

Status of the THz-Streaking Experiment with Split Ring **Resonators at FLUTE**

V. Schlott¹, M. Dehler¹, R. Ischebeck¹, M. Moser¹, T. Feurer², M. Hayati², Z. Ollmann², R. Tarkeshian², E. Bründermann³, S. Funkner³, A.-S. Müller³, M.J. Nasse³, G. Niehues³, R. Ruprecht³, T. Schmelzer³, M. Schuh³, M. Schwarz³, M. Yan³

¹ Paul Scherrer Institut (PSI), Diagnostics Section, CH-5232 Villigen PSI, Switzerland

² Institute of Applied Physics (IAP), University of Berne, Sidlerstrasse 5, CH-3012 Berne, Switzerland

³ Karlsruhe Institute of Technology, Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstrasse 12, D-76131 Karlsruhe, Germany

The SRR Experiment at the FLUTE Test Facility

Principle of THz-Streaking with Split Ring Resonators

Temporal Resolution (similar to RF deflectors)

 σ_{y0} cs $\sqrt{\sin(\Delta \Psi)}$ $(s_1) eV 2\pi f$

Q = 50 fC $\epsilon v = 3 nm$ > phase advance SRR / screen: 90°

1

Split Ring Resonator Design Optimization

"manufacturing SRR design" 20 μm x 20 μm x 80 μm gap dimensions milled and drilled out of a solid plate increased interaction region for larger kick strength

> bunch charge:

> emittance:

images of SRR for FLUTE experiment manufactured from glass with gold coating avoids charging up and heating by halo electrons or accidental hit by main beam

ASTRA Simulations

for conservatively assumed kick strength of 5keV/c (considering e.g. losses in the THz beam transport) clearly visible streaking image on FLUTE low energy spectrometer screen (FLUTE bunch length is 2 ps)

THz Pulse Generation and Characterization

THz Pulse Energy and Conversion Efficiency (pump: FLUTE gun laser) 0. 020 8 ſ 0 005 E....(mJ) Pyro-Electric Ca

nd of symbols: M: dielectric mirror; G: reflection grating; HWP: 1/2 retardation plate; CL1: plane convex cylindrical lens (f = 421 mm); CL2: plane convex cylindrical lens (f = 250 mm); LN MgO doped stoichiometric LINbO3 prism

- > Optical rectification in LiNbO, crystal with FLUTE gun laser pulses (6mJ @ 800 nm, 35 fs (FWHM) @ 1 kHz)
- > Conversion efficiency of 0.024% results in maximum THz pulse energy of 80 μJ for 3.35 mJ pump laser energy
- > 4f imaging system provides THz spot dimensions of 0.92 mm (horizontal) and 1.15 mm (vertical)
- > Maximum THz field strength of 14 MV/m can be reached at the location of the SRR in the experimental chamber