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INTRODUCTION 
 

Processing big data continues to be one of the 

most palpable challenges of the 21st century. As 

current computing technology reaches its 

physical limits, the application of advances from 

applied mathematics in solving this problem 

becomes a critical necessity. One approach that 

has evolved from both mathematics and computer 

science involves increasing the amount of 

apparent information in big data while 

simultaneously reducing its size. This technique 

is known as unsupervised learning or 

dimensionality reduction. 

 

 

 

Dictionary learning [11] is an approach to 

unsupervised learning that characterizes a large 

collection of data (hereafter "signals") by sparse 

linear combinations of a small set of prototypical 

signals. We can think of these prototypical 

signals as the representatives for the larger data 

set. This small set of representatives is known as 

the dictionary. The term sparse is there to 

emphasize that each sample in the data can be 

expressed as a linear combination of a small 

number of elements in the dictionary. Let us 

begin with three motivating examples to illustrate 

why learning the dictionary from the data is 

important. These examples are given in order of 

 

ABSTRACT  In dictionary learning, a matrix comprised of signals 𝑌 is factorized into the product of 

two matrices: a matrix of prototypical "atoms" 𝐷, and a sparse matrix containing coefficients for atoms 

in 𝐷, called 𝑋. Dictionary learning finds applications in signal processing, image recognition, and a 

number of other fields. Many algorithms for solving the dictionary learning problem follow the 

alternating minimization paradigm; that is, by alternating solving for 𝐷 and 𝑋. In 2014, Agarwal et al. 

proposed a dictionary initialization procedure that is used before this alternating minimization process. 

We show that there is a modification to this initialization algorithm and a corresponding data generating 

process under which full recovery of 𝐷 is possible without a subsequent alternating minimization 

procedure. Our findings indicate that the costly step of alternating minimization can be bypassed, and 

that other data generating processes may enjoy the same features as the one we propose.  
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sophistication, from the simple case in two 

dimension, where a scientist can visualize the 

data, to an application in high dimension that 

arises in computational neuroscience.   

Example 1. Suppose we have a collection of 200 

points in the plane. Each point in the plane is 

identified by its x-coordinate and its y-coordinate. 

After looking at the data, the scientist realizes that 

by rotating the horizontal axis of the plane, half 

the points will be aligned with the rotated axis, 𝑥′. 
By rotating the vertical axis, the other half of the 

points will be aligned with the second rotated 

axis, 𝑦′. Therefore, in this example (illustrated in 

Figure 1), the scientist will find it more natural to 

view the data in terms of the two rotated axes, 

rather than in terms of the original two axis. As a 

small step in the data analysis, she finds it helpful 

to think of the one hundred points that lie on the 

red axis as the red points, and the remaining 

hundred points that lie on the green axis as the 

green points. Visualizing the data points as either 

red or green are more meaningful than looking at 

the original coordinates of the points. Note that in 

this example, the ability to identify the red and 

green axis depends on the visualization of the 

data. The red and green axes are two 

representative vectors for this data set in the 

plane. In higher dimension, it is often difficult or 

impossible to visualize a cloud of data points. In 

that case, machine learning can be used to 

identify the representative vectors from the data, 

instead of from a visualization.  

Example 2. A survey is conducted among 600 

people. The participants of the survey evaluate 

their jobs on a scale from 1 to 10, where 10 means 

highly satisfactory and 1 indicates little job 

satisfaction. These ratings result in 600 numbers 

that are stored in a vector �⃗�. The team of scientists 

who design the survey know from previous 

experience that job satisfaction can largely be 

explained by three factors. These three attributes 

are income (salary for the job), fulfillment (to 

what extent the worker feels she is being 

appreciated), and contribution (to what extent the 

worker feels he is making a contribution to 

society). Let us label these factors income, 

fulfillment, and contribution by the variables 

𝐹1, 𝐹2, 𝐹3, respectively. 

There are three vectors �⃗�1, �⃗�2, �⃗�3 in ℝ600 that 

store the corresponding values of 𝐹1, 𝐹2, 𝐹3 for the 

600 workers. In an ideal setting, where there is no 

noise to the data, and these three factors can 

completely explain job satisfaction (𝑌), we have 

the following ideal model: 

𝑌 = 𝑐1𝐹1 + 𝑐2𝐹2 + 𝑐3𝐹3. 

This equation expresses the relationship: the 

rating of a job by a worker, as an indication of job 

satisfaction, is determined by three explanatory 

variables: income, fulfillment, and contribution 

to society. To determine the coefficients 𝑐1, 𝑐2, 

and 𝑐3, we can follow an approach from linear 

algebra: the vector �⃗� ∈ ℝ600 is projected into the 

subspace spanned by the vectors �⃗�1, �⃗�2, �⃗�3. To be 

clear, this subspace 𝑊 consists of all the vectors 

in ℝ600 that are linear combinations of �⃗�1, �⃗�2, �⃗�3. 

The task of finding the coefficients for the vector 

�⃗� is equivalent to the task of seeking the vector 

�⃗⃗⃗� ∈ 𝑊 that is the best approximation to the given 

vector �⃗�.   

Figure 1. The axes x and y are rotated to x′ and y′ to 

better align with the data. These new axes act as 

representative vectors which describe each set of 

colored points. 
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This approach to understand 𝑌 as a linear function 

of three explanatory variables 𝐹1, 𝐹2, 𝐹3 relies on 

the previous experience of the team of scientists 

who design the survey. They have the prior 

knowledge of what are the three main 

determining factors of job satisfaction. The three 

factors are chosen before the collection of data. 

Since the choice of the factors is not informed by 

the data itself, this leads to a natural question: Is 

it possible that if we can learn from the data what 

factors are important, we might gain better 

insight? 

Now, imagine that one purpose of the survey is to 

learn which jobs tend to yield high levels of job 

satisfaction. Instead of focusing on the job 

satisfaction of an individual, the team of scientists 

want to see what they can learn from the data. 

Some patterns emerge from the data. Among the 

participants of the survey, two hundred people are 

construction workers. Their data points for job 

satisfaction tend to lie on a plane that is spanned 

by two vectors 𝑓1 and 𝑓2. That is, their values for 

the vector �⃗� are linear combinations of 𝑓1 and 𝑓2. 

For those two hundred participants who work as 

firefighters and social workers, their data points 

tend to lie on a plane that is spanned by two 

vectors 𝑓2 and 𝑓3. For the remaining two hundred 

participants who work as engineers and nurses, 

their values of �⃗� can be expressed as linear 

combinations of 𝑓1 and 𝑓3. The original vector 

�⃗� ∈ ℝ600 can be split into three vectors �⃗�1, �⃗�2, �⃗�3 

in ℝ200. These findings can be expressed as a 

system of 3 equations, 

�⃗�1 = 𝑥11𝑓1 + 𝑥21𝑓2 + 𝑥31𝑓3

�⃗�2 = 𝑥12𝑓1 + 𝑥22𝑓2 + 𝑥32𝑓3

�⃗�3 = 𝑥13𝑓1 + 𝑥23𝑓2 + 𝑥33𝑓3

 

and with the condition that 

𝑥31 = 0, 𝑥12 = 0, 𝑥23 = 0. 

To summarize this finding, we can represent the 

situation as a matrix factorization, 𝑌 = 𝐷𝑋. The 

matrix 𝑌 with 200 rows consists of 3 columns 

�⃗�1, �⃗�2, �⃗�3. The matrix 𝐷 is the dictionary that 

consists of three columns 𝑓1, 𝑓2, 𝑓3. The first 

column of the matrix 𝑋 contains the coefficients 

𝑥11, 𝑥21, 𝑥31 for the vector �⃗�1. The matrix 𝑋 with 

3 rows and 3 columns is 2-sparse in each column. 

That means 2 entries in each column are not zero. 

It should be emphasized that given only the data 

matrix 𝑌, we are asking a machine to learn both 

matrices 𝐷 and 𝑋 in order to express the 

relationship 𝑌 = 𝐷𝑋. 

The factors that are learned from the data are not 

necessarily identified as the original explanatory 

variables (income, fulfillment, contribution). 

However, from these factors, we discover an 

emerging pattern: job satisfaction among 

participants of the survey fall into three 

categories. Construction workers belong to one 

category, while firefighters and social workers 

belong to another. Engineers and nurses fall 

under a third category.   

Example 3. Can a paralyzed man regain the 

motion of his hand? Ian Burkhart is a 

quadriplegic man who has become the first 

person to be implanted with technology that 

sends signals from the brain to muscles. This 

technological breakthrough is allowing him to 

regain some movement in his right arm and wrist. 

In 2014, scientists at Ohio State’s Neurological 

Institute implanted a microchip into the 24-year-

old quadriplegic’s motor cortex. Its goal is to 

bypass his damaged spinal cord so that with the 

help of a signal decoder and electrode-packed 

sleeve, he can control his right arm with his 

thoughts.  

Over a period of 15 months, researchers at the 

Ohio State University Wexner Medical Center 

and engineers from Battelle, the medical group 

that developed the decoder software and 

electrode sleeve, have helped Ian relearn fine 

motor skills with weekly training sessions. In a 

paper in Nature [3], the authors describe 

connecting a cable from the port screwed into 

Ian’s skull (where the chip is) to a computer that 

translates the brain signals into instructions for 

the sleeve, which stimulates his muscles into 

moving his wrist and fingers. For example, when 

Ian thinks "clench fist," the implanted electrodes 

record the activity in his motor cortex. Those 

signals are decoded in real-time, jolting his arm 

muscles in the right places so that his fingers curl 

inwards.  
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Performing the task of signal processing with a 

massive amount of data presents a challenge. The 

human brain can generate gigabytes of brain 

signals in just under a minute and a half, at a 

sampling rate of 30,000 samples/second on 96 

channels using the Neuroport neural data 

acquisition system [3]. The researchers need to 

decipher which brain signal is responsible for 

finger movement. 

Dictionary learning. This last example in 

computational neuroscience illustrates the need 

of a powerful tool to characterize the collection 

of signals by sparse linear combinations of 

prototypical signals. Formally, consider 𝑛 signals 

𝑦1, 𝑦2, . . . , 𝑦𝑛, each in ℝ𝑑. Then the dictionary 

learning problem we consider is 

min
𝐷,𝑋

∑

𝑛

𝑖=1

||𝑦𝑖 − 𝐷𝑥𝑖||2
2

s. t. ||𝑥𝑖||0 ≤ 𝑠, 𝑖 = 1, … , 𝑛.

 

where 𝑌 ∈ ℝ𝑑×𝑛 is a matrix of signals, 𝐷 ∈ ℝ𝑑×𝑟 

is a dictionary of 𝑟 prototypical signals, and 𝑋 ∈
ℝ𝑟×𝑛 is a sparse matrix of coefficients. 

Additionally, 𝑥𝑖 means the 𝑖th column of the 

matrix 𝑋. The notation ||𝑥𝑖||0 represents the zero 

"norm," which is the number of non-zero 

elements of 𝑥𝑖. The inequality on the zero "norm" 

above means that each column in 𝑋 is 𝑠-sparse; 

that is, each column has at most 𝑠 nonzero entries. 

 

In the parlance of dictionary learning, we have 𝑟 

atoms 𝑎1, 𝑎2, . . . , 𝑎𝑟, which are vectors in ℝ𝑑. 

Each signal is approximately equal to a linear 

combination of 𝑠 atoms. For example, for 𝑦𝑖, 

there exist atoms 𝑎𝑖1
, 𝑎𝑖2

, . . . , 𝑎𝑖𝑠
 and coefficients 

𝑐𝑖𝑗
, 𝑗 = 1,2, . . . , 𝑠, such that 

𝑦𝑖 = 𝑐𝑖1
𝑎𝑖1

+ 𝑐𝑖2
𝑎𝑖2

+. . . +𝑐𝑖𝑠
𝑎𝑖𝑠

. 

Dictionary learning attempts to recover a true 

dictionary 𝐷 and sparse matrix 𝑋 which define 

the signals or signal matrix 𝑌 by the relationship 

𝑌 ≈ 𝐷𝑋. 

 

Dictionary learning allows a signal to be 

represented by a vector of sparse coefficients, 

thus massively reducing both the storage 

requirements and processing requirements while 

describing the signal in terms of atoms, which are 

high in information density. Dictionary learning 

has been applied to perform face recognition [12], 

image restoration and inpainting (even when the 

image is heavily corrupted [8] or data is limited 

or incomplete [9]), and modeling of data with 

hierarchical structure, such as images and text 

[7]. 

 
A number of algorithms attempt to solve the 

dictionary learning problem. Most algorithms can 

be described as alternating minimization. These 

algorithms begin by initializing the dictionary to 

a random matrix, and then alternating between 

solving for the dictionary 𝐷 and the sparse matrix 

𝑋. That means at each iteration, there are two 

steps. First, the matrix 𝐷 is held fixed, while the 

best sparse matrix 𝑋 is determined. Next, using 

the matrix 𝑋 just computed, the dictionary 𝐷 is 

updated. The method of optimal directions 

(MOD) [6] solves for the dictionary at each 

iteration, by the method of least squares, and 

computes the sparse matrix by a sparse coding 

algorithm such as Orthogonal Matching Pursuit 

(OMP) [5]. A more sophisticated approach is the 

K-SVD algorithm [2]. This widely used 

algorithm replaces MOD’s least squares step by a 

more granular operation which decomposes error 

in the dictionary on a per-column basis. 

 
The technique of alternating minimization 

involves computationally intensive operations on 

large matrices that can take hours or days to 

converge. A creative idea was introduced at the 

prestigious Conference on Learning Theory 

(COLT 2014) in Spain. Agarwal, et al. present a 

fast, scalable algorithm for initializing the 

dictionary 𝐷 using a clustering procedure based 

on SVD to extract initial atoms [1]. This step 

recovers the dictionary with bounded error, and is 

followed by an alternating minimization 

procedure that iterates between LASSO [10] and 

least squares steps. The authors state that this is 

the first known exact recovery algorithm for the 

overcomplete (𝑟 > 𝑑) dictionary case. 

Importantly, they also empirically verify that 

under a common data generating process for 𝑌, 

the initialization step is not sufficient for 

obtaining a good approximation of the true 

dictionary 𝐷. 
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The main contribution of our work is to provide 

empirical evidence for a data generating process 

and conditions under which a modified 

initialization algorithm similar to that of [1] 

nearly recovers the atoms of the true dictionary 

𝐷. This discovery is important because it can 

obviate the requirement of performing a 

subsequent alternating minimization step that 

ensures exact recovery. Removing this procedure 

can reduce the computational cost of dictionary 

learning significantly. We also provide in detail 

the calculation that provides some justification of 

why the algorithm works under certain 

assumptions on the data generating process. This 

calculation can be found in the Appendix to this 

article. 

 
If an oracle can supply us with the dictionary 𝐷, 

so that the only unknown variable is the matrix 𝑋, 

then this can be formulated as an convex 

optimization problem. In that case, orthogonal 

matching pursuit (OMP) is an an efficient method 

to solve for the unknown matrix 𝑋 that is sparse 

in each column [5]. However, in our problem, the 

challenge is that given the data matrix 𝑌, both the 

dictionary 𝐷 and the coefficients matrix 𝑋 are 

unknown. 

 
Standard approaches to convex optimization are 

well established [4]. The dictionary learning 

problem can be formulated as a non-convex 

optimization problem. There is one principal 

difference between non-convex optimization 

(NCO) method and the algorithm under 

consideration in this article. Note that while using 

the NCO method can find a dictionary 𝐷 that 

nearly recovers the data 𝑌, the optimization 

algorithm does not attempt to recover the true 

dictionary that generates the data. In contrast, we 

want an algorithm that can nearly recover all the 

atoms in the true dictionary. 

 
INITIALIZATING DICTIONARIES FOR 

FAST OPTIMIZATION 
 

The core insight of the initialization algorithm 

InitDictionaryLearn of Agarwal et al. is that the 

atoms extracted from the data should be limited 

to those that represent clusters of signals. The 

algorithm tests pairs of signals to see if they share 

an atom, then finds signals that are correlated 

with the pair, which forms a cluster of signals. If 

the cluster is "good" (a decision determined by 

Agarwal’s UniqueIntersection algorithm), then 

InitDictionaryLearn extracts an atom in a process 

similar to PCA, using information from every 

entry of the signals in the cluster. We modify the 

algorithms InitDictionaryLearn and 

UniqueIntersection presented in [1], and 

name our modifications P1 and P2, respectively. 

The algorithm P1 is outlined in Algorithm 2, and 

P2 is outlined in Algorithm 1. Our modifications 

follow. 

 

 

We evaluate the algorithm on the result of a data 

generating process wherein the original 

dictionary 𝐷 is a square Discrete Cosine 

Transform matrix, and the elements of the 

columns of the true sparse matrix 𝑋 are integers 

which have limitations on their magnitude and 

distribution. The following section provides a 

description of this data generating process. 

 
We formulate a new correlation threshold 𝜏1 

specifically for our data generating process based 

on the assumption that the columns of our sparse 

matrix take on certain values in the worst case. 

Our correlation threshold’s calculation implies 

additional restrictions for the data generating 

process. A description is given in the Correlation 

Threshold section. 
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We also formulate a different threshold 𝜀1 for use 

in P2 for the average correlation between signals 

in a cluster detected by P1. This threshold is used 

to filter out clusters that don’t contain atoms 

sharing the same signal, and its formulation is 

based on intuition given by probabilistic 

estimations under some assumptions described in 

the Probabilistic Bounds section, with details in 

the Appendix. 

 

DATA GENERATING PROCESS 
 

In [1], Agarwal et al. test a data generating 

process where entries of 𝐷 are drawn from 

𝒩(0,1), the support of each column vector in 𝑋 

is chosen uniformly and independently from 

subsets of size 𝑠, and the non-zero values of each 

𝑋 column vector are chosen uniformly and 

independently from [−2, −1] ∪ [1,2]. 
 
Our data generating process is a choice of a true 

dictionary 𝐷 and s-sparse matrix 𝑋. The signals 

generated are defined by 𝑌 = 𝐷𝑋. This process is 

inspired by problems in classical signal 

processing–recovery of signals created by low 

coherence dictionaries. Consequently, a DCT 

matrix is chosen as the dictionary because it has 

low coherence. This is our first main modification 

of the data generating process of [1]. Like 

Agarwal et al., we consider the case where the 

signal matrix 𝑌 ∈ ℝ𝑑×𝑛 has 𝑑 < 𝑛. 

  

Our second main modification is as follows: we 

choose three integers 𝛼, 𝛽, and 𝛾, with 𝛾 positive. 

Like Agarwal et. al., we choose the locations of 

the non-zero entries uniformly and independently 

from the subsets of size 𝑠. We set one non-zero 

entry of each column to be 𝛽, and the rest drawn 

uniformly independently from {−𝛼} ∪ {𝛼}. So 

the non-zero entries of each column are in the list 

{−𝛼, 𝛼, 𝛽}. We further insist that no more than 

𝑛/𝛾 of the 𝛽-valued elements exist in the same 

entry of any subset of column vectors of 𝑋. This 

condition ensures that 𝛽-valued elements are not 

clustered together in dimension. Finally, this data 

generating process implies that any procedure 

clustering these vectors by the correlation 

function demands an additional condition; that 

  
𝛽2 − 2𝛼𝛽 > 2𝛼2(𝑠 − 2). 

This condition is derived in the Correlation 

Threshold section. 

 
Our restriction to integer-valued elements, 

restriction on the relative sizes and dimensional 

distributions of the elements, and use of a low 
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coherence dictionary are the major differences 

between our and Agarwal et al.’s data process. 

However, our additional free parameters allow 

flexibility as well. 

 
PROBABILISTIC BOUNDS 

 

In P1, our goal is to find clusters of signals that 

may share the same atom; that is, signals 𝑦𝑝 and 

𝑦𝑞 "share an atom" if 𝑋𝑠𝑝 and 𝑋𝑠𝑞 are both non-

zero. These potential clusters are constructed by 

selecting pairs of signals (𝑦𝑝, 𝑦𝑞) that have large 

inner product (lines 10–11), and then finding 

other signals that have large inner product with 

each signal in the pair (lines 14–16). Once we 

identify correlated clusters of signals in P1, we 

extract an atom through the process in lines 25–

29 [1]. 

 
Under our proposed data process and correlation 

threshold, lines 10–16 select clusters with signals 

that all share the same atom with coefficient 𝛽. 

However, under other data processes, there is no 

assurance that this will happen. Consequently, 

this process may select "bad" clusters which 

contain signals that might not (a) share a single 

unique atom and (b) have non-negligible 

contributions from other atoms (in our data 

process, this implies that the coefficient on these 

atoms is greater than 𝛼). 

 
To gain insight into the probability that each 

cluster identified by 𝑃1 is "good", we analyze the 

probability that any pair of signals in a cluster 

shares the same unique atom, but not any other 

atoms. We introduce the following scenario and 

events to formalize this problem: pick two signals 

from the data, 𝑦𝑝 and 𝑦𝑞, and consider two 

arbitrary signals 𝑦𝑖 and 𝑦𝑗. Define the following 

events: 

 

 𝑆𝑈(𝑦𝑝, 𝑦𝑞): The sums that represent 𝑦𝑝 and 

𝑦𝑞 share exactly one unique atom.  

 𝑆𝑈(𝑦𝑖, 𝑦𝑗): The sums that represent 𝑦𝑖 and 

𝑦𝑗 share exactly one unique atom.  

 𝐸1: 𝑦𝑖 shares exactly one atom with 𝑦𝑝, and 

𝑦𝑖 shares exactly one atom with 𝑦𝑞. Also, 

𝑦𝑗 shares exactly one atom with 𝑦𝑝, and 𝑦𝑗 

shares exactly one atom with 𝑦𝑞.  

 𝐹1: 𝑦𝑖 shares at least one atom with 𝑦𝑝, and 

𝑦𝑖 shares at least one atom with 𝑦𝑞. Also, 

𝑦𝑗 shares at least one atom with 𝑦𝑝, and 𝑦𝑗 

shares at least one atom with 𝑦𝑞. 

𝑆𝑈(𝑦𝑝, 𝑦𝑞) corresponds to picking the initial pair 

of correlated signals, as we know that if 

|〈𝑦𝑝, 𝑦𝑞〉| > 𝜏, then 𝑦𝑝 and 𝑦𝑞 share at least one 

atom. To make the analysis tractable, we assume 

that this shared atom is the only atom 𝑦𝑝 and 𝑦𝑞 

share, even though P2 may select pairs that share 

more than one unique atom. Additionally, we 

know that if, for some signal 𝑦𝑧, |〈𝑦𝑝, 𝑦𝑧〉| > 𝜏 

and |〈𝑦𝑞 , 𝑦𝑧〉| > 𝜏, then 𝑦𝑧 shares at least one 

atom with each of 𝑦𝑝 and 𝑦𝑞. 𝐹1 defines this event 

for some pair of signals (𝑦𝑖, 𝑦𝑗). We are interested 

in the following probability: given that 

𝑆𝑈(𝑦𝑝, 𝑦𝑞) and 𝐹1 have occurred, what is the 

probability that the events 𝐸1 and 𝑆𝑈(𝑦𝑖 , 𝑦𝑗) will 

occur? We are interested in analyzing  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)]. (1) 

In other words, if we have a pair (𝑦𝑝, 𝑦𝑞) of 

signals which share a unique atom, and another 

candidate pair (𝑦𝑖 , 𝑦𝑗), each of which shares at 

least one atom with 𝑦𝑝 and 𝑦𝑞, what is the 

probability that (𝑦𝑖 , 𝑦𝑗) share the same unique 

atom with each other (this is 𝑆𝑈(𝑦𝑖 , 𝑦𝑗)) that they 

uniquely share with 𝑦𝑝 and 𝑦𝑞 (this is 𝐸1)? 

Knowing a lower bound bound on (1) allows us 

to select only those clusters in which enough 

candidate pairs of signals from the cluster are 

correlated with each other to, on average, share a 

unique atom. To establish the lower bound that 

ensures that the cluster shares a unique atom, we 

split (1) up into  

 
𝑃[𝑆𝑈(𝑦𝑖,𝑦𝑗)∩𝐸1∩𝐹1|𝑆𝑈(𝑦𝑝,𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝,𝑦𝑞)]
, (2) 

 

by the definition of conditional probability. Each 

probability in (2) is bounded separately assuming 

that the signals are independent and atoms 

randomly distributed amongst signals (with 

details in the Appendix). These bounds are 

combined to form the lower bound on (1):  
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𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)] > 1 −
19𝑠3

𝑟
. (3) 

In P2, we again detect correlation by checking to 

see if two signals have inner product with a 

magnitude greater than 𝜏. We count all signals 

that pass this criterion, and use this count as an 

empirical estimator of (1). If this empirical 

estimation of (1) is above the lower bound on (1) 

required for the signals to share a unique atom, P2 

returns TRUE, and we continue on to the rest of 

P1 (that is, lines 25–29 which extract an atom). 

 
It is notable that this procedure does not depend 

on the data process we establish above, and that 𝜏 

may be calculated differently for a separate data 

process without affecting the above calculations. 

 
CORRELATION THRESHOLD 

 

We would not like to extract atoms from a cluster 

formed by P1 if the signals do not all share an 

atom. We calculate a correlation threshold in 

order to detect and reject clusters of signals fitting 

this description. We derive the correlation 

threshold based on the worst-case inner product 

of two vectors which do not share the same atom. 
If two vectors in 𝑌 do not share the same atom, 

the 𝛽-valued element is not contained in the same 

entry. Consequently, we know that the inner 

product will be at most  

𝜏1 = 2𝛼𝛽 + 𝛼2(𝑠 − 2) 

in magnitude, as each 𝛽-valued entry may, by 

chance, be multiplied by a signal with 𝛼 in the 

same entry with the same sign, leaving 𝑠 − 2 

potential 𝛼-valued entries with the same sign. In 

these calculations, we ignore the elements of 𝐷, 

as each element in 𝐷 is bounded in magnitude by 

1, and therefore the product of any of these 

elements will not affect this upper bound on the 

inner product between two vectors in 𝑌 that do 

not share atoms with coefficient 𝛽. 

 
Importantly, we must make sure that this 

threshold does not bar clusters comprised entirely 

of signals that share the same atom from being 

selected. In this case, without loss of generality, 

the worst-case result is that the 𝛽-valued entry is 

positive, and that the 𝛼-valued entries are all of 

opposite sign; therefore these entries decrease the 

magnitude of the inner product of two signals 

which share an atom.  

 

Thus we gain the restriction that  

 
𝛽2 − 𝛼2(𝑠 − 2) > 𝜏1 ⇔  𝛽2 − 2𝛼𝛽 > 2𝛼2(𝑠 − 2). 

 
EXPERIMENTS 

 

We run experiments with our data process to 

show that under some conditions, our modified 

clustering + eigenvector-based atom extraction 

procedure can fully recover the atoms of the 

original dictionary and reasonably reconstruct the 

original signal matrix 𝑌 without an alternating 

minimization step. To reconstruct the data, after 

the recovered dictionary 𝐷𝑝𝑟𝑒𝑑 is created by 𝑃1, 

we use OMP for sparse coding to form a 

recovered sparse matrix 𝑋𝑝𝑟𝑒𝑑. We use OMP 

because it is a fast and an easily comparable 

baseline used widely in the literature. We set the 

following parameters of our model: 𝑛 = 2048, 

𝑑 = 256, 𝑠 = 3, 𝛽 = 10, 𝛼 = {1,3}, 𝛾 = 256, 

and 𝑟 = 256. To be clear, this means that the 

dictionary has 256 atoms, the collection of data 

has 2048 signals, and each signal in ℝ256 is 3-

sparse. We remind the reader that a signal is 3-

sparse means that it is a linear combination of at 

most 3 atoms, and setting the value of 𝛽 to 10 

means the largest of the three coefficients is 10. 

The original dictionary 𝐷 for the data generating 

process is a Discrete Cosine Transform (DCT) 

matrix. We use the DCT dictionary because it is 

a standard choice in the literature. We choose 𝑛, 

𝑑, 𝑠 based on similar values used in the literature 

[2], and we choose 𝛼, 𝛽, 𝛾, and 𝑟 to illustrate the 

reconstruction of signals. We implement each 

experiment in MATLAB on a computer with a 

Core i7-4650U processor and 8GB of RAM. 

 
We use two metrics to judge the efficacy of our 

algorithm. The first is the recovery rate, 𝜈 =
𝑛𝑥/𝑟, where 𝑛𝑥 is the number of atoms extracted 

by 𝑃1 that have inner product of at least 0.99 with 

at least one atom in the original dictionary. Our 

second metric is the relative error of the 

reconstruction of 𝑌, defined as  

100
||𝐷𝑝𝑟𝑒𝑑𝑋𝑝𝑟𝑒𝑑 − 𝑌||2

||𝑌||2
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where || ⋅ ||2 indicates the spectral norm of a 

matrix (aka 2-norm, or largest singular value), 

and 𝐷𝑝𝑟𝑒𝑑 and 𝑋𝑝𝑟𝑒𝑑 are, respectively, the 

dictionary recovered by P1, and the sparse matrix 

recovered by OMP against 𝐷𝑝𝑟𝑒𝑑. 

 
For the 𝛼 = 1 case, our correlation threshold is 

𝜏1 = 2(1)(10) + (1)(1) = 21. We run our 

procedure P1 to construct the dictionary, and 

follow it with OMP to reconstruct 𝑋. We perform 

this experiment five times and average the 

metrics below. Our algorithm scans through all 

possible clusters of signals and stops when it has 

extracted 256 atoms. It therefore has the 

significant benefit of determining the number of 

atoms in the dictionary without a priori 

knowledge. Each of these 256 atoms has 

correlation of at least 0.9991 with at least one 

atom in the original DCT dictionary–in other 

words, 𝜈 = 1, as we correctly recover every 

single atom from the original dictionary. 

Similarly, we reconstruct the data as well, with a 

relative error rate of 8.19%. 

 
For the 𝛼 = 3 case, our correlation threshold is 

𝜏1 = 2(3)(10) + (1)(9) = 69. We use the same 

experimental setup as in the 𝛼 = 1 case. We 

perform this experiment five times. In all five 

runs, P1 stops after recovering all 256 atoms, 

again illustrating the automatic atom number 

determination that this approach enjoys. We also 

again recover all atoms, with the lowest inner 

product for a single recovered atom being equal 

to 0.9931. Thus 𝜈 = 1. To be clear, the 

dictionary has 256 atoms, the collection of data 

has 2048 signals, and each signal in ℝ256 is 3-

sparse. In the 𝛼 = 3 case, our relative error rate is 

21.64%. While this is larger than the 𝛼 = 1 case, 

we suspected that, due to the near-perfect atom 

recovery rate, the error must mostly be due to the 

sparse coding process governed by OMP. Indeed 

this is the case: we found that although 𝑋𝑝𝑟𝑒𝑑 

recovers almost every 𝛽-valued entry, it 

occasionally has flipped signs. Because in this 

work we mainly focus on the dictionary 

construction method, we do not attempt to 

improve this error rate; however, it is possible 

that it may be improved through the use of a 

sparse coding method more sophisticated than 

OMP. 

 
CONCLUSION 

 

We proposed modifications to the dictionary 

initialization algorithm of Agarwal et al. and a 

corresponding data generating process and 

correlation threshold under which full atom 

recovery and reasonable data reconstruction is 

possible. We also give a probabilistic bound that 

can aid in the evaluation of clusters created from 

different data generating processes. 

 
Our findings show that it is indeed possible to 

perform dictionary learning using only a 

clustering and atom extraction initialization 

algorithm paired with a sparse coding algorithm. 

This allows us to bypass the requirement of 

running an alternating minimization operation, 

and may indicate that other data processes enjoy 

this same empirical performance. Although we 

utilize OMP in this work, we hypothesize that 

more sophisticated sparse coding methods may 

further reduce reconstruction error as well. We 

leave the construction of new data generating 

processes and correlation thresholds and the use 

of other sparse coding algorithms to future 

research.
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APPENDIX 

In this appendix, we provide in full detail the calculations for the two-signal probabilistic bound. 

 
PROBABILISTIC ANALYSIS OF TWO SIGNALS 
 

Pick two signals from the data, 𝑦𝑝 and 𝑦𝑞, and consider two arbitrary signals 𝑦𝑖 and 𝑦𝑗. Define the following 

events:    

 𝑆𝑈(𝑦𝑝, 𝑦𝑞): The sums that represent 𝑦𝑝 and 𝑦𝑞 share exactly one unique atom.  

 𝑆𝑈(𝑦𝑖 , 𝑦𝑗): The sums that represent 𝑦𝑖 and 𝑦𝑗 share exactly one unique atom.  

 𝐸1: 𝑦𝑖 shares exactly one atom with 𝑦𝑝, and 𝑦𝑖 shares exactly one atom with 𝑦𝑞. Also, 𝑦𝑗 shares exactly 

one atom with 𝑦𝑝, and 𝑦𝑗 shares exactly one atom with 𝑦𝑞.  

 𝐹1: 𝑦𝑖 shares at least one atom with 𝑦𝑝, and 𝑦𝑖 shares at least one atom with 𝑦𝑞. Also, 𝑦𝑗 shares at least 

one atom with 𝑦𝑝, and 𝑦𝑗 shares at least one atom with 𝑦𝑞.  

 

Note that 𝐹1 is just 𝐸1, but "exactly" has been replaced with "at least." For the remainder of these calculations, 

we suppose that 𝑆𝑈(𝑦𝑝, 𝑦𝑞) has occurred, and that, WLOG, say 𝑎𝑝𝑠
 = 𝑎𝑞𝑠

. Denote this shared atom by 𝑎𝑠. 

Additionally, note that both 𝐸1 and 𝐹1 occur if 𝑦𝑖 and 𝑦𝑗 share just 𝑎𝑠 with 𝑦𝑝 and 𝑦𝑞. Finally, note that if 𝐸1 

has occurred, then 𝐹1 has occurred as well. 

We’d like to find a lower bound on  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)]. 

By the definition of conditional probability, this probability is equal to  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1 ∩ 𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]
, 

but because 𝐸1 satisfies the requirements for 𝐹1 to occur, this is equal to  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]
. 

So, to find a lower bound on this probability, we need to find a lower bound on 𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)] 

and an upper bound on 𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]. 

Lower bound 

We define 𝑁(𝑦𝑖) to be the set of atoms that construct the signal 𝑦𝑖. If each of 𝑦𝑖 and 𝑦𝑗 choose 𝑎𝑠, the atom 

that 𝑦𝑝 and 𝑦𝑞 share, and if they then don’t choose any more atoms from 𝑁(𝑦𝑝) ∪ 𝑁(𝑦𝑞), we see that this is 

one way that 𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1 occurs. Therefore, the probability of this constitutes a lower bound on 

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)], and we see that  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

≥
(

1
1

) (
𝑟 − 2𝑠 + 1
     𝑠 − 1

) (
1
1

) (
𝑟 − 3𝑠 + 2
     𝑠 − 1

)

(
𝑟
𝑠

)
2

=
𝑠2

𝑟2
[
(𝑟 − 𝑠)!

(𝑟 − 1)!
]2

(𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!
,
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where the usage of the combinatorial definition of probability requires us to assume that the choices of 𝑦𝑖 are 

independent of the choice of 𝑦𝑗, and that the probabilities of choosing any of the 𝑠 − 1 atoms in either of the 

above binomial coefficients are uniform. 

We need to approximate the ratio of factorials to produce a useful lower bound. We’ll start by noting that if 

𝑟 = 4𝑠 − 3 + 𝑘 where 𝑘 is a nonnegative integer, then  

(𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!
=

(4𝑠 − 3 + 𝑘 − 2𝑠 + 1)!

(4𝑠 − 3 + 𝑘 − 4𝑠 + 3)!

=
(2𝑠 − 2 + 𝑘)!

𝑘!
= (2𝑠 − 2 + 𝑘)(2𝑠 − 3 + 𝑘) ⋯

     (𝑠 + 𝑘) ⋅ (𝑠 + 𝑘 − 1)(𝑠 + 𝑘 − 2) ⋯ (𝑘 + 1).

 

Note that there are always 2𝑠 − 2 + 𝑘 − (𝑘 + 1) + 1 = 2𝑠 − 2 = 2(𝑠 − 1) terms in the last product. For 

example, if 𝑟 = 1000 and 𝑠 = 10, then  

(𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!
=

981!

963!

= 964 ⋅ 965 ⋯ 972 ⋅ 973 ⋅ 974 ⋯ 981.

 

Now consider that, with the same restrictions,  

(𝑟 − 𝑠)!

(𝑟 − 1)!
=

1

(𝑟 − 1) ⋯ (𝑟 − 𝑠 + 1)

=
1

(4𝑠 − 4 + 𝑘)(4𝑠 − 5 + 𝑘) ⋯ (3𝑠 − 2 + 𝑘)
,

 

which is always a product of  

4𝑠 − 4 + 𝑘 − (3𝑠 − 2 + 𝑘) + 1 = 𝑠 − 1 

terms. Then  

[
(𝑟 − 𝑠)!

(𝑟 − 1)!
]

2 (𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!

=
(2𝑠 − 2 + 𝑘)(2𝑠 − 3 + 𝑘) ⋯ (𝑠 + 𝑘)

(4𝑠 − 4 + 𝑘)(4𝑠 − 5 + 𝑘) ⋯ (3𝑠 − 2 + 𝑘)

    ⋅
(𝑠 + 𝑘 − 1)(𝑠 + 𝑘 − 2) ⋯ (𝑘 + 1)

(4𝑠 − 4 + 𝑘)(4𝑠 − 5 + 𝑘) ⋯ (3𝑠 − 2 + 𝑘)

≥ (
𝑠 + 𝑘

3𝑠 − 2 + 𝑘
)

𝑠−1

(
𝑘 + 1

3𝑠 − 2 + 𝑘
)

𝑠−1

= (
𝑟 − 3(𝑠 − 1)

𝑟 − 𝑠 + 1
)

𝑠−1

(
𝑟 − 4(𝑠 − 1)

𝑟 − 𝑠 + 1
)

𝑠−1

,

 

where the last equality is reached by noting that 𝑘 = 𝑟 − 4𝑠 + 3 and rearranging. 

Now applying the identity 1 −
𝑏𝑥

𝑐−𝑥
≥ exp (

−2𝑏𝑥

𝑐−𝑥
), which is valid for 0 ≤ 𝑏 ≤ 3 and 𝑐 > 0 for 0 ≤ 𝑥 ≤ 𝑐/5, 

we see that, with the restriction that 𝑟 ≥ max(5𝑠, 4𝑠 − 3) = 5𝑠,  
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(1 −
3(𝑠 − 1)

𝑟 − (𝑠 − 1)
)

𝑠−1

(1 −
2(𝑠 − 1)

𝑟 − (𝑠 − 1)
)

𝑠−1

≥ exp (−
6(𝑠 − 1)2

𝑟 − (𝑠 − 1)
) exp (−

4(𝑠 − 1)2

𝑟 − (𝑠 − 1)
)

= exp (−
10(𝑠 − 1)2

𝑟 − (𝑠 − 1)
)

≥ 1 −
10(𝑠 − 1)2

𝑟 − (𝑠 − 1)
≥ 1 −

11(𝑠 − 1)2

𝑟

 

where the second to last inequality is by truncating the Taylor expansion of 𝑒−𝑥, and the last inequality holds 

because with 𝑥 = 𝑠 − 1,  

1 −
10𝑥2

𝑟 − 𝑥
≥ 1 −

11𝑥2

𝑟

⇔ 1 −
10𝑥2

𝑟 − 𝑥
− (1 −

11𝑥2

𝑟
) ≥ 0

⇔
11𝑥2

𝑟
−

10𝑥2

𝑟 − 𝑥
≥ 0

 

This inequality clearly holds for 𝑥 = 0; we need to find out where it does not hold, so we find the positive 

roots of the function:  

𝑓(𝑥) ≔
11𝑥2

𝑟
−

10𝑥2

𝑟 − 𝑥

=
11𝑥2𝑟 − 11𝑥3 − 10𝑥2𝑟

𝑟(𝑟 − 𝑥)

=
𝑥2(𝑟 − 11𝑥)

𝑟(𝑟 − 𝑥)

⇒ 𝑓(𝑥) = 0 if  𝑥 = 0,
𝑟

11
.

 

This implies that the inequality holds for 0 ≤ 𝑥 ≤ 𝑟/11, or 1 ≤ 𝑠 ≤ 𝑟/11 + 1. 

Now, we’d rather use 𝑠 than 𝑠 − 1 in our inequality, and because  

1 −
11(𝑠 − 1)2

𝑟
≥ 1 −

11𝑠2

𝑟
, 

we can. Therefore, putting this approximation back into the lower bound we had above, we achieve the lower 

bound  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)] ≥
𝑠2

𝑟2
[1 −

11𝑠2

𝑟
]. 

Upper bound 

Now that we’ve computed the lower bound on the numerator, we’d like to find an upper bound on the 

denominator, 𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]. 
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We claim that for one signal (without loss of generality, we choose 𝑦𝑖) 𝐹1 occurs in two ways, (a) and (b). 

Once we calculate the probability for one signal, we square this probability, because the choices of the other 

signal (let us say, 𝑦𝑞) are independent from those of 𝑦𝑖. Thus this argument rests on the assumption that 𝑦𝑖 

and 𝑦𝑗 are independent. We again use the language of graph theory to demarcate these cases; consider the 

bipartite graph formed by of 𝑟 nodes representing 𝑟 atoms on one side, and two nodes representing 𝑦𝑝 and 𝑦𝑞 

on the other. Edges between signal nodes and atom nodes indicate that the signal’s sparse representation uses 

the atom. Then the neighborhoods 𝑁(𝑦𝑝) and 𝑁(𝑦𝑞) constitute the sets of atoms of 𝑦𝑝 and 𝑦𝑞, respectively. 

In (a), we suppose that 𝑦𝑖 and 𝑦𝑗 only choose from the atoms in 𝑁(𝑦𝑝) ∩ 𝑁(𝑦𝑞). Note that the only atom in 

this set is necessarily 𝑎𝑠. This gives the probability of the event that 𝑦𝑖 and 𝑦𝑗 choose exactly one atom. Since 

these choices are independent and symmetric, we can split up the choices between 𝑦𝑖 and 𝑦𝑗; 𝑦𝑖 chooses one 

atom from the intersection, then chooses 𝑠 − 1 atoms from the other 𝑟 − 1 atoms; after this, 𝑦𝑗 does the same. 

Thus this argument rests on the assumptions that the probabilities of choosing from 1 atom in the intersection 

and the 𝑟 − 1 other atoms are independent, and therefore uniform, and therefore we can assert that  

(
1
1

) (
𝑟 − 1
𝑠 − 1

)

(
𝑟
𝑠

)
=

𝑠

𝑟
. 

In (b), we calculate the probability that 𝑦𝑖 and 𝑦𝑗 choose 2 or more atoms from the 2𝑠 − 1 atoms in 𝑁(𝑦𝑝) ∪

𝑁(𝑦𝑞). We need to calculate the probability of choosing at least least 2 atoms from this intersection. To do 

this, we rely on the assumption that choices of non-zero entries in a signal’s sparse vector are uniform and 

independently chosen. This assumption is required for us to be able to use the combinatorial definition of 

probability. Under this assumption, we can then see that the probability of this event occurring is upper 

bounded by  

(2𝑠 − 1)(2𝑠 − 1) (
𝑟 − 2
𝑠 − 2

)

(
𝑟
𝑠

)

=
(2𝑠 − 1)2 (

𝑟 − 2
𝑠 − 2

)

(
𝑟
𝑠

)

= (2𝑠 − 1)2
𝑠(𝑠 − 1)

𝑟(𝑟 − 1)
≤

𝑠2

𝑟2
(2𝑠 − 1)2.

 

Though (a) and (b) are not mutually exclusive events, we can add their probabilities to reach an upper bound, 

and then square this upper bound to account for the choices of 𝑦𝑗:  

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)] ≤ [
𝑠

𝑟
+

𝑠2

𝑟2
(2𝑠 − 1)2]

2

≤ [
𝑠

𝑟
(1 +

𝑠

𝑟
(2𝑠 − 1)2)]

2

≤
𝑠2

𝑟2
[1 +

4𝑠3

𝑟
]

2
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Probability bound 

We combine the lower bound on the denominator and the upper bound on the numerator to arrive at a lower 

bound for the probability; which is our initial goal. 

We have that  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

=
𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

𝑃[𝐹1|𝑆𝑈(𝑦𝑝, 𝑦𝑞)]

≥

𝑠2

𝑟2 [
(𝑟 − 𝑠)!
(𝑟 − 1)!

]
2 (𝑟 − 2𝑠 + 1)!

(𝑟 − 4𝑠 + 3)!

[
𝑠
𝑟

+
𝑠2

𝑟2 (2𝑠 − 1)2]
2

≥

𝑠2

𝑟2 exp (−
10(𝑠 − 1)2

𝑟 − (𝑠 − 1)
)

𝑠2

𝑟2 [1 +
4𝑠3

𝑟 ]
2 ≥

1 −
11𝑠2

𝑟

[1 +
4𝑠3

𝑟 ]
2 .

 

We would like to get a total lower bound on in the form of a function 1 − 𝐶𝑠3/𝑟 for some 𝐶. We suspect 

𝐶 = 11 + 2(4) = 19 to be relatively tight, but we need to show that for 𝑠 ∈ ℕ,  

1 −
11𝑠2

𝑟

[1 +
4𝑠3

𝑟 ]
2 − [1 −

19𝑠3

𝑟
]

=
𝑠2(11𝑟2𝑠 − 11𝑟2 + 136𝑟𝑠4 + 304𝑠7)

𝑟(𝑟 + 4𝑠3)2
≥ 0.

 

This is equivalent to showing that, for 𝑠 ∈ ℕ, 1 ≤ 𝑠 ≤ 𝑟/11 + 1,  

304𝑠7 + 136𝑟𝑠4 + 11𝑟2𝑠 ≥ 11𝑟2 

Because the LHS is smallest when 𝑠 = 1, we must equivalently show that  

304 + 136𝑟 + 11𝑟2 ≥ 11𝑟2 

which is clearly true. Therefore, for natural numbers 𝑠 s.t. 1 ≤ 𝑠 ≤ 𝑟/11 + 1,  

𝑃[𝑆𝑈(𝑦𝑖 , 𝑦𝑗) ∩ 𝐸1|𝐹1 ∩ 𝑆𝑈(𝑦𝑝, 𝑦𝑞)] ≥ 1 −
19𝑠3

𝑟
. 

This concludes the calculations for the lower bound. 
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