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INTRODUCTION	
  

Mesophile bacteria live in moderate 
environments with temperatures ranging from 
15 − 40  degrees Celsius. Thermophile bacteria 
are extremophiles found in environments with 
temperatures ranging from 41 to 125 degrees 
Celsius [1]. Although these two bacteria have 
followed different evolutionary tracks, they 
perform similar biological functions.   

Since both of these classes of bacteria have 
similar biological functions, it follows that their 
proteins performing these tasks are also similar  

_______________________________ 
*Linehan.jack@yahoo.com 
Research Completed in Winter 2016 

 

in function. Since the two classes of bacteria 
evolved under different environmental pressures, 
it is likely that these proteins are made up of 
different amino acid chains. This study looked to 
find whether any characteristics exist that 
distinguish proteins with similar biological 
functions from the different classes of bacteria. 
Analysis of the proteins was performed in two 
steps. The first was to determine whether a 
statistical difference existed between the 
proteins using a statistical analysis of the 
proteins’ amino acid sequences.  The second 
was to study whether the different evolutionary 
patterns of the proteins resulted in different 
statistical features.  

To answer these questions, the amino acid chain 
sequence of each protein was made into a signal. 

	
  

ABSTRACT	
   In this project, proteins from mesophile and thermophile bacteria with similar functions are 
compared. Initially it is assumed that the differences between these two bacteria are substantial to be 
recognized in the amino acid sequences of their proteins. These differences would then lead to the creation 
of a statistical measure, which would allow the classification of a protein to its corresponding bacteria. By 
assigning hydrophobicity values from three well-known scales, a discrete numeric signal is produced for 
each protein, which is analyzed using wavelet packets. The result of this method indicates that the overall 
hydrophobic tendencies of these two bacteria’s proteins are very similar. As such, no identifying 
characteristic is readily apparent to classify a protein as belonging to specific bacteria.  	
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This will allow for analysis of a protein to be 
done in respect to a certain parameter. Signal 
analysis tools were then used to determine the 
differences and/or similarities between proteins 
with similar biological function from the 
different classes of bacteria. The hydrophobicity 
of each amino acid was used to construct the 
signal for each of the proteins. Hydrophobicity 
was used because it is an important factor in 
determining the secondary and tertiary structure 
of proteins. Since these levels of structure are 
considered to be a major factor in determining 
the overall function of a protein, using 
hydrophobicity to distinguish amino acids is 
reasonable. 

	
  

METHODS	
  

Data	
  &	
  Signal	
  	
  

Collaborators at the University of Denver 
provided the data for this project. The data 
contained the amino acid sequence for each of 
the 540 proteins per bacteria class used in this 
work. Data used in this project can be found at 
the Protein DataBase (PDB) [2].   

As stated earlier, the proteins used in this 
research come from bacteria with evolutionarily 
distinct lineages.  The first, mesophile, exists in 
environments with temperatures ranging 
between 15 and 40 degrees Celsius. 
Thermophile bacteria live in environments with 
temperatures ranging from 41 to 125 degrees 
Celsius. The differences in the temperatures of 
the bacterias’ environment are assumed to be 
great enough so that the bacteria followed very 
different evolutionary tracks [1]. Proteins with 
similar functions were selected from both 
bacteria. This resulted in 540 proteins from both 
bacteria, a total of 1080 different proteins.  

Amino acids are organic compounds composed 
of an amino and carboxyl group. They are 
distinguished from one another by their specific 
R group, bonded to the central carbon atom 
joining the amino and carboxyl groups. There 
are four different types of R groups: 
hydrocarbon (6 amino acids), neutral (7 amino 
acids), acid (1 amino acid) and base (6 amino 
acids). The R group is used to determine an 
amino acid’s hyrdrophobicity [3]. 

The amino acids of each protein contain 
information about how they react to their 
environment. To discern this information, 
hydrophicity values were assigned to each 
amino acid. Hydrophobicity is the tendency to 
bend towards or away from water. The 
hydrophobicity of the 20 amino acids has been 
experimentally determined and are listed below 
for three well-known hydrophobicity scales. 

 

Table 1. Hydrophobicity Scales, adapted from [4] 

 
 

Three common hydrophobicity scales are used: 
Engelman-Steiz [5], Kyte-Doolittle [6], and 
Hopp-Woods [7]. Each scale computes 
hydrophobic values differently and assigns 
different values to each of the amino acids [4]. 
Once hydrophobicity values are assigned to the 
amino acids, the amino acid content of a protein 
can be treated as a discrete numeric signal. 

A fundamental concept to this study is that the 
hydrophobic signal of proteins is not random. 
This idea was tested with the use of artificial 
data generated using a bootsrap method. 
Replicating each protein’s signal and shuffling 
the order of amino acids in the sequence 
produced random data. The control sets 
maintained the frequency of the amino acid 
while removing position dependence [8]. This 
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data was treated using the same methods as the 
actual data.  

	
  

Wavelet	
  Packets	
  &	
  Power	
  Spectra	
  	
  

Wavelets are a mathematical tool that allows for 
the analysis of data in respect to both scale (or 
frequency) and position (or time). Wavelets are 
useful in studying proteins because they 
preserve local information, allowing for the 
study of the amino acid sequences. By using 
wavelets one is able to look for patterns that may 
emerge at varying scale along the sequences.   

It is useful to describe the mathematics of 
wavelets before introducing the wavelets packet 
technique. Wavelets are constructed using two 
functions, a scaling function, 𝜙, and the 
corresponding wavelet function 𝜓, where 

 

𝜙 𝑥 =    2    ℎ!𝜙 2𝑥 − 𝑘
!

          (1) 

𝜓 𝑥 =    2 𝑔!𝜙(2𝑥 − 𝑘)
!

            (2) 

 

with coefficients 𝑔! and ℎ!. The multiresolution 
analysis offered by wavelets is as follows. The 
shifted and dilated wavelet and scaling functions 
are defined as:   

 

𝜙!" 𝑡 =   2
!
!𝜙 2!𝑡 − 𝑘           (3) 

𝜓!" 𝑡 =   2
!
!𝜓 2!𝑡 − 𝑘         (4) 

 

This allows a function, 𝑓(𝑡), to be analyzed by 
the translation parameter, 𝑘, at a scale j via a 
convolution with 𝜙. The convultion produces a 
function split into two parts. One part is a 
filtered, coarser version of the original function. 
The other part captures local fluctuations about 
the function locally. The multiresolution process 
occurs when the wavelet is applied to the coarser 
approximation of the original function. This 
again results in a splitting into a coarsed and 
fluctuation of the initial approximation. The 

process continues until only the average of the 
original function remains.  

Wavelet packets are an evolution of wavelet 
transformations. The transformation passes a 
signal through two filters producing average and 
difference coefficients [8]. Each splitting results 
in the transform being applied to both the coarse 
and detail parts of the function. Figure 1 gives a 
graphical representation of the wavelet packet 
multiresolution process. The box, S, is the 
original function, 𝐴! and 𝐷! are the first 
approximation and detail coefficients. The 
wavelet is then applied to both the 𝐴!and 𝐷! 
coefficients. This results in the next line in the 
figure. The process then continues similarly. 
Each box is referred to as a leaf, and the entire 
structure is called the wavelet packet tree. 

Wavelet packets are similar to wavelet 
transformations in that they both analyze a 
signal by computing local approximation and 
difference coefficients. However, wavelet 
packets will iteratively apply the convoluted 
function to both sets of data. This process, 
known as downsampling, is continually applied 
to the previous sets of smoothed and differenced 
coefficients, as displayed in Figure 1 [9]. 

 

 
 
Figure 1. Wavelet packet decomposition levels with detail 
coefficients (high pass) given by 𝐷! and approximation 
coefficients (low pass) given by 𝐴! [9]. 

 

Wavelet packet fast algorithms produce leaves 
ordered by Gray code that must be sorted. Once 
correctly sequenced, the mean value of the 
coefficients squared was taken of each leaf, 
reducing a leaf from a frequency band to a single 
coefficient. This resulted in the production of the 
power spectrum vector used to describe each 
protein.  

3

Linehan: Wavelet Packet Analysis of Proteins

Published by Via Sapientiae, 2016



	
  

𝑝 =   
< 𝐴!,!! >
< 𝐷!,!! >

⋮
          (5)     

	
  

Statistical	
  Analysis	
    

A two-sample Kolmogorov-Smirnov goodness-
of-fit hypothesis test (KS) was applied to the 
proteins signals created using the Kyte-Doolittle 
scales [6]. The KS test checks to see if the power 
spectra of similar proteins belong to the same 
underlying population [10]. KS is a 
nonparametric test comparing cumulative 
distributions of two data sets. KS looks to 
determine whether two data sets were sampled 
from the same distribution; if so, then its null 
hypothesis cannot be rejected. [10].  

The power spectra for each protein were 
normalized to allow for their comparison. 
Normalization was performed by finding the 
quotient of each element in the power series 
array with the sum of its elements. For a vector 
𝑝 with n elements representing the power 
spectrum,  

 

𝑝!"#$%&'()* =
!!
!!!

!   
          (6)  

 
Normalization allows for the comparison of 
power spectra. This comparison was done by 
taking the mean value of the difference squared 
of power series corresponding to proteins of 
similar function. For two power spectra given by 
vectors 𝑃!"#$ and 𝑃!!!"# with n elements, 𝜏 is 
given by: 

 

τ =
1
𝑛

𝑃!"#$! − 𝑃!!!"#!
!

!

!

          (7) 

 
The vector 𝜏 is the mean value of the difference-
squared coefficients for power spectra of the 
same transformation and proteins of similar 
function.  

This process was carried for the three different 
hydrophobicity scales. Also, four different 

transformation functions were used from the 
Daubechies family of wavelets, Daubechies 1 
(db1), Daubechies 2 (db2), Daubecheis 3 (db3), 
and Daubechies 4 (db4). Each daubchies 
transformation function corresponds to different 
coefficients used for 𝑔! and ℎ!. This was done 
to determine the impact of the transformation 
functions on the signal. The number associated 
with the transformation function corresponds to 
the number of vanishing points. A larger number 
of vanishing points allows for the analysis of 
more complex signals [9].  

Twenty-five sets of randomly distributed 
hydrophobicity signals were created for each 
hydrophobicity scale under the db2 
transformation. The mean value of all 25 
realizations was taken after performing the 
wavelet packets transformation and creating the 
power spectra and 𝜏 vectors.  

The centers of the histograms were determined 
by finding the mean value of the center of each 
bin.  

RESULTS	
  

The methods listed above allow for the creation 
of histograms that display the total number of 
coefficients from 𝜏. Daubechies second wavelet 
transformation is included below. 
Transformations performed using db1, db3, and 
db4 were similar to db2 and offer no additional 
information relating to the study goals.  
 
Kyte-­‐Doolittle	
  Scale:	
  
	
  
The center of the db2 histogram displayed in 
Figure 2 is located at 0.0128. The mode of this 
distribution is at 0.0038 with 185 values. The 
median of this histogram is at 0.0053. The 
skewedness of the db2 histogram is 1.5273.  
 

The random distribution, shown in Figure 3, has 
the predictable Gaussian distribution with a few 
outliers. The center of the Gaussian distribution 
is at 0.008; its mode is at 0.0072 with 175 
values. The skewedness of the random 
distribution is 1.2357.  
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Figure 2. Kyte-Doolittle hydrophobicity scale signals 
transformed using db2. 

 

	
  
Figure 3. Kyte-Doolittle Scales signals transformed with 
db2, random sequence.	
  

	
  

Hopp-­‐Woods	
   
 

As shown in Figure 4, the center of the Hopp-
Woods db2 histogram is located at 0.0145. The 
mode is 0.0043 with 202 values. The median is 
located at 0.0056. All four transformations have 
skewed right distributions and similar spreads in 
range. The skewedness of the Hopp-Woods db2 
histogram is 1.4760.   
 
 

 
Figure 4. Hopp-Woods hydrophobicity scaled signals with 
transformation db2. 

 

As shown in Figure 5, the randomly generated 
sequence histogram has a Gaussian distribution 
with outlying data near its maximum value 
0.0173. The center of this distribution is at 
0.0091 with a mode of 0.0045 with 185 values.  
The skewedness of this histogram is 1.2606.  
 

 
Figure 5. Hopp-Woods db2 random sequence histogram. 

	
  
Engelman-­‐Steiz	
  	
  
 
As shown in Figure 6, the center of the 
Engelman-Steiz db2 histogram is at 0.0119. The 
mode of the distribution is 0.0012 with 332 
values. The median value for this distribution is 
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at 0.0018. The skewedness of the histogram is 
3.1603. 
	
  

 
Figure 6. Engelman-Steiz hydrophobicity scaled signal 
with transformation db2. 

 

Figure 7 shows the randomly generated 
sequence histogram, which has a skewed right 
distribution. The center of this distribution is at 
0.0081 and has a mode of 0.0024 with 196 
values, and median value at 0.0032. The 
skewedness of this histogram is 1.9400.  

 

	
  
Figure 7. Engelman-Steiz db2 random sequence 
distribution. 

Kolmogorov-­‐Smirnov	
  

The KS test was applied to signals produced 
using the Kyte-Doolittle, Hopp-Woods, and 

Engelman-Steiz scales. The power series of 
mesophile and thermophile proteins were 
compared. 	
  

For Kyte-Doolittle, 527 proteins were unable to 
reject the null hypothesis, 13 did reject the null 
hypothesis. Similarly, for Hopp-Woods, 516 
proteins were unable to reject the null 
hypothesis, while 24 rejected the null. For 
Engelman-Steiz, 516 proteins failed to reject the 
null hypothesis, while 24 were able to reject it. 
Only one protein was rejected under all three 
scales. Hopp-Woods and Engelman-Steiz both 
failed to reject the null for the same 8 proteins. 	
  

	
  

DISCUSSION	
  

The goals of this research were to investigate 
whether it is possible to distinguish proteins 
using statistical analysis of the amino acid 
chains and to determine whether the proteins had 
similar statistical features. This was done by 
converting the amino acid sequences from the 
proteins of the two classes of bacteria into 
signals. By applying experimentally determined 
hydrophobicity values to each amino acid, a 
discrete numeric signal is generated.  	
  

Daubechies second wavelet transformation 
function was of interest here, with the other 
three types used as controls. Little variation was 
seen across the histograms in respect to 
frequency when comparing Daubechies 1 
through 4 transformations. Because of this, 
analysis was focused on the data generated using 
Daubechies second wavelet. Daubechies second 
wavelet has two vanishing points, which is 
suitable for this research [8]. 

The wavelet packets technique is an important 
tool in analyzing the local information of any 
signal.  In this case, local information is 
considered to be the frequency bands (the leaves 
of the wavelet packet tree) within the signal of 
the amino acid chain as the result of analysis at 
some scale j. The hydrophobic content of any 
frequency band has been maintained through 
wavelet packet analysis.  

In this study, the magnitude of local 
hydrophobic information was compared between 
the two types of bacteria. The varying 
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magnitudes of hydrophobic content that is 
associated with scale, j, are the statistical 
features of interest.  

To determine these statistical features, the 
difference was taken between power spectrum 
coefficients of the two types of bacteria.  The 
difference between the two proteins power 
spectra was then averaged out, and is included in 
the 𝜏 vector. By taking this difference it is 
possible to identify frequency bands, in respect 
to scale, that vary in hydrophobic value between 
the two proteins.  

Each hydrophobicity scale was paired with a 
corresponding control set of data. These controls 
were used to test the concept of position 
dependence in hydrophobic signals. Through 
bootstrapping, these control sets randomized 
amino acid order while maintaining frequency.  

Kyte-­‐Doolittle	
  	
  

The mode of the Kyte-Doolittle control data was 
0.0072 with 175 values. The actual data had a 
mode of 0.0038 with 185 values. The most 
frequent data values were a thousandth the size 
of the values used in the Kyte-Doolittle scale. 
This does not imply that mesophile proteins had 
a higher hydrophobic magnitude because the 
difference between the two coefficients was 
squared, but it does show that the hydrophobic 
content is very similar.  

The modes of the control and actual data are 
very similar. The centers of the two data sets, 
0.0128 for actual and 0.008 control, and 
skewedness (1.527 for actual and 1.2357 
control) are very similar as well.   
	
  
Hopp-­‐Woods	
  	
  
 

The mode of the Hopp-Woods actual data was 
0.0043 (202 values) and 0.0045 (185 values) for 
control. Also the center of the actual data was 
0.0145 and 0.0091 for control. The skewedness 
of the actual data set was 1.4760 and 1.2606 for 
control.  

Engelman-­‐Steiz	
  	
  

The mode of the Engelman-Steiz actual data is 
0.0012 (332) and 0.0024 (196 values) for 
control. The center of the actual data is 0.0119 

and 0.0081 for control. The skewedness of the 
actual data set is 3.1603 and 1.94 for control.  

The skewedness of each histogram directly 
affects its center. All six histograms have a 
rightward skew. This tendency is in part due to 
scale shifting that was done before 
hydrophobicity values were even assigned to 
amino acids. Each of the three hydrophobicity 
scales were shifted up by a tenth more than the 
most negative number to avoid zeros and 
negatives.  

However the skewedness of each graph is 
interesting because it highlights the influence of 
frequency bands that have a greater difference in 
hydrophobic magnitude. Because of this, the 
mode is considered to provide the best estimate 
of the variance in the majority of proteins. But 
the skewedness shows that in some proteins 
there is a greater difference in hydrophobicity.  

The best example of this is in the Engelman-
Steiz data sets. With similar modes, the center of 
the actual data’s bin is far larger than the 
controls. This can be seen in Hopp-Woods 
(actual center and skew: 0.0145, 1.4760; control 
center and skew: 0.0091,1.2606) and Kyte-
Doolittle (actual center, skew: 0.0128, 1.5273; 
control center, skew: 0.008, 1.2357) as well.  

The majority of frequency bands are very similar 
between protein pairs in respect to hydrophobic 
magnitude. However the difference in the 
centers and its corresponding relationship with 
skewedness infers that some proteins may have a 
significantly larger difference in hydrophobic 
content. Future research may be able to use this 
data to determine a statistical measure that 
allows for classificiation of proteins from amino 
acid sequence alone.   

The results of the KS test indicate that the 
majority of hydrophobicity signals come from 
similar distributions. By rejecting the null, the 
KS test states that the two protein’s signals come 
from different distributions. As such, the 
majority of proteins failed to reject the null.  

If the two classes of bacteria were statistically 
different, then the KS test would have rejected 
the null more often. However this is not the case, 
under the Kyte-Doolittle scale only 2% of 
protein pairs rejected the null hypothesis, while 
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close to 98% accepted the null. Both Hopp 
Woods and Engelman-Steiz rejected the null 
approximately 4% of the time.  

Looking at the modes of each histogram, it can 
be seen that the majority of protein pairs are 
very similar in hydrophobic content. Additional 
support for this similarity is seen in the results of 
the KS test, which show that most proteins in 
this study likely share a common distribution. 
However, the differences in the center of actual 
and control histograms infer that a small portion 
of proteins have a greater difference in 
hydrophobic magnitude. The skewedness of 
these graphs show that outlying data has a large 

effect on these centers. However, the modes of 
the actual data histograms fall below their 
centers, such that the majority of values are 
comparatively small.  

There does not seem to be a difference in the 
hydrophobic content of proteins with similar 
biological functions from mesophile and 
thermophile bacteria. The differences in the 
centers of the control and actual data histograms 
imply that amino acid sequencing is 
fundamental in determining hydrophobic 
content.	
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