
DePaul Discoveries DePaul Discoveries 

Volume 6 Issue 1 Article 7 

2017 

Signal Processing on Graphs Using Kron Reduction and Spline Signal Processing on Graphs Using Kron Reduction and Spline 

Interpolation Interpolation 

Michael Dennis 
University of Berkeley, California, michael_dennis@cs.berkeley.edu 

Enrico Au-Yeung 
DePaul University, eauyeun1@depaul.edu 

Follow this and additional works at: https://via.library.depaul.edu/depaul-disc 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Dennis, Michael and Au-Yeung, Enrico (2017) "Signal Processing on Graphs Using Kron Reduction and 
Spline Interpolation," DePaul Discoveries: Vol. 6 : Iss. 1 , Article 7. 
Available at: https://via.library.depaul.edu/depaul-disc/vol6/iss1/7 

This Article is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It 
has been accepted for inclusion in DePaul Discoveries by an authorized editor of Via Sapientiae. For more 
information, please contact digitalservices@depaul.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Via Sapientiae: The Institutional Repository at DePaul University

https://core.ac.uk/display/232976489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://via.library.depaul.edu/depaul-disc
https://via.library.depaul.edu/depaul-disc/vol6
https://via.library.depaul.edu/depaul-disc/vol6/iss1
https://via.library.depaul.edu/depaul-disc/vol6/iss1/7
https://via.library.depaul.edu/depaul-disc?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol6%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol6%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/depaul-disc/vol6/iss1/7?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol6%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu


Signal Processing on Graphs Using Kron Reduction and Spline Interpolation Signal Processing on Graphs Using Kron Reduction and Spline Interpolation 

Acknowledgements Acknowledgements 
The first author acknowledges the financial support of an Undergraduate Research As- sistant Program 
(URAP) from DePaul University. The second author acknowledges the financial support of a Faculty 
Summer Research Grant Program from DePaul University. 

This article is available in DePaul Discoveries: https://via.library.depaul.edu/depaul-disc/vol6/iss1/7 

https://via.library.depaul.edu/depaul-disc/vol6/iss1/7


____________________________________ 

* Corresponding Author michael_dennis@cs.berkeley.edu 
Research Completed in Summer 2016 while first author was  
a student at DePaul University 

 

 

 

Signal Processing on Graphs Using Kron Reduction and Spline 
Interpolation 

 
Michael Dennis* 

Department of Computer Science, University of California Berkeley 

Enrico Au-Yeung, PhD  
Department of Mathematical Sciences, DePaul University

 

 

INTRODUCTION 

 

 

The internet has made it simple to get vast 
quantities of data.  It is now easy to generate large 
datasets describing social networks, road 
networks, the connections between web pages, 
geographic and atmospheric data and much, 
much more simply by going to the appropriate 
websites or writing short programs in the comfort 
of one's office.  However, it is becoming 
increasingly common for these large datasets to 
have some irregular structure.  In classical 
domains such as image-processing, the data is 
given in a very regular pattern with a known 
structure, in this case a grid of pixels.  In general 
the data will not always be so well behaved.  In 

the cases mentioned above, there are intrinsic 
relationships between different data points that 
have no simple description.  In most cases, these 
connections should not be ignored; data about the 
behavior of a person will reveal much more 
information about the friends and family of that 
person than it will about complete strangers.  
Even in the same data-set we can have parts 
which are well-structured, think about the streets 
of downtown Chicago, and parts that seem to 
have little to no structure, think about the twisting 
streets of Washington DC.  Clearly, there is a 
present need to be able to handle this type of data. 

 

ABSTRACT In applications such as image processing, the data is given in a regular pattern with a 
known structure, such as a grid of pixels. However, it is becoming increasingly common for large data 
sets to have some irregular structure. In image recognition, one of the most successful methods is 
wavelet analysis, also commonly known as multi-resolution analysis. Our project is to develop and 
explore this powerful technique in the setting where the data is not stored in the form of a rectangular 
table with rows and columns of pixels. While the data sets will still have a lot of structure to be exploited, 
we want to extend the wavelet analysis to the setting when the data structure is more like a network than 
a rectangular table. Networks provide a flexible generalization of the rigid structure of rectangular 
tables. 
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To try to better understand this problem, we look 
at what has worked in other classical domains. 
In image recognition, one of the most successful 
methods has been wavelet analysis (Walnut, 
2002).  Over the last 25 years, the method of 
wavelet analysis, also commonly known as multi-
resolution analysis, has been an indispensable 
tool for processing data and is one reason why 
digital image processing has become so 
successful.  It allows a simple way to perform 
tasks as fundamental as detecting the edges of 
objects in images or image compression and are 
used every time your phone's camera detects your 
face or makes a JPEG.  It is this ubiquitous 
success that we want to translate into the domain 
of irregular data.   
 
Our project is to develop and explore this 
powerful technique in the setting where the data 
is not stored in the form of a rectangular table 
with rows and columns of pixels.  
 
While the data sets will still have a lot of structure 
to be exploited, we want to extend the wavelet 
analysis to the setting when the data structure is 
more like a network than a rectangular table. 
 
Networks provide a flexible generalization of the 
rigid structure of rectangular tables. Scientists 
often refer to these networks as graphs.  A graph 
is a set of vertices (such as people, intersections, 
or websites) and a set of edges (such as 
friendships, roads, or hyperlinks).  We will start 
by understanding the success and benefits of 
signal processing before formalizing the concept 
of a graph and moving to show how current 
methods can be extended to work in these new 
settings. 

THE IMPORTANCE OF SIGNAL 
PROCESSSING 

Crime dramas, such as CSI, Criminal Minds, Law 
and Order, and NCIS, often give the audience the 
impression that facial recognition will only take 
seconds for a computer to do.  For example, if a 
little girl is kidnapped in a shopping mall, the 
detective can just ask the computer to compare 
the image of a face taken by a surveillance camera 
with the images of faces stored in a database.  It 
is a dramatization of facial recognition that the 

computer flashes through thousands of images 
per second and successfully identifies the suspect 
within seconds.  In reality, facial recognition can 
be a computationally intensive task, especially if 
tens of millions of faces need to be compared.  
Each image is a quarter million pixels.  Unlike the 
situation often shown in crime drama on 
television shows, it can take a computer up to six 
hours to work through a vast number of digital 
images, while the little girl kidnapped in the 
shopping mall is still missing.  When comparing 
digital images, features selection is more 
important than accurate reconstruction of images 
from partially stored data.  Thus given two 
slightly blurry images, the ability to extract 
relevant features from each image and to compare 
only these features would be sufficient to tell 
whether these two images represent the same 
person.  In such an application, it is desirable to 
have a flexible way to reconstruct a slightly 
blurry version of an image quickly. 

A related and prominent example is the 
processing of images from a database of 
fingerprints.  Often, the fingerprint found in a 
crime scene is not a perfect print but only a partial 
print.  In this case, a partial reconstruction of an 
image is not only sufficient, but desirable.  
Instead of seeking a perfect match with a 
fingerprint, the FBI agent is more interested in the 
comparison with a partial reconstruction or a 
blurry version of a fingerprint image. 

SIGNAL PROCESSING ON GRAPHS 

Graphs are useful for describing the irregular 
structure in networks such as social, 
transportation, and neuronal networks. In general 
graphs are a set of objects called vertices and 
relationships between those objects called edges. 
For instance a graph could be people connected 
by friendships, intersections connected by roads, 
or websites connected by hyperlinks. Typically 
there is also a weight on each edge describing the 
strength of the connection. In this paper we will 
hold the convention that the higher the weight the 
closer the connection between the two vertices. 
For example, in a road network, the weight can 
be chosen to be inversely proportional to the 
length of the road or, in a social network, the 
weight can be the number of interactions in a 
typical week.  
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Formally, we represent a graph by the tuple 
G=(V,E), where V is a set of N vertices and E is a 
set of edges. For edges, e in E we will define w(e) 
to be the weight of the edge e. From this we can 
define the weighted adjacency matrix W as a 
matrix with N rows and N columns describing the 
weights in the graph G. For this matrix, the entry 
in row i and column j is the weight associated 
with the edge between the i-th vertex and the j-th 
vertex, or zero if no such edge exists. It is 
important to note that in this context we are only 
concerned about graphs whose edges have no 
direction. As far as the methods discussed in this 
paper are concerned, if I am friends with you, you 
are friends with me. 
 
If there are no natural choices for weights, one 
can construct an unweighted graph, where the 
entries of the adjacency matrix are zeros and 
ones. In this case, a one indicates that two vertices 
are directly connected, and a zero means that the 
two vertices are not directly connected. The 
degree matrix D is a diagonal matrix with 
diagonal entry  

𝑑𝑑𝑖𝑖 = 𝐷𝐷(𝑖𝑖, 𝑖𝑖)  = ∑ 𝑊𝑊(𝑖𝑖, 𝑗𝑗)𝑗𝑗 , 

where the sum is over all the vertices j connected 
to vertex i. The graph Laplacian is the matrix  

𝐿𝐿 = 𝐷𝐷 −𝑊𝑊. 

It is well-known that many properties of the 
Laplacian matrix tell us about the structure of the 
graph G. 
 
Finally, since we hope to use signal-processing 
techniques, it is important to define what we 
mean by a signal on a graph. A signal or function 
f: V ↦ R defined on the vertices of a graph is often 
represented by a vector with N components, 
where the i-th component of the vector represents 
the value of the function at the i-th vertex. Graph 
signals appear in many engineering and science 
applications. In brain imaging, the distinct 
functional regions of the cerebral cortex are 
represented by the vertices of a weighted graph. 
The strength of connectivity is captured by the 
weights of the edges. The graph signal in this case 
is the data of the regions of the brain obtained 
from functional magnetic resonance imaging 
(fMRI), often a measure of the intensity of the 
brain activity in those regions. Sometimes, a 

graph and the graph signal can reveal structure 
that is very difficult to detect. As another 
example, a large collection of documents can be 
visualized as a graph, with one vertex for each 
document. Edges and weights can be the number 
of important words that they have in common and 
the signal can be the degree of relevance of the 
document to the task at hand. In both of these 
cases, the behavior of the signal is closely tied to 
the structure of the graph. We would expect the 
amount of activity in closely connected regions of 
the brain to be related. 

VERTEX SELECTION AND GRAPH 
REDUCTION 

Having defined what we mean by a signal on a 
graph, we now begin to describe the signal-
processing techniques on a graph. To perform a 
multi-resolution analysis on graph signals, we 
need to specify three steps:  

1. vertex selection  

2. graph reduction  

3. graph interpolation  

The first step, vertex selection, means that we 
need a rule to select the vertices of a graph. In 
classical signal processing, where signals are 
often defined on a line, this step simply means 
that we select every other vertex and remove the 
remaining vertices. Since each entry of the graph 
signal corresponds to the value of a function at a 
vertex, this is the same as keeping every other 
component of the signal 𝑓𝑓 ∈ 𝑹𝑹𝑁𝑁 and discarding 
the remaining entries. If we try to extend this idea 
to the setting of graphs signal processing, it is not 
entirely obvious what it means to keep every 
other component of a signal defined on the 
vertices of a graph. We adopt the convention that 
if a graph is bipartite, which means the vertices 
can be coloured red or blue so that vertices of the 
same colour are not connected to each other, then 
we keep the entries of the graph signal that 
correspond to the red vertices. Clearly, it is 
equally plausible to keep the blue ones and 
discard the red ones. If the graph is not bipartite, 
then it is possible to modify this rule, based on the 
signs of the entries in the eigenvector of the graph 
Laplacian that corresponds to the largest 
eigenvalue, which are known to make an 

3

Dennis and Au-Yeung: Signal processing on graphs

Published by Via Sapientiae, 2017



 

approximately bipartite set. For the sake of 
clarity, we illustrate this rule with the following 
example. 

 
Figure 1. A small example of a bipartite graph. 

Example 1 Suppose we have the graph in Figure 
1. The four corners of the square are the four 
vertices of the graph. This is a bipartite graph 
because each vertex of the graph is either red or 
blue, while no neighbours have the same colour. 
For this unweighted graph, we compute its graph 
Laplacian L and the eigenvector v corresponding 
to the largest eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚,  

𝐿𝐿𝑣𝑣 =  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣. 

The eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 4 and the four entries in 
the eigenvector v are {−0.5,0.5,−0.5,0.5}. We 
note that half the entries are positive and half are 
negative. We select the second and fourth 
vertices, which correspond to the positive entries. 
This is our rule for vertex selection. We extend 
this vertex selection method to the case when the 
graph is not bipartite.  Imagine   if   we were to 
add an edge connecting the top left corner and 
the bottom right corner of the square. Then the 
graph is no longer bipartite.  

We compute its graph Laplacian L and the 
eigenvector v corresponding to the largest 
eigenvalue. The vector v still contains two 
positive and two negative entries. We select those 
two vertices corresponding to the positive entries.  

 

Having selected a subset of the vertices of a 
graph, we need a procedure to define a graph 
Laplacian on the subset of the chosen vertices. 
This is the process of graph reduction. We would 
like graph reduction to have the following 
desirable properties:  

1. The resulting graph Laplacian is indeed a 
Laplacian matrix. In particular, it means that each 
row must sum to zero.  

2. If the original graph is connected, then 
the reduced graph is also connected.  

3. Some structural properties are preserved. 
We will discuss this below in items 3 and 4 of the 
subsequent list.  

4. It must be computational feasible to 
implement. For example, if the graph contains N 
vertices, the algorithm to implement the graph 
reduction process should not take more than N6 
steps.  
 
We emphasize that this is a wish-list and there is 
no theoretical reason to think that any graph 
reduction process can satisfy all these properties 
for all possible graphs. The procedure that we use 
for graph reduction is called Kron reduction, as 
investigated by Shuman, Faraji, and 
Vandergheynst (2016).  
 
Suppose we have a graph G=(V,E), together with 
the graph Laplacian L and a subset 𝑉𝑉1 of the 
vertices. Our task is to form the reduced graph 
with the set of selected vertices 𝑉𝑉1 and a resulting 
graph Laplacian. The Kron reduction of L is  

𝐾𝐾(𝐿𝐿,𝑉𝑉1) =  𝐿𝐿𝑉𝑉1,𝑉𝑉1 − 𝐿𝐿𝑉𝑉1,𝑉𝑉1𝑐𝑐   𝐿𝐿𝑉𝑉1,𝑉𝑉1𝑐𝑐
−1  𝐿𝐿𝑉𝑉1𝑐𝑐,𝑉𝑉1   

where the notation 𝐿𝐿𝐴𝐴,𝐵𝐵 denotes the sub-matrix 
that consists of all the entries of L whose row 
index is in the set A and whose column index is 
in the set B. 
 
The Kron reduction enjoys several properties.  

1. The graph Laplacian defined by (1) is 
indeed a graph Laplacian.  
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2. If the original graph is connected, then 
the resulting graph from Kron reduction is also 
connected.  

3. The Kron reduction of a ring graph is a 
ring graph with half the number of vertices, and 
the weights of the edges are halved. A ring graph 
is a graph in which all the vertices are arranged 
around a ring, so that each vertex has one left 
neighbour and one right neighbour.  

4. The Kron reduction of a very large 4-
connected grid graph is 8-connected. In this 
context, we say that a graph is k-connected if it 
remains connected after the removal of any (k−1) 
edges that are not on the outer edges of a graph.  
 
Properties (3) and (4) indicate that in some 
situations, some structural properties of a graph 
are preserved in the Kron reduction process. 
 
One of our contributions is that we discovered a 
way to perform Kron reduction without explicitly 
inverting a matrix, when the original graph is 
bipartite. The Kron reduction of graph Laplacian 
L defined by (1) involves the inversion of a large 
matrix. By avoiding the need to explicitly 
compute the inverse of a large matrix during Kron 
reduction, the potential savings in either storage 
or computation time are huge. This now makes it 
possible to use the techniques on much larger 
datasets than were previously possible and it is 
now feasible to test our code on standard images 
containing millions of pixels.  

GRAPH INTERPOLATION 

Given the values of a graph signal on a subset 𝑉𝑉1 
of the vertices, we need a method to infer the 
values of the signal on the remaining vertices𝑉𝑉1𝑐𝑐. 
We call this process graph interpolation. There 
are many ways to fill in the missing values of the 
graph signal from the values Y that we have 
on 𝑉𝑉1. Some assumptions need to be imposed on 
the graph signal. We assume that the graph signal 
to be interpolated is smooth. The criterion we use 
to measure the smoothness of a graph signalf is 
the inner product 〈𝐿𝐿𝑓𝑓, 𝑓𝑓〉, where we continue to 
denote the graph Laplacian by L. When this inner 
product is small, we say that the signal is smooth. 
The authors in Shuman et al. (2016) recommend 
the spline interpolation method by Pesenson. 

This method interpolates the missing values of 
the signal by finding the function f with the 
smallest value of 〈𝐿𝐿𝑓𝑓, 𝑓𝑓〉. The task of this spline 
interpolation method is to find the smoothest 
signal f under the constraint that the values of the 
interpolated signal at 𝑉𝑉1 agree with the values Y 
that we have. 
 
It was proved by Pesenson (2009) that there is a 
unique function f defined on the vertices of the 
graph that will minimize the value of 
〈𝐿𝐿𝑓𝑓, 𝑓𝑓〉 under the constraint that the values of f 
agree with the values Y at 𝑉𝑉1. This result implies 
that whichever method is used to interpolate the 
signal, the result is unique under this smoothness 
criterion. Based on this implication, we use the 
method that expresses the desired function f as a 
linear combination of fundamental solutions. We 
explain this method in the appendix, where for 
clarity, we illustrate the 3-step procedure with a 
signal defined on a graph with six vertices. 

ILLUSTRATION 

To check if the methods we are using have 
reasonable results we can fall back on the 
classical task of image processing. Starting with 
an image that contains 80×80=6400 pixels, we 
discard the data on half the pixels and keep only 
the remaining data on the other half of the pixels. 
Our task is to reconstruct the original image from 
the data that we have kept. We treat our image as 
a graph signal defined on a grid graph. Imagine 
we have a very large chessboard consisting of 
6400 squares with 80 rows and 80 columns. This 
gives us a graph with 6400 vertices, with each 
vertex representing one square in the large 
chessboard. Except for the squares on the four 
boundaries of the board, each square is adjacent 
to exactly four other squares on the board. 
Analogously, each of the vertex not on the 
boundary of our grid graph is connected to four 
other vertices. Thus our graph indeed looks like a 
grid. You can think of the vertices that we keep 
as being the black squares on that chessboard. 
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Figure 2. On the top we have the classical Lena image, 
in the middle we have used our our methods used to 
reduce and then reconstruct the image, and on the 
bottom we see the error from this process.

Using the graph interpolation method, we 
reconstruct the graph signal using only the data 
on half the vertices. In Figure 2, we have the 
original image, the reconstructed image, and the 
noise. The noise is the difference between the 
original image and the reconstructed image. We 
see that the reconstructed image is slightly blurry, 
as to be expected, since perfect reconstruction is 
not possible from only half the data. In multi-
resolution analysis, we would say that:  

Original Image 
= Low Resolution Image + Image Detail 
 
The detail captures the texture of the image, while 
the lower resolution gives us the essential 
features. The variance of the noise is 6 percent of 
the variance of the original image. This is an 
indication that the quality of the reconstruction 
falls within an acceptable range. These results 
show that the methods succeed at compression, 
since the second image is a lossy compression of 
the first. Additionally, looking at the error image, 
we can see that it also allows edge detection. Thus 
two of the most fundamental operations of image 
processing are maintained and extended to a more 
general context. 
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APPENDIX 

We describe the process of graph interpolation in three steps. We illustrate this process with an example. 
Consider a graph with 6 vertices. The vertices are denoted by the set 
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𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣5,𝑣𝑣6}. 

Assume that we have the values of the signal on only 3 vertices, denoted by 𝑈𝑈 = {𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣5}. These 
values are specified by 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦3,𝑦𝑦5]. 

Input:  

1. the graph Laplacian L of the graph  

2. the set 𝑈𝑈 = {𝑣𝑣1, 𝑣𝑣3,𝑣𝑣5} 

3. 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦3, 𝑦𝑦5] is a list of 3 numbers  

Output: a function f defined on V so that  

𝑓𝑓(1) = 𝑦𝑦1, 𝑓𝑓(3) = 𝑦𝑦3, 𝑓𝑓(5) = 𝑦𝑦5. 

Step 1. Solve 3 systems of linear equations. 

Define three vectors in 𝑹𝑹6 by 

𝑠𝑠1  =  [1, 0, 0, 0, 0, 0] 

𝑠𝑠3  =  [0, 0, 1, 0, 0, 0] 

𝑠𝑠5  =  [0, 0, 0, 0, 1, 0] 

Solve for the 3 vectors, 𝐹𝐹1,𝐹𝐹3,𝐹𝐹5 so that they satisfy the relations:  

𝐿𝐿𝐹𝐹1 = 𝑠𝑠1, 𝐿𝐿𝐹𝐹3 = 𝑠𝑠3, 𝐿𝐿𝐹𝐹5 = 𝑠𝑠5. 

The solutions 𝐹𝐹1,𝐹𝐹3,𝐹𝐹5 are all vectors in 𝑹𝑹6. They are called fundamental solutions.  

Step 2. Solve the following 3 systems of equations.  

Solve for 𝑎𝑎11,𝑎𝑎31,𝑎𝑎51 so that they satisfy:  

𝑎𝑎11𝐹𝐹1(1) + 𝑎𝑎31𝐹𝐹3(1) + 𝑎𝑎51𝐹𝐹5(1) = [1,0,0]. 

Solve for 𝑎𝑎13, 𝑎𝑎33,𝑎𝑎53 so that they satisfy:  

𝑎𝑎13𝐹𝐹1(3) + 𝑎𝑎33𝐹𝐹3(3) + 𝑎𝑎53𝐹𝐹5(3) = [0,1,0]. 

Solve for 𝑎𝑎15, 𝑎𝑎35,𝑎𝑎55 so that they satisfy:  

𝑎𝑎15𝐹𝐹1(5) + 𝑎𝑎35𝐹𝐹3(5) + 𝑎𝑎55𝐹𝐹5(5) = [0,0,1]. 

In the system of equations above, 𝐹𝐹1(𝑗𝑗),𝐹𝐹3(𝑗𝑗),𝐹𝐹5(𝑗𝑗) refer to entry j in each of the 3 vectors 𝐹𝐹1,𝐹𝐹3,𝐹𝐹5 
respectively.  

Step 3. With the 9 numbers obtained in Step 2, we compute the 3 Lagrangian splines,  

𝐿𝐿𝑎𝑎𝑔𝑔1  =  𝑎𝑎11𝐹𝐹1  +  𝑎𝑎31𝐹𝐹3  +  𝑎𝑎51𝐹𝐹5, 

𝐿𝐿𝑎𝑎𝑔𝑔3  =  𝑎𝑎13𝐹𝐹1  +  𝑎𝑎33𝐹𝐹3  +  𝑎𝑎53𝐹𝐹5, 

𝐿𝐿𝑎𝑎𝑔𝑔5  =  𝑎𝑎15𝐹𝐹1  +  𝑎𝑎35𝐹𝐹3  +  𝑎𝑎55𝐹𝐹5. 

The 3 Lagrangian splines 𝐿𝐿𝑎𝑎𝑔𝑔1, 𝐿𝐿𝑎𝑎𝑔𝑔3, 𝐿𝐿𝑎𝑎𝑔𝑔5 are all vectors in 𝑹𝑹6 since 𝐹𝐹1,𝐹𝐹3,𝐹𝐹5 are all vectors in 𝑹𝑹6. 

Output: 𝑓𝑓 = 𝑦𝑦1𝐿𝐿𝑎𝑎𝑔𝑔1 + 𝑦𝑦2𝐿𝐿𝑎𝑎𝑔𝑔3 + 𝑦𝑦5𝐿𝐿𝑎𝑎𝑔𝑔5 
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The output signal f is a vector with six numbers.  

We have 𝑓𝑓(1) = 𝑦𝑦1, 𝑓𝑓(3) = 𝑦𝑦3, 𝑓𝑓(5) = 𝑦𝑦5, up to round-off error. For the sake of clarity, we have used an 
example to illustrate the procedure. The extension to the general case for any graph and for a signal 
defined on the graph is straightforward. 
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