
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

Iron-induced skeletal muscle atrophy involves an 

Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway 

Yasumasa Ikeda1*, Mizuki Imao2*, Akiho Satoh2, Hiroaki Watanabe3, Hirofumi 

Hamano1,4, Yuya Horinouchi1,4, Yuki Izawa-Ishizawa1, Yoshitaka Kihira1, Licht 

Miyamoto2, Keisuke Ishizawa3,4, Koichiro Tsuchiya2, Toshiaki Tamaki1

1Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University 

Graduate School, Tokushima, Japan 

2Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima 

University Graduate School, Tokushima, Japan 

3Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima 

University Graduate School, Tokushima, Japan 

4Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan 

* These authors equally contributed to this work.

Running title: Iron-induced atrophy via Akt-FOXO3-E3 Ubiquitin ligase pathway 

Word count (excluding references and figure legends): 3542 words 

*Manuscript
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The published version is available via https://doi.org/10.1016/j.jtemb.2016.01.011.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 2 

Name and postal and email addresses for the corresponding author: 

Yasumasa Ikeda 

Associate Professor, Department of Pharmacology, Institute of Biomedical Sciences, 

Tokushima University Graduate School, Tokushima, 770-8503, Japan  

E-mail: yasuike@tokushima-u.ac.jp 

Phone: +81-88-633-7061; Fax: +81-88-633-7062 

 

 

 

 

 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

Abstract 

Skeletal muscle wasting or sarcopenia is a critical health problem. Skeletal muscle 

atrophy is induced by an excess of iron, which is an essential trace metal for all living 

organisms. Excessive amounts of iron catalyze the formation of highly toxic hydroxyl 

radicals via the Fenton reaction. However, the molecular mechanism of iron-induced 

skeletal muscle atrophy has remained unclear. In this study, 8-weeks-old C57BL6/J 

mice were divided into 2 groups: vehicle-treated group and the iron-injected group (10 

mg iron·day-1·mouse-1) during 2 weeks. Mice in the iron-injected group showed an 

increase in the iron content of the skeletal muscle and serum and ferritin levels in the 

muscle, along with reduced skeletal muscle mass. The skeletal muscle showed elevated 

mRNA expression of the muscle atrophy-related E3 ubiquitin ligases, atrogin-1 and 

muscle ring finger-1(MuRF1), on days 7 and 14 of iron treatment. Moreover, 

iron-treated mice showed reduced phosphorylation of Akt and forkhead box O3 

(FOXO3a) in skeletal muscles. Inhibition of FOXO3a using siRNA in vitro in C2C12 

myotube cells inhibited iron-induced upregulation of atrogin-1 and MuRF1 and 

reversed the reduction in myotube diameters. Iron-load caused oxidative stress, and an 
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oxidative stress inhibitor abrogated iron-induced muscle atrophy by reactivating the 

Akt-FOXO3 pathway. Iron-induced skeletal muscle atrophy is suggested to involve the 

E3 ubiquitin ligase mediated by the reduction of Akt-FOXO3a signaling by oxidative 

stress. 
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 1 

Introduction 1 

 Loss of skeletal muscle mass, also called muscle atrophy or sarcopenia, is 2 

induced by aging [1] and various chronic diseases such as heart failure [2], chronic 3 

kidney disease [3], diabetes [4] and other metabolic syndromes [5]. Muscle wasting 4 

debilitates quality of life and enhances the clinical outcome of morbidity or mortality [6]. 5 

Oxidative stress, which plays a crucial role in various pathological conditions, is also 6 

linked with diseased states of sarcopenia in disuse atrophy [7], chronic pulmonary 7 

obstruction [8], chronic kidney disease [9], sepsis [10] and heart failure [11]. Loss of 8 

muscle mass is induced by an imbalance between protein synthesis and degradation [12]. 9 

E3 Ubiquitin ligases such as atrogenes (Muscle Atrophy F-box (MAFbx)/atrogin-1 and 10 

Muscle RING Finger-1 [MuRF1]) are key regulators of protein degradation in the 11 

process of skeletal muscle atrophy [13,14].  12 

Iron is an essential trace element for all living cells and organs. On the other 13 

hand, an excess of iron causes oxidative stress and catalysis of highly toxic 14 

hydroxyl-radicals via the Fenton reaction. Iron-mediated oxidative stress also causes 15 

various functional disorders via injury to DNA, lipids, enzymes, and proteins [2,15]. 16 
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 2 

Free iron is toxic; thus it is detoxified and stored in intracellular ferritin [16]. Body iron 1 

storage, estimated by serum ferritin concentration, correlates with the excretion levels of 2 

an oxidative stress marker, urinary 8-hydroxy-2’-deoxyguanosine, regardless of age or 3 

gender [17]. Iron overload disorders (e.g. hereditary hemochromatosis or thalassemia) 4 

present various complications such as cardiomyopathy, liver cirrhosis, and diabetes due 5 

to ectopic iron accumulation [18]. Body iron content is also associated with the 6 

pathological conditions with no iron overload, such as liver diseases [19], obesity [20], 7 

diabetes [21,22], cardiovascular diseases [23,24], and kidney diseases [25]. In fact, 8 

clinical [26,27,28] and experimental studies [29,30,31,32] show that these diseases are 9 

suppressed by reducing body iron content. Thus, iron plays a crucial role in pathology 10 

of non-iron overload diseases, as well as hereditary iron overload diseases.  11 

Several studies have shown the involvement of iron accumulation in 12 

sarcopenia with aging. In aged rats, skeletal muscle mass is reduced along with 13 

increased iron accumulation [33,34,35] due to changes in iron metabolism. In skeletal 14 

muscle of aged rats, iron regulatory protein 2 (IRP2) is downregulated, leading to the 15 

reduced expression of transferrin receptor-1 (an iron transporter) and the increased 16 
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expression of ferritin (an iron storage protein) [34]. Divalent metal transporter-1 and 1 

Zip14 (a member of the SLC39A zinc transporter family), which are involved in iron 2 

uptake into cells, are upregulated, and FPN expression is relatively low in skeletal 3 

muscles of aged rats [36]. These changes in iron metabolism are consistent with the 4 

accelerated accumulation of iron in skeletal muscles. Moreover, acute muscle atrophy 5 

induced by hindlimb suspension, a model of disuse atrophy, promotes further iron 6 

accumulation, and it is associated with extensive oxidative stress after reloading in 7 

skeletal muscles of aged rat [36]. Two clinical studies showed that ferritin levels are 8 

higher in sarcopenic obese people [37] or in women with sarcopenia [38]. In addition, 9 

iron administration induces sarcopenia and oxidative stress in skeletal muscles of mice 10 

[39]. Thus, a strong association of iron accumulation with skeletal muscle atrophy is 11 

suggested. However, the precise molecular mechanism of iron-induced muscle atrophy 12 

remains to be elucidated.  13 

In the present study, we found that iron administration upregulated atrogin-1 14 

and MuRF1 expression concomitantly with skeletal muscle atrophy and induction of 15 

oxidative stress. The induction of atrogenes by iron loading was involved in the 16 
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 4 

suppression of Akt-forkhead box O3 (FOXO3a) signaling pathway via excess 1 

iron-mediated oxidative stress. 2 

Materials and Methods 3 

Chemicals and reagents 4 

The following commercially available antibodies were used for this study: 5 

anti-phospho-FKHRL1 (FOXO3a) (Ser253) antibody (Santa Cruz Biotechnology, Santa 6 

Cruz, CA, USA); anti-phospho Akt (Ser473) antibody, anti-total Akt antibody, and 7 

anti-FOXO3a antibody (Cell Signaling Technology, Danvers, MA, USA); anti-ferritin 8 

heavy chain antibody and anti-ferritin light chain (Santa Cruz Biotechnology); and 9 

anti-tubulin antibody as a loading control (Calbiochem, San Diego, CA, USA). Tempol 10 

(4-Hydroxy-TEMPO) was purchased from Sigma-Aldrich Inc. (Tokyo, Japan). 11 

Experimental animals and treatment 12 

All experimental procedures involving animals were implemented in accordance with 13 

the guidelines of the Animal Research Committee of Tokushima University Graduate 14 

School, and with approval from the Tokushima University Institutional Review Board 15 

for animal protection. Male C57BL/6J mice were purchased from CLEA Japan Inc. 16 
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 5 

(Tokyo, Japan). Eight-week-old mice used for the study were maintained in a room 1 

under conventional conditions with a regular 12-h light/dark cycle and fed with free 2 

access to food (Type NMF, 10 mg Fe/100 g food; Oriental Yeast, Tokyo, Japan) during 3 

the study. The mice were intraperitoneally injected with iron-dextran once daily (10 mg 4 

iron-dextran/single-dose: 200 µl) or an equal volume of vehicle [39]. At 24 h after the 5 

last injection of iron-dextran, mice were sacrificed by an over-dose of pentobarbital and 6 

were used for analysis on days 1, 3, 7, and 14.  7 

Measurement of serum ferritin levels 8 

Serum ferritin concentration was determined with a Mouse Ferritin enzyme-linked 9 

immunosorbent assay (ELISA) kit (Immunology Consultants Laboratory, Newberg, OR, 10 

USA). Serum diluted by 20% was used for the assay [29]. 11 

Measurement of iron concentrations in skeletal muscles 12 

Iron concentrations in skeletal muscle were measured using the Metallo assay kit as 13 

previously described (Metallogenics Co., Ltd., Chiba, Japan) [32,40]. In brief, the 14 

extracted muscle (approximately 50 mg muscle per piece) was weighed and 15 

mechanically homogenized in 500 µl lysis buffer (T-PER Tissue Protein Extraction 16 
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 6 

Reagent, Thermo Fischer Scientific Inc., Waltham, MA USA) with protease inhibitor 1 

(cOmplete™, Mini, EDTA-free, Roche Diagnostics K.K., Tokyo, Japan) and 2 

phosphatase inhibitor (PhosSTOP Phosphatase Inhibitor Cocktail (Roche Diagnostics 3 

K.K.). The crude lysates were further lysed with an ultrasonic sonicator, HCL was 4 

added (0.01 M final concentration), and the mixture was incubated for 30 min with 5 

mixing at every 10 min. The lysate was centrifuged at 4°C for 15 min, and the 6 

supernatant was used to assay iron concentration. Tissue iron concentration was 7 

normalized to tissue wet weight and expressed as µg·g−1 tissue. 8 

Histological analysis 9 

After sacrifice, the skeletal muscle of mice was excised following normal saline 10 

perfusion. A gastrocnemius muscle was fixed overnight in 4% paraformaldehyde at 4°C 11 

and embedded in paraffin. Sections of 3-µm thickness were prepared and stained with 12 

hematoxylin-eosin to measure muscle fiber area. Area measurements of at least 100 13 

fibers were obtained for each animal from 10 randomly selected fields in 5 different 14 

sections. Muscle area was quantified using ImageJ 1.38x software (National Institutes 15 

of Health, Bethesda, MD).  16 
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Quantitative measurement of mRNA expression levels 1 

Total RNA extraction, cDNA synthesis, and quantitative real-time RT-PCR were 2 

performed as described previously [32]. In brief, total RNA was extracted with RNAiso 3 

reagent (Takara Bio, Inc., Otsu, Japan), and cDNA was synthesized using the 4 

PrimeScript® RT Reagent Kit with gDNA Eraser (Takara Bio) according to the 5 

manufacturer’s instructions. Quantitative real-time RT-PCR was performed using the 6 

iCycler MyiQ2 Real-Time PCR Detection System (Bio-Rad Laboratories Inc., Hercules, 7 

CA, USA) with SYBR Green reagent (Thunderbird SYBR qPCR Mix, Toyobo Co., Ltd., 8 

Osaka, Japan). The primer sets used were as follows: 9 

5′-AGCGCTTCTTGGATGAGAAA-3′ and 5′-GGCTGCTGAACAGATTCTCC-3′ for 10 

mouse MAFbx/atrogin-1, 5′-GAGCAGCTGGAAAAGTCCAC-3′ and 11 

5′-CTTGGCACTTGAGAGGAAGG-3′ for mouse muscle ting finger-1 (MuRF1), and 12 

5′-GCTCCAAGCAGATGCAGCA-3′ and 5′-CCGGATGTGAGGCAGCAG-3′ for 13 

36B4 as an internal control. The expression levels of all target genes were normalized 14 

using 36B4, and the values were expressed as relative fold change compared to the 15 

values of the control group (set to 1.0).  16 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 8 

Western blotting 1 

Protein expression and phosphorylation levels were evaluated by western blotting. 2 

The method of protein extraction and sample preparation from tissues and cells has been 3 

described previously [32]. In brief, cells and tissues were homogenized and sonicated in 4 

lysis buffer with protease and phosphatase inhibitors and for protein extraction. The 5 

samples were boiled for 5 min in Laemmli sample buffer, separated using SDS-PAGE 6 

and transferred onto a polyvinylidene difluoride membrane. A chemiluminescence 7 

reagent was used for detection of immunoreactive bands. Immunoblot bands were 8 

visualized by exposure onto X-ray film or by C-DiGit chemiluminescent scanner 9 

(LI-COR C-DiGit Blot Scanner, Lincoln, Nebraska, USA). Semi-quantitative analysis 10 

of immunoblotting was performed by densitometry using ImageJ 1.38x software (U. S. 11 

National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 12 

1997-2014). The levels of phosphorylated Akt and FOXO3a were normalized to total 13 

Akt and FOXO3a, respectively. The protein levels of ferritin were normalized with 14 

tubulin. The amount of protein loaded was also checked by both detection of tubulin 15 

bands and staining for all protein bands in the membrane (MemCode Reversible Protein 16 
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Stain kit; Thermo Fisher Scientific Inc., Waltham, MA). The antibodies were used at the 1 

following dilutions: anti-phospho Akt (1:500), anti-total Akt (1:1000), 2 

anti-phospho-FOXO3a (1:250), anti-total FOXO3a (1:1000), ferritin heavy chain 3 

(1:250), ferritin light chain (1:250), and anti-tubulin (1:1000).  4 

Cell culture 5 

C2C12 myoblast cells were purchased from DS Pharma Biomedical Co., Ltd. (Osaka, 6 

Japan) and were maintained and sub-cultured in DMEM containing 10% FBS, according 7 

to the culture protocol. The cells were used up to the 5th-7th passages. The cells were 8 

grown to sub-confluence for about 24-48 h, and the media was replaced with DMEM 9 

containing 2% horse serum, and incubated for 4 days to stimulate myotube formation. 10 

We used iron sulfate (FeSO4) for in vitro studies. Iron sulfate was dissolved in water 11 

and added to cell culture media. Differentiated C2C12 myotube cells were treated with 12 

100 µM iron sulfate for indicated durations. 13 

In situ tissue superoxide detection. 14 

Superoxide production of skeletal muscle or myotubes was evaluated by 15 

dihydroethidium (DHE) staining method as described previously [32]. In brief, frozen 16 
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 10 

tissue sections or non-fixed cells were incubated with DHE in PBS (10 µM) in a dark, 1 

humidified container at room temperature for 30 min and then observed using 2 

fluorescence microscopy. 3 

Small interfering RNA (siRNA) experiments 4 

siRNA targeting mouse FOXO3a and a non-targeting siRNA control sequence were 5 

purchased from Cell Signaling Technology. Transfection was performed as described 6 

previously [40]. Briefly, the differentiation induced C2C12 cells after 2 days were 7 

transfected with 50 nM siRNA using RNAiMAX® reagent and OPTI-MEM® (Life 8 

Technologies, Inc.). Cells were used for further experiments after 48 h of transfection (4 9 

days later after starting differentiation). 10 

Measurement of myotube size 11 

Myotube size was quantified by measuring diameter of 100 myotubes from 10 random 12 

fields at 100× magnification using Image J software. On an average, 5 diameter 13 

measurements were taken along the length of the myotube and the mean diameter was 14 

calculated. The values were expressed as relative fold change compared to the values of 15 

the control group (set to 100). 16 
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Statistical analysis 1 

Data are expressed as mean ± standard error of the mean (SEM). An unpaired two-tailed 2 

Student’s t-test was used for comparison between two groups. For comparison among 3 

multiple groups, statistical significance was analyzed using two-way ANOVA, and the 4 

significance of each difference was determined by post-hoc testing using Dunnett’s 5 

method or Tukey–Kramer method. The results were considered significant at P < 0.05. 6 

Results 7 

Iron-induced skeletal muscle atrophy in mice 8 

We evaluated the effect of iron treatment on body weight, skeletal muscle weight, and 9 

iron levels. As shown in Table 1, there were no differences in body weight between 10 

vehicle-treated group and the iron-treated group on day 7 and 14. The weights of 11 

gastrocnemius, soleus, and tibialis anterior muscles were significantly lower in the 12 

iron-treated group than in the vehicle-treated group on days 7 and 14. Histological 13 

analysis of representative images showed that mean size and muscle fiber area of 14 

gastrocnemius muscles was lower in iron-treated mice compared to vehicle-treated mice 15 

on day 7 and 14. The distribution of muscle fiber size showed that iron administration 16 
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 12 

increased the proportion of small-sized muscle fibers and reduced the proportion of 1 

large-sized muscle fibers (Figure 1A). 2 

Skeletal muscle iron concentration was increased by whole body iron load 3 

In terms of iron status, muscle iron concentration and serum ferritin levels were 4 

significantly higher in iron-treated mice at days 3, 7, and 14 (Table 2). The protein 5 

expressions of ferritin heavy chain and ferritin light chain, iron storage proteins, were 6 

significantly elevated at day 3, 7 and 14 in skeletal muscles of iron-treated mice (Figure 7 

1F). 8 

Iron treatment induced mRNA expression of E3 ubiquitin ligase, atrogin-1 and MuRF1 9 

in skeletal muscle of mice 10 

E3 Ubiquitin ligases, including atrogin-1 and MuRF1, are key regulators of skeletal 11 

muscle atrophy [13,14]. Therefore, we examined their involvement in iron-induced 12 

skeletal muscle atrophy and observed that iron loading augmented the mRNA 13 

expression of atrogin-1 and MuRF1 in murine skeletal muscles at day 7 and later 14 

(Figure 2A). 15 

Effects of iron load on Akt-FOXO3 pathway in skeletal muscle 16 
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Akt-FOXO3 signaling is critical in regulating the expression of E3 ubiquitin ligases 1 

[41,42]. Therefore, we checked the involvement of Akt-FOXO3 signaling in 2 

iron-induced expression of atrogin-1 and MuRF1. Iron treatment decreased FOXO3a 3 

phosphorylation on days 3, 7 and 14. Similarly, Akt phosphorylation was also reduced 4 

on day 3, 7 and 14 (Figure 2B). 5 

Effects of iron on E3 ubiquitin ligase expression and Akt-FOXO3a signaling in an in 6 

vitro study 7 

We also examined the effects of iron on E3 ubiquitin ligase expression and 8 

Akt-FOXO3a signaling in vitro using differentiated C2C12 myotube cells. Iron 9 

treatment increased the expression of atrogin-1 and MuRF1 at 8 h (Figure 3A). The 10 

levels of phosphorylated Akt and FOXO3 were decreased at 60 min after iron 11 

stimulation (Figure 3B). Morphological analysis showed myotube atrophy at 48 h after 12 

iron treatment (Figure 3C).  13 

Involvement of FOXO3a in Iron-induced myotube atrophy via E3 ubiquitin ligase  14 

To determine whether iron upregulates E3 ubiquitin ligase expression through a 15 

FOXO3a-dependent pathway, we silenced FOXO3a using siRNA. Transfection with 16 
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FOXO3a siRNA resulted in approximately 50% reduction of FOXO3a mRNA and 1 

protein levels as compared to the control siRNA-transfected cells (Figure 4A). FOXO3a 2 

silencing suppressed iron-induced atrogin-1 and MuRF1 expression (Figure 4B) and 3 

prevented iron-induced myotube atrophy in C2C12 cells (Figure 4C). 4 

Involvement of iron-mediated oxidative stress in the Akt-FOXO3-E3 ubiquitin ligase 5 

pathway in muscle atrophy 6 

An excess iron causes oxidative stress. In the present study, iron-treated mice showed 7 

increased superoxide production in the skeletal muscles (Figure 1D and E). Similarly, 8 

iron also induced superoxide production in C2C12 myotubes (Figure 3D). To determine 9 

the involvement of iron-mediated oxidative stress in skeletal muscle atrophy, we used a 10 

radical scavenger reagent, Tempol. As shown in Figure 5A, Tempol suppressed 11 

upregulation of iron-induced E3 ubiquitin ligase in C2C12 myotube cells. Tempol 12 

pre-treatment also prevented iron-induced reduction of Akt and FOXO3a 13 

phosphorylation (Figure 5B). Additionally, Tempol treatment inhibited iron-induced 14 

myotube atrophy (Figure 5C). 15 

Discussion 16 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 15 

In the present study, an excess of iron induced skeletal muscle atrophy and 1 

augmented oxidative stress. Iron loading stimulated mRNA expression of the E3 2 

ubiquitin ligases, atrogin-1 and MuRF1, and decreased the phosphorylation of Akt and 3 

FOXO3a, which resulted in decreased skeletal muscle mass. In correspondence with the 4 

in vivo model, iron treatment induced myotube atrophy, expression of E3 5 

ubiquitin-ligases, and reduced phosphorylation of Akt and FOXO3a in an in vitro 6 

system as well. The iron-induced myotube atrophy and upregulation of E3 7 

ubiquitin-ligases were inhibited by FOXO3a silencing and Tempol treatment. These 8 

findings indicated that iron induced skeletal muscle atrophy through 9 

Akt-FOXO3a-atrogenes (atrogin-1 and MuRF1) pathway by producing oxidative stress. 10 

Iron-mediated oxidative stress is thought to be involved in the pathology of 11 

hereditary iron overload diseases as well as non-hereditary diseases such as hepatitis C 12 

[19], obesity [20], diabetes [21,22] and cardio-renal vascular diseases [23,24,25]. 13 

Generally, body iron content is estimated by serum ferritin and it is elevated in the 14 

above diseases. Ferritin synthase is mainly regulated by iron at the translational level 15 

through iron-regulatory protein and iron-responsive elements in the 5′-untranslated 16 
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regions of ferritin mRNA [43]. Serum ferritin reflects stored body iron and is a useful 1 

indicator of body iron content [44], although the original source and the secretion 2 

mechanism of serum ferritin are not completely understood. On the other hand, ferritin is 3 

an acute-phase reactant protein that is synthesized upon induction by inflammatory 4 

cytokines such as TNF-α [45], IL-1ß, and IL-6 [46]. Chronic inflammation is widely 5 

recognized as a major pathogenic mechanism and is associated with obesity and 6 

metabolic diseases including diabetes and cardiovascular diseases [47,48]. Therefore, 7 

increased serum ferritin levels might be caused by not only increased iron content but also 8 

by inflammatory processes in certain clinical diseases. Nevertheless, serum ferritin levels 9 

have been used as a unique marker of body iron content. 10 

It is normally recognized that body iron content (evaluated by serum ferritin) 11 

or oxidative stress increases and skeletal muscle mass decreases with aging in humans. 12 

Several animal studies have reported that iron accumulation is also associated with 13 

atrophic change and oxidative stress in the skeletal muscles. Aged rats showed skeletal 14 

muscle atrophy, increased iron amount and oxidative stress in the skeletal muscle 15 

compared to young rats [35,36] In suspension-induced atrophied hindlimb muscles, 16 
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muscle mass negatively correlates with RNA oxidative damage and iron content in 1 

skeletal muscles of either aging or disuse [49]. Deferoxamine, an iron chelator, alleviates 2 

immobilization-induced skeletal muscle atrophy by reducing oxidative stress [50]. 3 

Iron-treated mice present with increased oxidative stress in muscles along with reduced 4 

exercise performance [39]. In agreement with the above studies, we demonstrated that 5 

mice treated with excessive iron treatment demonstrated skeletal muscle atrophy and 6 

increased oxidative stress. Thus, iron accumulation is suggested to be directly 7 

associated with skeletal muscle atrophy via increased oxidative stress. In terms of iron 8 

metabolism in atrophied muscle, IRP2 is an important regulator of muscle iron amount 9 

via regulation of TfR1 and ferritin expression in aged rats [34]. Increased expression of 10 

iron importers (DMT-1 and Zip14) and relative low expression of FPN are seen in muscle 11 

of either age or disuse, resulting in an ineffective iron export upon iron overload [36]. 12 

Taken together, the change of iron metabolism might be involved in consequent iron 13 

accumulation, contributing to a vicious cycle formation of further muscle atrophy 14 

through oxidative stress. However, the change of iron metabolism in the process of 15 

muscle atrophy with age and disuse remains unclear. Further studies are necessary to 16 
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elucidate the relationship between iron metabolism and the process of skeletal muscle 1 

atrophy. 2 

Increased protein degradation is one of the mechanisms of skeletal muscle 3 

atrophy, suggesting the importance of the balance between anabolic and catabolic 4 

processes [12,51]. In the catabolic process, E3 Ubiquitin ligases are involved in the 5 

selection of substrates for ubiquitination and subsequent proteasomal degradation 6 

[52,53]. Two studies in 2001 demonstrated that the E3 Ubiquitin ligases, atrogin-1 and 7 

MuRF1, play key regulatory roles in protein degradation during muscle atrophy [13,14]. 8 

Atrogin-1 and MuRF1 are upregulated under a multitude conditions inducing muscle 9 

atrophy including immobilization, hindlimb unloading, dexamethasone, starvation and 10 

cachexia [14,53,54]. Indeed, the mice with genetically ablated atrogin-1 and MuRF1 11 

were shown to preserve muscle mass [13,14]. Therefore, these genes are thought to be 12 

typical markers for the process of muscle atrophy. In the present study, an excess iron 13 

loading increased the expression of atrogin-1 and MuRF1 in the skeletal muscle 14 

consequently leading to muscle atrophy, thus indicating the involvement of E3 ubiquitin 15 

ligases in iron-induced skeletal muscle atrophy.  16 
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The E3 Ubiquitin ligases, atrogin-1 and MuRF1, are transcriptionally 1 

regulated by the class O-type forkhead transcriptional factors (FOXOs). Constitutively 2 

activate FOXO3a enhanced atrogin-1 promoter and induced skeletal muscle atrophy 3 

[55]. Activation of FOXO3 is necessary for atrophic induction through upregulation of 4 

atrogin-1 and MuRF1 [56,57]. On the other hand, increased expression of MuRF1 as 5 

well as atrogin-1, was necessary but not sufficient for FOXO1 activation [41], and 6 

FOXO1 transgenic mice showed skeletal muscle atrophy [58,59]. In the present study, 7 

iron inhibited FOXO3 phosphorylation in skeletal muscle of mice and in C2C12 8 

myotube cells. Moreover, FOXO3 silencing prevented iron-induced atrogin-1 and 9 

MuRF1 upregulation. These findings suggest that iron-induced atrogin-1 and MuRF1 10 

expression are involved in FOXO3 transcriptional regulation. 11 

Akt activation is involved in multiple signaling pathways including the 12 

process of skeletal muscle atrophy through the transcriptional regulation of atrogin-1 13 

and MuRF1 via inhibiting FOXOs translocation into nucleus [41,42]. Therefore, the 14 

Akt-FOXO pathway plays a crucial role in the transcriptional regulation of E3 ubiquitin 15 

ligases during skeletal muscle atrophy. In the present study, we demonstrated that 16 
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excessive iron induced oxidative stress and Akt inactivation in the skeletal muscle. In an 1 

in vitro experiment, Tempol, an anti-oxidant drug, ameliorated iron-induced skeletal 2 

muscle atrophy by inhibiting the upregulation of atrogin-1 and MuRF1 and restoration 3 

of Akt-FOXO3a inactivation. Indeed, an excess of iron causes cardiac damage through 4 

apoptosis induction via Akt inactivation, and is reversed by iron chelator administration 5 

[60]. Moreover, iron restriction is shown to ameliorate Akt inactivation, as well as 6 

increased oxidative stress in cardiovascular tissues [30]. Therefore, iron-induced 7 

oxidative stress is suggested to suppress Akt activation, consequent to the promotion of 8 

nuclear translocation of FOXO3 and transcriptional activation of E3 ubiquitin ligase in 9 

skeletal muscles.  10 

 In conclusion, excessive iron induces skeletal muscle wasting through 11 

Akt-FOXO3-dependent E3 ubiquitin ligase activation and oxidative stress. These 12 

findings suggest a new mechanism of sarcopenia due to iron accumulation and indicate 13 

the modulation of iron as a potent therapeutic target for skeletal muscle atrophy. 14 
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FIGURE LEGENDS 15 

Figure 1. Excess iron-induced skeletal muscle atrophy in mice. (A) Left panel: 16 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 22 

Representative images of gastrocnemius muscles from mice at day 7 and 14 after 1 

vehicle or iron treatment. (B) The average size of myofiber areas from mice at day 7 2 

and 14 after vehicle or iron treatment. Results are expressed as mean ± standard error of 3 

mean (SEM). **P < 0.01 vs. vehicle treatment. (C) The distribution of myofiber sizes in 4 

gastrocnemius muscles from vehicle or iron-treated mice. Values are expressed as 5 

means ± SEM. n = 4 in each group. (D) Representative images of DHE staining of 6 

skeletal muscle. (E) Quantitative analysis of relative fluorescence intensity. Relative 7 

fold change is normalized to value of the vehicle group (set to 1.0). Values are expressed 8 

as means ± SEM, n = 4–5 in each group. *P < 0.05 vs. vehicle treatment. (F) Effects of 9 

iron treatment on ferritin expression in skeletal muscles. Semi-quantitative analysis of 10 

densitometry for ferritin heavy chain and ferritin light chain normalized to tubulin. 11 

Relative fold change is normalized to value of the vehicle group (set to 1.0). Values are 12 

expressed as means ± SEM. *P < 0.05, **P < 0.01 vs. vehicle-treated mice. n = 12 in 13 

each group. 14 

 15 

Figure 2. (A) Changes in mRNA expression of E3 ubiquitin ligase genes from skeletal 16 
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muscles of vehicle- or iron-treated mice. Quantitative real-time reverse 1 

transcriptase-polymerase chain reaction (RT-PCR) analysis of atrogin-1 and MuRF1. 2 

Relative fold change is normalized to value of the vehicle group (set to 1.0). Values are 3 

expressed as means ± SEM. *P < 0.05, **P < 0.01 vs. vehicle treated mice. n = 4–8 in 4 

each group. (B) Effects of iron treatment on Akt and FOXO3a activation. 5 

Semi-quantitative analysis of densitometry for phospho-Akt and phospho-FOXO3a 6 

normalized by total-Akt and total FOXO3a, respectively. Relative fold change is 7 

normalized to value of the vehicle group (set to 1.0). Values are expressed as means ± 8 

SEM. *P < 0.05, **P < 0.01 vs. vehicle-treated mice. n = 8 in each group. 9 

 10 

Figure 3. Effect of iron stimulation on myofiber atrophy in C2C12 myotube cells. 11 

(A) Left panel: The time course changes of atrogin-1 mRNA expression after 12 

iron-treatment in C2C12 myotube cells. Relative fold change is normalized to value of 13 

the control group (at time 0) (set to 1.0). Values are expressed as means ± SEM. **P < 14 

0.01 vs. vehicle treatment at the same time. n = 4–8 in each group. Right panel: mRNA 15 

expression of atrogin-1 and MuRF1 at 8 h after vehicle or FeSO4 stimulation. Relative 16 
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fold change is normalized to value of the control group (set to 1.0). Values are expressed 1 

as means ± SEM. **P < 0.01. n = 8 in each group. (B) Left panel: Representative 2 

figures of time-course changes of Akt- and FOXO3a-phosphorylation and protein 3 

expression after iron treatment in C2C12 myotube cells. Right panel: Semi-quantitative 4 

analysis of densitometry for Akt and FOXO3a phosphorylation normalized by total-Akt 5 

and FOXO3a, respectively. Relative fold change is normalized to value of the control 6 

group (at time 0) (set to 1.0). Values are expressed as means ± SEM. *P < 0.05, **P < 7 

0.01 vs. 0 min. n = 8 in each group. (C) Left panel: Representative morphology of 8 

myotubes at 48 h after vehicle or FeSO4 treatment. Right panel: Quantitative analysis of 9 

myotube diameter. Relative fold change is normalized to value of the control group (set 10 

to 100). Values are expressed as means ± SEM. *P < 0.05, **P < 0.01. n = 4 in each 11 

group. (D) Left panel: Representative images of DHE staining of myotube cells after 30 12 

min with or without FeSO4 stimulation. Right Panel: Quantitative analysis of relative 13 

fluorescence intensity. Relative fold change is normalized to value of the control group 14 

(set to 1.0). Values are expressed as means ± SEM, n = 9 in each group. *P < 0.05 vs. 15 

vehicle treatment. 16 
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 1 

Figure 4. The involvement of FOXO3a in iron-induced myofiber atrophy. 2 

(A) C2C12 myotube cells were transfected with 50 nM FOXO3a siRNA. FOXO3a 3 

expression levels of mRNA (level panel) and protein (right panel) were reduced after 4 

treatment with FOXO3a siRNA. Relative fold change is normalized to value of the 5 

unrelated siRNA group (set to 1.0). Values are expressed as means ± SEM. *P < 0.05, n 6 

= 4 in each group. (B) Treatment with FOXO3a siRNA inhibited iron-induced atrogin-1 7 

and MuRF1 upregulation in C2C12 myotube cells. Forty-eight h after siRNA 8 

transfection, cells were treated with 100 µM FeSO4 or vehicle for 8 h, Relative fold 9 

change is normalized to value of the unrelated siRNA group (set to 1.0). Values are 10 

expressed as means ± SEM. *P < 0.05, **P < 0.01. n = 8–12 in each group. (C) Left 11 

panel: Representative morphology of myofibers at 48 h after vehicle or iron treatment 12 

with unrelated siRNA or FOXO3a siRNA transfection. Right panel: Quantitative 13 

analysis of myotube diameter. Relative fold change is normalized to value of the 14 

unrelated siRNA group (set to 100). Values are expressed as means ± SEM. *P < 0.05, 15 

**P < 0.01. n = 8 in each group. 16 
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 1 

Figure 5.  The involvement of iron-induced muscle atrophy mediated by 2 

Akt-FOXO3-E3 ubiquitin ligase pathway via oxidative stress 3 

(A) Pretreatment with Tempol inhibited iron-induced atrogin-1 and MuRF1 4 

upregulation in C2C12 myotube cells. Differentiated cells were treated with 100 µM 5 

FeSO4 or vehicle for 8 h after pretreatment with vehicle or 100 µM Tempol. Relative 6 

fold change is normalized to value of the control group (set to 1.0). Values are expressed 7 

as means ± SEM. *P < 0.05, **P < 0.01. n = 8 in each group. (B) Left panel: 8 

Representative figures of Akt- and FOXO3a-phosphorylation and protein expression 9 

after iron treatment in C2C12 myotube cells. Right panel: Semi-quantitative analysis of 10 

densitometry for phospho-Akt, and phospho-FOXO3a corrected by total-Akt and 11 

FOXO3a, respectively. Relative fold change is normalized to value of the control group 12 

(Fe+Vehicle treatment at time 0)(set to 1.0). Values are expressed as means ± SEM. *P < 13 

0.05, **P < 0.01. Values are expressed as means ± SEM. *P < 0.05, **P < 0.01. n = 8 in 14 

each group. (C) Left panel: Representative morphology of myofibers at 48 h after 15 

vehicle or FeSO4 treatment with or without Tempol. Right panel: Quantitative analysis 16 
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of myotube diameter. Relative fold change is normalized to value of the control group 1 

(set to 100). Values are expressed as means ± SEM. *P < 0.05, **P < 0.01. The values 2 

are expressed as means ± SEM. *P < 0.05, **P < 0.01. n = 6 in each group. 3 

  4 
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Table.1 Characteristics of Body weight and skeletal muscles weight 

 Pre Day 7 Day 14 

 Vehicle Fe Vehicle Fe Vehicle Fe 

Body weight (g) 22.4 ± 0.2 22.7 ± 0.2  23.3 ± 0.4 24.0 ± 0.4  23.6 ± 0.2  24.1 ± 0.3 

Gastrocunemius muscle (mg) — — 139.8 ± 3.0  125.1 ± 2.8** 135.9 ± 3.8 122.5 ± 1.8** 

Soleus muscle (mg) — —   8.2 ± 0.2    6.3 ± 0.3**   8.3 ± 0.3   7.0 ± 0.2** 

Tibialis anterior muscle (mg) — —  70.6 ± 1.9 64.8 ± 1.5*  68.9 ± 3.6 58.1 ± 2.1* 

Data are the mean ± SEM, n = 10–18, as indicated. *P < 0.05, **P < 0.01 vs. vehicle treatment at the same time

Table



Table.2 Changes of skeletal muscle iron content serum ferritin concentration  

 Vehicle Fe day 1 Fe day 3 Fe day 7 Fe day 14 

Gastrocunemius muscle iron  

 (µg / g muscle weight) 
 10.1 ± 0.3 12.3 ± 0.9 17.5 ± 0.6* 20.4 ± 0.7*  23.7 ± 1.3** 

Serum ferritin (ng/ml) 490 ± 20 1481 ± 987   9690 ± 2127**  33892 ± 1106**  46405 ± 6292** 

Data are the mean ± SEM, n = 6–12, as indicated. *P < 0.05, **P < 0.01 vs. vehicle treatment  
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