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Newton’s Law of Cooling describes how a “small” system, such as a thermometer, comes to 

thermal equilibrium with a “large” system, such as its environment, as a function of time.  It is 

typically applied when the environment is in thermal equilibrium and the conditions are such that 

the thermal decay time for the thermometer is a constant.  Neither of these conditions are met 

when measuring environmental (i.e. atmospheric) temperature using a thermometer mounted in a 

payload lofted into the stratosphere under weather balloons.  In this situation the thermometer is 

in motion so it encounters layer after layer of atmosphere which differ in temperature, and the 

changing environmental conditions can influence the thermal decay time “constant” for the 

thermometer as well.  We have used Newton’s Law of Cooling in spreadsheet-based computer 

simulations to explore how thermometer readings react under these conditions, to better-

understand how logged temperature records from stratospheric balloon flights during both ascent 

(relatively slow) and descent (much faster, especially at altitude) are related to actual 

environmental temperatures at various altitudes. 

 

** 

I. Introduction 

Newton’s Law of Cooling, for use in situations where heat is transferred by convection, states 

that the rate of heat flow dQ/dt is proportional to the difference an object’s temperature T and the 

environmental temperature Tenv. 

dQ/dt = k * (T - Tenv) 

Here the proportionality value k depends on heat transfer area and heat transfer efficiency and is 

usually assumed to be a constant. 

If an object that starts at temperature T0 in an environment of constant temperature Tenv this law 

suggests that the object’s temperature T[t] will decay exponentially in time toward Tenv as 

T[t] = Tenv + (T0 – Tenv) * exp[- t / τ] 

Here the characteristic decay time constant τ is how long it takes for the temperature it get within 

1/e = 0.368 of the final value Tenv (not to be confused with “half-life” τ1/2 for exponential decay 

situations which is how long it takes to get within 1/2 of the final value). 

II. Excel Simulation Results 

An Excel spreadsheet was written to simulate Newton’s Law of Cooling using small time steps 

(much smaller than τ). Figure 1(a) shows T[t] for two objects which start at different 

temperatures but tend toward the same environmental temperature with the same decay time 

constant. Figure 1(b), on the other hand, shows T[t] for two objects with the same initial and 

final temperatures, but which have different decay time constants. 



Figure 1(a) and Figure 1(b) 

If the object in question is a thermometer and it is being used to measure the environmental 

temperature, a fair question might be “How long before the thermometer is reporting the 

environmental temperature?” The answer, as illustrated by the figures above, is “Eventually.” 

The farther apart the initial thermometer temperature is from the environmental temperature and 

the longer the decay time constant, the longer this will take. But at least after a few τ’s have 

elapsed the thermometer temperature will be indistinguishable from the environmental 

temperature. 

However if the environmental temperature is constantly changing, such as is the case during 

stratospheric balloon flights, the answer becomes “Never!” Now the thermometer will “chase” 

the environmental temperature but will never come into equilibrium with it. The same Excel 

simulation was used to explore the changing-environmental-temperature situation. The simplest 

possible situation to consider is one where the environmental temperature changes linearly in 

time. Figure 2(a) shows how a specific thermometer (with a specific decay time constant) will 

eventually parallel the environmental temperature with the same offset temperature when the 

thermometer starts out warmer than or colder than (or even the same temperature as – not 

shown), the environment. Figure 2(b) shows how two thermometers with different decay time 

constants behave similarly, though the “faster” thermometer will reach the parallel-temperature 

condition more quickly and with a smaller temperature offset. Figure 2(c) illustrates how the 

temperature offset for a given thermometer is directly proportional to the rate at which the 

environmental temperature is changing. Simply put, Newton’s Law of Cooling suggests that a 

thermometer needs a specific temperature offset from the environmental temperature to drive it 

to change at a specific rate. Once that temperature offset is reached, the thermometer temperature 

will maintain that offset rather than continuing to get closer and closer to the environmental 

temperature. 

Figure 2(a) and Figure 2(b) and Figure 2(c) 

Even though the thermometer never reports the true environmental temperature in this situation, 

except if the two temperature curves happen to cross, the thermometer can still be used to 

determine the environmental temperature. To do this first document the decay time constant τ for 

the thermometer by doing exponential time decay fits of T[t] as the thermometer comes into 

equilibrium with a fixed-temperature environment. Then, when the thermometer is in contact 

with an environment whose temperature is changing linearly in time, note the drift rate R that the 

thermometer ultimately reaches which will be the same rate that the environmental temperature 

is changing with time. The time derivative of T[t] above, in the limit where t approaches zero, is 

dT/dt = ΔT * (- 1 / τ). If this is to equal R, then the temperature offset must be ΔT = - R τ, a 

particularly simple result. Note: slight discrepancies from this result arise from the finite step 

size of the simulation. As anticipated above, the temperature offset grows linearly with the 

environmental temperature drift rate R. The minus sign indicates that the thermometer 

temperature always lags the environmental temperature. If R is positive (i.e. the environment is 

warming), then ΔT will be negative (i.e. the thermometer will always be behind (i.e. cooler than) 



the environment). Conversely, if the environmental temperature is going down then R will be 

negative so ΔT will be positive (i.e. the thermometer will again be behind (i.e. now warmer than) 

the environment). 

An extension of the Excel spreadsheet allows us to simulate the response of a thermometer to the 

5 phases of a typical stratospheric balloon flight: (1) temperature decreasing slowly during ascent 

through the troposphere, (2) temperature increasing slowing during ascent into the stratosphere, 

(3) temperature decreasing quickly during (post-burst) descent to the tropopause, (4) temperature 

increasing quickly during descent to the ground, and (5) temperature not changing back on the 

ground. Figure 3 shows how two thermometers with different decay time values, assumed to be 

constant throughout the flight, would respond to this actual temperature profile. Simply put, the 

thermometers report a “distorted” version of the profile. As before, the “faster” thermometer (i.e. 

the one with the shorter decay time constant) is more responsive and follows the environmental 

temperature changes more exactly, with less temperature offset. 

Figure 3 

The ultimate goal of this exploration is basically do this backwards – to determine the actual 

environmental temperature from stratospheric balloon flights using actual thermometer-reported 

temperature profiles such as those shown in the next section. “Correcting” the temperatures will 

require experimentally-determined knowledge of the decay time constants for thermometers. 

III. Preliminary Experimental Results 

The high-altitude ballooning teams at the University of Minnesota – Twin Cities and at St. 

Catherine University have historically made environmental temperature measurements during 

stratospheric balloon flights using (a) Onset Computer’s Air/Water/Soil 1-foot temperature 

sensors for HOBO data loggers <http://www.onsetcomp.com/products/sensors/tmc1-hd>, (b) 

Neulog’s wide-range temperature (thermocouple) sensors <https://neulog.com/wide-range-

temperature/>, and Maxim’s (Arduino-logged) DS18B20 Dallas 1-Wire digital temperature 

sensors <https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf>. 

To characterize the time decay constants for all 3 types of thermometers at the same time, a 

“triple-temperature” device was built (see Figure 4(a)) which included a HOBO, a Neulog chain, 

and an Arduino Uno, with the three sensors listed above mounted within 1.5 centimeters of each 

other (see Figure 4(b)). 

Figure 4(a) and Figure 4(b) 

This device was moved between a deep freeze and home-temperature air multiple times to 

characterize the decay time constant for each type of sensor. The time decay constant results in 

standard atmospheric pressure were as follows: 

τHOBO = 223 seconds;  τNeulog = 23 seconds;  τDallas = 190 seconds 

http://www.onsetcomp.com/products/sensors/tmc1-hd
https://neulog.com/wide-range-temperature/
https://neulog.com/wide-range-temperature/


To determine if τ values change with environmental pressure – we hypothesized that the sensors 

would be slower (i.e. have larger τ values) at reduced pressure – the device was “slim-mounted” 

on a sled that could fit into a 3-inch diameter pvc tube which was then evacuated using a vacuum 

pump. The two ends of the tube were held at different temperatures by covering one end in ice 

cubes. The sled started at the cold end but then was slid to the warm end without breaking the 

vacuum seal by tipping the tube – one could hear it slide through the tube easily. Figure 5(a) 

shows the slim-mounted version and Figure 5(b) shows the pvc experimental set-up for the 

reduced-pressure test. 

Figure 5(a) and Figure 5(b) 

Plots of the reduced-pressure test results are shown in Figure 6(a) – Pressure (all versus time), 

Figure 6(b) – Arduino (Dallas) temperature, and Figure 6(c) – HOBO temperature. The Neulog 

sensors turned off mid-test so no useful data was forthcoming. The time decay constant results in 

reduced pressure are listed below. As anticipated, they were larger than the values at atmospheric 

pressure (for the two sensors tested). 

τHOBO = 370 sec;  τNeulog = TBA (sensor failed);  τDallas = 236 sec 

Figure 6(a) and Figure 6(b) and Figure 6(c) 

The triple-temperature device has been flown on two stratospheric balloon missions so far. 

Figure 7(a-d) shows temperature versus time graphs for the 3 types of temperature sensors (plus 

one pressure versus time graph) from one actual flight. Future work includes trying to apply 

simulation capabilities and experimental knowledge of decay time constants and standard 

pressure and at one reduced pressure to determine what single/actual atmospheric temperature 

profile is simultaneously consistent with all the plots below. 

Figure 7(a) and Figure 7(b) and Figure 7(c) and Figure 7(d) 

IV. Conclusions 

Implementing Newton’s Law of Cooling using an Excel spreadsheet has allowed us to apply it to 

situations where the environmental temperature is not constant. This has given us insight into 

differences between thermometer readings and various time-dependent profiles of actual 

environmental conditions, with an eye toward ultimately reaching conclusions about atmospheric 

temperatures during high-altitude balloon flights using “distorted” thermometer records due to 

decay time constants. Comparison of thermometer decay times at atmospheric pressure and at 

reduced pressure suggest that these values are not in fact constant over the wide range of 

pressures encountered during stratospheric ballooning missions, further complicating analysis of 

(and correction of) logged temperature data. 
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Figure 2(b) 

 

  



Figure 2(c) 

 

  



Figure 3 

  



Figure 4(a) – Triple-temperature device, basic mounting – Neulog modules on underside 

 

Figure 4(b) – close-up of the triple-temperature tip 

 



Figure 5(a) – Slim mount for reduced-pressure test. 

 

Figure 5(b) – PCV pipe set-up for reduced-pressure test 

 

  



Figure 6(a) and Figure 6(b) and Figure 6(c) 

 

  



Figure 7(a) and Figure 7(b) and Figure 7(c) and Figure 7(d) 

 


