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Abstract
The object-based method SAL (Structure, Amplitude and Location) was adapted for investigating the errors
of forecasts of extreme 10-m wind gusts associated with winter storms in Germany. It has been applied
to a statistically downscaled version of the 51 member ECMWF (European Centre for Medium Range
Weather Forecasts) operational ensemble forecast. The horizontal resolution of both downscaled data and
of the German weather service’s operational analysis data used for verification is 7 km. Forecast errors are
subdivided in terms of storm intensity, location and extent. After identifying a set of storm events, objects of
moderate and intense 10-m wind gusts were identified with a local percentile-based threshold (90th percentile
for moderate and 98th percentile for intense gust objects). Depending on the intensity of the storm, the gust
objects differ in terms of size, shape and intensity. The characteristics of the ensemble forecasts of 10-m wind
gusts can basically be assessed in two different ways. Individual forecast members can be evaluated with
respect to the location, intensity and extent of the gust field, and then address the ensemble characteristics
by the score distributions. Alternatively, the gust fields’ location, intensity and extent can be evaluated by
directly using the ensemble mean forecast instead of the individual members. The results of the identified
set of storms clearly indicate a high case-to-case variability in the predictability of 10-m wind gusts objects,
particularly when focusing on the structure of intense wind gust objects. It is found, that the gust fields’
location and overall intensity can be better estimated from the ensemble mean forecast, compared to the
individual forecast members. From a forecaster’s perspective this means, that a storms’ location and intensity
can be well estimated by considering the ensemble mean wind forecasts. Considering the structure of the
gust objects, results are different. While for longer lead times, there also seems to be a benefit from applying
ensemble averaging, at short lead times the ensemble mean forecast performs equally or worse than most of
the individual forecast members. The amplitude error is often the smallest component of the three error types.
The findings are particularly relevant when deriving warning information, by giving guidance to forecasters
when interpreting ensemble forecasts for severe storms.
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1 Introduction

Forecast verification serves the developers of the opera-
tional weather forecasting systems by providing infor-
mation on model characteristics and forecast deficits.
It also assists forecast users in their interpretation of
forecasts and the knowledge about inherent uncertain-
ties (Davis et al., 2006a).

Besides the classical grid-point based verification
methods, the emergence of high resolution models and
convection permitting regional models motivated the de-
velopment of new spatial verification methods during
the last decade, primarily focusing on quantitative pre-
cipitation forecasts (Ebert and McBride, 2000; Casati
et al., 2004; Davis et al., 2006a; Keil and Craig, 2007;
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Wernli et al., 2008). The main motivation for the emer-
gence of these methods is well described by the so-
called double penalty problem (Jolliffe and Stephen-
son, 2012). In case of high resolution predictions, ex-
treme wind gusts might well be forecasted in terms
of their structure, amplitude and timing, however with
a slightly incorrect position. Classical grid-point based
verification measures would classify this forecast as very
poor, i.e. many misses and false alarms (double penalty
problem). Using object-based (spatial) approaches, fore-
cast errors may instead be assessed in terms of the object
characteristics directly, i.e. characterizing and compar-
ing structure, intensity and location of objects. An illus-
trative example of the double penalty problem and the
failure of classical verification measures can be found
in Davis et al. (2006a). An overview of already ex-
isting spatial verification methods and their classifica-
tions is given in Ebert (2008) and Gilleland et al.
(2009). Spatial verification techniques are not only ap-
plied to precipitation fields (Fox et al., 2016; Gofa et al.,
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2017; Wernli et al., 2008), but also to other meteoro-
logical variables. Weniger and Friederichs (2016) ap-
plied the SAL technique to spatial fields of cloud cover
and spectral radiances. Mittermaier et al. (2016) used
the MODE technique (Davis et al., 2006a; Davis et al.,
2006b) to verify the position, timing and intensity of
jet cores, surface highs and lows. It is therefore worth
applying object-based verification techniques to wind
gusts, which is done in this study. As an important exten-
sion to the above-mentioned methods, it should be men-
tioned that it might be desirable to include the temporal
development in order to represent errors in the timing of
a forecasted event (Gilleland et al., 2009; Zimmer and
Wernli, 2011; Mittermaier et al., 2016).

The object-based methods give an additional and dif-
ferent perspective on forecast quality and predictability.
By applying the SAL technique, the present study com-
plements a recent investigation, revisiting the synoptic-
scale predictability of winter storms (Pantillon et al.,
2017).

These different views on the predictability of storms
and respective forecast errors are justified by the large
variety of users of weather forecasts with broadly dif-
ferent information needs. While point-wise forecasts are
certainly needed in a wide range of applications, event-
based forecasts and warnings are essential for users, par-
ticularly from logistics and aviation.

Damages to man-made and natural structures depend
critically on the strength of local wind gusts making it
extremely important to derive accurate storm forecast
and warning information from numerical weather pre-
diction systems. There are numerous studies linking the
occurrence of local severe wind gusts with damages to
buildings both in deterministic approaches (Klawa and
Ulbrich, 2003; Heneka and Ruck, 2008; Donat et al.,
2011) as well as probabilistic approaches (Heneka and
Hofherr, 2010; Prahl et al., 2012; Pardowitz et al.,
2016). It has been found that maximum sustained wind
gusts can serve well to describe the patterns of damage
occurrences. However, results may differ with regards
to the exact dependence of storm damages on increasing
wind speeds. Generally this dependence is found to be
strongly non-linear with several studies assuming a cu-
bic dependence of wind speed, as described originally
in Klawa and Ulbrich (2003). Another common no-
tion is that damages occur for severe wind situations.
Even though this finding might vary depending on the
actual damage data, it has been found that exceedances
of the 98th percentile of local wind speeds serves as an
appropriate threshold to identify potentially damaging
wind situations (Klawa and Ulbrich, 2003; Lecke-
busch et al., 2008).

Considering the importance of high resolution en-
semble forecast systems, the application of object-based
verification methods might be particularly important.
For grid-point based forecasts, the interpretation of en-
sembles in terms of occurrence probabilities for certain
events is well established (Anderson, 1996; Broecker
and Smith, 2008). For spatial objects or features such

as storms and wind gusts, the interpretation and analy-
sis of ensemble forecasts is less obvious. Information
about the intensity, extent and location can, for exam-
ple, be derived from individual forecast members and
can be evaluated by analysing the ensemble distribu-
tions of such features. Instead of using all the individual
forecast members, the spatial verification method can al-
ternatively be applied to the ensemble mean forecast.
However, one should consider that averaged fields may
not be a physically consistent representation of a storm
event due to, for example the smoothing of the wind
field. The limitations of interpreting the ensemble av-
erage have been described in several studies (Cheung,
2001; Surcel et al., 2014). It can be noted that by defi-
nition, the ensemble mean provides smoother fields and
can thus provide guidance on the large-scale flow prop-
erties (Cheung, 2001). However, for the small scale
characteristics in the case of extreme events probabilistic
approaches should be chosen (Cheung, 2001; Surcel
et al., 2014).

In this study, we adapt and apply an object-based
verification method to ensemble forecasts of 10-m wind
gusts associated with winter storms in Germany. For this
reason, we employ the so-called SAL (Structure, Am-
plitude and Location) technique by Wernli et al. (2008)
which is an object-based quality measure, originally de-
veloped for the verification of quantitative precipitation
forecasts. By applying it to ensemble forecasts, we in-
vestigate the forecast uncertainty which is expressed in
terms of object features, by offering a complementary
view of the forecast errors as expressed in typical grid-
point measures. Such object-based views might ulti-
mately contribute to an improvement in the understand-
ing of underlying processes and their representation in
forecast models. Additionally, we demonstrate how to
make use of the ensemble information with object-based
methods, in order to analyse how the results of this
method can differ using either the individual members
or the ensemble mean only.

The remainder of this paper is structured as follows.
Section 2 gives an overview of the data and method-
ology, which was used in this study. Results obtained
by means of the object-based verification methodology
are described in Section 3, followed by Section 4 giving
conclusions that can be drawn from this study.

2 Data and methods

2.1 COSMO-EU analyses

As a surrogate for ground truth, we use the analyses
operationally conducted by the German Weather Ser-
vice (DWD) from the COSMO-EU Model (Consor-
tium for small-scale Modelling). The period of avail-
able data is from 1 January 2006 to 31 December 2011.
COSMO-EU was developed at the DWD and was used
as a regional model for Europe with a horizontal reso-
lution of 7 km (Schulz and Schättler, 2014; Doms
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Figure 1: Verification domain considered, as given by the domain
for which the statistical downscaling of ensemble forecasts has been
performed.

and Baldauf, 2015). It is non-hydrostatic and used for
numerical weather predictions. The COSMO model is
based on the primitive equations and has 40 vertical lay-
ers from 10 m to 24 km in height. The investigated vari-
able in this study is the daily maximal wind gust, which
is calculated as the daily maximum of the hourly maxi-
mal wind gusts at 10 m height. The wind gusts are es-
timated from the simulated variables using diagnostic
schemes as described in Schulz and Heise (2003) and
Schulz (2008), including a parametrization scheme for
turbulent gusts and convective wind gusts. Final esti-
mates of the hourly maximum wind gusts are calculated
as the maximum of both gusts. We only used a part of
the COSMO-EU domain, because the forecast dataset
was available for a smaller region only (Figure 1).

2.2 Downscaled ECWMF ensemble forecasts

In this study we employ forecast data from the ECMWF
EPS (Ensemble Prediction System) which is statistically
downscaled to a grid with the same horizontal resolu-
tion as the COSMO-EU analyses. A detailed descrip-
tion of the employed downscaling methodology and the
dataset can be found in Pardowitz et al. (2016). As
input for the statistical downscaling, 6 hourly output
of instantaneous 10 m wind speed of the 50 perturbed
ECMWF ensemble members is used, which was oper-
ationally produced between November 2000 and Jan-
uary 2010. Each forecast is integrated over 15 days, but
the horizontal resolution is reduced after forecast day
10. We thus confine all analyses to the first ten fore-
cast days during which the resolution is kept constant.
Specifics of the ECMWF-EPS can be found in various
references (Molteni et al., 1996; Palmer et al., 1998;
Leutbecher and Palmer, 2008; Buizza et al., 1999;
Palmer et al., 2009).

The ECMWF-EPS forecasts are statistically down-
scaled to the COSMO-EU-resolution of approximately
7 km, as described in Kruschke (2015). The output of
the statistical downscaling method is the daily maximum

wind gust at 10 m height, which is used in this study.
The statistical downscaling is done with a multiple lin-
ear regression method. This method assesses the rela-
tionship between the surface gusts of the higher to the
coarser scale of the corresponding ECMWF-EPS fore-
cast (Kruschke, 2015). By choosing skilful predictors
of the COSMO-EU model, a regression equation is cre-
ated. These predictors are more specifically the EPS
surface winds scaled by the respective climatological
98th percentiles. Due to changes in the EPS resolution a
subsequent interpolation (first order conservative) to the
coarsest EPS resolution (T159) is performed (compare
Pardowitz et al., 2016). More details on the statistical
downscaling method can be found in Pardowitz et al.
(2016) and Kruschke (2015).

Compared to the typical dimensions of winter wind
storms, the investigated model domain is relatively
small, which might have an influence on the verification
results presented in Section 3. However, since the statis-
tically downscaled EPS forecasts are only available for
the domain indicated in Figure 1, no systematic analysis
of this dependence can be performed.

2.3 Storm identification

As a prerequisite for the application of an object-based
verification, an identification of a storm set needs to be
done. This identification is based on near surface wind
gusts (10 m height) from the COSMO-EU analysis data,
also serving as the verification reference in this study.

Due to usually stronger wind speeds at higher alti-
tudes or above sea surfaces, the daily maximum wind
gusts were normalized with their local 98th percentile.
“Local” implies that the percentile was calculated at
each grid point and for the whole available period
2006–2011. The outcome of this identification proce-
dure will be referred to as the normalized wind gusts.

The storm identification was restricted to the winter
season (October to March) for the period 2006–2010,
where both the forecast and analysis data were available.
A similar criteria to that used in the study of Lecke-
busch et al. (2008) was used to perform the identifica-
tion of a set of winter storms. At least an area equiv-
alent to 400 km× 400 km in the COSMO-EU analysis
needs to exceed the local 98th percentile of daily max-
imum wind gusts. This corresponds roughly to 10 % of
the considered verification domain (compare Figure 1).
The outcome of this identification procedure will be re-
ferred to as the storm set analysis (compare Figure 2)
and forms the basis for the object-based verification de-
scribed in section 2.5. By means of this criteria, 82 storm
days were identified during the period of January 2006
to January 2010 within the COSMO-EU analyses.

2.4 Storm occurrence verification

Similar to the storm identification described in sec-
tion 2.3, we additionally identified storms in the forecast
data for the storm occurrence verification. The criterion
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Figure 2: Schematic depicting the storm identification from the
COSMO-EU analysis and the SAL verification procedure. The up-
per panel describes the storm identification (section 2.3). The object-
based verification (lower panel), as described in section 2.5, is per-
formed on the basis of the wind gusts normalized by the local
90th and 98th percentile, respectively. These objects are referred to
as the gust objects.

was the same as for the analysis data, i.e. at least an area
equivalent to 400 km× 400 km needs to exceed the local
98th percentile of daily maximum wind gusts of the fore-
cast. With this storm set in the forecast and analysis data,
a storm occurrence verification is performed simply by
comparing whether a storm was observed (regardless
of its location and intensity in the verification domain)
and whether the storm was forecasted or not (i.e. di-
chotomous yes/no forecast). For this purpose, the con-
tingency table can be derived, including hits (event ob-
served and forecasted), misses (event observed and not
forecasted), false alarms (event not observed but fore-
casted) and correct rejects (event neither observed nor
forecasted). Typical quantities to address the quality of
such forecasts are the false alarm ratio (FAR) and the
hit rate (H). FAR is the ratio of false alarms compared
to the number of events forecast, ranging between 0 (no
false alarms) and 1 (only false alarms). H is the fraction
of observed events which have been forecasted correctly
ranging from 0 (no event correctly forecasted) to 1 (all
events correctly forecasted).

2.5 Applying SAL to gust objects

For the whole storm set analysis of 82 identified storm
days (Figure 2 upper panel) within the investigation pe-
riod, the errors regarding the extent, location and in-
tensity of the relative 10 m daily maximum wind gusts

were addressed by means of the SAL method proposed
in Wernli et al. (2008). Note that the object-based veri-
fication was only based on storms which were observed.
Before applying the SAL technique, the wind gusts
were normalized with their local 90th, or alternatively
98th percentiles of the analysis and the forecast, respec-
tively. Model biases are therefore excluded. Note that
the percentiles for the forecast are calculated for each
forecast lead time separately, hence the value of the re-
spective percentiles can differ between the forecast lead
times. Then, all grid points with values above the equal
to the threshold value of 1 are considered part of one
of the gust objects which contribute to the storm event
(Figure 2 lower panel). If many contiguous grid points
exceed the threshold, they belong to one object. If these
grid points are separated from each other, they refer to
different objects. The SAL calculations were based on
the normalized wind gusts and their identified gust ob-
jects (Figure 2 lower panel). These moderate and intense
‘gust objects’ (90th and 98th percentile respectively) are,
in other words, objects of relative daily maximum wind
gusts above a certain threshold. This nomenclature fol-
lows that of Wernli et al. (2008), where they used ‘pre-
cipitation objects’.

Comparing gridded forecasts and observations for a
specified area, the SAL method calculates three error
components with respect to the object’s structure, am-
plitude and location. The amplitude error A (see eq. 2
in Wernli et al., 2008) represents the normalized dif-
ference of the domain-averaged relative wind gusts, ir-
respective of the objects identified. Values of A are
within −2 (relative wind gusts are observed but not fore-
casted) and +2 (relative wind gusts are forecasted but
not observed). Positive (negative) values of A denote an
overestimation (underestimation) of the forecasted rela-
tive wind gusts. The location error L (see eq. 4 and 6 in
Wernli et al., 2008) consists of two parts (L1 and L2).
L1 represents the distance of the normalized difference
between the center of mass of the relative wind gusts of
the whole domain. Also for this score, an object identi-
fication is not needed. As an example, an L1 error of 0.1
within a domain size of 1000 km equals a displacement
of the center of mass of 100 km. L2 is the normalized
difference of each gust objects’ center of mass from the
center of mass of the whole domain. Location errors
are only positive, ranging from 0 to +2; the individual
ranges for L1 and L2 are 0 to +1. The last component is
the structure error S (see eq. 9 in Wernli et al., 2008),
which compares the difference of the gust objects’ “vol-
ume”. Values are within -2 and +2, with positive (neg-
ative) values denoting objects that are too large and flat
(small and peaked). With respect to wind gusts, posi-
tive S errors indicate a too large gust field, and/or a too
smooth gust distribution in the forecast. For example,
convection in cold fronts may be underestimated. Nega-
tive S errors indicate a too small gust field and/or a too
large variability of gusts within. For the calculation of
the SAL components, we used the R software package
SpatialVx (Gilleland, 2015).
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In the following, two ways of processing the ensem-
ble information were applied. Firstly, the individual en-
semble members were analysed in terms of the forecast
errors of predicted gust objects. Forecast uncertainty can
then be expressed in terms of the distribution of error pa-
rameters (structure, location and amplitude). Secondly,
gust fields of the ensemble mean are considered and
corresponding error parameters are directly inferred. Of
course in the latter, no information about the ensemble
uncertainty can be derived. The ensemble mean was cal-
culated from the raw fields of the ensemble members
and then normalized with the local 90th and 98th per-
centile, respectively. The percentiles of the ensemble
mean were calculated for each forecast lead time sep-
arately, just as for the individual ensemble members.
Hence, the resulting errors with higher forecast lead time
are not a lead-time dependant bias, but an effect of the
higher uncertainty in the forecast model.

3 Results

3.1 Case study – winter storm ‘Quinten’

As an example of the application of the SAL method to
gust forecasts we consider the winter storm ‘Quinten’,
which affected southern parts of Germany on 10 Febru-
ary 2009. Figure 3 (a) shows the daily maximum wind
gusts from the COSMO-EU analyses for this date with
high values in the southwestern parts of the consid-
ered domain. Also clearly visible are orographic de-
pendences, especially around the southern Rhine valley,
with particularly high gusts in the Vosges area of France
and the Black Forest in Germany, and rather low val-
ues in the valley itself. Figure 3 (b) shows the gust ob-
jects for local percentiles (exceedances of the 90th per-
centile in grey, the 95th in blue, the 98th in dark blue
and the 99th in green). Although still not fully homoge-
neous, this representation allows for a much better de-
tection of a coherent structure of the gust field. Also
in this representation, the North Sea is clearly excluded
from the gust object, although in terms of absolute gust
speeds considerably high values of about 20–25 ms−1

are present. However, in these areas, such wind gusts
are frequent and are not to be considered as a part of the
gust object.

Figure 3 (c,f,i) shows the ensemble mean of fore-
cast gust speeds for 10 February 2009 for lead times of
one, four and seven days. The overall structure of high
gust speeds in southwestern regions of the domain can
be found accordingly, however absolute values of gust
speeds may vary for certain regions due to local oro-
graphic influences on the gust field. Such differences
are disregarded when considering local percentile ex-
ceedances (Figure 3 (d,g,j)). Note that the percentiles are
computed using the ensemble mean values for each fore-
cast lead time separately. The gust objects, as identified
in the analyses, can clearly be identified within the en-
semble forecasts at all considered lead times. However,
intensity, extent and location do vary.

Figure 3 (e,h,k) summarizes results from the SAL
method applied to the gust objects (exceedances of the
local 98th percentile). Here, grey histograms show the
distributions of structure, amplitude and location errors
for the 51 individual ensemble members, while the black
dashed vertical line indicates the errors for the ensemble
mean forecast. For a lead time of one day, all individ-
ual members showed rather similar and small errors in
all three SAL parameters. The structure error is found
to be slightly positive, indicating a gust field which is
too large and flat. Amplitude error is found to be pos-
itive also, which indicated that the field average of the
relative wind gusts is higher compared to the analyses,
which also indicated that the overall intensity is overes-
timated. With growing lead time, individual ensemble
members diverge, leading to a growing spread in the
structure, amplitude and location errors. Interestingly,
the amplitude and location error for the ensemble mean
exhibited rather stable and low values, which indicated
good forecast quality with respect to these parameters.
The structure error for the ensemble mean forecast how-
ever seems to grow considerably, being about −1.2 at a
lead time of seven days. The definition of the structure
error in Wernli et al. (2008) states that negative struc-
ture errors are associated with too small and too peaked
(in our case too gusty) forecasts. However, fields in the
ensemble mean are generally smoothed. Therefore, neg-
ative structure errors in the ensemble mean imply a too
small forecasted gust object. Generally, a negative struc-
ture error together with a small amplitude error can re-
sult if (i) the storm (i.e. gust) field is too small and (ii) in
some areas of the storm field the gust velocities are over-
estimated and in other areas underestimated compared
to the verification reference. The small size of the fore-
casted gust object is nicely visible comparing for ex-
ample the dark-blue colours in Figure 3 (b) and (j). Of
course, the results for this case study cannot be general-
ized; a more systematic analysis will be discussed in the
following sections.

3.2 Storm occurrence verification results

Figure 4 shows results of all storm events identified in
analyses and forecasts (storm definition: at least 10 % of
the verification domain above the local 98th percentile;
compare sections 2.3 and 2.4). For a lead time of one
day, the FAR shown in Figure 4 (top) is about 0.2
(about 20 % of cases in which a storm is forecasted
are false alarms) with results for individual ensemble
members varying by about ±0.08 (8 %).

The hit rate (in Figure 4 (bottom)) for a lead time of
one day is about 0.6 (60 % of all observed storms were
forecasted correctly), again results varying for individ-
ual members by about ±0.09 (9 %). With growing lead
time, FAR grows and at the same time H decreases. For
a lead time of nine days, individual ensemble members
show an increased FAR of about 72 %± 8 %, while the
hit rate decreases to about 23 %± 7 %. This means that
for a lead time of nine days, more than 70 % of all cases
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Figure 3: Case study of winter storm ‘Quinten’ (10 February 2009). The first column depicts absolute maximum wind gust speeds, the
second column depicts exceedances of the different thresholds considered (90th percentile in grey, the 95th in blue, the 98th in darkblue
and the 99th in green) and the third column show the SAL results for three different forecast lead times. Daily maximum wind gusts from
COSMO-EU analysis (a,b); ensemble mean forecasts one day lead time (c,d), four days lead time (f,g) and seven days lead time (i,j).
Resulting distributions of structure, amplitude and location errors for lead times one, four and seven days (using the 98th percentile as
threshold) (e,h,k). Distribution of ensemble members are shown as grey histograms while result for the ensemble mean forecast is indicated
by the vertical dashed line.

of a storm forecast are false alarms and at the same time,
only 23 % of all observed storms were forecasted.

The forecast quality with respect to both FAR and H
increases considering the ensemble mean forecast (red
dots in Figure 4). For a lead time of nine days, the FAR
is reduced by about 15 % to about 58 % and at the same
time the hit rate is increased by about 17 % to 40 %.
Thus, a clear benefit of using the ensemble mean fore-
cast can be identified with respect to the forecast of
storm occurrences within the considered domain.

Of course, other definitions of a storm event can be
applied here. A lower threshold focuses on larger storm
areas, whereas a higher threshold focuses on areas of ex-
treme and damaging wind speeds. The results differ with
respect to the absolute values of FAR and H. When us-
ing a lower threshold (90th percentile), the FAR is found
to be lower and at the same time the hit rate is found
to be higher. Similarly for a higher threshold (99th per-
centile) FAR is higher and hit rate is lower. Regardless
of which threshold is used to identify the storm events,
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Figure 4: Storm occurrence verification results for all identified
storms in the analysis and forecasts. Criterion for the detection of
a storm event is that 10 % of the considered domain exceed the
local 98th percentile of wind speeds. Results for the false alarm ratio
(FAR, top) and the hit rate (H, bottom) in dependence of the lead
time are shown for individual members as blue box plots and the
ensemble mean as red dots.

it was found that analysing the ensemble mean forecast
yields a lower (better) FAR as well as a higher (better)
hit rate compared to analysing all individual ensemble
members.

3.3 Object-based verification results

Figure 5 shows results for the object-based SAL method
applied to the 82 storm events (see storm set analysis
in Figure 2), which are identified in the COSMO-EU
analyses. For each of the storm events, the SAL method
is calculated for individual ensemble members as well
as for the ensemble mean forecast. As a threshold for a
gust object within the SAL method, the 90th and 98th lo-
cal percentiles are used. Figure 5 shows results for the
lowest threshold, i.e. rather large objects of high relative
wind gust speeds. Blue boxes in Figure 5 show the distri-
bution of the structure error (top figure), amplitude error
(middle figure) and location error (bottom figure) when
considering the individual member forecasts for each of
the 82 storm events.

For a lead time of one day, structure errors are found
to be rather small, however individual member forecasts
for individual storm events range from −2 (forecast gust
objects much too small and peaked) up to 1 (forecast
gust objects much too large and flat). In the definition of
the SAL method in Wernli et al. (2008), negative struc-
ture errors can be interpreted as too small and too peaked
objects. In this study, we used as forecast model a statis-
tically downscaled model. Of course, this model is not
able to resolve convective processes compared to dy-
namically downscaled atmospheric models. Therefore,
negative structure errors imply that the forecasted gust

Figure 5: Distributions of structure error (top), amplitude error
(middle) and location error (bottom) in dependence of lead time
for individual members (blue box plots) and the ensemble mean
(red box plots) for the 82 storm identified storm events. The wind
gusts in the analysis and the forecast were normalized by their local
90th percentile and a threshold of 1 was used for object identification
(i.e. all grid points above the local 90th percentile will be identified
as gust object).

objects are in general too small, or in other words, the
winter storm has a too small size in the verification do-
main. Another possibility is that several too small ob-
jects are forecasted. There is a slight tendency towards
positive structure errors at lead times of one day. Ampli-
tude errors are rather small and mostly negative at short
lead times. This means that the forecasts tend to pro-
duce lower relative wind gusts (in other words: a lower
storm intensity) on average over the considered domain.
Also, variations for individual storm events and forecast
members are comparatively small. Location errors are
found to be rather small for the first few days, bear-
ing in mind however that a location error of 0.1 implies
a displacement of the centre of mass of about 100 km
in a domain size of 1000 km (if only one gust object
is identified in the verification domain). The whiskers
in Figure 5 (bottom) indicate that for individual storm
events and forecast members location error can be up
to 1, even for short lead times of one day. Both ampli-
tude and location error steadily increase with growing
lead times, i.e. the amplitude error grows to more neg-
ative values (stronger underestimation of average storm
intensity) and the location error to more positive values,
indicating a larger offset of storm centres with respect
to the analysed gust fields. While the structure error for
short lead times shows a tendency toward positive values
(too large and flat storm fields), the tendency reverses
with increasing lead time. Thus, at lead times beyond
five days there is an increasing tendency toward smaller
gust fields within the individual ensemble member fore-
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casts. At a lead time of nine days, this is expressed by
the fact that 75 % of individual forecasts for all 82 storm
fields showed a negative structure error.

The amplitude errors of the individual ensemble
members are negative for all lead times. Amplitude er-
rors become larger (i.e. more negative) with increasing
lead time. They are consistently smaller when the en-
semble mean gust forecasts (based on all 82 storm fore-
casts) for all lead times are evaluated instead of the in-
dividual ensemble members (red box plots in Figure 5,
middle). For individual storm events positive amplitude
errors are found. The difference is particularly large for
higher lead times. At first glance, it is not intuitive that
for longer forecast lead times the individual members
most frequently underestimate the gusts while for part
of the storms the ensemble mean overestimated the gust
speed (Fig. 5, middle). To shed more light on this fea-
ture, we determined for one grid point in the verification
domain (50° N, 10° E) the distribution of the whole indi-
vidual members and the ensemble means’ gust velocities
for different forecast lead times (not shown). For short
forecast lead times, both distributions have nearly the
same shape, but for longer forecasts lead times, the dis-
tributions deviate from each other. The ensemble mean’s
skewness for higher lead times is reduced compared to
the distribution of the respective ensemble members.
Thus, the values of the percentiles in the ensemble mean
forecast are decreased compared to the percentiles of the
individual ensemble members. While the percentiles of
the individual ensemble members are relatively stable
for the forecast lead times, the skewness of the ensem-
ble means gust values at individual grid points and for
individual storms decreases with lead time. Considering
now one of the individual storms, the absolute ensem-
ble mean gust velocities are usually relative low, mean-
ing an underestimation of the mean of observed gust ve-
locities. As we compute the forecast error in terms of
deviations from the percentile value (i.e. the value deter-
mined from the model climatology for each forecast lead
time), the amplitude errors are reduced. Hence, although
the absolute gust speeds can be low, the amplitude error
compared to the model climatology (i.e. the percentiles)
for each lead time is relatively low (Figure 5, middle).
Therefore, our results should be interpreted in the way
that the amplitude is relatively well forecasted compared
to the model climatology of the ensemble mean, but are
generally underestimated in an absolute sense.

The location errors are considerably reduced when
considering the ensemble mean forecast (Figure 5, bot-
tom). This result is expected because the number of ob-
jects reduce in the ensemble mean due to the smoothing.
That reduces the L2 component and therefore the whole
location error. Also, L1 of the ensemble mean is reduced
compared to the L1 errors of the ensemble members un-
der the premise of no far outliers and that the observed
center of mass of the ensemble mean is located within
the area spread by the center of masses of the ensem-
ble members. Again, for longer lead times this reduc-
tion is particularly large. However, for the location error

Figure 6: Same as Figure 5, despite that the wind gusts were
normalized by their local 98th percentile.

there are individual storms for which the ensemble mean
forecast shows large location errors. Interesting results
can be found for the structure error (Figure 5, top) when
considering the ensemble mean forecast, which is dif-
ferent to the individual ensemble member forecasts, in
this case there is a consistent tendency towards positive
structure errors (i.e. too large and flat gust objects). This
can be explained by the fact that the ensemble averag-
ing of wind gusts implies a smoothing of the gust fields.
While individual forecast members may contain gust ob-
jects at different locations, the ensemble mean forecast
field contains smoothed gust objects which are both too
large and too flat at the same time. In terms of absolute
values, however, there seems to be a tendency that struc-
ture errors for the ensemble mean are small compared
to the individual ensemble member forecasts. Yet, par-
ticularly for large lead times, there is a large variation of
resulting structure errors for each of the 82 storm events.
However, a structure error of an ensemble mean can be
difficult to interpret, because it can contain gust struc-
tures, which are physically inconsistent.

The results discussed above apply to the 90th per-
centile as threshold for an ‘object’. By using the
98th percentile, the considered objects are smaller, ul-
timately containing only regions of severe wind gusts.
The results obtained by using the 98th percentile as
threshold are shown in Figure 6. In comparison, certain
similarities can be found, as well as some differences.

Results for the location errors (Figure 6, bottom) are
qualitatively similar to the previous results, however,
with a considerably larger variation. This indicates in
this case, that the results depend much more on the in-
dividual storm considered. In general, the result is con-
firmed that location errors are smaller when consider-
ing the ensemble mean forecast, particularly for longer
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lead times. Amplitude errors (Figure 6, middle) for gust
objects defined by the 98th percentile are again mostly
negative, again with increasingly more negative values
at higher lead times. It was mentioned in section 2.5
that the amplitude error does not depend on the object
identification threshold. The differences in the ampli-
tude errors in Figures 5 and 6 are due to the differ-
ent normalizations. Before applying SAL, the gust fields
were normalized with the local 90th and 98th percentiles
(Figure 2). Therefore the normalized values differ be-
tween the two fields which affects the amplitude error.
Therefore, the differences in the amplitude error for the
different percentiles stem from our approach. Another
approach which uses absolute wind speeds instead of
normalized wind speeds in forecast and analysis would
lead to the same amplitude errors for two thresholds, be-
cause these thresholds are not considered in the calcu-
lation of the amplitude component. Interestingly, how-
ever, the ensemble mean forecasts show a tendency to-
wards positive amplitude errors, which may also be ex-
plained by the reduced percentiles for higher lead times
for the ensemble mean. Considering the structure er-
ror (Figure 6, top) it can be noted that there is a clear
tendency towards negative structure errors already at
short lead times (75 % of individual forecasts are neg-
ative at a lead time of one day). This means that already
for short lead times, the forecasts have a tendency to-
wards too small gust objects which again increases with
growing lead time. Considering the ensemble mean fore-
cast, the smoothing effect can be confirmed by a ten-
dency to higher values for the structure error. Interest-
ingly for short lead times (where the location of gust ob-
jects is very close to each other within individual fore-
casts) the structure error, however, remains negative in
most cases. For longer lead times, when the location
of gust objects diverge, the smoothing effect is much
stronger and finally leads to positive structure errors in
most cases. The variation of structure errors given by the
box plots show that in the case of a higher object thresh-
old (98th percentile) the results are very different for the
individual 82 storm events considered. These tendencies
might hence not be reflected when considering individ-
ual storm events.

The results described above are deduced by consid-
ering a fixed storm set of 82 storms. It might be argued
however that results may be sensitive to the identifica-
tion thresholds. To investigate this sensitivity of results
we additionally defined three independent storm sets by
modifying the identification criterion. For the first storm
set at least 5 % and less than 10 % of gridboxes need
to exceed the local 98th percentile (31 storms). The sec-
ond requires at least 10 % and less than 20 % of the grid
boxes to exceed the local 98th percentile (35 storms) and
for the third at least 20 % of the grid boxes need to ex-
ceed the local 98th percentile (47 storms). We find that
the conclusions derived from the previous analysis re-
main unaltered. However, there are some general differ-
ences worth mentioning. In particular, the structure error

generally varies much more for the set of small storms
and the location error seems to be generally larger for
the set of small storms. For both the set of small and
large storms it is confirmed that the location and ampli-
tude errors are smaller when considering the ensemble
mean wind field compared to individual ensemble mem-
bers. However this effect is found to be smaller when
considering smaller storm events. Also, the tendency to-
wards smaller structure errors for the ensemble mean
wind field at larger lead times can be found irrespective
of the storm set considered. However, considering small
storm events, the large variation in the structure error
implies that this is not consistently found for individual
storm events.

4 Summary and conclusions

In this study, the SAL method of Wernli et al. (2008),
originally developed for the verification of quantitative
precipitation forecasts, was adapted to the verification of
10 m daily maximum wind gusts associated with winter
storms in Germany. For this we applied the SAL method
to relative wind gusts, i.e. normalized gusts with respect
to its local 90th and 98th percentiles. This normalization
is done to reduce orographic influences and for each
forecast lead time separately. The method was applied
to statistically downscaled ECMWF EPS forecasts for a
set of 82 storm events identified in the period from 2006
to 2010. Ensemble forecasts are evaluated for lead times
ranging from one to nine days. All grid points exceeding
the local 90th and 98th percentile respectively were iden-
tified as a ‘gust object’. Hence, the analysis can either
be focused on larger gust objects with high gust speeds
(90th percentile) or smaller gust objects with severe and
potentially damaging wind speeds (98th percentile).

The results first showed a consistent increase of all
three error types (structure, amplitude and location) with
growing lead time. However, it was shown that the er-
rors are strongly dependent on the specific event con-
sidered and do vary considerably. This was shown to be
particularly true for the gust objects defined by a higher
threshold (98th percentile). As a basic verification it has
been investigated whether or not storm events (regard-
less of their location and intensity) were correctly fore-
cast within the considered area. Results indicate that by
means of the ensemble mean forecast, the FAR can be
reduced and the hit rate can be increased in comparison
to individual forecast members. The spatial verification
showed a clear benefit of using the ensemble mean fore-
cast for the amplitude and location errors. That means
that the estimation of a storm’s location and average in-
tensity is (in most cases) more precise when done on
the basis of the ensemble mean forecast instead of us-
ing an individual forecast. The structure errors for the
ensemble mean were also reduced. However, ensemble
averaging leads to smoothing of wind fields, which can
lead to the worsening of results in some cases. This was
particularly found for the larger extent objects (using
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the 90th percentile as a threshold) at short lead times. In
this case the ensemble mean forecast performed consid-
erably worse in comparison to individual forecasts. To
conclude, this study demonstrated that the object-based
verification SAL method, could be well adapted to in-
vestigate forecast errors for gusts associated with winter
storms in Germany.

However, it should be noted that the results might
depend on the choice of the verification domain. The
size of the domain should be at least the size of the
objects under consideration, this means in the present
case about 1000 km, which is the typical length scale
of winter storm events in mid-latitudes. On the other
hand, the domain size should not be too large, so that
multiple storm events are not present at the same time.
The SAL method in this case would not make a dis-
tinction between the two storm events (other than the
CRA method in Ebert and McBride (2000), which in-
cludes an object identification and matching). Interpre-
tation of location and structure error would thus be very
difficult in this case, since they do not refer to an indi-
vidual winter storm. Due to the limited availability of
forecast data, which was restricted to the domain shown
in Figure 1, the sensitivity to the choice of the verifica-
tion domain could not be tested. Further studies on the
basis of regional model forecasts available for a larger
domain should certainly include such sensitivity tests.

Additionally, further research should include com-
paring these results to the results obtained with other ob-
ject based verification methods, such as MODE (Davis
et al., 2006a). It might also be of interest to explicitly
assess errors in the timing of storms (i.e. onset and du-
ration), since this is very relevant for issuing appropriate
warnings. Timing errors can have impacts on the spatial
verification results (Zimmer and Wernli, 2011). Apply-
ing the SAL method to one day before and after the
actual day would therefore give an estimate of the tim-
ing error. Zimmer and Wernli (2011) applied the SAL
method some hours before and after an hourly accumu-
lated precipitation forecast to estimate the timing error.
They noted that the approach gives a better insight into
the quality and deficits of the precipitation forecasts with
short accumulation times. In our case, the “accumula-
tion” time was one day, i.e. daily maximum wind gusts.
We therefore have indirectly taken a slight timing error
(less than one day) into account. Future studies doing
the spatial verification of hourly maximum wind gusts
can better estimate the timing error using the approach
of Zimmer and Wernli (2011).

The results presented in this study are based on a sta-
tistical downscaling of wind gusts from the ECMWF en-
semble prediction system and may differ to dynamical
models. The wind fields considered here can be consid-
ered to be physically consistent on the synoptic scale,
however spatial details within the fields of local wind
gusts, e.g. convection in cold fronts might not be repre-
sented, which may be due to the lack of physical consis-
tency in the downscaling method. It may be of particu-
lar interest to compare the presented results with results

based on dynamical high resolution ensemble forecasts,
which generate physically consistent forecasts. Addi-
tionally, it would be worthwhile to increase the temporal
resolution, because a winter storm has its maximum in-
tensity normally within a few hours.

Furthermore, the present study investigated how to
make use of ensemble forecasts in the case of wind gusts
associated with winter storms. Two ways of processing
the ensemble information were used. Firstly, the indi-
vidual ensemble members were analysed in terms of the
forecast errors of predicted gust objects. Forecast uncer-
tainty can then be expressed in terms of the distribution
of error parameters (structure, location and amplitude).
Secondly, ensemble averaged gust fields were consid-
ered and corresponding error parameters were directly
inferred. Of course, in the latter, no information about
the ensemble uncertainty could be derived. Results in-
dicated that the information about a storm’s location
and its overall intensity (amplitude component) could
be well derived from the ensemble mean forecasts. This
means that the forecaster will find good guidance with
these parameters by considering ensemble averaged gust
fields, if using the statistically downscaled model. How-
ever, the results suggested that the structure might not
be well represented in all cases. While for longer lead
times it seems to be beneficial to consider the ensem-
ble averaged wind fields, at short lead times this might
not be the case. The smoothing of wind fields might in
such cases lead to an overestimation of the affected areas
with less distinct wind peaks. In particular, this means
for short lead times it may be favourable to consider
individual ensemble members to extract accurate infor-
mation on the storm’s structure. In order to give good
guidance to forecasters on the optimal interpretation of
ensemble predictions, the presented findings are partic-
ularly relevant for the task of deriving accurate warning
information from ensemble prediction systems.
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