
How to Prepare an API for
Programming in Natural Language

Sebastian Weigelt1, Mathias Landhäußer2, and Martin Blersch1

1 Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany
{weigelt|blersch}@kit.edu

2 thingsTHINKING GmbH, Haid-und-Neu-Straße 7, 76131 Karlsruhe, Germany
mathias@thingsTHINKING.net

Abstract. Natural language interfaces are becoming more and more
common but are extremely difficult to build, to maintain, and to port to
new domains. NLCI, the Natural Language Command Interpreter, is an
architecture for building and porting such interfaces quickly.
NLCI accepts commands as plain English texts and translates the in-
put sentences into sequences of API calls that implement the intended
actions. At its core is an ontology that models the API.
In this demonstration we show how a developer can provide a natural
language interface for his or her API by preparing an API ontology. We
also show how NLCI analyzes the input text. As an example we use an
API that steers a Lego EV3 robot. A short video illustrating the process
is available at http://dx.doi.org/10.5445/DIVA/2019-692.

Keywords: Natural language processing · end-user programming.

1 Introduction

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

There is a growing demand for language and speech interfaces and users
will soon expect them to be available everywhere. While end-users welcome
the simplicity of such interfaces, software engineers face a daunting task: lan-
guage and speech interfaces are hard to build, improve, and maintain. Building
them requires competence in machine learning (ML), natural language process-
ing (NLP), natural language (NL) grammars, and inference engines to map the
users’ commands to executable code. First attempts for programming in natural
language (PNL) with restricted domains were already made in the 1970s [?];
recent works focus on specific environments [?] or tasks [?]. Complementary ap-
proaches allow a nearly unlimited domain but restrict the language [?,?]. Others
analyzed how non-programmers describe solutions for programming problems
[?].

We demonstrate the Natural Language Command Interpreter (NLCI), an ar-
chitecture that connects end-user APIs to a natural language interface quickly.
We describe the process of connecting an API to NLCI to make it programmable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/232981159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.5445/DIVA/2019-692


2 Sebastian Weigelt, Mathias Landhäußer, and Martin Blersch

(a) NLCI’s analyes process.

hasMethod

Thing

Class ValueMethod Parameter Data type Object

30intGizmo length redCanmove

hasParameter hasType hasValue

SHORTENED

(b) The elements of the API ontology.
Fig. 1: NLCI in a nutshell [?].

in natural language. The examples are drawn from a project in which we pro-
grammed a Lego EV3 robot [?]. A developer willing to add a language interface
to his or her API only needs to provide an ontology of that API. NLCI can then
generate API calls from textual commands in unrestricted English.

2 Programming in Natural Language

From an end-user’s perspective, NLCI is a translator from English prose to
source code. Internally, NLCI splits the translation into various analyses (see
Figure 1a). NCLI does not constrain the language of the input but relies on
linguistic patterns that its text analyses hinge on. It uses linguistic phenomena
and not on the purpose, features, or classes of the API and thus the analyses are
independent of them. NLCI models the API in an ontology that acts as a bridge
from text elements to API elements. Its structure (see Figure 1b for an exam-
ple) captures the major concepts of object-oriented programming languages and
stores linguistic information such as synonyms for class and method names. Con-
sequently, one can implement language analyses without any knowledge about a
particular API; the ontology decouples language analysis and the targeted API.

When NLCI analyzes the input given in Figure 2, it first reconstructs the
chronological order of the actions. Next, the control structure in the first sentence
is analyzed. NLCI recognizes that the action turn should be performed until the
condition see the can holds. In the code this is realized as a do-while loop. Then it
identifies the API elements for the actions, agents, and objects. NLCI generates
a mapping from Gizmo to Robot due to the synonym information.

The upper half of Figure 1a shows the setup performed by the developer:
The target API must be provided as an API ontology and enriched with lin-
guistic information; WordNet can, e.g., be used to derive synonyms for the API
elements. The lower half shows the process in production mode initiated by the
end-user. NLCI’s language analysis pipeline is split-up into two separate parts:
text preparation with standard NLP tools3 and special modules for natural lan-
guage understanding (NLU). After the language analyses, all results are available
as text annotations. From this NLCI builds an internal structure resembling an
abstract syntax tree (AST). A code generator (depending on the target program-
ming language only) uses the AST and the API ontology to produce the desired

3 Such as Stanford’s CoreNLP, see https://stanfordnlp.github.io/CoreNLP/.

https://stanfordnlp.github.io/CoreNLP/


How to Prepare an API for Programming in Natural Language 3

Input: Natural Language Script
Gizmo, turn 5 degrees to the right until you see the can.
Before that, move 15 centimeters forward very fast.

Input: API Ontology (Excerpt)
Class: Robot (Synonyms: Gizmo, . . . )
Method: void : Robot.move(Direction: d, Distance: cm, Speed: s)
Method: void : Robot.turn(Direction: d, int: degrees)
Method: boolean : Robot.canSee(Object: o)

Output: Generated Code
robot.move(Direction.forward, 15, Speed.fastest);
do { robot.turn(Direction.right, 5); }
while (not robot.canSee(can))

Fig. 2: Input/Output Example: Given the English script in the top, NLCI re-
orders the described actions, identifies the loop, and maps the text elements to
the ontology API elements. Then it generates the desired code.

source code. This design offers two major advantages. First, analyses can draw
from previous results, build on them, and refine them. Second, any module can
be evaluated separately and improved or replaced if necessary.

As of today, NLCI offers three NLU modules. The first module reconstructs
proper time lines so that the actions can be executed in the desired order. Hu-
mans tend to describe instructions non-sequentially, e.g., “Do A. Do B. But
before that, do C.” Generating the method invocation in the textual order does
not produce the desired results. NLCI ensures that the method call for C is gen-
erated before B. We use keyphrases and structural information to determine the
correct order of events. Reference [?] gives an in depth description and evaluation
of the time line reconstruction.

The second module extracts control structures from the input. For example,
a user might say, “Do A three times,” or, “Do A. At the same time do B.”
The first is an implicit description of a loop, the second implies parallelism.
To synthesize control structures we use a similar approach as for the time line
reconstruction. Besides keyphrases, we use part-of-speech tags. Reference [?]
describes the approach for control structure extraction as well as its evaluation.

The third module maps text elements to ontology elements and generates
method calls. If a user writes, “Gizmo turns to the can,” humans naturally un-
derstand that there is an agent Gizmo that turns to (the action) another object,
a can. The module identifies the respective classes and methods in the API on-
tology and generates a method call, i.e., in this example Gizmo.turnTo(can).
To produce method calls, we first transform the textual input into an intermedi-
ate predicate-like representation: action(agent, object[]). Each element consists
of one or more words from the input. To obtain a predicate we analyze part-of-
speech tags, parse trees, and dependency graphs. The predicates abstract from
the grammatical structure of the input. For example, passive and active voice
versions of the same sentence result in identical predicates; attributes expressed
as either an adjective or in a subordinate clause are represented as the same pa-
rameter. Finally, we map the elements of the predicate to ontology individuals.
Our approach creates candidates, scores them, and finally selects one mapping
per predicate. We identify the best call sequence for given the input and opti-



4 Sebastian Weigelt, Mathias Landhäußer, and Martin Blersch

mize the score of method calls globally. Reference [?] describes the API mapping
approach along with a comprehensive evaluation.

When using NLCI in a specific domain, e.g., spreadsheet calculations, a de-
veloper can increase NLCI’s performance with specialized analyses. They can be
integrated in NLCI’s pipeline at any stage to improve intermediate information
or to refine results.

3 Preparing an API for NLCI

A developer willing to connect his or her end-user API to NLCI needs to sup-
ply NLCI with an API ontology. NLCI specifies the layout of the ontology (see
Figure 1b). Consequently, NLCI’s language analyses can be used with any object-
oriented API as long as the corresponding ontology is set up properly. It defines
the following ontology concepts and the relations between them: class, method,
parameter, data type, and value. This structure may be extended, e.g., to ac-
commodate special API features or programming language elements.

Since the linguistic analyses hinge natural language words, the ontology also
must contain a natural language representation of the API. This means that the
ontology does not only contain the technical information about the API but a
description of the API in English. The ontology stores the identifiers used in
the API in a tokenized form. For example, class names such as Ev3RobotGizmo
must be split into the individual words EV3, robot and Gizmo. To cover a broader
spectrum of language variations, the ontology also stores synonyms. For exam-
ple, we could add bot, machine, and droid to augment the NL description of
Ev3RobotGizmo. If the API does not use descriptive names, the API developer
must provide them. Given an API with descriptive names that follows naming
conventions consistently (e.g., camel case), NLCI can tokenize the identifiers au-
tomatically; synonyms can be harvested from lexical databases such as WordNet.

The API ontology can either be populated manually, automatically, or with a
hybrid approach. Manual population is straightforward but laborious. Therefore,
it is advisable to implement an ontology populator. As reading the API and
pushing the information into the ontology does not depend on the API itself but
on the input files, an API developer needs only one populator per programming
language or input format. Ontology populators can be built with little effort:
Ours for Java uses an open-source Java parser and has only 436 lines of code.
However, it might be necessary to add manual steps to the automatic extraction:
if the developer wants to provide elements that are not delivered with the API
(e.g., external objects), he or she has to add them manually to the ontology.

Given the API ontology, NLCI can analyze NL scripts for every end-user
API. The final module to supply is a code generateor. It inherently depends on
the programming language that is used with the API. The code generator can
use the AST-like representation of the user input that is created at the end of
NLCI’s language analysis process. Building a code generator is straightforward
and does not depend on a particular API: a Java code generator can be used
with any Java API.



How to Prepare an API for Programming in Natural Language 5

4 Conclusion and Future Work

In this demonstration we presented NLCI, an architecture to build natural lan-
guage interfaces for object-oriented APIs. NLCI analyzes unrestricted English
texts and generates coherent API calls from prose and imperative sentences.

When using NLCI with an API, the API developer has to configure NLCI
with an abstract model of the API in the form of an ontology. The API ontology
helps NLCI to bridge the linguistic gap between the NL input and the API.
Generating such an API ontology is easy: e.g., a simple generator for Java APIs
can be implemented in less than 500 lines of Java code. NLCI supports the
ontology generation process with tools that preprocess and enrich an ontology as
long as the underlying API uses descriptive names and follows common naming
conventions. Therefore, API developers can focus on building useful APIs instead
of dealing with NLU problems.

NLCI offers a domain independent set of analyses that handle most NL scripts
for end-user programming APIs sufficiently. Code generation depends only on
the targeted programming language and thus is usable with any API.

The biggest challenge in meeting the end-users’ needs is addressing spoken
language. As of today, NLCI relies on syntactical analyses that do not perform
well on ungrammatical phrases or speech. To address this issue, we are inves-
tigating how to rely less on syntactical information or to detect and to recover
from NLP errors [?].

References

1. Ballard, B.W., Biermann, A.W.: Programming in Natural Language: “NLC” As a
Prototype. In: Proceedings of the 1979 Annual Conference (ACM). ACM (1979)

2. Landhäußer, M., Hey, T., Tichy, W.F.: Deriving Timelines from Texts. In: 3rd Int.
Wksp. on Realizing Artificial Intelligence Synergies in Software Engineering (2014)

3. Landhäußer, M., Hug, R.: Text Understanding for Programming in Natural Lan-
guage: Control Structures. In: 4th Int. Wksp. on Realizing Artificial Intelligence
Synergies in Software Engineering (2015)

4. Landhäußer, M., Weigelt, S., Blersch, M.: Teaching Research Methodologies with
a Robot in a CS Lab Course. In: 8th Int. Conf. on Robotics in Education. Ed.: R.
Balogh (2017)

5. Landhäußer, M., Weigelt, S., Tichy, W.F.: NLCI: A Natural Language Command
Interpreter. Automated Software Engineering (2016)

6. Le, V., Gulwani, S., Su, Z.: Smartsynth: Synthesizing Smartphone Automation
Scripts from Natural Language. In: MobSys’13. vol. 2 (2013)

7. Liu, H., Lieberman, H.: Metafor: Visualizing Stories as Code. In: 10th Int. Conf.
on Intelligent User Interfaces. ACM (2005)

8. Pane, J.F., Ratanamahatana, C., Myers, B.A.: Studying the Language and Struc-
ture in Non-programmers’ Solutions to Programming Problems. Int. Journal of
Human-Computer Studies 54(2) (2001)

9. Price, D., Riloff, E., Zachary, J., Harvey, B.: NaturalJava: A Natural Language
Interface for Programming in Java. In: 5th Int. Conf. on Intelligent User Interfaces.
ACM (2000)



6 Sebastian Weigelt, Mathias Landhäußer, and Martin Blersch

10. Thummalapenta, S., Devaki, P., Sinha, S., Chandra, S., Gnanasundaram, S., Na-
garaj, D., Kumar, S., Kumar, S.: Efficient and Change-resilient Test Automation:
An Industrial Case Study. In: 35th Int. Conf. on Software Engineering (2013)

11. Weigelt, S., Tichy, W.F.: Poster: ProNat: An Agent-Based System Design for Pro-
gramming in Spoken Natural Language. In: 37th IEEE Int. Conf. on Software
Engineering (ICSE). vol. 2 (2015)


	How to Prepare an API forProgramming in Natural Language

