
DePaul Discoveries DePaul Discoveries

Volume 6 Issue 1 Article 7

2017

Signal Processing on Graphs Using Kron Reduction and Spline Signal Processing on Graphs Using Kron Reduction and Spline

Interpolation Interpolation

Michael Dennis
University of Berkeley, California, michael_dennis@cs.berkeley.edu

Enrico Au-Yeung
DePaul University, eauyeun1@depaul.edu

Follow this and additional works at: https://via.library.depaul.edu/depaul-disc

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dennis, Michael and Au-Yeung, Enrico (2017) "Signal Processing on Graphs Using Kron Reduction and
Spline Interpolation," DePaul Discoveries: Vol. 6 : Iss. 1 , Article 7.
Available at: https://via.library.depaul.edu/depaul-disc/vol6/iss1/7

This Article is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It
has been accepted for inclusion in DePaul Discoveries by an authorized editor of Via Sapientiae. For more
information, please contact digitalservices@depaul.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Via Sapientiae: The Institutional Repository at DePaul University

https://core.ac.uk/display/232976489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://via.library.depaul.edu/depaul-disc
https://via.library.depaul.edu/depaul-disc/vol6
https://via.library.depaul.edu/depaul-disc/vol6/iss1
https://via.library.depaul.edu/depaul-disc/vol6/iss1/7
https://via.library.depaul.edu/depaul-disc?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol6%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol6%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/depaul-disc/vol6/iss1/7?utm_source=via.library.depaul.edu%2Fdepaul-disc%2Fvol6%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

Signal Processing on Graphs Using Kron Reduction and Spline Interpolation Signal Processing on Graphs Using Kron Reduction and Spline Interpolation

Acknowledgements Acknowledgements
The first author acknowledges the financial support of an Undergraduate Research As- sistant Program
(URAP) from DePaul University. The second author acknowledges the financial support of a Faculty
Summer Research Grant Program from DePaul University.

This article is available in DePaul Discoveries: https://via.library.depaul.edu/depaul-disc/vol6/iss1/7

https://via.library.depaul.edu/depaul-disc/vol6/iss1/7

* Corresponding Author michael_dennis@cs.berkeley.edu
Research Completed in Summer 2016 while first author was
a student at DePaul University

Signal Processing on Graphs Using Kron Reduction and Spline
Interpolation

Michael Dennis*

Department of Computer Science, University of California Berkeley

Enrico Au-Yeung, PhD
Department of Mathematical Sciences, DePaul University

INTRODUCTION

The internet has made it simple to get vast
quantities of data. It is now easy to generate large
datasets describing social networks, road
networks, the connections between web pages,
geographic and atmospheric data and much,
much more simply by going to the appropriate
websites or writing short programs in the comfort
of one's office. However, it is becoming
increasingly common for these large datasets to
have some irregular structure. In classical
domains such as image-processing, the data is
given in a very regular pattern with a known
structure, in this case a grid of pixels. In general
the data will not always be so well behaved. In

the cases mentioned above, there are intrinsic
relationships between different data points that
have no simple description. In most cases, these
connections should not be ignored; data about the
behavior of a person will reveal much more
information about the friends and family of that
person than it will about complete strangers.
Even in the same data-set we can have parts
which are well-structured, think about the streets
of downtown Chicago, and parts that seem to
have little to no structure, think about the twisting
streets of Washington DC. Clearly, there is a
present need to be able to handle this type of data.

ABSTRACT In applications such as image processing, the data is given in a regular pattern with a
known structure, such as a grid of pixels. However, it is becoming increasingly common for large data
sets to have some irregular structure. In image recognition, one of the most successful methods is
wavelet analysis, also commonly known as multi-resolution analysis. Our project is to develop and
explore this powerful technique in the setting where the data is not stored in the form of a rectangular
table with rows and columns of pixels. While the data sets will still have a lot of structure to be exploited,
we want to extend the wavelet analysis to the setting when the data structure is more like a network than
a rectangular table. Networks provide a flexible generalization of the rigid structure of rectangular
tables.

1

Dennis and Au-Yeung: Signal processing on graphs

Published by Via Sapientiae, 2017

To try to better understand this problem, we look
at what has worked in other classical domains.
In image recognition, one of the most successful
methods has been wavelet analysis (Walnut,
2002). Over the last 25 years, the method of
wavelet analysis, also commonly known as multi-
resolution analysis, has been an indispensable
tool for processing data and is one reason why
digital image processing has become so
successful. It allows a simple way to perform
tasks as fundamental as detecting the edges of
objects in images or image compression and are
used every time your phone's camera detects your
face or makes a JPEG. It is this ubiquitous
success that we want to translate into the domain
of irregular data.

Our project is to develop and explore this
powerful technique in the setting where the data
is not stored in the form of a rectangular table
with rows and columns of pixels.

While the data sets will still have a lot of structure
to be exploited, we want to extend the wavelet
analysis to the setting when the data structure is
more like a network than a rectangular table.

Networks provide a flexible generalization of the
rigid structure of rectangular tables. Scientists
often refer to these networks as graphs. A graph
is a set of vertices (such as people, intersections,
or websites) and a set of edges (such as
friendships, roads, or hyperlinks). We will start
by understanding the success and benefits of
signal processing before formalizing the concept
of a graph and moving to show how current
methods can be extended to work in these new
settings.

THE IMPORTANCE OF SIGNAL
PROCESSSING

Crime dramas, such as CSI, Criminal Minds, Law
and Order, and NCIS, often give the audience the
impression that facial recognition will only take
seconds for a computer to do. For example, if a
little girl is kidnapped in a shopping mall, the
detective can just ask the computer to compare
the image of a face taken by a surveillance camera
with the images of faces stored in a database. It
is a dramatization of facial recognition that the

computer flashes through thousands of images
per second and successfully identifies the suspect
within seconds. In reality, facial recognition can
be a computationally intensive task, especially if
tens of millions of faces need to be compared.
Each image is a quarter million pixels. Unlike the
situation often shown in crime drama on
television shows, it can take a computer up to six
hours to work through a vast number of digital
images, while the little girl kidnapped in the
shopping mall is still missing. When comparing
digital images, features selection is more
important than accurate reconstruction of images
from partially stored data. Thus given two
slightly blurry images, the ability to extract
relevant features from each image and to compare
only these features would be sufficient to tell
whether these two images represent the same
person. In such an application, it is desirable to
have a flexible way to reconstruct a slightly
blurry version of an image quickly.

A related and prominent example is the
processing of images from a database of
fingerprints. Often, the fingerprint found in a
crime scene is not a perfect print but only a partial
print. In this case, a partial reconstruction of an
image is not only sufficient, but desirable.
Instead of seeking a perfect match with a
fingerprint, the FBI agent is more interested in the
comparison with a partial reconstruction or a
blurry version of a fingerprint image.

SIGNAL PROCESSING ON GRAPHS

Graphs are useful for describing the irregular
structure in networks such as social,
transportation, and neuronal networks. In general
graphs are a set of objects called vertices and
relationships between those objects called edges.
For instance a graph could be people connected
by friendships, intersections connected by roads,
or websites connected by hyperlinks. Typically
there is also a weight on each edge describing the
strength of the connection. In this paper we will
hold the convention that the higher the weight the
closer the connection between the two vertices.
For example, in a road network, the weight can
be chosen to be inversely proportional to the
length of the road or, in a social network, the
weight can be the number of interactions in a
typical week.

2

DePaul Discoveries, Vol. 6 [2017], Iss. 1, Art. 7

https://via.library.depaul.edu/depaul-disc/vol6/iss1/7

Formally, we represent a graph by the tuple
G=(V,E), where V is a set of N vertices and E is a
set of edges. For edges, e in E we will define w(e)
to be the weight of the edge e. From this we can
define the weighted adjacency matrix W as a
matrix with N rows and N columns describing the
weights in the graph G. For this matrix, the entry
in row i and column j is the weight associated
with the edge between the i-th vertex and the j-th
vertex, or zero if no such edge exists. It is
important to note that in this context we are only
concerned about graphs whose edges have no
direction. As far as the methods discussed in this
paper are concerned, if I am friends with you, you
are friends with me.

If there are no natural choices for weights, one
can construct an unweighted graph, where the
entries of the adjacency matrix are zeros and
ones. In this case, a one indicates that two vertices
are directly connected, and a zero means that the
two vertices are not directly connected. The
degree matrix D is a diagonal matrix with
diagonal entry

𝑑𝑑𝑖𝑖 = 𝐷𝐷(𝑖𝑖, 𝑖𝑖) = ∑ 𝑊𝑊(𝑖𝑖, 𝑗𝑗)𝑗𝑗 ,

where the sum is over all the vertices j connected
to vertex i. The graph Laplacian is the matrix

𝐿𝐿 = 𝐷𝐷 −𝑊𝑊.

It is well-known that many properties of the
Laplacian matrix tell us about the structure of the
graph G.

Finally, since we hope to use signal-processing
techniques, it is important to define what we
mean by a signal on a graph. A signal or function
f: V ↦ R defined on the vertices of a graph is often
represented by a vector with N components,
where the i-th component of the vector represents
the value of the function at the i-th vertex. Graph
signals appear in many engineering and science
applications. In brain imaging, the distinct
functional regions of the cerebral cortex are
represented by the vertices of a weighted graph.
The strength of connectivity is captured by the
weights of the edges. The graph signal in this case
is the data of the regions of the brain obtained
from functional magnetic resonance imaging
(fMRI), often a measure of the intensity of the
brain activity in those regions. Sometimes, a

graph and the graph signal can reveal structure
that is very difficult to detect. As another
example, a large collection of documents can be
visualized as a graph, with one vertex for each
document. Edges and weights can be the number
of important words that they have in common and
the signal can be the degree of relevance of the
document to the task at hand. In both of these
cases, the behavior of the signal is closely tied to
the structure of the graph. We would expect the
amount of activity in closely connected regions of
the brain to be related.

VERTEX SELECTION AND GRAPH
REDUCTION

Having defined what we mean by a signal on a
graph, we now begin to describe the signal-
processing techniques on a graph. To perform a
multi-resolution analysis on graph signals, we
need to specify three steps:

1. vertex selection

2. graph reduction

3. graph interpolation

The first step, vertex selection, means that we
need a rule to select the vertices of a graph. In
classical signal processing, where signals are
often defined on a line, this step simply means
that we select every other vertex and remove the
remaining vertices. Since each entry of the graph
signal corresponds to the value of a function at a
vertex, this is the same as keeping every other
component of the signal 𝑓𝑓 ∈ 𝑹𝑹𝑁𝑁 and discarding
the remaining entries. If we try to extend this idea
to the setting of graphs signal processing, it is not
entirely obvious what it means to keep every
other component of a signal defined on the
vertices of a graph. We adopt the convention that
if a graph is bipartite, which means the vertices
can be coloured red or blue so that vertices of the
same colour are not connected to each other, then
we keep the entries of the graph signal that
correspond to the red vertices. Clearly, it is
equally plausible to keep the blue ones and
discard the red ones. If the graph is not bipartite,
then it is possible to modify this rule, based on the
signs of the entries in the eigenvector of the graph
Laplacian that corresponds to the largest
eigenvalue, which are known to make an

3

Dennis and Au-Yeung: Signal processing on graphs

Published by Via Sapientiae, 2017

approximately bipartite set. For the sake of
clarity, we illustrate this rule with the following
example.

Figure 1. A small example of a bipartite graph.

Example 1 Suppose we have the graph in Figure
1. The four corners of the square are the four
vertices of the graph. This is a bipartite graph
because each vertex of the graph is either red or
blue, while no neighbours have the same colour.
For this unweighted graph, we compute its graph
Laplacian L and the eigenvector v corresponding
to the largest eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚,

𝐿𝐿𝑣𝑣 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣.

The eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 4 and the four entries in
the eigenvector v are {−0.5,0.5,−0.5,0.5}. We
note that half the entries are positive and half are
negative. We select the second and fourth
vertices, which correspond to the positive entries.
This is our rule for vertex selection. We extend
this vertex selection method to the case when the
graph is not bipartite. Imagine if we were to
add an edge connecting the top left corner and
the bottom right corner of the square. Then the
graph is no longer bipartite.

We compute its graph Laplacian L and the
eigenvector v corresponding to the largest
eigenvalue. The vector v still contains two
positive and two negative entries. We select those
two vertices corresponding to the positive entries.

Having selected a subset of the vertices of a
graph, we need a procedure to define a graph
Laplacian on the subset of the chosen vertices.
This is the process of graph reduction. We would
like graph reduction to have the following
desirable properties:

1. The resulting graph Laplacian is indeed a
Laplacian matrix. In particular, it means that each
row must sum to zero.

2. If the original graph is connected, then
the reduced graph is also connected.

3. Some structural properties are preserved.
We will discuss this below in items 3 and 4 of the
subsequent list.

4. It must be computational feasible to
implement. For example, if the graph contains N
vertices, the algorithm to implement the graph
reduction process should not take more than N6
steps.

We emphasize that this is a wish-list and there is
no theoretical reason to think that any graph
reduction process can satisfy all these properties
for all possible graphs. The procedure that we use
for graph reduction is called Kron reduction, as
investigated by Shuman, Faraji, and
Vandergheynst (2016).

Suppose we have a graph G=(V,E), together with
the graph Laplacian L and a subset 𝑉𝑉1 of the
vertices. Our task is to form the reduced graph
with the set of selected vertices 𝑉𝑉1 and a resulting
graph Laplacian. The Kron reduction of L is

𝐾𝐾(𝐿𝐿, 𝑉𝑉1) = 𝐿𝐿𝑉𝑉1,𝑉𝑉1 − 𝐿𝐿𝑉𝑉1,𝑉𝑉1𝑐𝑐 𝐿𝐿𝑉𝑉1,𝑉𝑉1𝑐𝑐
−1 𝐿𝐿𝑉𝑉1𝑐𝑐,𝑉𝑉1

where the notation 𝐿𝐿𝐴𝐴,𝐵𝐵 denotes the sub-matrix
that consists of all the entries of L whose row
index is in the set A and whose column index is
in the set B.

The Kron reduction enjoys several properties.

1. The graph Laplacian defined by (1) is
indeed a graph Laplacian.

4

DePaul Discoveries, Vol. 6 [2017], Iss. 1, Art. 7

https://via.library.depaul.edu/depaul-disc/vol6/iss1/7

2. If the original graph is connected, then
the resulting graph from Kron reduction is also
connected.

3. The Kron reduction of a ring graph is a
ring graph with half the number of vertices, and
the weights of the edges are halved. A ring graph
is a graph in which all the vertices are arranged
around a ring, so that each vertex has one left
neighbour and one right neighbour.

4. The Kron reduction of a very large 4-
connected grid graph is 8-connected. In this
context, we say that a graph is k-connected if it
remains connected after the removal of any (k−1)
edges that are not on the outer edges of a graph.

Properties (3) and (4) indicate that in some
situations, some structural properties of a graph
are preserved in the Kron reduction process.

One of our contributions is that we discovered a
way to perform Kron reduction without explicitly
inverting a matrix, when the original graph is
bipartite. The Kron reduction of graph Laplacian
L defined by (1) involves the inversion of a large
matrix. By avoiding the need to explicitly
compute the inverse of a large matrix during Kron
reduction, the potential savings in either storage
or computation time are huge. This now makes it
possible to use the techniques on much larger
datasets than were previously possible and it is
now feasible to test our code on standard images
containing millions of pixels.

GRAPH INTERPOLATION

Given the values of a graph signal on a subset 𝑉𝑉1
of the vertices, we need a method to infer the
values of the signal on the remaining vertices𝑉𝑉1𝑐𝑐.
We call this process graph interpolation. There
are many ways to fill in the missing values of the
graph signal from the values Y that we have
on 𝑉𝑉1. Some assumptions need to be imposed on
the graph signal. We assume that the graph signal
to be interpolated is smooth. The criterion we use
to measure the smoothness of a graph signalf is
the inner product 〈𝐿𝐿𝐿𝐿, 𝑓𝑓〉, where we continue to
denote the graph Laplacian by L. When this inner
product is small, we say that the signal is smooth.
The authors in Shuman et al. (2016) recommend
the spline interpolation method by Pesenson.

This method interpolates the missing values of
the signal by finding the function f with the
smallest value of 〈𝐿𝐿𝐿𝐿, 𝑓𝑓〉. The task of this spline
interpolation method is to find the smoothest
signal f under the constraint that the values of the
interpolated signal at 𝑉𝑉1 agree with the values Y
that we have.

It was proved by Pesenson (2009) that there is a
unique function f defined on the vertices of the
graph that will minimize the value of
〈𝐿𝐿𝐿𝐿, 𝑓𝑓〉 under the constraint that the values of f
agree with the values Y at 𝑉𝑉1. This result implies
that whichever method is used to interpolate the
signal, the result is unique under this smoothness
criterion. Based on this implication, we use the
method that expresses the desired function f as a
linear combination of fundamental solutions. We
explain this method in the appendix, where for
clarity, we illustrate the 3-step procedure with a
signal defined on a graph with six vertices.

ILLUSTRATION

To check if the methods we are using have
reasonable results we can fall back on the
classical task of image processing. Starting with
an image that contains 80×80=6400 pixels, we
discard the data on half the pixels and keep only
the remaining data on the other half of the pixels.
Our task is to reconstruct the original image from
the data that we have kept. We treat our image as
a graph signal defined on a grid graph. Imagine
we have a very large chessboard consisting of
6400 squares with 80 rows and 80 columns. This
gives us a graph with 6400 vertices, with each
vertex representing one square in the large
chessboard. Except for the squares on the four
boundaries of the board, each square is adjacent
to exactly four other squares on the board.
Analogously, each of the vertex not on the
boundary of our grid graph is connected to four
other vertices. Thus our graph indeed looks like a
grid. You can think of the vertices that we keep
as being the black squares on that chessboard.

5

Dennis and Au-Yeung: Signal processing on graphs

Published by Via Sapientiae, 2017

Figure 2. On the top we have the classical Lena image,
in the middle we have used our our methods used to
reduce and then reconstruct the image, and on the
bottom we see the error from this process.

Using the graph interpolation method, we
reconstruct the graph signal using only the data
on half the vertices. In Figure 2, we have the
original image, the reconstructed image, and the
noise. The noise is the difference between the
original image and the reconstructed image. We
see that the reconstructed image is slightly blurry,
as to be expected, since perfect reconstruction is
not possible from only half the data. In multi-
resolution analysis, we would say that:

Original Image
= Low Resolution Image + Image Detail

The detail captures the texture of the image, while
the lower resolution gives us the essential
features. The variance of the noise is 6 percent of
the variance of the original image. This is an
indication that the quality of the reconstruction
falls within an acceptable range. These results
show that the methods succeed at compression,
since the second image is a lossy compression of
the first. Additionally, looking at the error image,
we can see that it also allows edge detection. Thus
two of the most fundamental operations of image
processing are maintained and extended to a more
general context.

ACKNOWLEDGEMENTS

The first author acknowledges the financial support of an Undergraduate Research Assistant Program
(URAP) from DePaul University. The second author acknowledges the financial support of a Faculty
Summer Research Grant Program from DePaul University.

APPENDIX

We describe the process of graph interpolation in three steps. We illustrate this process with an example.
Consider a graph with 6 vertices. The vertices are denoted by the set

6

DePaul Discoveries, Vol. 6 [2017], Iss. 1, Art. 7

https://via.library.depaul.edu/depaul-disc/vol6/iss1/7

𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣5, 𝑣𝑣6}.

Assume that we have the values of the signal on only 3 vertices, denoted by 𝑈𝑈 = {𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣5}. These
values are specified by 𝑌𝑌 = [𝑦𝑦1, 𝑦𝑦3, 𝑦𝑦5].

Input:

1. the graph Laplacian L of the graph

2. the set 𝑈𝑈 = {𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣5}

3. 𝑌𝑌 = [𝑦𝑦1, 𝑦𝑦3, 𝑦𝑦5] is a list of 3 numbers

Output: a function f defined on V so that

𝑓𝑓(1) = 𝑦𝑦1, 𝑓𝑓(3) = 𝑦𝑦3, 𝑓𝑓(5) = 𝑦𝑦5.

Step 1. Solve 3 systems of linear equations.

Define three vectors in 𝑹𝑹6 by

𝑠𝑠1 = [1, 0, 0, 0, 0, 0]

𝑠𝑠3 = [0, 0, 1, 0, 0, 0]

𝑠𝑠5 = [0, 0, 0, 0, 1, 0]

Solve for the 3 vectors, 𝐹𝐹1, 𝐹𝐹3, 𝐹𝐹5 so that they satisfy the relations:

𝐿𝐿𝐹𝐹1 = 𝑠𝑠1, 𝐿𝐿𝐹𝐹3 = 𝑠𝑠3, 𝐿𝐿𝐹𝐹5 = 𝑠𝑠5.

The solutions 𝐹𝐹1, 𝐹𝐹3, 𝐹𝐹5 are all vectors in 𝑹𝑹6. They are called fundamental solutions.

Step 2. Solve the following 3 systems of equations.

Solve for 𝑎𝑎11, 𝑎𝑎31, 𝑎𝑎51 so that they satisfy:

𝑎𝑎11𝐹𝐹1(1) + 𝑎𝑎31𝐹𝐹3(1) + 𝑎𝑎51𝐹𝐹5(1) = [1,0,0].

Solve for 𝑎𝑎13, 𝑎𝑎33, 𝑎𝑎53 so that they satisfy:

𝑎𝑎13𝐹𝐹1(3) + 𝑎𝑎33𝐹𝐹3(3) + 𝑎𝑎53𝐹𝐹5(3) = [0,1,0].

Solve for 𝑎𝑎15, 𝑎𝑎35, 𝑎𝑎55 so that they satisfy:

𝑎𝑎15𝐹𝐹1(5) + 𝑎𝑎35𝐹𝐹3(5) + 𝑎𝑎55𝐹𝐹5(5) = [0,0,1].

In the system of equations above, 𝐹𝐹1(𝑗𝑗), 𝐹𝐹3(𝑗𝑗), 𝐹𝐹5(𝑗𝑗) refer to entry j in each of the 3 vectors 𝐹𝐹1, 𝐹𝐹3, 𝐹𝐹5
respectively.

Step 3. With the 9 numbers obtained in Step 2, we compute the 3 Lagrangian splines,

𝐿𝐿𝐿𝐿𝑔𝑔1 = 𝑎𝑎11𝐹𝐹1 + 𝑎𝑎31𝐹𝐹3 + 𝑎𝑎51𝐹𝐹5,

𝐿𝐿𝐿𝐿𝑔𝑔3 = 𝑎𝑎13𝐹𝐹1 + 𝑎𝑎33𝐹𝐹3 + 𝑎𝑎53𝐹𝐹5,

𝐿𝐿𝐿𝐿𝑔𝑔5 = 𝑎𝑎15𝐹𝐹1 + 𝑎𝑎35𝐹𝐹3 + 𝑎𝑎55𝐹𝐹5.

The 3 Lagrangian splines 𝐿𝐿𝐿𝐿𝑔𝑔1, 𝐿𝐿𝐿𝐿𝑔𝑔3, 𝐿𝐿𝐿𝐿𝑔𝑔5 are all vectors in 𝑹𝑹6 since 𝐹𝐹1, 𝐹𝐹3, 𝐹𝐹5 are all vectors in 𝑹𝑹6.

Output: 𝑓𝑓 = 𝑦𝑦1𝐿𝐿𝐿𝐿𝑔𝑔1 + 𝑦𝑦2𝐿𝐿𝐿𝐿𝑔𝑔3 + 𝑦𝑦5𝐿𝐿𝐿𝐿𝑔𝑔5

7

Dennis and Au-Yeung: Signal processing on graphs

Published by Via Sapientiae, 2017

The output signal f is a vector with six numbers.

We have 𝑓𝑓(1) = 𝑦𝑦1, 𝑓𝑓(3) = 𝑦𝑦3, 𝑓𝑓(5) = 𝑦𝑦5, up to round-off error. For the sake of clarity, we have used an
example to illustrate the procedure. The extension to the general case for any graph and for a signal
defined on the graph is straightforward.

REFERENCES

Pesenson, I., Variational splines and Paley-Wiener spaces on combinatorial graphs, Constructive
Approximation 29 (2009), no. 1, 1–21.

Shuman, D., M. J. Faraji, and Pierre Vandergheynst, A multiscale pyramid transform for graph signals,

IEEE Transactions on Signal Processing 64 (2016), no. 8, 2119–2134.

Walnut, D. F., An introduction to wavelet ananlysis, Birkhäuser, Boston, 2002.

8

DePaul Discoveries, Vol. 6 [2017], Iss. 1, Art. 7

https://via.library.depaul.edu/depaul-disc/vol6/iss1/7

	Signal Processing on Graphs Using Kron Reduction and Spline Interpolation
	Recommended Citation

	Signal Processing on Graphs Using Kron Reduction and Spline Interpolation
	Acknowledgements

	tmp.1495562588.pdf.3A7q0

