
DePaul Discoveries DePaul Discoveries

Volume 7 Issue 1 Article 12

2018

Exact Recovery of Prototypical Atoms through Dictionary Exact Recovery of Prototypical Atoms through Dictionary

Initialization Initialization

Greg Zanotti
DePaul University, gzanotti@mail.depaul.edu

Enrico Au-Yeung
DePaul University, eauyeun1@depaul.edu

Follow this and additional works at: https://via.library.depaul.edu/depaul-disc

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Zanotti, Greg and Au-Yeung, Enrico (2018) "Exact Recovery of Prototypical Atoms through Dictionary
Initialization," DePaul Discoveries: Vol. 7 : Iss. 1 , Article 12.
Available at: https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

This Article is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It
has been accepted for inclusion in DePaul Discoveries by an authorized editor of Via Sapientiae. For more
information, please contact digitalservices@depaul.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Via Sapientiae: The Institutional Repository at DePaul University

https://core.ac.uk/display/232978689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://via.library.depaul.edu/depaul-disc
https://via.library.depaul.edu/depaul-disc/vol7
https://via.library.depaul.edu/depaul-disc/vol7/iss1
https://via.library.depaul.edu/depaul-disc/vol7/iss1/12
https://via.library.depaul.edu/depaul-disc?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/depaul-disc/vol7/iss1/12?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

1 gzanotti@mail.depaul.edu

Research Completed in Autumn 2016

Exact Recovery of Prototypical Atoms through Dictionary Initialization

Greg Zanotti1

Department of Mathematical Sciences

Enrico Au-Yeung, PhD; Faculty Advisor

Department of Mathematical Sciences

INTRODUCTION

Processing big data continues to be one of the

most palpable challenges of the 21st century. As

current computing technology reaches its

physical limits, the application of advances from

applied mathematics in solving this problem

becomes a critical necessity. One approach that

has evolved from both mathematics and computer

science involves increasing the amount of

apparent information in big data while

simultaneously reducing its size. This technique

is known as unsupervised learning or

dimensionality reduction.

Dictionary learning [11] is an approach to

unsupervised learning that characterizes a large

collection of data (hereafter "signals") by sparse

linear combinations of a small set of prototypical

signals. We can think of these prototypical

signals as the representatives for the larger data

set. This small set of representatives is known as

the dictionary. The term sparse is there to

emphasize that each sample in the data can be

expressed as a linear combination of a small

number of elements in the dictionary. Let us

begin with three motivating examples to illustrate

why learning the dictionary from the data is

important. These examples are given in order of

ABSTRACT In dictionary learning, a matrix comprised of signals 𝑌 is factorized into the product of

two matrices: a matrix of prototypical "atoms" 𝐷, and a sparse matrix containing coefficients for atoms

in 𝐷, called 𝑋. Dictionary learning finds applications in signal processing, image recognition, and a

number of other fields. Many algorithms for solving the dictionary learning problem follow the

alternating minimization paradigm; that is, by alternating solving for 𝐷 and 𝑋. In 2014, Agarwal et al.

proposed a dictionary initialization procedure that is used before this alternating minimization process.

We show that there is a modification to this initialization algorithm and a corresponding data generating

process under which full recovery of 𝐷 is possible without a subsequent alternating minimization

procedure. Our findings indicate that the costly step of alternating minimization can be bypassed, and

that other data generating processes may enjoy the same features as the one we propose.

1

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

mailto:gzanotti@mail.depaul.edu

sophistication, from the simple case in two

dimension, where a scientist can visualize the

data, to an application in high dimension that

arises in computational neuroscience.

Example 1. Suppose we have a collection of 200

points in the plane. Each point in the plane is

identified by its x-coordinate and its y-coordinate.

After looking at the data, the scientist realizes that

by rotating the horizontal axis of the plane, half

the points will be aligned with the rotated axis, 𝑥′.
By rotating the vertical axis, the other half of the

points will be aligned with the second rotated

axis, 𝑦′. Therefore, in this example (illustrated in

Figure 1), the scientist will find it more natural to

view the data in terms of the two rotated axes,

rather than in terms of the original two axis. As a

small step in the data analysis, she finds it helpful

to think of the one hundred points that lie on the

red axis as the red points, and the remaining

hundred points that lie on the green axis as the

green points. Visualizing the data points as either

red or green are more meaningful than looking at

the original coordinates of the points. Note that in

this example, the ability to identify the red and

green axis depends on the visualization of the

data. The red and green axes are two

representative vectors for this data set in the

plane. In higher dimension, it is often difficult or

impossible to visualize a cloud of data points. In

that case, machine learning can be used to

identify the representative vectors from the data,

instead of from a visualization.

Example 2. A survey is conducted among 600

people. The participants of the survey evaluate

their jobs on a scale from 1 to 10, where 10 means

highly satisfactory and 1 indicates little job

satisfaction. These ratings result in 600 numbers

that are stored in a vector �⃗�. The team of scientists

who design the survey know from previous

experience that job satisfaction can largely be

explained by three factors. These three attributes

are income (salary for the job), fulfillment (to

what extent the worker feels she is being

appreciated), and contribution (to what extent the

worker feels he is making a contribution to

society). Let us label these factors income,

fulfillment, and contribution by the variables

𝐹1, 𝐹2, 𝐹3, respectively.

There are three vectors �⃗�1, �⃗�2, �⃗�3 in ℝ600 that

store the corresponding values of 𝐹1, 𝐹2, 𝐹3 for the

600 workers. In an ideal setting, where there is no

noise to the data, and these three factors can

completely explain job satisfaction (𝑌), we have

the following ideal model:

𝑌 = 𝑐1𝐹1 + 𝑐2𝐹2 + 𝑐3𝐹3.

This equation expresses the relationship: the

rating of a job by a worker, as an indication of job

satisfaction, is determined by three explanatory

variables: income, fulfillment, and contribution

to society. To determine the coefficients 𝑐1, 𝑐2,

and 𝑐3, we can follow an approach from linear

algebra: the vector �⃗� ∈ ℝ600 is projected into the

subspace spanned by the vectors �⃗�1, �⃗�2, �⃗�3. To be

clear, this subspace 𝑊 consists of all the vectors

in ℝ600 that are linear combinations of �⃗�1, �⃗�2, �⃗�3.

The task of finding the coefficients for the vector

�⃗� is equivalent to the task of seeking the vector

�⃗⃗⃗� ∈ 𝑊 that is the best approximation to the given

vector �⃗�.

Figure 1. The axes x and y are rotated to x′ and y′ to

better align with the data. These new axes act as

representative vectors which describe each set of

colored points.

2

DePaul Discoveries, Vol. 7 [2018], Iss. 1, Art. 12

https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

This approach to understand 𝑌 as a linear function

of three explanatory variables 𝐹1, 𝐹2, 𝐹3 relies on

the previous experience of the team of scientists

who design the survey. They have the prior

knowledge of what are the three main

determining factors of job satisfaction. The three

factors are chosen before the collection of data.

Since the choice of the factors is not informed by

the data itself, this leads to a natural question: Is

it possible that if we can learn from the data what

factors are important, we might gain better

insight?

Now, imagine that one purpose of the survey is to

learn which jobs tend to yield high levels of job

satisfaction. Instead of focusing on the job

satisfaction of an individual, the team of scientists

want to see what they can learn from the data.

Some patterns emerge from the data. Among the

participants of the survey, two hundred people are

construction workers. Their data points for job

satisfaction tend to lie on a plane that is spanned

by two vectors 𝑓1 and 𝑓2. That is, their values for

the vector �⃗� are linear combinations of 𝑓1 and 𝑓2.

For those two hundred participants who work as

firefighters and social workers, their data points

tend to lie on a plane that is spanned by two

vectors 𝑓2 and 𝑓3. For the remaining two hundred

participants who work as engineers and nurses,

their values of �⃗� can be expressed as linear

combinations of 𝑓1 and 𝑓3. The original vector

�⃗� ∈ ℝ600 can be split into three vectors �⃗�1, �⃗�2, �⃗�3

in ℝ200. These findings can be expressed as a

system of 3 equations,

�⃗�1 = 𝑥11𝑓1 + 𝑥21𝑓2 + 𝑥31𝑓3

�⃗�2 = 𝑥12𝑓1 + 𝑥22𝑓2 + 𝑥32𝑓3

�⃗�3 = 𝑥13𝑓1 + 𝑥23𝑓2 + 𝑥33𝑓3

and with the condition that

𝑥31 = 0, 𝑥12 = 0, 𝑥23 = 0.

To summarize this finding, we can represent the

situation as a matrix factorization, 𝑌 = 𝐷𝑋. The

matrix 𝑌 with 200 rows consists of 3 columns

�⃗�1, �⃗�2, �⃗�3. The matrix 𝐷 is the dictionary that

consists of three columns 𝑓1, 𝑓2, 𝑓3. The first

column of the matrix 𝑋 contains the coefficients

𝑥11, 𝑥21, 𝑥31 for the vector �⃗�1. The matrix 𝑋 with

3 rows and 3 columns is 2-sparse in each column.

That means 2 entries in each column are not zero.

It should be emphasized that given only the data

matrix 𝑌, we are asking a machine to learn both

matrices 𝐷 and 𝑋 in order to express the

relationship 𝑌 = 𝐷𝑋.

The factors that are learned from the data are not

necessarily identified as the original explanatory

variables (income, fulfillment, contribution).

However, from these factors, we discover an

emerging pattern: job satisfaction among

participants of the survey fall into three

categories. Construction workers belong to one

category, while firefighters and social workers

belong to another. Engineers and nurses fall

under a third category.

Example 3. Can a paralyzed man regain the

motion of his hand? Ian Burkhart is a

quadriplegic man who has become the first

person to be implanted with technology that

sends signals from the brain to muscles. This

technological breakthrough is allowing him to

regain some movement in his right arm and wrist.

In 2014, scientists at Ohio State’s Neurological

Institute implanted a microchip into the 24-year-

old quadriplegic’s motor cortex. Its goal is to

bypass his damaged spinal cord so that with the

help of a signal decoder and electrode-packed

sleeve, he can control his right arm with his

thoughts.

Over a period of 15 months, researchers at the

Ohio State University Wexner Medical Center

and engineers from Battelle, the medical group

that developed the decoder software and

electrode sleeve, have helped Ian relearn fine

motor skills with weekly training sessions. In a

paper in Nature [3], the authors describe

connecting a cable from the port screwed into

Ian’s skull (where the chip is) to a computer that

translates the brain signals into instructions for

the sleeve, which stimulates his muscles into

moving his wrist and fingers. For example, when

Ian thinks "clench fist," the implanted electrodes

record the activity in his motor cortex. Those

signals are decoded in real-time, jolting his arm

muscles in the right places so that his fingers curl

inwards.

3

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

Performing the task of signal processing with a

massive amount of data presents a challenge. The

human brain can generate gigabytes of brain

signals in just under a minute and a half, at a

sampling rate of 30,000 samples/second on 96

channels using the Neuroport neural data

acquisition system [3]. The researchers need to

decipher which brain signal is responsible for

finger movement.

Dictionary learning. This last example in

computational neuroscience illustrates the need

of a powerful tool to characterize the collection

of signals by sparse linear combinations of

prototypical signals. Formally, consider 𝑛 signals

𝑦1, 𝑦2, . . . , 𝑦𝑛, each in ℝ𝑑. Then the dictionary

learning problem we consider is

min
𝐷,𝑋

∑

𝑛

𝑖=1

||𝑦𝑖 − 𝐷𝑥𝑖||2
2

s. t. ||𝑥𝑖||0 ≤ 𝑠, 𝑖 = 1, … , 𝑛.

where 𝑌 ∈ ℝ𝑑×𝑛 is a matrix of signals, 𝐷 ∈ ℝ𝑑×𝑟

is a dictionary of 𝑟 prototypical signals, and 𝑋 ∈
ℝ𝑟×𝑛 is a sparse matrix of coefficients.

Additionally, 𝑥𝑖 means the 𝑖th column of the

matrix 𝑋. The notation ||𝑥𝑖||0 represents the zero

"norm," which is the number of non-zero

elements of 𝑥𝑖. The inequality on the zero "norm"

above means that each column in 𝑋 is 𝑠-sparse;

that is, each column has at most 𝑠 nonzero entries.

In the parlance of dictionary learning, we have 𝑟

atoms 𝑎1, 𝑎2, . . . , 𝑎𝑟, which are vectors in ℝ𝑑.

Each signal is approximately equal to a linear

combination of 𝑠 atoms. For example, for 𝑦𝑖,

there exist atoms 𝑎𝑖1
, 𝑎𝑖2

, . . . , 𝑎𝑖𝑠
 and coefficients

𝑐𝑖𝑗
, 𝑗 = 1,2, . . . , 𝑠, such that

𝑦𝑖 = 𝑐𝑖1
𝑎𝑖1

+ 𝑐𝑖2
𝑎𝑖2

+. . . +𝑐𝑖𝑠
𝑎𝑖𝑠

.

Dictionary learning attempts to recover a true

dictionary 𝐷 and sparse matrix 𝑋 which define

the signals or signal matrix 𝑌 by the relationship

𝑌 ≈ 𝐷𝑋.

Dictionary learning allows a signal to be

represented by a vector of sparse coefficients,

thus massively reducing both the storage

requirements and processing requirements while

describing the signal in terms of atoms, which are

high in information density. Dictionary learning

has been applied to perform face recognition [12],

image restoration and inpainting (even when the

image is heavily corrupted [8] or data is limited

or incomplete [9]), and modeling of data with

hierarchical structure, such as images and text

[7].

A number of algorithms attempt to solve the

dictionary learning problem. Most algorithms can

be described as alternating minimization. These

algorithms begin by initializing the dictionary to

a random matrix, and then alternating between

solving for the dictionary 𝐷 and the sparse matrix

𝑋. That means at each iteration, there are two

steps. First, the matrix 𝐷 is held fixed, while the

best sparse matrix 𝑋 is determined. Next, using

the matrix 𝑋 just computed, the dictionary 𝐷 is

updated. The method of optimal directions

(MOD) [6] solves for the dictionary at each

iteration, by the method of least squares, and

computes the sparse matrix by a sparse coding

algorithm such as Orthogonal Matching Pursuit

(OMP) [5]. A more sophisticated approach is the

K-SVD algorithm [2]. This widely used

algorithm replaces MOD’s least squares step by a

more granular operation which decomposes error

in the dictionary on a per-column basis.

The technique of alternating minimization

involves computationally intensive operations on

large matrices that can take hours or days to

converge. A creative idea was introduced at the

prestigious Conference on Learning Theory

(COLT 2014) in Spain. Agarwal, et al. present a

fast, scalable algorithm for initializing the

dictionary 𝐷 using a clustering procedure based

on SVD to extract initial atoms [1]. This step

recovers the dictionary with bounded error, and is

followed by an alternating minimization

procedure that iterates between LASSO [10] and

least squares steps. The authors state that this is

the first known exact recovery algorithm for the

overcomplete (𝑟 > 𝑑) dictionary case.

Importantly, they also empirically verify that

under a common data generating process for 𝑌,

the initialization step is not sufficient for

obtaining a good approximation of the true

dictionary 𝐷.

4

DePaul Discoveries, Vol. 7 [2018], Iss. 1, Art. 12

https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

The main contribution of our work is to provide

empirical evidence for a data generating process

and conditions under which a modified

initialization algorithm similar to that of [1]

nearly recovers the atoms of the true dictionary

𝐷. This discovery is important because it can

obviate the requirement of performing a

subsequent alternating minimization step that

ensures exact recovery. Removing this procedure

can reduce the computational cost of dictionary

learning significantly. We also provide in detail

the calculation that provides some justification of

why the algorithm works under certain

assumptions on the data generating process. This

calculation can be found in the Appendix to this

article.

If an oracle can supply us with the dictionary 𝐷,

so that the only unknown variable is the matrix 𝑋,

then this can be formulated as an convex

optimization problem. In that case, orthogonal

matching pursuit (OMP) is an an efficient method

to solve for the unknown matrix 𝑋 that is sparse

in each column [5]. However, in our problem, the

challenge is that given the data matrix 𝑌, both the

dictionary 𝐷 and the coefficients matrix 𝑋 are

unknown.

Standard approaches to convex optimization are

well established [4]. The dictionary learning

problem can be formulated as a non-convex

optimization problem. There is one principal

difference between non-convex optimization

(NCO) method and the algorithm under

consideration in this article. Note that while using

the NCO method can find a dictionary 𝐷 that

nearly recovers the data 𝑌, the optimization

algorithm does not attempt to recover the true

dictionary that generates the data. In contrast, we

want an algorithm that can nearly recover all the

atoms in the true dictionary.

INITIALIZATING DICTIONARIES FOR

FAST OPTIMIZATION

The core insight of the initialization algorithm

InitDictionaryLearn of Agarwal et al. is that the

atoms extracted from the data should be limited

to those that represent clusters of signals. The

algorithm tests pairs of signals to see if they share

an atom, then finds signals that are correlated

with the pair, which forms a cluster of signals. If

the cluster is "good" (a decision determined by

Agarwal’s UniqueIntersection algorithm), then

InitDictionaryLearn extracts an atom in a process

similar to PCA, using information from every

entry of the signals in the cluster. We modify the

algorithms InitDictionaryLearn and

UniqueIntersection presented in [1], and

name our modifications P1 and P2, respectively.

The algorithm P1 is outlined in Algorithm 2, and

P2 is outlined in Algorithm 1. Our modifications

follow.

We evaluate the algorithm on the result of a data

generating process wherein the original

dictionary 𝐷 is a square Discrete Cosine

Transform matrix, and the elements of the

columns of the true sparse matrix 𝑋 are integers

which have limitations on their magnitude and

distribution. The following section provides a

description of this data generating process.

We formulate a new correlation threshold 𝜏1

specifically for our data generating process based

on the assumption that the columns of our sparse

matrix take on certain values in the worst case.

Our correlation threshold’s calculation implies

additional restrictions for the data generating

process. A description is given in the Correlation

Threshold section.

5

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

We also formulate a different threshold 𝜀1 for use

in P2 for the average correlation between signals

in a cluster detected by P1. This threshold is used

to filter out clusters that don’t contain atoms

sharing the same signal, and its formulation is

based on intuition given by probabilistic

estimations under some assumptions described in

the Probabilistic Bounds section, with details in

the Appendix.

DATA GENERATING PROCESS

In [1], Agarwal et al. test a data generating

process where entries of 𝐷 are drawn from

𝒩(0,1), the support of each column vector in 𝑋

is chosen uniformly and independently from

subsets of size 𝑠, and the non-zero values of each

𝑋 column vector are chosen uniformly and

independently from [−2, −1] ∪ [1,2].

Our data generating process is a choice of a true

dictionary 𝐷 and s-sparse matrix 𝑋. The signals

generated are defined by 𝑌 = 𝐷𝑋. This process is

inspired by problems in classical signal

processing–recovery of signals created by low

coherence dictionaries. Consequently, a DCT

matrix is chosen as the dictionary because it has

low coherence. This is our first main modification

of the data generating process of [1]. Like

Agarwal et al., we consider the case where the

signal matrix 𝑌 ∈ ℝ𝑑×𝑛 has 𝑑 < 𝑛.

Our second main modification is as follows: we

choose three integers 𝛼, 𝛽, and 𝛾, with 𝛾 positive.

Like Agarwal et. al., we choose the locations of

the non-zero entries uniformly and independently

from the subsets of size 𝑠. We set one non-zero

entry of each column to be 𝛽, and the rest drawn

uniformly independently from {−𝛼} ∪ {𝛼}. So

the non-zero entries of each column are in the list

{−𝛼, 𝛼, 𝛽}. We further insist that no more than

𝑛/𝛾 of the 𝛽-valued elements exist in the same

entry of any subset of column vectors of 𝑋. This

condition ensures that 𝛽-valued elements are not

clustered together in dimension. Finally, this data

generating process implies that any procedure

clustering these vectors by the correlation

function demands an additional condition; that

𝛽2 − 2𝛼𝛽 > 2𝛼2(𝑠 − 2).

This condition is derived in the Correlation

Threshold section.

Our restriction to integer-valued elements,

restriction on the relative sizes and dimensional

distributions of the elements, and use of a low

6

DePaul Discoveries, Vol. 7 [2018], Iss. 1, Art. 12

https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

coherence dictionary are the major differences

between our and Agarwal et al.’s data process.

However, our additional free parameters allow

flexibility as well.

PROBABILISTIC BOUNDS

In P1, our goal is to find clusters of signals that

may share the same atom; that is, signals 𝑦𝑝 and

𝑦𝑞 "share an atom" if 𝑋𝑠𝑝 and 𝑋𝑠𝑞 are both non-

zero. These potential clusters are constructed by

selecting pairs of signals (𝑦𝑝, 𝑦𝑞) that have large

inner product (lines 10–11), and then finding

other signals that have large inner product with

each signal in the pair (lines 14–16). Once we

identify correlated clusters of signals in P1, we

extract an atom through the process in lines 25–

29 [1].

Under our proposed data process and correlation

threshold, lines 10–16 select clusters with signals

that all share the same atom with coefficient 𝛽.

However, under other data processes, there is no

assurance that this will happen. Consequently,

this process may select "bad" clusters which

contain signals that might not (a) share a single

unique atom and (b) have non-negligible

contributions from other atoms (in our data

process, this implies that the coefficient on these

atoms is greater than 𝛼).

To gain insight into the probability that each

cluster identified by 𝑃1 is "good", we analyze the

probability that any pair of signals in a cluster

shares the same unique atom, but not any other

atoms. We introduce the following scenario and

events to formalize this problem: pick two signals

from the data, 𝑦𝑝 and 𝑦𝑞, and consider two

arbitrary signals 𝑦𝑖 and 𝑦𝑗. Define the following

events:

 𝑆𝑈(𝑦𝑝, 𝑦𝑞): The sums that represent 𝑦𝑝 and

𝑦𝑞 share exactly one unique atom.

 𝑆𝑈(𝑦𝑖, 𝑦𝑗): The sums that represent 𝑦𝑖 and

𝑦𝑗 share exactly one unique atom.

 𝐸1: 𝑦𝑖 shares exactly one atom with 𝑦𝑝, and

𝑦𝑖 shares exactly one atom with 𝑦𝑞. Also,

𝑦𝑗 shares exactly one atom with 𝑦𝑝, and 𝑦𝑗

shares exactly one atom with 𝑦𝑞.

 𝐹1: 𝑦𝑖 shares at least one atom with 𝑦𝑝, and

𝑦𝑖 shares at least one atom with 𝑦𝑞. Also,

𝑦𝑗 shares at least one atom with 𝑦𝑝, and 𝑦𝑗

shares at least one atom with 𝑦𝑞.

𝑆𝑈(𝑦𝑝, 𝑦𝑞) corresponds to picking the initial pair

of correlated signals, as we know that if

|〈𝑦𝑝, 𝑦𝑞〉| > 𝜏, then 𝑦𝑝 and 𝑦𝑞 share at least one

atom. To make the analysis tractable, we assume

that this shared atom is the only atom 𝑦𝑝 and 𝑦𝑞

share, even though P2 may select pairs that share

more than one unique atom. Additionally, we

know that if, for some signal 𝑦𝑧, |〈𝑦𝑝, 𝑦𝑧〉| > 𝜏

and |〈𝑦𝑞 , 𝑦𝑧〉| > 𝜏, then 𝑦𝑧 shares at least one

atom with each of 𝑦𝑝 and 𝑦𝑞. 𝐹1 defines this event

for some pair of signals (𝑦𝑖, 𝑦𝑗). We are interested

in the following probability: given that

𝑆𝑈(𝑦𝑝, 𝑦𝑞) and 𝐹1 have occurred, what is the

probability that the events 𝐸1 and 𝑆𝑈(𝑦𝑖 , 𝑦𝑗) will

occur? We are interested in analyzing

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)]. (1)

In other words, if we have a pair (𝑦𝑝, 𝑦𝑞) of

signals which share a unique atom, and another

candidate pair (𝑦𝑖 , 𝑦𝑗), each of which shares at

least one atom with 𝑦𝑝 and 𝑦𝑞, what is the

probability that (𝑦𝑖 , 𝑦𝑗) share the same unique

atom with each other (this is 𝑆𝑈(𝑦𝑖 , 𝑦𝑗)) that they

uniquely share with 𝑦𝑝 and 𝑦𝑞 (this is 𝐸1)?

Knowing a lower bound bound on (1) allows us

to select only those clusters in which enough

candidate pairs of signals from the cluster are

correlated with each other to, on average, share a

unique atom. To establish the lower bound that

ensures that the cluster shares a unique atom, we

split (1) up into

𝑃[𝑆𝑈(𝑦𝑖,𝑦𝑗)∩𝐸1∩𝐹1|𝑆𝑈(𝑦𝑝,𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝,𝑦𝑞)]
, (2)

by the definition of conditional probability. Each

probability in (2) is bounded separately assuming

that the signals are independent and atoms

randomly distributed amongst signals (with

details in the Appendix). These bounds are

combined to form the lower bound on (1):

7

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)] > 1 −
19𝑠3

𝑟
. (3)

In P2, we again detect correlation by checking to

see if two signals have inner product with a

magnitude greater than 𝜏. We count all signals

that pass this criterion, and use this count as an

empirical estimator of (1). If this empirical

estimation of (1) is above the lower bound on (1)

required for the signals to share a unique atom, P2

returns TRUE, and we continue on to the rest of

P1 (that is, lines 25–29 which extract an atom).

It is notable that this procedure does not depend

on the data process we establish above, and that 𝜏

may be calculated differently for a separate data

process without affecting the above calculations.

CORRELATION THRESHOLD

We would not like to extract atoms from a cluster

formed by P1 if the signals do not all share an

atom. We calculate a correlation threshold in

order to detect and reject clusters of signals fitting

this description. We derive the correlation

threshold based on the worst-case inner product

of two vectors which do not share the same atom.
If two vectors in 𝑌 do not share the same atom,

the 𝛽-valued element is not contained in the same

entry. Consequently, we know that the inner

product will be at most

𝜏1 = 2𝛼𝛽 + 𝛼2(𝑠 − 2)

in magnitude, as each 𝛽-valued entry may, by

chance, be multiplied by a signal with 𝛼 in the

same entry with the same sign, leaving 𝑠 − 2

potential 𝛼-valued entries with the same sign. In

these calculations, we ignore the elements of 𝐷,

as each element in 𝐷 is bounded in magnitude by

1, and therefore the product of any of these

elements will not affect this upper bound on the

inner product between two vectors in 𝑌 that do

not share atoms with coefficient 𝛽.

Importantly, we must make sure that this

threshold does not bar clusters comprised entirely

of signals that share the same atom from being

selected. In this case, without loss of generality,

the worst-case result is that the 𝛽-valued entry is

positive, and that the 𝛼-valued entries are all of

opposite sign; therefore these entries decrease the

magnitude of the inner product of two signals

which share an atom.

Thus we gain the restriction that

𝛽2 − 𝛼2(𝑠 − 2) > 𝜏1 ⇔ 𝛽2 − 2𝛼𝛽 > 2𝛼2(𝑠 − 2).

EXPERIMENTS

We run experiments with our data process to

show that under some conditions, our modified

clustering + eigenvector-based atom extraction

procedure can fully recover the atoms of the

original dictionary and reasonably reconstruct the

original signal matrix 𝑌 without an alternating

minimization step. To reconstruct the data, after

the recovered dictionary 𝐷𝑝𝑟𝑒𝑑 is created by 𝑃1,

we use OMP for sparse coding to form a

recovered sparse matrix 𝑋𝑝𝑟𝑒𝑑. We use OMP

because it is a fast and an easily comparable

baseline used widely in the literature. We set the

following parameters of our model: 𝑛 = 2048,

𝑑 = 256, 𝑠 = 3, 𝛽 = 10, 𝛼 = {1,3}, 𝛾 = 256,

and 𝑟 = 256. To be clear, this means that the

dictionary has 256 atoms, the collection of data

has 2048 signals, and each signal in ℝ256 is 3-

sparse. We remind the reader that a signal is 3-

sparse means that it is a linear combination of at

most 3 atoms, and setting the value of 𝛽 to 10

means the largest of the three coefficients is 10.

The original dictionary 𝐷 for the data generating

process is a Discrete Cosine Transform (DCT)

matrix. We use the DCT dictionary because it is

a standard choice in the literature. We choose 𝑛,

𝑑, 𝑠 based on similar values used in the literature

[2], and we choose 𝛼, 𝛽, 𝛾, and 𝑟 to illustrate the

reconstruction of signals. We implement each

experiment in MATLAB on a computer with a

Core i7-4650U processor and 8GB of RAM.

We use two metrics to judge the efficacy of our

algorithm. The first is the recovery rate, 𝜈 =
𝑛𝑥/𝑟, where 𝑛𝑥 is the number of atoms extracted

by 𝑃1 that have inner product of at least 0.99 with

at least one atom in the original dictionary. Our

second metric is the relative error of the

reconstruction of 𝑌, defined as

100
||𝐷𝑝𝑟𝑒𝑑𝑋𝑝𝑟𝑒𝑑 − 𝑌||2

||𝑌||2

8

DePaul Discoveries, Vol. 7 [2018], Iss. 1, Art. 12

https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

where || ⋅ ||2 indicates the spectral norm of a

matrix (aka 2-norm, or largest singular value),

and 𝐷𝑝𝑟𝑒𝑑 and 𝑋𝑝𝑟𝑒𝑑 are, respectively, the

dictionary recovered by P1, and the sparse matrix

recovered by OMP against 𝐷𝑝𝑟𝑒𝑑.

For the 𝛼 = 1 case, our correlation threshold is

𝜏1 = 2(1)(10) + (1)(1) = 21. We run our

procedure P1 to construct the dictionary, and

follow it with OMP to reconstruct 𝑋. We perform

this experiment five times and average the

metrics below. Our algorithm scans through all

possible clusters of signals and stops when it has

extracted 256 atoms. It therefore has the

significant benefit of determining the number of

atoms in the dictionary without a priori

knowledge. Each of these 256 atoms has

correlation of at least 0.9991 with at least one

atom in the original DCT dictionary–in other

words, 𝜈 = 1, as we correctly recover every

single atom from the original dictionary.

Similarly, we reconstruct the data as well, with a

relative error rate of 8.19%.

For the 𝛼 = 3 case, our correlation threshold is

𝜏1 = 2(3)(10) + (1)(9) = 69. We use the same

experimental setup as in the 𝛼 = 1 case. We

perform this experiment five times. In all five

runs, P1 stops after recovering all 256 atoms,

again illustrating the automatic atom number

determination that this approach enjoys. We also

again recover all atoms, with the lowest inner

product for a single recovered atom being equal

to 0.9931. Thus 𝜈 = 1. To be clear, the

dictionary has 256 atoms, the collection of data

has 2048 signals, and each signal in ℝ256 is 3-

sparse. In the 𝛼 = 3 case, our relative error rate is

21.64%. While this is larger than the 𝛼 = 1 case,

we suspected that, due to the near-perfect atom

recovery rate, the error must mostly be due to the

sparse coding process governed by OMP. Indeed

this is the case: we found that although 𝑋𝑝𝑟𝑒𝑑

recovers almost every 𝛽-valued entry, it

occasionally has flipped signs. Because in this

work we mainly focus on the dictionary

construction method, we do not attempt to

improve this error rate; however, it is possible

that it may be improved through the use of a

sparse coding method more sophisticated than

OMP.

CONCLUSION

We proposed modifications to the dictionary

initialization algorithm of Agarwal et al. and a

corresponding data generating process and

correlation threshold under which full atom

recovery and reasonable data reconstruction is

possible. We also give a probabilistic bound that

can aid in the evaluation of clusters created from

different data generating processes.

Our findings show that it is indeed possible to

perform dictionary learning using only a

clustering and atom extraction initialization

algorithm paired with a sparse coding algorithm.

This allows us to bypass the requirement of

running an alternating minimization operation,

and may indicate that other data processes enjoy

this same empirical performance. Although we

utilize OMP in this work, we hypothesize that

more sophisticated sparse coding methods may

further reduce reconstruction error as well. We

leave the construction of new data generating

processes and correlation thresholds and the use

of other sparse coding algorithms to future

research.

ACKNOWLEDGEMENTS

The authors are grateful for the financial support of the Undergraduate Research Assistant Program (URAP)

grant from DePaul University’s College of Science and Health.

REFERENCES

[1] A. Agarwal, A. Anandkumar, P. Jain, and P. Netrapalli, Learning sparsely used overcomplete dictionaries,

27th Conference on Learning Theory, (2014) 123–137.

[2] M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries

for sparse representation, IEEE Transactions on Signal Processing. 54 (2006) no. 11, 4311–4322.

9

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

[3] C. E. Bouton, A. Shaikhouni, N. V. Annetta, M. A. Bockbrader, D. A. Friedenberg, D. M. Nielson, et al.,

Restoring cortical control of functional movement in a human with quadriplegia, Nature. 533 (12

May 2016), 247–250.

[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, (2004), 727 pages.

[5] T. T. Cai and L. Wang, Orthogonal matching pursuit for sparse signal recovery with noise, IEEE

Transactions on Information Theory. 57 (2011), no. 7, 4680–4688.

[6] K. Engan, S.O. Aase, and J.H. Husoy, Method of optimal directions for frame design, Proceedings of 1999

IEEE International Conference on Acoustics, Speech, and Signal Processing. 5 (1999), 2443–2446.

[7] R. Jenatton, J. Mairal, G. Obozinski, and F. R. Bach, Proximal methods for sparse hierarchical dictionary

learning, 27th International Conference on Machine Learning, (2010), 487–494.

[8] J. Mairal, G. Sapiro, and M. Elad, Learning multiscale sparse representations for image and video

restoration, Multiscale Modeling & Simulation. 7 (2008), no. 1, 214–241.

[9] V. Naumova and K. Schnass, Dictionary learning from incomplete data for efficient image restoration,

2017 25th European Signal Processing Conference (EUSIPCO), (2017), 1425–1429.

[10] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society,

Series B. 58 (1994), 267–288.

[11] I. Tosic and P. Frossard, Dictionary Learning, IEEE Signal Processing Magazine. 28 (2011), no. 2, 27–

38.

[12] Q. Zhang and B. Li, Discriminative K-SVD for dictionary learning in face recognition, 2010 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, (2010), 2691–2698.

10

DePaul Discoveries, Vol. 7 [2018], Iss. 1, Art. 12

https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

APPENDIX

In this appendix, we provide in full detail the calculations for the two-signal probabilistic bound.

PROBABILISTIC ANALYSIS OF TWO SIGNALS

Pick two signals from the data, 𝑦𝑝 and 𝑦𝑞, and consider two arbitrary signals 𝑦𝑖 and 𝑦𝑗. Define the following

events:

 𝑆𝑈(𝑦𝑝, 𝑦𝑞): The sums that represent 𝑦𝑝 and 𝑦𝑞 share exactly one unique atom.

 𝑆𝑈(𝑦𝑖 , 𝑦𝑗): The sums that represent 𝑦𝑖 and 𝑦𝑗 share exactly one unique atom.

 𝐸1: 𝑦𝑖 shares exactly one atom with 𝑦𝑝, and 𝑦𝑖 shares exactly one atom with 𝑦𝑞. Also, 𝑦𝑗 shares exactly

one atom with 𝑦𝑝, and 𝑦𝑗 shares exactly one atom with 𝑦𝑞.

 𝐹1: 𝑦𝑖 shares at least one atom with 𝑦𝑝, and 𝑦𝑖 shares at least one atom with 𝑦𝑞. Also, 𝑦𝑗 shares at least

one atom with 𝑦𝑝, and 𝑦𝑗 shares at least one atom with 𝑦𝑞.

Note that 𝐹1 is just 𝐸1, but "exactly" has been replaced with "at least." For the remainder of these calculations,

we suppose that 𝑆𝑈(𝑦𝑝, 𝑦𝑞) has occurred, and that, WLOG, say 𝑎𝑝𝑠
 = 𝑎𝑞𝑠

. Denote this shared atom by 𝑎𝑠.

Additionally, note that both 𝐸1 and 𝐹1 occur if 𝑦𝑖 and 𝑦𝑗 share just 𝑎𝑠 with 𝑦𝑝 and 𝑦𝑞. Finally, note that if 𝐸1

has occurred, then 𝐹1 has occurred as well.

We’d like to find a lower bound on

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)].

By the definition of conditional probability, this probability is equal to

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1 ∩ 𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]
,

but because 𝐸1 satisfies the requirements for 𝐹1 to occur, this is equal to

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]
.

So, to find a lower bound on this probability, we need to find a lower bound on 𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

and an upper bound on 𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)].

Lower bound

We define 𝑁(𝑦𝑖) to be the set of atoms that construct the signal 𝑦𝑖. If each of 𝑦𝑖 and 𝑦𝑗 choose 𝑎𝑠, the atom

that 𝑦𝑝 and 𝑦𝑞 share, and if they then don’t choose any more atoms from 𝑁(𝑦𝑝) ∪ 𝑁(𝑦𝑞), we see that this is

one way that 𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1 occurs. Therefore, the probability of this constitutes a lower bound on

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)], and we see that

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

≥
(

1
1

) (
𝑟 − 2𝑠 + 1
 𝑠 − 1

) (
1
1

) (
𝑟 − 3𝑠 + 2
 𝑠 − 1

)

(
𝑟
𝑠

)
2

=
𝑠2

𝑟2
[
(𝑟 − 𝑠)!

(𝑟 − 1)!
]2

(𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!
,

11

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

where the usage of the combinatorial definition of probability requires us to assume that the choices of 𝑦𝑖 are

independent of the choice of 𝑦𝑗, and that the probabilities of choosing any of the 𝑠 − 1 atoms in either of the

above binomial coefficients are uniform.

We need to approximate the ratio of factorials to produce a useful lower bound. We’ll start by noting that if

𝑟 = 4𝑠 − 3 + 𝑘 where 𝑘 is a nonnegative integer, then

(𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!
=

(4𝑠 − 3 + 𝑘 − 2𝑠 + 1)!

(4𝑠 − 3 + 𝑘 − 4𝑠 + 3)!

=
(2𝑠 − 2 + 𝑘)!

𝑘!
= (2𝑠 − 2 + 𝑘)(2𝑠 − 3 + 𝑘) ⋯

 (𝑠 + 𝑘) ⋅ (𝑠 + 𝑘 − 1)(𝑠 + 𝑘 − 2) ⋯ (𝑘 + 1).

Note that there are always 2𝑠 − 2 + 𝑘 − (𝑘 + 1) + 1 = 2𝑠 − 2 = 2(𝑠 − 1) terms in the last product. For

example, if 𝑟 = 1000 and 𝑠 = 10, then

(𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!
=

981!

963!

= 964 ⋅ 965 ⋯ 972 ⋅ 973 ⋅ 974 ⋯ 981.

Now consider that, with the same restrictions,

(𝑟 − 𝑠)!

(𝑟 − 1)!
=

1

(𝑟 − 1) ⋯ (𝑟 − 𝑠 + 1)

=
1

(4𝑠 − 4 + 𝑘)(4𝑠 − 5 + 𝑘) ⋯ (3𝑠 − 2 + 𝑘)
,

which is always a product of

4𝑠 − 4 + 𝑘 − (3𝑠 − 2 + 𝑘) + 1 = 𝑠 − 1

terms. Then

[
(𝑟 − 𝑠)!

(𝑟 − 1)!
]

2 (𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!

=
(2𝑠 − 2 + 𝑘)(2𝑠 − 3 + 𝑘) ⋯ (𝑠 + 𝑘)

(4𝑠 − 4 + 𝑘)(4𝑠 − 5 + 𝑘) ⋯ (3𝑠 − 2 + 𝑘)

 ⋅
(𝑠 + 𝑘 − 1)(𝑠 + 𝑘 − 2) ⋯ (𝑘 + 1)

(4𝑠 − 4 + 𝑘)(4𝑠 − 5 + 𝑘) ⋯ (3𝑠 − 2 + 𝑘)

≥ (
𝑠 + 𝑘

3𝑠 − 2 + 𝑘
)

𝑠−1

(
𝑘 + 1

3𝑠 − 2 + 𝑘
)

𝑠−1

= (
𝑟 − 3(𝑠 − 1)

𝑟 − 𝑠 + 1
)

𝑠−1

(
𝑟 − 4(𝑠 − 1)

𝑟 − 𝑠 + 1
)

𝑠−1

,

where the last equality is reached by noting that 𝑘 = 𝑟 − 4𝑠 + 3 and rearranging.

Now applying the identity 1 −
𝑏𝑥

𝑐−𝑥
≥ exp (

−2𝑏𝑥

𝑐−𝑥
), which is valid for 0 ≤ 𝑏 ≤ 3 and 𝑐 > 0 for 0 ≤ 𝑥 ≤ 𝑐/5,

we see that, with the restriction that 𝑟 ≥ max(5𝑠, 4𝑠 − 3) = 5𝑠,

12

DePaul Discoveries, Vol. 7 [2018], Iss. 1, Art. 12

https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

(1 −
3(𝑠 − 1)

𝑟 − (𝑠 − 1)
)

𝑠−1

(1 −
2(𝑠 − 1)

𝑟 − (𝑠 − 1)
)

𝑠−1

≥ exp (−
6(𝑠 − 1)2

𝑟 − (𝑠 − 1)
) exp (−

4(𝑠 − 1)2

𝑟 − (𝑠 − 1)
)

= exp (−
10(𝑠 − 1)2

𝑟 − (𝑠 − 1)
)

≥ 1 −
10(𝑠 − 1)2

𝑟 − (𝑠 − 1)
≥ 1 −

11(𝑠 − 1)2

𝑟

where the second to last inequality is by truncating the Taylor expansion of 𝑒−𝑥, and the last inequality holds

because with 𝑥 = 𝑠 − 1,

1 −
10𝑥2

𝑟 − 𝑥
≥ 1 −

11𝑥2

𝑟

⇔ 1 −
10𝑥2

𝑟 − 𝑥
− (1 −

11𝑥2

𝑟
) ≥ 0

⇔
11𝑥2

𝑟
−

10𝑥2

𝑟 − 𝑥
≥ 0

This inequality clearly holds for 𝑥 = 0; we need to find out where it does not hold, so we find the positive

roots of the function:

𝑓(𝑥) ≔
11𝑥2

𝑟
−

10𝑥2

𝑟 − 𝑥

=
11𝑥2𝑟 − 11𝑥3 − 10𝑥2𝑟

𝑟(𝑟 − 𝑥)

=
𝑥2(𝑟 − 11𝑥)

𝑟(𝑟 − 𝑥)

⇒ 𝑓(𝑥) = 0 if 𝑥 = 0,
𝑟

11
.

This implies that the inequality holds for 0 ≤ 𝑥 ≤ 𝑟/11, or 1 ≤ 𝑠 ≤ 𝑟/11 + 1.

Now, we’d rather use 𝑠 than 𝑠 − 1 in our inequality, and because

1 −
11(𝑠 − 1)2

𝑟
≥ 1 −

11𝑠2

𝑟
,

we can. Therefore, putting this approximation back into the lower bound we had above, we achieve the lower

bound

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)] ≥
𝑠2

𝑟2
[1 −

11𝑠2

𝑟
].

Upper bound

Now that we’ve computed the lower bound on the numerator, we’d like to find an upper bound on the

denominator, 𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)].

13

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

We claim that for one signal (without loss of generality, we choose 𝑦𝑖) 𝐹1 occurs in two ways, (a) and (b).

Once we calculate the probability for one signal, we square this probability, because the choices of the other

signal (let us say, 𝑦𝑞) are independent from those of 𝑦𝑖. Thus this argument rests on the assumption that 𝑦𝑖

and 𝑦𝑗 are independent. We again use the language of graph theory to demarcate these cases; consider the

bipartite graph formed by of 𝑟 nodes representing 𝑟 atoms on one side, and two nodes representing 𝑦𝑝 and 𝑦𝑞

on the other. Edges between signal nodes and atom nodes indicate that the signal’s sparse representation uses

the atom. Then the neighborhoods 𝑁(𝑦𝑝) and 𝑁(𝑦𝑞) constitute the sets of atoms of 𝑦𝑝 and 𝑦𝑞, respectively.

In (a), we suppose that 𝑦𝑖 and 𝑦𝑗 only choose from the atoms in 𝑁(𝑦𝑝) ∩ 𝑁(𝑦𝑞). Note that the only atom in

this set is necessarily 𝑎𝑠. This gives the probability of the event that 𝑦𝑖 and 𝑦𝑗 choose exactly one atom. Since

these choices are independent and symmetric, we can split up the choices between 𝑦𝑖 and 𝑦𝑗; 𝑦𝑖 chooses one

atom from the intersection, then chooses 𝑠 − 1 atoms from the other 𝑟 − 1 atoms; after this, 𝑦𝑗 does the same.

Thus this argument rests on the assumptions that the probabilities of choosing from 1 atom in the intersection

and the 𝑟 − 1 other atoms are independent, and therefore uniform, and therefore we can assert that

(
1
1

) (
𝑟 − 1
𝑠 − 1

)

(
𝑟
𝑠

)
=

𝑠

𝑟
.

In (b), we calculate the probability that 𝑦𝑖 and 𝑦𝑗 choose 2 or more atoms from the 2𝑠 − 1 atoms in 𝑁(𝑦𝑝) ∪

𝑁(𝑦𝑞). We need to calculate the probability of choosing at least least 2 atoms from this intersection. To do

this, we rely on the assumption that choices of non-zero entries in a signal’s sparse vector are uniform and

independently chosen. This assumption is required for us to be able to use the combinatorial definition of

probability. Under this assumption, we can then see that the probability of this event occurring is upper

bounded by

(2𝑠 − 1)(2𝑠 − 1) (
𝑟 − 2
𝑠 − 2

)

(
𝑟
𝑠

)

=
(2𝑠 − 1)2 (

𝑟 − 2
𝑠 − 2

)

(
𝑟
𝑠

)

= (2𝑠 − 1)2
𝑠(𝑠 − 1)

𝑟(𝑟 − 1)
≤

𝑠2

𝑟2
(2𝑠 − 1)2.

Though (a) and (b) are not mutually exclusive events, we can add their probabilities to reach an upper bound,

and then square this upper bound to account for the choices of 𝑦𝑗:

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)] ≤ [
𝑠

𝑟
+

𝑠2

𝑟2
(2𝑠 − 1)2]

2

≤ [
𝑠

𝑟
(1 +

𝑠

𝑟
(2𝑠 − 1)2)]

2

≤
𝑠2

𝑟2
[1 +

4𝑠3

𝑟
]

2

14

DePaul Discoveries, Vol. 7 [2018], Iss. 1, Art. 12

https://via.library.depaul.edu/depaul-disc/vol7/iss1/12

Probability bound

We combine the lower bound on the denominator and the upper bound on the numerator to arrive at a lower

bound for the probability; which is our initial goal.

We have that

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

=
𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

≥

𝑠2

𝑟2 [
(𝑟 − 𝑠)!
(𝑟 − 1)!

]
2 (𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!

[
𝑠
𝑟

+
𝑠2

𝑟2 (2𝑠 − 1)2]
2

≥

𝑠2

𝑟2 exp (−
10(𝑠 − 1)2

𝑟 − (𝑠 − 1)
)

𝑠2

𝑟2 [1 +
4𝑠3

𝑟]
2 ≥

1 −
11𝑠2

𝑟

[1 +
4𝑠3

𝑟]
2 .

We would like to get a total lower bound on in the form of a function 1 − 𝐶𝑠3/𝑟 for some 𝐶. We suspect

𝐶 = 11 + 2(4) = 19 to be relatively tight, but we need to show that for 𝑠 ∈ ℕ,

1 −
11𝑠2

𝑟

[1 +
4𝑠3

𝑟]
2 − [1 −

19𝑠3

𝑟
]

=
𝑠2(11𝑟2𝑠 − 11𝑟2 + 136𝑟𝑠4 + 304𝑠7)

𝑟(𝑟 + 4𝑠3)2
≥ 0.

This is equivalent to showing that, for 𝑠 ∈ ℕ, 1 ≤ 𝑠 ≤ 𝑟/11 + 1,

304𝑠7 + 136𝑟𝑠4 + 11𝑟2𝑠 ≥ 11𝑟2

Because the LHS is smallest when 𝑠 = 1, we must equivalently show that

304 + 136𝑟 + 11𝑟2 ≥ 11𝑟2

which is clearly true. Therefore, for natural numbers 𝑠 s.t. 1 ≤ 𝑠 ≤ 𝑟/11 + 1,

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)] ≥ 1 −
19𝑠3

𝑟
.

This concludes the calculations for the lower bound.

15

Zanotti and Au-Yeung: Exact Recovery of Atoms through Dictionary Initialization

Published by Via Sapientiae, 2018

	Exact Recovery of Prototypical Atoms through Dictionary Initialization
	Recommended Citation

	tmp.1527791358.pdf.f8TXg

