows for studies of

the vacuum structure at NLO (at zero and at finite temperature) of arbitrary user-defined

BSM extensions. This is also the case for Vevacious [20, 21], designed for general BSM

models, including one-loop and temperature effects. Recently, members of this collabora-

tion have presented an approach at leading order for an efficient and reliable evaluation

of the constraints from vacuum stability and applied it to the minimal supersymmetric

extension of the SM (MSSM) [22]. As shown in [23, 24] and also discussed in [22], for

calculations of the vacuum decay lifetime the loop-corrected effective potential in general

does not correspond to a consistent perturbative expansion. A first analysis of the vacuum

structure of the N2HDM has been carried out by some of the present authors in [25]. The

N2HDM, which is obtained upon extension of the 2HDM with a real singlet field (which

may acquire a VEV), was shown to exhibit a different vacuum structure than the 2HDM.

Thus e.g. charge or CP breaking minima deeper than the normal minimum can exist.

In this paper we perform a detailed analysis of the vacuum structure of the N2HDM.

We classify the different possible types of vacua and derive analytical expressions for the

comparison of the values of the potential at minima of different nature. In contrast to [25],

where a general phenomenological analysis of the N2HDM was performed (and where parts

of our results have been presented in a numerical approach), we concentrate here on the

vacuum structure itself and its implications on the model. By applying the method of [22],
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we investigate the requirement of a sufficiently stable physical minimum on the allowed

parameter range. In particular, we investigate here for the first time the impact of the

N2HDM vacuum structure on the phenomenology of the model. Moreover, we discuss the

importance of including parameter regions with a metastable vacuum in phenomenological

analyses in order to avoid incorrect conclusions on the viability of parameter space regions.

Our study thus makes important new contributions to properly constraining the viable

parameter space taking into account the theoretical constraints from the requirement of a

stable vacuum.

The paper is organised as follows. In section 2 we introduce the model and the different

types of possible minima. It contains the detailed analytical analysis of the stability of the

different minima. Section 3 is dedicated to the numerical analysis of the vacuum structure

of the N2HDM. We describe our parameter scan and the method that we apply in order

to identify the regions where the vacuum is stable or metastable. Subsequently we present

and discuss our numerical results. We conclude in section 4. The appendix contains a

derivation that is used in our determination of the nature of the stationary points.

2 The model and possible minima

The particle content of the N2HDM is identical to the one of the 2HDM in the fermionic

and gauge sectors, but includes an extra real singlet scalar field, ΦS . To reduce the large

number of parameters of the scalar potential, and to allow for the possibility of interesting

phenomenology, such as dark matter, three discrete symmetries are imposed: (a) a Z2

symmetry in which one of the doublets is affected by a sign change, Φ1 → Φ1, Φ2 → −Φ2

and ΦS → ΦS ; (b) another Z2 symmetry which leaves the doublets unchanged but changes

the sign of the singlet, Φ1 → Φ1, Φ2 → Φ2 and ΦS → −ΦS ; (c) the standard CP symmetry,

Φ1 → Φ∗1 and Φ2 → Φ∗2 — since the singlet is real, the CP transformation does not affect it.

After imposing these symmetries only terms quadratic and quartic in the fields are allowed

and the most general scalar potential is given by

V = m2
11|Φ1|2 +m2

22|Φ2|2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 +

1

2
λ5

[(
Φ†1Φ2

)2
+ h.c.

]
+

1

2
m2
SΦ2

S +
1

8
λ6Φ4

S +
1

2
λ7|Φ1|2Φ2

S +
1

2
λ8|Φ2|2Φ2

S , (2.1)

where all parameters in the potential are real. We allow for the Z2 symmetry (a) to be

softly broken by the m2
12 term. The theory obviously also includes fermions, and the

Yukawa Lagrangian will depend on the choices made to extend the discrete symmetries

imposed upon the scalar sector to the fermion one. Due to gauge invariance the singlet

field ΦS couples to neither fermions nor gauge bosons. Therefore, the Yukawa Lagrangian

will have four different possible forms, identical to the different types of 2HDM Yukawa

Lagrangians. All of the four different possibilities lead to flavour conservation in scalar

interactions. One of the possibilities (achieved if all right fermion fields change sign under
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the first Z2 symmetry defined above) is a Type-I model, in which all fermions only couple

to the doublet Φ2, and the Yukawa Lagrangian for the third generation is given by

− LY = λtQ̄LΦ̃2tR + λbQ̄LΦ2bR + λτ L̄LΦ2τR , (2.2)

with QL and LL denoting the left-handed quark and lepton doublets, and tR, bR and τR
the right-handed top, bottom and tau singlets. The remaining three Yukawa types can be

defined analogously [25].

The N2HDM contains different phases, depending on the type of symmetry breaking

that occurs. Vacuum expectation values for the scalar fields will lead to vacua which may,

or may not, preserve the symmetries imposed. Let us now review the different types of

vacua possible in the N2HDM. For the purpose of studying the interplay between different

possible vacua, it is convenient to introduce a bilinear formalism, similar to that which

has been developed for the 2HDM [8–10, 14, 15, 26–34]. This formalism has been applied

to models with different scalar content, for instance the 3HDM [35, 36] or the complex

singlet-doublet model [37]. For the N2HDM let us define five real quantities,

x1 = |Φ1|2 , x2 = |Φ2|2 , x3 = Re
(

Φ†1Φ2

)
, x4 = Im

(
Φ†1Φ2

)
, x5 =

1

2
Φ2
S . (2.3)

Further, we define the vectors X, A and the symmetric matrix B as

X =


x1

x2

x3

x4

x5

 , A =


m2

11

m2
22

−2m2
12

0

m2
S

 , B =


λ1 λ3 0 0 λ7

λ3 λ2 0 0 λ8

0 0 2(λ4 + λ5) 0 0

0 0 0 2(λ4 − λ5) 0

λ7 λ8 0 0 λ6

 , (2.4)

in terms of which the potential of eq. (2.1) can be rewritten as

V = AT X +
1

2
XT BX . (2.5)

In what follows we shall also make extensive use of the vector

V ′ =
∂V

∂XT
= A + BX . (2.6)

It can easily be shown that, at a given stationary point in which the fields acquire vacuum

expectation values such that 〈X〉T = (〈|Φ1|〉2 , 〈|Φ2|〉2 , Re〈Φ†1Φ2〉 , Im〈Φ†1Φ2〉 , 1
2 〈ΦS〉2)T ,

the value of the potential at that stationary point, VSP , is given by

VSP =
1

2
AT 〈X〉 = − 1

2
〈X〉TB〈X〉 . (2.7)

As explained in [25], by using the gauge freedom of the model, it is always possible

to bring the most generic possible vacuum (in which, in principle, one would have nine

different VEVs to consider, since the scalar doublets and singlet have a total of nine real

component fields) to a simple form, to wit

〈Φ1〉 =
1√
2

(
0

v1

)
, 〈Φ2〉 =

1√
2

(
vcb

v2 + ivcp

)
, 〈ΦS〉 = vS , (2.8)
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where all VEVs vX are, without loss of generality, real. The charge breaking VEV vcb

breaks electromagnetic symmetry (giving the photon a mass) and the VEV vcp breaks

CP conservation. It is easy to verify that these VEVs cannot coexist simultaneously. In

other words, the minimisation of the potential implies that, if vcb 6= 0 then vcp = 0, and

vice-versa.

Different non-zero VEVs lead to different types of symmetry breaking, originating

from minima which preserve, or not, distinct symmetries. The classification of all possible

vacua was first made in [25], but here we adopt a different notation better suited for our

analysis. There are two possible charge charge breaking vacua; two CP breaking vacua;

two normal (electroweak breaking, but charge and CP conserving) vacua; and a single

vacuum for which electroweak symmetry is unbroken.1 Thus a total of seven possible types

of vacua, or phases, exists in the model. The two electroweak breaking but charge and

CP conserving vacua of the N2HDM most closely resemble a SM-like vacuum, in that they

have a CP-even scalar field which can mimic the SM Higgs boson. However, the N2HDM

involves extra scalars, including a charged one and several neutral ones with definite CP

quantum numbers, and possibly a dark matter candidate.

The first normal stationary point N (denoted I in [25]) occurs when the parameters

of the potential are such that the minimisation conditions of the potential allow a solution

for which both doublets have neutral, real VEVs and the singlet has none. This vacuum

therefore preserves the Z2 symmetry of the singlet — the singlet has no VEV and does not

mix with the remaining neutral scalars. Hence this corresponds to the dark matter phase

of the model, with the VEVs

〈Φ1〉N =
1√
2

(
0

v1

)
, 〈Φ2〉N =

1√
2

(
0

v2

)
, 〈ΦS〉N = 0 . (2.9)

This results in the following values for the X and V ′ vectors (defined in eqs. (2.4) and (2.6)):

XN = 〈X〉N =
1

2


v2

1

v2
2

v1v2

0

0

 , V ′N = A + BXN =



v22
v2
m2
H±

v21
v2
m2
H±

−2v1v2
v2

m2
H±

0

m2
D

 , (2.10)

with v2 = v2
1 +v2

2. The entries of V ′N are dictated by the N minimisation conditions and by

the respective eigenvalues of the scalar mass matrices, where m2
H± is the squared charged

scalar mass at this stationary point and m2
D the squared mass of the singlet field. These

are given by

m2
H± = m2

12

v2

v1v2
− 1

2
(λ4 + λ5) v2 , m2

D = m2
S +

1

2
(λ7v

2
1 + λ8v

2
2) . (2.11)

Using eq. (2.7) the value of the potential at this stationary point may be written as

VN =
1

2
ATXN = − 1

2
XT
NBXN . (2.12)

1We exclude, from this list, the trivial extremum at the origin, in which no field acquires a VEV.
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The second normal stationary point N s (denoted sI in [25]) corresponds to a solution

of the minimisation conditions where both the doublets and the singlet ΦS acquire non-zero

VEVs. This additionally breaks the singlet Z2 symmetry — thus the singlet ΦS will mix

with the remaining neutral scalars. Starting from the following VEV configuration

〈Φ1〉N s =
1√
2

(
0

v′1

)
, 〈Φ2〉N s =

1√
2

(
0

v′2

)
, 〈ΦS〉N s = v′S , (2.13)

we define

XN s = 〈X〉N s =
1

2


v′1

2

v′2
2

v′1v
′
2

0

v′s
2

 , V ′N s = A + BXN s =
(
m2
H±
)
N s



v′2
2

v′2

v′1
2

v′2

−2v′1v
′
2

v′2

0

0

 , (2.14)

where v′2 = v′1
2+v′2

2 and
(
m2
H±

)
N s is the squared charged scalar mass at the N s stationary

point, given by (
m2
H±
)
N s = m2

12

v′2

v′1v
′
2

− 1

2
(λ4 + λ5) v′

2
. (2.15)

As before, the specific entries of V ′N s are a consequence of the minimisation conditions, and

the eigenvalues of the scalar mass matrices at an N s stationary point. As for the value of

the potential, we have

VN s =
1

2
ATXN s = − 1

2
XT
N sBXN s . (2.16)

As mentioned earlier, another charge and CP conserving vacuum may arise in the

model — one for which the singlet field acquires a VEV but the doublets do not. This

type of vacuum — dubbed S in [25] — would lead to massless electroweak gauge bosons

and fermions, and as such it is unphysical. This stationary point exists if m2
S < 0, and

the singlet VEV is found to be

〈ΦS〉2 = −
2m2

S

λ6
. (2.17)

The value of the potential at this stationary point is equal to

VS = −
m4
S

2λ6
. (2.18)

Both the N and N s phases can accommodate SM-like physics (provided that v2
1 +v2

2 ∼
(246 GeV)2 and v′1

2 + v′2
2 ∼ (246 GeV)2, respectively), although each of these phases has a

different phenomenology (for N dark matter candidates exist, for N s three CP-even states

mix with each other). We will now analyse the stability of both N and N s against the

possible existence of deeper minima of different nature. For a large part of the parameter

space of the model the minimisation conditions yield a single minimum, and its stability is

ensured (at least at tree-level). However, for many combinations of the parameters of the

potential, multiple minima can coexist. If the tunnelling time from a minimum of type N
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(or N s) to a deeper minimum is smaller than the age of the universe then the corresponding

set of parameters should be excluded. We note that we use a very conservative approach and

only exclude those points where the survival probability is extremely small corresponding

to tunnelling times much smaller than the age of the Universe. A detailed discussion is

presented in section 3.2.

2.1 Stability of normal minima against charge breaking

Since charge breaking minima have to be avoided, it is important to know under what

circumstances a normal minimum is safe against eventual tunnelling to a deeper charge

breaking minimum. In the 2HDM that question was answered [8, 9, 14, 15] in a conclusive

manner: whenever a normal minimum exists, any charge breaking stationary point is

necessarily a saddle point lying above the normal minimum. In the N2HDM, as we will

now show, the situation is changed. Let us first define both of the possible charge breaking

stationary points and introduce some notation concerning them.

• In the first charge breaking stationary point CB (denoted IIb in [25]) the singlet field

has no VEV, and the doublet VEVs are

〈Φ1〉CB =
1√
2

(
0

c1

)
, 〈Φ2〉CB =

1√
2

(
c2

c3

)
, 〈ΦS〉CB = 0 . (2.19)

Consider also the vectors X and V ′ evaluated at a CB stationary point, given by

XCB = 〈X〉CB =
1

2


c2

1

c2
2 + c2

3

c1c3

0

0

 , V ′CB = A + BXCB =


0

0

0

0

m2
S1

 , (2.20)

where m2
S1 = m2

S + λ7c
2
1/2 + λ8(c2

2 + c2
3)/2 is one of the squared scalar masses at

the CB stationary point. The entries of V ′CB are dictated by the CB minimisation

conditions.

• In the second charge breaking stationary point CBs (denoted sIIb in [25]) the singlet

also acquires a VEV, the VEV configuration being given by

〈Φ1〉CBs =
1√
2

(
0

c′1

)
, 〈Φ2〉CBs =

1√
2

(
c′2
c′3

)
, 〈ΦS〉CBs = c′4 . (2.21)

Analogously to what we have done for the previous stationary points, we define the

following vectors:

XCBs = 〈X〉CBs =
1

2


c′1

2

c′2
2 + c′3

2

c′1c
′
3

0

c′4
2

 , V ′CBs = A + BXCBs =


0

0

0

0

0

 . (2.22)

And again, the entries of V ′CBs are dictated by the CBs minimisation conditions.
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The manipulation of the X and V ′ vectors will allow us to establish analytical formulae

relating the value of the potential at two coexisting stationary points. This technique was

first used in ref. [14], and it essentially consists in following four basic steps: (1) perform

the internal product of X evaluated at one of the stationary points with V ′ evaluated at

the second one; (2) repeat, with X evaluated at the second stationary point and V ′ at the

first one; (3) use the explicit formulas for V ′ to relate the previous internal products with

the value of the potential at each stationary point; (4) the two internal products will have a

common term, through which they can be related to one another, thus obtaining a relation

between the potentials. The technique is best understood going through some explicit

examples of its application, which we will now provide. Note that all of the following

conclusions are derived at the tree-level and may be affected by higher order corrections.

We pause here to comment about higher order corrections. Corrections in the effective

potential at NLO can be large in some regions of parameter space. With a proper choice

of the renormalisation procedure, these large corrections can be moved into the quartic

couplings of the potential. This would of course influence vacuum stability as well as the

bounds from perturbative unitarity (for a discussion in the context of the CP-violating

2HDM (C2HDM), see for example [18]). However, such corrections change the relations

between the input parameters and the observables, and are smoothed out in a scan covering

the whole parameter space. We therefore do not expect the changes to be dramatic, as

seen in [18].

Regarding the robustness of the results at higher orders, the Inert 2HDM was investi-

gated in [16] using the one-loop effective potential. Differences to the tree-level results were

observed but they were only found to be important if two minima were close to degenerate.

2.1.1 Extrema N vs. CB and CBs

Let us assume that the parameters of the N2HDM are such that the potential has two

stationary points,2 one of type N and another of type CB. These extrema may or may

not be minima, at this time we do not need to specify it. Let us then consider the vectors

defined above, containing information about the VEVs and the minimisation conditions in

each extremum, for N in eqs. (2.10), for CB in eqs. (2.20).

The internal product of the vectors XCB and V ′N yields

XT
CB V

′
N =

m2
H±

2v2

[
(v2c1 − v1c3)2 + v2

1c
2
2

]
(2.23)

which may also be written as

XT
CB V

′
N = XT

CB (A + BXN ) = XT
CB A + XT

CB BXN . (2.24)

From eq. (2.7), we know that the quantity XT
CB A is twice the value of the potential at

the extremum CB,

XT
CB A = 2VCB , (2.25)

2That is, the minimisation equations of the N2HDM potential admit both solutions, for a given choice

of parameters.
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and therefore, combining eqs. (2.23) and (2.24),

XT
CB BXN =

m2
H±

2v2

[
(v2c1 − v1c3)2 + v2

1c
2
2

]
− 2VCB . (2.26)

We now perform similar operations on the vectors XN and V ′CB, yielding

XT
N V

′
CB = 0 ⇔ XT

N A + XT
N BXCB = 0 . (2.27)

The quantity XT
N A is twice the value of the potential at the extremum N , hence

XT
N BXCB = − 2VN . (2.28)

Since the matrix B (defined in eq. (2.4)) is symmetric, the left-hand sides of eqs. (2.26)

and (2.28) are identical. It is then trivial to obtain the following expression comparing the

depth of the potential at both extrema,

VCB − VN =
m2
H±

4v2

[
(v2c1 − v1c3)2 + v2

1c
2
2

]
. (2.29)

Therefore, ifN is a minimum one will have m2
H± > 0, and since the terms in square brackets

above are surely positive, one will have VCB − VN > 0. Thus we may conclude that:

If the potential has a minimum of type N , any CB stationary point, if it exists,

lies above N .

As such, no tunnelling to a deeper CB minimum can occur.

Similar conclusions are reached when one compares N and CBs stationary points.

Again, the starting point is to analyse the internal products of the vectors X and V ′ for

each stationary point. Using eqs. (2.22) and (2.10), we obtain

XT
NV

′
CBs = 2VN + XT

NBXCBs = 0

XT
CBsV

′
N = 2VCBs + XT

CBsBXN =
1

2

{
m2
H±

v2

[
(v2c

′
1 − v1c

′
3)2 + v2

1c
′
2

2
]

+ m2
Dc
′
4

2
}

(2.30)

and therefore, subtracting both equations one easily obtains

VCBs − VN =
1

4

{
m2
H±

v2

[
(v2c

′
1 − v1c

′
3)2 + v2

1c
′
2

2
]

+ m2
Dc
′
4

2
}
. (2.31)

If N is a minimum all of the squared scalar masses computed therein must be positive,

and thus VCBs − VN > 0.

If the potential has a minimum of type N , any CBs stationary point, if it exists,

lies above N .

As such, no tunnelling to a deeper CBs minimum can occur. We can therefore conclude

that minima of type N are completely stable against the possibility of charge breaking.
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2.1.2 Extrema N s vs. CB and CBs

The analysis of the previous section can now be extended to the stability of N s minima

— but as we will shortly see, the conclusions are different. Let us begin by comparing N s
and CBs stationary points. As before, and using eqs. (2.14) and (2.22), we have

XT
N sV

′
CBs = 2VN s + XT

N sBXCBs = 0

XT
CBsV

′
N s = 2VCBs + XT

CBsBXN s =

(
m2
H±

2v2

)
N s

[
(v′2c

′
1 − v′1c′3)2 + v′1

2
c′2

2
]
, (2.32)

where we use the subscript “N s” to emphasise that both the squared charged mass and

the sum of the square of the VEVs concern the N s stationary point. From these equations,

it is trivial to obtain

VCBs − VN s =

(
m2
H±

4v2

)
N s

[
(v′2c

′
1 − v′1c′3)2 + v′1

2
c′2

2
]
. (2.33)

Therefore, as before, if N s is a minimum, any CBs stationary point, if it exists, lies above

it, and N s is stable against tunnelling to CBs.
However, when one follows these steps whilst comparing N s and CB stationary points,

one finds:

XT
N sV

′
CB = 2VN s + XT

N sBXCB =
1

2
s2m2

S1

XT
CBV

′
N s = 2VCB + XT

CBBXN s =

(
m2
H±

2v2

)
N s

[
(v′2c1 − v′1c3)2 + v′1

2
c2

2

]
, (2.34)

where, recall, s is the singlet VEV at vacuum N s and m2
S1 one of the squared scalar masses

at CB. From this one obtains

VCB − VN s =

(
m2
H±

4v2

)
N s

[
(v′2c1 − v′1c3)2 + v′1

2
c2

2

]
− 1

4
s2m2

S1 . (2.35)

There is now no mandatory relationship between the depths of these stationary points —

a priori, both of them can be minima, and none is privileged with respect to the other. As

such — and numerical analyses prove this — there are situations in which a minimum N s
coexists with a deeper CB minimum (or vice-versa). Thus we conclude:

Minima of type N s are stable against charge breaking for vacua of type CBs,
but not necessarily for those of type CB.

The addition of a real singlet to the 2HDM qualitatively changes the vacuum stability

behaviour of the scalar potential. Whereas in the 2HDM a normal minimum is guaranteed

to be stable against any possible deeper charge breaking minimum, this is no longer the

case in the N2HDM. The addition of the singlet field leads to possible instabilities, where a

normal minimum which breaks the Z2 symmetry of the singlet might coexist with a charge

breaking minimum (deeper or not) which does not break that same symmetry. However,

any N2HDM normal minimum which preserves the Z2 symmetry of the singlet is perfectly

stable against charge breaking.
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2.2 Stability of normal minima against CP breaking

Just like in the 2HDM, spontaneous CP breaking is possible in the N2HDM. In fact, CP in

the N2HDM can be broken by two different minima, whereas in the 2HDM only one such

vacuum can occur. Before discussing the stability of such vacua, however, some general

considerations are in order: it only makes sense to study spontaneous CP breaking in

models were CP is a well-defined symmetry, i.e. models that are invariant under a given

CP symmetry, as is the case with the potential written in eq. (2.1).3 Also, care must be

taken when discussing CP breaking, as it is not sufficient to have a complex valued VEV to

be able to affirm that CP violation is occurring. In fact, there are situations for which CP

may be preserved even if complex VEVs arise, and therefore one ought to look for other

signs of CP violation, such as the couplings of scalar mass eigenstates to Z bosons. In the

N2HDM, however, with the field basis we chose, no such problems arise: if the vacuum

state contains a complex VEV, CP breaking occurs and produces scalar states of indefinite

CP properties. Finally, as was shown in ref. [25], in the N2HDM it is not possible to

have coexisting CP breaking and charge breaking stationary points — if the minimisation

conditions can be solved for one type (CP breaking or charge breaking) of vacua, then the

other type (charge breaking or CP breaking) admits no solution. Thus the possibility of

tunnelling between CP breaking and charge breaking minima is excluded a priori.

As before, the question under which conditions a given normal minimum is stable

against tunnelling to a deeper CP breaking vacuum has been previously answered in the

2HDM [8, 9, 14, 15], and the conclusion is analogous to the charge breaking case: whenever

a normal minimum exists, any CP breaking stationary point is necessarily a saddle point

lying above the normal minimum. In the N2HDM the situation of the CP breaking vacua

will differ, as it did for the charge breaking case. The vacua where CP can be spontaneously

broken are:

• The first CP-breaking stationary point CP (denoted IIa in [25]) preserves the Z2

symmetry of the singlet but one of the doublets has a complex VEV. We parametrise

the VEVs as

〈Φ1〉CP =
1√
2

(
0

v̄1

)
, 〈Φ2〉CP =

1√
2

(
0

v̄2 + iv̄3

)
, 〈ΦS〉CP = 0 . (2.36)

Let us define

XCP = 〈X〉CP =
1

2


v̄2

1

v̄2
2 + v̄2

3

v̄1v̄2

v̄1v̄3

0

 , V ′CP = A + B̂ XCP =


0

0

0

0

m2
D̄

 , (2.37)

3As in the 2HDM, more elaborate CP symmetries could be considered, but these would only impose

extra restrictions on the parameters of the model.
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where m2
D̄

= m2
S + λ7v̄

2
1/2 + λ8(v̄2

2 + v̄2
3)/2 is the squared mass of the singlet in this

vacuum, and we introduce the matrix B̂,

B̂ = B + (λ4 − λ5)


0 1 0 0 0

1 0 0 0 0

0 0 −2 0 0

0 0 0 0 0

0 0 0 0 0

 . (2.38)

The entries of V ′CP are determined by the stationarity conditions and the form of the

mass matrices at this vacuum.

• The second CP-breaking stationary point CPs (denoted sIIa in [25]) also breaks the

Z2 symmetry of the singlet and gives a complex VEV to one of the doublets. The

VEVs are therefore

〈Φ1〉CPs =
1√
2

(
0

v̄′1

)
, 〈Φ2〉CPs =

1√
2

(
0

v̄′2 + iv̄′3

)
, 〈ΦS〉CP = v̄′4 , (2.39)

and we define

XCPs = 〈X〉CPs =
1

2


v̄′21

v̄′22 + v̄′23
v̄′1v̄
′
2

v̄′1v̄
′
3

v̄′24

 , V ′CPs = A + B̂ XCPs =


0

0

0

(λ4 − λ5)v̄′1v̄
′
3

0

 .

(2.40)

The entries of V ′CPs are determined by the stationarity conditions.

2.2.1 Extrema N vs. CP and CPs

Following the strategy employed for comparing normal and charge breaking vacua, we now

assume that the potential has two stationary points, one of type N and the other of type

CP , each of which may, or may not, be a minimum. With the vector definitions outlined

above, we see that the internal product of the vectors XCP and V ′N yields

XT
CP V

′
N =

m2
H±

2v2

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
(2.41)

and thus

XT
CP V

′
N = XT

CP (A + BXN ) = XT
CP A + XT

CP BXN . (2.42)

Eq. (2.7) tell us that XT
CP A = 2VCP and therefore

XT
CP BXN =

m2
H±

2v2

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
− 2VCP . (2.43)

With similar manipulations on XN and V ′CP , we obtain

XT
N V

′
CP = 0 ⇔ XT

N A + XT
N B̂ XCP = 0 . (2.44)
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Since XT
N A = 2VN , and with the definition of B̂ in eq. (2.38), it is seen that

XT
N B̂ XCP = − 2VN ⇔ XT

N BXCP = −1

4
(λ4−λ5)

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
− 2VN . (2.45)

Now, since the pseudoscalar squared mass for an N stationary point is given by

m2
A = m2

H± +
1

2
(λ4 − λ5) v2 , (2.46)

we finally obtain

VCP − VN =
m2
A

4v2

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
. (2.47)

Thus, if N is a minimum one will have m2
A > 0, and therefore inevitably VCP − VN > 0.

Following analogous steps for the N and CPs stationary points, one arrives easily at

the following formula comparing the depths of the potential at each stationary point,

VCPs − VN =
1

4

{
m2
A

v2

[
(v2v̄

′
1 − v1v̄

′
2)2 + v2

1 v̄
′2
3

]
+ m2

Dv̄
′2
4

}
. (2.48)

Therefore, one reaches the same conclusions for CP and CPs stationary points, when

they coexist with N :

If N is a minimum, it is deeper than any CP or CPs stationary points.

2.2.2 Extrema N s vs. CP and CPs

The conclusions of the previous subsection do not extend unchanged to coexisting N s and

CP or CPs stationary points. Starting with CPs, we have

XT
CPs V

′
N s =

(
m2
H±

2v2

)
N s

[
(v′2v̄

′
1 − v′1v̄′2)2 + v′1

2
v̄′23

]
= 2VCPs + XT

CPsBXN s . (2.49)

Also, we derive that

XT
N s V

′
CPs = 2VCPs + XT

N s B̂ XCPs (2.50)

and after similar calculations as before it may be seen that

VCPs − VN s =

(
m2
A

4v2

)
N s

[
(v′2v̄

′
1 − v′1v̄′2)2 + v′1

2
v̄′23

]
, (2.51)

and therefore if N s is a minimum it is certainly deeper than CPs— the same type of result

we obtained when comparing N minima and CP ones. On the other hand, if we compare

N s and CP stationary points, we obtain

XT
CP V

′
N s =

(
m2
H±

2v2

)
N s

[
(v′2v̄1 − v′1v̄2)2 + v′1

2
v̄2

3

]
= 2VCP + XT

CP BXN s . (2.52)

Also, it is easy to obtain

XT
N s V

′
CP =

1

2
m2
D̄ s

2 = 2VN s + XT
N s B̂ XCP , (2.53)
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and hence, after trivial manipulations,

VCP − VN s =

(
m2
A

4v2

)
N s

[
(v′2v̄1 − v′1v̄2)2 + v′1

2
v̄2

3

]
− 1

4
m2
D̄ s

2 . (2.54)

This expression shows — as for the pair N s, CB— that N s is not necessarily stable against

tunnelling to a deeper CP minimum.

Minima of type N s are stable against CP-breaking minima of type CPs,
but not against those of type CP.

2.3 Other coexisting neutral minima

Another possibility for vacuum instability is the existence of multiple minima of types N ,

N s or even S. If for instance two N and N s stationary points coexist, we can follow

similar steps to those outlined in the previous sections and arrive at the following formula

relating the depths of the potential:

VN s − VN =
1

4

[(
m2
H±

4v2

)
N
−
(
m2
H±

4v2

)
N s

]
(v1v

′
2 − v2v

′
1)2 +

1

4
m2
D s

2 . (2.55)

Therefore, we see that since either one of N or N s can be minima, none of them is

guaranteed to be deeper than the other. Therefore, though N is stable against tunnelling

to a deeper charge breaking or CP breaking minimum, it is not guaranteed to be stable

against a deeper N s vacuum. Likewise, an N s minimum, which is safe against tunnelling

to possible charge breaking or CP breaking minima, may be unstable against a deeper

N minimum. Nonetheless, we can derive another conclusion considering this formula in

tandem with the results of previous sections:

If the parameters of the potential are such that N and N s minima coexist in the

potential, then the global minimum of the potential preserves charge and CP.

The demonstration is simple: though from eq. (2.55) we cannot be certain whether N
or N s is the global minimum, the existence of an N minimum places it certainly below any

charge/CP breaking stationary points that might exist. Therefore, the conclusion becomes

that either N or N s is the global minimum.

The other possibility still in play would be the coexistence of an N (or N s) minimum

with an S minimum of the type described in eqs. (2.17) and (2.18), where only the singlet

acquires a VEV. This is the simplest possibility of vacuum instability to verify: provided we

find a solution of the N type, it will be safe against tunnelling to an S minimum provided

we verify the following three conditions:

• Since the S vacuum only exists if m2
S < 0, we need not worry about tunnelling from

N to S if m2
S > 0.

• If however m2
S < 0, then the N vacuum is deeper than S if VN is smaller than VS ,

with VS having a very simple form given by eq. (2.18).
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• If m2
S < 0 and VN > VS then the tunnelling time between both vacua must be

computed.

Likewise for an N s vacuum, the analogous conditions for stability of N s would hold.

Finally, there is still another possibility for instability of vacua of types N (or N s):
that the minimisation conditions of the N2HDM may yield more than one solution for

a given type of vacuum. This means that a solution of the type N ≡ 〈{Φ1,Φ2,ΦS}〉 =

{v1, v2, 0}/
√

2 exists, with v2
1 + v2

2 = 2462 GeV2, as well as another, N ′ ≡ {w1, w2, 0}/
√

2

exists, with w2
1 + w2

2 6= 2462 GeV2. This possibility already arises in the 2HDM [8–12]

— therein dubbed “panic vacua” — and it remains in the N2HDM as an avenue for

instability of the N vacuum (and also of the N s one, since the minimisation equations

of the potential may well yield more than one solution of type N s). We do not study this

possibility analytically, but it is included in the numerical analysis presented in section 3.

We end this section with a very interesting scenario for the limit m2
12 = 0, when all

symmetries are exact. The N and N s stationary points are related by eq. (2.55). This

equation can re-written as

VN s − VN =
m2

12

16

[
1

v1v2
− 1

v′1v
′
2

]
+

1

4
m2
D s

2 . (2.56)

It we set m2
12 = 0, andN is a minimum it is a global minimum because not only VN s− VN >

0, but also because we proved before that it is stable with respect to other charge breaking

or CP breaking minima. However, this conclusion is only valid provided both doublet

VEVs are non-zero, that is, the only dark matter candidate has origin in the singlet.

2.4 Vacuum stability

The results of the previous sections show that, unlike what happened for the 2HDM,

when normal minima occur in the N2HDM they are not necessarily the global minima

of the model. We summarise the results we obtained in table 1, where we illustrate the

relation between the various types of possible minima. If a minimum of type N exists (i.e.

a minimum where the singlet has no VEV and its discrete symmetry is preserved even

after spontaneous symmetry breaking) then N is certainly deeper than any charge or CP

breaking stationary points that the potential might have — the stability of N against CP

or charge breaking is perfectly guaranteed in the model. In fact, it is even possible to

demonstrate (see appendix A) that in this situation any charge breaking stationary points

are necessarily saddle points : an N minimum implies that at least one, but not all, of the

squared masses of a CB(s) stationary point is negative. Presumably the same applies to

CP(s) stationary points as well, assuming the 2HDM analysis generalizes. Of course, for

considerations of stability, the nature (minimum, maximum, saddle point) of extrema that

lie above N is of no consequence.

The stability found for N minima does not hold, however, for minima of type N s: for

these — the discrete symmetry of the singlet is spontaneously broken in addition to EW

symmetry — coexistence with minima of certain types is indeed possible. An N s minimum

will certainly be deeper than any stationary points of types CBs or CPs — which break,
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Extrema N N s CB CBs CP CPs S

N × × Stability Stability Stability Stability ×
N s × × × Stability × Stability ×

Table 1. Stability of extrema of types N and N s in the potential. For a given pair of extrema,

“Stability” means that if one of them is a minimum, the other is necessarily above it. A pair of

“Undefined” extrema (marked in the table with “×”) means that both of them can be simultaneously

minima, and neither is guaranteed to be the deepest one, depending on the choice of parameters.

respectively, charge conservation and CP symmetry, and also break the discrete symmetry

of the singlet. But it is possible to have coexisting N s and CB or CP minima — which

break, respectively, charge conservation and CP symmetry, but do not break the discrete

symmetry of the singlet.

These results underline the curiously unique nature of the vacuum structure in the

2HDM, where the existence of a minimum of a given nature automatically implies that

no minima of different types may exist. That property is not shared by models with

a different scalar content — even in models with a simpler scalar content, such as the

doublet + singlet (real or complex) model, the vacuum structure is much more complex,

and no general, 2HDM-like conclusions may be drawn [37]. In models with more than two

doublets the 2HDM stability also breaks down, at least concerning charge breaking [38].

What the analysis above has also shown is that the mere addition of just a real singlet to the

2HDM is enough to qualitatively change the vacuum structure of the model. The N2HDM

preserves some of the nice vacuum properties of the 2HDM — wherein the N minimum

mimics the stability behaviour of the normal minima of the 2HDM — but when N s minima

are considered, the possibility of tunnelling to deeper minima of different types arises.

3 Numerical analysis

In order to illustrate the impact of the N2HDM vacuum structure on the phenomenolog-

ically relevant regions of the parameter space we perform a numerical study. We study

combinations of parameters that are allowed by all available theoretical and experimental

constraints and analyse their vacuum structure. We first outline our method for scanning

the parameter space and present the constraints we apply. In order to judge whether deeper

minima are indeed excluded it is necessary to calculate the tunnelling time from the EW

vacuum. We use the method developed in [22] to numerically study the vacuum structure

of these parameter points and estimate the lifetime of their EW vacua.

3.1 Parameter scan

We performed a scan of the N2HDM parameter space using an improved private version

of ScannerS [25, 39–41]. We generated parameter points where the EW vacuum is of type

N s since — following the analytical analysis — this is the most interesting case for vacuum

stability. All of the resulting parameter points fulfil the applied theoretical constraints and

are compatible with the applied current experimental constraints at the 2σ level.
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The included theoretical constraints are tree-level perturbative unitarity [25] as well

as boundedness from below [42]. A global minimum of the scalar potential only exists at

finite field values if eq. (2.1) is bounded from below. This is a prerequisite for any study

of vacuum stability. The allowed region is given by

Ω1 ∪ Ω2 (3.1)

with

Ω1 =

{
λ1,2,6 > 0;

√
λ1λ6+λ7 > 0;

√
λ2λ6+λ8 > 0;

√
λ1λ2+λ3+D > 0;λ7 +

√
λ1

λ2
λ8 ≥ 0

}
(3.2)

and

Ω2 =

{
λ1,2,6 > 0;λ2λ6 ≥ λ2

8;
√
λ1λ6 > −λ7 ≥

√
λ1

λ2
λ8;

√
(λ2

7 − λ1λ6)(λ2
8 − λ2λ6) > λ7λ8 − (D + λ3)λ6

}
(3.3)

and depends on the discriminant

D = min(λ4 − |λ5|, 0) . (3.4)

In contrast to earlier works [25, 43] we do not impose absolute stability of the EW vacuum

as a theoretical constraint since we want to study the vacuum structure in detail and take

into account that metastable regions of the parameter space are allowed.

The experimental constraints include bounds from flavour physics in the mH±-tanβ

plane [44] — the Bd → µµ constraint being the strongest in type I. We also require

compatibility with the oblique parameters S, T and U [45, 46] including the full correlation

between these quantities [44]. We check for agreement with the collider Higgs data using

HiggsBounds (v5.3.2beta) [47–51] and HiggsSignals (v2.2.3beta) [49, 52–54]. With

HiggsBounds we check for 2σ compatibility with all searches for additional scalars, and

with HiggsSignals we employ a cut on ∆χ2 = χ2
N2HDM − χ2

SM < 6.18 (corresponding

approximately to a 2σ region). This cut ensures that the N2HDM predictions yield a

χ2 in the fit to the LHC Higgs data that is at most 2σ worse than the one of the SM.

The required model predictions for branching ratios and total widths are obtained from

N2HDECAY [25, 55] and the hadron collider production cross sections from SusHi [56, 57].

We use this setup to generate a sample of valid parameter points on which to study

the vacuum structure and vacuum stability. One of the CP-even, neutral Higgs masses is

fixed to

mHx = mh125 = 125.09 GeV . (3.5)

The remaining input parameters are independently drawn from uniform distributions with

the ranges given in table 2. The three mixing angles in the CP-even scalar sector are

scanned through their whole allowed range. In this work we only consider the N2HDM of
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mHy ,mHz ,mA mH± tanβ m2
12 vS

min 30 GeV 150 GeV 0.8 0 GeV2 1 GeV

max 1.5 TeV 1.5 TeV 20 5× 105 GeV2 3 TeV

Table 2. Input parameter ranges for the N2HDM parameter scan (y, z ∈ {1, 2, 3}). The three

mixing angles α1,2,3 in the CP-even scalar sector are scanned through their whole allowed range.

type I, i.e. where all fermions couple to Φ2, just mentioning briefly the results for a type II

model as the vacuum structure and vacuum stability behaviour is unaffected by the choice

of Yukawa type. Note that we do not specify a mass ordering for mHx,y,z — the h125 can

be the lightest or heaviest state as well as the one in between.

3.2 Numerical vacuum stability

We use the approach presented in [22] to numerically study the vacuum structure and

vacuum stability of the obtained parameter points. This approach is a highly efficient and

numerically reliable method to study vacuum stability at the tree-level in BSM models

with extended scalar sectors. We will now give a short review of our approach and refer

to [22] for more details.

Our code uses polynomial homotopy continuation (PHC) (see e.g. [58] or [59]) to find

all stationary points of the scalar potential eq. (2.1). This method reliably finds all solutions

of a system of polynomial equations — in our case given by

∂V

∂ϕi
= 0 , (3.6)

for the real component fields ϕi of the doublets and singlet. The value of the scalar

potential eq. (2.1) at each of these stationary points is then compared to the depth of the

EW vacuum. If there is no stationary point deeper than the EW vacuum we consider the

EW vacuum at this parameter point as absolutely stable. If stationary points deeper than

the EW vacuum exist we calculate the tunnelling time to each of these deeper extrema.

The decay width per (space-)volume VS to tunnel to a deeper point in field space is [60, 61]

Γ

VS
= Ke−B . (3.7)

We approximate the tunnelling path by a straight path connecting the two minima in

field space and use the semi-analytic solution given in [62] along this path to obtain the

bounce action B. The prefactor K is a subdominant contribution requiring an involved

calculation and is therefore estimated on dimensional grounds. We consider the vacuum of

the potential for a given parameter point to be short lived and the corresponding deeper

minimum dangerous if

B < 390 . (3.8)

This is a conservative estimate where only vacua with a survival probability through the

age of the universe

P � 1− 5σ ∼ 5.73× 10−7 (3.9)
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N s ′ N CB CP
exists 0.05% 23.3% 4.49% 2.80%

deep 0.0015% 20.9% 4.11% 2.55%

dangerous 0% 6.89% 1.12% 0.678%

Table 3. Percentage of phenomenologically viable points that have a second minimum in addition

to an EW vacuum of type N s. In the first line we present the percentage of coexisting minima, in

the second line the ones that are deeper and in the third line the dangerous, short-lived, ones. The

minima of type N s ′ have VEVs like those of N s but such that v 6= 246 GeV, and differ from the

EW vacuum in depth.

are considered short lived. We emphasise that the method developed in [22] is based on

the straight path approximation as studied in [63]. It gives a good estimation for the

bounce action with an accuracy of about 10%. We have verified that our results remain

qualitatively unchanged when varying the bound from eq. (3.8) by this margin.

3.3 Discussion

In this section we present a numerical and phenomenological analysis of the N2HDM vac-

uum structure and vacuum stability. The analysis is based on the sample of 106 phe-

nomenologically viable parameter points generated according to section 3.1. We aim to

investigate whether the possible coexistence of minima discussed analytically in section 2

• is found in a substantial region of the N2HDM parameter space that is compatible

with current theoretical and experimental constraints,

• can be directly related to phenomenological observations at colliders.

Since we assume the EW vacuum to be of type N s the potentially dangerous minima are

CB, CP , N , and a second different minimum of type N s (see below for a discussion of

minima of type S). Unless otherwise stated, in the following we will distinguish three

possibilities for these potentially dangerous vacua:

• they coexist with the EW vacuum (shown in green in the following plots),

• they are also deeper than the EW vacuum (shown in blue in the following plots),

• they are additionally dangerous, i.e. tunnelling from the EW vacuum is fast (as defined

in eq. (3.8)) (shown in red in the following plots).

Table 3 shows the prevalence of these cases for the different possible secondary minima

in our sample. While the precise numbers in table 3 have no physical significance as they

depend on the applied method for sampling the parameter space, the displayed results

clearly show that the possibilities discussed in section 2 remain relevant even after all

other applicable constraints are considered. Especially, dangerous minima of type N (the

dark matter phase with wrong EW symmetry breaking pattern) occur frequently in our

sample. Table 3 also shows that the requirement of absolute stability would correspond to
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Figure 1. The distribution of secondary charge and CP breaking minima. The left plot shows the

plane of the CP-odd Higgs mass mA and charged Higgs mass mH± . The right plot shows the plane

of the scalar potential parameters λ4 and λ5. In grey we show all parameter points fulfilling the

theoretical and experimental constraints. On top we show the points where a secondary minimum

of type CB (dark green) or CP (light green) exists.

a substantially stronger constraint on the parameter space compared to the requirement

that the EW vacuum should be sufficiently long-lived. As a consequence, important parts

of the parameter space that are actually viable would be discarded if the requirement of

absolute stability was imposed.

The only case missing in table 3 that is allowed by the analytical analysis are secondary

minima of type S. However, we have not found a single parameter point in our sample

where a stationary point of type S is a minimum. This could mean that minima of type S

cannot coexist with an N s vacuum, that all points where this is possible are ruled out by

current constraints, or that these minima are exceedingly rare. Either way, since secondary

minima of type S do not occur in our sample they are of limited phenomenological interest,

and we will not discuss them further here.

Figure 1, left, shows the distribution of charge and CP breaking secondary minima in

the plane of the pseudoscalar Higgs mass mA and charged Higgs mass mH± . The overall

distribution of the phenomenologically viable parameter points is primarily driven by the

EW precision measurements which force the neutral Higgs bosons to be relatively close

in mass to the charged Higgs boson. Note that parameter points without any secondary

minima as well as parameter points with secondary N minima exist throughout the allowed

region. In contrast, secondary CB minima only exist as long as mA > mH± while CP
minima only exist when mH± > mA.

The origin of this strict separation — making mH± = mA the boundary between

regions where only one of these types of minima exists — can be understood analytically.

The pseudoscalar and charged masses in an N minimum are such that (see eq. (2.46))

m2
A − m2

H± =
1

2
(λ4 − λ5) v

2 . (3.10)
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Then, it is easy to show for CB and CP extrema, with VEVs given by eqs. (2.19) and

eqs. (2.36), that the eigenvalues of the scalar mass matrix are given by

m2
CB =

1

2
(λ4 − λ5) (c2

1 + c2
2 + c2

3) , m2
CP = −1

2
(λ4 − λ5) (v̄2

1 + v̄2
2 + v̄2

3) . (3.11)

Thus a CB minimum will imply λ4−λ5 > 0 and therefore, according to (3.10), mA > mH± .

Similarly, a CP minimum requires λ4 − λ5 < 0 which then implies mA < mH± . The same

behaviour can be seen in figure 1, right, showing the plane of λ4 and λ5. The N minima are

again scattered throughout the allowed parameter space while the CP and CB minima can

only occur in sharply defined regions. Therefore, λ4 = λ5 would be the expected border

between the regions where CP and CB can exist. However, figure 1, right, shows that there

is an additional region

λ5 < 0 ∧ λ4 < −λ5 (3.12)

where neither CP nor CB minima can exist (see appendix A for an explanation).

In figure 2 we compare the analytical result for the relative depth of N and N s vacua

to the numerical results. The relative depth of an N s and N vacuum, as given by eq. (2.55),

is shown as a function of tan β at the N s EW vacuum. The plot only includes parameter

points where a secondary N minimum exists and shows its depth relative to the depth of

the N s EW vacuum. As expected, in all parameter points where VN s − VN > 0 the N
minimum is classified as either deep (blue points) or dangerous (red points). The parameter

points with dangerous N only begin to appear if VN s − VN & 107, and their distribution

shows some dependence on tan β. For small tan β . 2 the N vacuum is only unstable if

the depth difference is & 109 while for large tan β & 12 the majority of deep N vacua in

our sample is dangerous.4

So far we have illustrated how the analytical results of section 2 are reflected in the

phenomenologically viable parameter space. We will now discuss the vacuum stability

constraints arising from these secondary vacua. In imposing vacuum stability constraints

we distinguish the following cases:

• parameter points where the EW vacuum is the only vacuum,

• absolutely stable parameter points where secondary minima exist but are never deep,

• long-lived parameter points where secondary vacua are deep but never dangerous,

• short-lived parameter points that have dangerous secondary minima.

Figure 3 clearly demonstrates the phenomenological impact of vacuum stability con-

straints. It shows the signal strength of h125 in the γγ channel defined as

µγγ =
σ(pp→ h125)BR(h125 → γγ)

σ(pp→ hSM)BR(hSM → γγ)
(3.13)

4This is more clearly visible when reversing the plotting order of figure 2 and plotting the parameter

points with deep but not dangerous N vacua on top.
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Figure 2. The difference in the value of the scalar potential between the EW N s vacuum and

a secondary N minimum according to eq. (2.55) as a function of tan β at the EW vacuum. Only

parameter points where a secondary N vacuum exists are shown. The color code is based on the

results of the numerical analysis. The green parameter points have a secondary N minimum but

tunnelling from the EW vacuum is not possible. For the blue parameter points tunnelling is possible

but slow (see eq. (3.8)) while the EW vacuum in the red points (plotted on top) is short-lived for

tunnelling to the N minimum.

Figure 3. The signal strength µγγ of h125 → γγ as a function of the charged Higgs mass. The pa-

rameter points without any secondary minima (grey) are plotted on top, followed by the absolutely

stable (green), and long-lived (blue) parameter points. Below these, the points with dangerous

secondary minima are shown in different shades of red denoting the type of dangerous minimum

present (N — light red, CB — red, CP — dark red).

as a function of the charged Higgs mass. The short-lived (different shades of red) parameter

points are plotted below the grey points, for which no secondary minima exist. This means

that any region where only the red parameter points are visible is excluded by vacuum

stability. One can see that significant parts of the parameter space corresponding to an
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enhanced signal strength, µγγ > 1, are excluded because they have a dangerous N , CP or

CB minimum below the EW vacuum. If for instance a charged Higgs is found with a mass

of 500 GeV, a bound of about µγγ . 1.03 in the N2HDM of type I can be derived from

figure 3. If on the other hand the charged Higgs mass could be constrained to be larger

than 250 GeV (e.g. by a 500 GeV e+e−-collider) enhancements of µγγ above 1.1 would be

excluded in the N2HDM of type I by the vacuum stability constraint. One can also see from

figure 3 that if the constraint of an absolutely stable EW vacuum were imposed, the blue

points in figure 3, which indicate a long-lived EW vacuum, would be excluded, implying

possibly misleading conclusions.

The reason for the behaviour observed in figure 3, i.e. the impact of vacuum stability on

the allowed µγγ values, is the h125 coupling to a pair of charged Higgs bosons (defined in the

appendix of [25]) as shown in figure 4. This figure displays the impact of vacuum stability

on the allowed values of the h125H
+H− coupling. Large negative values of this coupling

are excluded by dangerous vacua. Negative values, however, lead to an enhancement of

µγγ through constructive interference with the W± loop. Note, that we have checked that

there are no relevant effects from vacuum stability on the h125 couplings to gauge bosons

and to fermions. Therefore, µγγ is the observable where the vacuum stability constraint

is expected to have the largest impact since, among the currently measured observables,

it has the highest sensitivity to the possible effects of a triple scalar coupling. The large

impact of the vacuum stability constraint on µγγ is specific to the N2HDM of type I.

This is due to the fact that in type I all Yukawa couplings are rescaled by the same

factor c(h125ff̄). The cancellation of this factor which occurs in µγγ in the approximation

Γtot(h125) ≈ Γ(h125 → bb̄),

µγγ ≈ c2(h125tt̄)
Γ(h125 → γγ)

Γ(h125 → bb̄)

Γtot(hSM)

Γ(hSM → γγ)

≈ c2(h125tt̄)
Γ(h125 → γγ)

c2(h125bb̄)Γ(hSM → γγ)
(3.14)

=
Γ(h125 → γγ)

Γ(hSM → γγ)
(3.15)

leads to an increased sensitivity to Γ(h125 → γγ) and thus to gh125H+H− . In contrast,

for Yukawa types where c(h125tt̄) 6= c(h125bb̄) (e.g. type II) the effect of vacuum stability

constraints on µγγ is no longer visible as the ratio of Yukawa couplings has a much stronger

impact on the signal rate than the charged Higgs contribution to Γ(h125 → γγ).

It is interesting to note that although the allowed range for µγγ is very similar in the

type I 2HDM [25] and in the type I N2HDM, a measurement of µγγ above 1 for certain

charged Higgs masses could exclude the N2HDM but be compatible with the 2HDM due

to the different vacuum stability constraints.

Figure 5 shows vacuum stability constraints in the plane of the mass mH2 of the second

lightest Higgs boson H2, with a mass above H1 = h125, and the signal strength µττ of h125

(defined analogously to eq. (3.13)). In this case, there are hardly any regions where points

can be clearly excluded due to the existence of a secondary dangerous vacuum. There are

regions where only points with a non-stable vacuum exist, which can be either dangerous
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Figure 4. The normalised coupling gh125H+H− as a function of the charged Higgs mass. Colour

code as in figure 3.

Figure 5. The signal strength µττ of h125 → ττ as a function of the second lightest neutral

scalar mass mH2
. The parameter points without any secondary minima (grey) are plotted on top,

followed by the absolutely stable (green), and long-lived (blue) parameter points. Below these, the

points with dangerous secondary minima are shown in different shades of red denoting the type of

dangerous minimum present (N — light red, CB — red, CP — dark red).

or long-lived, but no direct bounds can be derived from the experimental measurements of

µττ . This is due to the fact that in contrast to figure 3 these regions are always populated

by long-lived metastable vacua, so that allowed parameter points exist in these regions.

Therefore, figure 5 clearly shows the phenomenological difference between requiring an

absolutely stable EW vacuum (keeping only the grey and green parameter points) and

a long-lived EW vacuum (additionally keeping the blue parameter points). As discussed

above, enforcing absolute stability could lead to misleading phenomenological conclusions.
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4 Conclusions

We have performed a detailed analysis of the vacuum structure of the N2HDM, an extension

of the SM by an extra doublet and an extra real singlet. We have shown that it is possible to

derive analytical expressions to compare minima of different nature. In the case where the

singlet has no VEV the conclusions are the same as for the 2HDM [14], that is, minima of

different nature, N , CB and CP , never coexist. We have also shown analytically that when

the singlet acquires a VEV, if a normal N s minimum exists, it is stable against tunnelling

to a corresponding charge breaking CBs or CP-breaking CPs extremum. However, that

conclusion no longer holds when comparing minima with and without singlet VEV. In fact,

minima of different natures can coexist and potentially tunnel into each other. Moreover,

it is known that in the 2HDM minima of type N are not unique [8–12] and the existence

of a second, normal minimum (panic vacuum) can exist below the one with the correct

EW symmetry breaking. In the N2HDM panic vacua of types N and N s can appear for

EW vacua of either type. Additionally, minima of type S with only a singlet VEV could

also appear as panic vacua. However, we have not found a single parameter point in our

sample where a stationary point of type S is a minimum.

Based on this analytical analysis we have conducted a numerical study to investigate

the impact of the intricate N2HDM vacuum structure on the phenomenology of the model.

We have generated a large sample of parameter points with an EW vacuum of type N s
that fulfil all applicable theoretical and experimental constraints (without enforcing that

the EW vacuum be a global minimum). This way, we were able to compare minima of

different nature and identify regions of parameter space where the EW vacuum is the global

minimum, where deeper minima exist but tunnelling is so slow that the EW vacuum is

long-lived, and regions that are excluded because the tunnelling time is short compared to

the age of the universe.

The first important conclusion of our study was that panic vacua of type N , as well

as charge breaking CB, and CP breaking CP minima deeper than the EW vacuum appear

in a significant portion of the (otherwise) phenomenologically viable parameter space. We

have also shown the distribution of secondary CB and CP minima and established the

boundaries of the disjunct parameter regions where these minima can exist.

Studying the impact of vacuum stability on collider observables we have found that a

precise measurement of µγγ above 1 could exclude the model on the grounds of vacuum

stability alone, unless the charged Higgs is very light. This is due to the sensitivity of µγγ
to the triple Higgs coupling gh125H+H− , which is constrained by vacuum stability. If the

Yukawa sector is of type I this effect is clearly visible in µγγ because of an approximate

cancellation between the modifications of the Yukawa couplings. In the study of other col-

lider observables, such as µττ , we showed that there are large regions where minima which

are absolutely stable do not occur, but a long-lived EW vacuum exists. This illustrates the

importance of including parameter regions with a metastable vacuum in phenomenological

analyses, as enforcing absolute stability may lead to incorrect conclusions.
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A On the nature of stationary points

We have shown that an N minimum is stable against tunnelling to deeper CB(s) or CP(s)

extrema — if they exist, the N minimum is certainly deeper and no tunnelling to these

extrema may occur. It is also possible to show that, if N is a minimum, any CB(s)

stationary points that may exist are not only necessarily above it but cannot be minima

themselves. Rather, they are saddle points.

We will demonstrate this nice property for the CBs case — the demonstration for the

CB and CP(s) cases is similar. First recall that for a CBs extremum the vector V ′ is given

in eq. (2.22), and since V ′CBs = A + BXCBs = 0, we will have XCBs = −B−1A. Recalling

the definition of V ′N , we may also write A = V ′N −BXN , and as such an alternate form for

eq. (2.30) is

XT
CBsV

′
N = −V ′TN

(
B−1A

)
= −V ′TNB−1

(
V ′N −BXN

)
. (A.1)

Since V ′TNXN = 0 (see eq. (2.10)), we find a different expression for (2.31), i.e.

VCBs − VN = −1

2
V ′

T
NB

−1V ′N . (A.2)

Now, we have shown that if N is a minimum then the right-hand-side of this matrix is

positive (see eq. (2.31)). This therefore implies that in that situation the matrix B−1 —

and by extension the matrix B — cannot be positive-definite. Therefore the matrix B

has at least one negative eigenvalue, but it certainly has positive ones — notice that the

diagonal elements B11, B22 and B66 are certainly positive so that the N2HDM potential is

bounded from below, so B necessarily has positive eigenvalues.

Let us now look at the squared scalar mass matrix, given by the second derivatives of

the potential with respect to the real components of the doublets and singlet, ϕi, i = 1 . . . 9.

We may write it as

[M2]ij =
∂2V

∂ϕi∂ϕj
=
∂V

∂xl

∂2xl
∂ϕi∂ϕj

+
∂2V

∂xl∂xm

∂xl
∂ϕi

∂xm
∂ϕj

= V ′l
∂2xl

∂ϕi∂ϕj
+ Blm

∂xl
∂ϕi

∂xm
∂ϕj

, (A.3)
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where we introduced the matrix B and the vector V ′ which are defined, respectively, in

eqs. (2.4) and (2.6). Then, since for a CBs stationary point V ′l = 0, the mass matrix [M2]

is reduced to the second term in the equation above. It is then rather easy to reproduce

the calculation in section 5.2 of ref. [14] and deduce that one may simplify the expression

of [M2] and obtain

[M2] =

[
0 0

0 CTBC

]
, (A.4)

where C is a 5× 5 matrix depending only on the VEVs. Eq. (A.4) demonstrates that the

eigenvalues of [M2] at a CBs stationary point will be all positive if and only if the matrix B

is positive definite. However, we have shown above that when N is a minimum, the matrix

B has at least one negative eigenvalue — and therefore [M2] has also at least one negative

eigenvalue. However, since B also has positive eigenvalues, so will [M2]. Therefore, if N
is a minimum then any CBs stationary point, it if exists, lies above N and is a saddle

point, q.e.d.

We can now also justify the conditions of eq. (3.12) for the non-existence of neither

CB or CP minima. The matrix B determines the nature of the CBs stationary point, and

one can also show that it does the same for the CB extrema. Checking now eqs. (2.4), we

see that the (3, 3) entry of B is λ4 + λ5, and therefore, if λ4 < −λ5 one of the diagonal

elements of B will be negative — thus B cannot be positive definite, and consequently no

CB minima can occur (only saddle points). This justifies the second condition of eq. (3.12).

As for the first one — λ5 < 0 — the nature of CP stationary points will, in analogy with

the CB cases (and the 2HDM, see [14]) be determined by a matrix of the quartic couplings.

For the CP extrema, however, that matrix is not B but rather the matrix B̂, eq. (2.38).

Observe then that the (3, 3) element of B̂ is 2λ5 — and therefore, if λ5 < 0 no CP minima

can occur since B̂ cannot be positive definite.
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