
Parallel and External
High Quality Graph Partitioning

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Yaroslav Akhremtsev

aus Rostow am Don

Tag der mündlichen Prüfung: 29.05.2019

Erster Gutachter: Herr Prof. Dr. Peter Sanders

Zweiter Gutachter: Herr Prof. Dr. Henning Meyerhenke

Dedication to my mother, my grandmother, and my father.

ii

Abstract

Partitioning graphs into k blocks of roughly equal size such that few edges run between
the blocks is a key tool for processing and analyzing large complex real-world networks.
The graph partitioning problem has multiple practical applications in parallel and
distributed computations, data storage, image processing, VLSI physical design and
many more. Furthermore, recently, size, variety, and structural complexity of real-
world networks has grown dramatically. Therefore, there is a demand for efficient
graph partitioning algorithms that fully utilize computational power and memory
capacity of modern machines.

A popular and successful heuristic to compute a high-quality partitions of large networks
in reasonable time is multi-level graph partitioning approach which contracts the graph
preserving its structure and then partitions it using a complex graph partitioning
algorithm. Specifically, the multi-level graph partitioning approach consists of three
main phases: coarsening, initial partitioning, and uncoarsening. During the coarsening
phase, the graph is recursively contracted preserving its structure and properties until
it is small enough to compute its initial partition during the initial partitioning phase.
Afterwards, during the uncoarsening phase the partition of the contracted graph is
projected onto the original graph and refined using, for example, local search.

Most of the research on heuristical graph partitioning focuses on sequential algorithms
or parallel algorithms in the distributed memory model. Unfortunately, previous
approaches to graph partitioning are not able to process large networks and rarely
take in into account several aspects of modern computational machines. Specifically,
the amount of cores per chip grows each year as well as the price of RAM reduces
slower than the real-world graphs grow. Since HDDs and SSDs are 50 – 400 times
cheaper than RAM, external memory makes it possible to process large real-world
graphs for a reasonable price. Therefore, in order to better utilize contemporary
computational machines, we develop efficient multi-level graph partitioning algorithms
for the shared-memory and the external memory models.

First, we present an approach to shared-memory parallel multi-level graph partitioning
that guarantees balanced solutions, shows high speed-ups for a variety of large graphs
and yields very good quality independently of the number of cores used. Important
ingredients include parallel label propagation for both coarsening and uncoarsening,
parallel initial partitioning, a simple yet effective approach to parallel localized local

iii

search, and fast locality preserving hash tables that effectively utilizes caches. The
main idea of the parallel localized local search is that each processors refines only
a small area around a random vertex reducing interactions between processors. For
example, on 79 cores, our algorithms partitions a graph with more than 3 billions of
edges into 16 blocks cutting 4.5% less edges than the closest competitor and being
more than two times faster. Furthermore, another competitors is not able to partition
this graph.

We then present an approach to external memory graph partitioning that is able
to partition large graphs that do not fit into RAM. Specifically, we consider the
semi-external and the external memory model. In both models a data structure of
size proportional to the number of edges does not fit into the RAM. The difference
is that the former model assumes that a data structure of size proportional to the
number of vertices fits into the RAM whereas the latter assumes the opposite. We
address the graph partitioning problem in both models by adapting the size-constrained
label propagation technique for the semi-external model and by developing a size-
constrained clustering algorithm based on graph coloring in the external memory.
Our semi-external size-constrained label propagation algorithm (or external memory
clustering algorithm) can be used to compute graph clusterings and is a prerequisite
for the (semi-)external graph partitioning algorithm. The algorithms are then used for
both the coarsening and the uncoarsening phase of a multi-level algorithm to compute
graph partitions. Our (semi-)external algorithm is able to partition and cluster huge
complex networks with billions of edges on cheap commodity machines. Experiments
demonstrate that the semi-external graph partitioning algorithm is scalable and can
compute high quality partitions in time that is comparable to the running time of an
efficient internal memory implementation. A parallelization of the algorithm in the
semi-external model further reduces running times.

Additionally, we develop a speed-up technique for the hypergraph partitioning algo-
rithms. Hypergraphs are an extension of graphs that allow a single edge to connect
more than two vertices. Therefore, they describe models and processes more accurately
additionally allowing more possibilities for improvement. Most multi-level hypergraph
partitioning algorithms perform some computations on vertices and their set of neigh-
bors. Since these computations can be super-linear, they have a significant impact
on the overall running time on large hypergraphs. Therefore, to further reduce the
size of hyperedges, we develop a pin-sparsifier based on the min-hash technique that
clusters vertices with similar neighborhood. Further, vertices that belong to the same
cluster are substituted by one vertex, which is connected to their neighbors, therefore,
reducing the size of the hypergraph. Our algorithm sparsifies a hypergraph such that
the resulting graph can be partitioned significantly faster without loss in quality (or
with insignificant loss). On average, KaHyPar with sparsifier performs partitioning
about 1.5 times faster while preserving solution quality if hyperedges are large.

All aforementioned frameworks are publicly available.

iv

Deutsche Zusammenfassung

Die Partitionierung von Graphen in k Blöcke von etwa gleicher Größe, sodass nur weni-
ge Kanten zwischen den Blöcken verlaufen, ist ein wichtiges Werkzeug zur Verarbeitung
und Analyse großer komplexer realer Netzwerke. Das Problem der Graphpartitionierung
findet mehrere praktische Anwendungen in parallelen und verteilten Rechensystemen,
bei der Datenspeicherung, Bildverarbeitung, physischen Gestaltung von VLSI sowie
in vielen weiteren Bereichen. Weiterhin sind die Größe, Vielfalt und strukturelle
Komplexität von realen Netzwerken in letzter Zeit enorm gestiegen. Daher besteht
ein Bedarf an effizienten Algorithmen zur Graphpartitionierung, die die Rechenlei-
stung und Speicherkapazität moderner Rechnern voll ausschöpfen. Eine verbreitete
und erfolgreiche heuristische Methode, um qualitativ hochwertige Partitionen großer
Netzwerke in angemessener Zeit zu berechnen, ist der Ansatz der mehrstufigen Graph-
partitionierung, der den Graphen unter Beibehaltung seiner Struktur zusammenfasst
und ihn dann unter Verwendung eines komplexen Partitionsalgorithmus für Graphen
partitioniert. Konkret besteht der Ansatz der mehrstufigen Graphpartitionierung
aus drei Hauptphasen: Vergröberung, anfängliche Partitionierung und Verfeinerung.
Während der Vergröberungsphase wird der Graph rekursiv zusammengefasst, wobei
seine Struktur und Eigenschaften erhalten bleiben, bis er klein genug ist, um seine
anfängliche Partition während der anfänglichen Partitionierungsphase zu berechnen.
Anschließend wird während der Vergröberungsphase die Partition des zusammen-
gefassten Graphen auf den ursprünglichen Graphen abgebildet und beispielsweise
durch eine lokale Suche verfeinert. Der größte Teil der Forschung zur heuristischen
Graphpartitionierung legt den Schwerpunkt auf sequentielle oder parallele Algorithmen
im verteilten Speichermodell. Leider sind bisherige Ansätze zur Graphpartitionierung
nicht auf dem Stand, um große Netzwerke zu verarbeiten und berücksichtigen selten
mehrere Aspekte moderner Rechenmaschinen. Insbesondere wächst die Anzahl der
Transistoren pro Chip jedes Jahr, währenddessen der RAM-Preis langsamer sinkt
als der reale Graphen-Wachstum. Da HDD-und SSD-Speicher 50 bis 400 mal billi-
ger sind als RAM, ermöglicht der Einsatz des externen Speichers die Verarbeitung
großer realer Grafiken zu einem vernünftigen Preis. Deshalb entwickeln wir effiziente
Algorithmen der mehrstufigen Graphpartitionierung für das Shared Memory- und die
externen Speichermodelle, um die Kapazitäten moderner Rechner optimaler nutzen zu
können. Zuerst stellen wir einen Ansatz für die parallele mehrstufige Graphpartitio-
nierung im Shared Memory vor, der ausgewogene Lösungen garantiert, signifikante
Beschleunigungen für eine Vielzahl von großen Graphen bietet und unabhängig von der

v

Anzahl der verwendeten Transistoren eine sehr gute Qualität gewährleistet. Wichtige
Bestandteile dieses Ansatzes umfassen die parallele Label Propagation sowohl für die
Vergröberung als auch für die Verfeinerung sowie die parallele initiale Partitionierung.
Diese ist ein einfacher, aber wirkungsvoller Ansatz zur parallelen lokalisierten lokalen
Suche und zu schnellen Hash-Tabellen, die Lokalitäten erhalten und Caches effek-
tiv nutzen. Die Grundidee der parallelen lokalisierten lokalen Suche besteht darin,
dass jeder Prozessor nur einen kleinen Bereich um einen zufälligen Knoten herum
verfeinert, wodurch die Interaktionen zwischen den Prozessoren reduziert werden. So
partitionieren unsere Algorithmen beispielsweise auf 79 Transistoren einen Graph mit
mehr als 3 Milliarden Kanten in 16 Blöcke, die 4.5% weniger Kanten schneiden als
der stärkste Wettbewerber. Dabei erfolgen die Berechnungen mehr als doppelt so
schnell. Darüber hinaus sind andere Wettbewerber nicht in der Lage, diesen Graphen
zu partitionieren. Anschließend stellen wir einen Ansatz für die Partitionierung von
Graphen des externen Speichers vor, der in der Lage ist, große Graphen zu partitionie-
ren, die nicht in den RAM passen. Insbesondere gehen wir auf das externe und das
semi-externe Speichermodell ein. Bei den beiden Modellen passt eine Datenstruktur
einer Größe proportional zur Anzahl der Kanten nicht in den RAM. Der Unterschied
liegt darin, dass das erstere Modell davon ausgeht, dass eine Datenstruktur mit ei-
ner Größe proportional zur Anzahl der Knoten in den RAM passt, während das
letztere das Gegenteil annimmt. Wir befassen uns mit dem Problem der Graphparti-
tionierung in beiden Modellen, indem wir die Technik der größenbeschränkten Label
Propagation für das semi-externe Modell anpassen und einen Algorithmus für das grö-
ßenbeschränkte Clustering entwickeln, der auf der Graphfärbung im externen Speicher
basiert. Unser semi-externer, größenbeschränkter Label-Propagierung-Algorithmus
(oder externer Speicher-Clustering-Algorithmus) kann zur Berechnung von Graph-
Clusterings verwendet werden und ist eine Voraussetzung für den (semi-)externen
Graph-Partitionierung-Algorithmus. Die Algorithmen werden dann sowohl für die
Vergröberungs- als auch für die Verfeinerungsphase eines mehrstufigen Algorithmus
zur Berechnung von Graphpartitionen verwendet. Unser (semi-)externer Algorithmus
ist in der Lage, riesige komplexe Netzwerke mit Milliarden von Kanten auf günstigen
Standardrechnern zu partitionieren und in Cluster zu verpacken. Versuche zeigen,
dass der semi-externe Graphpartitionierung-Algorithmus skalierbar und in der Lage
ist, qualitativ hochwertige Partitionen innerhalb von Zeitspannen zu berechnen, die
mit der Laufzeit einer effizienten internen Speicherimplementierung vergleichbar sind.
Durch eine Parallelisierung des Algorithmus im semi-externen Modell werden die
Laufzeiten zusätzlich reduziert. Zusätzlich entwickeln wir eine beschleunigte Technik
für die Hypergraph-Partitionierung-Algorithmen. Hypergraphen sind eine Erweiterung
von Graphen, die es einer einzelnen Kante ermöglichen, mehr als zwei Knoten zu
verbinden. Sie beschreiben daher Modelle und Prozesse genauer und bieten darüber
hinaus mehr Optimierungsmöglichkeiten. Die meisten mehrstufigen Algorithmen zur
Hypergraph-Partitionierung führen bestimmte Berechnungen an Knoten und an den
benachbarten Gruppen durch. Da diese Berechnungen superlinear sein können, haben
sie einen signifikanten Einfluss auf die gesamte Laufzeit großer Hypergraphen. Um die
Größe der Hyper-Kanten weiter zu reduzieren, entwickeln wir eine Pin-Verdichtung, der

vi

auf dem MinHash-Verfahren basiert, das Knoten bündelt, die ähnliche Nachbarn haben.
Weiterhin werden Knoten, die zum gleichen Cluster gehören, durch einen Knoten
ersetzt, der mit ihren Nachbarn verbunden ist, wodurch die Größe des Hypergraphen
reduziert wird. Unser Algorithmus verdichtet einen Hypergraphen so, dass der entstan-
dene Graph ohne Qualitätsverlust (oder mit einem geringfügigem Qualitätsverlust)
wesentlich schneller partitioniert werden kann. Im Durchschnitt führt KaHyPar mit
Verdichtung die Partitionierung in etwa 1.5 mal schneller durch, wobei die Qualität der
Lösung erhalten bleibt. Alle oben genannten Frameworks sind öffentlich zugänglich.

vii

Acknowledgements

Here I would like to thank all people who supported me during writing of this thesis.
First of all, I’m very thankful to my supervisor Peter Sanders. I thank him a lot for
all opportunities he gave me to perform research in computer science. I would like
to thank my former and current colleagues for all interesting discussions we had and
their help in research. Thank you Michael Axtmann, Tomas Balyo, Timo Bingmann,
Daniel Funke, Demian Hespe, Lorenz Hübschle-Schneider, Sebastian Lamm, Tobias
Maier, Vitaly Osipov, Sebastian Schlag, Dominik Schreiber, Darren Strash, Sascha
Witt. Expect a lot of coffee and cakes as a symbol of gratitude. I also would like
to thank my mother, grandmother, and father for all love and support they give me.
Without it I doubt this thesis would be ever finished. Finally, last but not least, I
thank my best friends Grigoriy Kolosov and Anastasia Dudkina for their support and
love. And although we live far away from each other, our friendship grows closer and
closer from year to year.

ix

Table of Contents

1 Introduction 1
1.1 Main Contributions . 4
1.2 Outline . 6

2 Preliminaries 7
2.1 Graph Related Definitions . 7

2.1.1 Graph Partitioning and Clustering 7
2.2 Memory models . 9

2.2.1 Random Access Machine and Parallel Random Access Machine 9
2.2.2 External Memory Model . 10

2.3 Plots and Experimental Setup . 12
2.3.1 Performance plots . 12
2.3.2 Graph Families . 13
2.3.3 Statistical Tests . 15
2.3.4 Machines . 15

3 Related Work 17
3.1 Multi-level Graph Partitioning . 18
3.2 Coarsening . 21

3.2.1 Matching Based Coarsening . 21
3.2.2 Clustering Based Coarsening 24

3.3 Parallel Coarsening . 27
3.3.1 Parallel Matching Based Coarsening 27
3.3.2 Parallel Cluster Based Coarsening 31

3.4 Initial Partitioning . 34
3.4.1 Exact Algorithms . 34
3.4.2 Graph Growing Partitioning . 35
3.4.3 Recursive Bisection . 36

3.5 Refinement Techniques . 37
3.5.1 The Kernighan-Lin Local Search 37
3.5.2 The Fiduccia-Mattheyses Local Search 40
3.5.3 Other Local Search Refinement Techniques 45
3.5.4 Random Walks and Diffusion Processes 47

xi

Table of Contents

3.6 Parallel Refinement Techniques . 48
3.6.1 Parallel Greedy Refinement . 49
3.6.2 Parallel Hill-Climbing Refinement 51
3.6.3 Parallel Label Propagation For Refinement 53
3.6.4 Other Parallel Distributed Memory Refinement Techniques . . 53

3.7 Multi-level Graph Partitioning Frameworks 56
3.8 Parallel Multi-level Graph Partitioning Frameworks 60
3.9 Hardness Results and Approximations 63

4 Parallel Shared-Memory Multi-level Graph Partitioning 65
4.1 Related Work . 66
4.2 Multi-level Graph Partitioning . 68

4.2.1 Coarsening . 69
4.2.2 Initial Partitioning . 71
4.2.3 Uncoarsening . 71

4.3 Parallel Multi-level Graph Partitioning 79
4.3.1 Coarsening . 79
4.3.2 Initial Partitioning . 83
4.3.3 Uncoarsening/Local Search . 84
4.3.4 Differences to Mt-Metis . 87

4.4 Further Optimizations . 88
4.4.1 Cache-Aware Hash Table . 88

4.5 Experimental Evaluation . 90
4.5.1 Methodology . 90
4.5.2 Quality . 94
4.5.3 Speed-up and Running Time 114
4.5.4 Memory consumption . 130
4.5.5 Influence of MGP Phases of Mt-KaHIP 132

4.6 Conclusion and Future Work . 136

5 (Semi-) External Multi-level Graph Partitioning 139
5.1 Related Work . 140
5.2 (Semi-)External MGP . 140

5.2.1 Label Propagation Clustering 141
5.2.2 Coloring-based Graph Clustering 145
5.2.3 Coarsening/Contraction . 150
5.2.4 Uncoarsening/Projection of Partition 150

5.3 Experimental Evaluation . 151
5.3.1 Graph Clustering Algorithms 151
5.3.2 Multi-level Graph Partitioning 159

5.4 Conclusion and Future Work . 173

6 Fast Sparsification of Hypergraphs 175
6.1 Preliminaries . 176

xii

Table of Contents

6.2 Min-Hash Based Pin Sparsifier . 176
6.2.1 Adaptive Clustering . 181

6.3 Experiments . 183
6.4 Conclusion and Future Work . 187

7 Conclusion 189

List of Algorithms 193

List of Figures 195

List of Tables 199

List of Theorems 201

Bibliography 203

List of Publications 223

xiii

1Chapter 1

Introduction

Graph partitioning is a fundamental combinatorial problem that has multiple practical
applications in parallel and distributed computations, data storage, image processing,
VLSI physical design and many more [Bul+13]. Specifically, when one needs a balanced
distribution of data or computations over machines minimizing communication between
them to save running time, one may consider to solve a graph partitioning problem.
The first example is an efficient distribution of data over machines in a data center
that minimizes the average number of machines accessed per query. For example,
if the social graph (users are vertices and friendship defines edges between them) is
stored in a data center that consists of multiple machines, we want to store the user
data preserving its locality. Meaning that when answering a user query, we want to
minimize the number of machines that are accessed since we often need to access
the user data of friends. Specifically, we want as many friends to be on the same
machine as possible given that the distribution of the users between machines must
be balanced. Therefore, if the data center has k machines, we need to partition the
social graph into k parts of about equal size. Furthermore, we want to minimize the
sum of the edges that run between the machines. Another example is distributed
iterative numerical methods that solve partial differential equations. These equations
are discretized over a mesh where each node represents a portion of computational work
and edges define information flow between nodes. To map a mesh onto k machines, we
need to solve a graph partitioning problem since we want to simultaneously balance
computational work between machines and minimize the amount of communication
after each iteration. Figures 1.1 (a)– 1.1 (c) show different partitioned graphs.

Unfortunately, the graph partitioning problem is NP-hard [GJS74; HR73]. Meaning
that there are no known polynomial time solutions for this problem. Therefore,
heuristical algorithms are necessary to partition large real-world networks in reasonable
time. There is a large variety of different approaches to solve this problem. One of the
most promising and popular heuristics, which yields a good trade-off between running
time and quality in practice, is multi-level graph partitioning. This can be explained
by the fact that multi-level graph partitioning combines both global and local views on
the graph allowing more flexibility in searching for a good solution. It consists of three
main phases: coarsening, initial partitioning and uncoarsening. The main idea is to

1

1 Introduction

recursively contract (shrink) the graph preserving its original structure, constructing a
hierarchy of contracted graphs (coarsening). When the coarsest graph is small enough,
a more sophisticated but slower method computes an initial partition. Afterwards, the
coarsest graph is uncontracted, its partition is projected onto the predecessor graph in
the hierarchy and improved using refinement techniques (uncoarsening).

(a) Random geometric graph. (b) Delaunay graph.

(c) Graph of Amazon in 2008.

Figure 1.1: Partitionings of different graphs into 16 blocks. Each color correspond
to a block.

Most of the research on heuristical graph partitioning focuses on sequential algorithms
or parallel algorithms in the distributed memory model. Both models do not take into
account several aspects of modern computational machines. Specifically, the amount

2

of cores per chip grows each year and the external memory (e.g. HDDs and SSDs)
reduces. Therefore, there is a need to efficiently utilize multiple cores and external
memory in computations. In order to do this, we develop efficient multi-level graph
partitioning algorithms for the shared-memory and the external memory models that
are able to partition large real-world graphs.

The first computational model we consider is the shared-memory model. Although
Moore’s law [Moo98] declares that the number of transistors approximately doubles
every two years, the average clock frequency of processors has stagnated in the last ten
years, whilst the number of cores per chip has been drastically increasing. Thus, there
is demand for parallel shared-memory graph partitioning algorithms that efficiently
utilize available computing power. Although there are several shared-memory graph
partitioning frameworks, many possibilities for further improvement remain, especially
when one needs a fast high-quality graph partitioner. Furthermore, already existing
parallel distributed memory graph partitioning algorithms do not take into account
several important features of the shared-memory model like availability of caches or
shared memory. An efficient utilization of these features allows to improve performance
and simplify graph partitioning algorithms.

The second computational model we consider is the external memory model. This
model is used to develop and analyze efficient algorithms that store most data on hard
disk drives (HDD) or solid-state drives (SSD). Since real-worlds graphs grow faster
than the available size of RAM, using efficient graph partitioning algorithms which
use HDDs or SSDs is the only way to partition large graphs on cheap commodity
servers and machines. For example, the Facebook social graph [WA] increased in size
from 10 GB to 1 TB between 2007 and 2011. Thus, its size increases by a factor of
2.5 per year, whereas the price of RAM on average decreases by a factor of 1.3 per
year, and HDDs and SSDs are always 50 – 400 times cheaper than RAM. As a result,
external memory is very cheap and makes it possible to process large amounts of data
which is impossible using only RAM of cheap commodity machines and servers or
too expensive on large servers. Furthermore, there is no previous work on external
memory graph partitioning algorithms to the best of our knowledge.

Additionally, we consider the hypergraph partitioning problem. Hypergraphs are a
generalization of graphs that allow a single edge to connect more than two vertices.
Thus, they describe models and processes more accurately additionally allowing
more possibilities for improvement. For example, hypergraphs can be used to model
integrated circuits or sparse matrices. Specifically, partitioning hypergraphs that model
integrated circuits has variety of application in the VLSI domain (e.g., design packaging
and optimization). Moreover, a partition of a hypergraph that models a sparse
matrix allows to find a reordering of its rows and columns that speeds up algebraic
computations on this matrix in a distributed setting. Most multi-level hypergraph
partitioning algorithms perform computations on vertices and their corresponding set
of neighbors. For large hypergraphs, these calculations might significantly affect the
overall running time. Therefore, we optimize a high-quality multi-level algorithm that

3

1 Introduction

partitions hypergraphs into k balanced blocks. Specifically, our algorithm sparsifies
a hypergraph such that the resulting graph can be partitioned significantly faster
without loss in quality (or with insignificant loss). Although the main focus of this
thesis is graph partitioning, we believe that the presented algorithm and underlying
techniques are of great interest and can be applied in graph partitioning as well.

1.1 Main Contributions

Our first contribution is a parallel shared-memory graph partitioning framework called
Mt-KaHIP (based on KaHIP [SS11] – Karlsruhe High Quality Partitioning) that con-
structs high-quality partitions and shows good scalability. To achieve better running
times, we parallelized and optimized all three phases of the multi-level graph par-
titioning approach. Furthermore, we introduced additional improvements to each
of the phases that result in partitions of better quality. The main components of
coarsening are parallel label propagation [RAK07] and parallel contraction. Specifically,
we developed a novel load balancing technique for the parallel label propagation
algorithm that allows to efficiently process graphs with arbitrary vertex degree dis-
tributions. To contract the graph in parallel, we use a concurrent hash table. In the
initial partitioning phase, we partition the coarse graph multiple times in parallel
to improve quality. Finally, we use a combination of parallel label propagation and
parallel localized local search to improve partition quality. The latter approach allows
to find high-quality balanced partitions while scaling better than competitors. The
main idea of parallel localized local search is that each processor refines only a small
area around a random vertex and, thus, processors interact rarely. Specifically, each
processor changes the partition only locally and the partition is changed globally in a
sequential way only after each processor finishes. This separation allows to efficiently
parallelize the search for possible improvements of the partition which is usually the
most time consuming part of parallel localized local search. An important ingredient of
the parallel localized local search is fast locality preserving hash tables that efficiently
utilize caches. These hash tables store integer keys such that keys with small absolute
differences are within the same cache line. Therefore, if accesses to keys occur in
a local manner we expect that the number of cache misses reduces. Furthermore,
we perform additionally optimizations to avoid false sharing and decrease negative
effects of non-uniform memory accesses (NUMA). As a result, our graph partitioning
framework partitions large real-world graphs with better quality and scalability than
other parallel graph partitioning frameworks. We test our framework and its competi-
tors on the benchmark that includes graphs with up to 3.3G edges. For example, it
partitions a graph of some 3.3G edges in about 42s with better quality than other
graph partitioning frameworks. Furthermore, one of our main competitors cannot
partition the graph whilst another one produces a partition with a 4.5% larger cut
size spending about 100s.

4

1.1 Main Contributions

Our second contribution is an external memory graph partitioner that partitions large
graphs which do no fit into RAM. Specifically, we consider two types of problems: the
semi-external problem and the external problem. In both problems a data structure
of the size proportional to the number of edges does not fit into RAM. The difference
is that the former problem assumes that a data structure of the size proportional to
the number of vertices fits into the RAM whereas the latter assumes the opposite. We
developed a semi-external size-constrained label propagation algorithm [RAK07] and a
external label propagation algorithm that constructs size-unconstrained clusters using
external memory priority queues and the time forward processing technique [Zeh02].
To be able to construct size-constrained clusters in the external memory model, we
developed an external memory clustering algorithm that uses graph coloring and time
forward processing to maintain up-to-date sizes of clusters. The main component of our
framework is the semi-external size-constrained label propagation algorithm (or the
clustering algorithm based on graph coloring) that constructs a clustering of the graph
according to which it is contracted. We contract the graph until it is small enough
to fit into RAM and then use the graph partitioning framework KaHIP to partition it
in RAM. We additionally refine the partition using (semi-)external size-constrained
label propagation (or the clustering algorithm based on graph coloring). We test our
semi-external graph partitioning framework on a benchmark set of graphs with up
to 80.5G edges. For example, our graph partitioner is able to partition a graph with
80.5G edges, which occupies of some 1.2TB of memory, on a single machine with only
128GB of RAM in about two hours, whereas our competitors are not able to process
this graph.

Our third contribution is a hypergraph sparsifier that preserves the hypergraph’s
original structure. In order to sparsify hypergraphs, we combine vertices that share a
lot of hyperedges. To find such vertices in linear time with a guaranteed probability,
we use the min-hash technique by Broder [Bro97] that approximates the Jaccard index
of hyperedges incident to any pair of vertices. But note that the Jaccard index for
two vertices depends on the input hypergraph. Moreover, even in one hypergraph the
Jaccard index for two vertices may be heterogeneous. Specifically, combining pairs of
vertices using the same threshold for the Jaccard index may produce a hypergraph
that does not preserve the original structure or only a small number of vertices is
contracted. Therefore, we developed an adaptive sparsifier that repeatedly applies
the min-hash technique to find pairs of neighbors with the Jaccard index within a
preset interval. We implemented our sparsifier within the hypergraph partitioning
framework KaHyPar (Karlsruhe Hypergraph Partitioning) [Akh+17]. On average,
KaHyPar with sparsifier performs partitioning about 1.5 times faster while preserving
solution quality if hyperedges are large.

All aforementioned frameworks are publicly available and can be found [Myg].

5

1 Introduction

1.2 Outline

Chapter 2 presents basic definitions and concepts that we use in this thesis. Next,
Chapter 3 presents an overview of existing graph partitioning techniques and algorithms.
We specifically focus on algorithms that are used in the parallel graph partitioning
frameworks. Chapter 4 presents our parallel shared-memory graph partitioning
framework and Chapter 5 presents our (semi)-external graph partitioning framework.
Afterwards, we present our sparsifier for hypergraphs in Chapter 6. The discussion
of the results is presented in the end of each corresponding chapter as well as in
Chapter 7.

6

2Chapter 2

Preliminaries

In this chapter, we present basic definitions and concepts that are used throughout
this thesis.

2.1 Graph Related Definitions

Let G = (V,E, c, ω) is a undirected graph where V = {0, . . . , n − 1} is a set of
vertices, E ⊆ {(v, w) : v, w ∈ V } is a set of edges, c : V → R>0 is a vertex weight
function, and ω : E → R>0 is an edge weight function. Here (v, u) denotes a set
of two vertices and (v, u) = (u, v) since we consider undirected graphs. We extend
edge and vertex weight functions ω and c to sets, e.g., ω(M) :=

∑
e∈M ω(e). The

set N(v) := {u ∈ V : (v, u) ∈ E} denotes the neighbors of v (adjacency list of v).
The degree of a vertex v is d(v) := |N(v)|. The maximum vertex degree is ∆. The
density of a graph is 2|E|/(|V |(|V | − 1)). A subgraph G′ = (V ′, E′) of a graph G is
a graph such that V ′ ⊆ V and E′ ⊆ E. Furthermore, G′ is an induced subgraph of
G if E′ = {(v, u) ∈ E : v, u ∈ V ′}. A matching M is a subset of edges with disjoint
vertices. More formally, M ⊆ E such that ∀ e, e′ ∈ M : e ∩ e′ = ∅. A maximum
weighted matching is a matching such that it has a maximum weight over all possible
matchings; that is, arg maxM ω(M). A set of vertices I is called an independent if
∀ v, u ∈ I : (v, u) 6∈ E. Furthermore, a partition of V into k disjoint independent
sets C1, . . . , Ck is called coloring of the graph G, where each independent set Ci
corresponds to a color.

2.1.1 Graph Partitioning and Clustering

The graph partitioning problem asks to partition vertices of a graph G = (V,E)
into k disjoint subsets (blocks) while minimizing a given objective function such
that the total weight of each block does not exceed the maximum weight of a block
Lmax := (1 + ε)d|V |/ke (for unit weights of vertices) for some imbalance parameter
ε ∈ (0, 1). For non-unit weights of vertices Lmax := (1 + ε)dc(V)/ke + maxv∈V c(v).

7

2 Preliminaries

More formally, one needs to construct k subsets V1, . . . , Vk of V such that an objective
function f is minimized, V1∪· · ·∪Vk = V , Vi∩Vj = ∅ ∀i, j and ∀ Vi : c(Vi) ≤ Lmax. We
call a block Vi overloaded if its weight exceeds Lmax. We denote the block of vertex v as
B[v]. We refer to the number of a block as partition ID. A set of edges that run between
two blocks is called cut. More formally, let Eij := {(u, v) ∈ E : u ∈ Vi, v ∈ Vj} then
the cut is ∪i<jEij . A vertex v ∈ Vi is a boundary vertex if it is adjacent to a vertex
in a different block; that is, ∃ u ∈ N(v) : u ∈ Vj , j 6= i. The most common objective
function is the size of the cut, that is, ω(∪i<jEij). We define the gain of a vertex as
the maximum reduction in the cut size after moving it to a different block. Specifically,
the gain of v ∈ Vi is

g(v) := max
t 6=i

ω({(v, w) : w ∈ N(v) ∩ Vt})− ω({(v, w) : w ∈ N(v) ∩ Vi})).

A k vertex separator is a set of vertices whose removal leaves in the graph at least k
connected components.

A clustering is also a partition of the vertices. In the context of clustering, we refer
to blocks as clusters. However, k is usually not given in advance and the balance
constraint is removed. A size-constrained clustering contains only clusters of size at
most U . Note that by adjusting the upper bound U one can control the number of
clusters in a feasible clustering to some extent.

An abstract view of a clustered (partitioned) graph is a quotient graph, in which
vertices represent blocks and edges are induced by connectivity between blocks. The
quotient graph is the result of the contraction of the graph according to the clustering.
The weighted version of the quotient graph has vertex weights that are set to the
weight of the corresponding block and edge weights that are equal to the weight of the
edges that run between the respective blocks. More formally, given a graph clustering
(or a graph partitioning) V1, . . . , Vk, the quotient graph defined as Q = (Vq, Eq, cq, ωq),
where Vq = {1, . . . , k} and Eq = {(i, j) | Eij 6= ∅}, ωq(i, j) =

∑
e∈Eij

ω(e), cq(i) =∑
v∈Vi

c(v), i, j ∈ Vq. An example is shown in Figure 2.1.

3 2

Figure 2.1: Clustering of a graph and the corresponding quotient graph. Here
each color denotes a cluster of vertices in the original graph (left) and a vertex in
the quotient graph (right).

8

2.2 Memory models

All our input graphs G have unit edge weights and vertex weights. However, even
those will be reduced to graph partitioning problems with weighted vertices during the
course of the multi-level algorithm. In order to avoid a tedious notation, G will denote
the current state of the graph before and after a (un)contraction in the multi-level
scheme throughout our thesis.

2.2 Memory models

Here we describe memory models that we use in the analysis of our algorithms.

2.2.1 Random Access Machine and Parallel Random Access
Machine

The Random Access Machine (RAM) [VN93] is a computational model that consists of
a processing element (PE) and a random-access memory such that the PE can access a
memory cell in constant time. The natural extension of RAM is a computational model
with multiple PEs and a shared memory that can be accessed simultaneously by all
PEs. We denote the number of PEs as p. If all PEs perform operations synchronously
according to a common clock this computational model is called Parallel Random
Access Machine (PRAM) [Wyl79]. In contrast, in the asynchronous Parallel Random
Access Machine [GMR98] all PEs work asynchronously and it is responsibility of a
programmer to ensure synchronization. Since several PEs can access the same memory
cell simultaneously, there are three access patterns:

(i) Exclusive Read Exclusive Write (EREW) does not allow simultaneous accesses
to the same memory cell.

(ii) Concurrent Read Exclusive Write (CREW) allows simultaneous read operations
to the same memory cell but prohibits simultaneous write operations.

(iii) Concurrent Read Concurrent Write (CRCW) allows simultaneous read and write
operations to the same memory cell. There are three strategies to resolve write
conflicts. The common strategies allows simultaneous writes only if all of them
attempt to write the same value. The arbitrary strategy allows an arbitrary
write operation to succeed. The priority strategy assigns each PE a priority such
that among multiple PEs, which attempt to write to the same memory, the PE
with highest priority succeeds whereas others fail.

The complexity of concurrent write in the CRCW PRAM model if p PEs write to the
same memory cell is Θ(1). Thus, this model does not take into account contention.
However, when p PEs write to the same memory cell on a modern machine this will
take Ω(p) time. Therefore, we consider asynchronous Concurrent Read Queue Write

9

2 Preliminaries

(aCRQW) model [GMR98] that takes contention into account. Specifically, p PEs
write to the same memory cell in Ω(p) time in the aCRQW model.

In this thesis, we use the aCRQW model to analyze algorithms and present for each
work and parallel time complexities. Here work is the number of operations (as function
of the input size) needed by a single PE to execute an algorithm and parallel time
is the number of operations needed by p PEs to execute the same algorithm. We
assume a CRCW access pattern and resolve conflicts using the arbitrary strategy.
Namely, there is no any guarantee which value will be written. Furthermore, we allow
to perform an atomic concurrent update of a memory cell using compare and swap
operation CAS(x, y, z). If x = y then this operation assigns x← z and returns True;
otherwise it returns False.

Graph Data Structure. We represent a graph G = (V,E) in memory using three
arrays offset, edge, and vertex_weight. This representation is called adjacency
array. The array edge of size |E| contains all adjacency lists of vertices and the array
offset of size |V |+ 1 contains offsets to an adjacency lists of all vertices in the edge
array. Specifically, edge[offset[v], . . . , offset[v + 1] − 1] is an adjacency list of a
vertex v, where edge[offset[v] + i] is a pair (u,w) where u is an i-th neighbor of v
and w = ω(v, u). The array vertex_weight of size |V | contains weights of all vertices,
where the weight of a vertex v is vertex_weight[v]. Figure 2.2 outlines described
data structure.

1 2

0 1 3 4 0

1

2

1 1 0 1 2 1

c(0) = 1

c(1) = 2

c(2) = 1

1 1

2 2

2

edge:

offset:

vertex weight:

Edge weight

Figure 2.2: Graph represented using adjacency array.

2.2.2 External Memory Model

We consider the external memory model [ABW02; Vit01; VS94] and solve two types of
problems in this model: semi-external and external. In this model, theres is a limited
amount of the internal memory M and an unlimited amount of the external memory.
Input/output operations (I/O operations) read/write consecutive data in blocks of size
B from/to the external memory to/from the internal memory. In practice, the external
memory is kept on HDDs or SSDs and usually two cases are considered: the external
memory model with one HDD or SSD (see Figure 2.3 (a)) and the external memory
model with multiple HDDs or SSDs (see Figure 2.3 (b)). In the external memory

10

2.2 Memory models

model an I/O operation is much more expensive than an access to the internal memory.
Therefore, the goal is to minimize the total number of I/O operations. Basically,
accesses to the internal memory are considered as free.

We will use the following notations for the external memory model with one HDD or
SSD. The size of the internal memory is M , B is the size of a disk block, Scan(N) =
O(N/B) is the number of I/O operations needed for reading or writing an array
of size N and Sort(N) = O(N/B logM/B N/B) is the number of I/O operations
needed for sorting an array of size N . For the external memory model with D
HDDs or SSDs the I/O complexities are the following: Scan(N) = O(N/(BD)) is
the number of I/O operations needed for reading or writing an array of size N and
Sort(N) = O(N/(BD) logM/B N/B) is the number of I/O operations needed for
sorting an array of size N .

For both semi-external and external memory problems, we assume that |E| = Ω(|M |);
that is, a data structure of size Ω(|E|) does not fit into the internal memory. The
difference between two problems is in the size of the internal memory. In semi-external
problems, we assume that M = Ω(|V |); i.e., any data structure of size O(|V |) fits
into the internal memory, whereas in external problems, we assume that |V | = Ω(M).
Namely, a data structure of size Ω(|V |) fits only in the external memory.

Internal Memory

CPU

Block B

External Memory

(a) An external memory model with
one disk.

Internal Memory

CPU

Block B

External Memory

Block B

External Memory

(b) An external memory model with
two disks.

Prefetching. Prefetching [Dem06; Smi82] is a technique that allows to overlap input
operations from disks with computations. More specifically, given a sequential access
pattern to an array, prefetching allocates memory for at least two blocks in the internal
memory and reads the next block into the internal memory while current block is

11

2 Preliminaries

processed. If the time tr to read a block is approximately equal to the time tp to
process a block then the time to scan an array of size N is Scan(N) ·tr whereas without
prefetching it is Scan(N) · (tr + tp).

Graph Data Structure. We represent a graph in the external memory model using
the adjacency array representation. To store neighbors of all vertices, we use an array
edge of size |E| + |V |. This approach to store neighbors minimizes the number of
I/O operations necessary to iterate over all edges (Scan(|E|) I/O operations). An
external array of the edges contains the adjacency lists of each vertex in increasing
order of their IDs. Each element of the adjacency list of a vertex u is a pair (v, w),
where v is the target of the edge (u, v) and w = ω(u, v) is the weight of the edge.
We mark the end of each adjacency list by using the sentinel pair $. This allows us
to determine easily if we reached the end of the adjacency list of the vertex that we
currently process. The second external array offset stores offsets of vertices, that is,
for each vertex we store a pointer to the beginning of its adjacency list in the array
edges. The third external array vertex_weight contains the weights of the vertices.
Figure 2.4 outlines described data structure.

1 2

0 1 3 0

1

2

1 1 0 1 2 1

c(0) = 1

c(1) = 2

c(2) = 1

1 1

2 2

2

edge:

offset:

vertex weight:

$ $

Figure 2.4: Graph represented using adjacency array in the external memory
model.

2.3 Plots and Experimental Setup

In this section, we describe performance plots, the benchmark set of graphs and the
computing machines we used in our experiments.

2.3.1 Performance plots

We use performance plots to present the quality comparison. A curve in a performance
plot for algorithm X is obtained as follows. For each instance (graph and k), we
calculate a normalized value 1− best

cut , where best is the best cut obtained by any of
the considered algorithms and cut is the cut of algorithm X. These values are then

12

2.3 Plots and Experimental Setup

sorted. Thus, the result of the best algorithm is at the bottom of the plot. We set
the value for the instance above 1 if an algorithm computes an imbalanced partition.
Hence, it is in the top of the plot. Additionally, note that points that are on the same
vertical line can correspond to different instances. Figure 2.5 shows an example of a
performance plot.

1 2 3 4 5 6 7 8
instances

0.0

0.2

0.4

0.6

0.8

1.0

1
-

b
es

t
/

cu
t

imbalanced solutions

Algorithm 1 Algroithm 2Figure 2.5: An example of a performance plot. We can see that Algorithm 1
computed the best cuts for 3 instances and one imbalanced partition. Algorithm
2 computed the best cuts for 5 instances.

2.3.2 Graph Families

We evaluate our algorithms on a benchmark set of large graphs. These graphs are
collected from [Bad+13a; Bad+14; BV04; Dav; Les; LMP15]. Table 2.1 summarizes
the main properties of the benchmark set. Our benchmark set includes a number of
graphs from numeric simulations as well as complex networks (for the latter with a
focus on social networks and web graphs).

We use five types of random graphs: rgg, del, ba, er, and rhg for comparisons.
A graph rggX is a 2D random geometric graph with 2X vertices where vertices
represent random points in the (Euclidean) unit square and edges connect vertices
whose Euclidean distance is below 0.55

√
lnn/n. This threshold was chosen in order

to ensure that the graph is almost certainly connected. A graph rggX_3d is a 3D
random geometric graph with 2X vertices, where vertices represent random points in
the (Euclidean) unit square and edges connect vertices whose Euclidean distance is
below 0.55(lnn/n)1/3. A graph delX is a 2D Delaunay triangulation of 2X random
points in the unit square. A graph delX_3d is a 3D Delaunay triangulation of
2X random points in the unit square. We generate rggX, rggX_3d, delX, and

13

2 Preliminaries

delX_3d graphs using KaGen [Fun+18]. The graph ba_2_22 is a random graph
generated using the Barabassi-Albert graph model BA(n, d), where n = 222 and the
minimum degree of a vertex (d) equals 2. The graph er_2_22_2_23 is a random
graph generated using Erdös-Rényi G(n,m) model, where n = 222 and m = 223.
The graph er-fact1.5-scale23 is generated using the Erdös-Rényi G(n, p) model
with p = 1.5 lnn/n. This threshold was chosen in order to ensure that the graph
is almost certainly connected. The graph rhg is a complex network generated with
NetworKit [LMP15] according to the random hyperbolic graph model [Kri+10]. In
this model vertices are represented as points in the hyperbolic plane; vertices are
connected by an edge if their hyperbolic distance is below a threshold. Additionally,
we generated the graph rhg_2_23 that is a random hyperbolic graph with the average
degree of 8 using KaGen [Fun+18].

Table 2.1: Basic properties of the benchmark set with a rough type classification.
C stands for complex networks, M is used for mesh type networks.

Graph n m Type Reference
amazon ≈0.4M ≈2.3M C [Les]
youtube ≈1.1M ≈3.0M C [Les]
amazon-2008 ≈0.7M ≈3.5M C [WA]
ba_2_22 ≈4.2M (222) ≈8.4M C [Fun+18]
in-2004 ≈1.4M ≈13.6M C [WA]
eu-2005 ≈0.9M ≈16.1M C [WA]
er_2_22_2_23 ≈4.2M (222) ≈16.3 (223) M [Fun+18]
packing ≈2.1M ≈17.5M M [Bad+14]
hugebubbles-00 ≈18.3M ≈27.5M M [Bad+14]
rhg_2_23 ≈8.4M (223) ≈32.1M M [Fun+18]
com-LiveJournal ≈4M ≈34.7M C [LK14]
channel ≈4.8M ≈42.7M M [Bad+14]
cage15 ≈5.2M ≈47.0M M [Bad+14]
ljournal-2008 ≈5.4M ≈49.5M C [WA]
europe.osm ≈50.9M ≈54.1M C [Bad+13a]
enwiki-2013 ≈4.2M ≈91.9M C [WA]
er-fact1.5-scale23 ≈8.4M ≈100.3M M [Bad+13a]
hollywood-2011 ≈2.2M ≈114.5M C [WA]
com-Orkut ≈3.1M ≈117.2M C [LK14]
enwiki-2018 ≈5.6M ≈117.2M C [WA]
indochina-2004 ≈7.4M ≈151.0M C [WA]
rhg ≈10.0M ≈199.6M M [LMP15]
del_2_26 ≈67.1M (226) ≈201.3M M [HSS10]
uk-2002 ≈18.5M ≈261.8M C [WA]
del_2_27 ≈134.2M (227) ≈303.2M M [Fun+18]
nlpkkt240 ≈28.0M ≈373.2M M [Dav]

14

2.3 Plots and Experimental Setup

rgg_2_26_3d ≈67.1M (226) ≈379.6M M [Fun+18]
del_2_26_3d ≈67.1M ≈521.3M M [Fun+18]
arabic-2005 ≈22.7M ≈553.9M C [WA]
rgg_2_26 ≈67.1M (226) ≈574.6M M [Fun+18]
uk-2005 ≈39.5M ≈783.0M C [WA]
rgg_2_27_3d ≈134.2M (227) ≈787.7M M [Fun+18]
webbase-2001 ≈118.1M ≈854.8M C [WA]
it-2004 ≈41.3M ≈1.0G C [WA]
del_2_27_3d ≈134.2M (227) ≈1.0G M [Fun+18]
twitter-2010 ≈41.7M ≈1.2G C [WA]
rgg_2_27 ≈134.2M (227) ≈1.2G M [Fun+18]
sk-2005 ≈50.6M ≈1.8G C [WA]
uk-2007 ≈106M ≈3.3G C [WA]
clueweb12 ≈951M ≈37.3G C [WA]
uk-2014 ≈787.8M ≈42.5G C [WA]
eu-2015 ≈1.1G ≈80.5G C [WA]

2.3.3 Statistical Tests

In order to show that quality of partitions and running times of our algorithms differ
from those of our competitors, we use statistical significant tests. In order to do
this, we apply Wilcoxon signed-rank test [Wil45] to reject a null hypothesis that two
sequences of random variables (measurements returned by two algorithms) have the
same distribution. Specifically, the Wilcoxon signed-rank test returns the probability
(p-value) to observe such sequences or even more different sequences under the null
hypothesis. If p-value is less than 1% (significance level) then the null hypothesis
is rejected otherwise it is not. To compare unpaired sequences of data, we use
Mann-Whitney U test [MW47].

2.3.4 Machines

All experiments in this thesis were performed using the following three machines:

• Machine A has four Intel Xeon Gold 6138 processors (L1: 32 K, L2: 1024 K, L3:
28160 K, 4 sockets, 20 cores with Hyper-Threading, 160 threads) running at 2.0
– 3.7 GHz with 768 GB RAM and 4xSSD 1.8 TB.

• Machine B has two Intel Xeon E5-2683v2 processors (L1: 32 K, L2: 256 K, L3:
40960 K, 2 sockets, 16 cores with Hyper-Threading, 64 threads) running at 2.1
GHz with 512GB RAM and 1xSATA 447 GB.

15

2 Preliminaries

• Machine C has two Intel Xeon E5-2650v2 processors (L1: 32 K, L2: 256 K, L3:
20480 K, 2 sockets, 8 cores with Hyper-Threading, 32 threads) running at 2.6
GHz with 128Gb RAM and 4xSSD 1 TB. (read 1440 MB/s, write 1440 MB/s).

All machines have Ubuntu 18.04 installed on them.

16

3Chapter 3

Related Work

In this chapter, we give an overview of the graph partitioning techniques most of
which are used within existing parallel graph partitioning frameworks. In our overview
we focus on the graph partitioning techniques that can be parallelized efficiently.
More comprehensive overviews of existing graph partitioning techniques can be found
in [BS11; Bul+13; Fjä98; SKK03]. The keystone of almost all currently available
parallel graph partitioning frameworks is the multi-level graph partitioning scheme
(MGP) (see Section 3.1). The MGP scheme consists of three phases: coarsening,
initial partitioning, and uncoarsening. Therefore, we present algorithms grouped by
the phases they are used in. Note that our parallel graph partitioning techniques are
described in the following chapters.

This chapter is organized in the following way. First, we discuss the details of the
MGP scheme and describe why this heuristic approach is fast and constructs partitions
of good quality in Section 3.1. In the following sections, we describe algorithms that
can be used during every phase of the MGP scheme and their possible parallelizations.
In Section 3.2, we give an overview of different clustering and matching algorithms
that are used in the coarsening phase and are essential for resulting quality and
running time. In Section 3.3, we review different parallel matching and clustering
algorithms. Section 3.4 contains descriptions of different graph partitioning techniques
that can be used in the initial partitioning phase. We concentrate on techniques that
can be used within parallel graph partitioning frameworks. Therefore, we do not
focus on other graph partitioning techniques like spectral graph partitioning [BS93;
DH72; DH73; Fie73; Fie75; HL95b; XN98], tabu search [BH11; GBF11], simulated
annealing [JS98], evolutionary/genetic algorithms [BH11; Kim+11], streaming graph
partitioning [NU13; SK12; Tso+14] etc. Since we consider graphs without any
additional geometrical information, we also do not present a overview of geometrical
graph partitioning algorithms [FL93; Sim91; Wil91] and algorithms based on space-
filling curves [Bad13; HW02; PB94; Zum12]. In Section 3.5, we consider different
sequential refinement techniques that are used in the uncoarsening phase. Most of
which are suitable for efficient parallelization. Section 3.6 contains descriptions of
parallel refinement techniques. In Sections 3.7 and 3.8, we present a short overview of
existing sequential and parallel MGP frameworks. Finally, Section 3.9 contains some

17

3 Related Work

results on computational complexities of sequential approximation graph partitioning
algorithms and on possibility of efficient parallelization of local search (one of the
frequently used refinement techniques).

3.1 Multi-level Graph Partitioning

The multi-level graph partitioning (MGP) scheme is a widely used approach for graph
partitioning. Most graph partitioning frameworks that do not construct optimal
solutions employ the MGP scheme. The reason behind this is that the algorithms
based on the MGP scheme often provide a good trade-off between running time and
quality. The following paragraph gives a more detailed explanation of the advantages
of the MGP scheme. The basic idea can be traced back to multigrid solvers for systems
of linear equations. However, recent practical methods are mostly based on graph
theoretic aspects. Specifically, the general idea of the MGP scheme is to recursively
contract a graph until it is small enough to partition with a slow high-quality graph
partition algorithm and, afterwards, uncontract the graph, while at the same time
improving solution quality using refinement techniques. The MGP scheme consists of
three main phases: coarsening, initial partitioning, and uncoarsening that are outlined
in Figure 3.1.

The coarsening phase works in rounds and a hierarchy of coarse graphs is constructed
in the end of the coarsening phase. During each round of the coarsening phase, a
clustering (matching) of a graph is constructed and the graph is contracted according
to this clustering producing a coarser graph. If the graph is not coarse enough, the
coarsening phase proceeds to the next round where it contracts the coarsest graph
even further. The coarsening phase stops when the coarser graph is small enough. In
the initial partitioning phase, a slow high-quality graph partitioning algorithm is used
to partition the coarsest graph. After receiving an initial partition of the coarsest
graph, it is recursively uncontracted and the existing partition is projected onto it
with an additional refinement (the uncoarsening phase). Note that each partition of
the coarse graph corresponds to a partition of the finer graph. Although the main
idea is simple, the MGP scheme has a lot of variations, since it is highly dependent on
the following aspects: how is the original graph contracted, what algorithm is used to
partition the coarsest graph, and what algorithm is used to refine the partition during
the uncoarsening phase. Different variations of the MGP scheme were developed
and analyzed independently by multiple researchers [Bou98; Gup97; HL95a; KK95b;
KK98a; KK98c; MPD00; Pon+94; Pre01; Wal04; WC00a]. Note that we are interested
in the MGP algorithms that have O((|E|+ |V |)polylog(|E|+ |V |)) running time since
they yield a good trade-off between quality and running time.

Analyses of Multi-level Graph Partitioning. The multi-level graph partitioning
(MGP) scheme is a heuristic that successfully combines global and local views on

18

3.1 Multi-level Graph Partitioning

Clustering

Contraction

Initial
Partitioning

Uncontraction

RefinementC
oarsen

in
g U

n
co

ar
se

n
in

g

Figure 3.1: Outline of multi-level graph partitioning scheme.

the structure of the graph. As a result, it computes good quality partitions in
reasonable time compared to other heuristics, approximation or exact algorithms. This
is achieved by applying refinement techniques to each graph from the hierarchy of
coarse graphs. Note that a vertex of a coarse graph corresponds to multiple vertices
of the corresponding finer graph. Hence, a move of a vertex of the coarse graph
corresponds to moves of multiple vertices of the finer graph. Therefore, refinement
techniques applied to the coarser graphs perform moves of large number of vertices
simultaneously which corresponds to the global view on the original graph, whereas
refinement techniques applied to the finer graphs will perform moves of a small number
of vertices which corresponds to the local view on the original graph. See the example
in Figure 3.2.

Karypis and Kumar [KK95a] presented a theoretical analyses of the MGP scheme for
bipartitioning using either the random matching or the heavy-edge matching algorithm
in the coarsening phase (the latter one is described in Section 3.2.1). The authors
consider 2D and 3D finite element meshes proving upper bounds on cut sizes for these
graphs. To derive their bounds, the authors assume that the balanced vertex separator
of a graph has a size of at most α|V |γ , where α and γ are graph-specific constants, as

19

3 Related Work

Coarsening 1 2

1 2

Refinement

Uncoarsening

A

A

Figure 3.2: Moving the set of vertices A from the blue block to the green block
decreases the cut size by one. But moving each vertex separately increases the
cut size.

well as that the weights of edges and the degrees of vertices are uniformly distributed
over the graph. Hence, cutting edges that are adjacent to the vertices of the vertex
separator, we obtain a cut that has at most α(2|E|/|V |)(

∑
e w(e)/|E|)|V |γ edges. Note

that the bound does not hold if the average degree of vertices in the vertex separator
is greater than the average degree of all vertices. However, using this assumption, the
authors show that the size of any balanced bipartition of a coarse graph is c ∈ [1, 2]
times greater than the size of any balanced bipartition of the corresponding finer
graph. On 2D and three 3D finite element meshes, the empirical analysis of the MGP
scheme for bipartitioning confirms that the size of a bipartition of a coarse graph
found by a heuristic algorithm is not much greater than the size of a bipartition of the
finer graph found by the same heuristic algorithm. Furthermore, the authors prove an
upper bound for the vertex separator in maximal planar graphs that is projected from
a coarse graph to the corresponding fine graph. More precisely, the vertex separator
of the finer graph is at most 1.5 times greater than that of the coarse graph. However,
the measurements were performed only for one .

Walshaw [Wal03] investigates the effects of the coarsening phase on the size of the
solution space (the set of all possible bipartitions) and which bipartitions remain in
the solution space after coarsening. More precisely, the author shows that coarsening
reduces the average size of a bipartition in the solution space by fixing some pairs of
vertices to be in the same block. However, this reduction highly depends on the density

20

3.2 Coarsening

of a graph. If a graph is sparse then the number of high-cost solutions decreases faster
than the number of low-cost solutions during the coarsening phase. But for graphs
with high density, the number of high-cost solutions decreases approximately at the
same rate as the number of the low-cost solutions. Therefore, refinement techniques,
which search through in the solution space, will find a low-cost solution faster in a
coarse graph constructed from a graph with low density. But coarsening will not help
as much finding a low-cost solution for graphs with high density. This is confirmed
by experimental comparison of the modified Fiduccia and Mattheyses local search
algorithm (see Section 3.5.2) and the MGP algorithm with modified Fiduccia and
Mattheyses local search in [Wal04]. The MGP algorithm finds smaller cuts than the
modified Fiduccia and Mattheyses local search algorithm for graphs with low density.
But for graphs with high density, both algorithms find cuts of approximately the same
size. Although these experiments were performed on a small set of graphs – thus the
results may differ on other types of graphs – they still give interesting insights on how
a combination of coarsening and local search performs.

3.2 Coarsening

The coarsening phase consists of two main steps: constructing a clustering (matching)
and contracting the graph according to the clustering (matching). The first step
is the most important since the choice of a clustering (or a matching) algorithm
directly affects the resulting quality and running time. The graph contraction is mostly
straightforward and well-known; we describe it in Section 2.1.1. The parallelizations
of the clustering and matching algorithms are described in Section 3.3.

3.2.1 Matching Based Coarsening

Matching based coarsening is a popular approach used in different MGP frameworks
(see Section 3.7). The idea is to use a weighted matching algorithm to construct a
matching which maximizes the sum of its edge weights. Then the corresponding graph
is contracted according to the matching; that is, each matched edge and its incident
vertices are contracted into one supervertex. The greater the weight of the matching
is, the “better” the resulting coarse graph; that means it better preserves the structure
of the finer graph.

There are a variety of optimal maximum weighted matching algorithms but their
running times are super-linear. For example, the most recent optimal algorithm by
Pettie [Pet12] runs in O(N |V |ω) running time, where O(|V |ω) is the running time
of |V | × |V | matrix multiplication and N is the maximum edge weight in the graph.
Since we are interested in a graph partitioning algorithm that has at most O((|E|+
|V |)polylog(|E|+ |V |)) running time, we use approximation matching algorithms with

21

3 Related Work

the same order of complexity. However, note that these algorithms give only an
approximation of the maximum weighted matching.

The first 1
2 -approximation algorithm for the maximum weighted matching was pre-

sented by Avis [Avi83]. This is a greedy algorithm that first sorts edges in decreasing
order of their weights and then it iterates over these edges in order. Each edge is
added to the matching if it is not incident to any of the edges in the matching. The
running time of this algorithm is O(|E| log |E|) since the sorting is the most time
consuming part of the algorithm. Several attempts were made to improve the running
time in the subsequent research.

Karypis and Kumar [KK95b] presented a linear time heuristic algorithm for the
maximum weighted matching called the heavy-edge matching algorithm. This algo-
rithm iterates over vertices choosing for each vertex the heaviest incident unmatched
edge. Unfortunately, this algorithm does not have any quality guarantees since the
algorithm may construct a matching with weight arbitrary less than the weight of
the optimal solution. However, the algorithm is fast since it only iterates over all the
edges once. The authors compare the heavy-edge matching algorithm with three other
matching algorithms developed by them. In summary, the experiments indicate that
the heavy-edge matching algorithm has the best trade-off between quality of the final
partition and the running time, we do not describe the other algorithms.

Gupta [Gup97] presents the heavy-triangle matching algorithm. The idea is to match
not two but three vertices by choosing a random vertex and two of its neighbors
maximizing the sum of the weights of the edges incident to these three vertices. MGP
algorithms with both matching algorithms show comparable quality of partitions and
running times.

Preis [Pre99] presents the first linear time 1
2 -approximation algorithm for the maximum

weighted matching called the local max algorithm. The main idea is to find a local max
edge, add it to the matching, and remove all edges incident to it from consideration.
An edge e is a local max if ∀ e′ w(e) > w(e′), where e′ is a unmatched edge and there
is an unmatched path between e and e′. The algorithm stops when there are no more
edges to process. In summary, the running time of the algorithm is O(|V |+ |E|).

Drake and Hougardy [DH03a] present another linear time 1
2 -approximation algorithm

for the maximum weighted matching problem that is called the path growing algorithm.
It is simpler to implement and analyze than the algorithm by Preis [Pre99]. The
main idea of it is to grow a path from an arbitrary vertex alternatingly adding the
heaviest unmatched edges to one of two different matchings. In the end, the algorithm
returns the matching with the highest weight. The running time of the algorithm is
O(|V |+ |E|) since each edge is processed only once.

Drake and Hougardy [DH03b; VH05] present the first (2
3 − ε)-approximation algo-

rithm. The algorithm tries to improve a maximal matching M by finding so-called
β-augmentations and applying them to the matching, thus, increasing its weight. A β-
augmentation A is a path or a cycle of an even length whose edges alternatingly either

22

3.2 Coarsening

belong or do not belong to M and β ·
∑
e∈M∩A w(e) <

∑
e∈A\M w(e). Hence, setting

M := M 4 A will increase the weight of M . The algorithm finds a corresponding
β-augmentation of constant size for each edge of the initial matching M and applies
it. Therefore, the running time of the algorithm is still O(|E|) assuming ε is constant.
If ε is not constant then the running time of the algorithm is O(|E| 1ε).

Pettie and Sanders [PS04] presented two (2
3 − ε)-approximation algorithms for the

maximum weighted matching problem. The first algorithm is a randomized algorithm
that constructs a matching with an expected weight of at least 2

3−ε times the weight of
the optimal matching in O(|E| log 1

ε) expected time. The main idea of this algorithm
is to choose a random vertex and augment the matching with an augmentation
of constant size. The authors prove that choosing O(|V | log 1

ε) random vertices to
improve the matching is enough to construct a matching with the desired expected
weight. The second algorithm is a deterministic algorithm that always constructs a
(2

3 − ε)-approximation of the optimal matching. The main idea here is to choose a set
of augmentation and then to apply only a subset of them chosen in a greedy manner;
that is, the algorithm repeatedly applies the augmentation with the maximum weight
increase that is also edge and vertex disjoint with the previously selected augmentations.
The worst-case running time of the algorithm is O(|E| log 1

ε). Additionally, the authors
show how to produce a δ-approximation of the optimal matching for an arbitrary δ < 1,
however the running time becomes super-linear for δ ≥ 2

3 − o(1). The advantages of
these algorithms over the previous (2

3 − ε)-approximation algorithm by Drake and
Hougardy [DH03b; VH05] are their simpler analysis and faster convergence to the
(2

3 − ε)-approximation (exponential versus linear).

Drake and Hougardy [DH03c] compare four approximation algorithms for the maxi-
mum weighted matching problem: the greedy algorithm, the improved path growing
algorithm, the local max algorithm, and the heavy-edge matching algorithm. Ad-
ditionally, they apply a set of local improvements that further increases the weight
of a matching. The authors prove that if there are no local improvements then the
constructed matching is a 2

3 -approximation of the optimal matching. The authors
measure running times and weights of the computed matchings for different classes of
graphs. For most instances, the path growing algorithm constructs the best matchings.
After applying local improvements, the differences between the computed weights and
the optimal weights reduce by a factor of about two on average. The fastest algorithm
is the heavy-edge matching algorithm while other algorithms are about 2 - 3 times
slower on average.

Maue and Sanders [MS07] presented a new 1
2 -approximation algorithm for maximum

weighted matching called the global path algorithm. It is a combination of the greedy
algorithm, the path growing algorithm and dynamic programming. More precisely, the
algorithm sorts edges in decreasing order, constructs paths or cycles of even length.
Then it finds the maximum weighted matching in these subgraphs in linear time
using dynamic programming. Additionally, the authors apply the random matching
algorithm by Pettie and Sanders [PS04] to improve the matching. Therefore, in

23

3 Related Work

expectation the algorithm constructs a (2
3 − ε)-approximation and its running time

is proportional to the time to sort the edges. The authors compare the global path
algorithm against the greedy algorithm, the improved path growing algorithm, and the
random matching algorithm by Pettie and Sanders (applied to an empty matching).
The authors measure running times and weights of the computed matchings for different
classes of graphs. The global path algorithm constructs matchings with the smallest
difference between their matching and the optimal matching on almost all instances,
however the algorithm is the second slowest one.

There are other approximation algorithms for maximum weighted matchings that
provide approximation ratios greater than 1

2 . Duan and Pettie [DP10] presented
an algorithm that constructs a (3

4 − ε)-approximation in O(|E| log |V | log 1
ε) time.

Hanke and Hougardy [HH10] also presented a 3
4 -approximation algorithm that has

O(|E| log |V | log 1
ε) running time. The first (1− ε)-approximation algorithm that runs

in O(|E| 1ε log 1
ε) time was presented by Duan and Pettie [DP14].

Edge ratings. Several papers suggest to calculate maximal weighted matchings
according to edge ratings instead of edge weights. Edge ratings incorporate information
about how “well” two vertices of an edge are connected and, thus, how the matching
of this edge will affect quality of the resulting partition. Holtgrewe et al. [HSS10]
presented and analyzed four edge ratings. Furthermore, the authors use these four
edge ratings in the KaHIP framework instead of edge weights in the matching algorithm.
KaHIP that uses any of these edge ratings produces partitions of better quality than
KaHIP that uses edge weights. Furthermore, partitions produced by KaHIP using these
edge ratings have comparable quality. Osipov and Sanders [OS10] suggest the following
edge rank rank(u, v) = w(u,v)

w(u)·w(v) . Glantz et al. [GMS14] presented another edge rating.
First a collection of minimum spanning trees is computed where the weight of an edge
depends on how often the edge appears on different shortest paths. Each edge of a
minimum spanning tree induces a cut in the original graph. We calculate the rating of
an edge by considering the light cuts induced by it. The authors implemented this edge
rating within the KaHIP framework and performed experiments on a large collection
of graphs. Although this edge rating improves the maximum communication volume,
it does not affect the cut size compared to other edge ratings. Safro et al. [SSS12]
suggested another edge rating based on algebraic distance [CS11]. This distance
distinguishes local and global edges. An edge is local if after removing it the distance
between its endpoints remains small. The authors perform experiments on a large
collection of graphs and show that the KaHIP framework produces smaller cuts with
the new edge rating than with edge ratings by Holtgrewe et al. [HSS10].

3.2.2 Clustering Based Coarsening

In this section, we describe clustering algorithms that can be used in the coarsening
phase. The common feature of these algorithms is that they allow clusters of size

24

3.2 Coarsening

greater than two (a matching can be considered as a clustering where each cluster
has size at most two). Contracting whole clusters allows to contract a graph faster
then just contracting matched vertices. Clustering algorithms assign “well” connected
vertices to the same cluster such that the structure of the coarsened graph is similar
to the structure of the original graph.

Abou-Rjeili and Karypis [AK06] consider multiple extensions of matching based
algorithms where incident edges are allowed to be matched. These extensions match
irregular graphs more efficiently than common matching based algorithms. Specifically,
a coarse graphs tend to be smaller and the connectivity seems to be preserved better.
The authors consider two strategies to visit edges. Assume that we have a global order
of edges. The first strategy visits edges in this order, whereas the second strategy
chooses a random vertex and visits its incident edges in this order. Furthermore,
the authors consider several ways to construct a global order of edges. They try to
sort edges by different criteria: weight, the degree or weight of incident vertices, etc.
In summary, the running times of matching algorithms are at most O(|E| log |E|).
The authors consider multiple combinations of the aforementioned strategies and
edge orderings comparing them in pairs. Additionally, the authors compare MGP
algorithms that use these strategies for coarsening to the Metis framework and the
Chaco framework which both use matching based coarsening. On almost all graphs
one of the MGP algorithms with clustering based coarsening produced better cut than
that of Metis and Chaco. However, there is no strategy that produces better cuts on
at least half of the graphs.

Meyerhenke et al. [MSS14] adapt a clustering algorithm called label propagation by
Raghavan et al. [RAK07] for graph partitioning. The authors refer to the algorithm
as label propagation with size constraints. The algorithm works in iterations. In the
beginning, each vertex belongs to its own cluster. During an iteration, each vertex
chooses a new cluster the one which most of its neighbors belong to; that is, the new
cluster of a vertex v (C[v]) is

arg max
c

∑
u∈N(v): C[v]=c

w(v, u).

If there are several candidates then the tie is broken randomly. This additional
randomness results in better partitions. Meyerhenke et al. modified the algorithm
such that vertices change their cluster while respecting the size constraint. More
specifically, a vertex chooses a new cluster only from the subset of neighboring clusters
such that the size of the neighboring cluster does not exceed the size constraint
if vertex moves there. Figure 3.3 shows the intermediate clusterings during three
iterations of the label propagation algorithm. Several stopping rules are possible in the
label propagation algorithm. The original stopping rule by Raghavan et al. [RAK07]
signals to stop when each vertex can be moved only to clusters of the same size or
smaller than its current cluster. Meyerhenke et al. suggest several ideas for the label
propagation algorithm that improve its running time and quality of the resulting

25

3 Related Work

(a) A possible clustering after first
iteration.

(b) A possible clustering after second
iteration.

(c) A possible clustering after third iteration.

Figure 3.3: These figures show possible clusterings produced by the label propa-
gation algorithm. The label propagation algorithm considers vertices in increasing
order of their degrees.

clustering. The first idea is to use an active vertex strategy. When using this strategy,
the label propagation algorithm iterates only over active vertices. A vertex is active
if at least one of its neighbors changed its cluster in the previous iteration; and all
vertices are active in the beginning. Since the label propagation algorithm iterates
only over active vertices, it mainly processes vertices on the border of clusters, the
number of which tends to decrease over the course of the algorithm. Thus, the active
vertex strategy significantly reduces the number of processed vertices in successive
iterations. Additionally, Meyerhenke et al. use another stopping rule that signals to
stop after a preset number of iterations or when all vertices are non-active. To improve
quality of the clustering, the authors suggest to process vertices in increasing order
of their degrees. The intuition behind this is that by processing low degree vertices
first the algorithm tends to form clusters by adding low degree vertices to the clusters
of high degree vertices. When the high degree vertices eventually are processed they
are assigned to the clusters most of their low degree neighbors already belong to.
The authors investigate other orderings, e.g., a weighted degree ordering, but these
orderings do not improve quality of resulting clusterings. In summary, the running
time of the algorithm is O(|V | log |V | + t|E|), where t is the number of iterations.
Meyerhenke et al. use this clustering algorithm during the coarsening phase of the
KaHIP framework. The experiments indicate that the MGP algorithm with the label
propagation algorithm produces partitions with an average cut size less than that of
the Metis framework, the Scotch framework, and other configurations of KaHIP. It
would be interesting to see additional experiments that investigate how the clustering
and matching algorithms affect quality of partitions on different types of graphs.

26

3.3 Parallel Coarsening

3.3 Parallel Coarsening

In this section we consider different parallel clustering and matching algorithms that
can potentially be used or actually used in parallel MGP frameworks.

3.3.1 Parallel Matching Based Coarsening

Karp et al. [KUW85] present a parallel optimal maximum weighted matching algorithm
for graphs with edge weights polynomial in the number of vertices. We refer to such
graphs as polynomial-weighted graphs. The main idea is to construct a special matrix
whose determinant allows us to find the optimal weighted matching.

Chen and Uehara [UC00] present two approximation algorithms for the maximum
weighted matching problem. The first algorithm is a randomized (1− ε)-approximation
algorithm that uses an optimal parallel maximum weighted matching algorithm for
polynomial-weighted graphs by Karp et al. [KUW85] as a subroutine. The second
algorithm is a parallelization of the greedy algorithm. Note that this algorithm
computes a (1

2 − ε)-approximation, whereas the sequential greedy algorithm computes
a 1

2 -approximation. The algorithm uses the parallel maximal matching algorithm by
[IS86] as a subroutine. Both algorithms are theoretical since both subroutines need
Ω(|E|+ |V |) processors.

Hoepman [Hoe04] present a parallel 1
2 -approximation algorithm of the maximum

weighted matching for the distributed memory model. This algorithm is a paralleliza-
tion of the local max algorithm by Preis [Pre99] and works in rounds. During a round,
each vertex sends a request along its edge with a maximum weight. If it receives back
a positive answer along this edge then the edge is matched since it is a local maximum.
If it receives a negative answer then the algorithm sends a request along the edge with
the second largest weight and so on. Note that the running time of the algorithm is
O(|E|) in the worst case.

Later Manne and Bisseling [MB07] modified the aforementioned algorithm for more
practical use when the number of processors is less than the number of vertices and
analyzed it for graphs with random edge weights. The analysis is based on reducing
the problem to the maximal independent set problem since the parallel algorithm
by Hoepman [Hoe04] is a variation of the parallel algorithm by Luby [Lub85] that
solves the maximal independent set problem. The algorithm by Luby terminates
after O(log |E|) rounds in expectation given random edge weights. Furthermore, the
authors implement the algorithm and show an experimental evaluation of the running
time on two graphs. The algorithm seems to scale well with increasing number of PEs
but there is a need for more comprehensive experiments.

Auer and Bisseling [AB11] present another parallel approximation algorithm for the
maximum weighted matching problem in the shared-memory model and GPU settings

27

3 Related Work

called red-blue matching algorithm. This algorithm is a parallel version of the heavy-
edge matching algorithm. Therefore, the algorithm does not provide any quality
guarantees and may construct a matching with the weight arbitrary less than the
weight of the optimal matching. The main idea is to randomly color vertices in red or
blue and then adjacent pairs of differently colored vertices decide if their edge belongs
to the matching. More precisely, a vertex of one color proposes to match and the
vertex of other color decides whether to accept this or another neighbor. The authors
perform experiments on multiple graphs measuring running time and quality of the
shared-memory and the GPU versions of the algorithm. Both algorithms scale well
but their quality is worse than that of the greedy algorithm.

Birn et al. [Bir+13] present a parallel 1
2 -approximation algorithm called local max of

the maximum weighted matching problem which is a parallelization of the local max
algorithm. Although the parallel worst case running time is linear for weighted graphs,
the algorithm has linear work and polylogarithmic parallel running time on graphs with
unit edge weights. Furthermore, the experiments indicate that the algorithm shows
good scalability. The authors consider a slightly different version of the sequential
algorithm. It works in phases and during each phase it processes edges marking an
edge if its weight is greater than the weight of any other incident edge and breaking
ties randomly. Afterwards, all marked edges are added to the matching. The problem
in the parallel algorithm appears during the search of a local max edge. Specifically,
to find a local max edge in a chain with strictly increasing weights, the algorithm
requires a number of phases equals to the length of the chain. The authors perform
several types of experiments measuring the running time and quality of the sequential,
the distributed memory, and the GPU versions of the algorithm. The sequential local
max algorithm is compared to the global path algorithm, the greedy algorithm, the
red-blue matching algorithm and the heavy-edge matching algorithm. The sequential
algorithm shows almost the same quality as the global path algorithm that constructs
matchings of better quality than other algorithms. Furthermore, the running times
of the sequential algorithm are better than that of the global path algorithm. Both
the distributed memory and the GPU versions of the algorithm show good scalability.
Moreover, on large graphs the GPU version of the algorithm is faster than the GPU
version of the red-blue matching algorithm.

LaSalle and Karypis [LK13] described a parallel shared-memory heavy-edge matching
algorithm. The authors present three different approaches to parallelize the algorithm.
In all approaches the vertices are assigned to PEs and each PE matches vertices
assigned to it. The first approach is called fine-grained matching. The idea is to
maintain a shared matching array M of size |V | such that if vertices v and u are
matched then M [v] = u and M [u] = v. Then when a PE wants to match a vertex v
with a vertex u (v < u) it locks M [v] and M [u] and checks if both vertices are not
matched. Then if this is true it sets M [v] = u, M [u] = v and releases both locks.
To decrease the space consumption, the authors do not allocate locks for all vertices.
Instead, they allocate a fixed number of locks that is significantly greater than p.
Then to lock a vertex, the algorithm uses a hash function that maps a vertex to a

28

3.3 Parallel Coarsening

random lock. The second approach is called multi-pass matching and eliminates the
use of locks. The idea is that each PE tries to match vertices assigned to it. If the
PE matches two vertices and one of them belongs to other PE, it inserts this pair
of vertices into a request buffer of the other PE. When all PEs finished to process
their vertices, each PE processes the corresponding request buffers of other PEs and
either accepts or rejects to match the pairs of vertices in the buffers. The algorithm
repeats the aforementioned steps several times to increase the weight of the matching.
The third approach is called unprotected matching and combines the two previous
approaches. The algorithm maintains a shared matching array and matches vertices
similar to the fine-grained matching approach but it does not use locks. Instead after
all PEs finished to generate matchings, each PE checks if every local vertex v has a
correct matching (i.e., M [v] = u and M [u] = v), if this is not the case the PE sets
M [v] = v. Note that if the number of vertices is much greater than the number of
processors then it is unlikely that many incorrect matching occurs. There is a known
problem which is that matchings of graphs with biased degree distributions often
contain only a small fraction of edges. The reason is that only one edge incident to a
high degree vertex can be matched. Therefore, the resulting contracted graph does
not shrink significantly. To overcome this problem, LaSalle et al. [LaS+15] suggest a
two-hop matching algorithm. The idea is that two vertices can be matched together
even if they are not connected by an edge but also if they have a common neighbor.
First, the algorithm uses a conventional matching algorithm. Next, it uses the two-hop
matching method for vertices that have not been matched to further extend the
matching. The authors implemented the aforementioned matching algorithms in the
Mt-Metis framework. The experiments indicate that using the two-hop matching
algorithm reduces the running time by a factor of 1.6 on average. Furthermore, quality
of partitions improved by 3.2%.

Karypis and Kumar [KK99] as well as Walshaw et al. [WCE97] present a parallel
distributed memory heavy-edge matching algorithm. This version of the algorithm is
similar to the multi-pass matching approach of the parallel shared-memory heavy-edge
matching algorithm by LaSalle and Karypis [LK13]. The difference is that Karypis
and Kumar suggest to color a graph and matching vertices of the same color with
their neighbors. Note that the shared-memory algorithm processes all the vertices in
parallel. Matching vertices that belong to the same color avoids the following conflicts.
Assume that one PE matches a vertex v with a vertex u that belongs to another PE
which in turn matches u with some other vertex. As a result, v will not be matched
with u. Using a coloring to process vertices does not completely solve all problems.
Consider two vertices v and u that belong to the same color and are matched by
different PEs. The problem occurs when they both match with the same vertex w
that belongs to another color. To solve the conflict, PEs corresponding to v and u
send requests to the PE that owns the vertex w. This PE decides which request to
confirm and which to decline. Since the algorithm resembles the multi-pass matching
approach of the parallel shared-memory heavy-edge matching algorithm, we do not
describe the details of this algorithm here.

29

3 Related Work

Karypis and Kumar [KK97] present another parallel distributed memory heavy-edge
matching algorithm. It is a distributed memory version of the multi-pass matching
approach of the parallel shared-memory heavy-edge matching algorithm by LaSalle
and Karypis [LK13]. We do not describe the details of the algorithm here.

Holtgrewe et al. [HSS10] present another parallel distributed memory approximation
algorithm for the maximum weighted matching problem. First, the vertices are
distributed over PEs using the initial numbering of the vertices. Next, each PE
preforms the sequential global path algorithm to match its local vertices. Then the
parallel distributed memory algorithm by Manne and Bisseling [MB07] is used to
match the gap graph. The gap graph consists of local max edges (v, u) such that v and
u belong to different PEs. Finally, the matching of the gap graph and the matchings
constructed by all PEs are combined.

Her and Pellegrini [HP10] present a parallel distributed memory approximation algo-
rithm for the maximum weighted matching problem. This algorithm is a modification
of the algorithm by Karypis and Kumar [KK97]. The authors try to solve the following
problem. A requested vertex v can either match with another local vertex or send a
request itself. In the former case, the request is declined and the sender PE receives
a notification. When the request of a PE is declined, it does not try to match with
the requested vertex anymore. On the contrary in the latter case, the request is
not replied because it is unclear whether the request can be satisfied or not. Since
the vertices are usually distributed randomly across PEs, the probability that the
neighbor connected by the heaviest edge is on another PE is high. Therefore, we
should not only match local vertices, since preferring locality over maximizing edge
weights deteriorates quality of the resulting matching. To find a trade-off between the
number of local and non-local matched edges, the authors suggest to send a matching
request with a probability 0.5. This randomized approach decreases the number of
unanswered requests by preferring local matchings but still matches vertices from
different PEs if it is advantageous.

Halappanavar et al. [Hal+12] suggest an improvement of the parallel distributed
memory 1

2 -approximation algorithm of the maximum weighted matching by Manne
and Bisseling [MB07]. The sequential algorithm finds a candidate to match with for
each vertex. If the candidate also matches with the chosen vertex then both vertices
are inserted into a queue. After constructing the queue of matched vertices, the
candidates of the remaining vertices must be updated. Specifically, the algorithm
extracts a matched vertex v from the queue and for each its neighbor that has v as
a candidate finds a new candidate. If a neighbor matches with some vertex then
both vertices are inserted into the queue. The algorithm stops when the queue is
empty. The parallelization of the algorithm is straightforward and works in iterations.
Each iteration consists of two phases. In the first phase, the parallel algorithm finds
candidates for matching for all vertices. Then it iterates over all vertices again and
inserts all pairs of matched vertices into a queue. During the second phase, the
algorithm extracts vertices from the queue finding new candidates for their neighbors.

30

3.3 Parallel Coarsening

If a neighbor matches with a vertex then both vertices are inserted into the queue for
the next iteration. If the queue for the next iteration is empty then the algorithm
stops. Otherwise, it swaps the queues and proceeds with the next iteration. The
authors present an experimental evaluation of their parallel algorithm on different
machines. The algorithm scales well (close to linear). However, the authors evaluate
their algorithm only on three classes of synthetic graphs. It would be interesting to
see experiments on a larger benchmark set.

Manne and Halappanavar [MH14] present a parallel shared-memory 1
2 -approximation

algorithm of the maximum weighted matching problem called Suitor. The algorithm
has an advantage over the parallel algorithm by Halappanavar et al. [Hal+12] since it
does not use concurrent queues. The authors prove that their algorithm constructs
the same matching as the greedy algorithm. The idea is to find local max edges by
computing suitors for all vertices. A vertex v is a new suitor of a vertex u if w(v, u) is
greater than the weight of the edge between u and its current suitor and u maximizes
w(v, u). If we computed a new suitor v of a vertex u and u already has a suitor
w then u is assigned the new suitor v and we need to find a new vertex for which
w can be a suitor. Thus, we recompute a suitor for a vertex v at most d(v) times
which gives the total running time complexity O(|E|∆). The parallelization of the
Suitor algorithm is straightforward: All PEs process vertices in parallel computing
suitors for them. The Suitor algorithm shows better running times compared to
the local max algorithm. Note that the authors compare their algorithm against the
implementation of the local max algorithm that uses locks. However, it is possible to
implement the algorithm without using locks. In practice, matchings constructed by
greedy algorithm have smaller weights than that of constructed by the path growing and
global path algorithms. Thus, the authors suggest an improvement of their algorithm.
The idea is to construct two disjoint matchings of a graph and to combine them
using dynamic programming producing the maximum weighted matching for the
edges of both matchings. The authors compare their algorithm to different sequential
algorithms. The experiments indicate that the improved Suitor algorithm and global
path algorithm produce matchings of comparable quality. In terms of the running time,
the Suitor algorithm outperforms all its competitors including the parallel algorithm
by Halappanavar et al. [Hal+12].

3.3.2 Parallel Cluster Based Coarsening

Narang and Soman [SN11] presented a parallel clustering algorithm that optimizes
the modularity measure [New06]. It is based on the label propagation algorithm.
They propose several ways how to improve quality of the label propagation algorithm:
computing weights of edges according to their “connectivity importance” and assigning
an identical label to strongly connected vertices. The authors probably use a parallel
for loop with internal scheduler of the used library. Furthermore, the authors measure

31

3 Related Work

the scalability of their clustering algorithm. They do not show measurements for the
parallel label propagation algorithm alone.

Fagginger Auer and Bisseling [AB12] present a parallel matching algorithm that is
used as a subroutine in their multi-level clustering algorithm which optimizes the
modularity measure. The idea is to contract a graph until it is small enough to apply
a suitable clustering algorithm. An important detail of this matching algorithm is that
it matches star-like vertices and their neighbors (that is, matching may contain more
than two vertices). Here, a vertex is star-like if it has many neighbors of small degree.
This approach allows to overcome the known problem of using matching algorithms
in MGP algorithms: a common matching algorithm matches a star-like vertex only
with one of its neighbors leaving other neighbors potentially unmatched. Thus, the
size of a resulting coarse graph does not reduce sufficiently and it takes more time to
contract the input graph until it is small enough. The experiments indicate that the
algorithm has good running time and quality.

Meyerhenke and Staudt [SM16] present a parallel label propagation algorithm that
is used as a subroutine in their multi-level clustering algorithm which optimizes the
modularity measure. The idea is to contract a graph until it is small enough to
apply a suitable clustering algorithm. First, the algorithm constructs a clustering of
a graph using the parallel label propagation algorithm, which optimizes modularity,
and contracts the graph according to the clustering. Next, it recursively applies the
parallel label propagation algorithm to the contracted graph until the clustering of
the coarsest graph does not change. Then it propagates the clustering to the original
graph. In the parallel label propagation algorithm, each PE iterates over a range of
vertices and chooses a new cluster for each vertex. The authors use the “parallel for”
implementation of the OpenMP library [DM98] using a guided scheduler to parallelize
the processing of vertices.

Duriakova et al. [Dur+14] analyze the changes in running time and quality of parallel
label propagation algorithms that optimize modularity depending on the synchro-
nization strategy of cluster IDs: synchronous, asynchronous, and semi-synchronous.
The first strategy uses cluster IDs of neighbors according to the previous iteration to
compute new cluster IDs of vertices. The disadvantage of this strategy is that each PE
uses old cluster IDs; that is, it does not observe the changes made by other PEs during
the current iteration and as a result the label propagation algorithm converges more
slowly. The second strategy uses cluster IDs of neighbors in real-time; that is, cluster
IDs are stored in a shared array. PEs read and write cluster IDs from/to this array,
thus, data races are possible and it is impossible to predict if a vertex has its cluster
ID according to the previous or current iteration. Furthermore, reads and writes to
the same cache line of the array cause false sharing. The third strategy attempts to
eliminate the aforementioned disadvantages such that each PE observes cluster IDs of
neighbors according to the current iteration. For this, the authors proposed to color a
graph and perform label propagation for vertices of one color in parallel color after
color. All PEs update cluster IDs of the vertices that belong to the same color and,

32

3.3 Parallel Coarsening

thus, the label propagation algorithm observes the changes of cluster IDs during the
iteration. But this method has its own disadvantages. One of them is the additional
synchronization between processings two colors. The authors additionally analyze
the impact of vertex ordering on asynchronous and semi-synchronous strategies. The
experiments indicate that the semi-synchronous strategy has better running times and
quality for three graphs. However, it would be interesting to see experiments on a
larger benchmark since both strategies were tested only on three graphs and running
times of the strategies can considerably fluctuate from graph to graph. Furthermore,
it is not clear why the speed-up of the asynchronous strategy for eight PEs is much
smaller than the speed-up of the parallel label propagation algorithm by Meyerhenke
and Staudt [SM16] for the same graph. The authors also use the “parallel for” imple-
mentation of the OpenMP library [DM98] with a guided scheduler to parallelize the
processing of vertices.

Khlopotine et al. [KSJ15] present a parallel label propagation algorithm that is used
as a clustering algorithm which optimizes modularity. The authors optimize the label
propagation algorithm for the Intel Xeon Phi architecture and use the “parallel for”
implementation of the OpenMP library [DM98] with a guided scheduler to parallelize
the processing of vertices. Their implementation shows the speed-ups similar to
those of the implementations by Meyerhenke and Staudt [SM16] and Duriakova et
al. [Dur+14].

Meyerhenke et al. [MSS17] present a parallel distributed memory label propagation
algorithm. They use it to compute size-constrained clusterings in the coarsening phase
and to refine partitions in the uncoarsening phases of their MGP algorithm. The idea
is to distribute subgraphs induced by ranges of vertices over the PEs. More precisely,
each PE locally has a subgraph induced by a range of vertices. Additionally, each
PE has a set of vertices called ghost vertices. These are vertices that are adjacent
to at least one vertex on the PE but reside on other PEs (adjacent PEs). One
iteration of the distributed memory label propagation works similarly to that of the
sequential label propagation algorithm. Each PE performs the label propagation
algorithm on its subgraph selecting a new cluster ID for each vertex. To communicate
the changes of cluster IDs between PEs, the algorithm uses the following approach.
Each PE maintains a send buffer for each adjacent PE. If a vertex adjacent to a
ghost vertex changes its cluster ID then the algorithm inserts the vertex and its new
cluster ID to the send buffer that corresponds to the PE where the ghost vertex is
stored. When the PE has found new cluster IDs for all their vertices and one iteration
is over, it sends the changes stored in the send buffers to the adjacent PEs and
receives the changes of cluster IDs of ghost vertices from them. The authors note that
when the label propagation algorithm is close to its convergence, the communication
volume is low since the number of vertices that change their cluster IDs is very small.
To guarantee that the total weight of vertices in each cluster does not exceed the
threshold (1+ε)|V |/(k ·f), two different approaches are used during the coarsening and
uncoarsening phases. Here f is a parameter to control the trade-off between the speed
of contraction of the input graph and the resulting quality of the partition. Specifically,

33

3 Related Work

if f is large then the maximum weight of clusters is small and the coarse graph does
not shrink fast. On the other hand, if f is small then the input graph is contracted
too aggressively which can potentially result in a poor quality of the partition. We
describe the approach used during the coarsening phase. In the beginning of the
label propagation algorithm, each vertex is in its own cluster. For each cluster each
PE maintains the total weight of its local vertices within that cluster and uses this
information to prevent clusters from being overloaded. Each time a PE moves a vertex
to a new cluster, it updates the local weights of the old and new clusters. Note that
this approach does not require any additional communication. However, it is possible
that some clusters may be overloaded since several PEs may independently move
vertices to one cluster without knowing its actual total weight. The authors note that
the threshold (1 + ε)|V |/(k · f) is not tight during coarsening and, thus, some clusters
may be overloaded.

3.4 Initial Partitioning

After the coarsest graph is small enough, the initial partitionings begins. Most of
graph partitioning frameworks partition the coarsest graph several times with different
random seeds. The best partition is selected in the end. This approach improves the
resulting partition. The parallelization of this approach is straightforward; that is,
each PE performs the partition of the coarsest graph with a random seed. After all
PEs finish, the best partition among all PEs is selected. Note that in this section we
consider different initial partitioning algorithms that can potentially be used in an
MGP algorithm or that are actually used in parallel graph partitioning frameworks.

3.4.1 Exact Algorithms

In this section we describe only one exact bipartitioning algorithm since it the only
one that is able to partition large graphs with tens of thousands of vertices and edges.
Therefore, this algorithm is interesting from a practical point of view since it can
be used in combination with recursive bisection (see Section 3.4.3) during the initial
partitioning phase to compute a k-way partition. A detailed overview of other exact
algorithms can be found in [Bul+13].

Delling et al. [Del+12] present a branch-and-bound algorithm that solves the biparti-
tioning problem. The first component of the algorithm is a novel technique to compute
lower bounds of bipartitions. First, the author find a max-flow that is a lower bound
for a bipartition. Next, they use a novel packing technique to improve the lower bound
(the max-flow lower bound does not take into account the balance). The main idea of
the packing technique is to consider a partial bipartition of the graph and to construct
a special collection of subtrees called tree packing. They prove that it is possible to
increase the lower bound by the number of trees in the tree packing.

34

3.4 Initial Partitioning

The second component of the algorithm attempts to decrease the search space by
considering several ways to extend a partial partition without explicit branching.
Specifically, if adding a vertex to one of the blocks increases the lower bound over the
upper bound then it is enough to consider the case when the vertex belongs to the
other block.

The third component of the algorithm partitions edges into U + 1 disjoint sets of
edges where U is the upper bound. The authors prove that at least one of these sets
does not contain cut edges and, thus, contracting it does not affect the solution but
reduces the size of the graph. The authors perform an extensive comparison of their
algorithm and other exact bipartitioning algorithms: the quadratic programming based
algorithm by Hager et al. [HPZ13], BiqMac [RRW10] (semidefinite programming),
and SEN [KRC00] (multi-commodity flows). In summary, their algorithm partitions
many graphs orders of magnitudes faster than their competitors. Furthermore, they
optimally partition several large graphs from the DIMACS benchmark [Bad+13b]
constructing optimal bipartitions for some graphs for the first time.

Note that if we want to perform initial partitioning using this algorithm then the original
graph must be contracted even further to partition the graph in a reasonable time. For
example, this algorithm partitions a random geometric graph with 216 vertices in 14K
seconds, whereas heuristics partition it much faster. However, additional contraction
of the graph can decrease resulting quality of partitions. It would be interesting to
investigate how the initial partitioning with the exact algorithm affects quality of
partitions.

3.4.2 Graph Growing Partitioning

The graph growing partitioning [GL81; GS94; JL96; Sim91] is a fast and simple
approach to bipartition a graph. The idea is to run a BFS from a random source
vertex adding the first |V |2 visited vertices to the first block and the rest |V |2 vertices
to the second block. However, the choice of a good source vertex affects the quality of
the resulting bipartition. Thus, George and Liu [GL81] suggest to choose a so-called
pseudo-peripheral vertex as a source vertex. To find such a vertex, the authors run a
BFS from a random vertex v to find the most distant vertex u from v. Analogously,
the most distant vertex from u is found and so on. The algorithm stops when the
distances between the most distant vertices of the last two repetitions remain the
same. Finally, one of the two vertices from the last repetition is selected as a source
vertex.

Karypis and Kumar [KK98a] suggest a modification of the aforementioned algorithm
by changing the way a BFS selects the next vertex to visit. The authors call this
modification Greedy Graph Growing Partitioning. Instead of using a queue, the
authors use a priority queue with gain as priority. Thus, the BFS visits a vertex with

35

3 Related Work

the strongest connection to previously visited vertices. As a result, this modification
decreases the cut size of the resulting bipartition.

Bubble Framework. Diekmann et al. [Die+00] suggest a generalization of the
aforementioned algorithm for arbitrary values of k. Furthermore, they iteratively
improve the partition by reapplying the algorithm several times using an improved set
of source vertices.

The algorithm consists of three main phases: the selection of the initial source vertices,
the construction of the blocks, and the selection of “better” source vertices. The
algorithm selects initial source vertices as follows. It picks a random vertex and selects
the most distant vertex from it as the first source vertex. Next, it selects the most
distant vertex from the first source as the second source and so on until k source
vertices are selected. After all blocks are constructed, the third phase starts. The
algorithm constructs blocks by performing a BFS from the source vertices. It adds
a new vertex to the lightest block given that the vertex is connected to the block.
If such a block is connected to several vertices then the algorithm selects the vertex
with the maximum sum of weights of edges that connect it to the block. In the third
phase, the algorithm selects a new source vertex for each block such that the sum
of the distances to the block’s vertices is minimized. Unfortunately, it takes O(b2)
time to find such a vertex, where b is the size of the block. Therefore, the authors
suggest another way to select new source vertices. They calculate the distances from
the previous source vertex and its neighbors to all the remaining vertices and select
the neighbor that minimizes the aforementioned value. This is repeated until a local
minimum is found.

The complete algorithm works as follows. First, it performs the first phase to select
initial source vertices. Next, it performs the second and the third phases until the cut
size does not decrease for ten consecutive iterations or new source vertices remain the
same.

3.4.3 Recursive Bisection

The recursive bisectioning technique [BB87; ST97] can be used to partition a graph
into k blocks using a bipartitioning algorithm. The idea is to perform the k-way
partitioning in a recursive manner. Suppose we want to partition a graph into k
blocks and for simplicity assume that k is a power of two. Then we partition the
graph into two blocks and recursively partition these two blocks into k/2 blocks each.
Unfortunately, recursive bisection can construct a low-quality k-way partition even
if an optimal bipartitioning algorithm is used. Simon and Teng [ST97] showed that
recursive bisection can construct a k-way partition that is O(|V |

2

k2) times worse than
the optimal partition of a dense graph with Θ(|V |2) edges. Furthermore, the optimal
partition of a sparse graph with Θ(|V |k) vertices can be O(|V |k) times smaller than

36

3.5 Refinement Techniques

the partition constructed using recursive bisectioning. This is due to the fact that
recursive bisection has a greedy nature and does not use global information about the
graph. Therefore selecting an optimal bipartition can make it impossible to find small
bipartitions in the following recursive bisections.

3.5 Refinement Techniques

After constructing the initial partition of the graph, it can be improved using refinement
techniques. The most popular technique is a local search based on local moves of
vertices between blocks. Although the greedy variation of this technique finds only
a local minimum, there are approaches that can escape local minima by allowing
moves with negative gains and subsequent rollback to the best found solution. These
approaches us allow to move dense regions of graphs; each vertex in a dense region has
a negative gain but moving the region together is beneficial. In the following section,
we mostly consider different variations of local search since their parallelizations are
used in almost all parallel graph partitioning frameworks. Section 3.6 gives an overview
these parallelizations.

3.5.1 The Kernighan-Lin Local Search

Kernighan and Lin [KL70] present a local search heuristic that approximately solves
the bipartitioning problem. The main idea is to exchange pairs of vertices gradually
decreasing the cut size and preserving the balance of the partition. Consider a perfectly
balanced bipartition of a graph, and let A∗ and B∗ be an optimal perfectly balanced
bipartition of the graph. Then there are sets X ⊆ A, Y ⊆ B (|X| = |Y |) such that
after exchanging them between A and B (i.e., A := (A \X)∪Y,B := (B \Y)∪Y) the
resulting bipartition is optimal. Unfortunately, the problem of finding theses sets is NP-
hard. Therefore, the local search algorithm by Kernighan and Lin [KL70] exchanges
pairs of vertices between blocks A and B trying to find a “good” approximation of X
and Y . Obviously the choice of a pair to exchange is the most important part of the
algorithm. To decide which pair to move, the authors assign a gain to each exchange.
Specifically, the gain of an exchange of two vertices v, u between blocks A and B is
gain(v, u) := g(v) + g(u)− 2 · w(v, u), where g(v) :=

∑
a∈A w(v, a)−

∑
b∈B w(v, b) is

the gain of moving a vertex v from the block B to the block A. See Figure 3.4 for
an example. Namely, the gain is a decrease of the cut size after exchanging a pair of
vertices. If vertices are strongly connected to the vertices of the opposite block then
exchanging them can be advantageous given the weight of the edge between them is
relatively small.

37

3 Related Work

v

u u

v

A BAB

Figure 3.4: Exchanging vertices v and w will decrease the cut size by 3. Specifi-
cally, g(v, u) = g(v) + g(u)− 2 · w(v, u) = 3, where g(v) = 2 and g(u) = 3.

Algorithm Description. The algorithm performs a preset number of passes. Dur-
ing a pass, it tries to find a sequence of vertex exchanges with maximum total gain.
In order to do this, the algorithm selects a pair of vertices with the maximum gain
(i.e. {v, w} = arg max{x,y}∈A×B gain(x, y)) and exchange them between blocks A and
B. Both vertices are marked such that they cannot be moved during the current
pass. Afterwards, the algorithm updates the gains of the neighboring vertices and
selects new pair from the remaining vertices. The algorithm stores the best sequence
of exchanges that results in the smallest encountered cut size. After p = min(|A|, |B|)
vertices were moved, the algorithm backtracks to the partition with the smallest cut
size and the pass is finished. Consider a sequence of exchanges {(ai, bi)}pi=1. Then
the algorithm backtracks to the bipartition after first arg maxk∈{1...p}

∑k
i=1 gain(ai, bi)

exchanges.

Pair Selection. The running time of local search depends on how vertex pairs are
selected. The original algorithm proposed by Kernighan and Lin [KL70] first sorts the
vertices of each block in decreasing order of their gains resulting in the two following
sequences:

g(ai1) ≥ g(ai2) ≥ · · · ≥ g(ai|A|),∀ it ∈ {1 . . . |A|} (3.1)
g(bi1) ≥ g(bi2) ≥ · · · ≥ g(bi|B|),∀ it ∈ {1 . . . |B|}. (3.2)

Then it iterates over both sequences selecting a pair of vertices with maximum gain.
Although in the worst case all possible pairs have to be scanned, it is very likely that
the algorithm will find the pair with maximum gain quickly. This is due to the fact
that if a pair of vertices (ai, bj) has a gain not greater than the maximum gain seen so
far then all the following pairs (i.e., (ai′ , bj′), i′ > i, j′ > j) will also have a gain that
is not greater than the maximum gain. The experiments performed by the authors
confirm that the sorting of gains dominates the selection of a pair with maximum gain.
Thus the selection can be done in

∑|V |−1
i=0 (|V | − i) log(|V | − i) = O(|V |2 log |V |) time.

After exchanging a pair, the algorithm updates the gains of the remaining vertices
in O(|V |) time by considering all remaining vertices and updating the gain of each
in constant time. Therefore, the resulting running time of a pass is O(|V |2 log |V |)
assuming that the selection of a pair with the maximum gain from the sorted list

38

3.5 Refinement Techniques

takes O(|V |) time. However, without this assumption the worst case running time is
O(|V |3).

Another approach to select the pair with the maximum gain and update the gains
of the remaining vertices was proposed by Dutt [Dut93]. First, Dutt shows that it is
enough to scan only O(∆2) pairs to find the pair with the maximum gain. The key
idea is that once a pair of vertices without an edge between them is found, all the
following pairs will have less or equal gain. Furthermore, the author uses balanced
search trees to update the gains of vertices. The resulting running time of a pass is
O(|V |∆2 + |V |∆ log |V |).

Theorem 3.1
Given two sequences of sorted vertex gains

g(ai1) ≥ g(ai2) ≥ · · · ≥ g(ai|A|),∀ it ∈ {1 . . . |A|} (3.3)
g(bi1) ≥ g(bi2) ≥ · · · ≥ g(bi|B|),∀ it ∈ {1 . . . |B|} (3.4)

then it is enough to scan O(∆2) pairs to find the pair with maximum gain.

Proof. Consider the first vertex ail that is not connected to bi1 . Then gain(ail , bi1) =
g(ail) + g(bi1) ≥ g(aij) + g(bik) ≥ gain(aij , bik) for j > l and k > 1.

Now consider the first vertex bit that is not connected to ai1 . Then gain(ai1 , bit) ≥
gain(aij , bik) for j > 1 and k > t.

Thus, it is enough to scan all pairs aij , bik , where j ≤ l and k ≤ t. Both l and k are
O(∆). Hence, it is enough to scan only O(∆2) pairs to find the pair with maximum
gain. �

Extensions. Kernighan and Lin [KL70] present several extensions of their algorithm
that are able to refine a bipartition with blocks of unequal size, to refine a partition
given a graph with integer vertex weights, and to refine a k-way partition.

Consider partitioning a graph into blocks A and B such that |A| ≤ |B|. Then, given
the initial partition of the graph into A and B (|A| < |B|), the algorithm stops to
exchange vertices as soon as |A| pairs have been exchanged. Hence, the sizes of the
blocks always remain the same. Furthermore, the authors consider another variant of
the graph bipartitioning problem when each block must have at least |A| and at most
|B| vertices. Then |B| − |A| dummy elements are added to the block |A| that are not
connected to other elements. Afterwards, the algorithm performs passes and removes
the dummy elements in the end. Note that after each pass both blocks have at least
|A| and at most |B| real elements.

To solve the k-way partitioning problem, the authors suggest to perform refinement
pairwise; that is, in each step a pair of blocks is selected and refined. Afterwards, the
algorithm selects a new pair where at least one of the blocks has changed or has not

39

3 Related Work

been refined before. Unfortunately, this approach has worse running time since at
least

(
k
2
)
pairs of blocks should be considered.

To solve the bipartitioning problem of a graph with integer vertex weights, the authors
suggest to substitute a vertex with weight w by a clique of size w with significantly
high edge weights. This prevents vertices of the same clique to be in different blocks.
Unfortunately, this approach can drastically increase the size of the problem if the
vertex weights are large.

3.5.2 The Fiduccia-Mattheyses Local Search

Fiduccia and Mattheyses [FM82] presented the modification of the Kernighan-Lin
local search algorithm that approximately solves the graph bipartitioning problem on
graphs with unit edge weights. The original description of the algorithm in the paper
is for hypergraphs. The authors improved the running time of the Kernighan-Lin
algorithm from O(|V |2 log |V |) to O(|E|). The main idea is to use a bucket priority
queue to find the vertex with maximum gain and to update only gains of the vertices
that are adjacent to this vertex. This algorithm or its modifications are used in most
graph partitioning frameworks to refine partitions of graphs.

Algorithm Description. The algorithm works similarly to the Kernighan-Lin local
search algorithm and performs a preset number of passes. During a pass, the algorithm
maintains a bucket priority queue (which is described further) for each block that
returns the vertex with maximum gain. Each bucket priority queue stores key-value
pairs where the value is a vertex and the key is the gain of the vertex. Depending
on imbalance allowance, two strategies for selection of a vertex for the next move
are possible. When no imbalance is allowed then the algorithm alternatively extracts
vertices from both bucket priority queues. On the other hand, if ε-imbalance is
allowed then the algorithm considers two vertices with maximum gain from both
priority queues. If the move of any of the vertices violates the balance constraint it
is excluded from the following consideration. If the moves of both vertices do not
violate the balance constraint then the algorithm selects the vertex with the largest
gain. Furthermore, it breaks ties by selecting the vertex whose movement improves
the balance better. Finally, the algorithm moves the selected vertex to the opposite
block and updates the gains of its neighbors. The pass ends when both priority queues
are empty.

Bucket Priority Queue. A bucket priority queue stores key-value pairs and returns
a value with the maximum key in O(davg) = O(|E|/|V |) amortized time as well as
inserts/updates the key of a value in O(1) worse-case time. The data structure is
based on the fact that edge weights are unit and, thus, gains are integers in the range
[−∆,∆]. Therefore, it is possible to have an array of size 2∆ + 1 where each element

40

3.5 Refinement Techniques

is a bucket implemented using a linked list. Each bucket stores vertices with equal
gains. Figure 3.5 shows a bucket priority queue.

· · ·

Array of buckets Linked list

Array of pointers

v

v

m

Figure 3.5: A bucket priority queue consists of two arrays: an array of buckets
and an array of pointers. The first arrays contains buckets of vertices. The second
array contains pointers to vertices in the buckets.

To insert a pair (gain, v) to a bucket priority queue, one accesses the gain + ∆-th
bucket in the array of buckets and inserts the vertex v into that bucket. To perform
an update operation, an additional array of size O(|V |) is necessary that contains
pointers to vertices in the bucket priority queue. More precisely, an i-th element of
the array is a pointer to the vertex i in the bucket priority queue. Then to update the
gain of a vertex v to value g, one accesses the v-th pointer in the array of buckets,
removes the vertex v from the corresponding bucket, and reinserts it in the g + ∆th
bucket. Since an insert/update operation performs only a constant number of memory
accesses and an insert/delete operation of a linked list takes O(1) time, the running
time of an insert/update operation of a bucket priority queue is O(1).

To perform an extraction operation of a vertex with the maximum key, each bucket
priority queue additionally maintains an index m of the bucket with maximum gain.
Then an extraction operation deletes a vertex from the m-th bucket and returns it.
Now if that bucket becomes empty, the index m must be updated by decreasing m
until the corresponding bucket is not empty. The following theorem shows that the
amortized number of such decrements is O(davg). We present this theorem since it is
not discussed in detail in the literature about bucket priority queues. Furthermore,
this bucket priority queue differ from the bucket priority queue used in the shortest
path algorithms [MS08] which inserts keys only in increasing or decreasing order.

41

3 Related Work

Theorem 3.2
The total cost of |V | update operations is

O(
∑
v∈V

d(v)) = O(|E|).

Therefore, the amortized cost of an update operation is O(|E||V |) = O(davg).

Proof. Consider an update operation that extracts a vertex v and then searches for
a new vertex u with maximum gain. And let us denote this vertex as u. Then in
the worst case, an update operation checks at most d(v) + d(u) + 1 buckets since the
gain difference of the vertices v and u is at most d(v) + d(u). This is due to the fact
that all edges have unit weights and then the gain of any vertex x is within the range
[g(x),−g(x)]. Therefore, if the vertex v has gain d(v) and the vertex u has the gain
−d(u) then the index m will be decremented exactly d(v) + d(u) times. �

Now knowing the costs of all operations of a bucket priority queue, we can analyze the
running time of the whole algorithm. The initialization of a bucket priority queue costs
O(|V |) time. Now consider a move of a vertex v. After it was moved, the algorithm
updates its d(v) neighbors spending O(1) to calculate the new gain and O(1) to update
its gain in the bucket priority queue. To extract the next candidate for the move, the
algorithm spends O(davg) amortized time. Since there are at most O(|V |) extraction
operations, the total time of all extraction operations is O(|E|). Hence, the overall
running of the algorithm is O(|V |+ |E|). However, note that for weighted graphs this
bound is O(|V |+ |E|ωmax/ωmin), where ωmax and ωmin are maximum and minimum
weights in the graph, respectively.

Further Improvements and Extensions. A popular extension of the Fiduccia-
Matheyses local search is its generalization to k-way graph partitioning using recursive
bisection. Unfortunately, recursive bisection is not the best approach for k-way graph
partitioning (see details in Section 3.4.3). Thus, there is a need for a direct k-way
local search. For this, Sanchis [San93] as well as Hendrickson and Leland [HL95a]
suggested to apply the Fiduccia-Matheyses local search to all pairs of blocks. The
algorithm maintains k(k − 1) bucket priority queues (two for each pair of blocks) and
performs moves in the following way. First all vertices with the highest gain in each
priority queue are selected. Then vertices whose moves violate the balance constraint
are discarded and the remaining vertex with the highest gain is selected. Then the
move of the vertex is performed and the gains of its neighbors are updated. The
algorithm, like the original Fiduccia-Matheyses local search, works in passes. The
running time of one pass is O(k(|V |+ |E|)) since one needs O((k−1)|V |+ |E|) time to
calculate all the gains in the beginning of a pass and O(k|E|) time to update the gains
of vertices during the pass. The authors also suggest to use only boundary vertices
to initialize priority queues since only a small amount of vertices are moved during a
pass in practice.

42

3.5 Refinement Techniques

Cong and Kyu Lim [CL98] presented another generalization of the Fiduccia-Matheyses
local search for k-way graph partitioning. The idea is to perform the Fiduccia-
Matheyses local search only between pairs of blocks during each pass. This decreases
the probability of local search to get stuck in a local minimum since the set of possible
moves is reduced to the moves between pairs of blocks. The authors suggested several
ways to select pairs of blocks to refine. Empirically, the best way is to pair blocks that
had the maximum cut size reduction in the previous pass. The experiments indicate
that this approach has better quality than the approach that uses k(k − 1) priority
queues.

Karypis and Kumar [KK96] suggested several modifications of the Fiduccia-Matheyses
local search that allow to reduce the running time of the algorithm. The first mod-
ification is a generalization of the Fiduccia-Matheyses local search for k-way graph
partitioning. The idea is to maintain a global bucket priority queue that contains the
best move to one of the blocks for each vertex. The second modification is a trade-off
between running time and quality. The priority queue is initialized only with the
vertices that have non-negative gains. Note that in the original algorithm the priority
queue is initialized with all vertices. Another possibility suggested by Hendrickson and
Leland [HL95a], Karypis and Kumar [KK95b] as well as Sanders and Schulz [SS11]
is to initialize the priority queue with all boundary vertices. Then the algorithm
works as before. During each pass, the algorithm extracts a vertex v with maximum
gain in the global bucket priority queue and tries to move it to the corresponding
block. If the move of v to that block does not violate the balance constraint then the
algorithm performs the move and proceeds. Otherwise, the algorithm finds a block
such that the gain of the move is maximized and the balance constraint is not violated.
Next, it marks the vertex such that it cannot be moved anymore during current pass
and inserts its non-marked neighbors to the priority queue that are not already in
it. The algorithm stops when all vertices are moved or when x moves are performed
without decreasing the cut size (the third modification). Then the algorithm rolls
back to the best found partition and proceeds to the next pass. However, it is not
clear how to choose the optimal parameter x since it may vary for different graphs.
Note that the set of vertices moved by the aforementioned algorithm differs from
that of the Fiduccia-Mattheyses local search which uses k(k − 1) priority queues.
Furthermore, the Fiduccia-Mattheyses algorithm has better capabilities to climb out
of local minima since it uses k(k − 1) priority queues and, thus, has more possibilities
to move vertices.

The authors do not present a running time analysis for the algorithm. Depending on
whether the algorithm updates the gains of the neighbors of the last moved vertex or
not in the priority queue, the running time of one pass is O(|V |+ |E| log(min(∆, k)))
or O(|V |+ |E|), respectively. A detailed analysis of the running time is presented in
Section 4.2.3.

Another approach presented by Karypis and Kumar [KK96] is the greedy local search.
The algorithm can be viewed as the label propagation algorithm (see Section 3.2.2)

43

3 Related Work

that is used for refinement. The idea is to move only vertices with positive gains.
Then there is no need in the priority queue since it is very likely that a vertex with
a large positive gain will be moved even after the moves of the vertices with smaller
gains. The algorithm works in passes and it iterates over boundary vertices in random
order during a pass. Note that iterating in random order allows to construct different
partitions by running the algorithm several times and then to choose the best partition.
The move of a vertex occurs as follows. First, all moves that violate the balance
constraint or have negative gains are discarded. Then the vertex is moved to the block
with maximum gain. If several moves of the vertex to different blocks have maximum
gain then the move that improves the balance the most is selected. The running time
of one pass is O(|V |+ |E|).

Osipov and Sanders [OS10] presented a localized modification of the k-way local
search. Note that in this MGP algorithm Θ(|V |) contractions occur because edges are
contracted one by one. The idea is that the local search algorithm starts around most
recently uncontracted edge if its corresponding vertices are in the different blocks. Let
there be a priority queue for each block that contains vertices and their corresponding
gains to move them to this block. Then the local search algorithm works in iterations.
During each iteration one vertex is moved as follows. The algorithm selects the vertex
with maximum gain that can be moved without violating the balance constraint. After
moving the vertex, the algorithm marks the vertex, inserts its unmarked neighbors
to all priority queues if they were not inserted before or otherwise updates their
gains. The algorithm proceeds until no improvement is possible. The running time of
the algorithm is O(|V |+ |E| log(min(∆, k))) since in the worst case we update gains
of each neighbor in k priority queues. Additionally, Osipov and Sanders presented
another stopping rule that allows to stop earlier than the stopping rule by Karypis
and Kumar [KK96]. This is crucial for performance of their algorithm since O(|V |)
local search are performed (one local search for each uncontracted edge). The adaptive
stopping rule estimates the likelihood of a local search to find a better cut using an
assumption that gains of all moves are identically distributed, independent random
variables with the expectation µ and the variance σ2 estimated in p previous moves.
The authors note these assumptions are heuristic. Nevertheless, Osipov and Sanders
show that given pµ > ασ2 + β then it is unlikely that the local search algorithm will
find a better cut. Here α and β are tuning parameters. More precisely, β is initial
number of moves during which stopping is not allowed. This prevents the stopping
rule to stop if the variance happen to be small. The authors suggest to use β := ln |V |.
To show that reduction of a cut size is unlikely, the authors consider the maximum
standard deviation from the expectation (p+ s)µ after s steps (p+ s)µ+

√
sσ2 and to

stop when it is maximized with respect to s but still less than zero. This expression is
maximized when s = σ2

4µ2 . Thus, (p+ s)µ+
√
sσ2 < 0 when p > σ2

µ2 (x2 −
1
4) (note that

µ < 0) or simply pµ2 � σ2.

Dutt and Deng [DD96] presented a localized modification of two-way local search.
The idea is to insert all boundary vertices into a priority queue with gains as keys and

44

3.5 Refinement Techniques

then set all keys to zero preserving the initial order of vertices. Then the algorithm
extracts the top vertex v from the priority queue, moves it to the opposite block, and
updates the keys of its neighbors in the priority queue in the following way. Assume
that v is moved from a block A to a block B. If a neighbor is in the block B than the
corresponding key is decremented by w((v, u)) since the edge (v, u) is not a cut edge
anymore. Otherwise, the corresponding key is incremented by w((v, u)). Thus, the
stronger connectivity of the neighbor in the block A to v the greater its corresponding
key is. This allows to find dense subgraphs that are advantageous to move from A to
B. The algorithm proceeds to extract vertices until the priority queue is empty and
then reverts back to the best found partition. The running time of the algorithm is
O(|V |+ |E|).

Sanders and Schulz [SS11] presented a localized modification of k-way local search by
Karypis and Kumar [KK96]. We refer to it as localized k-way multi-try local search.
The idea is to initialize the priority queue with only one boundary vertex and to
perform k-way local search around it. Localized k-way multi-try local search can find
dense subgraphs whose moves decrease the cut size; whereas the original k-way local
search cannot find such dense subgraphs since it extracts vertices scattered over the
whole boundary and stops due to the stopping rule before moving these subgraphs.
The running time of the modified local search remains the same as in the original
k-way local search by Karypis and Kumar. Another advantage of localized k-way
multi-try local search is that it can be parallelized, whereas the original k-way local
search is known to be P-complete [SW91]. The idea is that each PE starts localized
k-way multi-try local search around a random boundary vertex. Then it is unlikely
that any two PEs will interact causing performance reduction. The parallelization of
this algorithm is one of the main results of this thesis and was presented in [ASS18].

Meyerhenke et al. [MSS14] presented a label propagation algorithm with size constraints
that can be used in the coarsening and uncoarsening phases. The detailed description
of it is in Section 3.2.2. We only mention here that it can be used for refinement in the
following way. Assume that we want to improve some partition of a graph. Then label
propagation works as before but uses blocks of partitions as clusters to guarantee that
the improved partition is balanced. Additionally, it is possible to use this algorithm
for balancing in the following way. When we decide to which block to assign a vertex,
we force to move it to the most underloaded block with the strongest connectivity;
even if the connectivity to it is less than the connectivity to some other blocks.

3.5.3 Other Local Search Refinement Techniques

There are multiple other papers that present different modifications of local search.
Hager et al. [HPD00] use quadratic programming to decide what subgraph is most
advantageous to exchange between blocks. Ashcraft and Liu [AL97] presented a three
steps approach to graph bipartitioning. First, the graph is partitioned into clusters
(connected subgraphs) and so-called multisector, here a multisector is a set of vertices

45

3 Related Work

after removal of which the clusters are disconnected from each other. Then a set of
vertices whose removal leaves the graph separated into two connected components
(bisector) is constructed from the multisector using the modified Kernighan-Lin local
search that exchanges sets of vertices between blocks. Finally, the bisector is further
improved using a graph matching algorithm.

Walshaw et al. [WCE95] presented a three-stage refinement technique. The first stage
tries to improve the shape of the partition but it does not guarantee that the resulting
partition will be balanced. To prevent the imbalance, the second stage applies a load
balancing algorithm. Finally, the Fiduccia-Mattheyses local search is applied on the
third stage to further improve the partition. Walshaw et al. [WC00a] presented a
technique that first introduces a slight imbalance to find better partitions and then
eliminates it using a load-balancing modification of the Fiduccia-Mattheyses local
search. An interesting concept of helpful sets was presented by Monien et al. [DMP94;
MD97; MS04] and described in the following section.

Helpful Sets. Monien et al. [DMP94; MD97; MPD00; MS04] presented another
local search technique for the bipartitioning problem that is based on the idea of
helpful sets. An l-helpful set is a set after moving of which to the opposite block
the cut size decreases by l. First the idea of helpful sets were used in the proof of
the upper bound on the size of a bipartition of a 4-regular graph by Hromkovic and
Monien [HM91]. Monien and Diekmann [MD97] generalize the proof from [HM91]
for 2k-regular graphs of size n proving that the size of the minimum bipartition is at
most k−1

2 n+ 1. They prove it by showing that if the current bipartition of a graph
has size at least k−1

2 n+ 2 then there is a 4-helpful set in one block and (−2)-helpful
set in the other block. Therefore, exchanging these sets between blocks decreases the
cut size by two while preserving the balance. The authors employ the idea of helpful
sets to refine bipartitions of general graphs. The algorithm works in passes as the
Kernighan-Lin local search. During a pass, the algorithm searches for a l-helpful set
in one block and (−l + 1)-helpful set in the other block of the same size. To find a
l-helpful set, a BFS like algorithm is used. On each iteration this algorithm adds a
vertex with the maximum helpfulness to the current helpful set. Here the helpfulness
of a vertex is the decrease of the cut after moving it to the opposite block plus the sum
of the edges to the vertices that are already in the current helpful set. Analogously,
the helpfulness is defined for a set of vertices. To find a vertex with the maximum
helpfulness, a bucket priority queue is used. After the vertex is added to the helpful
set, the helpfulnesses of its neighbors is updated. The algorithm stops when at least
l-helpful set is found. Afterwards, a (−l+ 1)-helpful set of the same size is constructed
in a similar way. If both sets are found they are exchanged and l is doubled; otherwise
l is halved. Afterwards, the algorithm proceeds to the next pass. The algorithm stops
when l = 0. The running time of one pass is O(|V |+ |E|).

The experiments presented by Diekmann et al. [DMP94] show that the algorithm
is comparable to the Kernighan-Lin local search in terms of quality and running

46

3.5 Refinement Techniques

time. Monien and Schamberger [MS04] suggest several improvements that allow the
algorithm to outperform the previous version of the algorithm and the Kernighan-Lin
algorithm in terms of quality. Namely, they allow a slight imbalance and move only
the helpful set with larger helpfulness.

Flow Based Refinement. Sanders and Schulz [SS11; SS12b] suggested a refinement
technique that improves quality of partitions using maximum flows [FF56]. The idea
is to select two adjacent blocks and find a new border between them reducing the cut
size. Further, we discuss how to use the min cut problem to reduce the cut size while
maintaining the balance constraint and how to select pairs of adjacent blocks.

Assume that the algorithm has selected two adjacent blocks V1 and V2. To perform the
refinement, the algorithm uses a subgraph that belongs to both blocks, since this allows
to reduce the running time and to maintain the balance constraint. In order to do this,
two BFS are performed from the boundary vertices between two blocks. More precisely,
the first BFS starts from the boundary vertices of V1 and adds to the subgraph all the
vertices and corresponding adjacent edges until it added (1 + ε)|V |/k − c(V2) vertices.
Analogously, the second BFS starts from the boundary vertices of V2 and completes
the subgraph. Next, the algorithm finds a min cut of the subgraph using the max
flow algorithm [CG97]. Finally, the boundary is adjusted with respect to the found
min cut. Note that even if all vertices of the subgraph in V1 move to V2 then the
balance constraint is still satisfied since c(V2) + (1 + ε)|V |/k − c(V2) = (1 + ε)|V |/k.
The further details about how to choose the most balanced min cut are described in
the original papers [HSS18; SS11; SS12b].

To select pairs of adjacent blocks, the algorithm uses the quotient graph as follows.
In the beginning, all vertices of the quotient graph (blocks) are active. Next, the
algorithm works in rounds. In the beginning of each round, it constructs a list of pairs
of adjacent blocks, such that at least one block in each pair is active. Next, it marks
all blocks as inactive and applies the aforementioned refinement technique for each
pair. If any block changes then it is reactivated for the next round. The algorithm
stops when all blocks are inactive.

3.5.4 Random Walks and Diffusion Processes

Meyerhenke et al. [MMS09b; MS12] suggested a refinement technique based on the
bubble framework (see Section 3.4.2) that uses the ideas of random walks and diffusion
processes, which distributes load values from source vertices to other vertices. The
high-level idea is that it takes more time for a random walk to leave dense regions of a
graph than sparse ones. The connection between random walks and diffusion processes
explains the ability of the latter to distinguish dense and sparse regions. Namely,
dense regions have load values greater than that of sparse regions. The authors use the
diffusion process in the bubble framework to construct an initial partition, to refine
an existing one and to find better source vertices. The modified bubble framework

47

3 Related Work

works in iterations performing the following two steps during each of them. The
first step works as follows. The algorithm starts by performing the diffusion process
from a source vertex (initially selected at random) of each block. Next, it assigns
the vertex to the block with maximum load value. After constructing (or improving)
the partition, the algorithm proceeds with the second step independently selecting
new source vertices for each block as follows. It performs the diffusion process using
all vertices of a block as sources and selects the vertex with maximum load value
as a new source. These steps are repeated until the algorithm converges. Note that
this diffusion process can be used both for initial partitioning and refinement. In the
following paragraph, we describe the details of the diffusion process.

A diffusion process distributes load values from the source vertices S (centers) to
the remaining vertices of a graph G. During each iteration, the distribution process
sends load from each vertex to its neighbors. In addition, each non-source vertex
loses δ units of load and each source vertex receives δ|V |/|S| − δ units of load. The
new load values can be calculated using the following formula w′ = Mw + d, where
M = I − αL and 0 < α ≤ (∆ + 1)−1. Here L is the Laplacian matrix of G where
Lv,v = deg(v), Lv,u = −1 ∀(v, u) ∈ E and Lv,u = 0, otherwise. A load vector w
contains load values of each vertex, and a drain vector d contains the loss of the load
per iteration. In the beginning, load is evenly distributed over source vertices. The
diffusion process stops when the load values stop to change. To find such the final
distribution of load values, the linear system Lw = d must be solved. Meyerhenke
et al. [MMS09a; MMS09b; MS12] use algebraic multigrid (AMG) [Stü01; TOS00] to
solve the aforementioned linear system.

Pellegrini [Pel07] suggested another diffusion process. The idea is to propagate k
types of liquids from k sources corresponding to k blocks to other vertices. Note
that some amount of each liquid annihilates the same amount of any other liquid.
Moreover, each vertex loses some amount of liquid during each step. An established
balance of liquids defines an improved partition of a graph. To decrease the running
time and to find relevant sources, only a part of a graph is used. More precisely, the
algorithm propagates liquids from k source vertices to vertices that are within a small
distance from boundary vertices. In order to do this, the algorithm constructs the set
of source vertices by merging the vertices of each blocks, which have shortest paths to
the boundary vertices longer than three, into a super vertex and uses it as a source.

3.6 Parallel Refinement Techniques

In this section we consider different parallel refinement techniques that can be po-
tentially used in an MGP algorithm or actually used in parallel graph partitioning
frameworks.

48

3.6 Parallel Refinement Techniques

3.6.1 Parallel Greedy Refinement

LaSalle and Karypis [LK13] presented a parallel shared-memory greedy local search
algorithm which is a parallelization of the modified greedy local search from Sec-
tion 3.5.2. The sequential algorithm works as follows. All boundary vertices are stored
in a global priority queue with keys equal to their potential gains∑

u∈N(v):
B[v] 6=B[u]

w((v, u)) −
∑

u∈N(v):
B[v]=B[u]

w((v, u)).

Afterwards, the algorithm extracts vertices from the priority queue and attempts to
move them. To move a vertex, the algorithm computes k − 1 gains; that is, for each
k − 1 possible moves to adjacent blocks. The move occurs if the maximum gain of the
vertex is positive and the move does not violate the balance constraint. After moving
the vertex, the algorithm updates the weights of the blocks and potential gains of its
neighbors. The algorithm stops when the priority queue is empty. The running time of
the algorithm is O(k|V |+ |E|), since moving a vertex v requires O(k) time, extracting
it from the priority queue O(1) time, and updating potential gains of its neighbors
O(d(v)) time. We now discuss the parallelization of the algorithm further.

Karypis and Kumar [KK99] presented a parallel distributed memory greedy local
search algorithm which is a parallelization of the greedy local search from Section 3.5.2.
The authors suggest to refine a partition using a coloring of the graph in the following
way. Since all the vertices are randomly distributed over PEs, each PE processes its
portion of vertices that belong to one color. When all PEs are finished, they proceed
with the vertices of the next color and so on. Processing vertices that belong to
the same color prevents the situations when the algorithm exchanges two connected
vertices between blocks since this can increase the cut size. We do not describe the
parallelization of this algorithm since we discuss its improved version in the next
paragraph.

Karypis and Kumar [KK97] showed how to perform the aforementioned algorithm
without coloring. Namely, they suggest to perform the local search algorithm in
two phases. In the first phase, the vertices are allowed to move only from blocks
with smaller IDs to the blocks with greater IDs. In the second phase the opposite
moves are allowed. This distributed memory version of the algorithm is similar to
the aforementioned shared-memory version except for a small detail. Namely, in the
shared-memory version, each PE processes vertices in increasing order of their gains
using a local priority queue to store them, whilst the distributed memory version
processes vertices in arbitrary oder. Therefore, we describe only the shared-memory
algorithm.

Shared-Memory Parallelization. To parallelize the sequential greedy local search
algorithm, the authors suggest two approaches: fine-grain refinement and coarse-grain

49

3 Related Work

refinement. Both approaches work in passes. During a pass, each PE has its own
priority queue to store boundary vertices assigned to it and the pass ends when all
priority queue are empty. The algorithm stops if the maximum limit of passes is
exceeded or no vertex was moved in the previous pass.

The first fine-grain refinement approach maintains up-to-date block weights and
connectivity of the vertices in the priority queue to the blocks. After extracting a
vertex with the maximum potential gain, the algorithm checks if it is possible to move
the vertex without violating the balance constraint and at least one move to some of
its adjacent blocks has a positive gain. If both conditions are true then the algorithm
locks the neighbors of the vertex and the blocks affected by the move. Then the
algorithm checks that the move still does not violate the balance constraint and has
a positive gain. If both conditions are true the move is performed, the connectivity
information and block weights are updated and all locks are released. Although this
approach is easy to implement, it has limitations: high synchronization overheads
due to the locking, the number of blocks should be much greater than the number of
PEs, and possibility of large number of false sharings due to the updates of the same
connectivity information and block weights.

The second coarse-grain refinement works as follows. First, to prevent concurrent
moves of connected vertices, each pass is split into phases such that the moves between
two blocks are allowed only in one direction during a phase. Another difference from
the previous approach is to use update buffers instead of locking. More precisely, a
PE extracts a vertex v from the priority queue and decides to move it or not as in
the first approach but without locking. Then it updates local neighbors (assigned
to the same PE) of v. To update the neighbors of v that are assigned to other PEs,
the PE stores the updates into the corresponding update buffers. After extracting a
fixed number of vertices from its priority queue, all PEs communicate using update
buffers to decide which moves to undo such that the balance constraint is not violated.
After the decision is made, the remaining moves are confirmed and each PE updates
connectivity information of assigned vertices. This process repeats until all priority
queues are empty.

Additionally, the authors suggest three strategies to assign vertices to PEs: dynamic
assignment, static assignment, and persistent assignment. The dynamic assignment
tries to assign vertices maximizing load balance between PEs. The difference between
static and persistent assignment is that static assignment assigns data to the PE
each time a parallel task starts. This means that with the static assignment different
sets of vertices can be assigned to one PE during different parallel task, whereas the
persistent assignment guarantees that each vertex is always assigned to the same PE
during the course of the whole algorithm. The experiments indicate that the persistent
assignment shows better speed-ups than other assignments. The authors explain this
by the better utilization of the data locality and caches. Furthermore, the authors
discuss how load imbalance affects performance of the persistent assignment.

50

3.6 Parallel Refinement Techniques

In summary, the parallel running time of one pass of the algorithm is O((|V |(log |V |+
k) + |E|)/p) given an even load balancing.

3.6.2 Parallel Hill-Climbing Refinement

Karypis and LaSalle [LK16] presented a parallel k-way local search algorithm called
parallel hill-climbing refinement. The sequential version of the algorithm closely
resembles localized k-way multi-try local search by Sanders and Schulz [SS11]. The
sequential hill-climbing refinement algorithm tries to find a subgraph after moving of
which to other block the cut size decreases. The algorithm works in passes. In the
beginning of each pass, the algorithm inserts all boundary vertices into a main priority
queue with their potential gains as keys. The potential gain is calculated using the
following formula

gain(v) :=
∑

u∈N(v):
B[v]6=B[u]

w((v, u))/
√

∆(v) −
∑

u∈N(v):
B[v]=B[u]

w((v, u)).

where ∆(v) is the number of external partitions connected to v. Thus, vertices
connected to fewer blocks have larger potential gains than that of vertices connected
to more blocks. Furthermore, the potential gain of v can be updated in O(1) time
when a neighbor of v is moved. While the time per update is O(d(v)) in the worst
case if we use the following formula

gain(v) := max
b∈B

∑
u∈N(v):
B[u]=b

w((v, u)) −
∑

u∈N(v):
B[v]=B[u]

w((v, u))

to calculate gains. The worst case is when a new block with maximum connectivity
to v must be found. Afterwards, the algorithm performs iterations until the priority
queue is empty. During each iteration, it extracts a vertex v from the main priority
queue and tries to move it. If the vertex has a positive gain and the corresponding
move does not violate the balance constraint then the algorithm moves the vertex.
Otherwise, the algorithm tries to find a dense subgraph (a hill), that consists of v and
vertices around it after moving of which the cut size reduces. The algorithm inserts
v into an empty auxiliary priority queue with its gain as key. Next, the algorithm
starts to repeatedly extract vertices from the auxiliary priority queue and adds them
to the subgraph. Specifically, after extracting a vertex u from the priority queue,
the algorithm adds u to the subgraph. If moving the subgraph to one of the blocks
decreases the cut size then the algorithm moves it and proceeds to process the main
priority queue. Otherwise, the neighbors of u are inserted to the priority queue or
their gains are updated if they are already in the priority queue. Then the algorithm
proceeds to extract vertices from the auxiliary priority queue and add them to the
subgraph. The algorithm stops when the auxiliary priority queue is empty.

51

3 Related Work

The authors suggested several optimizations to improve the running time of the
algorithm. The first one is the stopping rule that signals to stop if

√
b(V) subgraphs

were empty. In this case, the algorithm was not able to find
√
b(V) times a subgraph

after moving of which the cut size reduces. Here b(V) is the number of boundary
vertices. The second optimization describes how to update the connectivity of a
subgraph to blocks in constant time after moving a vertex from a block A and adding
it to the subgraph. During the search of a subgraph, an array of size k is maintained
that stores connectivity of the subgraph to each block. When the algorithm adds a
new vertex v to the subgraph, it scans its neighbors updating the entries of the array
in the following way. If a neighbor u of v is in the block B 6= A then the algorithm
adds w((v, u)) to the entry that corresponds to the block B. Otherwise, it subtracts
w((v, u)) from the entry that corresponds to the block A. Then the reduction of the
cut size moving the subgraph from the block A to some block B equals the difference
of the corresponding entries.

The running time of one sequential pass is O(k|V |+ |E| log |V |), since moving a vertex
requires O(k) time and searching for subgraphs requires O(|E| log |V |) time in total.

Parallelization. To parallelize the sequential algorithm described above, the authors
use similar techniques as in parallel greedy refinement (see Section 3.6.1). Each PE
has its own main priority queue and auxiliary priority queue to find subgraphs. In
the beginning of a pass, each PE inserts into its main priority queue the boundary
vertices that are assigned to it. During a pass, each PE extracts a boundary vertex
from its main priority queue and tries to find a subgraph around it after moving of
which the cut size reduces. To prevent the possibility of two connected vertices to
be moved by different PEs such that the edge remains in the cut, each pass is split
into upstream and downstream phases and each block receives a random ID. During
an upstream phase, only the moves from blocks with smaller ID to the blocks with
greater IDs are allowed. During a downstream phase, the moves in opposite direction
are allowed. When a PE finds and moves a subgraph, it can move vertices that are
assigned to the other PE. Then the information about the current state of the partition
is communicated to the owners of the moved vertices using message queues. When
the main priority queues of all PEs are empty, the PEs synchronize and proceed to
the next pass. During the search for subgraphs, PEs do not use any synchronization
primitives, thus overlapping hills are possible. This means that the vertices that
belong to both hills can be moved by both PEs. However, only one PE will move
these vertices and this can potentially cause an increase of the cut size. The reason is
that the remaining vertices of the separated hill may have a strong connectivity to the
vertices from the overlapping region. The authors observe that such race conditions
occur rarely and additional passes of the algorithm fix the problem.

Additionally, LaSalle et al. [LaS+15] presented a modified static assignment of vertices
to PEs described in Section 3.6.1. They state that although such an assignment causes
load imbalance, it allows to reuse data that is in caches. Furthermore, the authors

52

3.6 Parallel Refinement Techniques

suggested a modification such that all boundary vertices of a block are assigned to one
PEs. In order to do this, p buckets are created where each bucket contains boundary
vertices assigned to corresponding PE. The buckets are constructed in the following
way. Assume that in the beginning all vertices are assigned to PEs arbitrarily. Then
each PE counts the number of vertices it must copy to each bucket. Next, a global
prefix sum is computed such that each PE knows the starting position in each bucket
at which the corresponding boundary vertices must be copied. After all boundary
vertices are copied to buckets, each PE can access vertices assigned to it using its
corresponding bucket. If p > k the vertices of one block can be assigned to one of
several PEs. To chose a particular PE to which a boundary vertex is assigned, the
authors consider the external block to which the vertex is most connected.

The parallel running of the algorithm is O((k|V |+ |E| log |V |)/p) given an even load
balancing, since moving a vertex requires O(k) time and searching for subgraphs
requires O(|E| log |V |/p) (PEs can move vertices that are not assigned to them during
computations of subgraphs). Note that the authors assume that each PE processes
approximately Θ(|V |/p) vertices and Θ(|E|/p) edges.

3.6.3 Parallel Label Propagation For Refinement

Meyerhenke et al. [MSS17] presented a parallel distributed memory label propagation
algorithm that is used in the coarsening and uncoarsening phases. The detailed
description of the algorithm is in Section 3.3.2. Here we describe only how the
algorithm guarantees that after refinement each block does not exceed the threshold
(1 + ε) |V |k·f . In the beginning of the algorithm, the weights of blocks are calculated in
the following way. Each PE calculates the weights of its local vertices within each
block. Then all PEs communicate between each other the partial weights of blocks and
sum them up. Eventually, each PE has the weights of all blocks and can perform the
label propagation algorithm with size constraints. After all PEs finished one iteration
of the label propagation algorithm, the PEs communicate to update weights of blocks.
Note that it is still possible that several PEs moved vertices to some block and it
is overloaded. The authors note that this approach is possible since k is much less
then the number of the clusters during the coarsening phase and, thus, each PE can
maintain and communicate an array of size k that contains the weights of blocks.

3.6.4 Other Parallel Distributed Memory Refinement Techniques

Parallelizations of Fiduccia-Mattheyses Local Search. A parallel distributed
memory Fiduccia-Mattheyses local search algorithm was presented by Walshaw and
Cross [WC00b]. The authors consider three different approaches to perform moves
between blocks concurrently in the setting when each block is assigned to a particular
PE. These approaches are different ways to tackle the problem of concurrent moves.

53

3 Related Work

More precisely, how to prevent two processors to move connected vertices such that
the cut size increases.

The first approach is called interface optimization. It performs moves between two
connected blocks using one of the assigned PE. More precisely, consider a pair of blocks
a and b and corresponding PEs PEa and PEb, respectively. PEa performs moves if
either a < b and b is odd or a > b and b is even. Assume without loss of generality
that PEA performs moves. In addition, let Sab denotes the set of vertices whose moves
from A to B have maximum gains. Analogously, the set Sba is defined. Then PEb
sends the set Sba to PEa. Afterwards, PEa performs the Fiduccia-Mattheyses local
search starting from vertices Sab ∪ Sba. When local search finishes, PEa sends to
PEb a request for the vertices that moved from B to A. Additionally, it sends the
vertices that moved from A to B. This approach has several disadvantages. The first
one is that it requires additional communication from B to A when the local search
algorithm moves a vertex from B to A and must know its neighbors in B. The second
problem is that several PEs may perform moves from/to the same block and, thus,
this approach does not necessarily construct a balanced partition.

The second approach, alternating optimization, is the same as the approach suggested
by Karypis and Kumar [KK97]. The idea is to split a pass of the local search algorithm
into two phases. During each phase, the moves between two blocks are allowed only
in one direction. For example, during the first phase only the moves from a to b
occur and during the second phase in the opposite direction. Specifically, the moves
from a to b are only allowed if either a < b and b is odd or a > b and b is even.
Otherwise, the moves from b to a are allowed. This method does not require additional
communications since it does not need to know new boundary vertices from b. In
addition, it does not need to request vertices from PEb. In summary, the experiments
indicate that this method constructs partitions of worse quality than the interface
optimization.

Unlike the first two approaches, the third approach, relative gain optimization, allows
to perform moves between pairs of blocks simultaneously. The authors suggest to
prevent the problem of concurrent moves by using relative gain instead of conventional
gain. Relative gain reflects the potential of a vertex to move to the opposite block.
More precisely, if a vertex v has multiple neighbors in the opposite block with high
gains of moves to the block of v then it is better to leave v in its block. Therefore,
relative gain of a vertex is the difference between the gain of the vertex and the average
gain of its neighbors in the opposite block. The parallel algorithm that uses this
approach is simple. All PEs perform moves of vertices without taking into account
moves of corresponding neighbors. After each PE marked vertices to be moved,
all PEs communicate to exchange vertices. The authors observe that the moves of
connected vertices occur rarely. In conclusion, the experiments indicate that this
method constructs partitions of worse quality than the interface optimization.

Holtgrewe et al. [HSS10] presented another parallel distributed memory local search
algorithm that performs the Fiduccia-Mattheyses local search between pairs of blocks.

54

3.6 Parallel Refinement Techniques

The main idea of the algorithm is to select disjoint pairs of blocks and to refine them
in parallel. In order to do this efficiently, the authors assume that the number of
blocks is equal to p. Then there are two PEs for each pair of blocks and both PEs
refine the blocks and then the best resulting partition is selected. There are two main
problems: how to choose pairs of blocks to refine and how to perform refinement of
two blocks in parallel given that each block resides on an individual PE.

The authors solve the first problem by considering an edge coloring of a quotient graph.
The algorithm starts with constructing an edge coloring of the quotient graph using
the parallel greedy algorithm [HSS10]. Afterwards, the algorithm iteratively considers
each edge color and performs parallel refinement for pairs of blocks induced by the
edge coloring.

The second problem is to refine blocks A and B. Recall that each block has an assigned
PE that stores a subgraph belonging to this block. To perform the Fiduccia-Mattheyses
local search, both PEs need to know subsets of vertices of opposite blocks. In order
to do this, both PEs run a bounded BFS from the local boundary vertices between
the blocks and exchange with each other the visited vertices. Then both PEs refine
the blocks using the Fiduccia-Mattheyses local search and random seeds. After both
local searches finish, the best partition is selected and PEs exchange vertices that have
changed their blocks.

Parallelization of Diffusion Processes. Meyerhenke [MMS09a] presented a par-
allel shared-memory refinement technique based on the bubble framework and the
diffusion process (see Sections 3.4.2 and 3.5.4). Since the bubble framework performs
multiple runs of k independent diffusion processes for k blocks, they can be performed
in parallel. But the scalability is limited by the number of blocks; that is, at most k PEs
can be used simultaneously. Furthermore, Meyerhenke [Mey12] presented an improved
distributed memory parallelization of the aforementioned refinement technique that
overcomes the scalability issue by using all available PEs. More precisely, the linear
systems within the diffusion process are solved using a conjugate gradient solver in
combination with the traditional domain decomposition approach for parallelization.

Her and Pellegrini [HP10] presented a parallel distributed memory refinement technique
based on the diffusion process (see Section 3.5.4) by Pellegrini [Pel07]. The idea of
the sequential algorithm is to distribute liquid from k source vertices corresponding
to k blocks to other vertices. In the parallelization, the number of source vertices
changes. Specifically, each PE has k source super vertices. Source super vertices that
correspond to the same block form a clique. More precisely, for every block each PE
finds a portion of vertices assigned to it within a small distance from the boundary
vertices of this block. Next, each PE connects them to its source super vertex that
corresponds to this block. This source super vertex consists of the remaining vertices
in this block assigned to this PE. Finally, the algorithm propagates liquids over the
constructed graph improving the partition.

55

3 Related Work

3.7 Multi-level Graph Partitioning Frameworks

Different variations of MGP scheme were independently developed and implemented by
multiple researchers [Bou98; Gup97; HL95a; KK95b; KK98a; KK98c; MPD00; Pon+94;
Pre01; Wal04; WC00a]. Furthermore, we briefly describe the details of these papers
and corresponding implementations in chronological order. The detailed description of
matching and clustering algorithms used in the frameworks are in Sections 3.2. The
algorithms used in the initial partitioning phases of the frameworks are described in
Section 3.4. Finally, the refinement techniques used in the uncoarsening phases of the
frameworks are described in Section 3.5. Note that in some papers the old versions
of the software packages are used as competitors since the latest versions were not
released by that time.

Ponnusamy et al. [Pon+94] presented an MGP algorithm with the heavy-edge matching
algorithm in the coarsening phase and either the simulated annealing algorithm [JS98]
or the evolutionary/genetic algorithm [Kim+11] in the initial partitioning phase. They
do not apply any refinement technique in the uncoarsening phase. Their experiments
indicate that the contraction of a graph significantly decreases the time of its initial
partitioning with a small loss in quality.

Hendrickson and Leland [HL95a] presented their MGP algorithm to solve the k-
way graph partitioning problem. This algorithm consists of the random matching
algorithm in the coarsening phase, the recursive spectral bisection [HL95b] in the
initial partitioning phase, and the generalization of the Fiduccia and Mattheyses local
search for k-way local search. The aforementioned algorithms were implemented
by the authors in the Chaco 2.0 framework. Their experiments indicate that this
approach has better trade-off between running time and quality than the recursive
interval bisection [Sim91; Wil91] with/without the Fiduccia and Mattheyses local
search and the recursive spectral bisection with/without the Fiduccia and Mattheyses
local search.

Gupta [Gup97] presented an MGP algorithm to solve the k-way graph partitioning
problem. Gupta uses one of the following three matching algorithms in the coarsening
phase: heavy-edge matching, greedy matching, and heavy-triangle matching. When
the contracted graph in small enough, Gupta applies the graph growing algorithm to
build the initial partition of it. Afterwards, either the modification of Fiduccia and
Mattheyses local search or greedy local search is used to refine the partition in the
uncoarsening phase. Additionally, Gupta repeatedly repartitions the contracted graph
on each level of the graph hierarchy choosing the best partition to proceed with in
the uncoarsening phase. The experiments indicate that for most of the instances the
algorithm by Gupta is better than the frameworks kMetis and pMetis in terms of
running time. But, on average, kMetis and pMetis construct cuts that are several
percents smaller than the cuts constructed by the author’s algorithm. Note that the
comparison was performed with old versions of kMetis and pMetis.

56

3.7 Multi-level Graph Partitioning Frameworks

Karypis and Kumar [KK95b; KK98a] presented an MGP algorithm for the graph
bipartitioning problem. They consider four matching algorithms: random matching,
light-edge matching, heavy-edge matching, and heavy clique matching in the coarsening
phase. For the initial partitioning phase, they consider spectral bisection [BS93; HL95a;
PSL90], the graph growing algorithm, and the greedy graph growing algorithm. For
the uncoarsening phase, they use the modified Fiduccia and Mattheyses local search.
The authors implemented this approach in the pMetis framework. According to their
experiments [KK98a], the best trade-off between running time and quality shows the
combination of the heavy-edge matching algorithm in the coarsening phase, the greedy
graph growing algorithm in the initial partitioning phase, and the modification of the
Fiduccia and Mattheyses local search in the uncoarsening phase. Additionally, they
compare their best algorithm to the framework Chaco 2.0 and the multi-level spectral
bisection. The best algorithm outperforms both competitors in terms of running time
and quality.

To solve the k-way graph partitioning problem, Karypis and Kumar [KK98c] suggest
a modification of the MGP algorithm for the graph bipartitioning problem. Instead of
partitioning a graph into k blocks using the multi-level recursive bisection, they first
contract the graph and only then apply the multi-level recursive bisection in the initial
partitioning phase. The authors implemented this approach in the kMetis framework.
The experiments indicate that this approach outperforms the framework Chaco 2.0,
the multi-level spectral bisection [KK98a], and their version of the multi-level recursive
bisection in terms of running time and quality.

Walshaw et al. [WC00a] presented an MGP algorithm that uses heavy-edge matching
in the coarsening phase to build a clustering and proceed to contract a graph until
it has k vertices. Since the coarsest graph has k vertices, each vertex is assigned
to its own block. In the uncoarsening phase, the authors allow a small amount of
additional imbalance that decreases after each uncontraction of a graph. This allows
to find high-quality partitions, although they can be imbalanced. To avoid highly
imbalanced partitions, the amount of additional imbalance should be chosen carefully
on each level of the contraction hierarchy. Otherwise, quality of a partition can
significantly degrade during balancing of the partition. To perform balancing and local
search simultaneously, the authors first compute a flow along the edges of the quotient
graph, which determines how many vertices to transfer from one block to another to
balance the partition. Next, a modification of Fiduccia and Mattheyses local search is
employed. It tries to improve quality of the partition and in the same time to balance
it using pre-computed flows. The aforementioned MGP algorithm is implemented in
the Jostle framework. The experiments indicate that Jostle outperforms kMetis in
terms of quality and running time on a benchmark of eight graphs.

Monien et al. [MPD00] presented an MGP algorithm to solve the graph bisection
problem and implemented it in the Party framework. They consider four matching
algorithms in the coarsening phase: random edge matching, heavy-edge matching,
greedy matching, and locally heaviest matching. They contract a graph until it has

57

3 Related Work

only two vertices, as a result there is no need for an initial partitioning of the graph.
Afterwards, they apply the helpful-sets refinement technique in the uncoarsening phase.
Their experiments indicate that the graph partitioning algorithm with the locally
heaviest matching algorithm yields the best running time and quality. Additionally,
they compare their algorithm to the following frameworks: Chaco, Jostle, and pMetis.
But none of the software tools outperforms all the others in terms of quality and
running time.

Pellegrini [Pel07] presents a diffusion-based MGP algorithm that computes partitions
which have short length of boundary and do not have irregular shapes. In order to do
this, the algorithm tries to improve the balance of a partition and refine it using the
diffusion process. Afterwards, Fiduccia and Mattheyses local search is used to further
improve the partition. The coarsening and initial partitioning phases are not described
in details, however it is likely that the heavy-edge matching algorithm is used in the
coarsening phase. This MGP algorithm is implemented in the Scotch framework.
Pellegrini compares the algorithm to multi-level recursive bipartitioning algorithm
from the Scotch framework and to the multi-level k-way MPG algorithm from the
kMetis framework. The first set of experiments presents only a comparison of the
algorithms from the Scotch framework on a benchmark of 11 graphs for different
number of blocks. On average, the diffusion-based algorithm produces cuts with
diameter and size less than those produced by the multi-level recursive bipartitioning
algorithm. The second set of experiments presents a comparison of the algorithms
from both frameworks for only two graphs and different number of blocks. Here the
multi-level bipartitioning algorithm from the Scotch framework produces most of the
smallest cuts but the diffusion-based algorithm produces more partitions with lower
diameter. However, we consider this comparison as not comprehensive since it was
made only for two graphs.

Meyerhenke et al. [MMS09a] presented an MGP algorithm based on the diffusion
process and implemented it in the DiBaP framework. This algorithm first contracts
a graph using the local max algorithm by Preis [Pre99]. When the contracted graph
becomes sufficiently small the more expensive algebraic multigrid (AMG) coarsening
[SSS12; Stü01; TOS00] is used to contract it further. During the initial partitioning
phase, the authors use the diffusion-based partitioner. More specifically, it is the bubble
framework that employs a diffusion-based algorithm to estimate how well two vertices
are connected (the number of short paths between them). Afterwards, a similar
algorithm is used to refine partitions of successive uncontracted graphs. When an
uncontracted graph is sufficiently large, a modification of the aforementioned diffusion
based algorithm is used for refinement. This modification reduces running time by
concentrating only on the moves in the area of boundary vertices. The experiments
indicate that the author’s MGP algorithm partitions the eight largest graphs from
Walshaw collection [Wal] with better quality than that of kMetis and Jostle.

Osipov and Sanders [OS10] presented an MGP algorithm with a novel n-level coarsening
phase. This algorithm contracts only one edge per round in the coarsening phase. More

58

3.7 Multi-level Graph Partitioning Frameworks

precisely, during each round an edge with the highest rank (rank(u, v) = w(u,v)
w(u)·w(v)) is

selected and contracted. The result is a coarse graph that has one vertex less than the
finer one. When the number of vertices reduces by a preset factor c > 2, an additional
trial with different seed is performed. Namely, the current coarse graph is partitioned
two times with two different seeds and the best cut is taken. The experiments indicate
that additional trials produce a small reduction of the cut sizes. When the coarsest
graph has less than 20K vertices, the coarsening phase stops and the initial partition
is constructed using the Scotch framework. In the uncoarsening phase, Osipov and
Sanders perform localized k-way local search around the last uncontracted edge if at
least one of its incident vertices is at the boundary. This local search may find an
improvement moving only a small number of vertices since it is localized. But this also
means that each of these local searches must perform a constant number of moves since
there are O(|V |) coarse graphs and hence O(|V |) local searches are performed. To
solve this problem, the authors developed an adaptive stopping rule. The experiments
indicate that without the adaptive stopping rule running time increases by an order of
magnitude giving only 1% quality improvement. The aforementioned MGP algorithm
is implemented in the KaSPar framework. The authors compare KaSPar to kMetis,
Scotch, and KaPPa. KaSPar produces considerably smaller cuts than other algorithms,
although it is slower. Thus, additional tests are necessary that allow faster algorithms
to compute more partitions and choose among them one with the smallest cut.

Sanders and Schulz [SS11] consider several algorithms based on the MGP scheme
implemented in the KaHIP framework. The quality-oriented algorithm (strong config-
uration) produces cuts with the average size smaller than that of other competitors
(kMetis, DiBaP, Scotch, and KaSPar). Additionally, the authors were able to improve
partitions of multiple graphs from Walshaw collection [Wal]. This algorithm uses the
global path algorithm to construct a matching with respect to the edge rating in the
coarsening phase. The framework Scotch 5.1.9 is used in the initial partitioning
phase. In the uncoarsening phase, a combination of the k-way and two-way Fiduccia
and Mattheyses local searches, the two-way flow based refinement technique, and the
localized k-way multi-try local search is used.

Meyerhenke et al. [MSS14] considered multiple algorithms based on the MGP scheme
and implemented them in KaHIP. Some of them are modifications of the MGP algo-
rithms that were developed by the authors before in [SS11]. The quality-oriented
algorithm (strong configuration) outperforms in terms of quality all competitors
including previous MGP algorithms by the authors (KaHIP) and other competitors
(Scotch and kMetis). The main novelty of these MGP algorithms is using the size-
constrained label propagation algorithm to cluster a graph during the coarsening phase.
Using a clustering of the graph in the coarsening phase allows to contract clusters of
vertices and, as a result, quality of partitions improves. Multi-level recursive bisection
is used in the initial partitioning phase, whereas in the uncoarsening phase, the same
combination of the refinement techniques is used as before.

59

3 Related Work

3.8 Parallel Multi-level Graph Partitioning Frameworks

In this section, we present a detailed overview of most existing parallel graph parti-
tioning frameworks. The detailed description of matching and clustering algorithms
used in the frameworks are in Sections 3.2. The algorithms used in the initial parti-
tioning phases of the frameworks are described in Section 3.4. Finally, the refinement
techniques used in the uncoarsening phases of the frameworks are described in Sec-
tion 3.5.

ParMetis is a parallel distributed memory graph partitioning framework presented
in multiple papers [KK96; KK97; KK98b; KK99]. In the coarsening phase, the
authors use the parallel distributed memory heavy-edge matching algorithm. In the
initial partitioning phase, to perform k-way partitioning the distributed coarse graph is
collected on k PEs. Then the i-th PE performs O(log k) multi-level recursive bisections;
that is, until it constructs the i-th block [KK97]. In the uncoarsening phase, the
authors use the parallel distributed memory greedy refinement technique to improve
the partition. Furthermore, the authors also present an experimental evaluation of
their parallel graph partitioning framework. The version of the parallel framework
described by Karypis and Kumar [KK99] produces partitions of quality at most 5%
worse than partitions produced by the parallel algorithm on a single PE. The authors
also state that their parallel framework achieves speed-ups up to 35 for large graphs
on 128 PEs.

Jostle is a parallel distributed memory graph partitioning framework presented in
multiple papers [WC00b; WC+02; WC08; WCE97]. In the coarsening phase, the
authors use the parallel distributed memory heavy-edge matching algorithm. When
the distributed coarse graph is small enough, it is collected on each PE and parti-
tioned using the sequential framework Jostle. Then the best partition is selected
among all PEs [WC+02]. In the uncoarsening phase, the authors use the parallel
distributed memory Fiduccia-Mattheyses local search. Additionally, Walshaw and
Cross present an experimental comparison of the Jostle framework and the ParMetis
framework [WC00b]. Jostle produces partitions that are on average 10% better but
it is a factor of three slower than ParMetis.

PT-Scotch is a parallel distributed memory multi-level graph partitioning framework
presented in multiple papers [CP08; HP10; Pel12]. In the coarsening phase, the
authors use the parallel distributed memory matching algorithm [HP10]. When the
distributed coarse graph is small enough, it is collected on each PE and additional
contractions of the graphs are performed. Then each PE partitions its corresponding
coarse graph using the Scotch framework [Pel12]. In the uncoarsening phase, the
authors use the parallel distributed memory diffusion-based refinement technique. The
authors present an experimental comparison of PT-Scotch and ParMetis in [HP10].
PT-Scotch produces partitions of better quality for most of the test cases except when
the number of blocks is high. In these test cases, ParMetis produces partitions of

60

3.8 Parallel Multi-level Graph Partitioning Frameworks

slightly better quality than PT-Scotch. The authors explain this by the use of the
recursive bisection in the initial partitioning phase. Furthermore, both frameworks
show comparable performance.

Meyerhenke et al. [MMS09a] presented a parallel shared-memory version of the DiBaP
framework (see Section 3.7). The author parallelizes algebraic multigrid (AMG)
coarsening and diffusion-based algorithms that are used during the initial partitioning
and uncoarsening phases. The average speed-up on the eight largest graphs from
Walshaw collection [Wal] is 1.55.

Holtgrewe et al. [HSS10] presented parallel distributed memory multi-level graph
partitioning framework called KaPPa. In the coarsening phase, the authors use a
parallel distributed memory matching algorithm described in Section 3.3.1. When the
distributed coarse graph is small enough, it is collected on each PE and partitioned
using the Scotch framework with a random seed. Finally, the best partition is
selected among all partitions constructed by all PEs. In the uncoarsening phase, the
authors use the parallel distributed memory Fiduccia and Mattheyses local search. The
authors present an experimental comparison of KaPPa with ParMetis and sequential
frameworks Scotch and kMetis. KaPPa produces partitions that are on average about
30% better than partitions produced by ParMetis but KaPPa is at least an order
of magnitude slower than ParMetis. Nevertheless, the authors note that additional
repetitions of ParMetis increase average quality only by 3%. Furthermore, KaPPa
produces partitions that are on average about 16% and 8% better than partitions
produced by Scotch and kMetis, respectively.

Mt-Metis is a parallel shared-memory graph partitioning framework presented in
multiple papers [LaS+15; LK13; LK16]. Some parts of Mt-Metis are based on the
similar ideas from the ParMetis framework. During the coarsening phase, the input
graph is contracted using the parallel shared-memory heavy-edge matching algorithm
matching. After the coarse graph is small enough, it can be partitioned using one of
the following parallelizations of the initial partitioning [LK13]. The first parallelization
employs the parallel nature of the recursive bisection. Each PE bisects the coarse
graph into two blocks and then the best bisection is selected. Next, one half of the
PEs recursively partition the first block and the other half of the PEs the second block.
In the second approach, each PE performs multiple k-way partitionings and the best
partition among all PEs is selected. In the uncoarsening phase, several refinement
techniques can be used: the parallel shared-memory greedy refinement technique or the
hill-climbing refinement technique. LaSalle et al. [LaS+15] present an experimental
comparison of Mt-Metis, ParMetis and PT-Scotch. Mt-Metis is about 3 and 7.5
times faster than ParMetis and PT-Scotch, respectively, and still produces partitions
of comparable quality.

Meyerhenke et al. [MSS17] presented the parallel distributed memory multi-level graph
partitioning framework ParHIP. In the coarsening phase, the authors use the parallel
label propagation algorithm. When the coarsest graph distributed over the PEs is
small enough, it is collected on each PE and partitioned by each PE using the parallel

61

3 Related Work

distributed memory evolutionary algorithm [SS12a] as follows. In the beginning, each
PE constructs local partitions and performs combine/mutation operations on them
to improve the partitions. Afterwards, the PEs exchange their populations using
randomized rumor spreading by Doerr et al. [DF11]. Finally, the best partition is
selected among all partitions constructed by all PEs. In the uncoarsening phase,
the authors use again the parallel label propagation algorithm to refine the partition.
Meyerhenke et al. present an experimental comparison of ParHIP and ParMetis.
Additionally, they mention that they also tested PT-Scotch but it showed worse results
than ParMetis in terms of quality and running time. ParHIP produces partitions
of better quality that are on average about 19% better than partitions produced by
ParMetis. Furthermore, ParHIP is about 38% better on average in terms of quality
and more than two times faster on average for social networks, whereas ParHIP is only
about 3% better on average in terms of quality and five time slower on average for
mesh type networks.

Meyerhenke [Mey12] presented a parallel distributed memory multi-level graph parti-
tioning framework PDiBaP. In the coarsening phase, the author uses parallel distributed
memory local max algorithm. When the distributed coarse graph is small enough, the
parallel diffusion process is used to construct an initial partitioning and to further
improve it in the uncoarsening phase. Meyerhenke presented an experimental com-
parison of PDiBaP with ParMetis and Jostle. PDiBaP produces partitions of better
quality than ParMetis and Jostle but it is about 30 times slower than both of the
competitors.

Sui et al. [Sui+10] presented a parallel shared-memory multi-level graph partitioning
framework that parallelizes the sequential framework kMetis. More precisely, the
authors use the Java-based parallel framework Galois that employs so-called amor-
phous data-parallelism. This data-parallelism considers every vertex of a graph as an
active element performing computations on it and its neighbors. Sui et al. presented
experiments comparing their partitioner with kMetis and ParMetis. The authors’
framework has comparable quality to that of kMetis. Furthermore, it has better
quality than ParMetis. However, it is not clear why it shows better quality since
both parallel frameworks employ similar algorithms. Moreover, the framework shows
better speed-ups than ParMetis but it is slower. This is not surprising since it is
implemented using Java.

Slota et al. [SMR14] presented a parallel shared-memory graph partitioning framework
PuLP and parallel distributed-memory graph partitioning framework [Slo+17]. These
frameworks are able to perform multi-objective and multi-constraint graph partitioning.
Both frameworks use the label propagation algorithm to construct an initial partitioning.
However, it can be highly imbalanced. Next, the frameworks improve the objectives
using Fiduccia-Mattheyses local search and change the partition to satisfy multi-
constraints. The authors compare both frameworks with ParHIP and ParMetis.
Both competitors produce partitions of better quality for the single-constraint single-
objective graph partitioning problem but PuLP shows better running times.

62

3.9 Hardness Results and Approximations

Kirmani and Raghavan [KR13] presented a parallel distributed-memory graph par-
titioning framework that solves a relaxed version of the graph partitioning problem
where no strict balance constraint is enforced. The blocks only have to have approxi-
mately the same size and, thus, the results are incomparable with non-relaxed graph
partitioners. Note that the problem is easier than fulfilling a strict balance constraint.
Furthermore, their approach attempts to obtain information on the graph structure by
computing an embedding into the coordinate space using multi-level graph drawing.
Afterwards, partitions are computed using a geometric algorithm.

Uganer and Backstrom [UB13] use a parallel distributed-memory label propagation
algorithm to partition large networks. The authors do not use a multi-level scheme and
rely on a given or random partition which is improved by combining the unconstrained
label propagation approach with linear programming. This approach does not produce
high-quality partitions.

3.9 Hardness Results and Approximations

In this section, we discuss papers that prove the NP-hardness of the graph parti-
tioning problem and suggest different approximation algorithms with a guaranteed
approximation ratio to solve the problem. Unfortunately, all such approximation algo-
rithms are complicated and hard to implement. Furthermore, they tend to have larger
running times and worse solution quality compared to those of the aforementioned
heuristics. Nevertheless, the approximation algorithms have worst-case guarantees
unlike heuristics.

Garey et al. [GJS74] as well as Hyafil and Rivest [HR73] showed that the decision
version of the graph partitioning problem for k = 2 is NP-complete. More specifically,
Garey et al. presented a reduction of the problem to the max cut problem that asks
to find a cut of at least a preset size. Feige and Krauthgamer [FK02] presented an
approximation algorithm with O(log1.5 |V |) approximation ratio for general graphs
with non-negative weighted edges in the case when ε = 0 and k = 2. Additionally,
this algorithm has a better ratio of O(log |V |) for planar graphs. Furthermore, they
extend it for an arbitrary constant k (here k is not part of an input) preserving the
approximating ratio. However, the running time is exponential in k: O(nO(k)), where
n is the size of the input. Andreev and Räcke [AR04] presented an approximation
algorithm with O(log2 |V |) approximation ratio for general graphs with non-negative
edge weights for the case when k is part of the input and ε > 0. Furthermore, they
proved that there is no approximation algorithm with a finite approximation ratio
and polynomial running time if ε = 0 and k is part of the input unless P = NP. A
similar result was shown by Nguyen and Jones [BJ92]. Here finite means not necessary
a constant but any finite function of n where n is the size of an input. For the case
ε ≥ 1, Even et al. [Eve+97] developed an approximation algorithm with O(log |V |)
ratio. The other modification of the graph partitioning problem is the minimum k-cut

63

3 Related Work

problem that asks to find a partition of a graph into exactly k blocks minimizing the
sum of the weights of the cut edges without any size constraints. If k is part of the
input then the problem is NP-hard. Otherwise, there is a polynomial algorithm that
solves the problem in O(|V |O(k2)T (|V |, |E|)) time, where T (|V |, |E|) is the time to
find a minimum (s, t)-cut of a graph with |V | vertices and |E| edges. Note that the
algorithm is exponential in k. Wagner et al. [WW93] showed the dependency between
the lower bound on the size of a block and the running time when a graph must be
partitioned into two blocks minimizing the number of edges between them. If the size
of each block must be at least some constant then there is a polynomial algorithm
that partitions the graph into such two blocks. If the size of each block is Ω(|V |ε),
where ε ∈ (0, 1], then the problem is NP-hard. Furthermore, the complexity class of
the problem remains unknown if the size of each block must be Ω(log |V |).

Hardness of Parallelization. Savage and Wlodka [SW91] prove P-completeness
for the Kernighan-Lin local search and the the Fiduccia-Mattheyses local search. Both
proofs reduce the circuit value problem to the corresponding local search technique.
P-completeness of both local searches evidences that it is unlikely that efficient parallel
algorithms for them exist, although there is no proof of that. Here a parallel algorithm
is efficient if it solves a problem in polylogarithmic running time using a polynomial
number of processors. The set of such problems defines the class NC [Lei14].

64

4Chapter 4

Parallel Shared-Memory
Multi-level Graph Partitioning

Partitioning a graph into k blocks of similar size such that few edges are cut is a
fundamental problem with many applications. This problem arises in almost all
parallel distributed-memory problems where there is an implicit (or explicit) graph G
that represents interconnections within the input data. The most well-known example
is the application of graph partitioning to distribute work among nodes of a compute
cluster. Another good example is the distribution of the Facebook social graph among
multiple servers [Sha+16]. The fewer edges whose vertices reside on different servers
the smaller the query time as well as the load of the network and the servers. In
particular, when you process a graph in parallel on k processing elements (PEs), you
often want to partition the graph into k blocks of about equal size. In this thesis, we
focus on a version of the problem that constrains the maximum block size to (1 + ε)
times the average block size and tries to minimize the total cut size, i.e., the number
of edges that run between blocks.

There is a need for shared-memory parallel graph partitioning algorithms that effi-
ciently utilize all cores of a machine. This is due to the well-known fact that CPU
technology increasingly provides more cores with relatively low clock rates in the last
years.Moreover, executing distributed-memory graph partitioners on shared-memory
machines may yield disappointing speed-ups. Techniques geared towards shared-
memory systems would help. Furthermore, shared-memory parallel graph partitioning
algorithms can in turn be used as a component of a distributed graph partitioner,
which distributes parts of a graph to nodes of a compute cluster and then employs a
shared-memory parallel graph partitioning algorithm to partition the corresponding
part of the graph on a node level.

References. This chapter is based on the conference paper [ASS18] published
together with Peter Sanders and Christian Schulz. The text was mainly written by
Yaroslav Akhremtsev with the editing by Peter Sanders and Christian Schulz. The
design and analyses of the algorithms were made by all authors. The algorithms were
implemented by Yaroslav Akhremtsev.

Contribution: We present a high-quality shared-memory parallel multi-level graph
partitioning algorithm that parallelizes all three of the MGP phases – coarsening,

65

4 Parallel Shared-Memory Multi-level Graph Partitioning

initial partitioning and refinement – using C++17 multi-threading. Our approach
uses the parallel label propagation algorithm that is able to shrink large complex
networks fast during coarsening. Furthermore, we consider the parallel local max
matching algorithm by Birn et al. [Bir+13] instead of the label propagation algorithm
since we expect that for several classes of graphs (e.g., mesh graphs) the usage of
matching algorithms improves quality of partitions. Our parallelization of localized
k-way multi-try [SS11] is able to obtain high-quality solutions and guarantee balanced
partitions by performing the majority of the work in mostly independent local searches
on individual PEs. Using cache-aware hash tables, we limit memory consumption and
expect improvement of cache locality. Summarizing, our approach scales comparatively
better than other parallel partitioners and has considerably higher quality which does
not degrade with increasing number of PEs.

The rest of this chapter is organized as follows. We discuss the related work in
Section 4.1. In Section 4.2, we explain in details the multi-level graph partitioning
approach and the algorithms that we parallelize. Section 4.3 presents our approach
to the parallelization of the multi-level graph partitioning phases. More specifically,
we present a parallelization of size-constrained label propagation [MSS14] as well
as a parallelization of local max matching algorithm in Section 4.3.1. Further, we
present a parallelization of localized k-way multi-try local search [SS11] in Section 4.3.3.
Section 4.4 describes further optimizations. An extensive experimental evaluation is
presented in Section 4.5.

4.1 Related Work

There has been a considerable amount of research on graph partitioning so that we
refer the reader to Chapter 3 for more detailed overview of the material. Here, we
focus on issues closely related to our main contributions in this chapter. Almost all
general-purpose methods that are able to obtain good partitions for large real-world
graphs are based on the multi-level graph partitioning approach (MGP). The basic idea
can be traced back to multigrid solvers for solving systems of linear equations [Sou35]
but more recent practical methods are based on mostly graph theoretic aspects, in
particular edge contraction and local search. There are many ways to create graph
hierarchies such as matching-based schemes [Die+00] or variations thereof [AK06]
and techniques similar to algebraic multigrid (e.g., [SSS12]). See Section 3.1 for more
details. Well-known software packages based on this approach include Chaco, DibaP,
Jostle, KaHIP, KasPar, Metis, Party, and Scotch. A more detailed description of
sequential and parallel frameworks can be found in Sections 3.7 and 3.8. In the
following, we present a high-level overview of well-known parallel frameworks.

Probably the fastest available distributed memory parallel code is the parallel version of
Metis, ParMetis [KK99]. See details in Section 3.8. This parallelization has problems
maintaining the balance of the blocks since at any particular time, it is difficult to say

66

4.1 Related Work

how many vertices are assigned to a particular block. Furthermore, ParMetis only
uses very simple greedy local search algorithms that do not yield high-quality solutions.
Mt-Metis by LaSalle and Karypis [LK13; LK16] is a shared-memory parallel version of
ParMetis that uses a hill-climbing technique during refinement (see Section 3.6). This
local search method is a simplification of localized k-way multi-try local search [SS11]
in order to make it fast. The idea is to find a set of vertices (hill) whose move to
another block is beneficial and then to move this set accordingly. However, it is
possible that several PEs move the same vertex. To handle this, each vertex is assigned
a processor element (PE), which can move it exclusively. Other PEs use a message
queue to send a request to move this vertex.

Sui et al. [Sui+10] presented a Java-based shared-memory implementation of the
framework ParMetis. They state slightly better speed-ups compared to ParMetis.
Unfortunately, we were not able to receive the source code upon request. Therefore,
we cannot compare ourselves to this framework. Furthermore, Mt-Metis shows
significantly better speed-ups and produces smaller cuts than ParMetis [LK13; LK16].
Therefore, we expect that Mt-Metis is superior than this framework.

PT-Scotch [CP08; HP10; Pel12], the parallel version of Scotch, is based on recursive
bipartitioning. This is more difficult to parallelize than direct k-partitioning since
in the initial bipartition, there is less parallelism available. The unused processor
power is used to perform several independent attempts in parallel. The involved
communication effort is reduced by considering only vertices close to the boundary of
the current partitioning (band-refinement). KaPPa [HSS10] is a parallel matching-based
MGP algorithm which is restricted to the case where the number of blocks equals the
number of processors used. DiBaP [Mey12; MMS09a] is a multi-level diffusion-based
shared-memory framework that is targeted at small- to medium-scale parallelism with
dozens of processors.

The label propagation clustering algorithm was initially proposed by Raghavan et
al. [RAK07]. See Section 3.2.2 for more details. A single round of simple label propaga-
tion can be interpreted as the randomized agglomerative clustering approach proposed
by Catalyurek and Aykanat [CA99a]. The distributed-memory label propagation
algorithm by Uganer and Backstrom [UB13] has been used to partition social networks.
The authors do not use a multi-level scheme and rely on a given or random partition
which is improved by combining the unconstrained label propagation approach with
linear programming. This approach does not yield high-quality partitions [MSS17].
Sections 3.2.2 and 3.3.2 contain overviews of different sequential and parallel clustering
algorithms (including label propagation) that can be used in the coarsening phase.
Note that the authors of all described parallel shared-memory label propagation algo-
rithms rely on the internal scheduler of the parallel libraries they use. However, there
is a need for a parallel label propagation algorithm that is able to achieve a good load
balance for an arbitrary distribution of vertex degrees since the distribution can be
highly non-uniform. Furthermore, we believe that work stealing also yields good load
balance but it is more complex.

67

4 Parallel Shared-Memory Multi-level Graph Partitioning

The local max matching algorithm was proposed by Preis [Pre99]. We use the parallel
local max matching algorithm by Birn et al. [Bir+13] in our graph partitioning
algorithm since it is easy to implement and has good scalability. Sections 3.2.1 and
3.3.1 contain overviews of different sequential and parallel matching algorithms that
can possibly be used in the coarsening phase. We note that there is a parallel matching
algorithm called Suitor by Manne and Halappanavar [MH14] that has better scalability
and computes better matchings. However, usually graph partitioning frameworks
with label propagation algorithms are faster and construct partitions of better quality
than frameworks with matching algorithms according to Meyerhenke et al. [MSS14].
Therefore, we mainly focus on the parallelization of the label propagation algorithm
in the coarsening phase.

Meyerhenke et al. [MSS17] propose the ParHIP framework to partition large complex
networks on distributed memory parallel machines. The partition problem is addressed
by parallelizing and adapting the label propagation technique for graph coarsening
and refinement. The resulting system is more scalable and achieves higher quality
than the state-of-the-art systems like ParMetis or PT-Scotch [MSS17].

Slota et al. [SMR14] presented a parallel shared-memory graph partitioning framework
PuLP. This frameworks uses the label propagation algorithm to construct an initial
partitioning. However, it can be highly imbalanced. Additionally, the framework
improves quality using Fiduccia-Mattheyses local search.

Kirmani and Raghavan [KR13] presented a parallel distributed-memory graph par-
titioning framework that solves a relaxed graph partitioning problem without an
enforced balance constraint.

4.2 Multi-level Graph Partitioning

The multi-level graph partitioning approach (MGP) is used in almost all existing graph
partitioning frameworks due to its ability to compute high-quality partitions relatively
fast. MGP algorithms recursively contract a graph preserving its basic structure
and producing a hierarchy of graphs. Afterwards, it applies an initial partitioning
algorithm to the coarser graph and iteratively undoes the contraction, applying local
search or other combinatorial optimization techniques at each level of the hierarchy.
Figure 4.1 shows a high-level outline of MGP. The overview of the frameworks that
use MGP can be found in Sections 3.7 and 3.8. Section 3.1 gives a brief description of
the papers that analyze different properties of MGP.

We now give an in-depth description of the three main phases of a multi-level graph
partitioning scheme: coarsening, initial partitioning, and uncoarsening. In particular,
we describe the sequential algorithms that we parallelize in the following sections.
Our starting point here is the fast social configuration of KaHIP [MSS14; SS11]. For
the development of the parallel algorithm, we add localized k-way multi-try local

68

4.2 Multi-level Graph Partitioning

search scheme that gives higher quality, and improve it to perform less work than the
original sequential version. The original sequential implementations of these algorithms
are contained in the KaHIP graph partitioning framework. Additionally, we employ
random tie-breaking whenever possible. This diversifies the search and yields improved
solutions by repeated tries.

Clustering

Contraction

Initial
Partitioning

Uncontraction

RefinementC
oarsen

in
g U

n
co

ar
se

n
in

g
Figure 4.1: The multi-level graph partitioning scheme.

4.2.1 Coarsening

To create a new level of a graph hierarchy, the rationale here is to compute a clustering
with clusters that are bounded in size and then to contract each cluster into a
supervertex. If each cluster contains at most two vertices then the clustering is a
matching. We can use either a matching or a clustering algorithm. This coarsening
procedure is repeated recursively until the coarsest graph is small enough. Contracting
a clustering (or a matching) works by replacing each cluster with a single vertex.
The weight of this new vertex (or supervertex) is set to the sum of the weights of all
vertices in the original cluster. There is an edge between two vertices u and v in the

69

4 Parallel Shared-Memory Multi-level Graph Partitioning

contracted graph if the two corresponding clusters in the clustering are adjacent to
each other in G, i.e., if the cluster of u and the cluster of v are connected by at least
one edge. The weight of an edge (A,B) is set to the sum of the weights of edges that
run between cluster A and cluster B of the clustering. The graph hierarchy created in
this recursive manner is then used by the partitioner. This construction ensures that
a partition of the coarse graph corresponds to a partition of the finer graph with the
same cut and balance. We now describe the clustering and the matching algorithms
that we parallelize.

Clustering with Label Propagation

We denote the set of all clusters as C and the cluster ID of a vertex v as C[v]. There are
a variety of clustering algorithms. See Section 3.2.2 for details. In our framework, we
use the size-constrained label propagation algorithm by Meyerhenke et al. [MSS14].

The size constrained label propagation algorithm works in iterations, i.e., the algorithm
is repeated ` times, where ` is a tuning parameter. Initially, each vertex is in its
own cluster (C[v] = v) and all vertices are put into a queue Q in increasing order of
their degrees. During each iteration, the algorithm iterates over all vertices in Q. A
neighboring cluster C of a vertex v is called eligible if C will not become overloaded
once v is moved to C. When a vertex v is visited, it is moved to the eligible cluster
that has the strongest connection to v, i.e., it is moved to the eligible cluster C that
maximizes ω({(v, u) | u ∈ N(v) ∩ C}). If a vertex is moved to a different cluster then
all its neighbors are added to a queue Q′ for the next iteration. At the end of an
iteration, Q and Q′ are swapped, and the algorithm proceeds with the next iteration.
It stops after a fixed number of iterations or when Q is empty. The sequential running
time of one iteration of the algorithm is O(m+ n).

Matching

A matching M is a set of edges that do not have common incident vertices. The weight
of a matching is the sum of the weights of the edges it contains. We want to compute
a matching with a weight that is as close as possible to the weight of the maximum
weighted matching. Unfortunately, the algorithms that compute exact maximum
weighted matching [Gab90] have super-linear running time, which we would like to
avoid. Therefore, we use the local max matching algorithm by Preis et al. [Pre99].
Initially, the matching is empty and all vertices are put into a queue Q. During each
iteration, the algorithm iterates over the vertices in Q. It selects for each vertex v an
edge of maximum weight to a non-matched neighbor (local max neighbor) such that
the total weight of both vertices does not exceed a preset threshold and breaking ties
randomly. If the other vertex incident to the selected edge also selects this edge then
these vertices are matched. Otherwise, the algorithm inserts v into the queue Q′. At
the end of an iteration, Q and Q′ are exchanged, and the algorithm proceeds with the

70

4.2 Multi-level Graph Partitioning

next iteration. It stops after a fixed number of iterations or when Q is empty. The
sequential running time of one iteration of the algorithm is O(m+ n).

4.2.2 Initial Partitioning

We adopt the algorithm from KaHIP [MSS14; SS11]. After coarsening, the coarsest
graph in the hierarchy is partitioned into k blocks using a recursive bisection algo-
rithm [Ker69]. More precisely, it is partitioned into two blocks and then the subgraphs
induced by these two blocks are recursively partitioned into dk2 e and b

k
2 c blocks each.

Subsequently, this partition is improved using local search and flow techniques. To get
a better solution, the coarsest graph is partitioned into k blocks I times (a tunning
parameter) and the best solution is returned.

4.2.3 Uncoarsening

After initial partitioning, a local search algorithm is applied to improve the cut of
the partition. When local search has finished, the partition is projected to the next
finer graph in the hierarchy, i.e., a vertex in the finer graph is assigned the block of its
coarser representative. This process is then repeated for each level of the hierarchy.

There are a variety of local search algorithms: size-constrained label propagation,
Fiduccia-Mattheyses k-way local search [FM82], localized k-way multi-try local
search [SS11], max-flow min-cut based local search [SS11] etc. See section 3.5 for more
details. The configurations of KaHIP use combinations of those. Since k-way local
search is P-complete [SW91], our algorithm uses size-constrained label propagation
in combination with localized k-way multi-try local search (LMLS). More precisely,
the size-constrained label propagation algorithm can be used as a fast local search
algorithm if one starts from a partition of the graph instead of a clustering and uses
the size constraint of the partitioning problem. On the other hand, localized k-way
multi-try local search is able to find higher quality solutions. Overall, this combination
allows us to achieve a parallelization with good solution quality and parallelism.

We now describe LMLS. In contrast to previous k-way local search methods, LMLS is
not initialized with all boundary vertices, that is, not all boundary vertices are eligible
for movement at the beginning. Instead, the method is repeatedly initialized with a
single boundary vertex. This enables more diversification and has a better chance of
finding nontrivial improvements that begin with negative gain moves [SS11].

The algorithm is organized in a nested loop of global and local iterations. Each global
iteration consists of multiple local iterations and works as follows. In the beginning,
the algorithm constructs a hash table that contains all boundary vertices. We use a
hash table since after each local iteration the set of boundary vertices changes and
must be updated. Next, instead of putting all boundary vertices directly into a priority

71

4 Parallel Shared-Memory Multi-level Graph Partitioning

queue, boundary vertices under consideration are put into a todo list T . Initially, all
vertices are unmarked. Afterwards, the algorithm repeatedly chooses and removes
a random vertex v ∈ T . If the vertex is unmarked, it performs k-way local search
around v, marking every vertex that is moved during this search. More precisely, the
algorithm inserts v and N(v) into a priority queue using gain values as keys and marks
them. Next, it extracts a vertex with a maximum key from the priority queue and
performs the corresponding move updating the hash table with boundary vertices.
Unmarked neighbors of the vertex are marked and inserted into the priority queue. If
a neighbor of the vertex is already in the priority queue then its key (gain) is updated.
Note that not every move can be performed due to the size constraint on the blocks.
The local search around the vertex stops when the adaptive stopping rule by Osipov
and Sanders [OS10] (see Section 3.5) signals to stop or when the priority queue is
empty. In the end, the best partition that has been seen during the local search around
the vertex is reconstructed. During local iteration, this is repeated until the todo
list is empty. After a local iteration, the algorithm reinserts moved vertices into the
todo list in random order. Next, if the local quantile-based stopping rule (see next
paragraph) signals to stop or the cut size reduction during the last local iteration is
zero then current global iteration finishes. Otherwise, the algorithm proceeds with the
next local iteration. This approach allows further decreasing the cut size without a
significant impact on running time. After the global iteration finishes, the algorithm
uses the global quantile-based stopping rule to decide whether to start a new global
iteration. The LMLS algorithm stops when the global quantile-based stopping rule
signals to or the cut size reduction during the last global iteration is zero. This nested
loop of local and global iterations is an improvement over the original LMLS search
from [SS11] since they allow for a better control of the running time and quality of
the algorithm.

The running time of one local iteration is O(|V |+
∑
v∈V d(v)2) because each vertex can

be moved only once during a local iteration and we update the gains of its neighbors
using a bucket heap. The d(v)2 term is the total cost to update the gain of a vertex v
since we update the gain of a vertex at most d(v) times. Note that this is an upper
bound for the worst case and usually local search stops much earlier due the stopping
rule or an empty priority queue.

Quantile-Based Stopping Rule. We developed a heuristic stopping rule that
considers work-to-gain ratios of global (local) iterations to decide whether to perform
a new global (local) iteration. Here work is the number of accesses to partition IDs of
vertices during an iteration and gain is the reduction of the cut size performed during
the iteration. We empirically observed for a subset of 14 graphs from our benchmark
(see Section 2.3.2) that work-to-gain ratios have a distribution similar a log-normal
distribution. Specifically, a random variable X is log-normally distributed if lnX
is normally distributed. We denote the expectation of lnX as µ and the standard
deviation as σ. Thus, the natural logarithm of a work-to-gain ratio has a distribution
similar to a normal distribution. Now consider a sequence of work-to-gain ratios

72

4.2 Multi-level Graph Partitioning

X1, . . . , Xn for n iterations and let µ̂ =
∑n
i=1 lnXi and σ̂ =

∑n
i=1(lnXi−µ)2/

√
n− 1

be the estimates of µ and σ. To decide whether to stop or not after an n+ 1 iteration,
we compute a quantile Q(p) of the log-normal distribution using µ̂ and σ̂ and stop if
Q(p) < Xn+1 for some tuning parameter p. Here a quantile Q(p) of the log-normal
distribution is a value such that any random variable that has a log-normal distribution
is less than or equal to Q(p) with the probability p. Note that Q(p) equals eQN (p) [Nor],
where QN (p) is a quantile of the normal distribution with the parameters µ̂ and σ̂.
Our heuristic assumption here is that it is likely that each subsequent improvement of
the cut size requires more work than the previous one. Specifically, when we observe a
sufficiently high work-to-gain ratio (greater than Q(p)) we expect further work-to-gain
ratios to be even greater than the last one. Therefore, the amount of work we spent
to reduce the cut size does not pay off and will only increase whereas the cut size
reduction will decrease.

The local quantile-based stopping rule uses work-to-gain ratios computed during local
iterations. Analogously, the global quantile-based stopping rule uses work-to-gain
ratios computed during global iterations. Our experiments indicate that quantile-
based stopping rule yield a fair trade-off between the running time and quality of the
partition.

Figure 4.2 shows density histograms for natural logarithms of work-to-gain ratios of
global iterations for four graphs from our benchmark set and sequences generated
using normal distributions with expectations and standard deviations estimated using
computed work-to-gain ratios. Specifically, if we compute a sequence of work-to-gain
ratios X1, . . . , Xn, where n is the number of performed global or local iterations, then
we plot a density histogram for a sequence ln(X1), . . . , ln(Xn) and for a sequence
generated using a normal distribution with the parameters µ =

∑n
i=1 ln(Xi)/n and σ =√∑n

i=1(ln(Xi)− µ)2/(n− 1). Furthermore, Tables 4.1, 4.2 show p-values generated
using the Mann–Whitney U test (see Section 2.3.3) for 14 graphs. Our null hypothesis
is that the sequence ln(X1), . . . , ln(Xn) and the generated sequence both have the
normal distribution. If the p-value is greater than 1% (significance level), then the
null hypothesis is not rejected. We can see that most p-values are greater than 1%
and, thus, we may assume that work-to-gain ratios have a distribution similar to
a log-normal distribution. However, note that normality of ln(X1), . . . , ln(Xn) is a
purely empirical assumption since if the null hypothesis is not rejected it does not
mean it is true. We can only assume that the difference between sequences is not
practically significant according to the Mann-Whitney U test.

To strengthen our assumption even further, we consider Q-Q plots [Sci; Wik19] and
compute 95% confidence intervals for the mean and the standard deviation of the
difference between the approximated cdf function (F̂n(x) = |{ln(Xi) : ln(Xi) < x}|/n)
and the cdf function (F (x)) of the normal distribution with parameters µ and σ.
Specifically, we want to compute the mean and the standard deviation of the random
variable d(x) = |F̂n(x)− F (x)| and corresponding 95% confidence intervals. In order
to do that, we compute Di = d(ln(Xi)) for every i = 1 . . . n. Now µd =

∑n
i=1 Di/n

73

4 Parallel Shared-Memory Multi-level Graph Partitioning

and σd =
√∑n

i=1(Di − µd)2/(n− 1). To compute confidence intervals for µd and
σd, we use the basic bootstrap confidence limits [DH97, page 194, eq. (5.6)]. The
idea behind this method is that if a sample of a distribution is large enough, then
it has the same properties as the distribution. Therefore, we can sample the sample
to compute confidence intervals. Specifically, we construct 1000 samples of size n
from {D1, . . . , Dn} using sampling with replacement and compute means (standard
deviations) of all samples. Next, we sort computed means (standard deviations) and
select [q2.5, q97.5] as a corresponding confidence interval. Here q2.5, q97.5 are 2.5% and
97.5% quantiles of computed means (standard deviations). We can see that almost for
all graphs the mean and the standard deviation of d(x) is small (around 3.0% and 1.8%
for global iterations and 3.1% and 2.2% for local iterations). Therefore, we conclude
that the distribution of ln(X1), . . . , ln(Xn) is similar to the normal distribution.

Q-Q plots 4.3 shows us quantiles[Sci] for four graphs and k = 16, 64. In each plot, the
theoretical quantiles (quantiles of normal distribution) correspond to x-axis and data
quantiles correspond to y-axis. We can see that for all graphs the points are around the
line y = x. This means that quantiles of both distributions are approximately equal
and, thus, the distribution of ln(X1), . . . , ln(Xn) is similar to the normal distribution.

74

4.2 Multi-level Graph Partitioning

Table 4.1: Sample sizes (|S|), p-values, means (µd), standard deviations (σd)
and corresponding confidence intervals of differences between approximated and
real CDFs for global iterations. The last four columns are in percents.

Graph k |S| p-value µd
Conf.
interval σd

Conf.
interval

ba_2_22 16.0 719 15.2 4.8 [4.5, 5.0] 3.1 [3.0, 3.2]
ba_2_22 64.0 1542 0.0 4.6 [4.5, 4.7] 2.5 [2.5, 2.6]
com-lj 16.0 378 25.3 2.5 [2.3, 2.7] 1.9 [1.8, 2.0]
com-lj 64.0 1595 14.7 3.0 [2.9, 3.1] 1.8 [1.7, 1.8]
com-orkut 16.0 856 6.4 3.2 [3.0, 3.3] 1.7 [1.7, 1.8]
com-orkut 64.0 1771 6.1 2.9 [2.8, 3.0] 1.9 [1.9, 1.9]
del_2_27 16.0 110 27.8 2.1 [1.9, 2.3] 1.2 [1.0, 1.3]
del_2_27 64.0 133 5.8 3.7 [3.3, 4.0] 2.1 [1.9, 2.3]
del_2_27_3d 16.0 237 29.4 5.6 [5.2, 6.0] 3.3 [3.1, 3.5]
del_2_27_3d 64.0 346 28.7 4.8 [4.5, 5.1] 3.0 [2.9, 3.2]
enwiki-2018 16.0 1561 17.7 2.3 [2.2, 2.3] 1.3 [1.2, 1.3]
enwiki-2018 64.0 1785 25.9 1.9 [1.8, 1.9] 0.9 [0.9, 0.9]
er-fact1.5-scale23 16.0 4426 1.5 2.6 [2.6, 2.7] 1.4 [1.4, 1.4]
er-fact1.5-scale23 64.0 1550 18.0 3.1 [3.1, 3.2] 1.9 [1.8, 1.9]
er_2_22_2_23 16.0 2857 0.3 4.8 [4.7, 4.9] 2.8 [2.8, 2.8]
er_2_22_2_23 64.0 1733 49.9 2.8 [2.7, 2.9] 1.8 [1.8, 1.8]
ljournal-2008 16.0 1257 41.6 3.2 [3.1, 3.3] 1.9 [1.8, 1.9]
ljournal-2008 64.0 1203 8.6 2.4 [2.3, 2.5] 1.3 [1.3, 1.3]
rgg_2_27 16.0 15 32.4 3.5 [2.0, 5.0] 2.9 [2.2, 3.9]
rgg_2_27 64.0 37 36.1 2.9 [2.4, 3.3] 1.5 [1.3, 1.8]
rgg_2_27_3d 16.0 105 12.7 3.0 [2.6, 3.4] 2.2 [2.0, 2.4]
rgg_2_27_3d 64.0 191 34.1 3.9 [3.6, 4.3] 2.5 [2.3, 2.6]
rhg_2_23 16.0 9 16.6 6.3 [4.1, 8.6] 3.7 [3.1, 5.2]
rhg_2_23 64.0 13 26.9 5.8 [3.6, 7.6] 3.9 [2.8, 5.8]
sk-2005 16.0 196 18.1 1.6 [1.5, 1.8] 1.1 [1.0, 1.2]
sk-2005 64.0 307 11.0 2.6 [2.5, 2.8] 1.6 [1.5, 1.7]
uk-2007 16.0 70 43.0 1.5 [1.2, 1.7] 1.0 [0.9, 1.2]
uk-2007 64.0 100 18.5 3.6 [3.2, 3.9] 1.8 [1.6, 2.0]
Harmonic mean 3.0 [2.7, 3.2] 1.8 [1.6, 1.9]

75

4 Parallel Shared-Memory Multi-level Graph Partitioning

Table 4.2: Sample sizes (|S|), p-values, means (µd), standard deviations (σd)
and corresponding confidence intervals of differences between approximated and
real CDFs for local iterations. The last four columns are in percents.

Graph k |S| p-value µd
Conf.
interval σd

Conf.
interval

ba_2_22 16.0 146 49.6 2.8 [2.5, 3.1] 1.7 [1.6, 1.9]
ba_2_22 64.0 384 2.5 3.9 [3.6, 4.2] 2.9 [2.8, 3.1]
com-lj 16.0 196 23.2 3.4 [3.1, 3.6] 2.0 [1.8, 2.1]
com-lj 64.0 148 50.0 5.8 [5.1, 6.4] 4.2 [4.0, 4.5]
com-orkut 16.0 182 40.2 2.5 [2.2, 2.7] 1.6 [1.4, 1.8]
com-orkut 64.0 169 38.5 2.5 [2.2, 2.8] 2.0 [1.8, 2.1]
del_2_27 16.0 12 39.8 5.4 [3.9, 7.0] 3.0 [2.2, 4.3]
del_2_27 64.0 14 36.5 3.3 [1.9, 4.8] 2.9 [2.5, 3.7]
del_2_27_3d 16.0 96 42.7 2.8 [2.4, 3.2] 2.1 [1.8, 2.4]
del_2_27_3d 64.0 133 10.1 4.2 [3.7, 4.6] 2.7 [2.5, 3.1]
enwiki-2018 16.0 130 2.1 2.5 [2.2, 2.9] 2.1 [1.9, 2.4]
enwiki-2018 64.0 214 47.1 1.7 [1.5, 1.9] 1.5 [1.4, 1.6]
er-fact1.5-scale23 16.0 575 5.7 7.6 [7.2, 7.9] 4.5 [4.3, 4.7]
er-fact1.5-scale23 64.0 242 39.4 2.4 [2.2, 2.7] 1.8 [1.7, 1.9]
er_2_22_2_23 16.0 82 20.7 2.2 [1.8, 2.5] 1.7 [1.4, 2.0]
er_2_22_2_23 64.0 3099 0.6 1.9 [1.8, 1.9] 1.2 [1.1, 1.2]
ljournal-2008 16.0 145 11.3 4.2 [3.6, 4.8] 3.8 [3.4, 4.3]
ljournal-2008 64.0 147 20.3 2.0 [1.7, 2.2] 1.6 [1.4, 1.9]
rgg_2_27 16.0 11 30.0 5.5 [3.3, 7.5] 3.8 [3.0, 5.0]
rgg_2_27 64.0 11 50.0 4.7 [3.4, 6.0] 2.4 [1.9, 3.4]
rgg_2_27_3d 16.0 29 32.6 3.5 [2.7, 4.2] 2.4 [1.8, 3.0]
rgg_2_27_3d 64.0 34 41.0 2.9 [2.2, 3.5] 1.9 [1.5, 2.4]
rhg_2_23 16.0 8 47.9 8.2 [2.9, 12.4] 7.5 [5.2, 12.7]
rhg_2_23 64.0 5 41.7 12.1 [3.2, 19.0] 10.0 [7.3, 18.3]
sk-2005 16.0 59 47.4 1.7 [1.4, 2.0] 1.3 [1.1, 1.6]
sk-2005 64.0 64 26.2 3.2 [2.7, 3.7] 1.8 [1.5, 2.2]
uk-2007 16.0 34 39.6 3.1 [2.4, 3.9] 2.2 [1.9, 2.7]
uk-2007 64.0 36 38.7 4.1 [2.9, 5.2] 3.3 [2.7, 4.1]
Harmonic mean 3.1 [2.5, 3.6] 2.2 [1.9, 2.6]

76

4.2 Multi-level Graph Partitioning

Computed Generated normal distribution

12 14 16

ln(workgain)

0.0

0.2

0.4

0.6

D
en

si
ty

ba 2 22, 16 blocks

13 14 15 16

ln(workgain)

0.0

0.2

0.4

0.6

D
en

si
ty

ba 2 22, 64 blocks

14 16 18

ln(workgain)

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

del 2 27, 16 blocks

14 16 18

ln(workgain)

0.0

0.2

0.4

0.6
D

en
si

ty

del 2 27, 64 blocks

12.5 15.0 17.5 20.0

ln(workgain)

0.0

0.1

0.2

0.3

D
en

si
ty

sk-2005, 16 blocks

12.5 15.0 17.5 20.0 22.5

ln(workgain)

0.0

0.1

0.2

0.3

D
en

si
ty

sk-2005, 64 blocks

8 10 12 14

ln(workgain)

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

uk-2007, 16 blocks

10 12 14 16

ln(workgain)

0.0

0.1

0.2

0.3

D
en

si
ty

uk-2007, 64 blocks

Figure 4.2: Density histograms for different types of graphs.

77

4 Parallel Shared-Memory Multi-level Graph Partitioning

10 12 14 16 18
Theoretical quantiles

10

12

14

16

18
D

at
a

q
u

an
ti

le
s

ba 2 22, 16 blocks

11 13 15 17
Theoretical quantiles

11

13

15

17

D
at

a
q
u

an
ti

le
s

ba 2 22, 64 blocks

13 15 17 19
Theoretical quantiles

13

15

17

19

D
at

a
q
u

an
ti

le
s

del 2 27, 16 blocks

13 15 17 19 21
Theoretical quantiles

13

15

17

19

21

D
at

a
q
u

an
ti

le
s

del 2 27, 64 blocks

13 15 17 19 21 23
Theoretical quantiles

13

15

17

19

21

23

D
at

a
q
u

an
ti

le
s

sk-2005, 16 blocks

11 13 15 17 19 21 23 25
Theoretical quantiles

11

13

15

17

19

21

23

25

D
at

a
q
u

an
ti

le
s

sk-2005, 64 blocks

7 9 11 13 15
Theoretical quantiles

7

9

11

13

15

D
at

a
q
u

an
ti

le
s

uk-2007, 16 blocks

9 11 13 15 17
Theoretical quantiles

9

11

13

15

17

D
at

a
q
u

an
ti

le
s

uk-2007, 64 blocks

Figure 4.3: Q-Q plots for different types of graphs.

78

4.3 Parallel Multi-level Graph Partitioning

4.3 Parallel Multi-level Graph Partitioning

Running time analysis of the sequential algorithm shows that each of the components
of the MGP scheme has a significant contribution to the overall execution time. See
Section 4.5.5 for more details. Hence, to achieve good (parallel) speed-ups, we have
to parallelize all phases. In this section, we describe our parallelization. The section
is organized along the phases of the MGP scheme: first we show how to parallelize
coarsening, then initial partitioning and finally uncoarsening. Our general approach is
to avoid bottlenecks as well as performing independent work as much as possible.

4.3.1 Coarsening

In this section, we present the parallel version of the size-constrained label propagation
algorithm to build a clustering, the parallel local max matching algorithm, and the
parallel contraction algorithm.

Parallel Size-Constrained Label Propagation

To parallelize the size-constrained label propagation algorithm, we adapt a clustering
technique by Staudt and Meyerhenke [SM16] to coarsening. Their algorithm iterates
in parallel over a set of active vertices; i.e., vertices whose neighbors changed their
labels on previous iteration, and assigns them to new clusters. Initially, we sort the
vertices by increasing degree using the fast parallel sorting algorithm by Axtmann
et al. [Axt+17]. We then form work packets representing a roughly equal amount
of work and insert them into a TBB (threading building blocks) concurrent queue
Q [Tbb]. Note that we also tried the work-stealing approach [SSP07] but it showed
worse running times. Our constraint is that a packet contains vertices with a total
number of neighbors at most B. We set B = max(1000,

√
|E|) in our experiments

– the 1 000 limits contention for small graphs and the term
√
|E| further reduces

contention for large graphs. Additionally, we have an empty queue Q′ that stores
packets of vertices for the next iteration. During an iteration, each PE checks if
the queue Q is not empty, and if so it extracts a packet of vertices from the queue.
A PE then chooses a new cluster for each vertex in the currently processed packet,
breaking ties randomly. A vertex is then moved if the cluster size is still feasible to
take on the weight of the vertex. Cluster sizes are updated atomically using a CAS
instruction. This is important to guarantee that the size constraint is not violated.
Neighbors of moved vertices are inserted into a packet for the next iteration. If the
sum of vertex degrees in that packet exceeds the work bound B then this packet is
inserted into queue Q′ and a new packet is created for subsequent vertices. When
the queue Q is empty, the main PE exchanges Q and Q′ and we proceed with the
next iteration. Pseudocode of the parallel algorithm can be found in Algorithm 4.1.

79

4 Parallel Shared-Memory Multi-level Graph Partitioning

One iteration of the algorithm can be done with O(|V |+ |E|+ p2 + p∆) work and in
O((|V |+ |E|)/p+ p+ ∆) parallel time.

Parallel Matching

We adapt the parallel local max matching by Birn et al. [Bir+13] to the shared-memory
model. The algorithm works in iterations and each iterations consists of three parallel
phases. The algorithm maintains a TBB concurrent queue Q [Tbb] with blocks of
not matched vertices as in the parallel size-constrained label propagation. During
the first phase, each PE extracts vertices from Q, finds their local max neighbors
and inserts them to an auxiliary concurrent queue Q′. In the second phase, each PE
extracts vertices from Q′ and tries to match them with their local max neighbors. A
matching of a vertex v with its local max neighbor u occurs if the local max neighbor
of u is v. If the matching does not occur then the PE inserts v to Q and proceeds.
In the third phase, we remove edges between unmatched vertices in Q and matched
vertices. Specifically, we remove all edges between v and matched vertices in O(d(v))
time by moving the IDs of the matched vertices to the end of the adjacency list of v.
Afterwards, the algorithm proceeds with the next iteration. This continues until no
vertex was matched in an entire iteration. Pseudocode of the parallel algorithm can be
found in Algorithm 4.2. One iteration of the algorithm can be done with O(|V |+ |E|)
work and in O((|V |+ |E|)/p+ log p+ ∆) parallel time. Furthermore, on average the
algorithm removes at least half of the edges when processing graphs with unit edges
weights or with random uniform edge weights. Thus, in this case the total work and
parallel time over all iterations are O(|V | + |E|) and O((|V | + |E|)/p + log p + ∆),
respectively.

Parallel Contraction

The contraction algorithm takes a graph G = (V,E) as well as a clustering C and
constructs a coarser graph G′ = (V ′, E′). The contraction process consists of three
phases: the remapping of cluster IDs to a consecutive set of IDs, edge weight accu-
mulation, and the construction of the coarser graph. The remapping of cluster IDs
assigns new IDs in the range [0, |V ′| − 1] to the clusters, where |V ′| is the number of
clusters in the given clustering. We do this by calculating a prefix sum on an array
that contains ones in the positions equal to the current cluster IDs. This phase runs in
O(|V |) time when it is done sequentially. Sequentially, the edge weight accumulation
step calculates weights of edges in E′ using a hash table. More precisely, for each
cut edge (v, u) ∈ E we insert a pair (C[v], C[u]) into the hash table and accumulate
weights for the pair if it is already contained in the table. Due to insertion of the
cut edges into the hash table, the expected running time of this phase is O(|E|). To
construct the coarse graph we iterate over all edges E′ contained in the hash table.

80

4.3 Parallel Multi-level Graph Partitioning

Algorithmus 4.1: Parallel Size-Constrained Label Propagation
Input: graph G = (V,E); cluster-size upper bound U ; iterations `
Output: clustering C

1 Vs = sort(V) // parallel sort vertices by degree in increasing order
2 maxBlockSize = max(

√
|E|, 1000) //maximum block size

3 Q = Vs // concurrent queue
4 Q′ = ∅ // queue for the next iteration
5 C = {0, . . . , |V | − 1} // init clustering
6 S = {1, . . . , 1} // sizes of clusters
7 inQ = {False, . . . ,False} // array of bits to mark vertices in Q
8 inQ’ = {False, . . . ,False} // array of bits to mark vertices in Q′
9 for i = 1 to `

10 while Q is not empty do in parallel
11 Block B = Q.pop()
12 Block B′ = ∅ // new block of active vertices
13 foreach v ∈ B do
14 inQ[v] = False
15 HashMap map = ∅ // connection strengths
16 foreach u ∈ N(v) do map[C[u]] += w(v, u)

// select strongest connection
17 bestCluster = C[v]
18 bestSize = S[bestCluster]
19 foreach cluster ∈ map do
20 s = S[cluster]
21 if map[cluster] ≥ map[bestCluster] and s+ w(v) < U then
22 bestCluster = cluster; bestSize = s

//move v to bestCluster and update size
23 if C[v] 6= bestCluster then
24 move = True
25 do
26 bestSize = S[c]
27 if bestSize + w(v) > U then go to line 13
28 while not CAS(S[c], bestSize, bestSize + w(v))
29 S[C[v]] −= w(v) // atomically
30 C[v] = c
31 foreach u ∈ N(v) do
32 if not inQ[u] then // atomically
33 inQ[u] = True // atomically
34 B′ = B′ ∪ {u}
35 if

∑
u∈B′ deg(u) > maxBlockSize then

36 Q′.push(B′); B′ = ∅

37 if Q is empty and |B′| 6= 0 then Q′.push(B′)
38 exchange inQ and inQ′
39 exchange Q and Q′ 81

4 Parallel Shared-Memory Multi-level Graph Partitioning

Algorithmus 4.2: Parallel Local Max Matching
Input: graph G = (V,E); matching-size upper bound U
Output: matching M

1 maxBlockSize = max(
√
|E|, 1000) //maximum block size

2 Q = V // concurrent queue
3 Q′ = ∅ // queue for the next iteration
4 M = {0, . . . , |V | − 1} // init matching
5 S = {notMatched, . . . ,notMatched} // statuses of vertices, |S| = |V |
6 while Q 6= ∅ do
7 while Q is not empty do in parallel
8 Block B = Q.pop()
9 foreach v ∈ B do

10 z = −1
11 z = argmaxu∈N(v){w(v, u) : S[u] = notMatched and w(u) + w(v) < U}
12 if z 6= −1 then M [v] = z

13 Q′.push(B)
14 while Q′ is not empty do in parallel
15 Block B = Q′.pop()
16 Block B′ = ∅ // new block of vertices
17 foreach v ∈ B do
18 match = M [v]
19 if M [match] = v then S[v] = S[match] = matched
20 else
21 B′ = B′ ∪ {v}
22 if

∑
u∈B′ deg(u) > maxBlockSize then

23 Q.push(B′); B′ = ∅

24 if Q′ is empty and |B′| 6= 0 then Q.push(B′)
25 remove edges between unmatched vertices in Q and matched vertices
26 if no vertex was matched during the last iteration then break

This takes time O(|V ′|+ |E′|). Hence, the total expected running time to compute
the coarse graph is O(|V |+ |E|) when run sequentially.

The parallel contraction algorithm works as follows. In the first phase, we remap the
cluster IDs using the implementation of the parallel prefix sum algorithm by Singler
et al. [SSP07]. In the second phase, edge weights are accumulated by iterating over
the edges of the original graph in parallel. We use the concurrent hash table of Maier
et al. [MSD19], initializing it with a capacity of min(2|E|/|V | · |V ′|, |E|/10). Note
that this is a rough estimation of |E′| and in case it underestimates the real value
the concurrent hash table is able to grow. We use the average degree 2|E|/|V | of G

82

4.3 Parallel Multi-level Graph Partitioning

since we expect that the average degree of G′ does not increase. In the third phase,
we construct an array of coarse edges and an array of offsets into the array of coarse
edges. To parallelize the third phase, we first calculate degrees of coarse vertices by
iterating over the concurrent hash table in parallel. Then we use the parallel prefix
sum algorithm to compute offsets of all coarse vertices into the array of coarse edges.
Finally, we construct the array of coarse edges by iterating over the concurrent hash
table in parallel one more time. The parallel contraction algorithm runs in expected
O((|V |+ |E|)/p+ log p) parallel time. Pseudocode of the algorithm can be found in
Algorithm 4.3.

Algorithmus 4.3: Parallel Contraction
Input: graph G = (V,E); clustering C
Output: contracted graph G′ = (V ′, E′)
//First phase:

1 bitMark = {0, . . . , 0} //Array of size |V | with a bit for each cluster ID
2 for v ∈ 0, . . . , |V | − 1 do in parallel bitMark[C[v]] = 1
3 ∀ v ∈ [1, |V |) : C[v] =

∑C[v]−1
u=0 bitMark[u] // using parallel prefix sum algorithm

// Second phase:
4 HashMap H = ∅
5 for v ∈ V do in parallel
6 for u ∈ N(v)
7 if C[v] 6= C[u] then H[(C[v], C[u])] += w(v, u)

//Third phase:
8 D = {0, . . . , 0} //The degrees of vertices V ′, |D| = |V ′|
9 for (v, u) ∈ H do in parallel D[v]++
//V ′ is an array of offsets into E′. The adjacency list of v starts from E′[V ′[v]]

10 ∀ v ∈ [1, |V ′|) : V ′[v] =
∑v−1
u=0 D[u]; V ′[0] = 0 // using parallel prefix sum

algorithm
11 E′ = {(0, 0), . . . , (0, 0)} // array of edges E′
12 for (v, u, weight) ∈ H do in parallel

// atomically adds 1 and returns previous value
13 e = fetch_add(V ′[v], 1)
14 E′[e].target = u
15 E′[e].weight = weight

4.3.2 Initial Partitioning

To improve the quality of the resulting partitioning of the coarsest graph G′ = (V ′, E′),
we partition it into k blocks max(p, I) times instead of I times. We perform each

83

4 Parallel Shared-Memory Multi-level Graph Partitioning

partitioning step independently in parallel using different random seeds. To do so, each
PE creates a copy of the coarsest graph and runs KaHIP sequentially on it. Assume
that one partitioning can be done in time T . Then max(p, I) partitions can be built
with O(max(p, I) ·T + p · (|E′|+ |V ′|)) work and in O(max(p,I)·T

p + |E′|+ |V ′|) parallel
time, where the additional terms |V ′| and |E′| account for the time each PE copies
the coarsest graph.

4.3.3 Uncoarsening/Local Search

Our parallel algorithm first uses size-constrained parallel label propagation to improve
the current partition and afterwards applies our parallel localized multi-try k-way local
search (LMLS). The rationale behind this combination is that label propagation is fast
and easy to parallelize and will find and apply all the easy improvements. Subsequently,
LMLS will then invest considerable work to find a few nontrivial improvements. In
this combination, only few vertices actually need be moved globally which makes it
easier to parallelize LMLS scalably. When using the label propagation algorithm to
improve a partition, we set the upper bound U to Lmax, the size constraint of the
partitioning problem.

Parallel LMLS works in a nested loop of local and global iterations as in the sequential
version. Recall that each global iteration consists of multiple local iterations. Ini-
tialization of a global iteration copies all boundary vertices to a consumer/producer
queue Q that consists of local buckets that correspond to PEs. Since a set of boundary
vertices is implemented using a hash table, this guarantees that vertices copied to
buckets are in random order. The consumer/producer queue Q implements the todo
list T used in the description of the sequential LMLS in Section 4.2.3. During a local
iteration, each PE extracts vertices from the consumer/producer queue Q. Afterwards,
it performs local moves around them; that is, global block IDs and the sizes of the
blocks remain unchanged. Specifically, each PE locally moves the vertex extracted
from Q and vertices around it. When the consumer/producer queue Q is empty, the
algorithm applies the best found sequences of moves to the global data structures
and reinserts into Q moved vertices. LMLS decides whether to start a new local
iteration, a new global iteration or to stop in the same manner as its sequential version.
Pseudocode of one global iteration of the algorithm can be found in Algorithm 4.4.
In the paragraphs that follow, we describe how to construct and maintain the set of
boundary vertices, our implementation of the concurrent consumer/producer queue
Q, how to perform local moves in FindMoves, and how to update the global data
structures in ApplyMoves.

84

4.3 Parallel Multi-level Graph Partitioning

Algorithmus 4.4: Parallel Localized k-way Multi-try Local Search.
Input: Graph G = (V,E)

1 while True do
2 Queue Q = {v ∈ V : v is a boundary vertex}
3 mark all vertices as not moved
4 totalGain = 0
5 while Q is not empty do // start new global iteration
6 while Q is not empty do in parallel // start new local iteration
7 v = Q.pop()
8 if v is moved then continue
9 Vpq = v ∪ {w ∈ N(v) : w is not moved}

// priority queue with gain as key
10 PQ = {(gain(w), w) : w ∈ Vpq}

// try to move boundary vertices
11 FindMoves(G, PQ)
12 If at least one PE stopped then signal other PEs to stop
13 Q, gain = ApplyMoves(G)
14 totalGain += gain
15 if the local quantile-based stopping rule signals to stop or gain = 0 then
16 break // Stop current global iteration

17 if the global quantile-based stopping rule signals to stop or totalGain = 0 then
18 break // Stop LMLS

Boundary Vertices and Concurrent Consumer/Producer Queue

We store the set of boundary vertices using a concurrent hash table by Maier et
al. [MSD19]. The construction of the set is straightforward. We iterate over all vertices
in parallel and if a vertex is at the boundary of a block then we insert it into the hash
table.

We use a concurrent consumer/producer queue to decrease the probability that several
PEs try to move the same vertex concurrently, that is, we want PEs to perform the
local search in parts that share as few vertices as possible. In order to do this, the
concurrent consumer/producer queue has p buckets that contain random subsets of
boundary vertices and each bucket corresponds to one PE. To initialize the buckets
(consuming phase), each PE iterates over the concurrent hash table and copies a
random subset of the boundary vertices to its corresponding bucket. Note that there
is no need to shuffle vertices in the buckets since the vertices in the hash table are
already in random order. After the initialization step, a PE extracts a vertex from its

85

4 Parallel Shared-Memory Multi-level Graph Partitioning

bucket (producing phase). If its bucket is empty then it tries to extract a vertex from
the bucket of the next PE (circularly ordered). This is repeated until a non-empty
bucket is found. Then a boundary vertex from this bucket is returned and the index
of the found non-empty bucket is stored for the next step. Note that although it
is possible to have high contention on the vertices of the same bucket, it is unlikely
to be a bottleneck since a lot of work corresponds to each vertex. Specifically, all
PEs perform local searches around extracted vertices and the running times of local
searches are different and significantly greater than that of the extracting operation.

Finding moves (FindMoves)

Starting from a single boundary vertex, each PE moves vertices to find a sequence
of moves that decreases the cut. However, all moves are local; that is, they do not
affect the current global partition – moves are stored in the local memory of the PE
performing them. To perform a move, a PE chooses a vertex with maximum gain
and marks it so that other PEs cannot move it. Then, it updates the sizes of the
affected blocks and saves the move. During the course of the algorithm, we store the
sequence of moves yielding the best cut. We stop if there are no moves to perform
or the adaptive stopping rule by Osipov and Sanders [OS10] signals the algorithm to
stop (see details in Section 3.5.2). When a PE finished, the sequence of moves yielding
the largest decrease in the edge cut is returned.

Implementation Details of FindMoves

In order to improve scalability, only the array for marking moved vertices is global.
Note that within a local iteration, bits in this array are only ever set (using CAS) and
never unset. Hence, the marking operation can be seen as priority update operation
(see Shun et al. [Shu+13]) and thus causes only little contention. The algorithm keeps
a local array of block sizes, a local priority queue, and a local hash table storing
changed block IDs of vertices for each PE. Note that since the local hash table is small,
it often fits into cache which is crucial for parallelization due to memory bandwidth
limits. When the call to FindMoves finishes and the thread executing it notices that
the queue Q is empty, it sets a global variable to signal the other PEs to finish the
current call of the function FindMoves.

Let each PE process a set of edges E and a set of vertices V . Each vertex can be moved
only by one PE and moving a vertex requires the gain computation of its neighbors.
Therefore, the parallel time of the function FindMoves is O(

∑
v∈V

∑
u∈N(v) d(u) +

|V|) = O(
∑
v∈V d

2(v) + |V|) since the gain of a vertex v can be updated at most d(v)
times. Note that we recalculate the gain of a vertex v from scratch after the move of
its neighbor. The reason is that the block to which v has the strongest connection
may change and we need to find a new block with the strongest connection. Note

86

4.3 Parallel Multi-level Graph Partitioning

that this is a pessimistic bound and it is possible to implement this function with
O(|E| log min(k,∆) + |V|) parallel time. More precisely, for each vertex v we maintain
a priority queue of size min(k′, d(v)) that returns a new block with the strongest
connection in O(log min(k′, d(v))) time.∗ Here k′ is the number of blocks adjacent to
v. Nevertheless, in our experiments, we recalculate gains from scratch since it requires
less memory. Moreover, most of the vertices have relatively small degrees (especially
in power-law graphs) and all implementations of priority queues have larger constants
hidden in the running time bounds than scanning of neighbors of a vertex.

Applying Moves (ApplyMoves)

Let Mi = {Bi1, . . . } denote the set of sequences of local moves found by PE i, where
Bij is a set of local moves performed by the j-th call of FindMoves. We apply moves
sequentially in the order M1,M2, . . . ,Mp. We cannot apply the moves directly in
parallel since a move done by one PE can affect a move done by another PE. More
precisely, assume that we want to move a vertex v ∈ Bij but we have already moved
its neighbor w and this move of w was found by a different PE. Since the PE only
knows its local changes, it calculates the gain of moving v (in FindMoves) according
to the old block ID of w. If we then apply the rest of the moves in Bij it may even
increase the cut. To prevent this, we recalculate the gain of each move in a given
sequence and remember the best cut. If there are no affected moves, we apply all
moves from the sequence. Otherwise we apply only the part of the moves that gives
the best cut with respect to the correct gain values. Finally, we insert all moved
vertices into the queue Q. LetM be the set of all moved vertices during this procedure.
The overall running time is then given by O(

∑
v∈M d(v)). Note that if an initial

partitioning algorithm generates balanced solutions then our parallel local search
algorithm maintains balanced solutions, i.e. the balance constraint of our solution is
never violated, since moves are applied sequentially.

4.3.4 Differences to Mt-Metis

We now discuss the differences between our algorithm and Mt-Metis. In the coarsening
phase, our framework uses either the clustering or the matching algorithm while Metis
is using only the matching algorithm. Our approach is especially well suited for
networks that have a pronounced and hierarchical cluster structure. For example, in
networks that contain star-like structures, a matching-based algorithm for coarsening
matches only a single edge within these structures and hence cannot shrink the
graph effectively. Moreover, it may contract “wrong” edges such as bridges. Using a
clustering-based scheme, however, allows to contract the input graph more quickly in
the multi-level scheme [MSS17]. The general initial partitioning scheme is similar in

∗By using an array instead of a priority queue, we can achieve O(|E| min(k, ∆)+ |V|) parallel running
time since a new block with the strongest connection can be found in O(min(k′, d(v))) time

87

4 Parallel Shared-Memory Multi-level Graph Partitioning

both algorithms. However, the employed sequential techniques differ because different
sequential tools (KaHIP and Metis) are used to partition the coarsest graphs. In terms
of local search, unlike Mt-Metis, our approach guarantees that the updated partition
is balanced if the input partition is balanced and that the cut can only decrease or
stay the same. The hill-climbing technique of Mt-Metis, however, may increase the
cut of the input partition or may compute an imbalanced partition even if the input
partition is balanced. Our algorithm has these guarantees since each PE performs
moves of vertices locally in parallel. When all PEs finish, one PE globally applies the
best sequences of local moves computed by all PEs. Usually, the number of applied
moves is significantly smaller than the number of the local moves performed by all PEs,
especially on large graphs. Thus, the main work is still made in parallel. Additionally,
in the following section we introduce a cache-aware hash table that we use to store
local changes of block IDs made by each PE. This hash table is more compact than
an array and takes the locality of data into account.

4.4 Further Optimizations

In this section, we describe further optimization techniques that we use to achieve better
speed-ups and overall speed. More precisely, we use cache-aligned arrays to mitigate
the problem of false-sharing, the TBB scalable allocator [Tbb] for concurrent memory
allocations and pin threads to cores to avoid rescheduling overheads. Additionally, we
use a cache-aware hash table which we now describe. In contrast to traditional hash
tables, this hash table allows us to exploit locality of data and hence we expect it to
reduce the overall running time of the algorithm. Furthermore, to mitigate negative
effects of NUMA (non-uniform memory access), we use the NUMA policy library [Lib].
Specifically, we use round robin memory allocation that allocates memory uniformly
on all NUMA nodes.

4.4.1 Cache-Aware Hash Table

The main goal here is to improve the performance of our algorithm on large graphs.
For large graphs, the gain computation in the LMLS routine dominates the overall
running time. Recall that computing the gain of a vertex requires a local hash table for
each PE and, thus, we expect that using a cache-aware technique reduces the overall
running time. A cache-aware hash table combines properties of both an array and
a hash table. It tries to store data with similar integer keys within the neighboring
cache lines, thus reducing the cost of subsequent accesses to these keys. On the other
hand, it still consumes less memory than an array which is crucial for the hash table
to fit into caches.

We implement a cache-aware hash table using the linear probing technique and
tabulation hashing as hash function [PT11]. Linear probing typically outperforms

88

4.4 Further Optimizations

other collision resolution techniques in practice and the computation of the tabulation
hash function can be done with a very little overhead. The tabulation hash function
works as follows. Let x = x1 . . . xk be a key to be hashed, where xi represents t bits
of the binary representation of x. Let Ti, i ∈ [1, k] be tables of size 2t, where each
element is a random 32-bit integer. Using ⊕ as exclusive-or operation, the tabulation
hash function is then defined as follows:

h(x) = T1[x1]⊕ · · · ⊕ Tk[xk].

Exploiting Locality of Data

As our experiments indicate, the distribution of keys that we access during the
computation of the gains is not uniform. Instead, it is likely that the time between
accesses to two consecutive keys is small. On typical systems currently used, the size
of a cache line is often 64 bytes (16 elements with 4 bytes each). Now suppose our
algorithm accesses 16 consecutive vertices one after another. If we would use an array
storing the block IDs of all vertices instead of a hash table, we can access all block IDs
of the vertices with only one cache miss. A hash table on the other hand does not give
any locality guarantees. On the contrary, it is very probable that consecutive keys
are hashed to completely different parts of the hash table. However, due to memory
constraints we cannot use an array to store block IDs for each PE in the FindMoves
procedure.

However, even if the arrays were to fit into memory, doing so would be problematic. To
see this let |L2| and |L3| be the sizes of L2 and L3 caches of a given system, respectively,
and let p′ be the number of PEs used per NUMA node. For large graphs, the array
may not fit into max(|L2|, |L3|/p′) memory. In this case, each PE will access its own
array in main memory which affects the running time due to the available memory
bandwidth. Thus, we want a compact data structure that fits into max(|L2|, |L3|/p′)
memory most of the time and preserves the locality guarantees of an array.

For this, we modify the tabulation hash function from above according to Mehlhorn
and Sanders [MS08]. More precisely, let x = x1 . . . xk−1xk, where xk are the l least
significant bits of x and x1, . . . , xk−1 are t bits each. Then we compute the tabulation
hash function as follows:

h(x) = T1[x1]⊕ · · · ⊕ Tk−1[xk−1]⊕ xk.

This guarantees that if two keys x and x′ differ only in first l bits and, hence, |x−x′| < 2l
then |h(x)− h(x′)| < 2l. Thus, if l = O(log c), where c is the size of a cache line, then
x and x′ are in the same cache line when accessed. This hash function introduces at
most 2l additional collisions since if we do not consider the l least significant bits of a
key then at most 2l keys have the same remaining bits. For our experiments, we chose
k = 3, l = 5, and t = 10.

89

4 Parallel Shared-Memory Multi-level Graph Partitioning

4.5 Experimental Evaluation

In this section, we present a detailed experimental analysis of our shared-memory
graph partitioning framework and its main competitors. First, in Section 4.5.1, we
discuss the methodology of the experiments as well as the machines and graphs used
in the experiments. Next, we compare quality and performance of our algorithm
against state-of-the-art competitors in Sections 4.5.2 and 4.5.3, respectively. Moreover,
in Section 4.5.4, we present comparison in terms of memory consumption, which is
an important for processing large graphs. Finally, we show experimental analysis of
different parts of our algorithm in Section 4.5.5. This analysis shows that each part of
the algorithm is crucial to achieve good speed-ups and quality of the partitioning.

4.5.1 Methodology

Our framework Mt-KaHIP (Multi-threaded Karlsruhe High Quality Partitioning) is
based on the sequential framework KaHIP [MSS14; SS11] and implemented using
C++ and the C++17 multi-threading library. All binaries are built using g++-7.3.0
with the -O3 flag and 64-bit index data types. We perform all experiments using
machines A (four sockets) and B (two sockets) (see Section 2.3.4 for details). The
reason behind this is to investigate the dependence between performance and NUMA
effects. Specifically, we evaluate all experiments using 1, 40, and 79 PEs on machine A
and 1, 16, and 31 on machine B. Note that we always leave at least one PE for the
operating system.

We compare ourselves to Mt-Metis 0.6.0 using the default configuration with hill-
climbing enabled (Mt-Metis) as well as sequential KaHIP 2.0 using the fast so-
cial configuration (KaHIP) and ParHIP 2.0 [MSS17] using the fast social configu-
ration (ParHIP). According to LaSalle and Karypis [LK13] Mt-Metis has better speed-
ups and running times compared to ParMetis [KK99] and Pt-Scotch [Pel12]. At the
same time, it produces partitions of similar quality. Furthermore, ParHIP [MSS17]
achieves better quality and performance than ParMetis, PT-Scotch, PuLP [SMR14],
and the distributed graph partitioning framework by Uganer and Backstrom [UB13].
Therefore, we do not perform experiments with ParMetis, Pt-Scotch and the dis-
tributed graph partitioning framework by Uganer and Backstrom to save running time
and to save running time and to keep the experimental evaluation simple. However,
in order to have a more complete evaluation we additionally compare Mt-KaHIP to
DiBaP [Mey12; MMS09a] and PuLP. We present the comparisons in separate sections
to keep the experimental evaluation simple and due to inability to run DiBaP on our
benchmark set of instances.

Algorithm Configuration. Any multi-level algorithm has a considerable number of
choices between algorithmic components and tuning parameters. We adopt parameters
from the coarsening and initial partitioning phases of KaHIP (fast social configuration).

90

4.5 Experimental Evaluation

The default Mt-KaHIP configuration uses 10 and 25 label propagation iterations during
coarsening and refinement, respectively. It partitions a coarse graph max(p, 4) times
during the initial partitioning phase. We use a stopping rule during the coarsening
phase that signals to stop when the coarsest graph has less than 5000 · k vertices or
the contraction ratio is less than 1.1. Here the contraction ratio is the ratio between
the number of vertices in the graph before and after contraction. Furthermore, we
compute 90% quantiles in global stopping rules of LMLS which is used to decide
whether to perform a new global iteration or not. The same quantiles are used in the
local stopping rule of LMLS for local iterations.

The Mt-KaHIP fast configuration uses a more aggressive stopping rule during the
coarsening phase. The reason for this is that when the coarsening phase finishes in
Mt-KaHIP, it may occur that the coarsest graph is not small enough. As a result, the
initial partitioning phase runs considerably faster than other phases and, thus, initial
partitioning becomes a bottleneck (see Section 4.5.5). Therefore, the stopping rule in
Mt-KaHIP fast uses the stopping rule used in Mt-KaHIP but allows to contract graphs
further. Specifically, every time the stopping rule in Mt-KaHIP would have stopped
coarsening, Mt-KaHIP fast continues to coarsen the graph while the maximum number
of attempts (2) is not exceeded and the coarsest graph has more than 0.1% edges of
the input graph or more than 300K edges.

The Mt-KaHIP eco configuration uses the parallel local max matching algorithm (see
Section 4.3.1) to construct a matching and uses it to contract the graph during the
coarsening phase. We developed this configuration since the parallel label propagation
algorithm may compute partition of bad quality on the mesh type graph that do not
have communities since the parallel label propagation algorithm tries to assign commu-
nities to the same clusters. Therefore, if the input graph does not have communities it
is possible that the resulting partition does not have good quality. However, matching
algorithms are not biased towards communities. We use a combination of stopping
rules of Mt-KaHIP and Mt-KaHIP fast. More precisely, when we contract the graph
using the parallel local matching algorithm, we use the the same stopping rules as
in Mt-KaHIP. When this stopping rule signals to stop, we start to use the parallel
label propagation algorithm and the stopping rule of Mt-KaHIP fast to contract the
coarsest graph even further.

Our default value of allowed imbalance is 3% – this is one of the values used in [WC00a]
and in Mt-Metis. We call a solution imbalanced if at least one block exceeds this
amount. By default, we perform ten repetitions for every algorithm using different
random seeds for initialization and report the arithmetic average of computed cut
size and running time on a per instance (graph and number of blocks k) basis. If
at least one repetition returns an imbalanced partition of an instance then we mark
this instance imbalanced. Table 4.3 shows the number of instances partitioned with
imbalance by different frameworks. When further averaging over multiple instances,
we use the geometric mean for cut sizes and running times and the harmonic mean
for the relative speed-ups in order to give every instance a comparable influence on

91

4 Parallel Shared-Memory Multi-level Graph Partitioning

the final score. Table 4.3 shows the number of imbalanced partitions constructed by
different frameworks. Our experiments focus on the cases k ∈ {16, 64} to save running
time and to keep the experimental evaluation simple. These values of k are sufficient
to evaluate performance and quality of the frameworks.

Table 4.3: Number of instances partitioned without imbalance by each algorithm
on machines A and B. Note that we did not run Mt-KaHIP fast and Mt-KaHIP
eco on machine B. We did not run Mt-KaHIP eco with p = 40 on machine A.

Algorithm p Machine A p Machine B

Mt-KaHIP
1 0 1 0

40 0 16 0
79 0 31 0

Mt-KaHIP fast
1 1 1 –

40 1 16 –
79 1 31 –

Mt-KaHIP eco
1 0 1 –

40 – 16 –
79 0 31 –

ParHIP
1 2 1 1

40 10 16 11
79 12 31 10

Mt-Metis
1 2 1 2

40 48 16 47
79 47 31 47

KaHIP 1 0 1 0

PuLP
1 18 1 10

40 28 16 21
79 32 31 20

Instances. We perform experiments on all graphs shown in Table 2.3.2 excluding
the large graphs twitter-2010, clueweb12, uk-2014, and eu-2015 to save running time.
Therefore, our benchmark consists of 38 graphs and 76 instances. We denote the set
of all instances as I.

Note that only Mt-KaHIP and ParHIP with p = 1, 40, 79 were able to partition all
instances on machine A, whereas only Mt-KaHIP with p = 1, 16, 31 and ParHIP with
p = 1, 16 were able to partition all instances on machine B. Therefore, in order to
perform an extensive comparison of the frameworks on different sets of instances, we
consider multiple subsets of the instances I.

92

4.5 Experimental Evaluation

Specifically, we consider the following four subsets of the instances I on machine A:

• Instances where Mt-KaHIP, Mt-KaHIP fast, Mt-Metis, KaHIP, and ParHIP suc-
ceeded: SAll = SMt-Metis ∩ SKaHIP ∩ SMt-Metis,p=1 and |SAll| = 67.

• Instances where Mt-Metis with p = 40, 79 succeeded:

SMt-Metis = I \ {(ba_2_22, k = 64), (er_2_22_2_23, k = 64),
(sk-2005, k = 16), (sk-2005, k = 64),
(uk-2007, k = 16), (uk-2007, k = 64)}

and |SMt-Metis| = 70.

• Instances where KaHIP succeeded:

SKaHIP = I \ {(rgg_2_27, k = 16), (rgg_2_27, k = 64),
(sk-2005, k = 16), (sk-2005, k = 64),
(uk-2007, k = 16), (uk-2007, k = 64)}

and |SKaHIP| = 70.

• Instances where Mt-Metis with a single PE succeeded:

SMt-Metis,p=1 = I \ {(uk-2005, k = 64), (uk-2007, k = 16), (uk-2007, k = 64)}
and |SMt-Metis,p=1| = 73.

• Instances where PuLP with p = 1, 40, 79 succeeded:

SPuLP = I \ {(amazon, k = 16), (amazon, k = 64),
(youtube, k = 16), (youtube, k = 64)}

and |SPuLP| = 72.

We only present comparisons of speed-ups and running times of the frameworks on
machine B since partitioning quality is machine independent. However, quality of
partitions computed by Mt-KaHIP depends on the number of PEs. We consider the
following two subsets of instances I that were partitioned by Mt-Metis and ParHIP
on machine B:

• Instances where Mt-KaHIP, Mt-Metis, and and ParHIP with p = 31 succeeded:
SBAll = SBMt-Metis ∩ SBParHIP and |SBAll| = 68.

• Instances where Mt-Metis with p = 16, 31 succeeded: SBMt-Metis – the same set
as on machine A.

• Instances where ParHIP with 31 PEs succeeded:

SBParHIP = I \ {(rhg_2_23_d_8, k = 16), (rhg_2_23_d_8, k = 64)}
and |SBParHIP| = 74.

93

4 Parallel Shared-Memory Multi-level Graph Partitioning

4.5.2 Quality

In this section, we compare our algorithm against competing state-of-the-art algorithms
in terms of quality. Specifically, we compare ourselves to Mt-Metis, ParHIP, and
KaHIP. Further in this section, we additionally compare Mt-KaHIP to DiBaP, PuLP,
and Mt-KaHIP eco. All the experiments for quality comparison were performed on
machine A since partitioning quality is machine independent. However, quality of
partitions computed by Mt-KaHIP depends on the number of PEs.

The performance plots in Figure 4.4 (see Section 2.3.1) show the results of our
experiments. We use the symmetric log scaling on the y-axis which allows to define
a range around zero that is scaled linearly, whereas the rest of the y-axis is scaled
logarithmically. In this performance plot, we have a linear scaling up to 0.05 since
most of the points are concentrated below 0.05. Our algorithm gives the best overall
quality, usually producing the best cut for the most instances. Even for the small
fraction of instances where other algorithms are better, our algorithm is at most 7.8%
worse. The overall solution quality does not heavily depend on the number of PEs
used. In particular, more PEs result in a slightly higher partitioning quality since more
initial partition attempts are done in parallel. The original fast social configuration
of KaHIP as well as ParHIP produce worse quality than Mt-KaHIP. This is due to the
high-quality local search scheme that we use; i.e., parallel LMLS significantly improves
solution quality. Mt-Metis with p = 1 has worse quality than our algorithm on most
instances except 23 mesh type networks and one complex network. For Mt-Metis this
is expected since it is considerably faster than our algorithm. However, Mt-Metis also
suffers from deteriorating quality and many imbalanced partitions as the number of
PEs goes up. This is mostly the case for complex networks. For example, Mt-Metis
with 79 PEs produces imbalanced partitions for 67.1% of the instances. Table 4.4
shows the geometric means of the cut sizes over all instances, including imbalanced
solutions. For p = 79, the geometric mean cut size of Mt-KaHIP is 14.7% smaller than
that of Mt-Metis on the set of instances SMt-Metis. Furthermore, the geometric mean
cut size of Mt-KaHIP with 79 PEs is 12.5% smaller than that of ParHIP with 79 PEs
on the set of instances I and 7.1% smaller than that of KaHIP on the set of instances
SMt-Metis. Moreover, the Wilcoxon signed-rank test (see Section 2.3.3) indicates that
the quality advantage of Mt-KaHIP over the other solvers is statistically significant.
Table 4.5 shows the relative difference (|a− b|/max(a, b)) of the geometric mean cut
sizes and p-values.

Additionally, we present the performance plot in Figure 4.5 that compares Mt-KaHIP
fast with p = 79 to Mt-Metis and ParHIP. To have a fair quality comparison
of Mt-Metis and Mt-KaHIP fast, we only present the results of Mt-KaHIP fast
with p = 79 since some instances are partitioned better by Mt-KaHIP fast with
p = 1, 40 than by Mt-KaHIP fast with p = 79. Mt-KaHIP fast with p = 79 has better
partitioning quality than ParHIP with p = 79 and KaHIP. For p = 79, the geometric
mean cut size of Mt-KaHIP fast is 10.4% smaller than that of Mt-Metis on the set

94

4.5 Experimental Evaluation

of instances SMt-Metis. Furthermore, the geometric mean cut size of Mt-KaHIP with 79
PEs is 7.9% smaller than that of ParHIP with 79 PEs on the set of instances I and
2.4% smaller than that of KaHIP on the set of instances SKaHIP. Moreover, the Wilcoxon
signed-rank test (see Section 2.3.3) indicates that the quality advantage of Mt-KaHIP
fast over the other solvers except Mt-Metis is statistically significant. However, note
that the effectiveness tests from the next paragraph show that Mt-KaHIP fast with
p = 79 has better quality than Mt-Metis with p = 79. Furthermore, if we consider
only instances that are partitioned without imbalance by Mt-Metis then the p-value
is 10−5 and, thus, the difference is statistically significant. However, note that there
are only 23 instances that are partitioned without imbalance by Mt-Metis which may
not be enough to show that the difference is statistically significant.

Figure 4.6 show the performance plots that compares Mt-KaHIP and Mt-KaHIP fast
with p = 79. It is not surprising that Mt-KaHIP has better quality than Mt-KaHIP fast
since Mt-KaHIP fast uses a more aggressive coarsening scheme. Mt-KaHIP produces
better partitions for 63 instances. Furthermore, Mt-KaHIP has a 18.8% smaller cut
than Mt-KaHIP fast in the best case and only a 2.2% larger cut than Mt-KaHIP fast
in the worst case.

0 10 20 30 40 50 60 70
instances

0

0.0125

0.025

0.0375

0.05

0.5

1

1
-

b
es

t
/

cu
t

imbalanced solutions

Mt-KaHIP 1

Mt-KaHIP 40

Mt-KaHIP 79

Mt-Metis 1

Mt-Metis 40

Mt-Metis 79

ParHIP 1

ParHIP 40

ParHIP 79

KaHIP

Figure 4.4: Performance plot for the cut size of Mt-KaHIP and competitors. The
number behind the algorithm name denotes the number of PEs used.

95

4 Parallel Shared-Memory Multi-level Graph Partitioning

0 10 20 30 40 50 60 70
instances

0

0.0125

0.025

0.0375

0.05

0.5

1

1
-

b
es

t
/

cu
t

imbalanced solutions

Mt-KaHIP fast 79 Mt-Metis 1

Mt-Metis 79

ParHIP 1

ParHIP 79

KaHIP

Figure 4.5: Performance plot for the cut size of Mt-KaHIP fast and competitors.

0 10 20 30 40 50 60 70
instances

0

0.0125

0.025

0.0375

0.05

0.5

1

1
-

b
es

t
/

cu
t

imbalanced solutions

Mt-KaHIP 79 Mt-KaHIP fast 79

Figure 4.6: Performance plot for the cut size of Mt-KaHIP and Mt-KaHIP fast.

96

4.5 Experimental Evaluation

Table 4.4: Geometrical means of cut sizes for different frameworks evaluated on
different sets of instances.

Instances
Algorithm p SAll SMt-Metis SKaHIP SMt-Metis,p=1 I

Mt-KaHIP
1 1593.6K 1620.9K 1716.3K 1718.6K 1846.9K
40 1574.5K 1601.3K 1696.6K 1697.6K 1824.4K
79 1571.5K 1598.0K 1693.2K 1695.8K 1822.4K

Mt-KaHIP fast
1 1664.7K 1690.7K 1790.2K 1800.0K 1934.1K
40 1655.6K 1681.3K 1781.4K 1786.3K 1921.2K
79 1652.3K 1678.4K 1778.2K 1783.4K 1916.6K

ParHIP
1 1749.7K 1794.1K 1889.2K 1905.2K 2045.8K
40 1851.0K 1800.3K 1899.0K 1934.3K 2075.6K
79 1853.2K 1803.8K 1902.7K 1939.5K 2081.5K

Mt-Metis
1 1759.9K – – 1876.0K –
40 1768.5K 1871.2K – – –
79 1772.1K 1873.3K – – –

KaHIP 1 1695.0K – 1822.0K – –

Table 4.5: Pairwise comparison of Mt-KaHIP and Mt-KaHIP fast for p = 1, 40, 79
to other competitors. We compare Mt-KaHIP and Mt-KaHIP fast against com-
petitors on the largest set of instances which were partitioned by competitors. For
example, for Mt-KaHIP and Mt-Metis with p = 40, 79 this is set SMt-Metis. Each
cell of the table is the relative difference of the geometric mean cut sizes and
p-values.

Algorithm Mt-Metis ParHIP KaHIP

p 1 40 79 1 40 79 1

Mt-KaHIP

1 8.4%
8 · 10−3

13.4%
3 · 10−4

13.5%
5 · 10−5

9.7%
4 · 10−14

11.0%
4 · 10−14

11.3%
3 · 10−13

5.8%
3 · 10−12

40 9.5%
2 · 10−3

14.4%
7 · 10−5

14.5%
2 · 10−5

10.8%
7 · 10−14

12.1%
4 · 10−14

12.4%
7 · 3−13

6.9%
7 · 6−13

79 9.6%
2 · 10−3

14.6%
6 · 10−5

14.7%
1 · 10−5

10.9%
7 · 10−14

12.2%
4 · 10−14

12.5%
3 · 10−13

7.1%
7 · 10−13

Mt-KaHIP
fast

1 4.0%
0.9

9.6%
0.3

9.8%
0.1

5.5%
9 · 10−7

6.8%
3 · 10−10

7.1%
1 · 10−9

1.7%
4 · 10−3

40 4.8%
0.5

10.1%
0.2

10.3%
0.06

6.1%
4 · 10−6

7.4%
1 · 10−10

7.7%
7 · 10−10

2.2%
3 · 10−3

79 4.9%
0.5

10.2%
0.1

10.4%
0.07

6.3%
2 · 10−6

7.7%
2 · 10−10

7.9%
9 · 10−10

2.4%
3 · 10−3

97

4 Parallel Shared-Memory Multi-level Graph Partitioning

Effectiveness Tests. The idea of effectiveness tests is to give the faster algorithm
the same amount of time as the slower algorithm for additional repetitions that can
lead to improved solutions. We have improved an approach used in [SS11] to extract
more information out of a moderate number of measurements. Suppose we want to
compare two algorithms A and B and that we run k times on an instance I (graph and
number of blocks). We generate a virtual instance as follows. We first sample one of
the repetitions of both algorithms. Let tA1 and tB1 refer to the observed running times.
Without loss of generality assume tA1 ≥ tB1 . Now we sample (without replacement)
additional repetitions of algorithm B until the total running time accumulated for
algorithm B exceeds tA1 . We assume that there are always enough repetitions of
algorithm B for that. More generally, let tB` denote the running time of the last
sample. We accept the last sample of B with probability (tA1 −

∑
1≤i<` t

B
i)/tB` .

Theorem 4.1
The expected total running time of accepted samples for B is the same as the running
time for the single repetition of A.

Proof. Let t =
∑

1<i<` t
B
i , where ` > 1. Consider a random variable T that is the

total time of sampled repetitions. With probability p = (tA1 − t)/tB` , we accept `-th
sample and with probability 1− p we decline it. Then

E[T] = p · (t+ tB`) + (1− p) · t

= tA1 − t
tB`

· (t+ tB`) + (1− tA1 − t
tB`

) · t = tA1
(4.1)

�

The quality assumed for A in this virtual instance is the quality of the only run of
algorithm A. The quality assumed for B is the best quality observed for an accepted
sample for B.

It is possible that the running times of algorithms for one virtual instance differ
significantly. We want to derive a probabilistic bound on the difference of the running
times of slower and faster algorithms. We prove that if a specific number of virtual
instances is generated then the total running time of faster and slower algorithms over
all virtual instances is within a certain range. However, note that the algorithm A
can be faster in one virtual instance, whereas it is slower in another virtual instance.
Therefore, it is possible that the total running time over all instances of the algorithm
A is still significantly differs from that of the algorithm B. However, it never happens
in our effectiveness tests.

We will use the following theorem.

Theorem 4.2 (Hoeffding’s inequality [Hoe63])
Let X1, . . . , Xn be independent random variables with E[Xi] = µi and P (ai ≤ Xi ≤

98

4.5 Experimental Evaluation

bi) = 1 for constants ai and bi. Then

P (|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ ε) ≤ 2 · e−2ε2/
∑n

i=1
(bi−ai)2

.

Let TA and TB denote sets that consist of running times of all k repetitions of
algorithms A and B, respectively. Let us consider n virtual instances. Note that
the same algorithm may be both slow for one instance and fast for another. This
depends on the results of the sampling from repetitions. Furthermore, let tSi denote
the running time of the first sample of the slower algorithm in the i-th virtual
instance. Let tFij denotes the running time of the j-th sample of the faster algorithm
in the i-th virtual instance. Let fi denotes the number of the samples of the faster
algorithm in the i-th virtual instance. Let tmax = min{max TA,max TB} if tA ≥
tB or tA ≤ tB ∀tA ∈ TA and ∀tB ∈ TB otherwise tmax = max(TA ∪ TB). Let
tmin = max{minTA,minTB}. Thus, tmax is an upper bound on tFij ∀j ∈ [1, fi] and
tmin is a lower bound on tSi . Now we prove the following theorem.

Theorem 4.3
Consider a random variable Xi =

∑fi−1
j=1 tFij + tFifi

, where fi > 1. We accept the fi-th
sample with probability (tSi −

∑fi−1
j=1 tFij)/tFifi

. Let E[Xi] = µi and µ =
∑n
i=1 µi. Then

P (|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ δµ) ≤ 2 · e−2·n·δ2·r2
,

where r = tmin

tmax
is a data dependent constant.

Proof. Note that ai =
∑fi−1
j=1 tFij ≤ Xi ≤

∑fi

j=1 t
F
ij = bi and X1, . . . , Xn are indepen-

dent random variables since they correspond to different virtual instances. Here ai
and bi are the parameters from Hoeffding’s inequality. Then t′i = bi − ai = tFifi

. Now
we can apply Hoeffding’s inequality, where ε = δµ. Then

P (|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ δµ) ≤ 2 · exp(−2δ2(
n∑
i=1

µi)2/

n∑
i=1

t′2i)

= 2 · exp(−2δ2(
n∑
i=1

tSi)2/

n∑
i=1

t′2i)

≤ 2 · exp(−2δ2(n · tmin)2/(n · t2max))

≤ 2 · e−2δ2nr2

(4.2)
�

Corollary 4.4
If we want P (|

∑n
i=1 Xi −

∑n
i=1 µi| ≥ δµ) ≤ ε then n ≥ ln 2

ε /(2δ2r2).

99

4 Parallel Shared-Memory Multi-level Graph Partitioning

Although this formula gives a necessary number of virtual instances to use such that
time difference between algorithms is within a desired percent, this number is different
for each instance. Therefore, in order to be fair to all instances we consider 100 of
virtual instances for each instance. This number is already large enough such that
running time difference between algorithms is within 5% for almost all instances.

Figures 4.7 – 4.11 present performance plots with effectiveness test for Mt-KaHIP and
competitors with p = 1, 79. We use the symmetric log scaling on the y-axis which
allows to define a range around zero that is scaled linearly, whereas the rest of the
y-axis is scaled logarithmically. In this performance plot, we have a linear scaling up
to 0.05 since most of the points are concentrated below 0.05. Note that we compare
our frameworks to competitors with p = 1 to show that Mt-KaHIP and Mt-KaHIP fast
almost always have better quality than our competitors with p = 1 which produce
better partitions than when using p = 79. Furthermore, competitors with p = 1 almost
always produces balanced partitions unlike with p = 79. As we can see, even with
additional running time other frameworks have mostly worse quality than Mt-KaHIP
with p = 1, 79.

Table 4.6 shows the detailed information about the effectiveness tests. For p = 79,
we can see that Mt-KaHIP always produces better cuts for 90.5%, 98.6%, and 99.5%
of virtual instances against Mt-Metis, ParHIP, and KaHIP, respectively. Mt-KaHIP
fast with p = 79 always produces better cuts for 88.4%, 91.7%, and 82.4% of virtual
instances against Mt-Metis with p = 79, ParHIP with p = 79, and KaHIP, respectively.
Furthermore, Mt-KaHIP with p = 79 has a 70.3% smaller cut in the best case and a
7.9% larger cut in the worst case. Mt-KaHIP fast with p = 79 has a 72.4% smaller
cut in the best case and a 87.7% larger cut in the worst case. Note that the high
relative differences in the worst cases correspond to imbalanced partitions of the graph
in-2004 produced by Mt-KaHIP fast. If we consider only virtual instances partitioned
without imbalance then the relative differences are not that high.

100

4.5 Experimental Evaluation

Table 4.6: Results of effectiveness tests. Here “% of instances” is the percent of
virtual instances partitioned better by our framework. “Mean %” is the relative
difference (|a − b|/max(a, b)) between the geometric mean cut sizes computed
by our framework and a competitor. If a value is preceded by a sign − than
our algorithms has smaller geometric mean cut sizes, otherwise there is a sign
+. “Best %” is the best relative difference between the cut size computed by our
framework and a competitor. “Worst %” is the worst relative difference between
the cut size computed by our framework and a competitor.

Algorithm Mt-Metis ParHIP KaHIP

p 1 79 1 79 1

Mt-KaHIP

1
% of instances 57.7 84.7 97.1 93.6 89.5
Mean % −7.2 −9.5 −9.9 −8.5 −5.2
p-value 1 · 10−88 1 · 10−36 0 0 0
Best % 53.8 59.9 57.0 50.0 44.5
Worst % 18.6 6.3 27.7 24.6 33.7

79
% of instances 69.9 90.5 99.2 98.6 99.5
Mean % −10.4 −12.7 −12.1 −12.3 −8.0
p-value 7 · 10−265 2 · 10−170 0 0 0
Best % 54.4 70.3 57.7 60.7 45.5
Worst % 7.6 6.5 1.5 7.9 4.8

Mt-KaHIP
fast

1
% of instances 46.3 80.4 82.2 80.7 65.5
Mean % −3.1 −5.7 −6.0 −4.4 −1.3
p-value 8 · 10−3 8 · 10−3 0 0 9 · 10−101

Best % 53.2 59.8 34.2 41.2 19.3
Worst % 78.2 6.4 80.0 81.6 83.9

79
% of instances 61.5 88.4 91.4 91.7 82.4
Mean % −7.0 −9.8 −9.4 −9.0 −5.1
p-value 7 · 10−93 2 · 10−82 0 0 0
Best % 54.2 72.4 38.4 55.0 26.7
Worst % 87.1 7.7 59.3 87.7 63.3

101

4 Parallel Shared-Memory Multi-level Graph Partitioning

Figure 4.7: Effectiveness tests for Mt-KaHIP, Mt-KaHIP fast and KaHIP. The
number behind the algorithm name denotes the number of PEs used.

102

4.5 Experimental Evaluation

Figure 4.8: Effectiveness tests for Mt-KaHIP and Mt-Metis. The number behind
the algorithm name denotes the number of PEs used.

103

4 Parallel Shared-Memory Multi-level Graph Partitioning

Figure 4.9: Effectiveness tests for Mt-KaHIP fast and Mt-Metis. The number
behind the algorithm name denotes the number of PEs used.

104

4.5 Experimental Evaluation

Figure 4.10: Effectiveness tests for Mt-KaHIP and ParHIP. The number behind
the algorithm name denotes the number of PEs used.

105

4 Parallel Shared-Memory Multi-level Graph Partitioning

Figure 4.11: Effectiveness tests for Mt-KaHIP fast and ParHIP. The number
behind the algorithm name denotes the number of PEs used.

106

4.5 Experimental Evaluation

Additional Quality Comparisons

Here we present additional quality comparisons of Mt-KaHIP to Mt-KaHIP eco, DiBaP,
and PuLP.

Comparison to Mt-KaHIP eco. We additionally compare Mt-KaHIP to Mt-KaHIP
eco, which uses the local max matching algorithm during coarsening, on all 16 mesh
type graphs (32 instances) from the set of instances I except the graph rhg. We consider
Mt-KaHIP eco on the mesh type graphs since they do not have communities which
the label propagation algorithm searches for during the coarsening phase of Mt-KaHIP.
Note that matching algorithms are not biased towards communities. Therefore, we
investigate how the parallel local max matching algorithm during the coarsening phase
affects the resulting quality of our framework.

Figure 4.12 shows a performance plot (see Section 2.3.1) that compares Mt-KaHIP and
Mt-KaHIP eco. We use the symmetric log scaling on the y-axis which allows to define
a range around zero that is scaled linearly, whereas the rest of the y-axis is scaled
logarithmically. In this performance plot, we have a linear scaling up to 0.05 since most
of the points are concentrated below 0.05. Mt-KaHIP and Mt-KaHIP eco produce the
best partition on 14 and 18 instances, respectively. Mt-KaHIP eco has a 5.1% smaller
cut than Mt-KaHIP in the best case and a 12.5% larger cut than Mt-KaHIP in the worst
case. The geometric mean cut sizes of Mt-KaHIP and Mt-KaHIP eco are 1390.3K and
1394.8K, respectively. The Wilcoxon signed-rank test (see Section 2.3.3) indicates that
the quality advantage of Mt-KaHIP over Mt-KaHIP eco is not statistically significant.
The p-value is 0.30. Furthermore, note that Mt-KaHIP eco runs longer on almost all
instances. See details in Section 4.5.3.

Figure 4.13 shows a performance plot (see Section 2.3.1) that compares Mt-KaHIP,
Mt-KaHIP eco, and Mt-Metis with p = 1, 79. We additionally compare ourselves to
Mt-Metis with p = 1 to show that Mt-KaHIP has comparable quality to Mt-Metis
with p = 1 which in turn has better quality than Mt-Metis with 79 PEs. Furthermore,
Mt-Metis with a single PE almost always produces balanced partitions unlike Mt-Metis
with 79 PEs. Mt-KaHIP, Mt-KaHIP eco, and Mt-Metis with p = 1 produce the best
partition on 9, 11, and 12 instances, respectively. Mt-KaHIP, Mt-KaHIP eco, and
Mt-Metis with p = 1, 79 have a 7.8%, 14.7%, 9.9%, and 18.5% larger cut than the
best cut in the worst case. The geometric mean cut sizes of Mt-Metis with p = 1 is
1389.2K. The geometric mean cut sizes of Mt-Metis with p = 79 is 1391.0K (note
that Mt-Metis with p = 79 was not able to partition one instance). The Wilcoxon
signed-rank test indicates that the quality advantage of Mt-Metis over Mt-KaHIP
and Mt-KaHIP eco is not statistically significant. The p-values are 0.12 and 0.61,
respectively.

107

4 Parallel Shared-Memory Multi-level Graph Partitioning

0 5 10 15 20 25 30
instances

0

0.0125

0.025

0.0375

0.05

0.5

1
1

-
b

es
t

/
cu

t

Mt-KaHIP 79 Mt-KaHIP eco 79

Figure 4.12: Performance plot for the cut size of Mt-KaHIP and Mt-KaHIP eco.
The number behind the algorithm name denotes the number of PEs used.

0 5 10 15 20 25 30
instances

0

0.0125

0.025

0.0375

0.05

0.5

1

1
-

b
es

t
/

cu
t

imbalanced solutions

Mt-KaHIP 79 Mt-KaHIP eco 79 Mt-Metis 1

Mt-Metis 79

Figure 4.13: Performance plot for the cut size of Mt-KaHIP, Mt-KaHIP eco, and
Mt-Metis.

108

4.5 Experimental Evaluation

Comparison to DiBaP. We present a quality comparison of Mt-KaHIP and DiBaP
which produces partitions of good quality. Unfortunately, we were not able to run
DiBaP on our main benchmark. Therefore, we were advised by the authors of DiBaP to
compare the frameworks using the cut sizes by Meyerhenke et al. [MMS09a]. We run
our framework on machine A. Table 4.7 presents the cut sizes of partitions produced
by Mt-KaHIP and parallel DiBaP. We additionally present the results of kMetis since
they are used as a baseline comparison in the original paper [MMS09a]. The kMetis
columns contain the average cut size for different number of blocks. Then for each
framework we compute cut size ratios (cut size of the framework divided by kMetis)
for each graph and seed and present the average ratio. We consider the default
configuration of Mt-KaHIP and its strong configuration where LMLS is allowed to
spend more time to find better solution (we compute 99.99999% quantiles in the
stopping rules of LMLS). We select quantiles such that the running time ratio between
Mt-KaHIP default and Mt-KaHIP strong is approximately equal to that of between
DiBaP-long and DiBaP-short. The reason behind it is that we cannot compare absolute
running times of the frameworks since they were evaluated on different machines.
Table 4.8 shows ratios between Mt-KaHIP default and Mt-KaHIP strong as well as
speed-ups of the frameworks. Furthermore, we evaluate Mt-KaHIP for p = 1 and
p = 2 since DiBaP was also evaluated for the same numbers of PEs. Meyerhenke et
al. [MMS09a] state that they have a speed-up of 1.55 and quality does not change
for p = 2. Mt-KaHIP default shows comparable quality to that of DiBaP-short and a
speed-up of 1.58, whilst Mt-KaHIP strong shows better quality to that of DiBaP-long
and a speed-up of 1.68.

109

4 Parallel Shared-Memory Multi-level Graph Partitioning

Table 4.7: Cut sizes of kMetis, Mt-KaHIP, and DiBaP.

Blocks kMetis
Mt-KaHIP
default

Mt-KaHIP
strong

DiBaP
short

DiBaP
long

p = 1 p = 2 p = 1 p = 2
4 13836.9 0.917 0.917 0.898 0.905 0.971 0.926
8 24079.0 0.939 0.933 0.923 0.922 0.945 0.952
16 39013.7 0.945 0.944 0.928 0.922 0.927 0.924
32 58275.7 0.959 0.963 0.934 0.935 0.909 0.939
64 82292.8 0.974 0.977 0.947 0.945 0.980 0.948
Harmonic
mean (rel.) 1.000 0.947 0.946 0.926 0.926 0.946 0.938

Table 4.8: Relative running times of Mt-KaHIP, and DiBaP.

Blocks Mt-KaHIP (strong
default) DiBaP (strong

default)
Mt-KaHIP
speed-up

DiBaP
speed-up

p = 1 p = 2 default strong
4 1.24 1.17 2.27 1.54 1.64 1.55
8 1.45 1.39 2.38 1.57 1.63 1.55
16 1.89 1.81 2.45 1.61 1.68 1.55
32 2.39 2.22 2.64 1.62 1.75 1.55
64 3.19 2.92 2.72 1.58 1.72 1.55
Harmonic
mean (rel.) 1.82 1.71 2.48 1.58 1.68 1.55

110

4.5 Experimental Evaluation

Comparison to PuLP. We present a quality comparison of Mt-KaHIP, Mt-KaHIP
fast and PuLP. The experiments were performed on machine A. The performance
plots (see Section 2.3.1) in Figures 4.14 and 4.15 show the results of our experiments.
We use the symmetric log scaling on the y-axis which allows to define a range around
zero that is scaled linearly, whereas the rest of the y-axis is scaled logarithmically. In
this performance plot, we have a linear scaling up to 0.05 since most of the points
are concentrated below 0.05. Our algorithm gives the best overall quality, usually
producing the best cut for most instances. There are only two instances which PuLP
partitions better and even in these cases Mt-KaHIP with p = 79 is at most 2.0%
worse. Table 4.9 shows the geometric mean cut sizes of the frameworks over the set
of instances SPuLP. We can see that the geometric mean cut sizes of Mt-KaHIP and
Mt-KaHIP fast are about two times smaller than that of PuLP. Furthermore, the
Wilcoxon signed-rank test (see Section 2.3.3) indicates that the quality advantage
of Mt-KaHIP and Mt-KaHIP fast with p = 79 over PuLP with p = 79 is statistically
significant. Both p-values are 2 · 10−12.

Table 4.9: Geometrical means of cut sizes of Mt-KaHIP, Mt-KaHIP fast, and
PuLP over the set of instances SPuLP.

Number of processors
Algorithm 1 40 79
Mt-KaHIP 2000.8K 1975.4K 1973.2K
Mt-KaHIP fast 2095.4K 2081.3K 2075.9K
Mt-Metis 5100.0K 5208.7K 5474.4K

111

4 Parallel Shared-Memory Multi-level Graph Partitioning

0 10 20 30 40 50 60 70
instances

0

0.0125

0.025

0.0375

0.05

0.5

1

1
-

b
es

t
/

cu
t

imbalanced solutions

Mt-KaHIP 1

Mt-KaHIP 40

Mt-KaHIP 79

PuLP 1

PuLP 40

PuLP 79

Figure 4.14: Performance plot for the cut size of Mt-KaHIP and PuLP. The
number behind the algorithm name denotes the number of PEs used.

0 10 20 30 40 50 60 70
instances

0

0.0125

0.025

0.0375

0.05

0.5

1

1
-

b
es

t
/

cu
t

imbalanced solutions

Mt-KaHIP fast 1

Mt-KaHIP fast 40

Mt-KaHIP fast 79

PuLP 1

PuLP 40

PuLP 79

Figure 4.15: Performance plot for the cut size of Mt-KaHIP fast and PuLP.

112

4.5 Experimental Evaluation

Additionally, Figure 4.16 presents the effectiveness tests that compare Mt-KaHIP and
Mt-KaHIP fast to PuLP for p = 79. We use the symmetric log scaling on the y-axis
which allows to define a range around zero that is scaled linearly, whereas the rest of
the y-axis is scaled logarithmically. In this performance plot, we have a linear scaling
up to 0.05 since most of the points are concentrated below 0.05. Specifically, Mt-KaHIP
has better quality than PuLP for 97.2% of the virtual instances and their geometric
mean cut sizes are 1972.7 and 4509.3, respectively. The Wilcoxon signed-rank test (see
Section 2.3.3) indicates that the quality advantage of Mt-KaHIP with p = 79 over PuLP
with p = 79 is statistically significant. The p-values is 0. Furthermore, Mt-KaHIP has
a 99.4% smaller cut than PuLP in the best case and a 2.3% larger cut than PuLP in
the worst case. Mt-KaHIP fast has better quality than PuLP for 96.9% of the virtual
instances and their geometric mean cut sizes are 2071.2 and 4631.5, respectively. The
Wilcoxon signed-rank test (see Section 2.3.3) indicates that the quality advantage of
Mt-KaHIP fast and PuLP with p = 79 is statistically significant. The p-values is 0.
Furthermore, Mt-KaHIP fast has a 99.4% smaller cut than PuLP in the best case and
a 51.8% larger cut than PuLP in the worst case. However, if we consider only instances
partitioned without imbalance then Mt-KaHIP fast has 3.9% larger cut than PuLP in
the worst case and 98.9% smaller cut in the best case.

Figure 4.16: Effectiveness tests for Mt-KaHIP, Mt-KaHIP fast and PuLP. The
number behind the algorithm name denotes the number of PEs used.

113

4 Parallel Shared-Memory Multi-level Graph Partitioning

4.5.3 Speed-up and Running Time

In this section, we analyze speed-ups and running times of Mt-KaHIP, Mt-KaHIP
fast, Mt-Metis and ParHIP. Furthermore, we analyze performance of their main
components: the coarsening phases, the uncoarsening phases, and local searches. Here
a relative speed-up of an algorithm with p PEs on an instance is the ratio between
its running time with a single PE (averaged over ten repetitions) and its running
time with p PEs (averaged over ten repetitions). We compare LMLS from Mt-KaHIP
and the hill-climbing technique from Mt-Metis as well as the label propagation
implementations of Mt-KaHIP and ParHIP. Additionally, we compare ourselves to
PuLP. We performed experiments on machines A and B to investigate how NUMA
effects affect performance.

Complete algorithms

In this paragraph, we compare performance of complete runs of Mt-KaHIP, Mt-KaHIP
fast, Mt-Metis, and ParHIP on machines A and B.

Machine A. Here we present an analysis of complete runs of the frameworks.
Figure 4.17 shows scatter plots with the speed-ups and running times per edge. We
can see that the speed-ups and times per edge of Mt-KaHIP improve with increasing
number of edges. Note that with increasing number of edges, Mt-KaHIP has better
speed-ups than Mt-Metis and better times per edge than those of ParHIP. Moreover,
85% of the twenty highest time per edge relative differences (|a−b|/max(a, b)) between
Mt-Metis and Mt-KaHIP – where Mt-Metis is faster – correspond to the instances
partitioned with imbalance (Mt-Metis 79 imbalanced). Mt-KaHIP fast has better
speed-ups than Mt-Metis and ParHIP. Furthermore, Mt-KaHIP fast has comparable
times per edge to those of Mt-Metis and better times per edge than ParHIP. To
analyze the overall performance, we consider cumulative harmonic mean speed-ups
and geometric mean running times presented on Figures 4.18 and 4.19.

Table 4.10 shows the harmonic mean speed-ups and the geometric mean running times.
Mt-KaHIP has slightly worse harmonic mean speed-up and geometric mean running
time than other frameworks since the coarsest graph is not small enough and the
initial partitioning phase becomes a bottleneck. See Section 4.5.5 for details. However,
note that Mt-KaHIP fast does not have this problem and has better harmonic mean
speed-up than other frameworks and better geometric mean running time than ParHIP.
Although Mt-KaHIP has worse harmonic mean speed-up than other competitors on
the full set of instances SMt-Metis, Figure 4.18 shows that if we exclude the graphs
with less than 43M edges then the harmonic mean speed-up of Mt-KaHIP is better
than that of Mt-Metis. Furthermore, Figures 4.18 and 4.19 show that excluding
graphs with less than about 150M edges improves the geometric mean running time
of Mt-KaHIP such that it is better than that of ParHIP. In summary, although on

114

4.5 Experimental Evaluation

Table 4.10: Harmonic mean speed-ups and geometric mean running times of the
frameworks over different sets of instances. Here SMt-Metis balanced is 22 instances
from SMt-Metis that are partitioned without imbalance by all frameworks.

Speed-up Running time (s)

Algorithm SMt-Metis
SMt-Metis
balanced I SMt-Metis

SMt-Metis
balanced I

Mt-KaHIP 6.1 19.1 5.9 18.8 15.7 21.9
Mt-KaHIP fast 12.4 25.5 12.8 8.5 12.5 9.2
Mt-Metis 8.5 10.9 – 5.7 6.0 –
ParHIP 7.4 31.1 7.3 15.8 15.5 18.1

average our algorithm is slower than Mt-Metis, our framework has better quality (see
Section 4.5.2) and we consider this as a fair trade off between the quality and the
running time. Furthermore, we dominate ParHIP in terms of quality and running
times if we exclude small graphs.

Mt-KaHIP 79 Mt-KaHIP fast 79

Mt-KaHIP fast 79
(imbalanced)

Mt-Metis 79

Mt-Metis 79
(imbalanced)

ParHIP 79

ParHIP 79
(imbalanced)

107 108 109

Number of edges

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

S
p

ee
d

-u
p

Complete algorithm

107 108 109

Number of edges

0

100

101

102

103

104

T
im

e
p

er
ed

ge
,

n
s

Complete algorithm

Figure 4.17: Scatter plots with speed-ups and running times per edge of the
frameworks for p = 79.

115

4 Parallel Shared-Memory Multi-level Graph Partitioning

Mt-KaHIP 79 Mt-KaHIP fast 79 ParHIP 79 Mt-Metis 79

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

10

20

30

40

50

60

70

S
p

ee
d

-u
p

Complete algorithm

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

10

20

30

40

50

R
u

n
n

in
g

ti
m

e
(s

)

Complete algorithm

Figure 4.18: Cumulative harmonic mean speed-ups and geometric mean running
times of the frameworks for p = 79 on the set of instances SMt-Metis. Here a point
(x, y) means that the harmonic mean speed-up (geometric mean running time) of
the graphs with |E| ≥ x is y.

Mt-KaHIP 79 Mt-KaHIP fast 79 ParHIP 79

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

5

10

15

20

25

30

35

S
p

ee
d

-u
p

Complete algorithm

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

20

40

60

80

100

120

140

160

R
u

n
n

in
g

ti
m

e
(s

)

Complete algorithm

Figure 4.19: Cumulative harmonic mean speed-ups and geometric mean running
times of Mt-KaHIP and ParHIP for p = 79 on the set of instances I.

116

4.5 Experimental Evaluation

Machine B. Here we present an analysis of complete runs of the frameworks.
Figure 4.20 shows the scatter plots with speed-ups and running times per edge of the
frameworks. We can see that speed-ups and times per edge of Mt-KaHIP improve with
increasing number of edges. Note that with increasing number of edges, Mt-KaHIP
has better speed-ups and times per edge to those of ParHIP as well as better speed-
ups than Mt-Metis. Moreover, 90% of the twenty highest time per edge relative
differences (|a − b|/max(a, b)) between Mt-Metis and Mt-KaHIP – where Mt-Metis
is faster – correspond to the instances partitioned with imbalance (Mt-Metis 31
imbalanced). Furthermore, to analyze the overall performance of the frameworks, we
consider harmonic mean speed-ups and geometric mean running times presented on
Figures 4.21.

Table 4.11 shows the harmonic mean speed-ups and the geometric mean running
times of the frameworks. Mt-KaHIP has slightly worse harmonic mean speed-up than
Mt-Metis since the coarsest graph is not small enough and the initial partitioning
phase becomes a bottleneck. However, Figure 4.21 shows that if we exclude the graphs
with the number of edges less than 47M then the harmonic mean speed-up of Mt-KaHIP
is better than that of Mt-Metis. In summary, although on average our algorithm is
slower than Mt-Metis, we consider this as a fair trade off between the quality and
the running time. Furthermore, we dominate ParHIP in terms of quality and running
times.

Table 4.11: Harmonic mean speed-ups and geometric mean running times of the
frameworks over different sets of instances. Here SBMt-Metis balanced is 22 instances
from SBMt-Metis that are partitioned without imbalance.

Instances
Speed-up Running time (s)

Algorithm SBMt-Metis
SBMt-Metis
balanced SBParHIP SBAll SBMt-Metis

SBMt-Metis
balanced SBParHIP SBAll

Mt-KaHIP 8.2 17.9 8.1 8.5 20.3 17.8 23.7 20.1
Mt-Metis 10.2 11.1 – 10.5 6.9 7.0 36.4 7.0
ParHIP – – 6.4 6.4 – – – 32.0

117

4 Parallel Shared-Memory Multi-level Graph Partitioning

Mt-KaHIP 31 Mt-Metis 31

Mt-Metis 31
(imbalanced)

ParHIP 31

ParHIP 31
(imbalanced)

107 108 109

Number of edges

0

5

10

15

20

25

30

35

S
p

ee
d

-u
p

Complete algorithm

107 108 109

Number of edges

0

100

101

102

103

104

T
im

e
p

er
ed

ge
,

n
s

Complete algorithm

Figure 4.20: Scatter plots with speed-ups and average running times per edge
of the frameworks for p = 31.

Mt-KaHIP 31 ParHIP 31 Mt-Metis 31

2M 16M 47M 114M 201M 521M 855M 1.2G
Instances sorted by |E|

5

10

15

20

25

30

35

S
p

ee
d

-u
p

Complete algorithm

2M 16M 47M 114M 201M 521M 855M 1.2G
Instances sorted by |E|

20

40

60

80

100

120

R
u

n
n

in
g

ti
m

e
(s

)

Complete algorithm

Figure 4.21: Cumulative harmonic mean speed-ups and geometric mean running
times of the frameworks for p = 31 on the set of instances SBAll. Here a point
(x, y) means that the harmonic mean speed-up (geometric mean running time) of
the graphs with |E| ≥ x is y.

118

4.5 Experimental Evaluation

Comparison of Components

Here we compare performance of the MGP phases of the frameworks and local search
techniques used in them on machine A. Performance of the components on machine B
is similar.

Figure 4.22 shows the scatter plots with speed-ups and running times per edge of the
coarsening and uncoarsening phases as well as the combination of them. Furthermore,
Figure 4.22 shows comparison of local searches. Specifically, we compare parallel
LMLS used in Mt-KaHIP against the hill-climbing technique used in Mt-Metis and the
parallel label propagation algorithms used in Mt-KaHIP and ParHIP.

We can see that the speed-ups and times per edge of Mt-KaHIP improve with increasing
number of edges for all components. Note that with increasing number of edges, the
components of Mt-KaHIP have better speed-ups and times per edge than those of
Mt-Metis and of ParHIP. Furthermore, to analyze the overall performance of the
components, we compare harmonic mean speed-ups and geometric mean running times
of Mt-KaHIP, Mt-Metis, and ParHIP in pairs.

Figure 4.23 shows the comparison of components of Mt-KaHIP and Mt-Metis. Addi-
tionally, Table 4.12 shows the harmonic mean speed-up and geometric mean running
time of Mt-KaHIP and Mt-Metis on the set of instances SMt-Metis. We observe that
Mt-KaHIP has better harmonic mean speed-ups of the components than those of
Mt-Metis. Furthermore, if we exclude the graphs with less than about 250M edges
then the uncoarsening phase of Mt-KaHIP has smaller geometric mean running time
than that of Mt-Metis. If we exclude the graphs with less than about 43M edges then
the parallelized LMLS of Mt-KaHIP has smaller geometric mean running time than
the hill-climbing technique of Mt-Metis. The coarsening phase of Mt-KaHIP has larger
geometric mean running times than that of Mt-Metis since we use the parallel label
propagation algorithm in the coarsening phase which performs more work than the
parallel heavy-edge matching algorithm used in Mt-Metis.

Figure 4.24 shows the comparison of Mt-KaHIP and ParHIP. Additionally, Table 4.13
shows the harmonic mean speed-up and geometric mean running time of Mt-KaHIP
and ParHIP on the set of instances I. We observe that Mt-KaHIP has better harmonic
mean speed-ups of the components than those of ParHIP except the harmonic speed-up
of the parallel label propagation algorithm. However, if we exclude the smallest graph
with 2M edges then the parallel label propagation algorithm of Mt-KaHIP has better
harmonic mean speed-up than that of ParHIP. Mt-KaHIP has better geometric mean
running times of the components than those of ParHIP except the geometric mean
running time of the uncoarsening phase. However, if we consider only graphs that have
more than 43M edges then the uncoarsening phase of Mt-KaHIP has better geometric
mean running times. This is not surprising since the uncoarsening phase in Mt-KaHIP
consists of the parallel label propagation and LMLS algorithms, whereas it consists of
only the parallel label propagation algorithm in ParHIP.

119

4 Parallel Shared-Memory Multi-level Graph Partitioning

Table 4.12: Comparison of the components of Mt-KaHIP and Mt-Metis on the
set of instances SMt-Metis. Each cell of the table contains the harmonic mean
speed-up and the geometric mean running time. Bold numbers are the best
speed-ups and running times for components.

With imbalanced instances

Coarsening Uncoarsening
Coarsening

+
Uncoarsening

Local search

Mt-KaHIP 18.3 3.5 s 12.4 2.9 s 16.1 7.0 s 13.1 1.8 s
Mt-Metis 8.2 1.3 s 9.0 1.7 s 10.9 3.3 s 8.1 1.5 s

Without imbalanced instances
Mt-KaHIP 30.5 8.1 s 15.8 2.8 s 27.2 11.9 s 11.2 1.4 s
Mt-Metis 19.8 1.6 s 6.9 2.1 s 14.2 3.9 s 6.0 1.6 s

Table 4.13: Comparison of the components of Mt-KaHIP and ParHIP on the set
of instances I. Each cell of the table contains the harmonic mean speed-up and
the geometric mean running time. Bold numbers are the best speed-ups and
running times for components.

With imbalanced instances

Coarsening Uncoarsening
Coarsening

+
Uncoarsening

Local search

Mt-KaHIP 18.6 3.8 s 12.8 3.2 s 16.5 7.7 s 7.7 0.6 s
ParHIP 12.2 9.9 s 8.0 2.6 s 11.2 13.0 s 8.0 2.6 s

Without imbalanced instances
Mt-KaHIP 20.9 4.0 s 13.1 3.2 s 17.9 8.1 s 8.4 0.6 s
ParHIP 15.5 9.7 s 9.4 2.6 s 13.9 12.9 s 9.4 2.6 s

120

4.5 Experimental Evaluation

Mt-KaHIP 79 Mt-Metis 79

Mt-Metis 79
(imbalanced)

ParHIP 79

ParHIP 79
(imbalanced)

107 108 109

Number of edges

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

S
p

ee
d

-u
p

Coarsening

107 108 109

Number of edges

0

100

101

102

103

T
im

e
p

er
ed

ge
,

n
s

Coarsening

107 108 109

Number of edges

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

S
p

ee
d

-u
p

Uncoarsening

107 108 109

Number of edges

0

100

101

102

103

T
im

e
p

er
ed

ge
,

n
s

Uncoarsening

107 108 109

Number of edges

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

S
p

ee
d

-u
p

Coarsening + Uncoarsening

107 108 109

Number of edges

0

100

101

102

103

T
im

e
p

er
ed

ge
,

n
s

Coarsening + Uncoarsening

121

4 Parallel Shared-Memory Multi-level Graph Partitioning

107 108 109

Number of edges

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

S
p

ee
d

-u
p

Local search (LMLS vs. Hill-climbing)

107 108 109

Number of edges

0

100

101

102

103

T
im

e
p

er
ed

ge
,

n
s

Local search (LMLS vs. Hill-climbing)

107 108 109 1010

Number of edges

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

S
p

ee
d

-u
p

Local search (Label Propagation)

107 108 109 1010

Number of edges

0

100

101

102

T
im

e
p

er
ed

ge
,

n
s

Local search (Label Propagation)

Figure 4.22: Scatter plots with speed-ups and average running times per edge
of the different components for p = 79.

122

4.5 Experimental Evaluation

Mt-KaHIP 79 Mt-Metis 79

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

10

15

20

25

30

35

40

S
p

ee
d

-u
p

Coarsening

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

5

10

15

20

R
u

n
n

in
g

ti
m

e
(s

)

Coarsening

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

S
p

ee
d

-u
p

Uncoarsening

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

2

3

4

5

6

7

8

9

R
u

n
n

in
g

ti
m

e
(s

)

Uncoarsening

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

10

15

20

25

30

35

S
p

ee
d

-u
p

Coarsening + Uncoarsening

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

5

10

15

20

25

30

R
u

n
n

in
g

ti
m

e
(s

)

Coarsening + Uncoarsening

123

4 Parallel Shared-Memory Multi-level Graph Partitioning

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

4

6

8

10

12

14

16

18

S
p

ee
d

-u
p

Local search (LMLS vs. Hill-climbing)

2M 16M 43M 100M 200M 378M 788M 1.2G
Instances sorted by |E|

1

2

3

4

5

6

R
u

n
n

in
g

ti
m

e
(s

)

Local search (LMLS vs. Hill-climbing)

Figure 4.23: Cumulative harmonic mean speed-ups and geometric mean running
times of the components of Mt-KaHIP and Mt-Metis for p = 79 on the set of
instances SMt-Metis. Here a point (x, y) means that the harmonic mean speed-up
(geometric mean running time) of the graphs with |E| ≥ x is y.

124

4.5 Experimental Evaluation

Mt-KaHIP 79 ParHIP 79

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

15

20

25

30

35

40

45

50

S
p

ee
d

-u
p

Coarsening

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

10

20

30

40

50

R
u

n
n

in
g

ti
m

e
(s

)

Coarsening

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

10

20

30

40

50

S
p

ee
d

-u
p

Uncoarsening

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

0

10

20

30

40

50

R
u

n
n

in
g

ti
m

e
(s

)

Uncoarsening

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

10

15

20

25

30

35

40

S
p

ee
d

-u
p

Coarsening + Uncoarsening

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

20

40

60

80

100

R
u

n
n

in
g

ti
m

e
(s

)

Coarsening + Uncoarsening

125

4 Parallel Shared-Memory Multi-level Graph Partitioning

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

10

15

20

25

30

S
p

ee
d

-u
p

Local search (Label Propagation)

2M 14M 43M 100M 201M 521M 1.0G 3.3G
Instances sorted by |E|

0

10

20

30

40

50

R
u

n
n

in
g

ti
m

e
(s

)

Local search (Label Propagation)

Figure 4.24: Cumulative harmonic mean speed-ups and geometric mean running
times of the components of Mt-KaHIP and ParHIP for p = 79 on the set of instances
I. Here a point (x, y) means that the harmonic mean speed-up (geometric mean
running time) of the graphs with |E| ≥ x is y.

126

4.5 Experimental Evaluation

Additional Performance Comparisons

Here we present additional performance comparisons of Mt-KaHIP to Mt-KaHIP eco
and PuLP.

Performance comparison to Mt-KaHIP eco. We additionally compare Mt-KaHIP
to Mt-KaHIP eco, which uses the local max matching algorithm during coarsening,
on all 16 mesh type graphs (32 instances) from the set of instances I. We consider
Mt-KaHIP eco on the mesh type graphs since they do not have communities which
the label propagation algorithm searches for during the coarsening phase of Mt-KaHIP.
Note that matching algorithms are not biased towards communities. Therefore, we
investigate how the parallel local max matching algorithm during the coarsening phase
affects the resulting performance of our framework.

Figure 4.25 shows the scatter plots with speed-ups and running times per edge of
the frameworks. Mt-KaHIP has better speed-ups than Mt-KaHIP eco and comparable
times per edges with increasing number of edges. The harmonic mean speed-ups
of Mt-KaHIP and Mt-KaHIP eco are 10.3 and 9.2, respectively. The geometric mean
running times of Mt-KaHIP and Mt-KaHIP eco are 20.2 s and 21.5 s, respectively.
Mt-KaHIP eco has worse speed-ups since some components of its coarsening phase are
sequential but we are planning to parallelize them in future research.

Mt-KaHIP 79 Mt-KaHIP eco 79

107 108 109

Number of edges

0

5

10

15

20

25

30

35

40

45

S
p

ee
d

-u
p

Speed-up

107 108 109

Number of edges

0

100

101

102

103

104

T
im

e
p

er
ed

ge
,

n
s

Running time

Figure 4.25: Scatter plots with speed-ups and average running times per edge
of Mt-KaHIP and Mt-KaHIP eco for p = 79.

127

4 Parallel Shared-Memory Multi-level Graph Partitioning

Performance Comparison to PuLP. We present performance comparisons of com-
plete runs of Mt-KaHIP, Mt-KaHIP fast, and PuLP on machine A. Figure 4.26 shows the
scatter plots with speed-ups and running times per edge of the frameworks. Mt-KaHIP
fast has better speed-ups than PuLP. Note that with increasing number of edges,
Mt-KaHIP has also better speed-ups than PuLP. To analyze the overall performance of
the frameworks, we consider harmonic mean speed-ups and times per edge presented
on Figure 4.27.

Table 4.14 shows the harmonic mean speed-ups and the geometric mean running
times of the frameworks. Mt-KaHIP has worse harmonic mean speed-up and geometric
running time since the coarsest graph is not small enough and the initial partitioning
phase becomes a bottleneck. However, note that Mt-KaHIP fast does not have this
problem and has better harmonic mean speed-up than PuLP. Although Mt-KaHIP has
worse speed-ups than PuLP, Figure 4.27 shows that if we exclude the graphs with
less than 47M edges then the harmonic mean speed-up of Mt-KaHIP is better than
that of PuLP. In summary, although on average our algorithm is slower than PuLP,our
framework has better quality (see Section 4.5.2) and we consider this as a fair trade
off between quality and the running time.

Mt-KaHIP 79 Mt-KaHIP fast 79

Mt-KaHIP fast 79
(imbalanced)

PuLP 79

PuLP 79
(imbalanced)

107 108 109

Number of edges

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

S
p

ee
d

-u
p

Complete algorithm

107 108 109

Number of edges

0

100

101

102

103

104

T
im

e
p

er
ed

ge
,

n
s

Complete algorithm

Figure 4.26: Scatter plots with speed-ups and average running times per edge
of the frameworks for p = 79.

128

4.5 Experimental Evaluation

Table 4.14: Harmonic mean speed-ups and geometric mean running times of the
frameworks over different sets of instances. Here SPuLP balanced is 40 instances
from SPuLP that are partitioned without imbalance.

Speed-up Running time (s)

Algorithm SPuLP
SPuLP

balanced SPuLP
SPuLP

balanced
Mt-KaHIP 6.6 5.8 23.7 s 27.6 s
Mt-KaHIP fast 15.6 17.5 10.1 s 8.7 s
PuLP 8.8 9.0 5.1 s 3.6 s

Mt-KaHIP 79 Mt-KaHIP fast 79 PuLP 79

4M 17M 47M 114M 201M 521M 855M 3.3G
Instances sorted by |E|

5

10

15

20

25

30

35

S
p

ee
d

-u
p

Complete algorithm

4M 17M 47M 114M 201M 521M 855M 3.3G
Instances sorted by |E|

0

20

40

60

80

100

120

140

160

R
u

n
n

in
g

ti
m

e
(s

)

Complete algorithm

Figure 4.27: Cumulative harmonic mean speed-ups and geometric running times
of the frameworks for p = 79 on the set of instances SPuLP. Here a point (x, y)
means that the harmonic mean speed-up (geometric running time) of the graphs
with |E| ≥ x is y.

129

4 Parallel Shared-Memory Multi-level Graph Partitioning

4.5.4 Memory consumption

We now look at the memory consumption of Mt-KaHIP, Mt-Metis, and ParHIP on eight
biggest graphs of the benchmark set I for k = 16 (for k = 64 they are comparable)
on machine A. Figure 4.28 and Table 4.15 present memory consumptions for the
frameworks with p = 1 and p = 79. We observe only small memory overheads of
Mt-KaHIP when increasing the number of PEs. We explain these by the fact that
all data structures created by each PE are either of small memory size (copy of a
coarsened graph) or the data is distributed between them approximately uniformly (a
hash table in LMLS). Note that all frameworks have relatively little memory overhead
for parallelization. However, on average Mt-KaHIP consumes 33.1% less memory than
Mt-Metis and 56.2% less memory than ParHIP on these graphs using 79 PEs.

Mt-KaHIP 79 Mt-Metis 79 ParHIP 79

1.0 1.5 2.0 2.5 3.0
Number of edges ×109

0

20

40

60

80

100

120

M
em

or
y

p
er

ed
ge

,
B

y
te

s

p = 1

1.0 1.5 2.0 2.5 3.0
Number of edges ×109

0

20

40

60

80

100

120

M
em

or
y

p
er

ed
ge

,
B

y
te

s

p = 79

Figure 4.28: Memory consumption per edge in bytes. The horizontal lines are
the geometric mean memory consumptions per edge.

Table 4.15: Memory consumption in gigabytes.

p = 1 p = 79
Graph Mt-KaHIP Mt-Metis ParHIP Mt-KaHIP Mt-Metis ParHIP

uk-2005 28.5 45.5 65.4 29.0 56.7 68.5
rgg_2_27_3d 35.8 45.9 73.0 36.6 48.5 76.9
webbase-2001 37.0 51.8 77.3 48.8 85.0 94.5
it-2004 35.8 60.5 84.7 36.2 66.5 88.0
del_2_27_3d 39.1 57.3 94.0 39.8 58.3 97.7

130

4.5 Experimental Evaluation

rgg_2_27 47.2 60.4 106.8 48.1 62.7 110.7
sk-2005 59.4 – 146.6 63.1 – 155.2
uk-2007 109.1 – 268.4 110.1 – 273.4
Geometrical

mean 44.8 53.2 102.7 47.3 62.0 109.1

131

4 Parallel Shared-Memory Multi-level Graph Partitioning

4.5.5 Influence of MGP Phases of Mt-KaHIP

We now analyze how the parallelization of the different phases affects solution quality
of partitioning and present the speed-ups of each phase. We perform experiments on
machine A with configurations of Mt-KaHIP in which only one of the phases (coarsening,
initial partitioning, uncoarsening) is parallelized. The respective parallelized phase
of Mt-KaHIP uses 79 PE and the other phases run sequentially. Running Mt-KaHIP
with parallel coarsening increases the geometric mean of the cut by 0.68%, with
parallel initial partitioning decreases the geometric mean of the cut by 1.86%, and with
parallel local search increases the geometric mean of the cut by 0.57%. Furthermore,
the Wilcoxon signed-rank test (see Section 2.3.3) shows that the difference between
the partitions computed by Mt-KaHIP with a single PE and partitions computed by
Mt-KaHIP with any parallel phase is statistically insignificant. Specifically, the p-values
of the signed-rank tests for Mt-KaHIP with a single PE and Mt-KaHIP with only parallel
coarsening, initial partitioning, or uncoarsening are 0.92, 0.19, and 0.52, respectively.
Therefore, compared to Mt-KaHIP with a single PE, Mt-KaHIP with any parallel phase
either does not affect solution quality significantly or improves the cut slightly on
average. The parallelization of initial partitioning gives better cuts since it computes
more initial partitions than the sequential version.

To show that the parallelization of each phase is important, we consider running time
ratios and speed-ups of the phases of Mt-KaHIP and Mt-KaHIP fast when p = 79
(when all phases are parallel). Figure 4.29 and 4.30 show the corresponding running
time ratios of the phases for the set of instances I. The experiments were performed on
machine A. The coarsening, initial partitioning, and uncoarsening phases of Mt-KaHIP
have 7.0%, 10.3%, and 10.2% harmonic mean running time ratios. The coarsening,
initial partitioning, and uncoarsening phases of Mt-KaHIP fast have 40.0%, 1.9%, and
31.7% harmonic mean running time ratios. We observe that each phase has the largest
running time ratio for at least one instance. For the graph rgg_2_27 and k = 16, the
coarsening phase of Mt-KaHIP takes 83.6% of the running time and its parallelization
gives a speed-up of 36.0 and a full speed-up of 32.8. For the graph rgg_2_27_3d and
k = 16, the coarsening phase of Mt-KaHIP fast takes 85.7% of the running time and
its parallelization gives a speed-up of 39.6 and a full speed-up of 37.1. For the graph
hollywood-2011 and k = 64, the initial partitioning phase of Mt-KaHIP takes 98.2%
of the running time and its parallelization gives a speed-up of 1.3 and the overall
speed-up is 2. For the graph webbase-2001 and k = 16, the initial partitioning phase
of Mt-KaHIP fast takes 65.8% of the running time and its parallelization gives a
speed-up of 0.18 and the overall speed-up is 8.3. Initial partitioning has a speed-up that
is less than one on this graph since the coarsest graph computed with p = 79 has more
edges than the coarsest graph computed with p = 1. For the graph er_2_22_2_23
and k = 16, the uncoarsening phase of Mt-KaHIP takes 71% of the running time and its
parallelization gives a speed-up of 8.5 and the overall speed-up is 10.8. For the graph
ba_2_22 and k = 16, the uncoarsening phase of Mt-KaHIP fast takes 84.3% of the
running time and its parallelization gives a speed-up of 6.4 and the overall speed-up

132

4.5 Experimental Evaluation

is 8.2. Uncoarsening has a low speed-up on these graphs since the running times of
FindMoves and ApplyMoves in LMLS are comparable and ApplyMoves is sequential.
The harmonic mean speed-ups of the coarsening phase, the initial partitioning phase
and the uncoarsening phase of Mt-KaHIP are 18.6, 1.0 and 12.8, respectively. The
harmonic mean speed-ups of the coarsening phase, the initial partitioning phase and
the uncoarsening phase of Mt-KaHIP fast are 16.4, 1.0 and 10.9, respectively.

133

4 Parallel Shared-Memory Multi-level Graph Partitioning

0 20 40 60 80 100
Percents

uk-2007, k = 64
uk-2007, k = 16
sk-2005, k = 64
sk-2005, k = 16

rgg 2 27, k = 64
rgg 2 27, k = 16

del 2 27 3d, k = 64
del 2 27 3d, k = 16

it-2004, k = 64
it-2004, k = 16

webbase-2001, k = 64
webbase-2001, k = 16

rgg 2 27 3d, k = 64
rgg 2 27 3d, k = 16

uk-2005, k = 64
uk-2005, k = 16
rgg 2 26, k = 64
rgg 2 26, k = 16

arabic-2005, k = 64
arabic-2005, k = 16
del 2 26 3d, k = 64
del 2 26 3d, k = 16
rgg 2 26 3d, k = 64
rgg 2 26 3d, k = 16

nlpkkt240, k = 64
nlpkkt240, k = 16

del 2 27, k = 64
del 2 27, k = 16
uk-2002, k = 64
uk-2002, k = 16
del 2 26, k = 64
del 2 26, k = 16

rhg, k = 64
rhg, k = 16

indochina-2004, k = 64
indochina-2004, k = 16

enwiki-2018, k = 64
enwiki-2018, k = 16

com-orkut, k = 64
com-orkut, k = 16

hollywood-2011, k = 64
hollywood-2011, k = 16

er-fact1, k = 64
er-fact1, k = 16

enwiki-2013, k = 64
enwiki-2013, k = 16

europe, k = 64
europe, k = 16

ljournal-2008, k = 64
ljournal-2008, k = 16

cage15, k = 64
cage15, k = 16

channel, k = 64
channel, k = 16

com-lj, k = 64
com-lj, k = 16

rhg 2 23, k = 64
rhg 2 23, k = 16

hugebubbles-00, k = 64
hugebubbles-00, k = 16

packing, k = 64
packing, k = 16
eu-2005, k = 64
eu-2005, k = 16
in-2004, k = 64
in-2004, k = 16

er 2 22 2 23, k = 64
er 2 22 2 23, k = 16

ba 2 22, k = 64
ba 2 22, k = 16

amazon-2008, k = 64
amazon-2008, k = 16

youtube, k = 64
youtube, k = 16
amazon, k = 64
amazon, k = 16

In
st

an
ce

s
so

rt
ed

b
y
|E
|

Coarsening

Initial partitioning

Uncoarsening

Figure 4.29: Running time ratios of components of Mt-KaHIP.
134

4.5 Experimental Evaluation

0 20 40 60 80 100
Percents

uk-2007, k = 64
uk-2007, k = 16
sk-2005, k = 64
sk-2005, k = 16

rgg 2 27, k = 64
rgg 2 27, k = 16

del 2 27 3d, k = 64
del 2 27 3d, k = 16

it-2004, k = 64
it-2004, k = 16

webbase-2001, k = 64
webbase-2001, k = 16

rgg 2 27 3d, k = 64
rgg 2 27 3d, k = 16

uk-2005, k = 64
uk-2005, k = 16
rgg 2 26, k = 64
rgg 2 26, k = 16

arabic-2005, k = 64
arabic-2005, k = 16
del 2 26 3d, k = 64
del 2 26 3d, k = 16
rgg 2 26 3d, k = 64
rgg 2 26 3d, k = 16

nlpkkt240, k = 64
nlpkkt240, k = 16

del 2 27, k = 64
del 2 27, k = 16
uk-2002, k = 64
uk-2002, k = 16
del 2 26, k = 64
del 2 26, k = 16

rhg, k = 64
rhg, k = 16

indochina-2004, k = 64
indochina-2004, k = 16

enwiki-2018, k = 64
enwiki-2018, k = 16

com-orkut, k = 64
com-orkut, k = 16

hollywood-2011, k = 64
hollywood-2011, k = 16

er-fact1, k = 64
er-fact1, k = 16

enwiki-2013, k = 64
enwiki-2013, k = 16

europe, k = 64
europe, k = 16

ljournal-2008, k = 64
ljournal-2008, k = 16

cage15, k = 64
cage15, k = 16

channel, k = 64
channel, k = 16

com-lj, k = 64
com-lj, k = 16

rhg 2 23, k = 64
rhg 2 23, k = 16

hugebubbles-00, k = 64
hugebubbles-00, k = 16

packing, k = 64
packing, k = 16
eu-2005, k = 64
eu-2005, k = 16
in-2004, k = 64
in-2004, k = 16

er 2 22 2 23, k = 64
er 2 22 2 23, k = 16

ba 2 22, k = 64
ba 2 22, k = 16

amazon-2008, k = 64
amazon-2008, k = 16

youtube, k = 64
youtube, k = 16
amazon, k = 64
amazon, k = 16

In
st

an
ce

s
so

rt
ed

b
y
|E
|

Coarsening

Initial partitioning

Uncoarsening

Figure 4.30: Running time ratios of components of Mt-KaHIP fast.
135

4 Parallel Shared-Memory Multi-level Graph Partitioning

4.6 Conclusion and Future Work

Graph partitioning is a key prerequisite for efficient large-scale parallel graph algorithms.
We presented an approach to multi-level shared-memory parallel graph partitioning
that guarantees balanced solutions, shows high speed-ups for a variety of large graphs
and yields very good quality independently of the number of cores used. Previous
approaches have problems with recently grown structural complexity of networks that
need partitioning – they often show a negative trade-off between speed and quality.
Important ingredients of our algorithm include parallel label propagation for both
coarsening and refinement, parallel initial partitioning, a simple yet effective approach
to parallel localized local search. Considering the good results of our algorithm, we want
to further improve it. More specifically, we are planning to further improve scalability
of parallel coarsening, parallel initial partitioning and parallel LMLS. An interesting
problem is how to apply moves in Section 4.3.3 without the gain recalculation. The
solution of this problem will increase the performance of parallel LMLS. One possible
solution is to construct a direct acyclic graph (DAG) which represents dependencies
between moves. Each vertex in the DAG corresponds to a move of a vertex in the
original graph. Further, if a PE i < j moves a vertex that is adjacent to a vertex
moved by the PE j then these vertices are connected in the DAG. Additionally, there
are also directed edges between vertices that are moved by a single PE (an edge is
directed from the first moved vertex to the second moved vertex) if they are connected
in the original graph. Each PE can process a corresponding subgraph of the DAG
in topological order taking into account dependencies between subgraphs which are
represented by edges that run between subgraphs. Further quality improvements
should be possible by integrating a parallel version of the flow based techniques used
in KaHIP. It would be interesting to try reinforcement learning techniques [SB11] to
improve LMLS. There are two main aspects of LMLS which can be improved with
reinforcement learning are: deciding which vertices to move; estimating a possible
gain increase and, thus, deciding whether to stop LMLS or not.

Moreover, we want to investigate the influence of other parallel clustering algorithms
– different from label propagation – on quality and scalability of graph partitioning.
Specifically, there are numerous different parallel clustering algorithms that optimize
different measures (e.g., modularity) and can potentially improve scalability and quality
of graph partitioning. For example, Meyerhenke and Staudt [SM16] suggested a parallel
clustering algorithm that optimizes modularity; Shun et al. [Shu+16] suggested a
parallel clustering algorithm that optimizes conductance of clusters.

Another interesting problem is the theoretical and extensive practical research of
cache-aware hash tables. From the theoretical point of view, it is important to show
how additional collisions affect the resulting time complexity. Our hope is that it
remains O(1). The practical research should include experiments of cache-aware
hash tables with keys generated using different distributions. Furthermore, recently
a machine learning approach for search was suggested by Kraska et al. [Kra+18].

136

4.6 Conclusion and Future Work

The idea is to learn a machine learning formula that encapsulates the knowledge
about the distribution of keys. This machine learning formula can be used as a hash
function. Note that it is possible if the distribution of keys is static. It is interesting
to investigate if this machine learning technique can be used in a locality preserving
hash table.

137

5Chapter 5

(Semi-) External Multi-level
Graph Partitioning

Graph partitioning and clustering problems are often solved to analyze or process
large graphs in various contexts such as social networks, web graphs, road networks,
or in scientific numeric simulations. To be able to process huge unstructured networks
on cheap commodity machines, one can partition the graph under consideration into a
number of blocks such that each block fits into the internal memory of the machine
while edges running between blocks are minimized (see for example [KBG12]). However,
to do so the partitioning algorithm itself has to be able to partition networks that do
not fit into the internal memory of a machine.

Reference. This chapter is based on the conference paper [ASS15] published
together with Peter Sanders and Christian Schulz. The text was mainly written
by Yaroslav Akhremtsev and Christian Schulz with editing by Peter Sanders. The
design and analyses of the algorithms were made by all authors. The algorithms were
implemented by Yaroslav Akhremtsev.

Contribution: In this chapter, we present semi-external and external algorithms for the
graph partitioning problem that compute high-quality solutions. Our MGP algorithms
perform coarsening and uncoarsening using external memory. Our approach uses
a (semi-)external label propagation algorithm that rapidly shrinks large complex
networks during coarsening. Furthermore, we describe a (semi-)external contraction
algorithm. We again use (semi-)external label propagation during uncoarsening to
refine graphs. Note that only the semi-external label propagation algorithm provides
guarantees on maximum sizes of clusters. Thus, we develop another external memory
clustering algorithm that constructs clusters of sizes that do not exceed a preset
threshold.

The chapter is organized as follows. After discussing related work in Section 5.1,
we explain how clusterings can be used to build a graph hierarchy to be used in
a (semi-)external multi-level algorithm in Section 5.2. Moreover, it presents the
first external memory algorithm to tackle the graph partitioning problem. Next,
Sections 5.2.1, describes a (semi-)external label propagation algorithm that computes
a clustering with or without a size constraint and the parallelization of the semi-
external version. Further, Section 5.2.2 describes the (semi)-external graph clustering

139

5 (Semi-) External Multi-level Graph Partitioning

algorithm based on graph coloring. In contrast to the external label propagation
algorithm, the external color-based algorithm constructs a size-constrained clustering.
Experiments to evaluate performance of our algorithms are presented in Section 5.3.
Finally, we conclude in Section 5.4.

5.1 Related Work

The detailed description of external memory model is described in Section 2.2.2. In
this chapter, we use the time forward processing technique [Chi+95; Zeh02]. The main
idea is that if computations can be represented using a directed acyclic graph then they
can be efficiently performed using an external memory priority queue. Specifically, if
one computation occurs at time t1 and another computation occurs at time t2(t1 < t2)
and uses the result of the first computation then we can send the result using an
external priority queue. Specifically, we insert the result of the first computation with
the key t2 into the priority queue and extract it at time t2.

The first external priority queue was presented by Agre [Arg03a] that allows to extract
the minimum element and to insert a new element using amortizedO(1/B logM/B N/B)
I/Os. In our thesis, we use an external priority queue by Sanders [San99] since there
is a fast implementation of it in the STXXL library [Bec+].

Graph clustering with the label propagation algorithm (LPA) has originally been
described by Raghavan et al. [RAK07]. See Section 3.2.2 for more details. Meyerhenke
et al. [MSS14] introduced the size-constrained LPA. Furthermore, they use this
algorithm during the coarsening and uncoarsening phases of the MGP scheme to
compute graph partitions of large complex networks. In this chapter, we present
a semi-external and an external versions of this algorithm. There are other semi-
external algorithms to tackle the graph partitioning problem which are based on
streaming [SK12]. However, they do not use the MGP approach and do not achieve
high-quality solutions. To the best of our knowledge, our algorithm is the first that
tackles the graph partitioning problem in the external memory model. We compare our
algorithm to two state of the art graph partitioning frameworks: KaHIP and kMetis
that are described in Section 3.8.

5.2 (Semi-)External MGP

We now present the main ingredients we use to obtain a (semi-)external multi-level
graph partitioning (MGP) algorithm. The details of the MGP scheme are described
in Section 3.1. First of all, we outline a (semi-)external algorithm to create graph
hierarchies for the MGP scheme. Meyerhenke et al. [MSS14] create a graph hierarchy
in the internal memory by iteratively contracting size-constrained graph clusterings

140

5.2 (Semi-)External MGP

that are obtained using the label propagation algorithm (LPA). The contraction of a
clustering works as follows: each cluster is contracted into a single vertex. The weight
of the vertex is set to the sum of the weights of all vertices in the original cluster.
There is an edge between two vertices A and B in the contracted graph if the two
corresponding clusters are adjacent to each other in G. The weight of an edge (A,B)
is set to the sum of the weight of the edges that run between A and B. Due to the
way contraction is defined, a partition of the coarse graph corresponds to a partition
of the finer graph with the same cut and balance. We refer to the contracted graph as
quotient graph.

Cluster contraction is an aggressive coarsening strategy. In contrast to most previous
approaches, it can drastically shrink the size of irregular networks. The intuition
behind this technique is that a clustering of the graph (one hopes) contains many
edges running inside the clusters and only a few edges running between clusters, which
is favorable for the edge cut objective. Regarding complexity, experiments in [MSS14]
indicate that already one contraction step can shrink the graph size by orders of
magnitude and that the average degree of the contracted graph is smaller than the
average degree of the input network. Thus, it is very likely that the graph will fit into
the internal memory after the first contraction step. On the other hand, by using a
different size constraint (|Vi| ≤ Lmax := (1 + ε)dc(V)/ke), the LPA can also be used
as a simple strategy to improve solution quality during uncoarsening.

To obtain a (semi-)external MGP algorithm, we develop a (semi-)external variant of
the size-constrained LPA, the contraction algorithm, and the projection algorithm that
projects a partition of a coarse graph to the corresponding finer graph. By doing this,
we have a (semi-)external algorithm that constructs a graph hierarchy and projects a
partition to finer levels. Once the graph is small enough to fit into the internal memory,
we use the KaHIP framework to compute a partition of the graph. Additionally, we
use a (semi-)external size-constrained LPA as a local search algorithm to improve the
solution on the finer levels that do not fit into the internal memory. We proceed by
explaining how graph clustering can be obtained in both, the semi-external and the
external memory models. In Section 5.2.1, we present a semi-external size-constrained
LPA and an external LPA that does not use size constraints. Furthermore, we explain
how both algorithms can be parallelized. In Section 5.2.2, we describe a coloring-based
graph clustering algorithm inspired by label propagation that is able to maintain size
constraints in the external memory model. Finally, we explain an external contraction
in Section 5.2.3 and an external projection of partitions in Section 5.2.4.

5.2.1 Label Propagation Clustering

Label propagation works as follows. In the beginning, each vertex belongs to its own
cluster. and the algorithm works in rounds. During each round, the algorithm visits
each vertex in increasing order of their IDs. When a vertex v is visited, it is moved to
the block with the strongest connection to v, that is, it is moved to the cluster Vi that

141

5 (Semi-) External Multi-level Graph Partitioning

maximizes ω({(v, u) | u ∈ N(v) ∩ Vi}). Ties are broken randomly. If the algorithm is
used to compute a size-constrained clustering, the selection rule is modified such that
only moves are eligible that do not result in overloaded blocks.

Suppose the algorithm is currently processing a vertex v. We scan the adjacency list
of the vertex v and compute the new cluster of this vertex. If there is a size constraint,
we also need a scheme to manage the sizes of each cluster/block.

Active Vertex Strategy. The active vertex strategy can be used to speed up
computations of the LPA [SM16]. The basic idea is that after the first round of the
algorithm, a vertex changes its cluster only if at least one of its neighbors changed its
cluster in the previous round. The active vertex strategy keeps track of vertices that
can potentially change their cluster. Specifically, a vertex is called active if at least
one of its neighbors changed its cluster in the previous round.

To translate this into our computational model, we additionally keep the set of active
vertices and calculate new cluster IDs only for these vertices. More precisely, in the
beginning all vertices are active. After each round the algorithm updates the set
of active vertices by inserting the neighbors of vertices which have changed their
cluster and by deleting vertices whose neighbors have not changed their cluster. In
the worst case the computational complexity of the LPA remains the same. However,
our experiments indicate that the active vertex strategy decreases the computational
time of the LPA given a sufficient number of rounds.

To implement the label propagation algorithm with active vertex strategy, we use
two priority queues (external or internal, depending on the variant of the LPA). Both
priority queues contain active vertices: the first priority queue contains active vertices
that will be processed in the current round and the second priority queue contains
vertices which will be processed in the next round. If a vertex v changes its cluster then
we push all its neighbors with larger IDs to the first priority queue and the neighbors
with smaller IDs to the second priority queue. We use priority queues because the
algorithm processes vertices in increasing order of their IDs. In the external LPA, we
store for each edge (v, u) in the array of edges additional information about the cluster
of u. This allows us to detect if the cluster of a vertex changed. We add cluster[u] in
the array of edges in the beginning of algorithm using Sort(|E|) I/O operations and
maintain them up-to-date during the course of the algorithm.

Semi-External Label Propagation

This is the simple case: since we have O(|V |) internal memory, we can afford to store
the cluster IDs in the internal memory. Additionally, we maintain an array of size
|V | in the internal memory that stores the cluster sizes. Hence, one iteration of the
semi-external LP algorithm can be done using Scan(|E|) I/O operations by iterating
over the external array of edges.

142

5.2 (Semi-)External MGP

Parallel Semi-External Label Propagation. Recall that the LPA iterates over
the external array of edges. In order to accelerate the semi-external LPA and to get
closer to the I/O bound, we parallelize the processing of a disk block of edges. We
divide the disk block into equal ranges and process them in parallel (see Figure 5.1 for
an example). Each PE t owns a range [begint; endt) of a disk block to process. But
before processing the range, PE t shifts the range so that each adjacency list in the
block is scanned by exactly one PE. Specifically, if begint is not at the beginning of
the current adjacency list then PE t skips it. Note that the PE that processes the
beginning of the disk block does not shift since if an adjacency list runs between two
disk blocks then the PE must continue to scan it during the processing of the next
block. Consider the example depicted in Figure 5.1. Here, the PE finds the end of the
adjacency list 1 in [begint; endt) and iterates through the elements until the end of
adjacency list 2 is reached. The shaded area in Figure 5.1 represents the range that
will be actually processed by PE t.

. . .

[begint, endt)

adjaceny list 1 adjacency list 2

Figure 5.1: Range processed by a PE t. The PE t skips the adjacency list 1 and
PE t− 1 will scan it. This allows to avoid the situation when the same adjacency
list is scanned by several PEs.

To maintain up-to-date cluster sizes, we do not move a vertex immediately, i.e. we
store the moves which were generated by the PEs during the processing of the disk
block. Afterwards, all moves are processed sequentially and we make a move if it does
not violate the size constraint.

To show that decreasing processing time of a block is important, we consider two
cases. The first case is when the time to process a block tp is greater than the time
to read a block from a disk tr. The second case is the opposite; that is, tp < tr.
Figures 5.2 (a), 5.2 (b) show time plots for both cases. Let D denotes the number of
disks and each disk has two corresponding blocks in the internal memory to which
it reads data using prefetching. We can see that in the first case all blocks are read
from disks sequentially since each disk waits until one of its two corresponding blocks
is processed and can be overwritten. Although the overall number of I/O operations
is |E|/B for both cases, their running times differ significantly. In the first case, the
running time is O(|E|/B · tp) = O(|E|/B · ctr) given tp = ctr, c > 1. In contrast, in
the second case processing and reading takes only O(|E|/B · tp) = O(|E|/(B · c) · tr)

143

5 (Semi-) External Multi-level Graph Partitioning

time in the second case given tp = tr/c. Thus, if we are able to process a block D
times faster than reading it then the running time is O(|E|/(B ·D) · tr).

Processing:

B1

B2

B3

B1

B′
1 B1 t

B′
2

B3

B2 B3

B2

B′
3

B′
1

B′
1

B′
2

B′
2

B′
3

B′
3

Reading with
prefetching:

(a) The first case when the time to process a block is greater than the time to
read a block (tp > tr).

Processing:

B1

B2

B3

B1

t

B2 B3

B′
1

B′
2

B′
3

B1

B2

B3

B′
1 B′

2 B′
3 B1 B2 B3

Reading with
prefetching:

(b) The second case when the time to read a block is greater than the time to
process a block (tp < tr).

Figure 5.2: Timeline of when disk blocks are prefetched and processed. Here
D = 3. B1, B

′
1 are blocks of disk 1. B2, B

′
2 are blocks of disk 2. B3, B

′
3 are blocks

of disk 3.

External Label Propagation

To perform the LPA in the external memory model, we use time forward process-
ing [Chi+95; Zeh02] to propagate cluster IDs of adjacent vertices. More precisely,
we maintain two external priority queues [San99]: one for the current and one for
the next round. Initially, the current priority queue contains triples (v, c, w) for each
edge (u, v) ∈ E : v < u where v is the key value, w denotes the weight of the edge
and c is the current cluster ID of u. When the algorithm scans a vertex v, all triples
(v, c, w) are on the top of the current priority queue since the vertices are processed
in increasing order of their IDs. The tuples are then extracted using the operations
Pop and Top. This means, we know the current cluster ID of all adjacent vertices of
u and can calculate the new cluster ID. After the new cluster ID is computed, the
algorithm pushes triples with the new cluster ID for all adjacent vertices into the next
and current priority queue depending on the vertex ID of the neighbor v: if u < v we
push (v, cluster[u], w(u, v)) to the current priority queue and if v < u we push it to
the next priority queue. At the end of a round we swap the priority queues.

Each operation of the priority queue Pop, Push and Top is called O(|E|) times and can

144

5.2 (Semi-)External MGP

be done using O(1/B logM/B |E|/B) I/O operations amortized [Arg03b; San99]. Thus,
the overall algorithm uses O(|E|/B logM/B |E|/B) = Sort(|E|) I/O operations.

5.2.2 Coloring-based Graph Clustering

We now present another approach to cluster a graph in the external memory model.
The algorithm is able to maintain the sizes of all clusters in the external memory
model. The main idea of the algorithm is to process independent sets of vertices. Since
vertices of an independent set are not connected, a change of the cluster ID of a vertex
does not affect other vertices in the set. However, we need to take into account the
changes of cluster IDs of neighbors.

Assume that we have a vertex coloring C = {C1, C2, . . . , C`} of the graph, where Ci is
the set of vertices with the same color i. We denote the color of a vertex v as C[v]. Note
that each set Ci forms an independent set. For each set Ci, we maintain an external
array (bucket) of tuples Ti and allocate a buffer of size B in the internal memory for
each bucket Ti. Here we assume that the number of colors |C| = O(M/B).

The bucket clustering algorithm works in rounds. Roughly speaking, in each round
it processes the buckets in increasing order of their color and updates the cluster
IDs of all vertices. When we process a bucket we need the cluster IDs of all vertices
that are adjacent to the vertices in the bucket. Therefore, we define the content of
a bucket as follows: we store tuples where each tuple contains the cluster ID of the
corresponding neighbor, its color, ID of the neighbor and the weight of the edge. More
precisely, initially for a vertex u, we store the following tuples for all neighbors v with
C[v] < C[u] in the corresponding buckets TC[v]: (v, cluster[u], u, w(u, v),C[u]). To do
this efficiently, we augment the array of edges by adding the color of the target vertex
v to each edge (u, v) before the initialization step. Note that these tuples contain the
complete information about the graph structure and that the information suffices to
update clusters of vertices.

When the algorithm processes a bucket Ti, it sorts the elements of the bucket lexico-
graphically by the first and second component. Afterwards, it scans the tuples of the
bucket and calculates a new cluster ID for each vertex in Ci in the same manner as
the LPA. After the bucket is processed, we push tuples with the new cluster IDs to the
corresponding buckets; that is, for each tuple (v, cluster[u], u, w(v, u),C[u]) in bucket
Ti, we push the tuple (u, cluster[v], v, w(u, v),C[v]) into the bucket TC[u]. Finally, we
clear the bucket.

Lemma 5.1
Processing a bucket T requires Sort(|T |) I/O-operations.

Proof. For sorting the bucket, we need Sort(|T |) I/O operations. We need Scan(|T |)
I/O operations for scanning the bucket. Hence, the algorithm uses Sort(|T |) I/O
operations. �

145

5 (Semi-) External Multi-level Graph Partitioning

Theorem 5.2
The bucket algorithm requires Sort(|E|) I/O-operations for one iteration of label
propagation.

Proof. Adding the information about the colors of neighbors to the edges requires
Sort(|E|) I/O operations. Our bucket initialization uses Scan(|E|) I/O operations.
Suppose we have the buckets T1, . . . , T`. All buckets can be processed using Sort(|T1|)+
. . .+ Sort(|T`|) = Sort(|E|) I/O operations. Overall, we use Scan(|E|) I/O operations
for pushing tuples with the new cluster IDs into the respective buckets. Hence, the
algorithm can be implemented using Sort(|E|) I/O operations.

Graph Coloring

Computing a graph coloring is an important part of the bucket graph clustering
algorithm. Note that the number of colors is equal to the number of buckets and we
want to maintain as few buckets as possible. This is due to the fact that we need
O(B) internal memory space per bucket. Moreover, the size of each bucket must be
smaller than an upper bound, since each bucket has to fit into the internal memory
during our experiments. To compute a coloring, we use the time forward processing
technique [Zeh02] with an additional size constraint on the color classes that can be
maintained in the internal memory. This allows us to build a coloring using Sort(|E|)
I/O operations. Note that the coloring is computed only once so that the cost for
computing the coloring can be amortized over many iterations of label propagation.

External Graph Clustering Algorithm with Size Constraints

In this section we describe how we modify the coloring-based clustering algorithm,
so that it can handle a size constraint. The main advantage of the coloring-based
clustering algorithm is as follows. When we process a bucket, the cluster IDs of
all adjacent vertices will not change. This allows us to maintain a data structure
with up-to-date sizes of the clusters of the vertices of the independent set and their
neighbors. In the following, we consider two different data structures depending on
whether a bucket fits into the internal memory or not. In both cases, we use an
external array that stores the sizes of all clusters. We start by explaining the case
where each bucket fits into the internal memory.

Case A: each bucket fits into the internal memory. In this case, we can use
a hash table H to maintain the cluster sizes of the current bucket. The key of H is
the cluster ID and the value is the current size of the cluster. When we process a
bucket Ti, the hash table H can be built as follows. We collect all cluster IDs of the
vertices of the current independent set as well as their neighbors, sort them and then
iterate through the external array to get the current cluster sizes. After finishing to

146

5.2 (Semi-)External MGP

calculate a new cluster ID for each vertex in Ci, we write the updated cluster sizes
to the external array. Hence, the cluster sizes are up-to-date after we processed the
current bucket.

Theorem 5.3
The coloring-based clustering algorithm with size constraints uses t·Scan(|V |)+Sort(|E|)
I/O operations, where t = max(|E|/M, |C|) is the amount of buckets such that each
bucket fits into the internal memory.

Proof. First, we prove the complexity to create the data structure containing the
clusters sizes. In the worst case, each tuple (v, cluster[u], u, w(v, u),C[u]) of the bucket
T has a unique cluster ID and also the cluster ID of each vertex v is unique. Hence,
we need an additional O(|T |) internal memory space for the hash table. To save and
sort the cluster IDs of vertices in the bucket, we use O(1) I/O operations since the
bucket fits into the internal memory. Reading and writing the sizes of clusters to and
from the external array require Scan(|V |) I/O-operations.

Now we estimate the number of buckets that fit into the internal memory. There are
two cases. If a bucket does not fit into the internal memory, we need to divide it into
multiple buckets. Since the overall size of all buckets is O(|E|), the minimum number
of buckets (such that each fits into the internal memory) is O(|E|/M). Otherwise,
if all buckets fit into the internal memory, we have |C| buckets. Since we want each
bucket to fit into the internal memory, we have max(|E|/M, |C|) buckets.

The overall I/O-volume is estimated as follows: for each bucket we need Scan(|V |)
additional I/O-operations to create the data structure containing the sizes of the
clusters. There are at most max(|E|/M, |C|) buckets. Hence, the total number of
I/O-operations is max(|E|/M, |C|) · Scan(|V |) + Sort(|E|) (to perform the main part
of the bucket clustering algorithm). �

Case B: there is at least one bucket that does not fit into the internal
memory. This case is somewhat more complicated, since we cannot afford to store
the hash table in the internal memory. Basically, when we process a bucket Ti, we do
not use a hash table but an external priority queue and additional data structures
which contain enough information to manage the cluster sizes. More precisely, we define
a structureM that stores which vertices need the updated cluster size information if
a vertex from the bucket changes its cluster ID. Vertices from Ci are still processed in
increasing order of their IDs. We now explain these structures in detail.

For a vertex v in the current independent set Ci, let C (v) := {cluster[u] | (v, u) ∈
E}∪{cluster[v]} denote the set of adjacent clusters. An example is shown in Figure 5.3.
These are the clusters that can possibly change their size if v changes its cluster. We
now need to find all vertices from the independent set that are adjacent to these
clusters or belong to these clusters because they need to receive the updated cluster
size.

147

5 (Semi-) External Multi-level Graph Partitioning

AB

4

1

2

3

6

7

Figure 5.3: In this example, C (1) = {A,B, cluster[1]} and C (4) = {B, cluster[4]}.
Dashed lines denote forwarding cluster size changes. A, B are cluster IDs, 1-7
denote vertex ID. Vertex 6 belongs to cluster A. The sets of adjacent vertices
for the cluster A and B are NA = {1, 2, 3, 6, 7} and NB = {1, 4}. Moreover,
M1 = {(2, A), (4, B)}, M2 = {(3, A)}.

The first additional data structure contains only vertices of the independent set.
It is needed to build the next data structure M. Let Nc := {u ∈ Ci | ∃(u, v) ∈
E : cluster[v] = c} ∪ {u ∈ Ci | cluster[u] = c} be the set of adjacent vertices for
a cluster c that are in the current independent set (including the vertices that are
in the cluster). We sort Nc in increasing order of vertex IDs and remove repeated
elements. For a cluster c, the set Nc contains all vertices from the independent
set that are adjacent to the cluster. Moreover, the order in Nc is the same to the
processing order of the independent set. We denote the j-th vertex of Nc as N j

c .
The second additional data structure uses the first one and is defined as the set
Mv := {(u, c) | c ∈ C(v), ∃j N j

c = v, N j+1
c = u}. It contains the vertices to which

the vertex v must forward information about changes in the cluster sizes. Roughly
speaking, for each cluster in the neighborhood of v (including the cluster of v), Mv

contains the adjacent vertex of the cluster that will be processed next. This way the
information can be propagated easily. An example is shown in Figure 5.3.

We now explain the details of the algorithm when processing one bucket. First, we
compute the sets Nc. To do so, we build a list N of pairs (c, v) that are sorted
lexicographically by their first and second component, where c is the ID of the cluster
adjacent to v. For building this list, we iterate through the bucket and add pairs (c, v)
for each tuple (v, c, . . .) ∈ Ti to the list and also add the pair (cluster[v], v) ∀v ∈ Ci.
Then we sort these pairs and we are done. Note that |N | = |Ci|+ |Ti| = O(|Ti|). To
compute the sets Mv, we build a listM of triples (v, c, u), where v is the vertex ID
and (u, c) ∈ Mv. For each N j

c = v and N j+1
c = u the triple (v, c, u) is added to the

list. Afterwards, the triples are sorted by the first component. Note that the size of
the list is at most O(|Ti|).

Recall, that the set Mv contains the vertices that have to receive the changes in the
cluster sizes. To forward the information, we use an external priority queue. The
priority queue contains triples (v, c, sz), where v is the vertex ID which also serves
as key value, c ∈ C(v) is the cluster and sz the size of the cluster. We initialize the

148

5.2 (Semi-)External MGP

priority queue as follows: we iterate through the sets Nc and put the tuples (v1, c, sz)
in the priority queue, where v1 is the first vertex in Nc. The sizes of the clusters are
obtained from the external array containing the cluster sizes. Then the vertices are
processed. After a vertex v is processed, we add (u, c, sz) to the priority queue for
each pair (u, c) ∈ Mv. After we processed a bucket, we update the cluster sizes in the
external array.

Lemma 5.4
When vertex v is processed there is a triple (v, c, sz) for each adjacent cluster on the
top of priority queue with up-to-date cluster sizes.

Proof. Consider a cluster ID c and let the list Nc be {v1, v2, . . . , vi, vi+1, . . . , vk}. In
the beginning, there is a triple (v1, c, size) in the priority queue with the current size
of the cluster c due to the way the priority queue is initialized. When we process vi,
we add a triple with the updated size of c into the priority queue for the pair (vi+1, c)
in Mvi

. Hence, when we process vi+1 the size of the cluster will also be up-to-date
(since it is the next adjacent vertex to cluster c being processed). When v is processed
the triples with key value v are on top of the priority queue, due to the increasing
processing order. �

Lemma 5.5
Processing a bucket and maintaining cluster sizes costs Sort(|T |) I/O-operations.

Proof. We need Sort(|T |) I/O-operations to sort the bucket and to build the lists
N and M. The operations pop and push of the priority queue have amortized
1/B logM/B N/B cost. The number of push (or pop) operations is equal to |M|. This
is due to the fact that each element of this list means that two vertices in the bucket
have to take the size of the same cluster into account. Thus, we need to forward
the information from the first to the second vertex. This means that the total cost
of all operations is Sort(|T |). Iterating through the bucket costs Scan(|T |). Hence,
processing a bucket costs Sort(|T |) in total. �

Theorem 5.6
One iteration of the coloring-based clustering algorithm costs Sort(|E|)+ |C| ·Scan(|V |)
operations, where |C| is the number of buckets.

Proof. We have |C| buckets and processing each bucket costs Sort(|T |) I/Os. The
overall number of elements in the buckets is O(|E|). Hence, processing all buckets
takes Sort(|E|) I/O-operations. After we processed a bucket, we update the sizes of
the clusters that changed during processing. This takes Scan(|V |) I/O-operations.
Thus, one iteration of the bucket clustering algorithm costs Sort(|E|) + |C| · Scan(|V |)
I/O-operations. �

149

5 (Semi-) External Multi-level Graph Partitioning

5.2.3 Coarsening/Contraction

We present a (semi-)external algorithm to create graph hierarchies. In general, to
create a graph hierarchy, we compute a size-constrained clustering of the current graph
using one of the clustering algorithms described before. The next step is to renumber
the cluster IDs. We sort the vertices by their cluster ID and scans the sorted array
assigning new cluster IDs from 0, . . . , n′ − 1, where n′ is the number of the distinct
clusters. This step can be done using Sort(|V |) I/O operations. In contrast, the
semi-external algorithm uses an additional array of size O(|V |) to assign new cluster
IDs. Hence, it needs O(1) I/O operations.

External Algorithm. To compute the contracted graph, our external algorithm
builds an array of triples (cluster[u], cluster[v], w(u, v)) for each edge (u, v) ∈ E. This
array is sorted lexicographically by the first two entries using Sort(|E|) I/Os. Then we
merge parallel edges and build the edges of the quotient graph by iterating through
the sorted array using Scan(|E|) I/Os. The total I/O volume of this step is Sort(|E|).
The semi-external algorithm stores pairs (cluster[u], cluster[v]) for each edge (u, v) in a
hash table and uses it to build the contracted graph. This can be done using Scan(|E|)
I/Os. If the number of edges of the contracted graphs decreases geometrically and a
constant number of label propagation iterations is assumed, the complete hierarchy
can be built using Scan(|E|) I/Os using the semi-external algorithm or Sort(|E|) I/Os
using the external algorithm.

5.2.4 Uncoarsening/Projection of Partition

In this step, we want to project a partition of a coarse level to the next finer level
in the hierarchy and perform some local search. Let Q = (VQ, EQ) be a contracted
graph of the next finer level G = (V,E) and let BQ be a partition of the contracted
graph. Namely, BQ[v] is the block ID of the vertex v ∈ VQ. Analogously, we denote
the partition of G. Recall that the contracted graph has been built according to a
clustering of the graph G. Note that a cluster i of G corresponds to a vertex i in
Q. Hence, for a vertex v ∈ V the projected partition ID from the coarse level is
BG[v] := BQ[clusterG[v]], where clusterG is the clustering of G according to which it
was contracted.

To project the partition in our external algorithm, we build an array of pairs
(clusterG[v], v) and sort it by the first component using Sort(|V |) I/O operations.
Now we iterate through the arrays BQ and {(clusterG[v], v)} simultaneously and gen-
erate an array {(BQ[clusterG[v]], v)} which contains the projected solution. We sort
the resulting array by the second component and apply the clustering to our graph.
Overall, we need Sort(|V |) I/O operations. The semi-external algorithm iterates
through all vertices of graph G and updates the cluster IDs of each vertex. This can
be done using O(1) I/Os. If the number of vertices in the quotient graphs decreases

150

5.3 Experimental Evaluation

geometrically then uncoarsening of the complete hierarchy can be done using Sort(|V |)
I/O operations. After each projection step, we apply the size-constrained LPA (using
Lmax as the size constraint) to improve the solution in on the current level.

5.3 Experimental Evaluation

In this section, we evaluate performance of our (semi-)external graph clustering and
multi-level graph partitioning algorithms. We compare ourselves against kMetis, which
is probably the most widely used partitioning algorithm, and KaHIP (see Section 3.8
for details).

Methodology. We implement our algorithms using C++. Our implementation uses
the STXXL 1.4.0 library [Bec+] to a large extent, i.e., external arrays, sorting al-
gorithms and priority queues. All binaries were built using g++-7.3.0. In order
to save time, we run our algorithm once reporting cut size, running time, internal
memory consumption, and I/O volume. Experiments were run on Machine C (see
Section 2.3.4 for details) using 3 SSD disks (read 1440 MB/s, write 1440 MB/s). The
size of a block during the experiments is set to 1 MB. Using a larger block size does
not yield an advantage due to parallel prefetching used in read/write algorithms that
are implemented within the STXXL library.

5.3.1 Graph Clustering Algorithms

We now evaluate different graph clustering algorithms with and without size con-
straint on nine large graphs from our collection (see Section 2.3.2). We use Lmax :=
(1 + ε)dc(V)/ke with k = 16 as size constraint. We use the following algorithm
abbreviations: LP – label propagation, SE – semi-external, E – external, BT – the
coloring-based graph clustering algorithm that uses buckets, A – active vertex strategy,
AR – using an array in label propagation, HT – using a hash table in label propagation,
and SC – using an array in label propagation to maintain up-to-date cluster sizes.
Here an array of size |V | and a hash table are used to store connectivity information
to adjacent clusters during label propagation. LP_SE_AR is the semi-external label
propagation algorithm (see Section 5.2.1) that uses an array of size |V | to calculate
connectivity to adjacent clusters and LP_SE_HT uses a hash table. Note that label
propagation with an array requires more memory than label propagation with a hash
table but runs faster. LP_SE_A is the semi-external label propagation algorithm
with the active vertex strategy (see Section 5.2.1). BT_SE is is the semi-external
coloring-based clustering algorithm (see Section 5.2.2). Recall that we are allowed
to have arrays of size O(|V |) in the internal memory and, thus, some information
can be removed from tuples in buckets. LP_E is is the external label propagation
algorithm (see Section 5.2.1). LP_E_SC is the external label propagation algorithm

151

5 (Semi-) External Multi-level Graph Partitioning

(see Section 5.2.1) that allows only one array of size |V | in the internal memory to
maintain up-to-date cluster sizes. BT_E_SC is the external coloring-based clustering
algorithm (see Section 5.2.2). All algorithms perform three label propagation iterations.
We use the variant of the coloring-based clustering algorithm which assumes that each
bucket fits into the internal memory (this turned out to be true for all instances).
In order to consume approximately at most 1GB of internal memory, the external
priority queues in the external label propagation algorithm are allowed to use at most
170 MB of the internal memory each.

Figure 5.4 summarizes the results. First of all, both types of experiments (with
or without a size constraint) show about the same results and further we analyze
only the experiments without size constraint. Table 5.1 presents geometric mean
values of running time, memory consumption and I/O volume. The semi-external
label propagation algorithms outperform the semi-external coloring-based clustering
algorithm. For example, LP_SE_AR runs in 109 s consuming 854 MB of the internal
memory and its I/O volume is 161 GB on the graph uk-2007, whereas BT_SE runs in
5639 s consuming 4061 MB of the internal memory and its I/O volume is 743 GB on
the same graph. Namely, LP_SE_AR is about 52.2 times faster, consumes about 4.8
times less of the internal memory and its I/O volume is about 4.6 times lower. This
can be explained by the fact that each tuple in the buckets, which are used in BT_E,
consists of three elements and has total size of 12 bytes (4 bytes per element of the
tuple). Thus, sorting and scanning operations require a significantly larger amount of
time, whereas the semi-external label propagation requires only scanning operations.
However, the coloring-based clustering algorithm is able to compute a graph clustering
fulfilling a size constraint in the external memory model.

The external label propagation algorithms show comparable of better running times
and I/O volumes than the external coloring-based clustering algorithm. For example,
LP_E runs in 4748 s consuming 1 GB of the internal memory and its I/O volume
is 839.4 GB on the graph uk-2007, whereas BT_E runs in 7023 s consuming 4 GB
of the internal memory and its I/O volume is 1.4 TB on the same graph. LP_E is
about 1.48 times faster, consumes about 4 times less of the internal memory and its
I/O volume is about 1.7 times lower. This can be explained by the fact that each
tuple in the buckets, which are used in BT_E, consists of five elements and has total
size of 20 bytes (4 bytes per element of the tuple). The reduction of the gap between
running times of both algorithms can be explained by the fact that label propagation
algorithms use external priority queue whereas coloring-based algorithms use only
external arrays. Table 5.2 presents measurements of all aforementioned clustering
algorithms.

152

5.3 Experimental Evaluation

LP
_S

E_A
R

LP
_S

E_H
T

LP
_S

E_A

BT_
SE

LP
_E

LP
_E

_A
BT_

E

24

26

28

210

212

Ti
m

e
(s

)

(a) Running times of clustering algo-
rithms without a size constraint.

LP
_S

E_A
R

LP
_S

E_H
T

LP
_S

E_A

BT_
SE

LP
_E

LP
_E

_A
BT_

E

27

28

29

210

211

212

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

(b) Memory consumptions of clus-
tering algorithms without a size con-
straint.

LP
_S

E_A
R

LP
_S

E_H
T

LP
_S

E_A

BT_
SE

LP
_E

LP
_E

_A
BT_

E

25

27

29

IO
 V

ol
um

e
(G

B
)

(c) I/O volumes of clustering algo-
rithms without a size constraint.

LP
_S

E_A
R

LP
_S

E_H
T

LP
_S

E_A

BT_
SE

LP
_E

_S
C

BT_
E_S

C

24

26

28

210

212

Ti
m

e
(s

)

(d) Running times of clustering algo-
rithms with a size constraint.

LP
_S

E_A
R

LP
_S

E_H
T

LP
_S

E_A

BT_
SE

LP
_E

_S
C

BT_
E_S

C

Algorithms

27

28

29

210

211

212

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

(e) Memory consumptions of cluster-
ing algorithms with a size constraint.

LP
_S

E_A
R

LP
_S

E_H
T

LP
_S

E_A

BT_
SE

LP
_E

_S
C

BT_
E_S

C

Algorithms

25

27

29

IO
 V

ol
um

e
(G

B
)

(f) I/O volumes of clustering algo-
rithms with a size constraint.

uk-2002
nlpkkt240

arabic-2005
rgg_2_26

uk-2005
webbase-2001

it-2004
sk-2005

uk-2007

Figure 5.4: Evaluation of different clustering algorithms. 153

5 (Semi-) External Multi-level Graph Partitioning

Table 5.1: Geometric mean of running time, memory consumption and I/O
volume for clustering algorithms without a size constraint.

Without a size constraint
Algorithm Time (s) Memory consumption (MB) I/O Volume (GB)
LP_SE_AR 28 357 36.7
LP_SE_HT 45 244 36.7
LP_SE_A 66 223 36.4
BT_SE 1245 1529 168.8
LP_E 1115 1045 192.8
LP_E_A 1176 1061 297.9
BT_E 1500 1442 293.2

With a size constraint
LP_SE_AR 30 530 36.7
LP_SE_HT 46 382 36.7
LP_SE_A 69 398 36.4
BT_SE 1268 1784 168.8
LP_E_SC 1277 1253 193.7
BT_E_SC 1595 2266 296.9

Table 5.2: Running time, memory consumption and I/O volume of different
clustering algorithms.

Without a size constraint

Graph Algorithm Time (s) Memory
consumption (MB)

I/O Volume
(GB)

uk-2002 LP_SE_HT 12 87 12.1
uk-2002 LP_SE_AR 8 143 12.1
uk-2002 LP_SE_A 21 90 12.1
uk-2002 BT_SE 383 1045 55.2
uk-2002 LP_E 354 1016 58.2
uk-2002 LP_E_A 351 1028 87.5
uk-2002 BT_E 474 1028 94.9

nlpkkt240 LP_SE_HT 40 113 17.3
nlpkkt240 LP_SE_AR 13 213 17.3
nlpkkt240 LP_SE_A 29 120 17.3
nlpkkt240 BT_SE 505 1138 84.1

154

5.3 Experimental Evaluation

nlpkkt240 LP_E 577 997 129.6
nlpkkt240 LP_E_A 953 1029 228.6
nlpkkt240 BT_E 593 1035 140.9

arabic-2005 LP_SE_HT 46 124 25.3
arabic-2005 LP_SE_AR 18 177 25.3
arabic-2005 LP_SE_A 47 115 24.9
arabic-2005 BT_SE 931 1607 115.0
arabic-2005 LP_E 742 1028 127.8
arabic-2005 LP_E_A 740 1029 186.0
arabic-2005 BT_E 1107 1729 198.2

rgg_2_26 LP_SE_HT 29 263 27.2
rgg_2_26 LP_SE_AR 20 512 27.2
rgg_2_26 LP_SE_A 37 286 27.2
rgg_2_26 BT_SE 871 1208 122.2
rgg_2_26 LP_E 801 1018 124.7
rgg_2_26 LP_E_A 749 1029 199.4
rgg_2_26 BT_E 1055 1035 210.4

uk-2005 LP_SE_HT 36 254 35.9
uk-2005 LP_SE_AR 26 315 35.9
uk-2005 LP_SE_A 66 211 35.6
uk-2005 BT_SE 1228 1187 165.9
uk-2005 LP_E 1060 1053 184.1
uk-2005 LP_E_A 1072 1060 267.1
uk-2005 BT_E 1447 1052 284.3

webbase-2001 LP_SE_HT 56 502 40.9
webbase-2001 LP_SE_AR 38 908 40.9
webbase-2001 LP_SE_A 77 503 40.8
webbase-2001 BT_SE 1213 1464 181.8
webbase-2001 LP_E 1202 1021 200.4
webbase-2001 LP_E_A 1225 1030 303.0
webbase-2001 BT_E 1506 1146 313.9

it-2004 LP_SE_HT 45 237 46.9
it-2004 LP_SE_AR 33 329 46.9
it-2004 LP_SE_A 88 201 46.2
it-2004 BT_SE 1724 1629 215.0
it-2004 LP_E 1377 1045 240.2
it-2004 LP_E_A 1383 1052 345.8
it-2004 BT_E 2021 1660 369.7

155

5 (Semi-) External Multi-level Graph Partitioning

sk-2005 LP_SE_HT 80 666 82.0
sk-2005 LP_SE_AR 60 444 82.0
sk-2005 LP_SE_A 170 389 80.0
sk-2005 BT_SE 3148 1805 380.7
sk-2005 LP_E 2626 1203 441.0
sk-2005 LP_E_A 2600 1277 614.5
sk-2005 BT_E 3791 1844 651.5

uk-2007 LP_SE_HT 149 468 150.0
uk-2007 LP_SE_AR 109 815 150.0
uk-2007 LP_SE_A 298 471 145.3
uk-2007 BT_SE 5639 3873 692.3
uk-2007 LP_E 4748 1041 781.8
uk-2007 LP_E_A 4929 1037 1448.5
uk-2007 BT_E 7023 3846 1334.7

With a size constraint

Graph Algorithm Time (s) Memory
consumption (MB)

I/O Volume
(GB)

uk-2002 LP_SE_HT 13 149 12.1
uk-2002 LP_SE_AR 9 213 12.1
uk-2002 LP_SE_A 22 160 12.1
uk-2002 BT_SE 393 1045 55.2
uk-2002 LP_E_SC 406 1092 58.5
uk-2002 BT_E_SC 486 1489 96.3

nlpkkt240 LP_SE_HT 41 220 17.3
nlpkkt240 LP_SE_AR 16 320 17.3
nlpkkt240 LP_SE_A 32 226 17.3
nlpkkt240 BT_SE 482 1138 84.1
nlpkkt240 LP_E_SC 664 1105 130.1
nlpkkt240 BT_E_SC 614 1186 142.7

arabic-2005 LP_SE_HT 25 194 25.3
arabic-2005 LP_SE_AR 18 263 25.3
arabic-2005 LP_SE_A 48 202 24.9
arabic-2005 BT_SE 949 1780 115.0
arabic-2005 LP_E_SC 851 1121 128.3
arabic-2005 BT_E_SC 1152 2907 199.9

rgg_2_26 LP_SE_HT 39 519 27.2
rgg_2_26 LP_SE_AR 22 768 27.2
rgg_2_26 LP_SE_A 39 542 27.2

156

5.3 Experimental Evaluation

rgg_2_26 BT_SE 882 1302 122.2
rgg_2_26 LP_E_SC 909 1280 126.0
rgg_2_26 BT_E_SC 1123 1286 215.2

uk-2005 LP_SE_HT 42 404 35.9
uk-2005 LP_SE_AR 32 466 35.9
uk-2005 LP_SE_A 67 362 35.6
uk-2005 BT_SE 1247 1406 165.9
uk-2005 LP_E_SC 1201 1210 184.8
uk-2005 BT_E_SC 1572 2085 287.2

webbase-2001 LP_SE_HT 61 912 40.9
webbase-2001 LP_SE_AR 49 1359 40.9
webbase-2001 LP_SE_A 80 953 40.8
webbase-2001 BT_SE 1296 2366 181.8
webbase-2001 LP_E_SC 1398 1477 202.6
webbase-2001 BT_E_SC 1721 2106 322.1

it-2004 LP_SE_HT 48 373 46.9
it-2004 LP_SE_AR 36 487 46.9
it-2004 LP_SE_A 89 359 46.2
it-2004 BT_SE 1849 1944 215.0
it-2004 LP_E_SC 1592 1209 241.0
it-2004 BT_E_SC 2170 2863 372.6

sk-2005 LP_SE_HT 84 461 82.0
sk-2005 LP_SE_AR 61 638 82.0
sk-2005 LP_SE_A 174 582 80.0
sk-2005 BT_SE 3165 2192 380.7
sk-2005 LP_E_SC 2998 1402 441.9
sk-2005 BT_E_SC 3943 3005 654.8

uk-2007 LP_SE_HT 154 836 150.0
uk-2007 LP_SE_AR 110 1219 150.0
uk-2007 LP_SE_A 305 875 145.3
uk-2007 BT_SE 5658 4681 692.3
uk-2007 LP_E_SC 5411 1451 783.8
uk-2007 BT_E_SC 7490 6321 1342.5

157

5 (Semi-) External Multi-level Graph Partitioning

Active Vertex Strategy. Additionally, we evaluate label propagation with and
without the active vertex strategy for more iterations; our experiments indicate that
this strategy decreases the running time of label propagation in both memory models
if the number of iterations is sufficiently large. Specifically, we run LP_SE_AR,
LP_SE_HT, and LP_SE_A for 15 iterations and LP_E and LP_E_A for 20
iterations. Table 5.3 shows that the active vertex strategy speed ups computations.
More specifically, the geometrical mean running times of LP_SE_A and LP_E_A are
133 s and 1867 s, respectively. The geometrical mean running times of LP_SE_AR
and LP_E are 141 s and 6527 s, respectively. Thus, on average LP_SE_A and
LP_E_A are 1.1 and 3.5 times faster than LP_SE_AR and LP_E, respectively. In
the most extreme case, LP_SE_A is a factor of 1.6 faster than LP_SE_AR on the
graph uk-2007 and LP_E_A is a factor of 5.1 faster than than LP_E on the graph
sk-2005.

Furthermore, Figures 5.5 (a) and 5.5 (b) show running times of every iteration of
(semi-)external algorithms on the graph uk-2007. Specifically, the fourth iteration of
LP_SE_A is already faster than those of LP_SE_AR and LP_SE_HT. Further,
the second iteration of LP_E_A is already faster than that of LP_E. This is not
surprising since in the external algorithms we store vertices in external priority queues
and, thus, the less vertices are in an external priority queue the faster is an iteration.

Table 5.3: Running times in seconds of different (semi-)external LPAs.

Graph Semi-external LPAs (15 iterations) External LPAs
(20 iterations)

LP_SE_AR LP_SE_HT LP_SE_A LP_E LP_E_A
uk-2002 43 47 42 2040 474
nlpkkt240 64 159 143 3543 5871
arabic-2005 91 119 81 4310 918
rgg_2_26 102 111 72 4733 967
uk-2005 131 141 115 6136 1373
webbase-2001 179 220 197 6840 2726
it-2004 173 185 151 8074 1724
sk-2005 305 324 253 15496 3015
uk-2007 709 590 440 27753 5719
Geometrical mean 141 168 133 6527 1867

158

5.3 Experimental Evaluation

1 3 5 7 9 11 13 15
Iterations

0

25

50

75

100

125

It
er

at
io

n
tim

e
(s

) LP_SE_AR
LP_SE_HT
LP_SE_A

(a) Semi-external algorithms.

1 3 5 7 9 11 13 15 17 19
Iterations

0

500

1000

1500

2000

It
er

at
io

n
tim

e
(s

) LP_E
LP_E_A

(b) External algorithms.

Figure 5.5: Running times of iterations of different (semi-)external LPAs on the
graph uk-2007.

5.3.2 Multi-level Graph Partitioning

We now present the results of the semi-external multi-level graph partitioning algorithm.
To save running time, we evaluate only graph partitioning algorithms that use the
semi-external LPA with a size constraint or its parallel version in the coarsening and
uncoarsening phases. We evaluate both versions of parallel LPAs (see Section 5.2.1)
since P_LP_SE_AR is the faster one and P_LP_SE_HT requires less internal
memory (here P stands for parallel). Specifically, P_LP_SE_AR is the semi-external
label propagation algorithm that uses an array of size |V | to calculate connectivity to
adjacent clusters and P_LP_SE_HT uses a hash table. Note that P_LP_SE_AR
requires more memory than P_LP_SE_HT. This is especially important when the
number of PEs is large: since each PE uses an array of size |V | in P_LP_SE_AR and,
thus, the required amount of internal memory is O(p|V |) instead of O(p∆) required
by P_LP_SE_HT. Our experiments focus on 13 large graphs from our benchmark
set (see Section 2.3.2). Since we partition a small number of the graphs, we do
not perform statistical significant tests. During coarsening, we use Lmax as a size
constraint. Note that this is a much weaker restriction on the cluster sizes than the
one used by Meyerhenke et al. [MSS14]. Using this weaker constraint speeds up the
algorithm significantly. We partition all graphs using k = 16 and ε = 0.03. This is
one of the values used in [WC00a] and kMetis. Furthermore, we remove high degree
vertices from the coarse graph before initial partitioning when partition twitter-2010,
clueweb-12, uk-2014, and eu-2015 since otherwise initial partitioning using KaHIP runs
too long. Tables 5.4 and 5.5 summarize the results.

Comparison of Semi-external Memory Algorithms. LP_SE_AR produces
smaller cuts than other algorithms on average. Specifically, LP_SE_AR cuts 6.2%,
0.3%, and 5.8% less edges than LP_SE_HT, P_LP_SE_AR, and P_LP_SE_HT,
respectively. LP_SE_HT and P_LP_SE_HT have worse average quality than

159

5 (Semi-) External Multi-level Graph Partitioning

LP_SE_AR and P_LP_SE_AR since they partition the graph clueweb12 with the
cut sizes a factor of 2 larger than those of LP_SE_AR and P_LP_SE_AR. The
reason is that during initial partitioning in LP_SE_HT and P_LP_SE_HT KaHIP
produces large cuts. This can be explained that by the fact that during the coarsening
phase a part of the graph with a small cut was contracted into one vertex. Choosing
another random seed should solve the problem. The same reasoning explains poor
quality of LP_SE_AR and LP_SE_HT on the graph rgg_2_26. Note that on the
other graphs all algorithms have comparable quality. Additionally, Figure 5.6 shows
the performance plots (see Section 2.3.1) that compares our semi-external memory
algorithms. We can see that the parallel algorithms produces partitions of slightly
worse quality than the sequential algorithms. This is not surprising since the parallel
label propagation algorithm applies moves of vertices between clusters not immediately.
Thus, the clustering constructed by a parallel algorithm may be worse for further
partitioning. However, we expect that additional iterations of label propagation should
solve the problem. This explains poor quality of P_LP_SE_AR and P_LP_SE_HT
on the graph sk-2005. In summary, we can see that parallelization only slightly worsens
partition quality and, thus, yields a good trade-off between quality and running time.

P_LP_SE_AR runs faster than other algorithms on average. P_LP_SE_AR is
1.08, 1.02, and 1.04 faster than LP_SE_AR, LP_SE_HT, and P_LP_SE_HT,
respectively. These small speed ups can be explained by the fact that reading from
disks is a bottleneck. Furthermore, initial partitioning is a bottleneck on some
instances. But if we consider large graphs, we can see that both P_LP_SE_AR
and P_LP_SE_HT perform faster than their corresponding sequential versions. For
example, on the graph eu-2015 P_LP_SE_AR is 1.6 times faster than LP_SE_AR
and P_LP_SE_HT is 1.3 is faster than LP_SE_AR. Note that on some graphs
P_LP_SE_AR is slower than LP_SE_AR since the coarsest graph computed by
P_LP_SE_AR is not small enough or has high degree vertices and KaHIP in initial
partitioning runs longer than on the coarsest graph computed by LP_SE_AR.

LP_SE_HT consumes less memory than other algorithms on average. Specifi-
cally, LP_SE_HT consumes 1.1, 2.1, and 1.8 times less memory than LP_SE_AR,
P_LP_SE_AR, and P_LP_SE_HT, respectively. If we consider large graphs, we
can see that P_LP_SE_HT consumes significantly less memory than P_LP_SE_AR.
For example, on the graph eu-2015 P_LP_SE_AR consumes about 78 GB wheres
P_LP_SE_HT consumes only 16 GB.

Comparison to Competitors. All our algorithm show comparable quality and
performance. Therefore, we analyze only the results of P_LP_SE_AR and the
competitors.

P_LP_SE_AR computes partitions that are almost as good as those computed by
KaHIP. On average, we cut about 5% more edges. Furthermore, in the worst case,
our algorithm cuts about 15% more edges than KaHIP on the graph arabic-2005. In
contrast, our algorithm computes much better cuts than kMetis (except on the graph

160

5.3 Experimental Evaluation

nlpkkt240). On average, our algorithm cuts 31% less edges than kMetis. Moreover,
in the best case, our algorithm cuts 49% less edges than kMetis on the graph it-2004.
Additionally, Figure 5.7 shows the performance plots for our semi-external memory
algorithms and our competitors. We can see that our algorithms produce partitions of
quality comparable to that of KaHIP and it is always better than kMetis.

Furthermore, P_LP_SE_AR is faster than KaHIP and almost always faster than
kMetis (except on the graph rgg_2_26). On average, we are 2.9 and 1.1 times faster
than KaHIP and Metis, respectively. Furthermore, in the best case, we are a factor of
5.3 faster than KaHIP on the graph rgg_2_26 and a factor of 1.7 faster than Metis on
the graph it-2004. This is partially due to the fact that we use a weaker size constraint
during coarsening which makes the contracted graph even smaller than the contracted
graphs computed by KaHIP and the fact that we use less label propagation rounds.
After the first contraction step, we switch to the internal memory implementation of
KaHIP to partition the coarser graph.

In terms of memory consumption, P_LP_SE_AR always consumes less memory than
competitors. On average, P_LP_SE_AR consumes 9.8 and 6.7 times less memory
than KaHIP and Metis, respectively. Furthermore, in the best case, we consume a
factor of 11.3 and a factor of 9.1 less memory than KaHIP and Metis, respectively, on
the graph it-2004.

Table 5.4: Geometrical means of running time and memory consumption of
different partitioning algorithms. P_LP_SE_HT and P_LP_SE_AR use 15
PEs (without hyperthreading) and the column “Memory consumption (MB)”
shows the amount of the internal memory used by the algorithms in megabytes.

Algorithm Total
Time (s)

LP
Time (s) Cut

Memory
consumption

(MB)
Instances where all algorithms succeeded

KaHIP 254 – 2.4M 21893
LP_SE_AR 85 34 2.7M 1068
LP_SE_HT 91 45 2.8M 1017
Metis 99 – 3.6M 14977
P_LP_SE_AR 88 29 2.5M 2237
P_LP_SE_HT 101 42 2.5M 2003

All instances
LP_SE_AR 444 140 13.9M 3209
LP_SE_HT 420 162 14.8M 3032
P_LP_SE_AR 413 112 13.9M 6258
P_LP_SE_HT 429 146 14.7M 5323

161

5 (Semi-) External Multi-level Graph Partitioning

1 2 3 4 5 6 7 8 9 10 11 12 13
instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
- b

es
t /

 c
ut

LP_SE_AR
P_LP_SE_AR

LP_SE_HT
P_LP_SE_HT

Figure 5.6: Performance plot for the cut size on thirteen graphs.

1 2 3 4 5 6 7
instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
- b

es
t /

 c
ut

LP_SE_AR
P_LP_SE_AR

LP_SE_HT
P_LP_SE_HT

KaHIP
Metis

Figure 5.7: Performance plot for the cut size on seven graphs.

162

5.3 Experimental Evaluation

Table 5.5: Running time and memory consumption of different partitioning
algorithms. P_LP_SE_HT and P_LP_SE_AR use 15 PEs (without hyper-
threading) and the column “Memory consumption (MB)” shows the amount of
the internal memory used by the algorithms in megabytes.

Graph Algorithm All
Time (s)

LP
Time (s) Cut

Memory
consumption

(MB)
uk-2002 KaHIP 91 – 1.5M 9422
uk-2002 LP_SE_AR 50 16 1.5M 533
uk-2002 LP_SE_HT 47 18 1.5M 526
uk-2002 Metis 45 – 2.5M 6820
uk-2002 P_LP_SE_AR 34 9 1.5M 1386
uk-2002 P_LP_SE_HT 35 10 1.5M 1025
nlpkkt240 KaHIP 125 – 5.7M 16074
nlpkkt240 LP_SE_AR 53 25 5.7M 681
nlpkkt240 LP_SE_HT 86 59 5.7M 675
nlpkkt240 Metis 41 – 5.5M 11073
nlpkkt240 P_LP_SE_AR 37 13 5.7M 2086
nlpkkt240 P_LP_SE_HT 36 14 5.7M 681
arabic-2005 KaHIP 137 – 1.9M 18508
arabic-2005 LP_SE_AR 58 26 2.1M 460
arabic-2005 LP_SE_HT 55 30 2.1M 454
arabic-2005 Metis 67 – 3.4M 15173
arabic-2005 P_LP_SE_AR 46 20 2.2M 1672
arabic-2005 P_LP_SE_HT 44 19 2.5M 924
rgg_2_26 KaHIP 425 – 218.6K 24672
rgg_2_26 LP_SE_AR 71 34 610.9K 1033
rgg_2_26 LP_SE_HT 80 47 663.5K 771
rgg_2_26 Metis 58 – 254.8K 10467
rgg_2_26 P_LP_SE_AR 79 23 226.5K 5056
rgg_2_26 P_LP_SE_HT 72 26 225.4K 3318
uk-2005 KaHIP 374 – 3.4M 28154
uk-2005 LP_SE_AR 109 44 3.5M 1366
uk-2005 LP_SE_HT 109 50 3.4M 1359
uk-2005 Metis 174 – 7.0M 19822
uk-2005 P_LP_SE_AR 115 27 3.6M 2954
uk-2005 P_LP_SE_HT 128 37 3.5M 2579
webbase-2001 KaHIP 716 – 10.3M 35864
webbase-2001 LP_SE_AR 197 67 10.0M 4951
webbase-2001 LP_SE_HT 208 82 9.9M 4939
webbase-2001 Metis 465 – 14.2M 25419

163

5 (Semi-) External Multi-level Graph Partitioning

webbase-2001 P_LP_SE_AR 344 48 11.1M 8940
webbase-2001 P_LP_SE_HT 345 56 11.1M 8265
it-2004 KaHIP 378 – 3.3M 34524
it-2004 LP_SE_AR 137 53 3.2M 1354
it-2004 LP_SE_HT 131 58 3.2M 1348
it-2004 Metis 154 – 6.8M 27967
it-2004 P_LP_SE_AR 91 30 3.5M 3059
it-2004 P_LP_SE_HT 103 45 3.5M 2834
twitter-2010 KaHIP – – – –
twitter-2010 LP_SE_AR 24943 542 673.1M 23180
twitter-2010 LP_SE_HT 13777 467 671.2M 21299
twitter-2010 Metis – – – –
twitter-2010 P_LP_SE_AR 1549 163 643.6M 30904
twitter-2010 P_LP_SE_HT 1651 183 634.0M 29369
sk-2005 KaHIP – – – –
sk-2005 LP_SE_AR 329 85 41.5M 1085
sk-2005 LP_SE_HT 260 94 40.5M 1037
sk-2005 Metis – – – –
sk-2005 P_LP_SE_AR 776 52 72.9M 3789
sk-2005 P_LP_SE_HT 355 84 57.4M 3122
uk-2007 KaHIP – – – –
uk-2007 LP_SE_AR 341 155 4.1M 4065
uk-2007 LP_SE_HT 304 166 4.1M 4053
uk-2007 Metis – – – –
uk-2007 P_LP_SE_AR 276 92 4.3M 7772
uk-2007 P_LP_SE_HT 269 100 4.3M 6054
clueweb12 LP_SE_AR 8165 2404 738.1M 98182
clueweb12 LP_SE_HT 8209 2315 1587.1M 98143
clueweb12 P_LP_SE_AR 21262 1167 728.2M 98248
clueweb12 P_LP_SE_HT 16465 1206 1595.6M 98251
uk-2014 LP_SE_AR 4067 1917 43.7M 13953
uk-2014 LP_SE_HT 3662 2119 44.5M 13900
uk-2014 P_LP_SE_AR 2936 1182 50.3M 57489
uk-2014 P_LP_SE_HT 3050 1315 49.3M 22661
eu-2015 LP_SE_AR 8489 4095 166.5M 17247
eu-2015 LP_SE_HT 7058 3959 166.2M 13279
eu-2015 P_LP_SE_AR 5401 2188 180.9M 78466
eu-2015 P_LP_SE_HT 5516 2195 182.4M 16621

Scalability of LPAs. Figures 5.8 – 5.11 present the scalability of P_LP_SE_AR
and P_LP_SE_HT algorithms (left and right columns, respectively) on 13 large
graphs. P_LP_SE_AR with 15 PEs achieves the best absolute speed-up of 3.3 on
the graph twitter-2010. Furthermore, P_LP_SE_AR with 15 PEs achieves the best

164

5.3 Experimental Evaluation

relative speed-up of 4.3 on the graph twitter-2010, whereas P_LP_SE_HT with 15
PEs achieves the best absolute and relative speed-up of 4.1 and 5.3 (respectively) on
the graph nlpkkt240. Both algorithms only scale moderately because reading from
disks is a bottleneck and parallel prefetching has a PE for each disk. Nevertheless,
parallel algorithms with 15 PEs always speed up the computations compared to the
sequential algorithms. Moreover, parallel algorithms get close to the lower bound
which is given by the running time of a scan operation that only reads from disks
the same I/O volume performed by the algorithms. P_LP_SE_HT scales better
on most of the graphs than P_LP_SE_AR since in P_LP_SE_HT each PE uses
a hash table instead of an array of size |V | as in P_LP_SE_AR. Thus, each hash
table fits into caches decreasing the effects of memory bandwidth. Another reasons
why P_LP_SE_HT scales better: P_LP_SE_AR is already fast enough – due to
the faster access to an array than to a hash table – and reading from disks remains
the only bottleneck. For example, P_LP_SE_AR scales poorly after using more than
two PEs on sk-2005 and uk-2007.

We emphasize again that speed-ups are small because reading from disks is a bottleneck.
To see that, consider Figure 5.12 that presents speed-ups of average block processing
running times (i.e., the running time to process a block without time to read it from a
disk divided by the number of processed blocks) of the parallel LPAs for uk-2007. We
can see that the algorithms scale better now. These harmonic mean speed-ups are not
high since the memory bandwidth is a bottleneck, P_LP_SE_AR and P_LP_SE_HT
use static load balancing and parallel prefetching has a PE for each disk. Furthermore,
we expect that using blocks of size more than 1 MB may yield better speed-ups of
block processing running time. However, we do not expect the overall running time of
LPA to change since reading a block will take more time than its processing and, thus,
the speed-up of block processing will not affect the overall running time. Table 5.6
presents the absolute and relative speed-ups of the parallel LPAs and corresponding
block processing. P_LP_SE_HT has worse absolute speed-ups because the cluster
IDs are updated only after processing a block which means that the LPA inserts more
different keys into a hash table. Thus, P_LP_SE_HT has worse data locality than
its sequential version.

165

5 (Semi-) External Multi-level Graph Partitioning

Graph Absolute speed-up of LP Absolute speed-up of
block processing

P_LP_SE_AR P_LP_SE_HT P_LP_SE_AR P_LP_SE_HT
uk-2002 1.8 1.7 3.1 2.2
nlpkkt240 1.8 4.1 3.2 4.3
arabic-2005 1.3 1.6 3.1 2.6
rgg_2_26 1.4 1.8 1.9 1.8
uk-2005 1.6 1.3 2.2 2.0
webbase-2001 1.4 1.5 1.7 1.8
it-2004 1.7 1.3 3.2 2.2
twitter-2010 3.3 2.6 3.4 2.6
sk-2005 1.6 1.1 3.1 2.3
uk-2007 1.7 1.7 3.3 2.5
clueweb12 2.1 1.9 3.2 2.7
uk-2014 1.6 1.6 3.6 2.6
eu-2015 1.9 1.8 4.4 3.8
Harmonic mean 1.7 1.7 2.9 2.4

Graph Relative speed-up of LP Relative speed-up of
block processing

P_LP_SE_AR P_LP_SE_HT P_LP_SE_AR P_LP_SE_HT
uk-2002 2.5 3.3 4.4 4.3
nlpkkt240 2.1 5.3 3.7 5.6
arabic-2005 1.9 2.8 4.4 4.8
rgg_2_26 2.6 4.9 3.5 5.0
uk-2005 2.5 2.7 3.3 4.1
webbase-2001 2.3 2.9 2.8 3.5
it-2004 2.4 2.3 4.5 3.9
twitter-2010 4.3 3.8 4.3 3.9
sk-2005 2.6 2.1 4.8 4.4
uk-2007 2.5 2.9 4.7 4.4
clueweb12 2.9 4.4 4.5 6.2
uk-2014 2.5 3.0 5.4 4.9
eu-2015 2.7 3.5 6.3 7.5
Harmonic mean 2.5 3.2 4.2 4.6

Table 5.6: Absolute and relative speed-ups of P_LP_SE_AR and
P_LP_SE_HT with 15 PEs.

166

5.3 Experimental Evaluation

20 21 22 23 24

Number of PEs, p

20

40

Ti
m

e
(s

)

uk-2002

20 21 22 23 24

Number of PEs, p

20

40

60

Ti
m

e
(s

)

uk-2002

20 21 22 23 24

Number of PEs, p

20

40

60

Ti
m

e
(s

)

nlpkkt240

20 21 22 23 24

Number of PEs, p

25

50

75

100

Ti
m

e
(s

)

nlpkkt240

20 21 22 23 24

Number of PEs, p

20

40

60

80

Ti
m

e
(s

)

arabic-2005

20 21 22 23 24

Number of PEs, p

20

40

60

80

Ti
m

e
(s

)

arabic-2005

20 21 22 23 24

Number of PEs, p

50

100

Ti
m

e
(s

)

rgg_2_26

(a) Running times of P_LP_SE_AR

20 21 22 23 24

Number of PEs, p

50

100

150

200

Ti
m

e
(s

)

rgg_2_26

(b) Running times of P_LP_SE_HT
LP_SE
P_LP_SE
P_LP_SE lower bound

Total time with LP_SE
Total time with P_LP_SE
Total time lower bound

Figure 5.8: Running times of parallel LPAs. 167

5 (Semi-) External Multi-level Graph Partitioning

20 21 22 23 24

Number of PEs, p

50

100

150

Ti
m

e
(s

)

uk-2005

20 21 22 23 24

Number of PEs, p

50

100

150

200

Ti
m

e
(s

)

uk-2005

20 21 22 23 24

Number of PEs, p

100

200

300

400

Ti
m

e
(s

)

webbase-2001

20 21 22 23 24

Number of PEs, p

100

200

300

400

Ti
m

e
(s

)

webbase-2001

20 21 22 23 24

Number of PEs, p

50

100

150

Ti
m

e
(s

)

it-2004

20 21 22 23 24

Number of PEs, p

50

100

150

Ti
m

e
(s

)

it-2004

20 21 22 23 24

Number of PEs, p

0

10000

20000

Ti
m

e
(s

)

twitter-2010

(a) Running times of P_LP_SE_AR

20 21 22 23 24

Number of PEs, p

0

5000

10000

Ti
m

e
(s

)

twitter-2010

(b) Running times of P_LP_SE_HT
LP_SE
P_LP_SE
P_LP_SE lower bound

Total time with LP_SE
Total time with P_LP_SE
Total time lower bound

Figure 5.9: Running times of the parallel LPAs.

168

5.3 Experimental Evaluation

20 21 22 23 24

Number of PEs, p

0

500

1000

Ti
m

e
(s

)

sk-2005

20 21 22 23 24

Number of PEs, p

200

400

Ti
m

e
(s

)

sk-2005

20 21 22 23 24

Number of PEs, p

100

200

300

400

500

Ti
m

e
(s

)

uk-2007

20 21 22 23 24

Number of PEs, p

100

200

300

400

500

Ti
m

e
(s

)

uk-2007

20 21 22 23 24

Number of PEs, p

0

10000

20000

30000

Ti
m

e
(s

)

clueweb12

20 21 22 23 24

Number of PEs, p

0

10000

20000

30000

Ti
m

e
(s

)

clueweb12

20 21 22 23 24

Number of PEs, p

2000

4000

6000

Ti
m

e
(s

)

uk-2014

(a) Running times of P_LP_SE_AR

20 21 22 23 24

Number of PEs, p

2000

4000

6000

Ti
m

e
(s

)

uk-2014

(b) Running times of P_LP_SE_HT
LP_SE
P_LP_SE
P_LP_SE lower bound

Total time with LP_SE
Total time with P_LP_SE
Total time lower bound

Figure 5.10: Running times of parallel LPAs.

169

5 (Semi-) External Multi-level Graph Partitioning

20 21 22 23 24

Number of PEs, p

2500

5000

7500

10000

12500

Ti
m

e
(s

)

eu-2015

(a) Running times of P_LP_SE_AR

20 21 22 23 24

Number of PEs, p

2500

5000

7500

10000

12500

Ti
m

e
(s

)

eu-2015

(b) Running times of P_LP_SE_HT
LP_SE
P_LP_SE
P_LP_SE lower bound

Total time with LP_SE
Total time with P_LP_SE
Total time lower bound

Figure 5.11: Running times of parallel LPAs.

20 21 22 23 24

Number of PEs, p

1

2

3

4

Sp
ee

d-
up

uk-2007

(a) P_LP_SE_AR

20 21 22 23 24

Number of PEs, p

1

2

3

4

Sp
ee

d-
up

uk-2007

(b) P_LP_SE_HT

Label propogation only with block processing Label propagation

Figure 5.12: Speed-ups of parallel LPAs with and without time to read blocks
on the graph uk-2007.

Memory Consumption of LPAs. Table 5.7 presents memory consumptions of
the LPAs. First of all, LP_SE_HT and P_LP_SE_HT use significantly less memory
than LP_SE_AR and P_LP_SE_AR. This is not surprising since LP_SE_HT and
P_LP_SE_HT use hash tables during label propagation to find clusters with the
strongest connection, whereas LP_SE_AR and P_LP_SE_AR use an array of size
|V |. Figures 5.13, 5.14 present an additional comparison of memory consumptions for
the parallel LPAs. Note that memory consumption of P_LP_SE_AR grows much

170

5.3 Experimental Evaluation

faster than that of P_LP_SE_HT with the number of PEs. For example, on the graph
uk-2007 P_LP_SE_HT uses only 848 MB with one PE, whereas P_LP_SE_AR
uses 1624 MB. Furthermore, P_LP_SE_HT uses only 1056 MB with 15 PEs, whereas
P_LP_SE_AR uses 7280 MB on the same graph. Thus, P_LP_SE_HT uses 1.9
times less memory with one PE but with 15 PEs it uses 6.9 less memory.

Graph LP_SE_AR LP_SE_HT P_LP_SE_AR P_LP_SE_HT
uk-2002 220 142 1277 175
nlpkkt240 326 213 1928 222
arabic-2005 270 187 1568 381
rgg_2_26 774 512 4614 521
uk-2005 472 396 2716 1639
webbase-2001 1366 904 8119 959
it-2004 494 365 2842 1021
twitter-2010 513 399 2936 1466
sk-2005 645 452 3484 1311
uk-2007 1228 824 7280 1056
clueweb12 11704 10810 67221 53974
uk-2014 9117 6173 54137 8314
eu-2015 12445 8272 73586 9696
Geometrical

mean 1076 767 6251 1434

Table 5.7: Memory consumption in megabytes of LP_SE_AR, LP_SE_HT,
P_LP_SE_AR and P_LP_SE_HT with 15 PEs.

171

5 (Semi-) External Multi-level Graph Partitioning

20 21 22 23 24

Number of PEs, p

27

28

29

210

211

212

213

M
em

or
y

co
ns

um
pt

io
n

(M
B

) uk-2002

20 21 22 23 24

Number of PEs, p

27

28

29

210

211

212

213

M
em

or
y

co
ns

um
pt

io
n

(M
B

) nlpkkt240

20 21 22 23 24

Number of PEs, p

27
28
29

210
211
212
213
214

M
em

or
y

co
ns

um
pt

io
n

(M
B

) arabic-2005

20 21 22 23 24

Number of PEs, p

29

210

211

212

213

214

M
em

or
y

co
ns

um
pt

io
n

(M
B

) rgg26

20 21 22 23 24

Number of PEs, p

28

29

210

211

212

213

214

M
em

or
y

co
ns

um
pt

io
n

(M
B

) uk-2005

20 21 22 23 24

Number of PEs, p

29

210

211

212

213

214

M
em

or
y

co
ns

um
pt

io
n

(M
B

) webbase-2001

20 21 22 23 24

Number of PEs, p

28

29

210

211

212

213

214

M
em

or
y

co
ns

um
pt

io
n

(M
B

) it-2004

20 21 22 23 24

Number of PEs, p

28
29

210
211
212
213
214
215
216

M
em

or
y

co
ns

um
pt

io
n

(M
B

) twitter-2010

P_LP_SE_HT
Partitioning algorithm with P_LP_SE_HT
Size of the graph

P_LP_SE_AR
Partitioning algorithm with P_LP_SE_AR

Figure 5.13: Memory consumption of our parallel LPAs. Here the black curve
is the memory consumption of the graph in the internal memory.

172

5.4 Conclusion and Future Work

20 21 22 23 24

Number of PEs, p

29

210

211

212

213

214

215

M
em

or
y

co
ns

um
pt

io
n

(M
B

) sk-2005

20 21 22 23 24

Number of PEs, p

29
210
211
212
213
214
215
216

M
em

or
y

co
ns

um
pt

io
n

(M
B

) uk-2007

20 21 22 23 24

Number of PEs, p

213
214
215
216
217
218
219
220

M
em

or
y

co
ns

um
pt

io
n

(M
B

) clueweb12

20 21 22 23 24

Number of PEs, p

212
213
214
215
216
217
218
219
220

M
em

or
y

co
ns

um
pt

io
n

(M
B

) uk-2014

20 21 22 23 24

Number of PEs, p

213
214
215
216
217
218
219
220
221

M
em

or
y

co
ns

um
pt

io
n

(M
B

) eu-2015

P_LP_SE_HT
Partitioning algorithm with P_LP_SE_HT
Size of the graph

P_LP_SE_AR
Partitioning algorithm with P_LP_SE_AR

Figure 5.14: Memory consumption of parallel LPAs. Here the black curve is the
memory consumption of the graph in the internal memory.

5.4 Conclusion and Future Work

We presented algorithms that are able to partition and cluster huge complex networks
with billions of edges on cheap commodity machines. This has been achieved by using

173

5 (Semi-) External Multi-level Graph Partitioning

a semi-external variant of the size-constrained LPA that can be used for coarsening and
as a simple local search algorithm. A shared-memory parallelizations of the algorithm
further reduces the running time. Moreover, we presented the first fully external
graph clustering/partitioning algorithm that is able to deal with size constraints. Our
experiments indicate that our semi-external algorithms are able to compute high-quality
partitions in time comparable to that of efficient internal memory implementations.
As a part of future work, it might be interesting to define a (semi-)external clustering
algorithm that optimizes different metrics. This can be done by using the techniques
presented in this chapter but using different update rules to compute the cluster IDs
of vertices. For example, Hamann et al. [Ham+18] present a clustering algorithm
that optimizes modularity using SSD disks. Moreover, it would be interesting to
develop a size-constrained label propagation algorithm in the external memory using
the count-min sketch by Graham and Muthukrishnan [CM05] to track clusters of size
larger than Lmax.

174

6Chapter 6

Fast Sparsification of Hypergraphs

We optimize a fast and high-quality multi-level algorithm that partitions hypergraphs
into k balanced blocks. Hypergraphs are an extension of graphs that allow a single
edge to connect more than two vertices. Thus, they describe models and processes
more accurately additionally allowing more possibilities for improvement. Our algo-
rithm sparsifies a hypergraph such that the resulting hypergraph can be partitioned
significantly faster without loss in quality (or with insignificant loss).

To sparsify a hypergraph, we combine vertices that share a lot of hyperedges. In order
to find such vertices in linear time with guaranteed probability, we use the min-hash
technique by Broder [Bro97]. But the ratios of shared hyperedges by two vertices
depends on the input hypergraph. Moreover, even in one hypergraph the ratios of
shared hyperedges by two neighbors may be heterogeneous. Therefore, we developed
an adaptive sparsifier that repeatedly applies the min-hash technique to find pairs of
neighbors with ratios of shared neighbors within a preset interval.

Contribution: We developed a fast linear-time hypergraph sparsification algorithm
within the hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph Parti-
tioning) [Akh+17]. On average, KaHyPar with sparsifier performs partitioning about
1.5 times faster preserving quality if hyperedges are large.

The remaining of this chapter is organized in the following way. We discuss the
related work and explain details of our sparsifier in Section 6.2. Section 6.3 presents
experimental evaluation of our sparsifier.

Reference. This chapter is based on the conference paper [Akh+17] published
together with Tobias Heuer, Peter Sanders, and Sebastian Schlag. The text was written
by Yaroslav Akhremtsev and Sebastian Schlag with the editing by Peter Sanders.
The design and analyses of the algorithms were made by Yaroslav Akhremtsev,
Sebastian Schlag, and Peter Sanders. The algorithms were implemented by Yaroslav
Akhremtsev.

175

6 Fast Sparsification of Hypergraphs

6.1 Preliminaries

Let H = (V,E, c, ω) is undirected hypergraph where V = {0, . . . , n − 1} is a set of
vertices, E = {e : e ⊂ V } is a set of hyperedges (or nets), c : V → R>0 is a vertex
weight function, and ω : E → R>0 is a net weight function. The vertices of a net are
called pins [CA99b]. P denotes the multiset of all pins inH. We extend edge and vertex
weight functions ω and c to sets, i.e., c(U) :=

∑
v∈U c(v) and ω(F) :=

∑
e∈F ω(e).

I(v) = {e ∈ E : v ∈ e} denotes the set of all incident nets of v. The degree of a vertex v
is d(v) = |I(v)|. We denote the neighbors of v as N(v) = {u ∈ V : |I(u) ∩ I(v)| > 0}.
A k-way partition of a hypergraph H is a partition of its vertex set into k disjoint
blocks V1, . . . , Vk such that

⋃k
i=1 Vi = V . A k-way partition is ε-balanced if each block

Vi satisfies the balance constraint: c(Vi) ≤ Lmax := (1 + ε)dc(V)/ke for some ε. A
block Vi is overloaded if c(Vi) > Lmax and underloaded if c(Vi) < Lmax. The number
of pins of a net e in block Vi is Φ(e, Vi) := |{v ∈ Vi | v ∈ e}|. The connectivity set of e
is Λ(e) := {Vi | Φ(e, Vi) > 0}. The connectivity of a net e is λ(e) := |Λ(e)|. A cut net
is a net that has connectivity greater than one. We denote the set of cut nets as Ec.

The solution of the k-way hypergraph partitioning problem is an ε-balanced k-way
partition of a hypergraph H that minimizes an objective function over the cut nets.
The two most commonly used objective functions are the cut-net metric: cut :=∑

e∈Ec
ω(e) and the connectivity metric (λ−1) :=

∑
e∈Ec

(λ(e)−1) ω(e). In this chapter,
we use the connectivity-metric, which accurately models the total communication
volume of parallel sparse matrix-vector multiplication [CA99b]. The k-way hypergraph
partitioning problem that optimizes any of these two objective functions is NP-hard
[Len90].

Contraction is a construction of a new hypergraph with respect to a clustering of
a hypergraph. The vertices of the new hypergraph represent clusters and edges are
induced by connectivity between clusters. The vertex weights are set to the weight of
the corresponding cluster and edge weights are equal to the weight of the edges that run
between the respective clusters. More formally, given a graph clustering V1, . . . , Vk, the
contracted hypergraph is defined as H ′ = (V ′, E′, c′, ω′), where V ′ = {1, . . . , k} and E′
consist of nets e ∈ E such that λ(e) > 1 and all pins in e are replaced by the number
of cluster (0, . . . , k − 1) they belong to. Furthermore, c′(i) =

∑
v∈Vi

c(v), i ∈ V ′ and
parallel nets are merged into one net whose weight is set to the sum of weights of
merged nets.

6.2 Min-Hash Based Pin Sparsifier

The multi-level hypergraph partitioning framework KaHyPar employs algorithms that
perform some computations on vertices and their set of neighbors. This requires an
iteration over the set of all pins for all incident nets. For hypergraphs with many

176

6.2 Min-Hash Based Pin Sparsifier

large nets, these calculations can therefore have a significant impact on the overall
running time. To alleviate this impact, we developed a pin sparsifier. The central
idea is to identify and contract vertices that share many nets (“close” vertices), while
leaving “distant” vertices untouched. The distance between two vertices v and w is
hereby defined as D(v, w) = 1 − J(I(v), I(w)), where J(X,Y) = |X ∩ Y |/|X ∪ Y | is
the Jaccard index of sets X, Y . Calculating these distances for each vertex v and
all of its neighbors N(v) would lead to a quadratic algorithm. We therefore use the
min-hash-based fingerprints [Bro97]. Deveci et al. [DKc13] adapt this idea to identify
similar hyperedges (i.e., to build a net sparsifier), while Haveliwala et al. [HGI00] use
it to cluster URLs. Both papers do not give a generic algorithm without having to
choose several parameters manually. We present our adaptive approach to determine
these parameters dynamically. We also extend Haveliwala et al.’s approach such that
the resulting clusters are more balanced.

Suppose we have a set Σ of all possible permutations of elements of a set U . Then
we can define the min-hash family H = {hσ(I(v)) = min{σ(e)|e ∈ I(v)}|σ ∈ Σ}. The
min-hash family of hash functions is known to be locality sensitive [GIM99; IM98].
To prove this, we first give the definition of (R, cR, P1, P2)-sensitive families of hash
functions.

Definition 6.1
A family of hash functions H : U 7→ U is called (R, cR, P1, P2)-sensitive if ∀ p, q ∈ S
the following conditions are true:

(i) if D(p, q) ≤ R then ∀ h ∈ H : Pr[h(p) = h(q)] ≥ P1

(ii) if D(p, q) ≥ cR then ∀ h ∈ H : Pr[h(p) = h(q)] ≤ P2

Here D(p, q) is a distance function between objects p and q.

Now we prove that the min-hash family is (R, cR, P1, P2)-sensitive. Although it is a
well-known fact, we were not able to find a detailed proof of it. Therefore, we present
it in Theorem 6.2. Note, that we are interested in families of hash functions such that
P1 − P2 > 0. This positive difference allows to distinguish between close and distant
objects by applying hash functions to them.

Theorem 6.2
The min-hash family H = {hσ(X) = min{σ(e)|e ∈ X}} is (R, cR, P1, P2)-sensitive,
where X and Y are finite sets with elements from a finite universe U and σ is a
random permutation of all elements of U .

Proof. We prove that Pr[hσ(X) = hσ(Y)] = J(X,Y).

Pr[hσ(X) = hσ(Y)] =
∑

e∈X∩Y
Pr[σ(e) = hσ(X ∪ Y)] = |X ∩ Y |

|X ∪ Y |
,

177

6 Fast Sparsification of Hypergraphs

since for e ∈ X ∪ Y

Pr[σ(e) = hσ(X ∪ Y)] =
(
n
k

)
· (k − 1)! · (n− k)!

n! = 1
k
,

where n = |U | and k = |X ∪ Y |.

Hence, if D(X,Y) ≤ R then Pr[hσ(X) = hσ(Y)] = J(X,Y) ≥ 1 − R = P1. Analo-
gously, if D(X,Y) ≥ cR then Pr[hσ(X) = hσ(Y)] ≤ 1− cR = P2. �

We define a set of fingerprints {gi(x, k) = (hi,1(x), hi,2(x), · · · , hi,k(x))}i=1...l where
each hash function hi,j is chosen uniformly at random from the min-hash family H.
Note that to represent a random permutation one needs Θ(|U | log |U |) bits. Therefore,
in order to make our algorithm practical, we can either use hash functions or pseudo-
random permutations [Knu98, Section 3.4.2, Page 12] instead of random permutations.
We use hash functions like Haveliwala et al. [HGI00] and Broder et al. [Bro+97]
since this approach has better cache locality. Specifically, we use MurmurHash [Mur]
hash functions that do not have theoretical guarantees (that is, a MummurHash
hash function does not yield a random permutation) but still provide good results in
practice.

During sparsification, we want vertices with the same fingerprint to be assigned to
the same cluster. Two fingerprints are equal, if and only if all k hash values are
equal. Theorem 6.3 proves the bounds on the probability of two vertices to have equal
fingerprints using the fact that min-hash family is (R, cR, P1, P2)-sensitive. Since
these fingerprints approximate the distance between two vertices, the size of the
fingerprint (i.e., the number k of hash values) affects the probability that two vertices
are assigned to the same cluster. By increasing the number of hash values, we decrease
the probability that two “distant” vertices have the same fingerprint. More precisely,
if D(v, w) ≥ cR then Pr[g(x) = g(y)] ≤ (1 − cR)k. As we can see, the probability
of two vertices to have equal fingerprints exponentially decreases as the size of a
fingerprint increases. However, at the same time, this also decreases the probability of
“close” vertices to be in the same cluster. To avoid this problem, we calculate l > 1
fingerprints for each vertex.

Theorem 6.3
Consider a fingerprint g(x) = (h1(x), h2(x), · · · , hk(x)), where all k hash functions are
chosen uniformly at random from a min-hash family H. Then the following probabilities
hold:

(i) if D(x, y) ≤ R then Pr[g(x) = g(y)] ≥ P k1

(ii) if D(x, y) ≥ cR then Pr[g(x) = g(y)] ≤ P k2

178

6.2 Min-Hash Based Pin Sparsifier

T1

. . .

g1(I(v)) v . . .

g2(I(v)) v . . .

T2

gl(I(v)) v . . .

Tl

Figure 6.1: An outline of hash tables T1, . . . , Tl.

Proof. We prove the first case. The second case is proven analogously. Since all k
hash functions h1(x), · · · , hk(x) are independent then

Pr[g(x) = g(y)] = Pr[
∧

j=1...k
hj(x) = hj(y)] =

∏
j=1...k

Pr[hj(x) = hj(y)] ≥ P k1
�

Sparsification

To sparsify a hypergraph H = (V,E), we want to cluster its vertices such that “close”
vertices belong to the same cluster. In order to do this, we build a set of l hash tables
T1, . . . , Tl by inserting a vertex v ∈ V in the buckets that corresponds to a key gi(I(v))
in T1, . . . , Tl. Figure 6.1 outlines the resulting hash tables T1, . . . , Tl. One hash table
can be constructed in O(k ·

∑
v∈V d(v)) = O(k|P |) time, where d(v) corresponds to

the time to calculate one min-hash function. Let Ti[v] denote a bucket such that
∀u ∈ Ti[v] : gi(I(v)) = gi(I(u)). By representing Ti[v] as a hash table, we can perform
insert and delete operations in O(1) expected time. Further in this section all time
bounds are for the expected time. The clustering algorithm runs a BFS traversal on
an implicit undirected graph G = (V, E). G is represented by T1, . . . , Tl in the following
way: an edge (v, u) ∈ E if ∃ i ∈ [1, l] : gi(I(v)) = gi(I(u)). Figure 6.2 shows an example
of such a graph. The BFS traversal visits the vertices of the same connected component
and adds them to the same cluster as long as the maximum cluster size cmax is not
exceeded. When the algorithm visits a vertex it removes it from all l hash tables. The
corresponding pseudocode is shown in Algorithm 6.1. The time for visiting a vertex is
the time to access l hash tables that is O(kl). Further, we need to remove the vertex
from l hash tables. This can be done in O(kl) time as well. Due to removal of visited
vertices, the running time of the BFS traversal is O(kl|V |).

Quality and speed of our algorithm depend on the choice of parameters k and l.
Shakhnarovich et al. [SDI06] choose k and l using a fixed global distance. We describe

179

6 Fast Sparsification of Hypergraphs

T1 T2 T3

1, 2

4, 5

3

6

1, 3

2

5, 6

4

2, 4

3

1

5

6

13

2

4

56

Figure 6.2: An example of hash tables T1, . . . , Tl and corresponding implicit
graph G.

Algorithmus 6.1: The implicit BFS traversal.
Input: Graph G = (V,E), A set of hash tables {T1, . . . , Tl}
Output: Array cluster //Array of size |V | to store cluster ids of vertices

1 Function ImpicitBFS
2 Array visited //Array of size |V | to mark visited vertices
3 foreach v ∈ V do
4 if visited[v] then continue
5 Queue q //FIFO
6 visited[v] = true
7 q.push(v)
8 while q is not empty do
9 w ← q.pop()

10 for i← 1 to l
11 foreach u ∈ Ti[w] do
12 if not visited[u] and max cluster size is not exceeded then
13 visited[u] = true
14 cluster[u] = cluster[v]
15 q.push(u)
16 remove u from T1[w] . . .Tl[w]
17 if max cluster size is exceeded then go to 3

18 remove w from T1[w] . . .Tl[w]

180

6.2 Min-Hash Based Pin Sparsifier

the details of their approach in the following paragraph. Furthermore, since the
distance between vertices varies in different parts of a hypergraph, we describe how to
adaptively choose both k and l for each vertex individually in Section 6.2.1. Haveliwala
et al. [HGI00] assign vertices of one bucket to one cluster without a possibility to
extend this cluster; whilst our algorithm computes a more balanced clustering by
extending a cluster such that its size is at least cmin (min cluster size) and at most
max cluster size (cmax). Furthermore, Haveliwala et al. do not give any algorithmic
solution to select the parameters k and l. Therefore, our algorithm produces more
balanced clusterings, which have less unit size clusters and less “large” clusters. A big
number of unit size clusters results in a coarsened graph – built using the clustering –
that is not small enough to speed up the hypergraph partitioning algorithm. But the
presence of “large” clusters prevents to find a “good” partition where vertices from a
“large” cluster belong to different blocks.

Choice of parameters. Shakhnarovich et al. find the parameter l such that for
any pair of objects p, q ∈ S : D(p, q) ≤ R P [∃ i ∈ [1, l] : gi(p) = gi(q)] ≥ 1 − δ1.
Furthermore, P [∃ i ∈ [1, l] : gi(p) = gi(q)] ≥ 1 − (1 − P k1)l ≥ 1 − δ1 and, thus,
l ≥ log1−Pk

1
δ1. To find the parameter k, Shakhnarovich et al. build a data structure

from a sample S′ ⊂ S and choose k which minimizes the running times of the sample of
queries. We employ the same inequality to choose l, but choose k such that ∀ p, q ∈ S
and D(p, q) ≥ cR : ∀ i ∈ [1, l] P [gi(p) = gi(q)] ≤ δ2. Since P [gi(p) = gi(q)] ≤ P k2 ≤ δ2.
Thus, k ≥ logP2 δ2. Unfortunately, to find the parameters k and l, we need to know
the probabilities P1 and P2, which depend on R. We tried to estimate the average
value of R by sampling vertices and calculating distances from them to their neighbors.
Unfortunately, the resulting partitioning of the coarsened graph – built using the
clustering of G – usually does not yield a good partitioning.

6.2.1 Adaptive Clustering

The adaptive clustering works as follows: In the i-th iteration we build the hash
table Ti by inserting each vertex v using a fingerprint gi(I(v), k(v)) as a key, where
k(v) is the size of the fingerprint of v. Next, we use Ti to extend clusters that were
previously built using the hash tables T1, . . . , Ti−1. We now present our algorithm in
more detail.

First, we describe an adaptive construction of a hash table using a variable number of
hash functions. Bawa et al. [BCG05] use a similar idea to answer nearest-neighbors
queries. Next we describe an adaptive clustering algorithm that incrementally builds
a clustering by constructing a new hash table on each iteration and using it to extend
clusters.

181

6 Fast Sparsification of Hypergraphs

Adaptive construction of hash table H. Bawa et al. [BCG05] use a similar idea
to answer nearest-neighbors queries. We build H incrementally using a fingerprint
g(x, k) for an input set of vertices V (which is not necessary all vertices). During
each iteration for each vertex v ∈ V we increment k(v) and reinsert it with a key
g(I(v), k(v)); if |H[v]| ≤ cmax and k(v) ≥ hmin then we finished to compute the
fingerprints of H[v] and we remove them from V . This means that whole bucket |H[v]|
can be assigned to one cluster and there is no need to reduce its size by increasing the
size of the fingerprint of v. We repeat this process until fingerprints of all vertices are
computed. Algorithm 6.2 shows the pseudocode that constructs a hash table H. Our
algorithm builds H in O(hmax ·

∑
v∈V d(v)) = O(hmax · |P |) time, where hmax is the

maximum number of hash functions.

Algorithmus 6.2: The adaptive construction of a hash table.
Input: Set of vertices V
Output: Hash table H

1 Function
2 k = 1
3 HashTable H
4 HashTable prevH
5 while V is not empty and k ≤ hmax do
6 HashTable curH
7 foreach v ∈ V do
8 curH.insert(g(I(v), k), v)
9 foreach v ∈ V do

// prevH[v] and curH[v] are equal.
10 if |prevH[v]| = |curH[v]| and k ≥ hmin then
11 V = V \ curH[v]
12 foreach u ∈ curH[v] do
13 H.insert(g(I(u), k), u)

//Cluster of v is small enough
14 if v ∈ V and |curH[v]| ≤ cmax and k ≥ hmin then
15 V = V \ curH[v]
16 foreach u ∈ curH[v] do
17 H.insert(g(I(u), k), u)

18 k = k + 1
19 exchange curH and prevH

//Copy the rest of V
20 foreach v ∈ V do
21 H.insert(g(I(v), k), v)

182

6.3 Experiments

Adaptive clustering algorithm (ACA). Suppose that we have already performed
ACA for i− 1 hash tables and we want to build and process the hash table Ti. We
consider the set of active vertices that contains vertices which belong to clusters
with sizes less than cmin. Note that when we construct the hash table T1 all vertices
are active. First, we build the hash table Ti from the set of active vertices. Next,
we process the hash table Ti as follows. For each active vertex v, we iterate over
the active vertices in Ti[v], assign them to cluster cv of v while the size of cv is
less than cmax and remove them from Ti[v]. If the size of cv exceeds cmin then all
vertices in cv become inactive. We introduce parameters cmin and cmax to build a
more balanced clustering. The algorithm stops if the number of clusters is less than
|V |/2 or it exceeds the maximum number of hash tables l. We process a hash table in
O(hmax · |V |) time, since we look up a bucket of a vertex in O(hmax) time and visit
each vertex constant number of times. In summary, ACA works in O(l · hmax · |P |)
time since we have at most l hash tables. Note that this algorithm still needs an input
parameter hmin. This parameter means that any two vertices v, w cannot be in the
same bucket if g(I(v), k) = g(I(w), k) and k < hmin. Thus, in order for v and w to be
in the same bucket they must be sufficiently “close”. Namely, let D(v, w) = R then
P [g(I(v), hmin) = g(I(w), hmin)] = (1−R)hmin ≥ δ and R ≤ 1− δ1/hmin . For example,
if hmin = 20 then for two vertices to be in the same bucket with probability at least
0.5 they must be at distance at most 0.04. The problem is that if hmin is small and a
hypergraph has a small average distance than even vertices with distance greater than
the average distance may be in the same bucket; this results in a “bad” clustering.
For example, if hmin = 2 then the probability of two vertices at distance 0.5 to be
in the same bucket is 0.25. If hmin is large and a hypergraph has a large average
distance than a lot of clusters will have a unit size. For example, if hmin = 20 then the
probability of two vertices at distance 0.1 to be in the same bucket is (1−0.1)20 < 0.13.
In our experiments we set cmin to 2, cmax to 10, hmin to 10, hmax to 100 and l to 5.

6.3 Experiments

The algorithm is implemented in the n-level hypergraph partitioning framework
KaHyPar [Kah] (Karlsruhe Hypergraph Partitioning). The code is written in C++
and compiled using g++-5.2 with flags -O3 -mtune=native -march=native.

System. All experiments are performed on a single core of a machine consisting
of two Intel Xeon E5-2670 Octa-Core processors (Sandy Bridge) clocked at 2.6 GHz.
The machine has 64 GB main memory, 20 MB L3-Cache and 8x256 KB L2-Cache and
is running Ret Hat Enterprise Linux (RHEL) 7.2.

Instances. We evaluate our algorithm on a large collection of hypergraphs, which
contains instances from three benchmark sets: the ISPD98 VLSI Circuit Benchmark
Suite [Alp98], the University of Florida Sparse Matrix Collection [DH11], and the

183

6 Fast Sparsification of Hypergraphs

international SAT Competition 2014 [Bel+14]. Sparse Matrices are translated into
hypergraphs using the row-net model [CA99b]; that is, each row corresponds to a
net and each column corresponds to a vertex. For SAT instances, each Boolean
variable (and its complement) is mapped to a vertex and each clause corresponds to
a net [PM07]. To evaluate the pin sparsifier, we use 294 hypergraphs [GM16]. In
each case, the hypergraphs are partitioned into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks with
ε = 0.03. For each value of k, a k-way partition is considered to be one test instance,
resulting in a total of 1342 instances for the benchmark set (note that for 16 instances
we stopped calculations because the time limit was exceeded).

Methodology. We perform ten repetitions with different seeds for each test instance
and report the arithmetic mean of the computed (λ− 1)-cut and running time. We
use the geometric mean to calculate average running time and cut size for different
instances. Furthermore, we use harmonic mean to calculate average speed-up of
KaHyPar with the sparsifier over KaHyPar without. Note that we exclude hypergraphs
with zero cut sizes since we cannot include them in the calculation of the geometrical
mean.

Evaluation of Sparsifier. Our sparsifier is intended to improve the running time
for hypergraphs with large nets. As can be seen in Figure 6.3 and in Table 6.1,
the sparsifier speeds up the partitioning process if the median net size |ẽ| is large
(|ẽ| ≥ 28). Specifically, 83.6% of instances have speed-up greater than 1. Furthermore,
the harmonic mean speed up of the partitioner is 1.3. But the sparsifier slows down
a bit the partitioning process if the median net size |ẽ| is small. Nevertheless, the
Wilcoxon signed-rank test (see Section 2.3.3) show that the differences between the
running times of KaHyPar with and without the sparsifier are statistically significant.
Moreover, the Wilcoxon signed-rank test show that the difference between cut sizes
of KaHyPar with and without the sparsifier is statistically significant when |ẽ| ≥ 28
and statistically insignificant when |ẽ| < 28. Thus, the sparsification of hypergraphs
improves quality when |ẽ| ≥ 28.

Note that we select the threshold 28 considering the experiments on the full benchmark
set of instances. However, we would have observed a similar behavior on any random
subset of these instances. Therefore, we expect that results of our sparsifier with this
threshold will be similar on other benchmark sets.

To show the correlation between the median net size and speed up even further, we
present Figure 6.4 and Figure 6.5. The maximum harmonic speed-up of 1.7 is achieved
on the graphs with |ẽ| greater that 108. Furthermore, 90.4% of the hypergraphs with
|ẽ| greater than 36 have speed-ups greater than 1.

184

6.3 Experiments

Table 6.1: Effects of applying the pin sparsifier using all instances.
use sparsifier

never always if |ẽ| ≥ 28

|ẽ| ≥ 28
cut 13156.7 13155.2 13155.2
t(s) 20.0 13.3 13.3
speed-up 1.0 1.3 1.3

|ẽ| < 28
cut 7764.4 7770.5 7764.4
t(s) 14.8 15.0 14.8
speed-up 1.0 0.9 1.0

185

6 Fast Sparsification of Hypergraphs

3 3 4 4 5 6 7 9 13 20 28 42 54 434
Instances sorted by |e|

0.1
0.25
0.5

1.0

2.0

5.0

10.0

20.0
Sp

ee
d

up

Figure 6.3: Threshold for sparsifier.

3 6 9 12 15 19 22 25 28 31 35 42 47 50 54 69 92 123 327 910
Instances sorted by |ẽ|

0.7
0.8

1.0

1.2

1.4

1.6
1.7

S
p

ee
d

u
p

Figure 6.4: Cumulative harmonic mean speed-ups for different minimum median
net sizes. Here a point (x, y) means that the harmonic mean speed-up of the
graphs with |ẽ| ≥ x is y.

3 6 9 12 15 19 22 25 28 31 35 42 47 50 54 69 92 123 327 910
Instances sorted by |ẽ|

20

30

40

50

60

70

80

90

100

P
er

ce
nt

,
%

Figure 6.5: Cumulative percentage of graphs with speed-ups greater than 1 for
different minimum median net sizes. Here a point (x, y) means that y% of the
graphs with |ẽ| ≥ x have speed-ups greater than 1

186

6.4 Conclusion and Future Work

6.4 Conclusion and Future Work

We developed a linear time hypergraph sparsifier based on the min-hash technique
that speeds up computation of multi-level hypergraph partitioning framework KaHyPar
by a factor of 1.5 on average if hyperedges are large. Moreover, our sparsifier does not
affect quality of resulting partitions which is confirmed by the Wilcoxon signed-rank
test.

As a part of future work, we are planning to parallelize the sparsifier since it processes
all vertices independently. Specifically, we can parallelize the construction of hash
tables by computing fingerprints of vertices in parallel. Furthermore, we can parallelize
the adaptive clustering by assigning vertices to clusters in parallel.

Another interesting idea for future work is an adaptive clustering algorithm that adds
vertices to a cluster according to their connectivity to it.

It would be interesting to consider other ways to compute fingerprints of vertices and
how they affect resulting quality and running times. Specifically, one can consider
choosing an edge ID as a hash value with probability proportional to the size of the
edge. Thus, if two vertices adjacent to a large edge it is likely that they will end up
in the same cluster. Another approach it to cluster vertices according to k smallest
hash values instead of one minimum hash value. Specifically, if k smallest hash values
of two vertices are equal then they are assigned to the same cluster. This approach
allows to use computed hash values in a more efficient way.

Another interesting application of our sparsifier is graph sparsification. Specifically,
we can cluster vertices that share multiple neighbors and replace the clusters by single
vertices. This approach can help to speed up processing of large social networks
that have high degree vertices. First of all, such network can be contracted faster
by reducing degrees of high degree vertices. Moreover, if the coarsest graph contains
multiple high degree vertices this can significantly slow down initial partitioning phase.
For example, this can improve speed-ups of our parallel graph partitioning framework
Mt-KaHIP.

187

7Chapter 7

Conclusion

Graph partitioning can be an important component of efficient large scale parallel
graph algorithms. In this thesis, we mainly focus on shared-memory and external
memory models that consider algorithms which are able to process large networks
on a single machine. For the shared-memory model, we presented efficient multi-
level graph partitioning algorithm that constructs high-quality partitions, guarantees
balance, and shows good performance. The main components of our algorithm are
parallel label propagation for coarsening and refinement and effective approach to
parallelize localized local search. For the external memory model, we presented fast
(semi-)external multi-level graph partitioning algorithm that constructs high-quality
partitions and able to partition a graph with 80.5G edges. The main component of
our algorithm is an efficient (semi-)external label propagation algorithm that allows
efficiently to contract large graphs until they small enough to be partitioned by an
internal memory partitioner.

Additionally, we considered a fast sparsification technique that can be used to speed-
up hypergraph partitioning algorithm on hypergraphs with large hyperedges. This
randomized technique finds vertices that have similar incident hyperedges and combines
them in linear time such that the resulting graph can be partitioned faster without
quality loss.

189

191

List of Algorithms

4.1 Parallel Size-Constrained Label Propagation 81
4.2 Parallel Local Max Matching . 82
4.3 Parallel Contraction . 83
4.4 Parallel Localized k-way Multi-try Local Search. 85

6.1 The implicit BFS traversal. 180
6.2 The adaptive construction of a hash table. 182

193

List of Figures

1.1 Partitionings of different graphs into 16 blocks. Each color correspond
to a block. 2
(a) Random geometric graph. 2
(b) Delaunay graph. 2
(c) Graph of Amazon in 2008. 2

2.1 Clustering of a graph and the corresponding quotient graph. Here each
color denotes a cluster of vertices in the original graph (left) and a
vertex in the quotient graph (right). 8

2.2 Graph represented using adjacency array. 10
(a) An external memory model with one disk. 12
(b) An external memory model with two disks. 12

2.4 Graph represented using adjacency array in the external memory model. 12
2.5 An example of a performance plot. We can see that Algorithm 1

computed the best cuts for 3 instances and one imbalanced partition.
Algorithm 2 computed the best cuts for 5 instances. 13

3.1 Outline of multi-level graph partitioning scheme. 19
3.2 Moving the set of vertices A from the blue block to the green block

decreases the cut size by one. But moving each vertex separately
increases the cut size. 20

3.3 These figures show possible clusterings produced by the label propaga-
tion algorithm. The label propagation algorithm considers vertices in
increasing order of their degrees. 26
(a) A possible clustering after first iteration. 26
(b) A possible clustering after second iteration. 26
(c) A possible clustering after third iteration. 26

3.4 Exchanging vertices v and w will decrease the cut size by 3. Specifically,
g(v, u) = g(v) + g(u)− 2 · w(v, u) = 3, where g(v) = 2 and g(u) = 3. . 38

3.5 A bucket priority queue consists of two arrays: an array of buckets and
an array of pointers. The first arrays contains buckets of vertices. The
second array contains pointers to vertices in the buckets. 41

4.1 The multi-level graph partitioning scheme. 69

195

List of Figures

4.2 Density histograms for different types of graphs. 77
4.3 Q-Q plots for different types of graphs. 78
4.4 Performance plot for the cut size of Mt-KaHIP and competitors. The

number behind the algorithm name denotes the number of PEs used. . 95
4.5 Performance plot for the cut size of Mt-KaHIP fast and competitors. 96
4.6 Performance plot for the cut size of Mt-KaHIP and Mt-KaHIP fast. . . 96
4.7 Effectiveness tests for Mt-KaHIP, Mt-KaHIP fast and KaHIP. The num-

ber behind the algorithm name denotes the number of PEs used. . . . 102
4.8 Effectiveness tests for Mt-KaHIP and Mt-Metis. The number behind

the algorithm name denotes the number of PEs used. 103
4.9 Effectiveness tests for Mt-KaHIP fast and Mt-Metis. The number

behind the algorithm name denotes the number of PEs used. 104
4.10 Effectiveness tests for Mt-KaHIP and ParHIP. The number behind the

algorithm name denotes the number of PEs used. 105
4.11 Effectiveness tests for Mt-KaHIP fast and ParHIP. The number behind

the algorithm name denotes the number of PEs used. 106
4.12 Performance plot for the cut size of Mt-KaHIP and Mt-KaHIP eco. The

number behind the algorithm name denotes the number of PEs used. . 108
4.13 Performance plot for the cut size of Mt-KaHIP, Mt-KaHIP eco, and

Mt-Metis. 108
4.14 Performance plot for the cut size of Mt-KaHIP and PuLP. The number

behind the algorithm name denotes the number of PEs used. 112
4.15 Performance plot for the cut size of Mt-KaHIP fast and PuLP. 112
4.16 Effectiveness tests for Mt-KaHIP, Mt-KaHIP fast and PuLP. The number

behind the algorithm name denotes the number of PEs used. 113
4.17 Scatter plots with speed-ups and running times per edge of the frame-

works for p = 79. 115
4.18 Cumulative harmonic mean speed-ups and geometric mean running

times of the frameworks for p = 79 on the set of instances SMt-Metis.
Here a point (x, y) means that the harmonic mean speed-up (geometric
mean running time) of the graphs with |E| ≥ x is y. 116

4.19 Cumulative harmonic mean speed-ups and geometric mean running
times of Mt-KaHIP and ParHIP for p = 79 on the set of instances I. . . 116

4.20 Scatter plots with speed-ups and average running times per edge of the
frameworks for p = 31. 118

4.21 Cumulative harmonic mean speed-ups and geometric mean running
times of the frameworks for p = 31 on the set of instances SBAll. Here a
point (x, y) means that the harmonic mean speed-up (geometric mean
running time) of the graphs with |E| ≥ x is y. 118

4.22 Scatter plots with speed-ups and average running times per edge of the
different components for p = 79. 122

196

List of Figures

4.23 Cumulative harmonic mean speed-ups and geometric mean running
times of the components of Mt-KaHIP and Mt-Metis for p = 79 on the
set of instances SMt-Metis. Here a point (x, y) means that the harmonic
mean speed-up (geometric mean running time) of the graphs with
|E| ≥ x is y. 124

4.24 Cumulative harmonic mean speed-ups and geometric mean running
times of the components of Mt-KaHIP and ParHIP for p = 79 on the
set of instances I. Here a point (x, y) means that the harmonic mean
speed-up (geometric mean running time) of the graphs with |E| ≥ x is y.126

4.25 Scatter plots with speed-ups and average running times per edge of
Mt-KaHIP and Mt-KaHIP eco for p = 79. 127

4.26 Scatter plots with speed-ups and average running times per edge of the
frameworks for p = 79. 128

4.27 Cumulative harmonic mean speed-ups and geometric running times of
the frameworks for p = 79 on the set of instances SPuLP. Here a point
(x, y) means that the harmonic mean speed-up (geometric running time)
of the graphs with |E| ≥ x is y. 129

4.28 Memory consumption per edge in bytes. The horizontal lines are the
geometric mean memory consumptions per edge. 130

4.29 Running time ratios of components of Mt-KaHIP. 134
4.30 Running time ratios of components of Mt-KaHIP fast. 135

5.1 Range processed by a PE t. The PE t skips the adjacency list 1 and
PE t− 1 will scan it. This allows to avoid the situation when the same
adjacency list is scanned by several PEs. 143

5.2 Timeline of when disk blocks are prefetched and processed. Here D = 3.
B1, B

′
1 are blocks of disk 1. B2, B

′
2 are blocks of disk 2. B3, B

′
3 are

blocks of disk 3. 144
(a) The first case when the time to process a block is greater than

the time to read a block (tp > tr). 144
(b) The second case when the time to read a block is greater than

the time to process a block (tp < tr). 144
5.4 Evaluation of different clustering algorithms. 153

(a) Running times of clustering algorithms without a size constraint. 153
(b) Memory consumptions of clustering algorithms without a size

constraint. 153
(c) I/O volumes of clustering algorithms without a size constraint. 153
(d) Running times of clustering algorithms with a size constraint. . 153
(e) Memory consumptions of clustering algorithms with a size con-

straint. 153
(f) I/O volumes of clustering algorithms with a size constraint. . . 153

5.5 Running times of iterations of different (semi-)external LPAs on the
graph uk-2007. 159
(a) Semi-external algorithms. 159

197

List of Figures

(b) External algorithms. 159
5.6 Performance plot for the cut size on thirteen graphs. 162
5.7 Performance plot for the cut size on seven graphs. 162
5.8 Running times of parallel LPAs. 167

(a) Running times of P_LP_SE_AR 167
(b) Running times of P_LP_SE_HT 167

5.9 Running times of the parallel LPAs. 168
(a) Running times of P_LP_SE_AR 168
(b) Running times of P_LP_SE_HT 168

5.10 Running times of parallel LPAs. 169
(a) Running times of P_LP_SE_AR 169
(b) Running times of P_LP_SE_HT 169

5.11 Running times of parallel LPAs. 170
(a) Running times of P_LP_SE_AR 170
(b) Running times of P_LP_SE_HT 170

5.12 Speed-ups of parallel LPAs with and without time to read blocks on
the graph uk-2007. 170
(a) P_LP_SE_AR . 170
(b) P_LP_SE_HT . 170

5.13 Memory consumption of our parallel LPAs. Here the black curve is the
memory consumption of the graph in the internal memory. 172

5.14 Memory consumption of parallel LPAs. Here the black curve is the
memory consumption of the graph in the internal memory. 173

6.1 An outline of hash tables T1, . . . , Tl. 179
6.2 An example of hash tables T1, . . . , Tl and corresponding implicit graph G.180
6.3 Threshold for sparsifier. 186
6.4 Cumulative harmonic mean speed-ups for different minimum median

net sizes. Here a point (x, y) means that the harmonic mean speed-up
of the graphs with |ẽ| ≥ x is y. 186

6.5 Cumulative percentage of graphs with speed-ups greater than 1 for
different minimum median net sizes. Here a point (x, y) means that y%
of the graphs with |ẽ| ≥ x have speed-ups greater than 1 186

198

List of Tables

2.1 Basic properties of the benchmark set with a rough type classification.
C stands for complex networks, M is used for mesh type networks. . . 14

4.1 Sample sizes (|S|), p-values, means (µd), standard deviations (σd) and
corresponding confidence intervals of differences between approximated
and real CDFs for global iterations. The last four columns are in percents. 75

4.2 Sample sizes (|S|), p-values, means (µd), standard deviations (σd) and
corresponding confidence intervals of differences between approximated
and real CDFs for local iterations. The last four columns are in percents. 76

4.3 Number of instances partitioned without imbalance by each algorithm
on machines A and B. Note that we did not run Mt-KaHIP fast and
Mt-KaHIP eco on machine B. We did not run Mt-KaHIP eco with
p = 40 on machine A. 92

4.4 Geometrical means of cut sizes for different frameworks evaluated on
different sets of instances. 97

4.5 Pairwise comparison of Mt-KaHIP and Mt-KaHIP fast for p = 1, 40, 79
to other competitors. We compare Mt-KaHIP and Mt-KaHIP fast
against competitors on the largest set of instances which were par-
titioned by competitors. For example, for Mt-KaHIP and Mt-Metis with
p = 40, 79 this is set SMt-Metis. Each cell of the table is the relative
difference of the geometric mean cut sizes and p-values. 97

4.6 Results of effectiveness tests. Here “% of instances” is the percent of
virtual instances partitioned better by our framework. “Mean %” is
the relative difference (|a− b|/max(a, b)) between the geometric mean
cut sizes computed by our framework and a competitor. If a value is
preceded by a sign − than our algorithms has smaller geometric mean
cut sizes, otherwise there is a sign +. “Best %” is the best relative
difference between the cut size computed by our framework and a
competitor. “Worst %” is the worst relative difference between the cut
size computed by our framework and a competitor. 101

4.7 Cut sizes of kMetis, Mt-KaHIP, and DiBaP. 110
4.8 Relative running times of Mt-KaHIP, and DiBaP. 110

199

List of Tables

4.9 Geometrical means of cut sizes of Mt-KaHIP, Mt-KaHIP fast, and PuLP
over the set of instances SPuLP. 111

4.10 Harmonic mean speed-ups and geometric mean running times of the
frameworks over different sets of instances. Here SMt-Metis balanced is
22 instances from SMt-Metis that are partitioned without imbalance by
all frameworks. 115

4.11 Harmonic mean speed-ups and geometric mean running times of the
frameworks over different sets of instances. Here SBMt-Metis balanced is
22 instances from SBMt-Metis that are partitioned without imbalance. . 117

4.12 Comparison of the components of Mt-KaHIP and Mt-Metis on the set of
instances SMt-Metis. Each cell of the table contains the harmonic mean
speed-up and the geometric mean running time. Bold numbers are the
best speed-ups and running times for components. 120

4.13 Comparison of the components of Mt-KaHIP and ParHIP on the set
of instances I. Each cell of the table contains the harmonic mean
speed-up and the geometric mean running time. Bold numbers are the
best speed-ups and running times for components. 120

4.14 Harmonic mean speed-ups and geometric mean running times of the
frameworks over different sets of instances. Here SPuLP balanced is 40
instances from SPuLP that are partitioned without imbalance. 129

4.15 Memory consumption in gigabytes. 130

5.1 Geometric mean of running time, memory consumption and I/O volume
for clustering algorithms without a size constraint. 154

5.2 Running time, memory consumption and I/O volume of different clus-
tering algorithms. 154

5.3 Running times in seconds of different (semi-)external LPAs. 158
5.4 Geometrical means of running time and memory consumption of dif-

ferent partitioning algorithms. P_LP_SE_HT and P_LP_SE_AR
use 15 PEs (without hyperthreading) and the column “Memory con-
sumption (MB)” shows the amount of the internal memory used by the
algorithms in megabytes. 161

5.5 Running time and memory consumption of different partitioning al-
gorithms. P_LP_SE_HT and P_LP_SE_AR use 15 PEs (without
hyperthreading) and the column “Memory consumption (MB)” shows
the amount of the internal memory used by the algorithms in megabytes.163

5.6 Absolute and relative speed-ups of P_LP_SE_AR and P_LP_SE_HT
with 15 PEs. 166

5.7 Memory consumption in megabytes of LP_SE_AR, LP_SE_HT,
P_LP_SE_AR and P_LP_SE_HT with 15 PEs. 171

6.1 Effects of applying the pin sparsifier using all instances. 185

200

List of Theorems

Theorem 3.1 . 39
Theorem 3.2 . 41
Theorem 4.1 . 98
Theorem 4.2 Hoeffding’s inequality [Hoe63] 98
Theorem 4.3 . 99
Corollary 4.4 . 99
Lemma 5.1 . 145
Theorem 5.2 . 146
Theorem 5.3 . 147
Lemma 5.4 . 149
Lemma 5.5 . 149
Theorem 5.6 . 149
Definition 6.1 . 177
Theorem 6.2 . 177
Theorem 6.3 . 178

201

Bibliography

[AB11] Bas Fagginger Auer and Rob H. Bisseling. “A GPU Algorithm for Greedy
Graph Matching”. In: Facing the Multicore - Challenge II - Aspects of
New Paradigms and Technologies in Parallel Computing [Proceedings of a
conference held at the Karlsruhe Institute of Technology (KIT), September
28-30, 2011]. Pages 108–119. 2011. [see page 27]

[AB12] Bas Fagginger Auer and Rob H. Bisseling. “Graph coarsening and clustering
on the GPU”. In: Graph Partitioning and Graph Clustering, 10th DIMACS
Implementation Challenge Workshop, Georgia Institute of Technology,
Atlanta, GA, USA, February 13-14, 2012. Proceedings. Edited by David
A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner.
Volume 588. Contemporary Mathematics, page 223. isbn: 978-0-8218-9038-
7. American Mathematical Society, 2012. [see page 32]

[ABW02] James Abello, Adam L. Buchsbaum, and Jeffery Westbrook. “A Functional
Approach to External Graph Algorithms”. In: Algorithmica 32.3 (2002),
pages 437–458. [see page 10]

[AK06] Amine Abou-Rjeili and George Karypis. “Multilevel algorithms for parti-
tioning power-law graphs”. In: 20th International Parallel and Distributed
Processing Symposium (IPDPS 2006), Proceedings, 25-29 April 2006,
Rhodes Island, Greece. 2006. [see pages 25, 66]

[Akh11] Yaroslav Akhremtsev. “Design and Development of Functional Program-
ming Language”. Bachelor Thesis. Institute of Automatics and Computer
Engineering, Moscow Power Engineering Institute, Russia. May 2011.

[see page 223]

[Akh13] Yaroslav Akhremtsev. “Development and Analyzes of Shortest Paths
Algorithms for Road Networks”. Master Thesis. Institute of Automatics
and Computer Engineering, Moscow Power Engineering Institute, Russia.
May 2013. [see page 223]

[Akh+17] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
“Engineering a direct k-way Hypergraph Partitioning Algorithm”. In: Pro-
ceedings of the Ninteenth Workshop on Algorithm Engineering and Ex-
periments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January
17-18, 2017. Pages 28–42. 2017. [see pages 5, 175, 223]

203

Bibliography

[AL97] Cleve Ashcraft and Joseph WH Liu. “Using domain decomposition to find
graph bisectors”. In: BIT Numerical Mathematics 37.3 (1997), pages 506–
534. Springer. [see page 45]

[Alp98] C. J. Alpert. “The ISPD98 Circuit Benchmark Suite”. In: Proceedings of
the 1998 International Symposium on Physical Design, pages 80–85. isbn:
1-58113-021-X. Monterey, California, USA: ACM, 1998. [see page 183]

[AR04] Konstantin Andreev and Harald Räcke. “Balanced graph partitioning”.
In: SPAA 2004: Proceedings of the Sixteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, June 27-30, 2004, Barcelona,
Spain, pages 120–124. 2004. [see page 63]

[Arg03a] Lars Arge. “The Buffer Tree: A Technique for Designing Batched External
Data Structures”. In: Algorithmica 37.1 (2003), pages 1–24. [see page 140]

[Arg03b] Lars Arge. “The Buffer Tree: A Technique for Designing Batched External
Data Structures.” In: Algorithmica 37.1 (Oct. 31, 2003), pages 1–24.

[see page 145]

[AS16] Yaroslav Akhremtsev and Peter Sanders. “Fast Parallel Operations on
Search Trees”. In: 23rd IEEE International Conference on High Perfor-
mance Computing, HiPC 2016, Hyderabad, India, December 19-22, 2016,
pages 291–300. 2016. [see page 223]

[ASS15] Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. “(Semi-
)External Algorithms for Graph Partitioning and Clustering”. In:
Proceedings of the Seventeenth Workshop on Algorithm Engineering and
Experiments, ALENEX 2015, San Diego, CA, USA, January 5, 2015,
pages 33–43. 2015. [see pages 139, 223]

[ASS18] Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. “High-Quality
Shared-Memory Graph Partitioning”. In: Euro-Par 2018: Parallel Process-
ing - 24th International Conference on Parallel and Distributed Comput-
ing, Turin, Italy, August 27-31, 2018, Proceedings, pages 659–671. 2018.

[see pages 45, 65, 223]

[Avi83] David Avis. “A survey of heuristics for the weighted matching problem”.
In: Networks 13.4 (1983), pages 475–493. [see page 22]

[Axt+17] M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders. “In-Place Parallel
Super Scalar Samplesort (IPSSSSo)”. In: Proc. of the 25th ESA, 9:1–9:14.
2017. [see page 79]

[Bad13] Michael Bader. Space-Filling Curves - An Introduction with Applications
in Scientific Computing. Volume 9. Texts in Computational Science and
Engineering. Springer, 2013. isbn: 978-3-642-31045-4. doi: 10.1007/978-
3-642-31046-1. url: https://doi.org/10.1007/978-3-642-31046-1.

[see page 17]

204

https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-642-31046-1

Bibliography

[Bad+13a] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. 10th
DIMACS Implementation Challenge – Graph Partitioning and Graph
Clustering. 2013. [see pages 13, 14]

[Bad+13b] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wag-
ner, editors. Graph Partitioning and Graph Clustering, 10th DIMACS
Implementation Challenge Workshop, Georgia Institute of Technology,
Atlanta, GA, USA, February 13-14, 2012. Proceedings. Volume 588. Con-
temporary Mathematics. American Mathematical Society, 2013. isbn:
978-0-8218-9038-7. doi: 10.1090/conm/588. url: https://doi.org/10.
1090/conm/588. [see page 35]

[Bad+14] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and
D. Wagner. “Benchmarking for Graph Clustering and Partitioning”. In:
Encyclopedia of Social Network Analysis and Mining, pages 73–82. 2014.

[see pages 13, 14]

[BB87] Marsha J. Berger and Shahid H. Bokhari. “A Partitioning Strategy for
Nonuniform Problems on Multiprocessors”. In: IEEE Trans. Computers
36.5 (1987), pages 570–580. [see page 36]

[BCG05] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. “LSH Forest: Self-
tuning Indexes for Similarity Search”. In: Proceedings of the 14th Interna-
tional Conference on World Wide Web. WWW ’05, pages 651–660. isbn:
1-59593-046-9. Chiba, Japan: ACM, 2005. [see pages 181, 182]

[Bec+] Andreas Beckmann, Timo Bingmann, Roman Dementiev, Peter Sanders,
and Johannes Singler. “STXXL Home Page”. https://github.com/
stxxl/stxxl. [see pages 140, 151]

[Bel+14] A. Belov, D. Diepold, M. Heule, and M. Järvisalo. The SAT Competition
2014. http://www.satcompetition.org/2014/. 2014. [see page 184]

[BH11] Una Benlic and Jin-Kao Hao. “A Multilevel Memetic Approach for Im-
proving Graph k-Partitions”. In: IEEE Trans. Evolutionary Computation
15.5 (2011), pages 624–642. [see page 17]

[Bir+13] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari
Sitchinava. “Efficient Parallel and External Matching”. In: Euro-Par 2013
Parallel Processing - 19th International Conference, Aachen, Germany,
August 26-30, 2013. Proceedings, pages 659–670. 2013.

[see pages 28, 66, 68, 80]

[BJ92] T. Nguyen Bui and C. Jones. “Finding good approximate vertex and edge
partitions is NP-hard”. In: Information Processing Letters 42.3 (1992),
pages 153–159. Elsevier. [see page 63]

[Bou98] N Bouhmala. Impact of different graph coarsening schemes on the quality of
the partitions. Technical report. Technical Report RT98/05-01, University
of Neuchatel, Department of Computer Science, 1998. [see pages 18, 56]

205

https://doi.org/10.1090/conm/588
https://doi.org/10.1090/conm/588
https://doi.org/10.1090/conm/588
https://github.com/stxxl/stxxl
https://github.com/stxxl/stxxl
http://www.satcompetition.org/2014/

Bibliography

[Bro97] A. Broder. “On the Resemblance and Containment of Documents”. In:
Proceedings of the Compression and Complexity of Sequences 1997. SE-
QUENCES ’97, pages 21–. isbn: 0-8186-8132-2. Washington, DC, USA:
IEEE Computer Society, 1997. [see pages 5, 175, 177]

[Bro+97] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey
Zweig. “Syntactic clustering of the web”. In: Computer Networks and
ISDN Systems 29.8-13 (1997), pages 1157–1166. Elsevier. [see page 178]

[BS11] C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
[see page 17]

[BS93] Stephen T. Barnard and Horst D. Simon. “A Fast Multilevel Implementa-
tion of Recursive Spectral Bisection for Partitioning Unstructured Prob-
lems”. In: Proceedings of the Sixth SIAM Conference on Parallel Processing
for Scientific Computing, PPSC 1993, Norfolk, Virginia, USA, March 22-
24, 1993, pages 711–718. 1993. [see pages 17, 57]

[Bul+13] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. “Recent
Advances in Graph Partitioning”. In: Lecture Notes in Computer Science
9220 (2013), pages 117–158. [see pages 1, 17, 34]

[BV04] P. Boldi and S. Vigna. “The WebGraph Framework I: Compression Tech-
niques”. In: Proc. of the 13th Int. World Wide Web Conference, pages 595–
601. 2004. [see page 13]

[CA99a] U. V. Catalyurek and C. Aykanat. “Hypergraph-partitioning based De-
composition for Parallel Sparse-Matrix Vector Multiplication”. In: IEEE
Transactions on Parallel and Distributed Systems 10.7 (1999), pages 673–
693. IEEE. [see page 67]

[CA99b] Ü. V. Catalyürek and C. Aykanat. “Hypergraph-Partitioning-Based De-
composition for Parallel Sparse-Matrix Vector Multiplication”. In: IEEE
Transactions on Parallel and Distributed Systems 10.7 (1999), pages 673–
693. issn: 1045-9219. [see pages 176, 184]

[CG97] Boris V. Cherkassky and Andrew V. Goldberg. “On Implementing the
Push-Relabel Method for the Maximum Flow Problem”. In: Algorithmica
19.4 (1997), pages 390–410. [see page 47]

[Chi+95] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia,
Darren Erik Vengroff, and Jeffrey Scott Vitter. “External-Memory Graph
Algorithms”. In: Proceedings of the Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, 22-24 January 1995. San Francisco, California.
Pages 139–149. 1995. [see pages 140, 144]

[CL98] Jason Cong and Sung Kyu Lim. “Multiway partitioning with pairwise
movement”. In: Proceedings of the 1998 IEEE/ACM International Con-
ference on Computer-Aided Design, ICCAD 1998, San Jose, CA, USA,
November 8-12, 1998, pages 512–516. 1998. [see page 43]

206

Bibliography

[CM05] Graham Cormode and S. Muthukrishnan. “An improved data stream
summary: the count-min sketch and its applications”. In: J. Algorithms
55.1 (2005), pages 58–75. [see page 174]

[CP08] C. Chevalier and F. Pellegrini. “PT-Scotch: A Tool for Efficient Parallel
Graph Ordering”. In: Parallel Computing (2008), pages 318–331.

[see pages 60, 67]

[CS11] Jie Chen and Ilya Safro. “Algebraic Distance on Graphs”. In: SIAM J.
Scientific Computing 33.6 (2011), pages 3468–3490. [see page 24]

[Dav] T. Davis. The University of Florida Sparse Matrix Collection.
[see pages 13, 14]

[DD96] Shantanu Dutt and Wenyong Deng. “VLSI circuit partitioning by cluster-
removal using iterative improvement techniques”. In: ICCAD, pages 194–
200. 1996. [see page 44]

[Del+12] Daniel Delling, Andrew V. Goldberg, Ilya P. Razenshteyn, and Renato
Fonseca F. Werneck. “Exact Combinatorial Branch-and-Bound for Graph
Bisection”. In: Proceedings of the 14th Meeting on Algorithm Engineering &
Experiments, ALENEX 2012, The Westin Miyako, Kyoto, Japan, January
16, 2012, pages 30–44. 2012. [see page 34]

[Dem06] Roman Dementiev. “Algorithm engineering for large data sets”. PhD
thesis. Saarland University, 2006. url: http://d-nb.info/983672970.

[see page 11]

[DF11] Benjamin Doerr and Mahmoud Fouz. “Asymptotically Optimal Random-
ized Rumor Spreading”. In: Automata, Languages and Programming - 38th
International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8,
2011, Proceedings, Part II, pages 502–513. 2011. [see page 62]

[DH03a] Doratha E. Drake and Stefan Hougardy. “A simple approximation algo-
rithm for the weighted matching problem”. In: Inf. Process. Lett. 85.4
(2003), pages 211–213. [see page 22]

[DH03b] Doratha E. Drake and Stefan Hougardy. “Improved Linear Time Approxi-
mation Algorithms for Weighted Matchings”. In: Approximation, Random-
ization, and Combinatorial Optimization: Algorithms and Techniques, 6th
International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2003 and 7th International Workshop
on Randomization and Approximation Techniques in Computer Science,
RANDOM 2003, Princeton, NJ, USA, August 24-26, 2003, Proceedings,
pages 14–23. 2003. [see pages 22, 23]

[DH03c] Doratha E. Drake and Stefan Hougardy. “Linear Time Local Improvements
for Weighted Matchings in Graphs”. In: Experimental and Efficient Algo-
rithms, Second International Workshop, WEA 2003, Ascona, Switzerland,
May 26-28, 2003, Proceedings, pages 107–119. 2003. [see page 23]

207

http://d-nb.info/983672970

Bibliography

[DH11] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Col-
lection”. In: ACM Transactions on Mathematical Software 38.1 (2011),
1:1–1:25. issn: 0098-3500. New York, NY, USA: ACM. [see page 183]

[DH72] W.E. Donath and A.J. Hoffman. “Algorithms for partitioning graphs and
computer logic based on eigenvectors of connection matrices”. In: IBM
Technical Disclosure Bulletin 15.3 (1972), pages 938–944. [see page 17]

[DH73] William E Donath and Alan J Hoffman. “Lower bounds for the partitioning
of graphs”. In: IBM Journal of Research and Development 17.5 (1973),
pages 420–425. IBM. [see page 17]

[DH97] Anthony Christopher Davison and David Victor Hinkley. Bootstrap meth-
ods and their application. Volume 1. Cambridge university press, 1997.

[see page 74]

[Die+00] Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw.
“Shape-optimized mesh partitioning and load balancing for parallel adaptive
FEM”. In: Parallel Computing 26.12 (2000), pages 1555–1581.

[see pages 36, 66]

[DKc13] Mehmet Deveci, Kamer Kaya, and Ümit V. Çatalyürek. “Hypergraph
Sparsification and Its Application to Partitioning”. In: Proceedings of the
2013 42Nd International Conference on Parallel Processing. ICPP ’13,
pages 200–209. isbn: 978-0-7695-5117-3. Washington, DC, USA: IEEE
Computer Society, 2013. [see page 177]

[DM98] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard
API for shared-memory programming”. In: Computational Science &
Engineering, IEEE 5.1 (1998), pages 46–55. IEEE. [see pages 32, 33]

[DMP94] Ralf Diekmann, Burkhard Monien, and Robert Preis. “Using helpful sets to
improve graph bisections”. In: Workshop on Interconnection Networks and
Mapping and Scheduling Parallel Computations, Proceedings of a DIMACS
Workshop, Piscataway, New Jersey, USA, February 7-9, 1994, pages 57–74.
1994. [see page 46]

[DP10] Ran Duan and Seth Pettie. “Approximating Maximum Weight Matching in
Near-Linear Time”. In: 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,
USA, pages 673–682. 2010. [see page 24]

[DP14] Ran Duan and Seth Pettie. “Linear-Time Approximation for Maximum
Weight Matching”. In: J. ACM 61.1 (2014), 1:1–1:23. [see page 24]

[Dur+14] Erika Duriakova, Neil Hurley, Deepak Ajwani, and Alessandra Sala. “Anal-
ysis of the semi-synchronous approach to large-scale parallel community
finding”. In: Proceedings of the second ACM conference on Online social
networks, COSN 2014, Dublin, Ireland, October 1-2, 2014, pages 51–62.
2014. [see pages 32, 33]

208

Bibliography

[Dut93] Shantanu Dutt. “New faster Kernighan-Lin-type graph-partitioning algo-
rithms”. In: Proceedings of the 1993 IEEE/ACM International Conference
on Computer-Aided Design, 1993, Santa Clara, California, USA, November
7-11, 1993, pages 370–377. 1993. [see page 39]

[Eve+97] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. “Fast Ap-
proximate Graph Partitioning Algorithms”. In: Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, 5-7 January 1997,
New Orleans, Louisiana, USA. Pages 639–648. 1997. [see page 63]

[FF56] Lester R Ford and Delbert R Fulkerson. “Maximal flow through a network”.
In: Canadian journal of Mathematics 8.3 (1956), pages 399–404.

[see page 47]

[Fie73] Miroslav Fiedler. “Algebraic connectivity of graphs”. In: Czechoslovak
mathematical journal 23.2 (1973), pages 298–305. Institute of Mathematics,
Academy of Sciences of the Czech Republic. [see page 17]

[Fie75] Miroslav Fiedler. “A property of eigenvectors of nonnegative symmetric
matrices and its application to graph theory”. In: Czechoslovak Math-
ematical Journal 25.4 (1975), pages 619–633. Institute of Mathematics,
Academy of Sciences of the Czech Republic. [see page 17]

[Fjä98] Per-Olof Fjällström. Algorithms for graph partitioning: A survey. Volume 3.
Linköping University Electronic Press Linköping, 1998. [see page 17]

[FK02] Uriel Feige and Robert Krauthgamer. “A Polylogarithmic Approximation
of the Minimum Bisection”. In: SIAM J. Comput. 31.4 (2002), pages 1090–
1118. [see page 63]

[FL93] Charbel Farhat and Michel Lesoinne. “Automatic partitioning of unstruc-
tured meshes for the parallel solution of problems in computational me-
chanics”. In: International Journal for Numerical Methods in Engineering
36.5 (1993), pages 745–764. Wiley Online Library. [see page 17]

[FM82] Charles M. Fiduccia and Robert M. Mattheyses. “A linear-time heuristic
for improving network partitions”. In: Proceedings of the 19th Design
Automation Conference, DAC ’82, Las Vegas, Nevada, USA, June 14-16,
1982, pages 175–181. 1982. [see pages 40, 71]

[Fun+18] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren
Strash, and Moritz von Looz. “Communication-free Massively Distributed
Graph Generation”. In: 2018 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21 –
May 25, 2018. 2018. [see pages 14, 15]

[Gab90] Harold N. Gabow. “Data Structures for Weighted Matching and Nearest
Common Ancestors with Linking”. In: Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1990, San
Francisco, California. Pages 434–443. 1990. [see page 70]

209

Bibliography

[GBF11] Philippe Galinier, Zied Boujbel, and Michael Coutinho Fernandes. “An
efficient memetic algorithm for the graph partitioning problem”. In: Annals
OR 191.1 (2011), pages 1–22. [see page 17]

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. “Similarity Search in
High Dimensions via Hashing”. In: Proceedings of the 25th International
Conference on Very Large Data Bases. VLDB ’99, pages 518–529. isbn:
1-55860-615-7. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1999. [see page 177]

[GJS74] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. “Some Sim-
plified NP-Complete Problems”. In: Proceedings of the 6th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1974, Seattle,
Washington, USA, pages 47–63. 1974. [see pages 1, 63]

[GL81] Alan George and Joseph W. Liu. Computer Solution of Large Sparse
Positive Definite. Prentice Hall Professional Technical Reference, 1981.
isbn: 0131652745. [see page 35]

[GM16] Michael T. Goodrich and Michael Mitzenmacher, editors. Proceedings
of the Eighteenth Workshop on Algorithm Engineering and Experiments,
ALENEX 2016, Arlington, Virginia, USA, January 10, 2016. SIAM, 2016.
isbn: 978-1-61197-431-7. doi: 10.1137/1.9781611974317. url: https:
//doi.org/10.1137/1.9781611974317. [see page 184]

[GMR98] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. “The Queue-
Read Queue-Write Asynchronous PRAM Model”. In: Theor. Comput. Sci.
196.1-2 (1998), pages 3–29. [see pages 9, 10]

[GMS14] Roland Glantz, Henning Meyerhenke, and Christian Schulz. “Tree-Based
Coarsening and Partitioning of Complex Networks”. In: Experimental Algo-
rithms - 13th International Symposium, SEA 2014, Copenhagen, Denmark,
June 29 - July 1, 2014. Proceedings, pages 364–375. 2014. [see page 24]

[GS94] Todd Goehring and Yousef Saad. Heuristic algorithms for automatic graph
partitioning. Technical report. Citeseer, 1994. [see page 35]

[Gup97] Anshul Gupta. “Fast and effective algorithms for graph partitioning and
sparse-matrix ordering”. In: IBM Journal of Research and Development
41.1.2 (1997), pages 171–183. IBM. [see pages 18, 22, 56]

[Hal+12] Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and
Alex Pothen. “Approximate weighted matching on emerging manycore
and multithreaded architectures”. In: IJHPCA 26.4 (2012), pages 413–430.

[see pages 30, 31]

[Ham+18] Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz. “Dis-
tributed Graph Clustering Using Modularity and Map Equation”. In:
Euro-Par 2018: Parallel Processing - 24th International Conference on
Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018,
Proceedings, pages 688–702. 2018. [see page 174]

210

https://doi.org/10.1137/1.9781611974317
https://doi.org/10.1137/1.9781611974317
https://doi.org/10.1137/1.9781611974317

Bibliography

[HGI00] Taher Haveliwala, Aristides Gionis, and Piotr Indyk. “Scalable Techniques
for Clustering the Web”. In: In Proc. of the WebDB Workshop, pages 129–
134. 2000. [see pages 177, 178, 181]

[HH10] Sven Hanke and Stefan Hougardy. New approximation algorithms for the
weighted matching problem. Forschungsinst. für Diskrete Mathematik, 2010.

[see page 24]

[HL95a] Bruce Hendrickson and Robert W Leland. “A Multi-Level Algorithm For
Partitioning Graphs.” In: SC 95.28 (1995), pages 1–14.

[see pages 18, 42, 43, 56, 57]

[HL95b] Bruce Hendrickson and Robert W. Leland. “An Improved Spectral Graph
Partitioning Algorithm for Mapping Parallel Computations”. In: SIAM J.
Scientific Computing 16.2 (1995), pages 452–469. [see pages 17, 56]

[HM91] Juraj Hromkovic and Burkhard Monien. “The Bisection Problem for
Graphs of Degree 4 (Configuring Transputer Systems)”. In: Mathematical
Foundations of Computer Science 1991, 16th International Symposium,
MFCS’91, Kazimierz Dolny, Poland, September 9-13, 1991, Proceedings,
pages 211–220. 1991. [see page 46]

[Hoe04] Jaap-Henk Hoepman. “Simple Distributed Weighted Matchings”. In: CoRR
cs.DC/0410047 (2004). [see page 27]

[Hoe63] Wassily Hoeffding. “Probability inequalities for sums of bounded random
variables”. In: Journal of the American statistical association 58.301 (1963),
pages 13–30. Taylor & Francis Group. [see pages 98, 201]

[HP10] JH Her and F Pellegrini. “Efficient and scalable parallel graph partitioning”.
In: Parallel Computing (2010). [see pages 30, 55, 60, 67]

[HPD00] William W Hager, Soon Chul Park, and Timothy A Davis. “Block exchange
in graph partitioning”. In: Approximation and Complexity in Numerical
Optimization. Springer, 2000, pages 298–307. [see page 45]

[HPZ13] William W. Hager, Dzung T. Phan, and Hongchao Zhang. “An exact
algorithm for graph partitioning”. In: Math. Program. 137.1-2 (2013),
pages 531–556. [see page 35]

[HR73] Laurent Hyafil and Ronald L Rivest. Graph partitioning and constructing
optimal decision trees are polynomial complete problems. IRIA. Laboratoire
de Recherche en Informatique et Automatique, 1973. [see pages 1, 63]

[HSS10] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. “Engineering
a scalable high quality graph partitioner”. In: 24th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta,
Georgia, USA, 19-23 April 2010 - Conference Proceedings, pages 1–12.
2010. [see pages 14, 24, 30, 54, 55, 61, 67]

211

Bibliography

[HSS18] Tobias Heuer, Peter Sanders, and Sebastian Schlag. “Network Flow-Based
Refinement for Multilevel Hypergraph Partitioning”. In: 17th International
Symposium on Experimental Algorithms, SEA 2018, June 27-29, 2018,
L’Aquila, Italy, 1:1–1:19. 2018. [see page 47]

[HW02] Jan Hungershöfer and Jens-Michael Wierum. “On the Quality of Partitions
Based on Space-Filling Curves”. In: Computational Science - ICCS 2002,
International Conference, Amsterdam, The Netherlands, April 21-24, 2002.
Proceedings, Part III, pages 36–45. 2002. [see page 17]

[IM98] Piotr Indyk and Rajeev Motwani. “Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality”. In: Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing. STOC ’98,
pages 604–613. isbn: 0-89791-962-9. Dallas, Texas, USA: ACM, 1998.

[see page 177]
[IS86] Amos Israeli and Yossi Shiloach. “An Improved Parallel Algorithm for

Maximal Matching”. In: Inf. Process. Lett. 22.2 (1986), pages 57–60.
[see page 27]

[JL96] Patrick Ciarlet Jr. and Françoise Lamour. “On the validity of a front-
oriented approach to partitioning large sparse graphs with a connectivity
constraint”. In: Numerical Algorithms 12.1 (1996), pages 193–214.

[see page 35]
[JS98] Mark Jerrum and Gregory B. Sorkin. “The Metropolis Algorithm for Graph

Bisection”. In: Discrete Applied Mathematics 82.1-3 (1998), pages 155–175.
[see pages 17, 56]

[Kab+17] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita,
Yaroslav Akhremtsev, and Alessandro Presta. “Social Hash Partitioner: A
Scalable Distributed Hypergraph Partitioner”. In: PVLDB 10.11 (2017),
pages 1418–1429. [see page 223]

[Kah] url: http://kahypar.org/. [see page 183]
[KBG12] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. “GraphChi: Large-scale

Graph Computation on Just a PC”. In: Proc. of the 10th USENIX Symp.
on Operating Systems Design and Implementation (OSDI). Volume 8,
pages 31–46. 2012. [see page 139]

[Ker69] B. W. Kernighan. “Some graph partitioning problems related to program
segmentation”. PhD thesis. Princeton, 1969. [see page 71]

[Kim+11] Jin Kim, Inwook Hwang, Yong-Hyuk Kim, and Byung Ro Moon. “Genetic
approaches for graph partitioning: a survey”. In: 13th Annual Genetic
and Evolutionary Computation Conference, GECCO 2011, Proceedings,
Dublin, Ireland, July 12-16, 2011, pages 473–480. 2011. [see pages 17, 56]

[KK95a] George Karypis and Vipin Kumar. “Analysis of Multilevel Graph Partition-
ing”. In: Proceedings Supercomputing ’95, San Diego, CA, USA, December
4-8, 1995, page 29. 1995. [see page 19]

212

http://kahypar.org/

Bibliography

[KK95b] George Karypis and Vipin Kumar. “Multilevel Graph Partitioning
Schemes”. In: Proceedings of the 1995 International Conference on
Parallel Processing, Urbana-Champain, Illinois, USA, August 14-18,
1995. Volume III: Algorithms & Applications. Pages 113–122. 1995.

[see pages 18, 22, 43, 56, 57]

[KK96] George Karypis and Vipin Kumar. “Parallel Multilevel k-way Partitioning
Scheme for Irregular Graphs”. In: Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing, November 17-22, 1996, Pittsburgh, PA,
USA, page 35. 1996. [see pages 43–45, 60]

[KK97] George Karypis and Vipin Kumar. “A Coarse-Grain Parallel Formulation
of Multilevel k-way Graph Partitioning Algorithm”. In: Proceedings of the
Eighth SIAM Conference on Parallel Processing for Scientific Computing,
PPSC 1997, Hyatt Regency Minneapolis on Nicollel Mall Hotel, Minneapo-
lis, Minnesota, USA, March 14-17, 1997. 1997. [see pages 30, 49, 54, 60]

[KK98a] G. Karypis and V. Kumar. “A fast and high quality multilevel scheme for
partitioning irregular graphs”. In: SIAM Journal on scientific Computing
(1998), pages 359–392. [see pages 18, 35, 56, 57]

[KK98b] George Karypis and Vipin Kumar. “A Parallel Algorithm for Multilevel
Graph Partitioning and Sparse Matrix Ordering”. In: J. Parallel Distrib.
Comput. 48.1 (1998), pages 71–95. [see page 60]

[KK98c] George Karypis and Vipin Kumar. “Multilevel k-way Partitioning Scheme
for Irregular Graphs”. In: J. Parallel Distrib. Comput. 48.1 (1998),
pages 96–129. [see pages 18, 56, 57]

[KK99] George Karypis and Vipin Kumar. “Parallel Multilevel series k-Way Par-
titioning Scheme for Irregular Graphs”. In: SIAM Review 41.2 (1999),
pages 278–300. [see pages 29, 49, 60, 66, 90]

[KL70] Brian W Kernighan and Shen Lin. “An efficient heuristic procedure for
partitioning graphs”. In: The Bell system technical journal 49.2 (1970),
pages 291–307. Nokia Bell Labs. [see pages 37–39]

[Knu98] Donald Ervin Knuth. The art of computer programming, Volume II:
Seminumerical Algorithms, 3rd Edition. Addison-Wesley, 1998. isbn:
0201896842. url: http : / / www . worldcat . org / oclc / 312898417.

[see page 178]

[KR13] S. Kirmani and P. Raghavan. “Scalable Parallel Graph Partitioning”. In:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’13), page 51. isbn: 978-1-4503-2378-9. ACM,
2013. [see pages 63, 68]

213

http://www.worldcat.org/oclc/312898417

Bibliography

[Kra+18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
“The Case for Learned Index Structures”. In: Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 489–504. 2018.

[see page 136]

[KRC00] Stefan E. Karisch, Franz Rendl, and Jens Clausen. “Solving Graph Bisec-
tion Problems with Semidefinite Programming”. In: INFORMS Journal
on Computing 12.3 (2000), pages 177–191. [see page 35]

[Kri+10] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá.
“Hyperbolic geometry of complex networks”. In: Physical Review E (2010),
page 036106. [see page 14]

[KSJ15] Andrei B. Khlopotine, Arun V. Sathanur, and Vikram Jandhyala. “Op-
timized Parallel Label Propagation Based Community Detection on the
Intel(R) Xeon Phi(TM) Architecture”. In: 27th International Symposium
on Computer Architecture and High Performance Computing, SBAC-
PAD 2015, Florianópolis, Brazil, October 17-21, 2015, pages 9–16. 2015.

[see page 33]

[KUW85] Richard M. Karp, Eli Upfal, and Avi Wigderson. “Constructing a Perfect
Matching is in Random NC”. In: Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode
Island, USA, pages 22–32. 1985. [see page 27]

[LaS+15] Dominique LaSalle, Md. Mostofa Ali Patwary, Nadathur Satish, Narayanan
Sundaram, Pradeep Dubey, and George Karypis. “Improving graph par-
titioning for modern graphs and architectures”. In: Proceedings of the
5th Workshop on Irregular Applications - Architectures and Algorithms,
IA3 2015, Austin, Texas, USA, November 15, 2015, 14:1–14:4. 2015.

[see pages 29, 52, 61]

[Lei14] F Thomson Leighton. Introduction to parallel algorithms and architectures:
Arrays· trees· hypercubes. Elsevier, 2014. [see page 64]

[Len90] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John
Wiley & Sons, Inc., 1990. isbn: 0-471-92838-0. [see page 176]

[Les] J. Leskovec. Stanford Network Analysis Package (SNAP). [see pages 13, 14]

[Lib] url: http://man7.org/linux/man-pages/man3/numa.3.html.
[see page 88]

[LK13] D. LaSalle and G. Karypis. “Multi-threaded graph partitioning”. In: Proc.
of the 27th IPDPS, pages 225–236. 2013. [see pages 28–30, 49, 61, 67, 90]

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. June 2014.

[see page 14]

214

http://man7.org/linux/man-pages/man3/numa.3.html
http://snap.stanford.edu/data

Bibliography

[LK16] D. LaSalle and G. Karypis. “A parallel hill-climbing refinement algorithm
for graph partitioning”. In: Proc. of the 45th ICPP, pages 236–241. 2016.

[see pages 51, 61, 67]

[LMP15] M. von Looz, H. Meyerhenke, and R. Prutkin. “Generating Random
Hyperbolic Graphs in Subquadratic Time”. In: Proc. of the 26th ISAAC,
pages 467–478. 2015. [see pages 13, 14]

[Lub85] Michael Luby. “A Simple Parallel Algorithm for the Maximal Independent
Set Problem”. In: Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 1–10. 1985. [see page 27]

[MB07] Fredrik Manne and Rob H. Bisseling. “A Parallel Approximation Algorithm
for the Weighted MaximumMatching Problem”. In: Parallel Processing and
Applied Mathematics, 7th International Conference, PPAM 2007, Gdansk,
Poland, September 9-12, 2007, Revised Selected Papers, pages 708–717.
2007. [see pages 27, 30]

[MD97] Burkhard Monien and Ralf Diekmann. “A Local Graph Partitioning Heuris-
tic Meeting Bisection Bounds”. In: Proceedings of the Eighth SIAM Con-
ference on Parallel Processing for Scientific Computing, PPSC 1997, Hyatt
Regency Minneapolis on Nicollel Mall Hotel, Minneapolis, Minnesota, USA,
March 14-17, 1997. 1997. [see page 46]

[Mey12] Henning Meyerhenke. “Shape optimizing load balancing for MPI-parallel
adaptive numerical simulations”. In: Graph Partitioning and Graph Cluster-
ing, 10th DIMACS Implementation Challenge Workshop, Georgia Institute
of Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings.
Edited by David A. Bader, Henning Meyerhenke, Peter Sanders, and
Dorothea Wagner. Volume 588. Contemporary Mathematics, pages 67–82.
isbn: 978-0-8218-9038-7. American Mathematical Society, 2012.

[see pages 55, 62, 67, 90]

[MH14] Fredrik Manne and Mahantesh Halappanavar. “New Effective Multi-
threaded Matching Algorithms”. In: 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23,
2014, pages 519–528. 2014. [see pages 31, 68]

[MMS09a] Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. “A new
diffusion-based multilevel algorithm for computing graph partitions”. In:
J. Parallel Distrib. Comput. 69.9 (2009), pages 750–761.

[see pages 48, 55, 58, 61, 67, 90, 109]

[MMS09b] Henning Meyerhenke, Burkhard Monien, and Stefan Schamberger. “Graph
partitioning and disturbed diffusion”. In: Parallel Computing 35.10-11
(2009), pages 544–569. [see pages 47, 48]

[Moo98] Gordon E Moore. “Cramming more components onto integrated circuits”.
In: Proceedings of the IEEE 86.1 (1998), pages 82–85. IEEE. [see page 3]

215

Bibliography

[MPD00] Burkhard Monien, Robert Preis, and Ralf Diekmann. “Quality matching
and local improvement for multilevel graph-partitioning”. In: Parallel
Computing 26.12 (2000), pages 1609–1634. [see pages 18, 46, 56, 57]

[MS04] Burkhard Monien and Stefan Schamberger. “Graph Partitioning with the
Party Library: Helpful-Sets in Practice”. In: 16th Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD 2004), 27-29
October 2004, Foz do Iguacu, Brazil, pages 198–205. 2004. [see pages 46, 47]

[MS07] Jens Maue and Peter Sanders. “Engineering Algorithms for Approximate
Weighted Matching”. In: Experimental Algorithms, 6th International Work-
shop, WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings, pages 242–255.
2007. [see page 23]

[MS08] K. Mehlhorn and P. Sanders. Algorithms and Data Structures — The
Basic Toolbox. Springer, 2008. [see pages 41, 89]

[MS12] Henning Meyerhenke and Thomas Sauerwald. “Beyond Good Partition
Shapes: An Analysis of Diffusive Graph Partitioning”. In: Algorithmica
64.3 (2012), pages 329–361. [see pages 47, 48]

[MSD19] Tobias Maier, Peter Sanders, and Roman Dementiev. “Concurrent Hash Ta-
bles: Fast and General (?)!” In: ACM Transactions on Parallel Computing
(TOPC) 5.4 (2019), page 16. ACM. [see pages 82, 85]

[MSS14] Henning Meyerhenke, Peter Sanders, and Christian Schulz. “Partition-
ing Complex Networks via Size-Constrained Clustering”. In: Experimen-
tal Algorithms - 13th International Symposium, SEA 2014, Copenhagen,
Denmark, June 29 - July 1, 2014. Proceedings, pages 351–363. 2014.

[see pages 25, 45, 59, 66, 68, 70, 71, 90, 140, 141, 159]

[MSS17] Henning Meyerhenke, Peter Sanders, and Christian Schulz. “Parallel Graph
Partitioning for Complex Networks”. In: IEEE Trans. Parallel Distrib.
Syst. 28.9 (2017), pages 2625–2638. [see pages 33, 53, 61, 67, 68, 87, 90]

[Mur] MurmurHash. https://en.wikipedia.org/wiki/MurmurHash.
[see page 178]

[MW47] Henry B Mann and Donald R Whitney. “On a test of whether one of two
random variables is stochastically larger than the other”. In: The annals
of mathematical statistics (1947), pages 50–60. JSTOR. [see page 15]

[Myg] url: https://github.com/yarchi/KaHIP/tree/add_parallel_local_
search. [see page 5]

[New06] M. E. J. Newman. “Modularity and community structure in networks”.
In: 103.23 (2006), pages 8577–8582. National Academy of Sciences.

[see page 31]

[Nor] Wikipedia article: Normal distribution. url: https://en.wikipedia.
org/wiki/Normal_distribution. [see page 73]

216

https://en.wikipedia.org/wiki/MurmurHash
https://github.com/yarchi/KaHIP/tree/add_parallel_local_search
https://github.com/yarchi/KaHIP/tree/add_parallel_local_search
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

Bibliography

[NU13] Joel Nishimura and Johan Ugander. “Restreaming graph partitioning:
simple versatile algorithms for advanced balancing”. In: The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 1106–
1114. 2013. [see page 17]

[OS10] Vitaly Osipov and Peter Sanders. “n-Level Graph Partitioning”. In: Al-
gorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK,
September 6-8, 2010. Proceedings, Part I, pages 278–289. 2010.

[see pages 24, 44, 58, 72, 86]

[PB94] John R Pilkington and Scott B Baden. “Partitioning with spacefilling
curves”. In: (1994). Citeseer. [see page 17]

[Pel07] François Pellegrini. “A Parallelisable Multi-level Banded Diffusion Scheme
for Computing Balanced Partitions with Smooth Boundaries”. In: Euro-
Par 2007, Parallel Processing, 13th International Euro-Par Conference,
Rennes, France, August 28-31, 2007, Proceedings, pages 195–204. 2007.

[see pages 48, 55, 58]

[Pel12] François Pellegrini. “Scotch and PT-scotch graph partitioning software: an
overview”. In: Combinatorial Scientific Computing (2012), pages 373–406.
Chapman and Hall/CRC. [see pages 60, 67, 90]

[Pet12] Seth Pettie. “A simple reduction from maximum weight matching to
maximum cardinality matching”. In: Inf. Process. Lett. 112.23 (2012),
pages 893–898. [see page 21]

[PM07] D. A. Papa and I. L. Markov. “Hypergraph Partitioning and Clustering”.
In: Handbook of Approximation Algorithms and Metaheuristics. 2007. doi:
10.1201/9781420010749.ch61. url: http://dx.doi.org/10.1201/
9781420010749.ch61. [see page 184]

[Pon+94] Ravi Ponnusamy, Nashat Mansour, Alok N. Choudhary, and Geoffrey
Charles Fox. “Graph Contraction for Mapping Data on Parallel Computers:
A Quality-Cost Tradeoff”. In: Scientific Programming 3.1 (1994), pages 73–
82. [see pages 18, 56]

[Pre01] Robert Preis. “Analyses and design of efficient graph partitioning methods”.
PhD thesis. Universitat, Paderborn, 2001. [see pages 18, 56]

[Pre99] Robert Preis. “Linear Time 1/2-Approximation Algorithm for Maximum
Weighted Matching in General Graphs”. In: STACS 99, 16th Annual
Symposium on Theoretical Aspects of Computer Science, Trier, Germany,
March 4-6, 1999, Proceedings, pages 259–269. 1999.

[see pages 22, 27, 58, 68, 70]

[PS04] Seth Pettie and Peter Sanders. “A simpler linear time 2/3-epsilon approxi-
mation for maximum weight matching”. In: Inf. Process. Lett. 91.6 (2004),
pages 271–276. [see page 23]

217

https://doi.org/10.1201/9781420010749.ch61
http://dx.doi.org/10.1201/9781420010749.ch61
http://dx.doi.org/10.1201/9781420010749.ch61

Bibliography

[PSL90] Alex Pothen, Horst D Simon, and Kang-Pu Liou. “Partitioning sparse
matrices with eigenvectors of graphs”. In: SIAM journal on matrix analysis
and applications 11.3 (1990), pages 430–452. SIAM. [see page 57]

[PT11] M. Patrascu and M. Thorup. “The Power of Simple Tabulation Hashing”.
In: Proceedings of the 43rd ACM STOC, pages 1–10. isbn: 978-1-4503-
0691-1. 2011. [see page 88]

[RAK07] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. “Near linear
time algorithm to detect community structures in large-scale networks”.
In: Physical review E 76.3 (2007), page 036106. APS.

[see pages 4, 5, 25, 67, 140]

[RRW10] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. “Solving Max-Cut
to optimality by intersecting semidefinite and polyhedral relaxations”. In:
Math. Program. 121.2 (2010), pages 307–335. [see page 35]

[San93] Laura A. Sanchis. “Multiple-Way Network Partitioning with Different Cost
Functions”. In: IEEE Trans. Computers 42.12 (1993), pages 1500–1504.

[see page 42]

[San99] Peter Sanders. “Fast Priority Queues for Cached Memory”. In: ACM
Journal of Experimental Algorithmics 5 (1999), pages 312–327.

[see pages 140, 144, 145]

[SB11] Richard S Sutton and Andrew G Barto. “Reinforcement learning: An
introduction”. In: (2011). Cambridge, MA: MIT Press. [see page 136]

[Sci] SciPy: Probability Plot. 2019. url: https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.probplot.html.

[see pages 73, 74]

[SDI06] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. “Locality-
Sensitive Hashing Using Stable Distributions”. In: Nearest-Neighbor
Methods in Learning and Vision: Theory and Practice. MITP, 2006.
isbn: 9780262256957. url: https://ieeexplore.ieee.org/document/
6282722. [see page 179]

[Sha+16] A. Shalita, B. Karrer, I. Kabiljo, A. Sharma, A. Presta, A. Adcock, H.
Kllapi, and M. Stumm. “Social Hash: An Assignment Framework for
Optimizing Distributed Systems Operations on Social Networks.” In: NSDI,
pages 455–468. 2016. [see page 65]

[Shu+13] J. Shun, G.E. Blelloch, J. T. Fineman, and P. B. Gibbons. “Reducing con-
tention through priority updates”. In: Proc. of the 25th SPAA, pages 152–
163. 2013. [see page 86]

[Shu+16] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael
W. Mahoney. “Parallel Local Graph Clustering”. In: PVLDB 9.12 (2016),
pages 1041–1052. [see page 136]

218

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html
https://ieeexplore.ieee.org/document/6282722
https://ieeexplore.ieee.org/document/6282722

Bibliography

[Sim91] Horst D Simon. “Partitioning of unstructured problems for parallel pro-
cessing”. In: Computing systems in engineering 2.2 (1991), pages 135–148.

[see pages 17, 35, 56]

[SK12] Isabelle Stanton and Gabriel Kliot. “Streaming graph partitioning for large
distributed graphs”. In: The 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’12, Beijing, China,
August 12-16, 2012, pages 1222–1230. 2012. [see pages 17, 140]

[SKK03] Kirk Schloegel, George Karypis, and Vipin Kumar. “Sourcebook of Paral-
lel Computing”. In: edited by Jack Dongarra, Ian Foster, Geoffrey Fox,
William Gropp, Ken Kennedy, Linda Torczon, and Andy White. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003. Chapter Graph
Partitioning for High-performance Scientific Simulations, pages 491–541.
isbn: 1-55860-871-0. url: http://dl.acm.org/citation.cfm?id=
941480.941499. [see page 17]

[Slo+17] George M. Slota, Sivasankaran Rajamanickam, Karen D. Devine, and
Kamesh Madduri. “Partitioning Trillion-Edge Graphs in Minutes”. In:
2017 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2017, Orlando, FL, USA, May 29 - June 2, 2017, pages 646–655.
2017. [see page 62]

[SM16] Christian L. Staudt and Henning Meyerhenke. “Engineering Parallel Algo-
rithms for Community Detection in Massive Networks”. In: IEEE Trans.
Parallel Distrib. Syst. 27.1 (2016), pages 171–184.

[see pages 32, 33, 79, 136, 142]

[Smi82] Alan Jay Smith. “Cache memories”. In: ACM Computing Surveys (CSUR)
14.3 (1982), pages 473–530. ACM. [see page 11]

[SMR14] George M. Slota, Kamesh Madduri, and Sivasankaran Rajamanickam.
“PuLP: Scalable multi-objective multi-constraint partitioning for small-
world networks”. In: 2014 IEEE International Conference on Big Data, Big
Data 2014, Washington, DC, USA, October 27-30, 2014, pages 481–490.
2014. [see pages 62, 68, 90]

[SN11] Jyothish Soman and Ankur Narang. “Fast Community Detection Algorithm
with GPUs and Multicore Architectures”. In: 25th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchor-
age, Alaska, USA, 16-20 May, 2011 - Conference Proceedings, pages 568–
579. 2011. [see page 31]

[Sou35] R. V. Southwell. “Stress-Calculation in Frameworks by the Method of
“Systematic Relaxation of Constraints””. In: Proc. of the Royal Society of
London (1935), pages 56–95. The Royal Society. [see page 66]

219

http://dl.acm.org/citation.cfm?id=941480.941499
http://dl.acm.org/citation.cfm?id=941480.941499

Bibliography

[SS11] Peter Sanders and Christian Schulz. “Engineering Multilevel Graph Parti-
tioning Algorithms”. In: Algorithms - ESA 2011 - 19th Annual European
Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings,
pages 469–480. 2011. [see pages 4, 43, 45, 47, 51, 59, 66–68, 71, 72, 90, 98]

[SS12a] Peter Sanders and Christian Schulz. “Distributed Evolutionary Graph
Partitioning”. In: Proceedings of the 14th Meeting on Algorithm Engineer-
ing & Experiments, ALENEX 2012, The Westin Miyako, Kyoto, Japan,
January 16, 2012, pages 16–29. 2012. [see page 62]

[SS12b] Peter Sanders and Christian Schulz. “High quality graph partitioning.” In:
Graph Partitioning and Graph Clustering 588.1 (2012). [see page 47]

[SSP07] J. Singler, P. Sanders, and F. Putze. “MCSTL: The multi-core standard
template library”. In: Proc. of the 13th Euro-Par (2007), pages 682–694.

[see pages 79, 82]

[SSS12] Ilya Safro, Peter Sanders, and Christian Schulz. “Advanced Coarsening
Schemes for Graph Partitioning”. In: Experimental Algorithms - 11th
International Symposium, SEA 2012, Bordeaux, France, June 7-9, 2012.
Proceedings, pages 369–380. 2012. [see pages 24, 58, 66]

[ST97] Horst D. Simon and Shang-Hua Teng. “How Good is Recursive Bisection?”
In: SIAM J. Scientific Computing 18.5 (1997), pages 1436–1445.

[see page 36]

[Stü01] Klaus Stüben. “An introduction to algebraic multigrid”. In: Multigrid
(2001), pages 413–532. [see pages 48, 58]

[Sui+10] Xin Sui, Donald Nguyen, Martin Burtscher, and Keshav Pingali. “Paral-
lel Graph Partitioning on Multicore Architectures”. In: Languages and
Compilers for Parallel Computing - 23rd International Workshop, LCPC
2010, Houston, TX, USA, October 7-9, 2010. Revised Selected Papers,
pages 246–260. 2010. [see pages 62, 67]

[SW91] John E. Savage and Markus G. Wloka. “Parallelism in Graph-Partitioning”.
In: J. Parallel Distrib. Comput. 13.3 (1991), pages 257–272.

[see pages 45, 64, 71]

[Tbb] Intel Threading Building Blocks. https://www.threadingbuildingblocks.org.
[see pages 79, 80, 88]

[TOS00] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid.
Elsevier, 2000. [see pages 48, 58]

[Tso+14] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic,
and Milan Vojnovic. “FENNEL: streaming graph partitioning for massive
scale graphs”. In: Seventh ACM International Conference on Web Search
and Data Mining, WSDM 2014, New York, NY, USA, February 24-28,
2014, pages 333–342. 2014. [see page 17]

220

Bibliography

[UB13] J. Ugander and L. Backstrom. “Balanced Label Propagation for Parti-
tioning Massive Graphs”. In: Proc. of 6th WSDM, pages 507–516. 2013.

[see pages 63, 67, 90]

[UC00] Ryuhei Uehara and Zhi-Zhong Chen. “Parallel approximation algorithms
for maximum weighted matching in general graphs”. In: Inf. Process. Lett.
76.1-2 (2000), pages 13–17. [see page 27]

[VH05] Doratha E. Drake Vinkemeier and Stefan Hougardy. “A linear-time ap-
proximation algorithm for weighted matchings in graphs”. In: ACM Trans.
Algorithms 1.1 (2005), pages 107–122. [see pages 22, 23]

[Vit01] Jeffrey Scott Vitter. “External memory algorithms and data structures”.
In: ACM Comput. Surv. 33.2 (2001), pages 209–271. [see page 10]

[VN93] John Von Neumann. “First Draft of a Report on the EDVAC”. In: IEEE
Annals of the History of Computing 15.4 (1993), pages 27–75. IEEE.

[see page 9]

[VS94] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. “Algorithms for Par-
allel Memory I: Two-Level Memories”. In: Algorithmica 12.2/3 (1994),
pages 110–147. [see page 10]

[WA] University of Milano Laboratory of Web Algorithms. Datasets.
[see pages 3, 14, 15]

[Wal] Chris Walshaw. The graph partitioning archive. url: http : / /
chriswalshaw.co.uk/partition/. [see pages 58, 59, 61]

[Wal03] Chris Walshaw. “An exploration of multilevel combinatorial optimisation”.
In: Multilevel Optimization in VLSICAD. Springer, 2003, pages 71–123.

[see page 20]

[Wal04] Chris Walshaw. “Multilevel Refinement for Combinatorial Optimisation
Problems”. In: Annals OR 131.1-4 (2004), pages 325–372.

[see pages 18, 21, 56]

[WC00a] Chris Walshaw and Mark Cross. “Mesh Partitioning: A Multilevel Balanc-
ing and Refinement Algorithm”. In: SIAM J. Scientific Computing 22.1
(2000), pages 63–80. [see pages 18, 46, 56, 57, 91, 159]

[WC00b] Chris Walshaw and Mark Cross. “Parallel optimisation algorithms for mul-
tilevel mesh partitioning”. In: Parallel Computing 26.12 (2000), pages 1635–
1660. [see pages 53, 60]

[WC+02] C Walshaw, M Cross, et al. “Parallel mesh partitioning on distributed
memory systems”. In: Computational mechanics using high performance
computing (2002), pages 59–78. [see page 60]

[WC08] Chris Walshaw and Mark Cross. “JOSTLE: parallel multilevel graph-
partitioning software – an overview”. In: 2008. [see page 60]

221

http://chriswalshaw.co.uk/partition/
http://chriswalshaw.co.uk/partition/

Bibliography

[WCE95] Chris Walshaw, Mark Cross, and Martin G. Everett. “A Localized Al-
gorithm for Optimizing Unstructured Mesh Partitions”. In: IJHPCA 9.4
(1995), pages 280–295. [see page 46]

[WCE97] Chris Walshaw, Mark Cross, and Martin G. Everett. “Parallel Dynamic
Graph Partitioning for Adaptive Unstructured Meshes”. In: J. Parallel
Distrib. Comput. 47.2 (1997), pages 102–108. [see pages 29, 60]

[Wik19] Wikipedia contributors. Q–Q plot — Wikipedia, The Free Encyclopedia.
2019. url: https://en.wikipedia.org/w/index.php?title=Q%E2%80%
93Q_plot&oldid=896576623. [see page 73]

[Wil45] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Bio-
metrics Bulletin 1.6 (1945), pages 80–83. issn: 00994987. International
Biometric Society. [see page 15]

[Wil91] Roy D. Williams. “Performance of dynamic load balancing algorithms for
unstructured mesh calculations”. In: Concurrency - Practice and Experi-
ence 3.5 (1991), pages 457–481. [see pages 17, 56]

[WW93] Dorothea Wagner and Frank Wagner. “Between Min Cut and Graph Bi-
section”. In: Mathematical Foundations of Computer Science 1993, 18th
International Symposium, MFCS’93, Gdansk, Poland, August 30 - Septem-
ber 3, 1993, Proceedings, pages 744–750. 1993. [see page 64]

[Wyl79] James C Wyllie. The complexity of parallel computations. Technical report.
Cornell University, 1979. [see page 9]

[XN98] Cheng-Zhong Xu and Yibing Nie. “Relaxed Implementation of Spectral
Methods for Graph Partitioning”. In: Solving Irregularly Structured Prob-
lems in Parallel, 5th International Symposium, IRREGULAR ’98, Berkeley,
California, USA, August 9-11, 1998, Proceedings, pages 366–375. 1998.

[see page 17]

[Zeh02] Norbert Zeh. “I/O-efficient Graph Algorithms”. In: EEF Summer School
on Massive Data Sets (2002). [see pages 5, 140, 144, 146]

[Zum12] Gerhard Zumbusch. Parallel Multilevel Methods: Adaptive Mesh Refine-
ment and Loadbalancing. Springer Science & Business Media, 2012.

[see page 17]

222

https://en.wikipedia.org/w/index.php?title=Q%E2%80%93Q_plot&oldid=896576623
https://en.wikipedia.org/w/index.php?title=Q%E2%80%93Q_plot&oldid=896576623

List of Publications

In Conference Proceedings

Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. “High-Quality Shared-
Memory Graph Partitioning”. In: Euro-Par 2018: Parallel Processing - 24th Interna-
tional Conference on Parallel and Distributed Computing, Turin, Italy, August 27-31,
2018, Proceedings, pages 659–671. 2018

Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. “Engi-
neering a direct k-way Hypergraph Partitioning Algorithm”. In: Proceedings of the
Ninteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2017,
Barcelona, Spain, Hotel Porta Fira, January 17-18, 2017. Pages 28–42. 2017

Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita, Yaroslav
Akhremtsev, and Alessandro Presta. “Social Hash Partitioner: A Scalable Distributed
Hypergraph Partitioner”. In: PVLDB 10.11 (2017), pages 1418–1429

Yaroslav Akhremtsev and Peter Sanders. “Fast Parallel Operations on Search Trees”.
In: 23rd IEEE International Conference on High Performance Computing, HiPC 2016,
Hyderabad, India, December 19-22, 2016, pages 291–300. 2016

Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. “(Semi-)External Algo-
rithms for Graph Partitioning and Clustering”. In: Proceedings of the Seventeenth
Workshop on Algorithm Engineering and Experiments, ALENEX 2015, San Diego,
CA, USA, January 5, 2015, pages 33–43. 2015

Theses

Yaroslav Akhremtsev. “Design and Development of Functional Programming Lan-
guage”. Bachelor Thesis. Institute of Automatics and Computer Engineering, Moscow
Power Engineering Institute, Russia. May 2011

Yaroslav Akhremtsev. “Development and Analyzes of Shortest Paths Algorithms for
Road Networks”. Master Thesis. Institute of Automatics and Computer Engineering,
Moscow Power Engineering Institute, Russia. May 2013

223

	Table of Contents
	1 Introduction
	1.1 Main Contributions
	1.2 Outline

	2 Preliminaries
	2.1 Graph Related Definitions
	2.1.1 Graph Partitioning and Clustering

	2.2 Memory models
	2.2.1 Random Access Machine and Parallel Random Access Machine
	2.2.2 External Memory Model

	2.3 Plots and Experimental Setup
	2.3.1 Performance plots
	2.3.2 Graph Families
	2.3.3 Statistical Tests
	2.3.4 Machines

	3 Related Work
	3.1 Multi-level Graph Partitioning
	3.2 Coarsening
	3.2.1 Matching Based Coarsening
	3.2.2 Clustering Based Coarsening

	3.3 Parallel Coarsening
	3.3.1 Parallel Matching Based Coarsening
	3.3.2 Parallel Cluster Based Coarsening

	3.4 Initial Partitioning
	3.4.1 Exact Algorithms
	3.4.2 Graph Growing Partitioning
	3.4.3 Recursive Bisection

	3.5 Refinement Techniques
	3.5.1 The Kernighan-Lin Local Search
	3.5.2 The Fiduccia-Mattheyses Local Search
	3.5.3 Other Local Search Refinement Techniques
	3.5.4 Random Walks and Diffusion Processes

	3.6 Parallel Refinement Techniques
	3.6.1 Parallel Greedy Refinement
	3.6.2 Parallel Hill-Climbing Refinement
	3.6.3 Parallel Label Propagation For Refinement
	3.6.4 Other Parallel Distributed Memory Refinement Techniques

	3.7 Multi-level Graph Partitioning Frameworks
	3.8 Parallel Multi-level Graph Partitioning Frameworks
	3.9 Hardness Results and Approximations

	4 Parallel Shared-Memory Multi-level Graph Partitioning
	4.1 Related Work
	4.2 Multi-level Graph Partitioning
	4.2.1 Coarsening
	4.2.2 Initial Partitioning
	4.2.3 Uncoarsening

	4.3 Parallel Multi-level Graph Partitioning
	4.3.1 Coarsening
	4.3.2 Initial Partitioning
	4.3.3 Uncoarsening/Local Search
	4.3.4 Differences to Mt-Metis

	4.4 Further Optimizations
	4.4.1 Cache-Aware Hash Table

	4.5 Experimental Evaluation
	4.5.1 Methodology
	4.5.2 Quality
	4.5.3 Speed-up and Running Time
	4.5.4 Memory consumption
	4.5.5 Influence of MGP Phases of Mt-KaHIP

	4.6 Conclusion and Future Work

	5 (Semi-) External Multi-level Graph Partitioning
	5.1 Related Work
	5.2 (Semi-)External MGP
	5.2.1 Label Propagation Clustering
	5.2.2 Coloring-based Graph Clustering
	5.2.3 Coarsening/Contraction
	5.2.4 Uncoarsening/Projection of Partition

	5.3 Experimental Evaluation
	5.3.1 Graph Clustering Algorithms
	5.3.2 Multi-level Graph Partitioning

	5.4 Conclusion and Future Work

	6 Fast Sparsification of Hypergraphs
	6.1 Preliminaries
	6.2 Min-Hash Based Pin Sparsifier
	6.2.1 Adaptive Clustering

	6.3 Experiments
	6.4 Conclusion and Future Work

	7 Conclusion
	Appendix
	List of Algorithms
	List of Figures
	List of Tables
	List of Theorems
	Bibliography
	List of Publications

