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Summary 

The thymic cortex provides a microenvironment for the development and positive 

selection of immature T cells. Cortical thymic epithelial cells (cTECs), which 

structurally and functionally support the thymic cortical microenvironment, originate 

from endodermal epithelial progenitors that arise in the third pharyngeal pouch. Recent 

studies have revealed that thymic epithelial progenitors pass through a stage where the 

cells express cTEC-associated molecules prior to lineage separation into cTECs and 

medullary TECs (mTECs). Here we review the molecular signatures of cTECs and 

highlight the development and developmental potential of cTECs. 
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Introduction 

The thymus is a primary lymphoid organ that supports the development and 

repertoire selection of T cells. The thymic architecture is mostly divided into two 

distinct microenvironments, the cortex and the medulla, which are characterized by the 

presence of cortical thymic epithelial cells (cTECs) and medullary thymic epithelial 

cells (mTECs), respectively. The cortical and medullary thymic microenvironments 

differently contribute to T cell development; i.e., the cortex supports early T cell 

development and positive selection of immature thymocytes, whereas the medulla 

supports the establishment of self-tolerance in T cells. 

T-lymphoid progenitors that migrate into the thymus parenchyma are induced 

to differentiate into T cells through the signals through Notch ligand DLL4 and 

γc-cytokine IL-7, which are highly expressed in cTECs (1-4). Immature thymocytes are 

primarily detectable in the thymic cortex (5, 6), where the thymocytes are induced by 

DLL4 and IL-7 to express T-cell antigen receptor TCRαβ as well as co-receptors CD4 

and CD8. The V(D)J rearrangement in the TCRα and TCRβ genomic loci in cortical 

thymocytes is responsible for the diversity in TCR recognition specificities carried by 

the pool of T cells. cTECs are also reported to contribute to the development of γδT 

cells (7). 

 Newly generated thymocytes that express TCRs carrying individual 

recognition specificities are selected for life or death according to their TCR recognition 

specificities, initially in the cortical microenvironment through the interaction with 

cTECs that express self-peptide-associated class I and class II MHC molecules (8). 

Only thymocytes that are signaled with low-affinity TCR engagement are selectively 

induced for cell survival. This process is termed positive selection. Positively selected 

Page 3 of 47 Immunological Reviews: Submitted manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 4

thymocytes begin expressing chemokine receptor CCR7 and migrate to the medullary 

parenchyma where mTECs abundantly produce CCR7 ligand chemokines (9, 10). The 

migration to the medulla is important for T cells to establish tolerance to 

self-components, including tissue-restricted self-antigens (11-15). Only thymocytes that 

survive multiple layers of positive and negative selection in the cortical and medullary 

microenvironments are entitled to export to the circulation. 

 Thus, cTECs are chiefly responsible for the early induction of T cell 

generation and the positive selection of newly generated T cells. Here we will initially 

provide a brief summary of molecular signatures expressed by cTECs, focusing on the 

functions and heterogeneity of cTECs. We will then discuss the development of cTECs 

as well as their developmental potential to give rise to mTECs. 

 

cTECs provide microenvironment for early T cell development 

        cTECs express various molecules that support T cell lineage specification and 

regulate early T cell development in the thymic cortical microenvironment. As these 

aspects of cTEC functions have been reviewed previously (10, 15-17), here we only 

briefly list several molecules in this regard. 

 

DLL4 

        The pioneering study by Schmitt and Zuniga-Pflücker unveiled the ability of 

Delta-mediated Notch signals to induce the lineage specification of early lymphoid 

progenitors to become T cells (18). It was later identified that among five mammalian 

Delta-like ligands, DLL4 is abundant in cTECs and responsible for T cell lineage 

commitment of early lymphoid progenitors and subsequent development to the 
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CD4+CD8+ stage (1, 2). The expression of DLL4 in cTECs is negatively correlated 

with ontogeny, so that DLL4 expression in the thymic cortex decreases with age (19). 

Low levels of DLL4 may be sufficient for the maintenance of T-lymphopoiesis in the 

adult thymus. 

 

Cytokines 

 Interleukin-7 (IL-7) is a γc cytokine essential for the survival and 

differentiation of immature lymphoid cells, including immature thymocytes. IL-7 is 

produced by cTECs and mTECs, but is more abundant in cTECs than mTECs (20). 

Another cytokine kit-ligand (KL), also known as stem cell factor (SCF), which 

promotes the survival and proliferation of immature thymocytes, is also more highly 

expressed in cTECs than mTECs (21). 

 Transforming growth factor (TGF) β proteins, which are abundant in cTECs, 

contribute to regulating the rate of the generation of CD4+CD8+ thymocytes from 

intermediate CD8low precursor cells (22). 

 

Chemokines 

        cTECs highly express chemokines CCL25 and CXCL12 as well as 

chemokine-binding protein CCRL1 (15, 23, 24). 

During embryonic development, CCR9 ligand CCL25 produced by TECs in 

the thymus primordium critically regulates the colonization of lymphoid progenitors, in 

coordination with CCR7 ligand CCL21 produced by the neighboring parathyroid 

primordium, particularly before the vascularization of the thymus (25). The role of 

chemokine signals through CCR9 and CCR7 ligands in the thymus seeding of T cell 
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progenitors can also be detected in postnatal mice when lymphoid progenitor cells are 

competitively transferred in radiation bone marrow chimera experiments (26, 27). 

        CXCR4 ligand CXCL12 is detectable in cTECs throughout the cortex, and is 

most abundantly expressed in the outer cortex (23). CXCL12 critically regulates early 

thymocyte development by promoting the survival of immature thymocytes (28). 

CXCL12 also plays a role in the appropriate positioning of immature thymocytes in the 

thymic cortex (23). 

 CCRL1, also known as Ccx-ckr1, is a non-signaling receptor for chemokines 

CCL19, CCL21, and CCL25, and is more abundant in cTECs than mTECs (24). It was 

reported that CCRL1 regulates thymus colonization before vascularization in fetal mice 

(29) as well as optimal thymus homeostasis and normal thymocytes development in 

adult mice (30). 

 

cTECs organize microenvironment for T cell positive selection 

cTECs provide the microenvironment for not only generating TCR-expressing 

CD4+CD8+ thymocytes but also inducing positive selection of newly generated 

CD4+CD8+ thymocytes. In addition to expressing self-peptide-associated class I and 

class II MHC molecules for TCR recognition by CD4+CD8+ thymocytes, cTECs carry 

unique protein degradation machineries that provide MHC-associated self-peptides that 

optimize positive selection of thymocytes. These functions of cTECs have been 

extensively reviewed elsewhere (14, 15, 31-34). Here we briefly provide an update of 

the molecules involved in self-antigen presentation in cTECs. 

 

Thymoproteasome 
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The thymoproteasome is a cTEC-specific form of the proteasome, which 

cytoplasmically produces class I MHC-associated peptides. The thymoproteasome is 

specifically expressed in cTECs, as its β5 subunit, β5t encoded by Psmb11, is 

exclusively abundant in cTECs and not in any other cells (35). Cells that express 

thymoproteasomes display a unique repertoire of class I MHC-associated peptides (36). 

An analysis of β5t-deficient mice suggested that thymoproteasome-dependent peptides 

associated with class I MHC displayed by cTECs are enriched with low-affinity TCR 

ligands, so that thymoproteasome-expressing cTECs are capable of inducing optimal 

positive selection of functionally competent CD8+ T cells (36, 37). A recent study using 

monoclonal TCR-transgenic mice further revealed a novel aspect of 

thymoproteasome-dependent positive selection, in which thymoproteasome-expressing 

cTECs are crucial for not only shaping an immunocompetent TCR repertoire but also 

fine-tuning TCR responsiveness in positively selected CD8+ T cells (38). 

 

Cathepsin L and thymus-specific serine protease 

        Cathepsin L is a ubiquitously expressed lysosomal endopeptidase. In the 

thymus, cTECs abundantly express cathepsin L, whereas other antigen-presenting cells, 

including mTECs, predominantly express cathepsin S rather than cathepsin L. In 

addition to its role in the degradation of invariant chain Ii, which is assembled with 

class II MHC molecules (39, 40), cathepsin L in cTECs is involved in the generation of 

class II MHC-associated self-peptides for positive selection of CD4+ T cells (31, 41).  

        Thymus-specific serine protease (Tssp), which is encoded by Prss16, was 

initially reported in the human genome for its association with the susceptibility to type 

I diabetes (42). Tssp is highly expressed in cTECs (43). Tssp-deficient mice exhibit a 
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decrease in class II MHC expression in cTECs and partial impairment in positive 

selection of CD4+ T cells (44-46). The role of Tssp in tumor regulation is also noted 

(47). 

 

Autophagy 

        Autophagy, or macroautophagy, is an intracellular protein degradation system 

that is activated by nutrient starvation (48, 49). However, autophagy is constitutively 

active in the thymus, especially among TECs including many cTECs, even without the 

starvation (49, 50). As autophagosomes fuse with lysosomes for proteolysis, autophagy 

contributes to providing cytosolic protein antigens to the class II MHC presentation 

pathway. Indeed, autophagy in cTECs has been shown to contribute to the optimal 

positive selection of CD4+ T cells (50).  

 

Heterogeneity in cTECs and thymic nurse cells 

        Considering that cTECs play multiple roles in T cell development by 

promoting the early induction of T cell generation and by supporting positive selection, 

it is tempting to speculate that cTECs consist of functionally distinct subpopulations 

that individually play different roles in T cell development. It was reported that mTECs 

consist of at least two clearly distinct and functionally potent subpopulations, namely, 

Aire-expressing self-antigen-producing mTECs and CCR7-ligand-expressing 

thymocyte-attracting mTECs (51). However, it has been shown that the majority of 

cTECs express DLL4, IL-7, class II MHC, β5t, and CD205 (1, 4, 52, 53), suggesting 

that T cell development-inducing cTECs and positive selection-inducing cTECs are 

overlapped with each other. 

Page 8 of 47Immunological Reviews: Submitted manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 9

cTECs are defined as epithelial cells localized in the cortex of the thymus. 

Thanks to recent progress in the molecular biology of thymic non-hematopoietic cells, 

as outlined above, cTECs can now be identified and isolated on the basis of the 

expression of CD205, Ly51 (CD249), and EpCAM (CD326). Other classical markers, 

such as class II MHC, keratin 8, and ER-TR4, as well as more recently identified 

functional molecules, such as DLL4, IL-7, CCRL1, and β5t, are additionally useful for 

the identification and characterization of cTECs. The undetectable expression of mTEC 

markers, such as keratin 5, keratin 14, MTS-10, ER-TR5, and Aire, as well as the 

reactivity to the lectin Ulex europaeus agglutinin 1 (UEA-1), can also offer clues for the 

identification of cTECs. Measuring the expression of these molecules has inspired 

studies of the heterogeneity in cTECs on a single cell basis. By detecting the expression 

levels of these molecules, it has been shown that cTECs are heterogeneous most 

obviously in class II MHC expression, consisting of class II MHClow and class II 

MHChigh populations (54). Heterogeneity in the expression levels of DLL4, IL-7, 

CD205, and other molecules has also been noted (4, 11, 52, 55). 

It is interesting to note that thymic nurse cells (TNCs) represent a functionally 

distinct subpopulation of cTECs. TNCs are large TECs that envelop many thymocytes 

(56). Since their discovery more than 30 years ago (57, 58), many researches have tried 

to uncover their functions. There have been suggestions that TNCs provide the 

microenvironments that support the proliferation and differentiation of cortical 

thymocytes (59-63) as well as positive and negative selection of thymocytes (64-66). 

Recently, Nakagawa, et al. (67) reported that approximately 10% of β5t-expressing 

cTECs in adult mouse thymus can be defined as TNCs that completely envelop many 

CD4+CD8+ thymocytes. It was shown that TNCs are not necessary for thymocyte 
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positive and negative selection, as TNCs were hardly detected in the thymus of 

TCR-transgenic mice in that positive or negative selection was readily detectable (67). 

Rather, thymocytes confined within TNCs were enriched with long-lived CD4+CD8+ 

thymocytes that underwent secondary TCRα rearrangement (67). Therefore, it was 

suggested that TNCs, which represent a subpopulation of cTECs, provide a 

microenvironment for the optimal TCR repertoire selection of CD4+CD8+ thymocytes 

through the secondary TCRα rearrangement. Heterogeneity in gene expression profiles 

between TNCs and non-TNC cTECs has also been noted (67). 

 

Ontogeny of cTECs 

Like mTECs, cTECs originate from the endodermal epithelium of the third 

pharyngeal pouch (68, 69). Bipotent thymic epithelial progenitors (pTECs) that give rise 

to cTECs and mTECs have been detected in embryonic and postnatal thymus (70-72). 

In mouse, TECs are detectable as early as embryonic day 11 (E11) by the landmark 

expression of Foxn1, a member of the forkhead family of transcription factors that 

specify TECs and hair follicle cells (68, 73-75). Spontaneous mutations in Foxn1 lead to 

congenital thymic hypoplasia accompanied by severe T cell deficiency in mouse and 

human (74-77). Even without Foxn1, keratin-expressing epithelial cells are detectable in 

the third pharyngeal pouch, although thymic architecture supported by cTECs and 

mTECs is not subsequently formed (75), indicating that Foxn1 is indispensable for the 

development of TECs rather than the formation of the third pharyngeal pouch or its 

epithelial layers. The differentiation of cTECs from bipotent progenitors is initiated as 

early as embryonic day 12 (E12) in mouse (52, 53). Two recent papers have described 

the ontogenetic development of cTECs. 
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Shakib, et al. (52) reported the successive developmental stages of cTECs 

defined by the expression of CD205 and co-stimulatory molecule CD40 during mouse 

ontogeny. In Foxn1-deficient mice, the thymus primordium expressed neither CD205 

nor CD40. CD205+ TECs emerged at E12 without detectable CD40 and gradually 

acquired CD40 expression along with the increase in CD205 expression level during 

embryogenesis. Isolated CD205+ CD40- embryonic TECs expressed β5t and cathepsin 

L genes, but were heterogeneous in the expression of class II MHC. Neither CD40 nor 

class II MHC was expressed in CD205+ cTECs in hCD3ε tg26 mice, in which early 

thymocytes development was defective (52, 78). These results suggest that cTEC 

development occurs initially through the CD205+ CD40- stage and the subsequent 

elevation of CD40 and class II MHC to give rise to CD205+ CD40+ class II MHChigh 

cTECs, and that thymocyte development influences the late phase of cTEC 

development (Fig. 1). 

Mat Ripen, et al. (53) reported the ontogeny of β5t-expressing cTECs in 

mouse. β5t-expressing cells were detectable as early as E12.5, specifically in the 

thymus and in CD205-expressing cTECs. The expression levels of CD205 and CD249 

as well as class II MHC were gradually elevated in β5t-expressing TECs during 

ontogeny, suggesting that β5t is expressed by cTECs at both immature and mature 

stages. In support of this finding, β5t expression in cTECs was detectable even in 

hCD3ε tg26 mice. β5t was undetectable in the thymus primordium of Foxn1-deficient 

mice, whereas β5t was present in abundance in relB-deficient mice that lacked mTECs. 

Thus, like CD205, β5t is expressed at the initial appearance stage of cTECs in 

Foxn1-dependent manner, but independent of thymocytes or mTECs (Fig. 1). 

The molecular mechanisms regulating cTEC development are vague, in 
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contrast to the roles of TNFSF cytokine receptors, including RANK, CD40, and 

lymphotoxin β receptor, and the downstream signaling pathways for the activation of 

NF-κB transcription factors, which have been extensively documented in mTECs 

(79-85). Experiments conducted in hCD3ε tg26 mice, in which thymocyte development 

is arrested at the very early DN1 stage, have shown that the thymic cortex is 

disorganized and cTECs are arrested at the CD40- MHC IIlow stage (52, 86, 87). In 

contrast, cTECs are fully capable of giving rise to the CD40+ class II MHChigh stage 

even in Rag1-deficient mice, in which T cell development is arrested at the DN3 stage 

(52). Thus, cTECs require signals from developing thymocytes beyond the DN1 stage 

for optimal development (Fig. 1). 

In addition to developing thymocytes, mesenchymal cells in the thymus 

contribute to the development of cTECs. Fibroblast growth factor (FGF)-7 (also known 

as KGF), FGF-10, and insulin-like growth factor 1 (IGF-1) produced by mesenchymal 

cells promote the proliferation of cTECs and mTECs (88-92). In contrast, mesenchymal 

cell-derived retinoic acid (RA) negatively affects the cellularity of cTECs and mTECs, 

whereas the blockade of RA signaling increases the cellularity of cTECs and elevates 

the expression of DLL4, β5t, and Tssp in fetal thymus organ culture (93) (Fig. 1). It 

remains unclear how RA affects cTECs. 

 

Cells that express cTEC-associated molecules give rise to cTECs and mTECs 

Through further analysis of cTEC development, recent studies have 

independently and unexpectedly reported that mTECs are derived from bipotent 

progenitors that express cTEC-associated molecules. 

Baik, et al. (94) examined the developmental potential of embryonic TECs 
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expressing cTEC-associated molecule CD205. They cultured fetal thymuses isolated 

from E11 and E12 mouse embryos in the presence or absence of agonistic anti-RANK 

antibodies that were capable of promoting the development of mTECs, and analyzed the 

expression of TEC maturation markers CD40 and MHC II in CD205negative, 

CD205low, and CD205high TEC populations. All of these populations responded to 

RANK stimulation by expressing CD40 and MHC II in 1-day culture of E12 thymuses, 

and the frequency of CD40+ MHC II+ cells progressively increased with the elevation 

of CD205 expression levels. On the other hand, E11 thymus cells did not respond to 

RANK stimulation; the cells failed to express CD40 and MHC II in the 1-day culture 

experiments. These results suggest that CD205+ embryonic TECs serially acquire the 

potential to give rise to CD40+ MHC II+ mTECs. They further showed that highly 

purified CD205+ CD40- embryonic TECs, which expressed a set of cTEC-associated 

molecules (52), could differentiate into both Aire-expressing mTECs and 

β5t-expressing cTECs in in vitro reaggregate thymus organ culture followed by 

transplantation of the aggregates under mouse kidney capsules (94). Thus, CD205+ 

embryonic TECs, which resemble cTECs, carry bipotent progenitor capability that gives 

rise to both cTECs and mTECs. 

Ribeiro, et al. (20) studied the developmental potential of TECs expressing 

IL-7 in IL-7-reporter transgenic mice, in which the IL-7 promoter drove the gene 

encoding yellow fluorescence protein (YFP). They found that the majority of YFP+ 

cells were enriched in CD205+ Ly51+ cTECs through the ontogeny, whereas CD80+ 

mTECs were predominantly detectable in YFP- cells. In addition to those cell-surface 

molecules, YFP+ cells expressed other cTEC-associated genes, including DLL4, β5t, 
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and Tssp, whereas YFP- cells contained other mTEC-associated genes, including Aire 

and RANK. Thus, YFP+ and YFP- thymic cells predominantly contained cTECs and 

mTECs, respectively. They further looked into the developmental potential of YFP+ 

and YFP- TECs isolated from embryonic thymus in in vitro reaggregate thymus organ 

cultures, and found that both YFP+ and YFP- TECs gave rise to Ly51+ cTECs and 

CD80+ mTECs. These results indicate that embryonic TECs that express high levels of 

IL-7 and so resemble cTECs retain the differentiation potential into mTECs. 

Subsequently, they also examined the developmental potential of embryonic cTECs by 

detecting another cTEC-associated molecule, CCRL1, using CCRL1-EGFP-knockin 

mice, in which EGFP is expressed under the control of CCRL1 gene expression (95). 

The expression of CCRL1-dependent EGFP in the thymus was detectable as early as 

E13.5, and gradually increased during ontogeny. In vitro reaggregate thymus organ 

culture experiments demonstrated that CCRL1-EGFP+ TECs gave rise to 

UEA1+CD80+ mTECs in the presence of RANK and CD40 stimulation (95). Therefore, 

CCRL1+ embryonic TECs, which resemble cTECs, retain developmental potential to 

give rise to mTECs. 

Those studies by Baik, et al. (94) and Ribeiro, et al. (20, 95) examined the 

developmental potential of embryonic cTECs essentially by in vitro cell culture 

experiments with or without subsequent in vivo transplantation in mice. In contrast, in 

our recent study, we examined the developmental potential of cTECs by in vivo fate 

mapping experiments, which enabled the characterization of normally developed 

mTECs without employing in vitro cell cultures or invasive transplantation surgeries. 

To do so, we engineered mice in that the coding sequence of the cTEC-specific gene, 
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β5t, was replaced with Cre recombinase, and crossed those mice with 

CAG-loxP-stop-loxP-EGFP-transgenic reporter mice, in which EGFP would be driven 

under the control of the CAG promoter only when the loxP-flanked stop sequences were 

excised by Cre expression (96). In those mice, EGFP expression reflected present 

and/or past expression of β5t in cells. We found that β5t-Cre-mediated EGFP 

expression could be detected in TECs but not in other cells in the thymus or other 

organs. Among TECs, β5t-Cre-mediated EGFP was expressed in almost all mTECs as 

well as in almost all cTECs throughout the ontogeny. As mTECs do not presently 

express β5t, these results indicate that the majority of mTECs originate from cells that 

express β5t (96).  

The expression of β5t-Cre-mediated EGFP is detectable in TECs as early as 

E12.75, approximately half a day after the first detection of β5t protein in TECs (53, 96). 

However, β5t protein is no longer detectable in EGFP+ mTECs localized in the central 

region of E12.75 thymus. These results suggest that mTECs derived from β5t+ TEC 

progenitors lose the ability to express β5t soon after the commitment to become mTECs 

(96). Perinatal β5t+ TECs, which resemble cTECs, are indeed bipotent, giving rise to 

cTECs and mTECs as shown in the reaggregate organ culture and kidney 

transplantation experiments (97). 

These studies from at least three independent laboratories have collectively 

proposed a novel concept for the TEC differentiation pathways, particularly the 

mechanisms of how cTECs and mTECs are diversified from their common progenitors; 

i.e., bipotent TEC progenitors progress through the stage that exhibits the molecular 

signatures of cTECs, including the expression of CD205, IL-7, and β5t, prior to 
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commitment to the cTEC and mTEC lineages (98) (Fig. 2). As these bipotent TEC 

progenitors express cTEC-associated molecules, these progenitors can be viewed by 

definition as a fraction of cTECs. Previously reported embryonic cTECs may contain, 

or even represent, the bipotent TEC progenitors expressing cTEC-associated molecules. 

In addition, it can be interpreted that a fraction of cTECs carry developmental potential 

to give rise to mTECs. The concept of “serial progression” of cTECs and mTECs, 

agrees with the earlier development of cTECs than mTECs in ontogeny and with the 

necessity for mTECs to establish medullary self-tolerance only when cTECs are 

functionally competent to induce and positively select T cells. 

 

Perinatal and postnatal mTEC progenitors that express cTEC molecules 

Several studies have reported the existence of bipotent TEC progenitors in the 

adult thymus (71, 72, 99). Accordingly, Ohigashi, et al. (100) and Mayer, et al. (97) 

examined the developmental potential of β5t+ bipotent TEC progenitors in a given 

period by employing β5t-rtTA knock-in mice, in which reverse tetracycline 

transactivator (rtTA)-encoding sequence was inserted in the β5t locus. β5t-rtTA 

knock-in mice were crossed with Tet operator-driven Cre transgenic mice along with 

loxP-dependent EGFP or ZsGreen reporter mice, which allowed in vivo tracing of cells 

that transcribed β5t during a given period by tracing fluorescent cells labeled by 

doxycycline (Dox) administered during that period (97, 100). The tracing of 

fluorescence-labeled mTECs in adult mice revealed that approximately 60% of cells 

were embryonically labeled, and approximately 30% of mTECs were 

fluorescence-labeled during the first week of life (100). In sum, at least 90% of mTECs 

in the adult thymus are derived from progenitors that transcribe β5t during 
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embryogenesis and the neonatal period up to 1 week of age. These frequencies of 

embryonically and neonatally labeled cells within mTECs remained unchanged at least 

up to 45 weeks of age (100). The fluorescence-labeled mTECs included class II 

MHChigh mTECs, which contained Aire+ cells, and class II MHClow mTECs, which 

contained CCR7-ligand-expressing cells (51, 100). Embryonically and neonatally 

labeled mTECs similarly expressed genes that were functionally relevant in mTECs, but 

were not identical with respect to the spectrum of promiscuously expressed 

self-antigens, including the fetal antigen, α-fetoprotein (100). These results indicate that 

embryonic and neonatal β5t+ progenitors are capable of forming functional mTEC 

subpopulations. 

In contrast to these perinatal β5t+ progenitors, the contribution of adult β5t+ 

progenitors to the de novo generation of mTECs in adult thymus was minor. The 

frequency of fluorescence-labeled mTECs dropped to approximately 3-5% in mice that 

were Dox-treated after 1 week of age (100). These fluorescence-labeled mTECs might 

in part reflect the promiscuous expression of β5t gene in a small fraction of mTECs. 

However, the fluorescence in mTECs remained detectable even several months after 

Dox treatment and so possibly reflected the contribution of adult β5t+ progenitors in the 

long-term maintenance of mTECs in the adult period albeit at a low frequency (97). 

Nevertheless, these results indicate that unlike perinatal β5t+ progenitors, adult β5t+ 

progenitors play only a minor role in the maintenance of mTECs in the adult thymus 

(Fig. 3). 

Considering the active proliferation and rapid turnover of mTECs in the adult 

thymus (101-103), it is conceivable that mTEC-lineage committed cells that exceed the 
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β5t+ bipotent stage during early ontogeny, rather than postnatal bipotent TEC 

progenitors, mainly maintain adult mTECs via active proliferation throughout life (Fig. 

3). It is even possible that mTECs are actually maintained by the continuous 

self-duplication of mTECs (Fig. 3), as observed in other epithelial tissues, such as 

pancreas and liver (104, 105). 

In this regard, Sekai, et al. (106) recently reported that 

mTEC-lineage-restricted progenitor/stem cells, which are capable of maintaining 

functional mTECs, can be defined as claudin-3/4+ SSEA1+ cells. In collaborative 

experiments with their laboratory, we have shown that the majority of those 

claudin-3/4+ SSEA1+ mTEC-lineage-restricted progenitor/stem cells detectable in the 

adult thymus are derived from perinatal β5t+ progenitors (100). Thus, it is possible that 

mTEC-lineage-restricted progenitor/stem cells contribute to the maintenance of mTECs 

in the adult thymus (Fig. 3). 

Where do bipotent TEC progenitors localize in the thymus? Classically, it was 

shown that K5+ K8+ TECs, which were presumed to contain bipotent TEC progenitors, 

were enriched at the cortico-medullary junction in the adult thymus (87, 107). More 

recently, perinatally labeled β5t+ TEC progenitors were detected at the 

cortico-medullary junction in the adult thymus (97). It is therefore possible that bipotent 

TEC progenitors localize at the cortico-medullary junction in the adult thymus, to 

supply cTECs to the cortex and mTECs to the medulla (Fig. 4). Alternatively, the 

localization of bipotent TEC progenitors in the adult thymus is not limited to the 

cortico-medullary junction in the thymus. Rather, they produce cTECs and mTECs to 

newly generate the microenvironments of the cortex and the medulla, respectively, in 

the areas neighboring the place where the progenitors localize, so that the 
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cortico-medullary junction is consequently formed wherever bipotent TEC progenitors 

are present in the thymus parenchyma (Fig. 4). 

 

Postnatal maintenance of cTECs 

 The use of β5t-rtTA knock-in-dependent TetO-Cre-mediated fluorescence 

reporter mice enabled the analysis of the postnatal maintenance of cTECs with respect 

to the contribution and decay of cTECs that express β5t in a given time period. The 

fluorescence labeling of cTECs in these mice could reflect either the current expression 

of β5t in cTECs or the past expression of β5t during the differentiation from β5t+ 

bipotent TEC progenitors. We found that the majority of cTECs in the adult thymus are 

fluorescence-labeled by Dox administered during either embryogenesis or the neonatal 

period (97, 100). The frequency of the embryonically and neonatally labeled cTECs 

gradually decreased to approximately 70% by 45 weeks old, suggesting that 

approximately two-thirds of cTECs in the adult thymus are maintained by cells that are 

derived from embryonic or neonatal β5t-expressing cells, whereas approximately 

one-third of adult cTECs are de novo generated in adult mice (100). Thus, the postnatal 

dynamics for the generation and maintenance of cTECs appears to differ from that of 

mTECs. Unlike mTECs, a considerable portion of cTECs in the adult thymus may be de 

novo generated in adult life. 

 

Age-dependent damage in cTECs 

The thymus is one of the most susceptible organs to age-dependent atrophy, or 

involution. Thymic involution leads to a decline in de novo T cell production and in the 

diversity of T cell repertoires, thereby resulting in the deterioration of the immune 
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system (108). The cortical compartment of the thymus, which is predominantly 

composed of cTECs and CD4+CD8+ thymocytes, is highly susceptible to the involution 

(108, 109). A recent study by Griffith, et al. (110) revealed that reactive oxygen species 

contribute to the early senescence of cTECs during age-dependent thymic involution. 

Through global transcriptome analysis and transgenic overexpression experiments, they 

showed that the expression of the antioxidant enzyme, catalase, is reduced in TECs, 

particularly in cTECs, and that either the transgenic overexpression of catalase or the 

administration of antioxidants diminishes thymic atrophy. These results suggest that 

metabolic damage in cTECs by catalase deficiency and thereby by the accumulation of 

reactive oxygen species plays an important role in the age-dependent loss of cTECs. 

Age-dependent thymic involution is correlated with the decrease in Foxn1 

expression in TECs (111). Genetic manipulation to reduce Foxn1 expression in the 

postnatal thymus leads to a decrease in TEC cellularity, whereas overexpression of 

Foxn1 in aged mice restores the number of TECs (112-115). Inactivation of 

retinoblastoma (RB) protein enhances Foxn1 expression by activating E2F transcription 

factors, so that the RB-E2F transcriptional pathway regulates Foxn1 expression. 

Inactivated RB protein in TECs decreases with age (116), whereas the decrease in E2F3 

transcription activity in cTECs and MHC IIlow mTECs is correlated with thymic 

involution (21). Age-associated decrease in Wnt4, which promotes Foxn1 expression, is 

also correlated with the decrease in Foxn1 expression (21, 117, 118). 

In the human thymus, the secretion of proinflammatory cytokines, including 

IL-6, is elevated in an age-dependent manner (119). In mouse, many proinflammatory 

cytokine genes, including Il1a, Il1b, Cxcl2, Il6, Il12b, Il18, and Tnf, are elevated in 

thymic dendritic cells in aged thymus, whereas cTECs and thymic fibroblasts express 
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IL-1 activating receptor gene Il1r1 rather than IL-1 antagonists Il1rn and Il1r2, which 

are detectable in mTECs (21). In mice deficient in inflammasome Nlrp3, active IL-1β is 

reduced and cTECs are maintained in aged thymus (120). Thus, the elevated expression 

of proinflammatory cytokines may contribute to the age-dependent damage in cTECs.  

 

Injury and regeneration of cTECs 

        Thymic involution is induced not only by the ageing but also by other stresses, 

including irradiation, infection, and chemotherapeutic drugs. In contrast to 

age-dependent thymic involution, stress-induced thymic injuries are transient and 

regenerable. Rode and Boehm (24) engineered Ccx-ckr1-diphtheria toxin receptor 

(DTR)-transgenic mice, in which the Ccx-ckr1 promoter drives DTR expression. In 

these mice, transient treatment with diphtheria toxin (DT) efficiently ablated cTECs 

accompanied by the decrease in thymocytes, and cessation of the DT treatment led to 

the recovery of both cTECs and thymocytes. These results indicate that cTECs carry 

regenerative potential to counter injury-triggered thymic involution. Upon irradiation, 

radio-resistant lymphoid tissue inducer cells promote the production of IL-22 in an 

IL-23-dependent manner (121). The IL-22 receptor is expressed in cTECs and mTECs, 

and IL-22 promotes the increase in the number of cTECs and MHC IIlow mTECs in 

irradiated thymus, contributing to the repair of the thymic cortex and medulla (121).  

        During the post-injury thymic repair, cTECs and mTECs are regenerated from 

injury-resistant cells that could be either bipotent progenitors or lineage-restricted cells. 

We recently examined the contribution of β5t+ bipotent progenitors during 

injury-triggered thymic regeneration, by employing β5t-rtTA x tetO-Cre x GFP-reporter 

mice. We found that embryonic and neonatal, rather than adult, β5t+ progenitors 
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contributed to the majority of mTECs in the thymus regenerated from either total body 

irradiation or polyinosinic-polycytidylic acid treatment, which mimicked viral 

double-stranded RNAs and induced interferon-α-mediated injury in TECs. Similar to 

mTECs, the de novo generation of cTECs was not enhanced during the injury-triggered 

thymus regeneration (100). Therefore, the injury-triggered regeneration of mTECs is 

mainly mediated by cells that are derived from perinatalβ5t+ TEC progenitors, rather 

than by cells derived from adult β5t+ TEC progenitors (Fig. 5). Self-duplication or 

lineage-committed progenitors likely contribute to the regeneration of most cTECs and 

mTECs. 

 

Sex hormones affect cTECs 

        TECs are highly dynamic and exhibit continuous turnover. It was estimated 

that approximately 10% of TECs in the adult thymus are newly supplied daily, and 

TECs turnover occurs every 10 to 14 days (101). cTECs and mTECs proliferate at a 

similar rate in young mice, but the proliferation rate of cTECs become lower than that 

of mTECs in aged mice (122). The ablation of male sex hormones by castration 

promotes the regeneration of the thymus in aged mice by enhancing the proliferation of 

TECs and thymocytes (101).  

 Dumont-Lagacé, et al. (123) reported that the expression in cTECs of 

molecules associated with cTEC functions, including Foxn1, DLL4, CCL25, β5t, and 

cathepsin L, was lower in males than females or castrated males. The proliferation of 

cTECs was less active in males than females or castrated males, whereas mTEC 

proliferation was little affected by gender. They also reported that the cellularity of 

cTECs was higher in males than females or castrated males, which could be associated 
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with the higher expression of cell death inhibitors and the lower expression of cell death 

activators (123). However, we detected lower cellularity of cTECs in male mice than 

female mice (100). The regeneration of cTECs in DT-treated Ccx-ckr1-DTR-transgenic 

mice was reduced in males compared with females or castrated males (24). Nonetheless, 

the contribution of embryonic, neonatal, and adult β5t+ progenitors in the generation, 

maintenance, and injury-triggered regeneration was essentially comparable between 

female and male mice (100). Thus, gender and sex hormones strongly affect cTECs. 

 

Epithelial-mesenchymal transition in the thymus 

Epithelial-mesenchymal transition (EMT) is a process that allows an epithelial 

cell to change into a mesenchymal cell, and contributes to various phases of 

development, tumor metastasis, and tissue repair fibrosis (124). In the thymus, EMT has 

been suggested to contribute to tissue adipogenesis associated with age-dependent 

involution (125-127). 

 The β5t-Cre x loxP-EGFP mice enabled efficient labeling of virtually all 

TECs (96) and were so useful for the quantitative analysis of EMT in young and aged 

mice. Immunofluorescence analysis of thymic sections showed that a fraction of 

MTS15+ mesenchymal fibroblasts were EGFP+ in 2-week-old and 11-month-old mice 

(Fig. 6A). Flow cytometric analysis indicated that the frequency of EGFP+ cells in 

CD45-PDGFRα+ mesenchymal cells was approximately 10% and comparable between 

2-week-old mice and 11-month-old mice (Fig. 6B). These results suggest that EMT is 

detectable in young mice and is not greatly elevated by age, at least up to 11 months 

old. 
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Concluding remarks 

In this review, we summarized current knowledge of cTEC biology, focusing 

on the development and developmental potential of cTECs. Despite the importance of 

cTECs in the development and selection of T cells, little is known about the molecular 

mechanisms underlying the development of cTECs. Important issues to be addressed in 

this regard include the molecular mechanisms that specify cTEC lineage from bipotent 

progenitors and that induce thymocyte-dependent maturation of cTECs. The recent 

finding that bipotent TEC progenitors transiently express cTEC-associated molecules, 

such as β5t and CD205, may provide a useful clue useful to unravel the molecular 

mechanisms that regulate the bifurcation of cTECs and mTECs as well as the 

subsequent development of cTECs and mTECs. 
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Figure legends 

Fig. 1. Phenotypic progression of cTECs during ontogeny. cTEC expression of 

cell-surface molecules including MHC II, CD40, CD205, Ly51, and CCRL1 increases 

along the ontogeny, whereas EpCAM cell-surface expression declines. The expression 

of β5t and high levels of IL-7 is also detectable in cTECs throughout the ontogeny. The 

development of cTECs is regulated by signals provided by developing thymocytes. 

FGF-7, FGF-10, and IGF-1 produced by mesenchymal cells promote the proliferation 

of cTECs, whereas mesenchymal cell-derived RA negatively affects the cellularity of 

cTECs. 

 

Fig. 2. mTECs are derived from cells that express cTEC-associated molecules. 

Bipotent TEC progenitors progress through the stage in that cells express 

cTEC-associated molecules, including β5t, CD205, CCRL1, and high levels of IL-7, 

prior to the lineage specification into cTECs and mTECs. cTECs retain the expression 

of these molecules, which is down-regulated in mTECs. 

 

Fig. 3. Adult mTECs are maintained by mTEC-lineage-restricted cells that pass 

beyond the bipotent stage during early ontogeny. Adult mTECs are maintained by 

cells that pass through the β5t+ bipotent stage rather than by bipotent progenitors. It is 

possible that adult mTECs are maintained by the continuous self-duplication of mTECs. 

Alternatively, mTEC progenitor/stem cells may contribute to the maintenance of 

mTECs in the adult thymus. 
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Fig. 4. Two hypotheses regarding the localization of bipotent TEC progenitors. (A) 

Bipotent TEC progenitors in the adult thymus localize at the cortico-medullary junction 

to supply cTECs into the cortex and mTECs into the medulla. (B) The localization of 

bipotent TEC progenitors in the adult thymus is not limited to the cortico-medullary 

junction but can be anywhere in the parenchyma. Bipotent TEC progenitors newly 

produce cTECs and mTECs, which generate the microenvironments of the cortex and 

the medulla, respectively. Consequently, the cortico-medullary junction will be formed 

in the area where bipotent TEC progenitors originally reside. 

 

Fig.5. Contribution of perinatal versus adult ββββ5t+ TEC progenitors in the 

development, maintenance, and regeneration of adult mTECs. The majority of adult 

mTECs are maintained and regenerated by cells that pass beyond the β5t+ bipotent 

stage during embryogenesis (red line) and neonatal period (blue line). The contribution 

of adult β5t+ TEC progenitors is minor, even during injury-triggered mTEC 

regeneration (green line).  

 

Fig. 6. Epithelial-mesenchymal transition in the thymus. (A) Immunofluorescence 

analysis of the thymus obtained from β5t-Cre-knockin mice crossed with 

CAG-loxP-stop-loxP-EGFP-transgenic reporter mice (abbreviated as β5t-Cre x 

loxP-EGFP mice). Thymus sections were examined in 2-week-old (wo) and 

11-month-old (mo) mice for the expression of EGFP (green), K5 (blue), and MTS15 

(red). Data are representative of at least three separate experiments. Scale bar = 25 µm. 

(B) Representative flow cytometry profiles of collagenase-digested thymus cells from 

β5t-Cre x loxP-EGFP mice. Cells were multi-color-stained for CD45, PDGFRα, and 
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propidium iodide (PI). Histograms show EGFP expression profiles in 

PI-CD45-PDGFRα+ viable thymic mesenchymal cells (left panels) in β5t-Cre x 

loxP-EGFP mice (solid lines) and littermate control β5t-Cre-knockin mice (shaded 

lines). Numbers in histograms indicate frequencies within the indicated area. Bar graph 

shows the frequency (means and SEs, n = 3) of EGFP+ cells in PI-CD45-PDGFRα+ 

cells (right panel). n.s., not significant. 
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