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Abstract 
 

Histone deacetylases (HDAC) and matrix metalloproteinases (MMPs) are 

metalloenzymes with catalytic Zn2+ ions that are over-expressed in a number of physiological 

conditions; thus, inhibiting these enzymes is an important therapeutic approach for many 

diseases.  An HDAC structural mimetic was developed using a ligand, bis(2-picolyl)amine 

(BPA), that strongly chelated Zn2+ and did not dissociate upon addition of an HDAC inhibitor. 

Using Isothermal Titration Calorimetry (ITC) it was found that BPA binds Zn2+ very strongly in a 

1:1 stoichiometric ratio. Two known zinc-binding HDAC inhibitors, acetohydroxamic acid and 

8-hydroxyquinoline, were used to study the HDAC inhibitor interaction with the BPA-Zn2+ 

complex using ITC. Results confirmed that the BPA did not dissociate from Zn2+ upon titration 

of either of the inhibitors and that the BPA- Zn2+ complex left adequate coordination sites on 

Zn2+ such that a BPA-Zn2+-Inhibitor complex was formed. The interactions of three members of 

the tetracycline family antibiotics with Zn2+ and Ca2+ were also studied using ITC and/or UV-Vis 

spectroscopy. Though widely known for their antimicrobial properties, the tetracyclines have 

been reported to inhibit MMPs by binding structural Ca2+ and Zn2+ ions. Chemically modified 

tetracyclines have been developed that lack the antimicrobial activity but still inhibit MMPs to 

prevent further antibacterial resistance development. ITC studies of the interaction of Zn2+ with 

tetracycline, minocycline, and tigecycline were performed at pH 6.80 and at pH 7.50. Of the 

three antibiotics, minocycline was found to have the highest affinity for Zn2+, two- and four-

times as high as for tigecycline and tetracycline, respectively. The composition of the 

tetracycline complex with Zn2+ was pH-dependent while that of minocycline and tigecycline with 

Zn2+ were not. Previous work in the Jin lab investigated the interaction of tetracycline, 

minocycline, and tigecycline with Ca2+ at pH 6.80 and at pH 7.50 using ITC. The stoichiometries 

for the interactions of tetracycline, minocycline and tigecycline with Zn2+ and Ca2+ obtained 

using ITC were confirmed using UV-Vis spectroscopy analyzed with Job’s method. Knowledge 

about active site metal-ion contribution to HDAC inhibitor binding energetics and about the 

energetics of tetracycline binding to structural MMP metal ions will enhance the design of 

HDAC and MMP inhibitors. 
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Chapter 1. Introduction  

1.1 Introduction to Zinc Metalloenzymes 
Although metals only account for 3% by mass of the human body, they play a 

disproportionately integral role in the body’s function.1 Among the physiological metal ions are 

the first row transition metals, which are present in the center of the active sites – and 

subsequently key to the catalytic functions – of a group of enzymes named metalloenzymes.2 The 

association of the metal ion with the active site varies in metalloenzymes: in some 

metalloenzymes the metal ion is permanently attached to the active site while in others the metal 

ion is a labile part of a coenzyme.1 Metalloenzymes are involved in a variety of physiological 

processes, ranging from the biosynthesis of DNA and certain amino acids to respiration and 

digestion.3    

Zinc, a trace metal in the human body and one of the most biologically important transition 

metals, plays a central role as a structural component of proteins and as a cofactor for enzyme 

catalysis. Behind iron, zinc is the second most abundant metal in the human body, with an adult 

human body containing 2-3 g of zinc.4 In biological systems, zinc displays only one oxidation 

state, that of a divalent cation [zinc(II)].1, 4a   

The role of zinc in biology has been studied for over a century. In 1869, Raulin demonstrated 

the necessity of zinc for the growth of mold Aspergillus niger and the continual study of zinc has 

further unveiled the importance of zinc in growth and development.5 Over 300 zinc 

metalloenzymes have been identified since the discovery of the first zinc metalloenzyme, 

carbonic anhydrase II, in 1940 by Keilan and Mann.4b Zinc is integral to the catalytic activity of 

many metalloenzymes, and it has been clearly demonstrated that removal of zinc results in loss 

of enzymatic activity of those enzymes.4b  

A few key characteristics of zinc can explain its prevalence in nature. The zinc ion is a small 

ion with a radius of 0.65 Å and thus has a high charge density.6 Unlike the other members of the 

first row transition metals, zinc has a filled d orbital, which explains its small radius. Zinc 

therefore has high electron affinity and is a strong Lewis acid.4b, 6  Zinc does not participate in 

redox reactions, making zinc(II) a more physiologically stable ion and an ideal, redox-stable, 

Lewis acid type catalyst.4b Other first row metals such as copper and nickel have similar Lewis 

acidic properties to zinc, but zinc exhibits only one oxidation state, making zinc more favorable 

in biological systems as it avoids the generation of harmful free radicals.7 Although cadmium is 
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chemically similar to zinc, it is not nearly as prevalent in the body. In fact, cadmium is 

carcinogenic, thus zinc has been evolutionarily selected over cadmium.8 The basis of the 

selection of zinc lies in its chemical stability, nontoxicity and stereochemical flexibility.   

Another advantage offered by zinc is its flexible coordination geometry. Zinc’s filled d 

orbital results in Zn2+ having a ligand-field stabilization energy of zero in all coordination 

geometries.4b Zn2+ has been most commonly observed in a tetrahedral or distorted tetrahedral 

geometry with a coordination number of four, but some enzymes contain zinc ions that have 

been determined to have trigonal bipyramidal or octahedral geometries.4b, 8,9 Catalytic zinc ions 

are usually bound in active sites of enzymes by three or four residues and have another 

coordination site occupied by an activated water molecule. The water bound to the zinc can play 

a variety of critical roles in the catalysis including activation via ionization, polarization by a 

base to generate a nucleophile, or being displaced by the substrate.10 For example, in hydrolytic 

zinc metalloenzymes, the Zn2+ activates the hydroxide by either orienting the hydroxide such that 

it is at the appropriate position for nucleophilic attack of substrate or by adjusting the 

electrostatics of metal-solvent coordinate interactions, making the metal-bound hydroxide the 

predominant species at physiological pH.9 The active site Zn2+ has been observed to be bound by 

histidine, glutamate, aspartate or cysteine residues, with histidine being the most frequent 

coordinating amino acid of the catalytic site residues.10  

Metalloenzymes are involved in a variety of biological processes and their over-expression 

often coincides with different diseases. Metalloenzymes such as histone deacetylase (HDAC) 

play an important role in tumor cell proliferation, angiogenesis and many other processes 

relevant to cancer.11 The American Cancer Society estimates that over 500,000 deaths from the 

four major cancers – colon and rectum, lung and bronchus, breast, and prostate – will occur in 

the United States in 2015. Developing new therapies to treat cancer is a major focus of the 

pharmaceutical industry as well as in academia. Inhibition of metalloenzymes is often dependent 

on the ability of the inhibitor to bind the active site metal.12 Understanding the energetics of this 

active site metal-inhibitor interaction can thus aid in the design of more potent inhibitors. Current 

FDA-approved metalloenzyme inhibitors are associated with many adverse effects as we have 

yet to identify a way to target inhibitors to specific metalloenzymes.13 Without high specificity, 

the inhibitors also bind other metalloenzymes and metals present in the body, giving rise to 

negative side effects such as nausea and blood disorders, among others.   
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The interaction of metalloenzymes with inhibitors is most often studied using isolated 

enzyme. Such studies give information about the overall energetics of the interaction but do not 

allow for the extraction of the energetic contribution of individual components of the interaction 

– such as active site metal binding by inhibitor. Although the energetics of the inhibitor binding 

to the free metal ion can be determined, it does not equate the energetics of the inhibitor binding 

to the active site metal ion. A better alternative is to use an enzyme structural mimetic formed by 

a metal ion bound to a ligand consisting of the same or similar set of coordinating atoms as in the 

enzyme active site.  

In this work, the interactions of five different small molecule ligands with Zn2+ were studied 

using Isothermal Titration Calorimetry (ITC) to identify suitable ligands for the formation of 

binary complexes as potential HDAC structural mimetics (Section 2.2). Three potential HDAC 

structural mimetics were further studied with the metal chelator 8-hydroxyquinoline (Section 

2.3.1), which was selected from among the zinc-chelating HDAC inhibitors for its strong metal 

ion affinity necessary for unambiguous conclusion of the feasibility of the binary complex as an 

HDAC structural mimetic. The thermodynamics of the binary complexes interacting with the 

HDAC inhibitor, acetohydroxamic acid (AHA), were also evaluated using ITC (Section 2.3.2). 

Additionally, the interactions of Zn2+ and Ca2+ with three members of the tetracycline family 

(which have been shown to inhibit matrix metalloproteinases through interaction with structural 

Ca2+ and Zn2+) were studied using ITC and UV-Vis spectroscopy (Sections 3.2-3.4). The results 

of the studies can potentially be used to design more potent metalloenzyme – specifically HDAC 

and MMP – inhibitors with greater enzyme specificity.   

1.2 Isothermal Titration Calorimetry (ITC) 
ITC is a titration instrument commonly used to determine the thermodynamic parameters 

of different molecular interactions in solution by measuring the heat generated or adsorbed by 

interactions upon a series of injections of one reactant (titrant) into another (titrate). The titrant 

solution is placed in the syringe, and injected in a series of small volumes (8-15 μL) into the 1.4 

mL of titrate solution contained in the reaction cell. Since the titrant is injected in such small 

volumes, a large dilution factor is associated with the injection. The raw data from the 

experiment is plotted as the heat power (μWatts) versus time (minutes). Raw data consisting of 

downward, negative peaks indicate an overall exothermic process, while upward, positive peaks 

indicate an overall endothermic process. The area under each peak is integrated and normalized 
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to kJ/mole of titrant and plotted against the titrant:titrate molar ratio. This plot is fit with a non-

linear least squares curve using a suitable model such as the one-set-of-sites (all titrant binding 

sites on the titrated molecule are thermodynamically identical) or two-sets-of-sites models (with 

two different kinds of titrant binding sites on each titrate molecule) included in the Origin 7.2 

software (OriginLab, Northhampton, MA). The fit yields the values of enthalpy change for the 

binding reaction (ΔH°), the equilibrium association constant (Ka), and the stoichiometric ratio 

between the two interacting species in the resulting complex (n). These values can then be used 

to calculate other useful parameters such as the standard Gibbs free energy change (ΔG°), 

equilibrium dissociation constant (Kd) and the entropy change for the reaction (ΔS°). Further 

information about ITC analysis is provided in the Experimental Methods in Chapter 4.1.  
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Chapter 2. Development and Inhibition Studies of Histone Deacetylase Structural Mimetics 

2.1 Introduction to Histone Deacetylases and Their Inhibition 
Cancer treatments often target various enzymes involved in the uncontrolled replication 

of cancer cells. One such target is the enzyme histone deacetylase (HDAC). HDACs are 

hydrolytic metalloenzymes that remove the acetyl groups on N-acetyl lysine residues in histone 

proteins (Figure 2.1).11 HDACs have also been shown to modify the acetylation of non-histone 

proteins, such as transcription factors and cytoplasmic proteins.13 HDACs, together with histone 

acetyl transferases (HATs) – which transfer an acetyl group from acetyl CoA to lysine residues –

balance acetylation levels in histones and other proteins.14 Deacetylation plays an important role 

in epigenetic regulation.15 Histone acetylation levels are critical in the regulation of gene 

transcription. Histone proteins are essential components of the higher-order DNA structure 

chromatin. Chromatin, which consists of the basic units called nucleosomes formed by wrapping 

147 bp of DNA around a histone octamer core formed by four histone partners, an H3-H4 

tetramer and two H2A-H2B dimers (Figure 2.2).16 Chromatin controls transcription and plays a 

major role in gene regulation.  

 
Figure 2.1. Reaction catalyzed by HDACs. Representative scheme of histone lysine deacetylation by 
HDACs is shown. HDACs catalyze the removal of the acetyl group from lysine in the presence of water, 
releasing an acetate molecule.  
 

The histone core is important for establishing different ionic interactions between 

nucleosomes in chromatin. Chromatin can adopt different structural conformations depending on 

modifications that occur in the protruding histone tails, specifically H-3 and H-4 which are 

targeted for various post-translational modifications such as acetylation, N-methylation, or 

phosphorylation.13, 16 Acetylation of lysine in histone neutralizes the positive charge of histone 



	  

	   14	  

lysine residues and results in a more relaxed chromatin state and subsequently gene-transcription 

activation through greater accessibility of the transcription machinery.13-14 Deacetylation of 

histone lysine residues increases ionic interactions between positively charged histones and 

negatively charged DNA, resulting in a more compact, condensed chromatin state and 

transcriptional gene silencing via limited accessibility of the transcription machinery.14 Inhibition 

of HDACs prevents deacetylation, which results in improper DNA transcription and prevents 

cell reproduction, ultimately resulting in cell death. Thus, inhibition of HDAC can be used as a 

therapeutic approach to kill cancer cells.   

 
Figure 2.2. The nucleosome. The nucleosome is the basic unit of chromatin and consists of DNA 
wrapped around a histone octamer.  
 
 To date, eighteen mammalian HDAC enzymes have been identified. HDACs have been 

grouped into four classes based on their sequence homology with yeast protein orthologues and 

enzymatic activity.17 This work focuses on inhibition of the so-called “classical” HDACs which 

include class I, II, and IV HDACs, all of which are Zn2+-dependent enzymes that can be inhibited 

by Zn2+ chelating compounds such as trichostatin A.13, 17 Class III HDACs (SIRT1, 2, 3, 4, 5, 6, 

and 7), also called sirtuins, are Zn2+-independent and have a different catalytic mechanism 

requiring NAD+ as a cofactor.17 Class I HDACs (HDAC1, 2, 3, and 8) are ubiquitously expressed 

in all tissues, homologous with yeast Rpd3, and are predominantly located in the nucleus.13-14 

Class II HDACs are homologous to yeast Hda1 and shuttle between the nucleus and cytoplasm 

in response to cellular signals. Class II HDACs are further subdivided based on structure into 

class IIa (HDAC4, 5, 7, and 9) and class IIb (HDAC6 and 10). HDAC11 is the only member of 

the class IV HDACs and is homologous with Class I and II HDACs.13   



	  

	   15	  

Almost all of the classical HDACs function as a multi-protein complex and have a 

common, highly conserved active site. The HDAC active site is accessible from the surface of 

the enzyme through a hydrophobic tunnel formed by Phe152, Gly151, His180, Phe208, Met274 

and Tyr306 (Figure 2.3). At the base of the hydrophobic tunnel is the catalytic Zn2+, which is 

coordinated by two Asp residues and one His residue, as well as an activated water molecule 

(Figure 2.4). 

                          
Figure 2.3. HDAC hydrophobic tunnel. The SAHA linker transcends the hydrophobic pocket and the 
hydroxamic acid group binds the active site Zn2+. Left image shows the residues that make up the 
hydrophobic tunnel in teal in stick form with SAHA shown in stick form in red. Right image shows the 
residues that make up the hydrophobic tunnel as teal spheres, with SAHA in red in the pocket and binding 
the active site Zn2+ (yellow sphere). Image generated in pymol using PDB 1T69 

 
Figure 2.4. HDAC active site. The HDAC active site zinc is bound to active site residues Asp178, 
His180, and Asp267 and also coordinates to an activated water molecule (left). The active site Zn2+ 
(shown in yellow) is bound in the active site by Asp178 (green), His180 (blue), and Asp267 (purple) 
(right). Image generated in pymol using PDB 1T69 
 
 Histone deacetylase inhibitors (HDIs) have garnered interest as promising cancer 

therapeutic agents because HDAC function and/or expression are perturbed in a variety of 
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cancers. Inhibition of HDAC can result in a variety of antitumor effects such as inhibiting 

proliferation, inducing apoptosis, disruption of angiogenesis and cell cycle arrest.11 Several HDIs 

have been isolated as natural products or synthesized. Clinically relevant HDIs are in different 

chemical classes such as hydroxamic acids, carboxylic acids, benzamides or cyclic peptides.18 

Trichostatin A (TSA) was isolated from Streptomyces hygroscopicus in 1976 by Tsuji et al. and 

was the first natural hydroxamic acid discovered to inhibit HDACs.16, 19 Historically, most HDIs 

have been based on the hydroxamic acid functional group. Hydroxamic acids are the most 

effective zinc-binding group currently available in both natural and non-natural HDIs.20 

However, due to poor pharmacokinetics and severe toxicity as a result of nonspecific metal 

binding, other zinc-binding groups are also being explored to improve selectivity and 

specificity.11, 20 In general, HDIs are composed of three regions: a surface recognition domain, a 

linker, and a Zn2+-binding group (Figure 2.5). The surface recognition domain, which is 

primarily responsible for enzyme selectivity, blocks the entrance of the active site pocket and the 

linker connects the surface recognition domain and Zn2+-binding group.11  

 
Figure 2.5. The structure of SAHA and the general features of HDAC Inhibitors. HDAC Inhibitors are 
generally composed of three regions: a surface recognition domain, a Zn2+-binding group, and a linker.  
 
There are currently three HDIs that have been approved by the Food and Drug Administration 

(FDA) for cancer therapy: vorinostat (Zolinza®, Merck) and romidepsin (Istodax®, Celgene) 

which are used to treat cutaneous T-cell lymphoma, as well as panobinostat (Farydak®, 

Novartis) which was recently approved to treat multiple myeloma.18, 21 Vorinostat and 

panobinostat are both hydroxamic acid HDIs while Romidepsin is a cyclic peptide HDI.  

Vorinostat is suberoylanilide hydroxamic acid (SAHA), and was the first HDI approved 

by the FDA for clinical use. SAHA inhibits HDAC with its linker blocking the hydrophobic 

tunnel and the hydroxamic acid group functioning as the Zn2+-binding group (Figure 2.5). When 

the SAHA binds Zn2+, it displaces the activated water on Zn2+ forming a complex with the Zn2+ 
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coordinating in a trigonal bipyramidal geometry.  SAHA targets Class I and II HDACs only and 

compared to other HDIs has medium potency in inhibiting HDAC as based on its binding 

constant and rapid reversibility in binding HDAC.19 Other HDIs have been discovered that are 

far more potent than SAHA, but are also typically more toxic as revealed in in vivo studies.19 The 

most commonly used HDIs, such as SAHA, target multiple HDACs, making it challenging to 

identify the extent of inhibition necessary to achieve therapeutic effect. When multiple HDACs 

are being inhibited, it is difficult to determine whether the therapeutic effect observed is a result 

of inhibition of a specific HDAC isoform or combined effects of inhibition of multiple HDACs.11  

 
Figure 2.6. SAHA in HDAC8 active site. Top image is SAHA (red) in the active site of HDAC8, with its 
hydroxamic acid group binding the catalytic Zn2+ (yellow) held in place by Asp178 (green), His180 
(blue), and Asp267 (purple). Bottom image shows the interactions of SAHA with the HDAC active site. 
In addition to coordinating to the active site Zn2+ (yellow), SAHA is also coordinated by His142 (orange), 
His143 (blue), and Tyr306 (green). Image generated in Pymol using PDB 1T69.  

 

Almost all HDACs exist as multiprotein complexes consisting of different HDAC 

isoforms. Thus, how inhibition of one HDAC affects the activity of another HDAC is an 

additional factor to consider. Bantscheff et al. reported different inhibitory activity and enzyme 

specificity of HDIs depending on whether the studies were done using multi-HDAC complexes 

or isolated HDACs.22 One of the critical features of HDIs from which they derive their strong 

affinity and high potency is their Zn2+-binding group, which has affinity for other metal ions as 

well. The hydroxamic acid group in the inhibitor serves to bind the active site Zn2+ but has 

overall low enzyme specificity. This lack of specificity results in the hydroxamic acid group 

binding and inhibiting other metalloenzymes, with toxicity as a consequence. Because metal ions 

play important roles in many enzymatic reactions, targeting metalloenzymes with specificity is 

critical to avoid undesirable side effects.  
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The disadvantage for the current FDA approved HDIs is that they have poor enzyme 

specificity and subsequent adverse side effects; thus, use of all current HDIs in cancer treatment 

is associated with adverse effects such as nausea, vomiting, fatigue, and blood disorders such as 

anemia and leukopenia.13 A dissection of the individual contribution of each part of the enzyme-

inhibitor interaction can aid in the intelligent design of more specific HDAC inhibitors. The 

crystal structure of SAHA bound to the active site of an HDAC enzyme has been obtained, 

revealing a SAHA coordinating to the active site Zn2+ via its hydroxamic acid moiety in addition 

to interacting with the nonpolar wall of the tunnel via the linker and cap regions. However, a 

static structure lacks information about the thermodynamics of the interaction.23 The overall 

interactions of different hydroxamic acid ligands with HDAC8 have been studied using 

Isothermal Titration Calorimetry (ITC).24 The results provide the thermodynamics of the overall 

interaction of the inhibitor with the active site but yield little insight into the specific contribution 

of the different parts of the inhibitor 

Breaking down the system such that only one interaction of the whole process is studied 

provides information about how one specific component of the interaction contributes to the 

overall interaction. In an effort to understand the contribution of Zn2+ to overall inhibitor binding, 

ITC had been used in the Jin lab to study the interaction of SAHA with Zn2+. The results from 

these studies yielded a rather weak affinity constant (Ka ~ 400 M-1) with uncertain stoichiometry. 

In fact, multiple different n values – of no higher than 0.5 mol SAHA per Zn2+ – fit the data well 

as judged by the reduced chi squared value. The uncertainty in the n value stemmed from the 

very weak affinity constant, rendering the calculated c value (c = n*Ka*[cell]) to fall outside the 

optimal window of 1-1000 for accurate extraction of the binding parameters.  

Regardless of the accuracy of the inhibitor and Zn2+ study, the binding of inhibitor to free 

Zn2+ in solution does not equate the binding of inhibitor to active-site Zn2+ due to differences in 

entropy of the free versus active-site Zn2+. With these thoughts in mind came the idea to develop 

a HDAC structural mimetic by synthesizing a ligand that will strongly chelate Zn2+ in the same 

way that the active site residues bind Zn2+ and use this mimetic system in ITC studies with 

different inhibitors. 

 Of particular interest for this project was to develop a HDAC structural mimetic and use 

it to study its interaction with different inhibitors using ITC, then compare the results with those 

reported by Singh et al. for hydroxamic acid ligands interacting with HDAC8.24 ITC experiments 
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provide valuable physical parameters for interactions such as the stoichiometry (molar ratio of 

the titrant to titrate in the resulting complex), enthalpy change, entropy change, and equilibrium 

association constant. HDAC8 has been the most heavily studied HDAC enzyme as it functions as 

a single polypeptide, rather than as a high-molecular-weight multiprotein complex as all other 

structural HDACs are found.25 In HDAC8, the zinc ion is coordinated by three residues, His180 

using the imidazole nitrogen, Asp178 and Asp 267 using their carboxyl groups; thus, the goal 

was to develop a ligand to mimic these residues in order to create the HDAC structural mimetic. 

2.2 ITC studies of interactions of small molecule ligands with Zn2+  

 The first goal of this project was to identify an HDAC structural mimetic. A series of 

ligands were studied in an effort to find the best candidate for serving as an HDAC structural 

mimetic. To be considered as a promising HDAC structural mimetic, the ligand had to meet a 

variety of requirements. It was imperative that the ligand strongly chelate Zn2+ and the resulting 

complex remain intact while it binds to inhibitor. If the inhibitor were to have a stronger affinity 

for zinc than the ligand does, the inhibitor would displace the ligand. Previous work in the Jin lab 

demonstrated that two hydroxamic acid inhibitors, SAHA and AHA, had Zn2+ affinity constants 

around 400 M-1. Based on the affinity of the HDIs for Zn2+, the desired binding constant for the 

ligand and zinc interaction was greater than 105 M-1 to ensure the ligand would not be displaced 

during inhibitor binding. A second requirement was that the stoichiometric ratio of the ligand to 

Zn2+ in the complex be 1:1. This ensures that there is ample space left on zinc for inhibitor 

binding. Zn2+ typically assumes a tetrahedral or trigonal bipyramidal geometry in solution,8 thus 

the ligand should bind Zn2+ but still leave enough space and coordination sites on Zn2+ open for 

the inhibitor to bind. If two ligands are bound to each Zn2+ ion, no coordination site will be 

available for inhibitor binding. The final requirement was that the structural mimetic complex 

must be soluble at concentrations necessary for ITC study (1-5 mM) in 50 mM NEM buffer 

(0.150 M NaCl, pH 6.80) and/or a 60:40 (by volume) mixture of MeOH: buffer (50 mM NEM, 

0.150 M NaCl) at pH 6.80. These two solvent systems were the conditions that were used in 

similar studies. From here on out unless otherwise stated the 50 mM NEM buffer (0.150 M 

NaCl, pH 6.80) will simply be referred to as “NEM buffer” and the 60:40 (by volume) mixture 

of MeOH: buffer (50 mM NEM, 0.150 M NaCl) at pH 6.80 will be referred to as “MeOH:buffer 

mixture.” 
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2.2.1 N-(2-(1-methylimidazolyl)methyl)iminodiacetic acid (DA2Im) with Zn2+  

In an effort to mimic the structure of the actual amino acid residues that coordinate the 

zinc in the active site of HDAC, N-(2-(1-methylimidazolyl)methyl)iminodiacetic acid (DA2Im) 

(Figure 2.7), was synthesized.  The interaction of DA2Im with Zn2+ had been studied by Canary 

and coworkers using potentiometric titrations.26 The authors investigated the effect of pH on the 

stoichiometric ratio of Zn2+ to ligand in the zinc-ligand complex and found that DA2Im 

complexed with Zn2+ in a 1:1 ratio.26 Based on these results, DA2Im appeared to be a promising 

ligand to create the HDAC structural mimetic. The imidazole was incorporated to reflect the 

His180 and the carboxylic acids to mimic Asp178 and Asp267, the three residues that coordinate 

Zn2+ in the HDAC8 active site. Because aqueous solubility is an issue for some HDAC 

inhibitors, the interaction between DA2Im and zinc was studied in two solvent systems: NEM 

Buffer and the MeOH:buffer mixture.  

 
Figure 2.7. N-(2-(1-methylimidazolyl)methyl)iminodiacetic acid (DA2Im). DA2Im is a potentially 
tetradentate ligand that can bind Zn2+ with its carboxylic acid oxygens, tertiary amine, and imidazole 
nitrogen. 
 

Injection of ZnCl2 (0.15 mM) into DA2Im (0.03 mM) in NEM buffer demonstrated that 

DA2Im had a high affinity for Zn2+
 (Ka of (1.2 ± 0.5) × 108 M-1), but afforded a perplexing 

stoichiometric ratio of 0.66 ± 0.07 (Figure 2.8 and Table 2.1). The stoichiometric ratio of 0.66 ± 

0.07 (Zn2+:DA2Im) corresponds to a stoichiometry of 2 DA2Im: 3 Zn2+. This stoichiometry 

renders the DA2Im ligand an unsuitable ligand to create the HDAC structural mimetic.  
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Figure 2.8. Raw data (top panel) and binding isotherm (bottom panel) for titration of 0.15 mM ZnCl2 into 
0.03 mM DA2Im in NEM buffer at 25 °C.  
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When the injection order was reversed such that DA2Im (0.15 mM) was titrated into ZnCl2  (0.03 

mM) in NEM buffer, the results were indicative of two binding events occurring (Figure 2.9). It 

is well established that carboxylic acids in fluid states, both liquid and gas, primarily exist in the 

dimer form (Figure 2.9).27 Hydrogen bonds between the carboxylic acids result in the formation 

of these dimers. The two binding events observed may correspond to the dissociation of the 

dimeric ligand as it is diluted over 100-fold upon injection into the reaction cell, followed by 

binding of the monomeric ligand to Zn2+. 

 
Figure 2.9. Hydrogen Bonded Dimer of a carboxylic acid. Ligands containing carboxylic acid groups 
tend to dimerize when used as the titrant in ITC due to relatively high concentration. Thus all ITC 
experiments for ligands containing carboxylic acid were done with Zn2+ as the titrant and the ligand as 
titrate. 
 

A control run of DA2Im into NEM buffer was performed and it was observed that the 

trend in the resulting binding isotherm had the same trend as for the titration of DA2Im into 

ZnCl2 (Figure 2.10). The heat for titrant into buffer titration is not an exact match for the actual 

titrant dilution heat when titrant is injected into ZnCl2 solution. When the control heat is as 

significant as in the present case, the inability to obtain the exact titrant dilution heat prevents the 

extraction of binding parameters. Binding thermodynamics and stoichiometry for DA2Im with 

Zn2+ in buffer was therefore obtained from the injection of Zn2+ into DA2Im only, as shown in 

Figure 2.8 (vide supra). 
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Figure 2.10. Overlay of binding isotherms for DA2Im titrated into ZnCl2 in NEM buffer experiment 
(squares) and the control experiment of DA2Im titration into NEM buffer (triangles) at 25 °C. 

 

The interaction of DA2Im with Zn2+ was also studied in MeOH:buffer mixture. The 

resulting binding isotherms were complex for both injection orders. When ZnCl2 (0.15 mM) was 

titrated into DA2Im (0.03 mM), the binding isotherm exhibited multiphasic nature (Figure 2.11). 
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Due to the inability to determine the actual titrant dilution heat that can be accurately subtracted 

to remove heat not stoichiometrically correlated with the DA2Im-Zn2+ binding event, it is 

impossible to de-convolute the binding isotherm to extract the correct stoichiometry and 

thermodynamic binding parameters.  

The injection order was reversed such that DA2Im (0.15 mM) was titrated into ZnCl2 

(0.03 mM) in the MeOH:buffer mixture. The resulting binding isotherm could not be fit with the 

binding models provided in the Origin 7.2 software (OriginLab, Northhampton, MA) (Figure 

2.12). The control heat for a solution of 0.15 mM DA2Im being titrated into the MeOH:buffer 

mixture demonstrated that the dilution heat of DA2Im was large and exothermic. The control 

heat being larger than that of the reaction heat suggests that the interaction between Zn2+ and 

DA2Im is possibly endothermic in the MeOH:buffer mixture. No thermodynamic values were 

extracted from these experiments as the data are obscured by the overwhelming control heat. The 

complex nature of the titrant (DA2Im) dilution heat is likely caused by the complex solvation 

heat and/or dimer dissociation heat due to the abundance of basic nitrogens and carboxylic acids 

in the ligand.  Again, dimerization of the ligand in the syringe is also a likely cause for the large 

dilution heat. In conclusion, no stoichiometry and binding thermodynamics could be extracted 

for DA2Im with Zn2+ in the MeOH:buffer mixture.   
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Figure 2.11. Raw data (top panel) and binding isotherm (bottom panel) for titration of 0.15 mM ZnCl2 
into 0.03 mM DA2Im in the MeOH: Buffer mixture at 25 °C. The abundance of basic nitrogens and 
carboxylic acids in the DA2Im likely results in complex solvation heat and/or dimer dissociation heat.  

 



	  

	   26	  

 
Figure 2.12. Overlay of binding isotherms for 0.15 mM DA2Im titration into 0.03 mM ZnCl2 in the 
MeOH:buffer mixture (squares) and the control run of 0.15 mM DA2Im into MeOH:buffer mixture at  
25 °C (triangles). In the MeOH:buffer mixture, the control heat for titration of DA2Im into the solvent 
system is greater than the heat of the interaction when DA2Im is titrated into ZnCl2. 
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Table 2.1. Thermodynamic parameters from ITC study of DA2Im interaction with Zn2+ in NEM buffer 
pH 6.80*  

n 
(Zn2+/DA2Im) 

Ka  
(M-1) 

Kd  
(μM) 

ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

ΔS° 
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

0.66 ± 0.07 (1.2 ± 0.5 ) × 
108 (9 ± 3) x10-3 -11.0 ± 0.2 -1.7 ± 0.6 31 ± 2 9.3 ± 0.7 

*Titration of 0.15 mM ZnCl2 into 0.03 mM DA2Im 

The interaction of DA2Im with ZnCl2 was only successfully determined in NEM buffer when 

ZnCl2 was titrated into DA2Im. The stoichiometric ratio of 0.66 ± 0.07 (Zn2+:DA2Im) and the 

equilibrium affinity constant of (1.2 ± 0.5 ) × 108 M-1 differ significantly from those obtained by 

Canary and coworkers.26 The ITC experiments were performed in a buffer with conditions 

including ionic strength, anion identity (chloride) and controlled pH that more closely 

approximate a biological system. The potentiometric experiments were performed in water with 

perchlorate as the counterion at varying pH that resulted from titration of NaOH. Chloride ions 

will compete with the DA2Im ligand to bind Zn2+ whereas perchlorate ions will not. The 

differences in the n values obtained from the two types of experiments are not surprising given 

the difference in conditions. Also, the stability constant from potentiometric titration does not 

include accompanying equilibria such as ligand deprotonation that likely occurs upon ligand 

coordination to Zn2+. In the same potentiometric study by Canary and coworkers,26 the 

interactions of Zn2+ with several other ligands were reported. Four of the ligands were selected in 

this work and studied using ITC as detailed below.  

2.2.2 Nitrilotriacetic acid (NTA) with Zn2+  

Nitrilotriacetic acid (NTA) is one of the ligands that Canary and coworkers26 used in the 

potentiometric titration study with Zn2+. The interaction of commercially available NTA with 

Zn2+ was investigated in 50 mM NEM buffer (0.15 M NaCl, pH 6.80) using ITC. NTA is a 

tetradentate ligand that can potentially bind Zn2+ with its tertiary amine and three carboxylic acid 

oxygens (Figure 2.13).  
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Figure 2.13. Nitrilotriacetic Acid (NTA). NTA is a tetradentate ligand that can potentially bind Zn2+ with 
its three carboxylic acid oxygens and its tertiary amine.  
 
Experiments in the MeOH:buffer mixture were not possible as NTA was insoluble in the solvent 

system at the concentrations necessary for ITC. Titration of a solution of ZnCl2 (0.3 mM) into a 

solution NTA (0.06 mM) in NEM buffer (Figure 2.14) revealed a high affinity of NTA for Zn2+ 

(2.1 ± 0.4) × 107 M-1), and a stoichiometric ratio of 0.68 ± 0.1 NTA per Zn2+ corresponding to 2 

NTA: 3 Zn2+, rather than the 1:1 complex preferred for a HDAC structural mimetic for inhibitor 

binding study (Table 2.2). Unfortunately, the HDAC inhibitors to be studied with the mimetic 

complex, except for AHA, were soluble only in the MeOH:buffer mixture, thus NTA was not 

suitable for the inhibitor studies due to insolubility in the solvent mixture and no further 

experiments were performed.  
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Figure 2.14. Raw data (top panel) and binding isotherm (bottom panel) for titration of 0.3 mM ZnCl2 into 
0.06 mM NTA in NEM buffer at 25 °C. 
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Table 2.2. Thermodynamic parameters from ITC study of NTA interaction with Zn2+ in NEM buffer* 

n 
(Zn2+/NTA) 

Ka  
(M-1) 

Kd  
(μM) 

ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

ΔS° 
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

0.68 ± 0.1 (2.1 ± 0.4) ×107 0.049 ± 0.009 -10.0 ± 0.1 -3.7 ± 0.3 21 ± 1 6.2 ± 0.4 
*Titration of 0.3 mM ZnCl2 into 0.06 mM NTA 

2.2.3 Tris(2-pyridylmethyl)amine (TPA) with Zn2+  

Commercially available tris(2-pyridylmethyl)amine (TPA) (Figure 2.15) was explored as 

a potential ligand to form the HDAC structural mimetic. TPA is another ligand that Canary and 

coworkers studied with Zn2+ using potentiometric titrations.26 TPA is a tetradentate ligand that 

can potentially bind Zn2+ with the three pyridine nitrogens and a tertiary amine nitrogen. 

 
Figure 2.15. Tris(2-pyridylmethyl)amine (TPA). TPA is a tetradentate ligand that can potentially bind 
Zn2+ with its three pyridine nitrogens and its tertiary amine.  
 

TPA was found to be insoluble in NEM buffer at the concentration necessary for ITC 

experiments; therefore, ITC experiments were carried out in MeOH:buffer mixture only. When 

TPA (3 mM) was titrated into ZnCl2 (0.3 mM), the resulting data was fit to a one-set-of-sites 

binding model (Figure 2.16) which yielded a high affinity of TPA for Zn2+  

(Ka = (7 ± 4) × 106 M-1) and a stoichiometric ratio of 0.66 ± 0.02 TPA per Zn2+, corresponding to 

a 2 TPA: 3 Zn2+ complex (Table 2.3). This stoichiometric ratio does not meet the requirement for 

a 1:1 binary complex for it to be a HDAC structural mimetic. This result again shows how 

different conditions can affect metal binding as Canary and coworkers reported a 1:1 ratio in 

potentiometric titrations.26  
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Figure 2.16. Raw data (top panel) and binding isotherm (bottom panel) for titration of 3 mM TPA into 
0.3 mM ZnCl2 in MeOH:buffer mixture at 25 °C. 
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When ZnCl2 (0.3 mM) was titrated into TPA (0.03 mM), curve fitting to one set of sites 

model resulted in a stoichiometry of 0.85 ± 0.06 Zn2+ per TPA (Figure 2.17) which approximates 

a 1:1 Zn2+:TPA complex (Table 2.3).  The observed stoichiometry, or complex composition, is 

therefore dependent on the injection order. The difference likely resulted from different 

availability of the titrant and the titrate in the two injection orders. The ITC syringe holds 280 μL 

of titrant and the reaction cell holds 1400 μL of titrate. Despite the lower total volume, the titrant 

is in excess at the end of the experiment as titrant was at a much greater concentration than the 

titrate. When the titrant concentration was ten times that of the titrate, at the end of the 

experiment there was twice as many moles of the titrant in the reaction cell than moles of titrate. 

When ZnCl2 was the titrant, this injection order evidently settled on the 1:1 binding because of 

excess Zn2+ at the end of the titration. When the ligand was the titrant and thus ligand was in 

excess at the end of the titration, this titration order evidently settled on the formation of 

complexes having multiple ligands bonding to the same Zn2+ ion. This is because when Zn2+ is 

limited, multiple ligands will attempt to bind the limited amount of Zn2+ available. When 

different stoichiometries are observed for different injection orders, the equilibrium association 

constants also differ. The Ka obtained when TPA was the titrant was an order of magnitude 

greater than when ZnCl2 was the titrant (Table 2.3).  
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Figure 2.17. Raw data (top panel) and binding isotherm (bottom panel) for titrations of 0.3 mM ZnCl2 
into 0.03 mM TPA in MeOH:buffer mixture at 25 °C. 



	  

	   34	  

 
 
Table 2.3. Thermodynamic parameters from ITC study of TPA interaction with Zn2+* 
Injection 

Order 
n 

(TPA/Zn2+) Ka (M-1) Kd (μM) ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

ΔS° 
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

TPA into 
Zn2+ 0.66 ± 0.02 (7 ± 4) × 106 0.2 ± 0.1 -9.3 ± 0.4 -15.7 ± 0.4 -21 ± 3 -6.4 ± 0.8 

Zn2+ into 
TPA 0.85 ± 0.06 (3 ± 1) ×105 4 ± 2 -7.4 ± 0.3 -16.1 ± 0.8 -29 ± 0.3 -9 ± 1 

*Titration of 3 mM TPA into 0.3 mM ZnCl2 and also titration of 0.3 mM ZnCl2 into 0.03 mM TPA in MeOH:buffer. 

2.2.4 Bis(2-picolyl)amine (BPA) with Zn2+  

Zn2+ coordination complexes primarily exist in solution with a tetrahedral or trigonal 

bipyramidal geometry.4b One concern with using tetradentate ligands to form the zinc:ligand 

binary complex as an HDAC active site structural mimetic is that if the Zn2+ coordinates to four 

atoms of the same ligand, there will be insufficient coordination sites left on Zn2+ for the 

inhibitor binding due to the tetrahedral and trigonal bipyramidal geometries preferred by Zn2+ 

providing only four or five coordination sites, respectively. With this concern in mind, 

commercially available bis(2-picolyl)amine (BPA) was studied as a potential ligand to develop a 

HDAC active site structural mimetic. BPA was selected due to its structural similarities with 

TPA. BPA is a tridentate ligand that can potentially bind Zn2+ with two pyridine nitrogens and 

the nitrogen of the secondary amine (Figure 2.18). 

 
Figure 2.18. Bis(2-picolyl)amine (BPA). BPA is a tridentate ligand that can potentially bind Zn2+ with the 
two pyridine nitrogens and secondary amine.  
 

BPA was soluble in both the buffer and the MeOH:buffer mixture. ITC experiments were 

performed by titrating BPA (3 mM) into ZnCl2 (0.3 mM) in either NEM buffer (Figure 2.19) or 

the MeOH:buffer mixture (Figure 2.20). Results from experiments in both solvent systems were 

fit to a two-sets-of-sites binding model. The formation of a 1 BPA:1 Zn2+ complex has a high 

affinity (Ka ~ 107 M-1) and the binding of a second BPA has a four-orders of magnitude lower 

affinity (Ka ~ 103 M-1) (Table 2.4).  
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Figure 2.19. Raw data (top panel) and binding isotherm (bottom panel) for titration of 3 mM BPA into 
0.3 mM ZnCl2 in NEM buffer at 25 °C. 
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Figure 2.20. Raw data (top panel) and binding isotherm (bottom panel) for titration of 3 mM BPA into 
0.3 mM ZnCl2 in MeOH:buffer mixture at 25 °C 
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In both solvent systems, the first ligand binds with a much stronger affinity as indicated 

from the steep transition of the binding isotherm corresponding to the first half (0-80 minutes) of 

the total binding isotherm (Figures 2.19 and 2.20). Binding of a second ligand to the 1:1 complex 

was evident from the significant heat in the last half of the injections with the heat decreasing 

only gradually with each additional injection (Figures 2.19 and 2.20).  The second BPA binding 

to the initially formed BPA-Zn2+ complex was weak enough that an inhibitor with high affinity 

for Zn2+ would be able to displace the second bound BPA. In the HDAC active site, the catalytic 

Zn2+ is bound with an activated water molecule in addition to an imidazole nitrogen on His and 

two oxyanions from two Asp residues at the active site, thus ideally the HDAC structural 

mimetic should be bound in a tridentate ligand and have one or two water molecules bound 

depending on whether Zn2+ prefers a tetrahedral or trigonal bipyramidal geometry, respectively. 

If BPA is used to form a structural mimetic of HDAC, the inhibitors will be forced to compete 

with the second weakly affiliated BPA rather than a water molecule, and competing with the 

second BPA versus a water molecule is going to be more energetically costly. Though not ideal 

as a mimetic system due to the BPA-Zn2+ complex weakly binding to a second BPA, BPA was 

selected as a potential system to create the HDAC structural mimetic to be used for ITC studies 

with different inhibitors. 
Table 2.4. Thermodynamic parameters from ITC study of BPA interaction with Zn2+* 

Solvent Fit n (BPA/Zn2+) Ka (M-1) Kd (μM) ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

ΔS° 
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

Buffer 1 1.127 ± 0.006 (2.4 ± 0.2) × 107 0.07 ± 0.03 -9.9 ± 0.5 -10.6 ± 0.1 10 ± 2 2.9 ± 0.6 
 2 1.09 ± 0.05 (7 ± 3) × 103 180 ± 30 -5.2 ± 0.2 -5.5 ± 0.9 -1 ± 4 -0.3 ± 1 

MeOH:
Buffer 1 0.83 ± 0.09 (2.3.± 0.6) × 107 0.05 ± 0.02 -10.0 ± 0.2 -11.2 ± 0.4 -17 ± 4 -1.2 ± 0.4 

 2 0.9 ± 0.1 (7 ± 7) × 103 200 ± 100 -5.1 ± 0.5 -9 ± 3 -12 ± 12 -4 ± 4 
*Titration of 3 mM BPA into 0.3 mM ZnCl2 in both solvent systems. 

2.2.5 Tris(2-aminoethyl)amine (TREN) with Zn2+  

The interaction of commercially available Tris(2-aminoethyl)amine (TREN) with Zn2+ 

was also studied using potentiometric titrations by Canary and coworkers.26 TREN is a 

tetradentate ligand that can potentially bind Zn2+ with three primary amines and one tertiary 

amine (Figure 2.21). ITC experiments with TREN consisted of TREN being titrated into a 

solution of zinc and were carried out in either NEM buffer or the MeOH:buffer mixture. 
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Figure 2.21. Tris(2-aminoethyl)amine (TREN). TREN is a tetradentate ligand that binds Zn2+

 with its 
three primary amines and tertiary amine. 
 
Titration of TREN (10 mM) into ZnCl2 (1 mM) in the MeOH:buffer mixture demonstrated that 

the interaction was exothermic and enthalpically driven with a favorable stoichiometric ratio of 

0.94 ± 0.02 (1 TREN: 1 Zn2+) and a Ka of (1.7 ± 0.3) × 106 M-1 (Figure 2.23 and Table 2.5). The 

experiments performed in NEM buffer also exhibited a favorable stoichiometric ratio of 0.89 ± 

0.06. However, the interaction in buffer was observed to be much weaker (Ka = (4 ± 1) × 104 M-1) 

and endothermic (Figure 2.22 and Table 2.5). The weak interaction of the TREN-Zn2+ complex 

increases the likelihood of TREN being displaced by the inhibitor when it is used for the 

inhibitor binding study. The weak affinity of TREN for Zn2+ in buffer can be potentially 

explained by the necessary deprotonation of the amines (pKa ~ 10) prior to binding Zn2+. The 

endothermic nature of the deprotonation can also explain the observed overall endothermic heat 

for TREN and Zn2+ binding, which is evidently entropically driven (Table 2.5). In the 

MeOH:buffer mixture the overall binding was exothermic. This suggests that because of the 

presence of the less polar methanol in the MeOH:buffer mixture, the amines in TREN prefer the 

uncharged base state thus deprotonation was not necessary prior to Zn2+ binding. The affinity 

constants obtained from this ITC study are lower than those obtained in the potentiometric study 

by Canary and coworkers.26 Although TREN is tetradentate and exhibited an affinity for Zn2+ 

weaker than BPA for Zn2+, TREN’s favorable stoichiometry with Zn2+ made it a potential 

candidate to create the HDAC active site structural mimetic for the ITC inhibitor studies.  
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Figure 2.22. Raw data (top panel) and binding isotherm (bottom panel) for titration of 10 mM Tren into 1 
mM ZnCl2 in NEM buffer at 25 °C 



	  

	   40	  

Figure 2.23. Raw data (top panel) and binding isotherm (bottom panel) for titration of 10 mM Tren into  
1 mM ZnCl2 in MeOH:buffer mixture at 25 °C 
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Table 2.5. Thermodynamic parameters from ITC study of TREN interaction with Zn2+* 
Solvent n 

(Tren/Zn2+) Ka (M-1) Kd (μM) ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

ΔS° 
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

Buffer 0.89 ± 0.06 (4 ± 1) × 104 24 ± 9 -6.3 ± 0.2 3.8 ± 0.2 34.0 ± 0.4 10.2 ± 
0.1 

MeOH:
buffer 0.94 ± 0.02 (1.7 ± 0.3) × 106 0.61 ± 0.09 -8.49 ± 0.09 -4.9 ± 0.1 12.0 ± 0.7 3.6 ± 0.2 

*Titration of 10 mM Tren into 1 mM ZnCl2 in both solvent systems. 

2.3 ITC studies of the interactions of potential HDAC structural mimetics with inhibitors 
 The first goal of this project was to identify a ligand that can potentially be used to form 

an HDAC structural mimetic. After screening five different ligands, three of the ligands – BPA, 

TPA, and TREN – were selected for further ITC studies with HDIs based on their favorable, 

strong affinities for Zn2+ and/or their favorable stoichiometric ratios (1:1) of Zn2+ to ligand in the 

resulting complex. The ideal HDAC structural mimetic would be formed with a ligand that has a 

very high affinity (Ka ≥ 105 M-1) for Zn2+ and binds Zn2+ in a 1:1 stoichiometric ratio while still 

leaving adequate coordination sites on Zn2+ for an inhibitor binding. The inhibitors selected for 

studying the interaction with the HDAC structural mimetics were 8-hydroxyquinoline (8-HQ), 

suberoylanilide hydroxamic acid (SAHA), acetohydroxamic acid (AHA), and 2-benzyl-amino-

napthoquinone (NQN-1) (Figure 2.24). 

 
Figure 2.24. 2-benzyl-amino-napthoquinone (NQN-1). NQN-1 has been shown to inhibit HDAC6. 

ITC experiments with NQN-1 and SAHA were not performed as NQN-1 was not soluble at 

concentrations necessary for ITC in both the NEM buffer and the MeOH:buffer mixture.  

2.3.1 8-Hydroxyquinoline interaction with ligand-Zn2+ mixtures as potential HDAC 
structural mimetics 
 8-hydroxyquinoline is a well-known metal ion chelator with a rich diversity of biological 

properties.28 Pharmacological applications of the 8-hydroxyquinoline scaffold range from serving 

as anticancer agents, anti-HIV agents, antifungal agents, and chelators of metalloenzymes. A 

computational study by Chen and coworkers to identify zinc-binding groups for HDAC 

inhibition reported that 8-hydroxyquinoline had favorable binding energy with a model active 
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site.20 The 8-hydroxyquinoline derivative, NSC3852, has been shown to be an inhibitor of 

HDAC2. 8-hydroxyquinoline binds Zn2+ in a bidentate fashion with its phenolic oxygen anion 

and nitrogen (Figure 2.25).28  

 

Figure 2.25. 8-Hydroxyquinoline (left) and NSC3852 (right). NSC3852 is a 8-hydroxyquinoline analog 
that has been reported to have inhibitory activity against HDAC2. 
 
Due to its poor aqueous solubility, ITC experiments with 8-hydroxyquinoline were only 

conducted in the MeOH:buffer mixture. ITC experiments were performed by titrating 8-

hydroxyquinoline into different HDAC mimetic systems. These HDAC mimetic systems include 

BPA-Zn2+, TPA-Zn2+, and TREN-Zn2+ complexes. To determine if the interaction observed when 

8-hydroxyquinoline was injected into the ligand-Zn2+ complex was due to 8-hydroxyquinoline 

binding to Zn2+ in the ligand-Zn2+ complex or to Zn2+ free in solution, control ITC experiments 

were also performed with 8-hydroxyquinoline and free Zn2+ without the ligand present.   

 The interaction of 8-hydroxyquinoline with ligand-free Zn2+ was studied using ITC for 

both titration orders, i.e. the titration of 8-hydroxyquinoline into Zn2+ and the titration of Zn2+ 

into 8-hydroxyquinoline. Data from injection of Zn2+ into 8-hydroxyquinoline yielded an n value 

of 0.39 ± 0.01 Zn2+ per 8-hydroxyquinoline (Figure 2.26). An n value of 0.33 would correspond 

to three 8-hydroxyquinoline molecules binding to one Zn2+. An n value of 0.5 would correspond 

to two 8-hydroxyquinoline molecules binding each Zn2+. The n value obtained for the 8-

hydroxyquinoline interaction with Zn2+ was between these two values which was likely a result 

of both binding scenarios existing in solution. When three 8-hydroxyquinoline molecules bind 

Zn2+ an anionic complex results, whereas a neutral complex is obtained in the 2:1 8-

hydroxyquinoline:Zn2+ binding mode. Titrations of 8-hydroxyquinoline into Zn2+ were also 

performed, which resulted in an n value of 1.98 ± 0.02 8-hydroxyquinoline per Zn2+, 

corresponding to a 2:1 (8-hydroxyquinoline:Zn2+) complex (Figure 2.27 and Table 2.6). The 

affinity of 8-hydroxyquinoline for Zn2+ was strong, as expected, and there was not a significant 

difference between the Ka determined for each injection order, suggesting that the same complex 



	  

	   43	  

was formed from either injection order, which is likely a 1 Zn2+: 2 8-hydroxyquinoline complex. 

In fact, zinc and 8-hydroxqyuinoline have been crystalized as bis(8-hydroxyquinoline) zinc(II), 

in which two 8-hydroxyquinoline molecules are bound to Zn2+. 
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Figure 2.26. Raw data (top panel) and binding isotherm (bottom panel) for titration of 4 mM ZnCl2 into 
0.4 mM 8-hydroxyquinoline in MeOH:buffer mixture at 25 °C 
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Figure 2.27. Raw data (top panel) and binding isotherm (bottom panel) for titration of 8 mM  
8-hydroxyquinoline into 4 mM ZnCl2. in MeOH:buffer mixture at 25 °C 
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Table 2.6. Thermodynamic parameters from ITC study of 8-hydroxyquinoline interaction with Zn2+* 
Injection 

Order n Ka  
(× 105 M-1) Kd (μM) ΔG° 

(kcal/mol) 
ΔH° 

(kcal/mol) 
ΔS° 

(cal/mol⋅K) 
TΔS° 

(kcal/mol) 
8-HQ into 

Zn2+ 1.98 ± 0.02 1.80 ± 0.03  5.56 ± 0.09 -7.169 ± 0.009 -8.5 ± 0.1 -4.6 ± 0.4 -1.4 ± 0.1 

Zn2+ into 
8-HQ 0.39 ± 0.01 2.0 ± 0.4  4.9 ± 0.9 -7.2 ± 0.1 -19.8 ± 0.9 -42 ± 4 -13 ± 1 

* Titration of 8 mM 8-hydroxyquinoline into 4 mM ZnCl2 and Titration of 4 mM ZnCl2 into 0.4 mM 8-
hydroxyquinoline. All experiments done in the MeOH:buffer mixture.  

 
ITC experiments were performed to study the interaction between 8-hydroxyquinoline 

and various ligand-Zn2+ binary complexes that had been identified as potential HDAC structural 

mimetics based on the ligand and Zn2+ ITC studies. The three different binary systems selected 

were TPA-Zn2+, BPA- Zn2+, and TREN- Zn2+. Experiments were carried out by titrating 10 mM 

8-hydroxyquinoline solution into a solution of ligand-Zn2+ binary complex in the MeOH:buffer 

mixture.  

Titrations of 8-hydroxyquinoline into BPA-Zn2+ mixture were carried out with varying 

ratios of BPA to Zn2+. As shown above, the BPA into Zn2+ titration experiments revealed two 

BPA molecules binding each Zn2+, with the first BPA binding Zn2+ with high affinity (Ka ~ 107 

M-1) and the second BPA binding four-times more weakly (Ka ~ 103 M-1). Although this was not 

an ideal mimetic system because the second BPA binds very weakly, it was hypothesized that an 

inhibitor (such as 8-hydroxyquinoline) would be capable of displacing the second BPA in 

binding to Zn2+ (Figure 2.28).  

 
Figure 2.27. Titration of 8-hydroxyquinoline into Zn(BPA)2 complex. BPA is a tridentate ligand that 
binds Zn2+ in a 2 BPA: 1 Zn2+ ratio. The second BPA molecule interacting with Zn2+ is weakly bound, 
thus when 8-hydroxyquinoline is injected, the second BPA molecule and a hydroxide ion are displaced 
and 8-hydroxyquinoline binds.  
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To avoid the potentially complicating issue of 8-hydroxyquinoline competing off the 

second BPA molecule, 1:1 binding was forced by preparing the BPA-Zn2+ complex using a 1:1 

ratio of BPA:Zn2+. Indeed, 1:1 binding of 8-hydroxyquinoline to BPA-Zn2+ was observed as 8-

hydroxyquinoline was titrated into a 1:1 BPA:Zn2+ solution with an n value of 0.976 ± 0.003 8-

HQ per BPA-Zn2+ complex (Figure 2.29). The raw ITC data did not show signs of the strongly 

bound BPA being displaced by 8-hydroxyquinoline, nor did it show signs of 8-hydroxyquinoline 

binding free rather than BPA-complexed Zn2+ because the n value of 0.976 ± 0.003 differed from 

the n value of 1.98 ± 0.02 obtained for the titration of 8-hydroxyquinoline titration into Zn2+. 
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Figure 2.29. Raw data (top panel) and binding isotherm (bottom panel) for titration of 10 mM  
8-hydroxyquinoline into a solution containing 1 mM ZnCl2 and 1 mM BPA in MeOH:buffer mixture at 
25 °C 
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 Titration experiments of 8-hydroxyquinoline into varying ratios of BPA:Zn2+ were 

performed to determine if  binding observed was 8-hydroxyquinoline binding to the binary 

complex or just to free Zn2+. 8-hydroxyquinoline was titrated into a 1.11:1 BPA:Zn2+ solution 

(Figure 2.30). The raw data appeared similar to that for titration into the 1:1 BPA:Zn2+ solution, 

but the n value was 0.822 ± 0.009 8-hydroxyquinoline per total Zn2+. This n value suggests that 

about 82% of the total Zn2+ were bound with only one BPA molecule and therefore were 

available for binding by 8-hydroxyquinoline while the remaining 18% of the total Zn2+ were 

bound with two BPA molecules and therefore not available for 8-hydroxyquinoline binding. 

These numbers were close to the known molar ratios of 1.11:1 BPA:Zn2+ in the mixture. This 

also suggests that 8-hydroxyquinoline was unable to displace the second BPA to bind Zn2+.  

Titrations of 8-hydroxyquinoline into 1.5:1 BPA:Zn2+ and 2:1 BPA:Zn2+ solutions were 

also performed. These experiments yielded n values of 0.62 ± 0.01 and 0.44 ± 0.04, respectively 

(Figure 2.30). The decreasing n value with the increasing ratios of BPA:Zn2+ reflects the 

decreasing presence of the Zn(BPA) complex and increasing presence of the Zn(BPA)2 complex. 

It also suggests that not all Zn2+ were bound with two BPA molecules at the 2:1 BPA:Zn2+ ratio 

despite the fact that twice as much BPA as Zn2+ was present, which can be explained by the weak 

affinity of the second BPA molecule. The Zn(BPA) complexes were likely the species 

coordinating to the 8-hydroxyquinoline. As the ratio of BPA:Zn2+ increased from 1:1 to 2:1, the 

Ka value for 8-hydroxyquinoline binding also decreased, specifically by approximately 5-fold 

from (1.57 ± 0.06) ×104 M-1 to (3.1 ± 0.7) × 103 M-1. This decrease of affinity was likely due to 

the competition of the free BPA in the solution. 

To conclude, for the BPA to be used as an HDAC structural mimetic, a 1:1 ratio of 

BPA:Zn2+ was necessary and sufficient for creating a stable 1:1 complex capable of coordinating 

to one molecule of 8-hydroxyquinoline.  
Table 2.7. Thermodynamic parameters from ITC study of 8-hydroxyquinoline interaction with different 
molar ratios of BPA:Zn2+* 

Mimetic 
(Ratio of 

BPA:Zn2+) 
n  

(8-HQ/BPA-Zn2+) 
Ka  

(× 104 M-1) Kd (μM) ΔG° 
(kcal/mol) 

ΔH°  
(kcal/mol) 

ΔS°  
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

1:1  0.976 ± 0.003 1.57 ± 0.06 64 ± 3 -5.73 ± 0.02 -10.35 ± 0.02 -15.52 ± 0.02 -4.630 ± 0.005 
1.11:1  0.822 ± 0.009 1.43 ± 0.01 69.9 ± 0.7 -5.668 ± 0.006 -9.93 ± 0.05 -14.3 ± 0.2 -4.26 ± 0.05 
1.5:1  0.62 ± 0.01 0.81 ± 0.03 124 ± 5 -5.33 ± 0.02 -9.1 ± 0.1 -12.5 ± 0.4 -3.7 ± 0.1 
2:1  0.44 ± 0.04 0.31 ± 0.07 330 ± 80 -4.7 ± 0.1 -10 ± 2 -18 ± 6 -5 ± 2 

*Titration of 10 mM 8-hydroxyquinoline into mixtures of BPA and ZnCl2 with ratios of BPA:Zn2+ ranging from 1 
mM: 1 mM to 2 mM: 1 mM. 
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Figure 2.30.  Binding isotherms for titration of 8-hydroxyquinoline into different ratios of BPA:Zn2+ at  
25 °C. Stars are 1:1 Zn2+:BPA, circles are 1:1.11 Zn2+:BPA, squares are 1:1.5 Zn2+:BPA, triangles are 1:2 
Zn2+:BPA. As the ratio of BPA:Zn2+ increases, the n value and affinity decrease.  
 



	  

	   51	  

 The interaction of 8-hydroxyquinoline with the TPA-Zn2+ binary complex was also 

studied using ITC. TPA and Zn2+ interactions were found in Section 2.2.3 to yield different n 

values depending on injection order, thus the interaction of 8-hydroxyquinoline with two 

different ratios of TPA:Zn2+ was investigated. An n value of 0.85 ± 0.06 Zn2+ per TPA was 

determined when ZnCl2 was titrated into TPA. Based on these results, a 1.11:1 TPA:Zn2+ ratio 

was selected for the titration of 8-hydroxyquinoline. When 8-hydroxyquinoline was injected into 

the 1.11:1 TPA:Zn2+ solution, a very strong interaction was observed as indicated by the sharp 

transition of the binding isotherm. The n value for this interaction was found to be 0.055 ± 0.007 

8-hydroxyquinoline per TPA-complexed Zn2+. Such a small n value suggests that 8-

hydroxyquinoline did not bind the TPA-Zn2+ binary complex, rather it was binding to a very 

small amount of free Zn2+ available in solution.  

A different n value, 0.66 ± 0.02 TPA per Zn2+, was observed when TPA was titrated into 

ZnCl2, which corresponded to 2 TPA bound per 3 Zn2+. Based on this stoichiometric ratio, 

titrations of 8-hydoxyquinoline into a 0.66:1 TPA:ZnCl2 solution were performed and yielded an 

n value of 0.98 ± 0.03 8-hydroxyquinoline per total Zn2+ in the 0.66:1 TPA:ZnCl2 solution and Ka 

of (3.5 ± 0.8) × 105 M-1 (Figure 2.32). Because results from 8-hydroxyquinoline titration into 

0.9:1 TPA:Zn2+ mixture suggest that 8-hydroxyquinoline did not bind the TPA-Zn2+ binary 

complex, the current n value of 0.98 ± 0.03 8-hydroxyquinoline per total Zn2+ suggests that this 

stoichiometry resulted from 8-hydroyquinoline binding free rather than TPA-bound Zn2+. When 

the concentration was adjusted during curve fitting to reflect the amount of free Zn2+ in solution 

and under the assumption 8-hydroxyquinoline was binding free and not TPA-bound Zn2+, the n 

value was found to be 3 8-hydroxyquinoline per free Zn2+. The n value determined from titration 

of 8-hydroxyquinoline into ZnCl2 was 1.98 ± 0.02 8-hydroxyquinoline per free Zn2+ with a Ka of 

(2.0 ± 0.4) × 105 M-1. The n value for 8-hydroxyquinoline binding Zn2+ from the 8-

hydroxyquinoline into Zn2+ experiments was the experiment with the most reliable n value 

because the exact amount of free Zn2+ in the 0.66 TPA: 1 Zn2+ remains unknown. However, it is 

also possible that the n value observed for 8-hydroxyquinoline binding the free Zn2+ ions 

available when TPA was present was higher than that for when TPA was not present as a result 

of the presence of TPA affecting the binding of 8-hydroxyquinoline to free Zn2+. Additionally, 

the hydroxide ions present in solution that typically compete to bind Zn2+ may preferentially bind 
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the TPA-Zn2+ complex due to its neutral charge; this lack of competition for Zn2+ binding then 

led to more 8-hydroxyquinoline molecules binding Zn2+.  

TPA was shown to have a high affinity for Zn2+, with a Ka of (3 ± 1) × 105 M-1 from Zn2+ 

into TPA titration experiments and (7 ± 4) × 106 M-1 from TPA into Zn2+ titration experiments. 

TPA binds Zn2+ very tightly. Based on the stoichiometric ratio obtained from 8-hydroxyquinoline 

titration into TPA and Zn2+ mixtures of either 0.66:1 or 0.9:1 TPA:Zn2+ molar ratio, TPA binds 

so tightly that the 8-hydroxyquinoline was not able to displace the TPA. Additionally, because 

TPA is tetradentate, it does not leave adequate space for 8-hydroxyquinoline to coordinate Zn2+ 

in the TPA-Zn complex. Thus, 8-hydroxyquinoline was only able to bind whatever free Zn2+ was 

available in solution (Figure 2.31). Based on these results it was concluded that the TPA-Zn 

binary complex was not suitable as a HDAC structural mimetic.   

 
Figure 2.31. Titration of 8-hydroxyquinoline into TPA-Zn2+ complex. TPA binds Zn2+ 1:1 with a very 
high affinity greater than that of 8-hydroxyquinoline for Zn2+. TPA is tetradentate and does not leave 
adequate space on Zn2+ for 8-hydroxyquinoline to bind while Zn2+ is complexed with TPA; thus when 8-
hydroxyquinoline is titrated into the TPA-Zn2+ complex, the only binding observed is of 8-
hydroxyquinoline binding to whatever small amount of free Zn2+ is available in solution.  
 
Table 2.8. Thermodynamic parameters from ITC study of 8-hydroxyquinoline interaction with different 
molar ratios of TPA:Zn2+* 

Mimetic 
(TPA:Zn2+) 

n  
(8-HQ/TPA-Zn2+) 

Ka  
(× 105 M-1) Kd (μM) ΔG° 

(kcal/mol) 
ΔH° 

(kcal/mol) 
ΔS° 

(cal/mol*K) 
TΔS° 

(kcal/mol) 
1.11:1  0.055 ± 0.007 0.42 ± 0.07 24 ± 4 -6.29 ± 0.09 -9 ± 2 -8 ± 6 -2 ± 2 
0.66:1  0.98 ± 0.03 3.5 ± 0.8 3.0 ± 0.7 -7.5 ± 0.1 -9.4 ± 0.1 -6 ± 1 -1.8 ± 0.2 

*Titration of 10 mM 8-hydroxyquinoline into 1 mM ZnCl2 with 0.66 mM TPA or 1.11 mM TPA. 
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Figure 2.32. Raw data (top panel) and isotherm (bottom panel) for titration of 10 mM  
8-hydroxyquinoline into 1 mM ZnCl2 and 1.11 mM TPA in MeOH:buffe mixture at 25 °C 
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As explained in Section 2.2.5, TREN was determined to bind Zn2+ in a 1:1 stoichiometric 

ratio but had a weaker affinity for Zn2+ in NEM buffer than in the MeOH:buffer mixture. ITC 

experiments for 8-hydroxyquinoline binding to the TREN-Zn2+ binary complex were performed 

with a mixture of TREN and ZnCl2 at 1.11:1 TREN:Zn2+ ratio to ensure that no free Zn2+ existed 

in solution and that if 8-hydroxyquinoline binding was indeed observed, it was binding to 

TREN-Zn2+ complex rather than free Zn2+. The binding isotherm (Figure 2.34) showed a 

downward trend initially followed by an increasing trend. This suggests that 8-hydroxyquinoline 

was displacing the TREN bound to Zn2+, forming a 8-hydroxyquinoline-Zn2+ binary complex 

rather than the 8-hydroxyquinoline-Zn2+-TREN ternary complex. When the ITC data from the 8-

hydroxyquinoline into TREN-Zn2+ binary complex was analyzed, the n value was determined as 

1.8 ± 0.2 8-hydroxyquinoline per total Zn2+ with a Ka of (1.2 ± 0.2) × 103 M-1. This n value was 

similar to that of 8-hyroxyquinoline binding free Zn2+. The Ka was much smaller than that for 8-

hydroxyquinoline binding free Zn2+ due to the fact that 8-hydroxyquinoline must first displace 

TREN in order to bind (Figure 2.33). Based on these results, TREN is not an acceptable ligand to 

create an HDAC structural mimetic.  

 
Figure 2.33. Titration of 8-hydroxyquinoline into TREN-Zn2+ complex. The TREN-Zn2+ complex is a 1:1 
complex, but the affinity of TREN for Zn2+ is not greater than the affinity of 8-hydroxyquinoline for Zn2+. 
TREN is tetradentate and when bound to Zn2+ does not leave adequate space on Zn2+ for  
8-hydroxyquinoline to bind; thus, 8-hydroxyquinoline displaces the TREN in order to form a  
Zn(8-hydroxyquinoline)2 complex. 
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Figure 2.34. Raw data (top panel) and isotherm (bottom panel) for titration of 10 mM  
8-hydroxyquinoline into 1 mM ZnCl2 and 1.11 mM TREN in the MeOH:buffer mixture at 25 °C 
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Table 2.9. Thermodynamic parameters from ITC study of 8-hydroxyquinoline interaction with the 1.11:1 
TREN:Zn2+ HDAC structural mimetic* 

n  
(8-HQ/ligand-

Zn2+) 
Ka (M-1) Kd (μM) ΔG° 

(kcal/mol) 
ΔH° 

(kcal/mol) 
ΔS° 

(cal/mol*K) 
TΔS° 

(kcal/mol) 

1.8 ± 0.2 1200 ± 200 800 ± 100 -4.22 ± 0.08 -2.8 ± 0.2 1 ± 5 1.42 ± 0.09 
*Titration of 10 mM 8-hydroxyquinoline into a mixture containing 1 mM ZnCl2 and 1.11 mM TREN. 

2.3.2 Acetohydroxamic Acid interaction with HDAC structural mimetic 

Suberoylanilide hydroxamic acid (SAHA) is an FDA-approved HDAC inhibitor used to 

treat cutaneous T-cell lymphoma. The hydroxamic acid in SAHA functions as the zinc-binding 

group, binding Zn2+ with the carbonyl oxygen and oxyanion. SAHA has poor aqueous solubility 

and is insoluble in NEM buffer at pH 6.80. Thus, ITC experiments were only attempted in the 

MeOH:buffer mixture. SAHA is soluble only up to 10 mM in the MeOH:buffer mixture. The 

binding of SAHA to Zn2+ is weak, thus to favor binding in order to accurately extract binding 

parameters, concentrations of SAHA higher than 10 mM would need to be used. Because only 

the hydroxamic acid moiety of SAHA is involved in Zn2+ coordination, acetohydroxamic acid 

(which contains the hydroxamic acid group and also offers good aqueous solubility) was used in 

place of SAHA for titration into the chosen HDAC structural mimetic in both NEM buffer and 

the MeOH:buffer mixture. 

 
Figure 2.35. Suberoylanilide Hydroxamic Acid (SAHA) (left) and Acetohydroxamic Acid (AHA) (right). 
Both molecules contain the same hydroxamic acid zinc-binding group, but acetohydroxamic acid lacks 
the linker and surface recognition domain portions of SAHA. 
 

The Jin lab had previously investigated the interaction of AHA with ZnCl2 in both 

solvent systems and found that a substantial heat was still present at the last few injections of the 

titration of AHA into Zn2+.29 However, the control experiment of titrating AHA into solvent only 

did not show a substantial heat in either solvent system, suggesting that at the concentrations 

used (up to 50 mM AHA), binding of AHA to Zn2+ was not complete at the last injections of 

AHA into Zn2+. Further increasing of the concentration of AHA as a titrant to favor binding 

would generate heat powers that exceed the limit of the VP-ITC. With the incomplete binding 

isotherm and the low c value (c = nKa[cell]) of less than 1 (optimal window of c is 1-1000, 
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preferably 5-500), curve fitting did not result in meaningful n values (as any n value of 0.5 or 

below fit the data equally well). An n value of ≤ 0.5 AHA per Zn2+ suggests ≥ 2 Zn2+ ions bound 

per AHA, an unlikely scenario as the hydroxamic acid group can only chelate one metal ion. 

Additionally, it was also believed that the difficulty in extracting meaningful binding parameters 

(particularly the n value) resulted from the inability to identify the proper control heat to subtract. 

The control heat may be due to the electrostatic effect of Zn2+, whether as free or AHA-bound 

Zn2+, on AHA when AHA is injected into the cell. An n value of at least one or two AHA are 

expected to bind per Zn2+ in the complex between AHA and Zn2+. To obtain an estimate of the Ka 

and ΔH° values, curve fitting of the binding isotherm was carried out by fixing n at a value of 

0.5 and by allowing all parameters to float with each iteration of the fit.  

Titrations of 50 mM AHA into a mixture containing 5 mM ZnCl2 and 5 mM BPA were 

performed in NEM buffer and the MeOH:buffer mixture. Experiments in both solvent systems 

were indicative of AHA binding the BPA-Zn2+ complex.  

These titrations contained the same control heat in both solvent systems and a proper 

control was not identified for the titration of AHA into the BPA-Zn2+ complex (Figure 2.36). The 

closest control would be injection of AHA into an AHA and ZnCl2 mixture with excess amount 

of AHA. As can be seen in Figure 2.36, the heat at the last injections was substantial and the 

isotherm did not plateau as it would when binding is complete. This control heat was also 

observed in the experiments performed previously in the Jin lab looking at the interaction of 

AHA with free Zn2+.29 Analysis of the data were performed by allowing all parameters to vary 

with iterations of the fit and also by fixing the n value at 0.5 to demonstrate how the other 

parameters change depending whether n is fixed or allowed to vary. Even when n was allowed to 

vary, no n value above 0.5 resulted from the curve fitting. The Ka value varied substantially 

depending on the n value. Again, the inability to find a unique set of n, Ka, and ΔH° parameters 

lies in the c value being outside the optimal window (1-1000). This is due to weak affinity and 

the sensitivity of the curve fitting to the control heat when a perfect control has yet to be 

identified. Though Zn2+ is fully bound with AHA molecules, it may still exert an electrostatic 

effect on the AHA being injected into the mixture, adding additional heat effect to the heat of 

binding. Until a proper control is found, the data will not offer much insight into the contribution 

of Zn2+-binding to the overall binding of acetohydroxamic inhibitors to HDAC. Experiments at a 

higher pH, specifically at pH 7.25, are being explored to increase the binding affinity (higher pH 
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promotes deprotonation of the alcohol thus less energetic cost due to deprotonation before Zn2+ 

binding) thereby increasing the accuracy of the resulting binding parameters. A pH of 7.25 is the 

highest pH possible in NEM buffer for preparing a 1 mM ZnCl2 solution without Zn(OH)2 

precipitation occurring.  
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Figure 2.36. Raw Data (top panel) and isotherm (bottom panel) for titration of 50 mM AHA into 5 mM 
Zn-BPA in NEM buffer at 25 °C. After binding is complete a substantial heat remains, making it difficult 
to fit the data and also resulting in the data fitting a variety of n values under 0.5.  
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Table 2.10. Thermodynamic parameters from ITC study of AHA interaction with BPA-Zn2+*  

Solvent n 
(AHA/BPA-Zn2+) Ka (M-1) Kd (μM) ΔG° 

(kcal/mol) 
ΔH° 

(kcal/mol) 
ΔS° 

(cal/mol⋅K) 
TΔS° 

(kcal/mol) 
NEM 0.4 ± 0.1 500 ± 200 2400 ± 1200 -3.6 ± 0.3 -3 ± 2 0.9 ± 7 0.3 ± 2 

 Fixed at 0.5 600 ± 200 1900 ± 700 -3.7 ± 0.2 -2.2 ± 0.4 5 ± 2 1.6 ± 0.6 
MeOH:Buffer 0.4 ± 0.1 400 ± 200 3000 ± 2000 -3.5 ± 0.4 -6 ± 4 -7 ± 14 -2 ± 4 

 Fixed at 0.5 600 ± 40 1700 ± 100 -3.80 ± 0.04 -2 ± 1 3.0 ± 0.5 2 ± 1 
*Titration of 50 mM AHA into 5 mM BPA-Zn2+ 

 
 The goal of this project was to develop an HDAC active site structural mimetic to use in 

ITC studies for interaction with different HDAC inhibitors in order to gain insight into the 

energetic contribution of inhibitor active site zinc binding to the overall interaction with HDAC. 

Requirements for the ligand as part of the structural mimetic were set to include binding Zn2+ in a 

1:1 ratio with a very high affinity such that when inhibitor was introduced the ligand would not 

dissociate from Zn2+, and the ligand-Zn2+ binary complex must be able to bind inhibitor via Zn2+ 

without the ligand being displaced. Five ligands – NTA, TPA, BPA, TREN and DA2Im – were 

assessed in their suitability in creating an HDAC structural mimetic. Based on the results of ITC 

studies of each ligand interacting with Zn2+, BPA, TPA, and TREN were selected for preliminary 

screening with an inhibitor and strong metal chelator 8-hydroxyquinoline.  

Experiments between 8-hydroxyquinoline and TREN-Zn2+ complex revealed that TREN 

was displaced from Zn2+ by 8-hydroxyquinoline, resulting in the formation of a complex, Zn(8-

hydroxyquinoline)2. The ITC results for 8-hydroxyquinoline interaction with TPA-Zn2+ binary 

complex showed that TPA was not displaced by 8-hydroxyquinoline nor was 8-

hydroxyquinoline able to bind the Zn2+ in the TPA-Zn2+ complex. Evidently, TPA, which is 

tetradentate, did not leave adequate coordination sites on the TPA-bound Zn2+ for 8-

hydroxyquinoline binding. The only binding observed in ITC was due to 8-hydroxyquinoline 

binding a residual amount of free Zn2+ ions with the same affinity as observed for 8-

hydroxyquinoline injection into free Zn2+. BPA, which is tridentate, was the only ligand that not 

only remained bound to Zn2+ upon 8-hydroxyquinoline injection, but also left sufficient 

coordination sites for 8-hydroxyquinoline coordination.  

ITC experiments were also performed for BPA-Zn2+ complex with another HDAC 

inhibitor, AHA, in which a solution of AHA was titrated into a 1:1 solution of the BPA-Zn2+ 

complex. These experiments were indicative of AHA binding the BPA-Zn2+ complex, but with 

the affinity too weak to be accurately determined in either the buffer or MeOH:buffer mixture at 

pH 6.80. With such a weak affinity and thus too small a c value, infinite combinations of n, Ka, 
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and ΔH° values were found to fit the binding isotherm but none provided a reasonable n value of 

at least 1 AHA per Zn2+. To obtain an accurate set of binding parameters, either higher 

concentrations of titrant and titrate (thus increasing the c value) or solution conditions promoting 

stronger binding are required to determine the binding parameters accurately. Further increasing 

of AHA and Zn2+ concentration not only is unrealistic due to limited Zn2+ solubility in solution, 

but also it will further increase the heat that was already at the upper limit of the VP-ITC. 

However, increasing the pH to promote deprotonation of the AHA hydroxamic acid and thus 

increase the affinity of AHA for Zn2+ may be a viable option. Future directions for this project 

include 1.) finding an appropriate control to subtract from the AHA experiments such that they 

can be properly analyzed and 2.) expanding the study to other potential HDAC inhibitors’ and 

their zinc binding groups. Additionally, future studies would also investigate the interaction of 

SAHA with the HDAC structural mimetic.  
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2.4 Computational Studies of HDAC structural mimetic (BPA-Zn2+) with  
8-hydroxyquinoline 
 Computational calculations of the entire HDAC enzyme are time consuming due to its 

large size. The ability to glean valuable information regarding the enzyme’s catalytic activity 

without consideration of the entire structure is important. Vanommeslaeghe and coworkers 

performed a DFT-based ranking of zinc-binding groups in HDAC inhibitors using an empty 

catalytic core model for HDAC, determining that the most effective inhibitors are bidentate 

chelators with high chemical hardness.30 Preliminary computational calculations were performed 

to complement the results of the ITC experiments studying the interaction of BPA with Zn2+ and 

the interaction of 8-hydroxyquinoline with the BPA-Zn2+ binary complex. These calculations 

provide useful information that contributes to a better understanding of the overall interaction 

between BPA and Zn2+ to form the BPA-Zn2+ binary complex as well as the interaction of the 

BPA-Zn2+ complex with 8-hydroxyquinoline.  

In this work, relevant structural parameters and the complexation energies of the BPA-

Zn2+ complexed with the HDAC inhibitor 8-hydroxyquinoline were investigated in various 

solvents versus in vacuo. A conformational transition of the BPA ligand was also studied using 

the intrinsic reaction coordinate calculation, which provides information about the flexibility and 

intrinsic movement of the BPA molecule. These computational calculations yield insight into the 

binding of 8-hydroxyquinoline to the BPA-Zn2+ complex through information about bond lengths 

and complexation energy.  

2.4.1 Computational Methods 
Preliminary Ab initio calculations were performed with the Gaussian 2009 program 

package.31 All geometry optimizations, frequency calculations, IRC calculations and BSSE-

corrected complexation energy calculations were conducted at the BLYP/3-21g level of theory. 

Complexation energies were calculated by subtracting the individually optimized and calculated 

energies of the BPA-Zn2+ complex and inhibitors from the energy of the optimized complex. 

Basis set effects were explored using the larger cc-PVDZ basis set.  

2.4.2 Bis(2-picolyl)amine optimization and frequencies 
Bis(2-picolyl)amine (BPA) (Figure 2.38) was optimized at both the BLYP level of theory with 

the 3-21g and cc-PVDZ basis sets. When optimized, the three nitrogens in the BPA are oriented 

to allow for intramolecular hydrogen bonding to stabilize the structure. The bonds between the 



	  

	   63	  

central nitrogen and pyridine rings are flexible and rotate to accommodate the intramolecular 

hydrogen bonding. The distances between each nitrogen in the optimized BPA structure are 

reported (Table 2.11). The bond distance between each pyridine nitrogen and the central nitrogen 

are equal, but for the PVDZ optimized structure has slightly longer bonds to obtain a slightly 

more stable structure.   

 
Figure 2.38. Structure of Bis(2-picolyl)amine 

Table 2.11. Structural parameters from the optimized BPA 

Basis Set BLYP/3-21g   BLYP/cc-PVDZ   
 N1-N2

* N3-N2 N1-N3 N1-H N3-H N1-N2 N3-N2 N1-N3 N1-H N3-H 
Lengths (Å) 2.725 2.725 4.188 2.211 2.211 2.801 2.802 4.547 2.352 2.354 

*Numerical subscripts in table correspond to those in Figure 2.38 

 

2.4.3 Bis(2-picolyl)amine Intrinsic Reaction Coordinate calculation 
Improved understanding of the preferred conformation of BPA can be obtained from the 

evolution of relevant geometrical parameters along the reaction path. The BPA molecule can 

exist in many different conformations, which affect its binding to the Zn2+ ion. One transition to 

consider is the central nitrogen transitioning from below to above the two pyridine rings. As 

shown in Figure 2.28B, the transition state for this process is a completely planar BPA molecule.  
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A. BPA minimum 1 

 
 

B. Planar BPA Transition State 

 
 

C. BPA Minimum 2 

 
          Figure 2.38. Input structures for IRC calculation 

 

The planar BPA was confirmed as a transition state by a QST3 calculation and also by 

the presence of an imaginary frequency. The Intrinsic Reaction Coordinate (IRC) calculation 

effectively connects the two minima (Figures 2.39A and 2.39C) of this process through the 

transition state as a maximum. The IRC calculation is done in vacuo and provides insight into the 

energy required for the transition between the different conformations. The energy profile 

demonstrates that a small amount of energy is required for this conformational change (Figure 

2.39). The energy difference between the transition state and each minimum is the activation 

energy, 1.65 kcal/mol. By taking the first derivative of the relative energy, the force required for 

the transition is obtained. A plot of force versus the reaction coordinate yields a force profile 

(Figure 2.39).  

Two critical points, a minimum and a maximum, are observed in the force profile. The 

force profile demonstrates that a small force is required for this conformational change to 

proceed. It is important to recognize that the IRC calculation was done in the gas phase. To 

obtain the activation energy in solvent, the transition state and minima were optimized in the 
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solvent and the difference between their energies was taken. The activation energy in each 

solvent was compared with the activation energy in vacuo by calculating the percent difference 

(Table 2.12). The activation energy is much greater in both solvents than in vacuo due to the 

additional energy involved in desolvation and solvation processes.  

      

Figure 2.39. BLYP/3-21g energy profile for BPA (left) and BPA reaction force profile (right) 

Table 2.12. Activation Energies in solvent and gas phase 

 Activation Energy 
(kcal/mol) 

% difference 

Vacuum 1.65  
Aqueous 2.89 54.4 % 

Acetonitrile 2.85 53.2 % 
 
2.4.4 Bis(2-picolyl)amine-Zn2+ complex optimization  

The optimized BPA structure was edited to be complexed with Zn2+ and the resulting BPA-Zn2+ 

complex was then optimized at both levels of theory. The three nitrogens in BPA are used to 

strongly complex Zn2+ in such a way that two five-membered rings result. Relevant structural 

parameters were extracted from the optimized structure (Table 2.13). The two basis sets yielded 

similar results.The larger cc-PVDZ basis set yielded a more symmetrical BPA complex, with the 

pyridine nitrogens the same distance from Zn2+ and with the same bond angle. The 3-21g 

optimized BPA-Zn2+ complex had BPA contorted about the Zn2+ with smaller bond angles than 

that of the cc-PVDZ optimized structure. The 3-21g optimized complex does not accommodate 

the restricted bond angles of the pyridines, resulting in a cramped structure with a large amount 
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of steric strain. The total energy of the cc-PVDZ complex is lower than that of the 3-21g 

optimized complex, indicating that the higher degree of symmetry results in a more stable 

complex by reducing steric strain (Table 2.14). 

 
Figure 2.40. BPA-Zn2+ Complex 

 
Table 2.13. Structural parameters of optimized BPA-Zn2+ 

Basis Set Bond Lengths (Å) 
 N1-N2 N3-N2 N1-N3 N1-Zn N3-Zn N2-Zn 

Blyp/3-21g 2.818 2.781 3.518 1.854 1.853 1.930 
Blyp/cc-PVDZ 2.821 2.821 3.893 1.959 1.959 2.096 

 Bond Angles (°) 
 C4-N1-Zn C7-N3-Zn C5-N2-C6 

Blyp/3-21g 109.0 105.3 114.4 
Blyp/cc-PVDZ 110.6 110.6 118.9 

*Numbers correspond to numbering in Figure 2.40 
 
Table 2.14. Total Energies of BPA-Zn2+ based on basis set 
 

Basis Set Energy with ZPE (kcal/mol) 
Blyp/3-21g -1.503 × 106 

Blyp/cc-PVDZ -1.511 × 106 
 

2.4.5 HDAC active site structural mimetic interaction with 8-hydroxyquinoline  

The optimized BPA-Zn2+ complex was edited to include the HDAC inhibitor 8-

hydroxyquinoline (8-HQ), and optimized at the blyp/3-21g level of theory. Optimization of 

BPA-Zn-8HQ was not completely successful. The optimization went through 24 iterations until 

an error occurred. Inspection of the optimization plot revealed that the optimization was nearly 

complete, as the total energy had begun plateauing at iteration 15; thus, in the interest of time the 

project was continued with the nearly optimized BPA-Zn-8-hydroxyquinoline complex (Figure 

2.41).  

8-hydroxyquinoline binds the BPA-Zn2+ binary complex in a perpendicular angle to the 

BPA plane. The oxygen and nitrogen of bidentate 8-hydroxyquinoline are used to chelate the 
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Zn2+. The binding of 8-hydroxyquinoline has some steric hindrance due to the bulky, conjugated 

ring system of 8-hydroxyquinoline. However, the conjugated ring system allows for the electron 

density to be more centralized at the Zn2+ binding sites, resulting in 8-hydroxyquinoline having a 

high affinity for the BPA-Zn complex. The 8-hydroxyquinoline is deprotonated and the BPA-

Zn2+-8-hydroxyquinoline complex has a charge of +1 

        
Figure 2.41. 8-hydroxyquinoline complexed with BPA-Zn2+ binary complex. Shown is BPA-Zn2+-8-
hydroxyquinoline complex (left) and the optimized BPA-Zn2+-8-hydroxyquinoline structure (right). 

 

Relevant structural parameters were obtained from the optimized BPA- Zn2+-8-

hydroxyquinoline complex in different environments (Table 2.15). Although the energies of the 

complexes changed, the bond lengths of the BPA- Zn2+-8-hydroxyquinoline ternary complex did 

not change in the different environments. Compared to the 8-hydroxyquinoline phenol oxygen, 

the 8-hydroxyquinoline nitrogen had a longer bond distance of 2.002 Å. The pyridine nitrogen on 

8-hydroxyquinoline is a part of the ring, whereas the oxygen is bonded to the ring, allowing it to 

get closer to the BPA- Zn2+ complex and form a shorter bond (Figure 2.41). The formation of the 

BPA- Zn2+-8-hydroxyquinoline ternary complex must overcome steric strain due to the 

conjugated ring system of 8-hydroxyquinoline. 
Table 2.15. Bond lengths of BPA- Zn2+-8-HQ complexes 

Bond Lengths (Å) 
8-HQ-Zn2+ BPA-Zn2+ 

O1-Zn N4-Zn O1-Zn N4-Zn O1-Zn 
1.896 2.002 1.977 1.962 2.296 
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Table 2.16. Complexation Energy for BPA- Zn2+ with 8-hydroxyquinoline  

 BPA-Zn2+-AHA BPA-Zn2+-8-hydroxyquinoline 
Environment Complexation 

Energy 
(kcal/mol) 

BSSE Corrected 
Complexation 

Energy (kcal/mol) 

Complexation 
Energy 

(kcal/mol) 

BSSE Corrected 
Complexation 

Energy (kcal/mol) 
Vacuum -543.16 -463.27 -267.697 -240.81 
Aqueous -162.55 N/A -79.014 N/A 

Acetonitrile -168.88 N/A -82.53 N/A 
 

The complexation energies in each environment (Table 2.16) demonstrate how the 

formation of the complex is less favorable in solvent. The complexation energy is significantly 

less in vacuo than in either solvent. The total energy of each complex is comparable in each 

environment, but the BPA-Zn and 8-hydroxyquinoline are individually more stabilized in solvent 

by the solvent interactions than in vacuo; thus, bringing the two together to form the complex in 

solvent is more costly in terms of energy as there are additional interactions that must be 

disrupted for complexation to occur. Each individual part – BPA-Zn2+ and 8-hydroxyquinoline – 

must be desolvated for the complex to form, and after the complex forms, the complex is 

subsequently solvated. These solvation and desolvation processes make complexation 

energetically less favorable in solvent than in vacuo.  

The BPA-Zn2+-8-HQ complex has the smallest complexation energy in vacuo and the 

largest in water. Water is a polar protic solvent, thus the anions in the inhibitor are more solvated 

in water than acetonitrile and require more energy to be desolvated. Acetonitrile is a polar aprotic 

solvent; thus, it solvates the positively charged zinc more than water will. Based on these results, 

the solvation of 8-hydroxyquinoline has a more significant effect on the complexation energies 

than the solvation of zinc. 
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2.5 Issues with acetonitrile as solvent for ITC  

 The inconsistency of the ITC results from this work with those of Canary and coworker’s 

potentiometric titrations were attributed to the fact that the potentiometric study was performed 

in water and with perchlorate as the counter ion which does not compete with the ligands for 

Zn2+ binding. In an attempt to gain insight into the binding of the ligands to Zn2+ without any 

competition from Cl- ions or even water and hydroxide ions, ITC experiments were performed 

for ligands interacting with Zn2+ using (ZnBF4)26H2O as the source of Zn2+ ion, BF4
- replacing 

Cl- as the counterion, and acetonitrile as the solvent. Experiments in acetonitrile were plagued 

with poor reproducibility. In the raw ITC data, small endothermic heat was present toward the 

end of an exothermic peak and these endothermic peaks became more prominent at the end of 

the titration (Figure 2.42). As these endothermic peaks did not seem to be proportional to the 

extent of binding, unless they were subtracted the binding isotherm could not be deconvoluted 

(fit to a simple binding model) to yield binding parameters for the interaction between ligand and 

Zn2+ (Figure 2.43). It was hypothesized that residual water in the solvent was the cause of the 

poor reproducibility. Kano and coworkers reported that addition of a small amount of water to 

acetonitrile when used as the solvent in ITC experiments, resulted in drastic change to the shape 

of individual peaks and also to the overall binding isotherm.32 Specifically, Kano and coworkers 

reported that an endothermic heat process resulted in ITC experiments done in acetonitrile when 

0.5% water was present, but was significantly decreased when there was 0.1% water.32 To 

remove residual water, acetonitrile from a solvent purification system was used and the ITC cells 

were thoroughly dried prior to setting up each experiment. However, the water introduced from 

the (ZnBF4)26H2O remained. Raw data and the binding isotherm from each experiment 

remained consistently irreproducible. There have been other attempts by the Jin lab to conduct 

ITC studies in other organic solvents, such as methanol, but the same issues with reproducibility 

resulting from water contamination have been encountered. Until a better method of eliminating 

all water from the system is identified, experiments done in organic solvents will continue to be 

irreproducible and difficult to analyze.  
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Figure 2.42. Raw data for titration of BPA into Zn(BF4)2 in acetonitrile. The first five peaks correspond 
to BPA binding Zn2+ and are exothermic, but all endothermic peaks after the first five peaks are due to the 
presence of a small amount of water.  
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Figure 2.43. Overlay of isotherm for titrations done with acetonitrile as solvent. Triangles are for the 
titration of BPA into ZnBF4 in acetonitrile, squares are the control run of titration of BPA into 
acetonitrile. The trend seen for the control run was also present in the titration of BPA into Zn(BF4)2, 
making it difficult to analyze the data since the control cannot be easily subtracted.  
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Chapter 3. Studies of interaction of tetracycline, minocycline, and tigecycline with Zn2+ and 
Ca2+ 

 

3.1 Introduction to matrix metalloproteinases and their inhibition 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases 

involved in physiological and pathophysiological processes such as angiogenesis, inflammation 

and embryogenesis. First discovered in 1962 by Gross and Lapiere, MMPs have become of 

interest as a target for various diseases such as arthritis, cancer and aortic aneurysm.33 MMPs 

proteolyze several proteins of the extracellular matrix and their increased activity contribute to 

the pathogenesis of several cardiovascular diseases; thus, inhibition of MMPs is a growing 

therapeutic aim to treat various cardiovascular diseases. MMPs are referred to numerically from 

1-28 and have traditionally been grouped according to their extracellular matrix substrates, 

primary structure or subcellular localization as gelatinases (MMP-2 and -9), collagenases (MMP-

1, -8, and -13), stromelysins (MMP-3 and -10), matrilysins (MMP-7 and -26), metalloelastases 

(MMP-12) and membrane-type MMPs (MMP-14-16 and -23-25).33  

MMPs contain a catalytic Zn2+ that is coordinated by three histidines in the active site 

(Figure 3.1). Synthesized as zymogens, MMPs have an autoinhibitory hydrophobic propeptide 

that binds Zn2+ with a cysteine thiol and shields the Zn2+ ion in the catalytic domain from 

interacting with substrates. The MMPs become activated after a “cysteine switch” in which the 

propeptide cysteine dissociates via proteolysis or conformational changes of the zymogen 

induced by oxidizing agents.33  

 
Figure 3.1. Active site of MMP-14. Zinc shown in grey as a sphere, is coordinated by three hisitidines 
shown in stick form. Image was generated in PyMol using PDB 1BUV.   
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MMPs degrade several extracellular matrix proteins and play a key role in embryonic heart 

development and in adaptive vascular remodeling during exercise and pregnancy.33 MMP-

mediated proteolysis of the extracellular matrix contributes to tumor invasion as well.34 MMP 

activity is elevated in cardiovascular inflammatory disorders such as Kawasaki disease and 

Chagasic cardiomyopathy. During inflammatory mediated connective tissue breakdown, MMPs 

work in combination with serine proteinases to bias the proteinase-antiproteinase balance toward 

destruction of the extracellular matrix and basement membranes.35 MMP activity is intrinsically 

regulated by phosphorylation, glutathiolation and tissue inhibitors of metalloproteinases 

(TIMPs).33  

Various zinc binding groups have been explored as potential MMP inhibitors, such as 

cyclic peptides and hydroxamic acids, but issues with non-selectivity and susceptibility to 

metabolism have prevented further progress. Chemically modified tetracyclines have previously 

been shown to function as effective inhibitors of zinc matrix metalloproteinases.35 Golub and 

coworkers reported the ability of tetracyclines to inhibit MMP activity via their ability to chelate 

the catalytic Zn2+ ion independently of their antimicrobial properties in 1984.36 It has been 

assumed that inhibition of MMPs is dependent on the inhibitor’s ability to chelate the catalytic 

Zn2+ ion, but some studies have suggested that the inhibitory activity is a result of the inhibitor 

binding to structural metals such as Ca2+ and Zn2+ rather than the active site Zn2+.34 This 

hypothesis is supported by results showing that MMP inhibition can be reversed by adding 

millimolar amounts of Ca2+ or micromolar amounts of Zn2+, as well as a study demonstrating that 

the MMP inhibitor doxycycline binds MMP-7 near structural Ca2+ and Zn2+ ions rather than the 

active site Zn2+.37  

The tetracyclines are composed of a four-fused ring core and different side groups have 

been added to the tetracycline core in order to obtain more potent analogues (Figure 3.2). The 

dimethylamino group present on all tetracyclines is required for antimicrobial activity.34 The 

keto-enol moiety on the lower portion of tetracyclines is used to bind divalent metal ions such as 

Ca2+ and Zn2+. The affinity of tetracyclines for different metal ions depends on the specific 

member of the tetracyclines and the metal ion involved as well as pH. In general, a given 

tetracycline member has greatest affinity for Cu2+ and lowest affinity for Ca2+ out of the 

physiological divalent metals. 
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Figure 3.2. Structures of tetracycline (top left), minocycline (top right) and tigecycline (bottom). The 
tetracyclines are all composed of a four fused ring core to which different side groups are attached in 
order to obtain more effective analogues. 
 
Due to their abilities in chelating metal ions, the tetracyclines are potential inhibitors for MMPs. 

However, administering antibiotics for non-bacterial based disease is a concern as it has the 

potential to further antibacterial resistance. Chemically modified tetracyclines that retain the 

ability to inhibit MMPs but are devoid of antimicrobial properties have been synthesized to 

address this issue.35 Additionally, minocycline and doxycycline have both been shown to inhibit 

MMPs at plasma levels lower than necessary for antimicrobial effect.33 Understanding the 

contribution of the interaction between the tetracyclines and the structural calcium and zinc ions 

to the overall enzyme-inhibitor interaction can potentially aid in the design of more effective 

MMP inhibitors. 

3.2 ITC studies of three members of the tetracycline family interacting with Zn2+  

 The binding interactions between tetracycline (TC), minocycline (MC), and tigecycline 

(TgC) with Zn2+ were studied using a VP-ITC microcalorimeter at 25 °C. ITC studies were 

performed in both 50 mM NEM buffer (0.15 M NaCl, pH 6.80) and 50 mM Tris (0.10 M NaCl, 

pH 7.50), which will from here on out be referred to as NEM buffer and Tris buffer, respectively. 

Solutions of 5 mM Zn2+ were titrated into 0.5 mM solutions of each of the three compounds. 

Average binding parameters for each antibiotic’s interaction with Zn2+ are listed in Table 3.1. To 

determine the heat due to processes other than those directly associated with the binding process, 

control experiments of Zn2+ titration into each buffer were carried out. The resulting isotherms 

proved that there was negligible Zn2+ dilution heat thus no control heat was subtracted. The raw 
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ITC data and binding isotherm for a representative experiment is shown below in Figures 3.3, 

3.4, and 3.5 for each tetracycline, minocycline and tigecycline, respectively.  

 All binding isotherms were fit to the one-set-of-sites model to yield the physical 

parameters of the interaction. At pH 6.80, tetracycline had the weakest affinity for Zn2+, with a Ka 

of (8 ± 3) × 103 M-1, while tigecycline and minocycline had 2.4- and 4.2-fold stronger affinity for 

Zn2+ as compared to tetracycline. The n values for both minocycline and tigecycline interacting 

with Zn2+ at pH 6.80 were similar, being 0.43 ± 0.08 and 0.39 ± 0.03 Zn2+ per antibiotic, 

respectively. This corresponds to 1 Zn2+ bound by 2-3 antibiotic molecules. However, 

tetracycline at pH 6.80 had an n value of 0.64 ± 0.08 Zn2+ per tetracycline, corresponding to two 

Zn2+ ions shared by three tetracycline molecules. The binding of minocycline and tigecycline to 

Zn2+ at pH 6.80 resulted in an entropic loss and the interaction is therefore enthalpically driven. 

Binding of tetracycline to Zn2+ at pH 6.80 was accompanied with an entropic gain and is 

therefore both enthalpically and entropically driven. 
Table 3.1. Thermodynamic parameters from ITC study of tetracycline, minocycline and tigecycline with 
Zn2+ in NEM buffer pH 6.80 at 25 °C. 

AB n 
(Zn2+/AB) 

Ka 
(× 104 M-1) 

Kd 
(μM) 

ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

ΔS° 
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

TC 0.64 ± 0.08 0.8 ± 0.3 130 ± 40 -5.3 ± 0.2 -0.96 ± 0.08 1 ± 0.4 4.4 ± 0.3 
MC 0.43 ± 0.08 3.4 ± 0.5 30 ± 5 -6.17 ± 0.09 -1.99 ± 0.07 -1.7 ± 0.3 -4.2 ± 0.1 
TgC 0.39 ± 0.03 1.91 ± 0.07 52 ± 2 -5.84 ± 0.02 -2.16 ± 0.05 -2.6 ± 0.2 3.68 ± 0.07 
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Figure 3.3. Raw data (top panel) and isotherm (bottom panel) for titration of 5 mM ZnCl2 into 0.5 mM 
tetracycline in NEM buffer pH 6.80 at 25 °C. 
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Figure 3.4. Raw data (top panel) and isotherm (bottom panel) for titration of 5 mM ZnCl2 into 0.5 mM 
minocycline in NEM buffer pH 6.80 at 25 °C. 
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Figure 3.5. Raw data (top panel) and isotherm (bottom panel) for titration of 5 mM ZnCl2 into 0.5 mM 
tigecycline in NEM buffer pH 6.80 at 25 °C. 
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Binding isotherms were also obtained in 50 mM Tris buffer (0.1 M NaCl pH 7.50) and 

were fit to a one-set of sites model (Figure 3.6). At this pH, tetracycline once again had the 

weakest affinity among the three tetracyclines for Zn2+ with a Ka of (1.490 ± 0.006) × 104 M-1 

while tigecycline and minocycline had 2- and 4-fold as strong an affinity for Zn2+ as tetracycline, 

respectively. Minocycline and tigecycline did not exhibit pH-dependent binding to Zn2+ and 

binding was enthalpically driven and resulted in entropic loss. For all three antibiotics, their 

affinity for Zn2+ increased one-fold from pH 6.80 to 7.50. Stoichiometry was also similar at the 

two pH values for minocycline and tigecycline, with the n value for minocycline being 0.450 ± 

0.008 at pH 7.50 and 0.43 ± 0.08 at pH 6.80, and the n value for tigecycline being 0.44 ± 0.04 at 

pH 7.50 and 0.39 ± 0.03 pH 6.80. These n values correspond to 2-3 antibiotics sharing one Zn2+ 

ion. Tetracycline demonstrated pH-dependent binding stoichiometry to Zn2+ as the n value was 

0.515 ± 0.007 at pH 7.50 and 0.64 ± 0.08 at pH 6.80, corresponding to two tetracycline 

molecules sharing one Zn2+ ion at pH 7.50 but three tetracycline molecules sharing two Zn2+ ions 

at pH 6.80. While tetracycline binding to Zn2+ transitioned from the formation of a 2 Zn2+: 3 TC 

complex at pH 6.80 to the 1 Zn2+:2 TC complex at pH 7.50, its binding also transitioned from 

being both enthalpically and entropically driven at pH 6.80 to only enthalpically driven at pH 

7.50 as is the case for minocycline and tigecycline at both pH values. The shift in the enthalpic 

and entropic contribution to the binding event involving tetracycline is consistent with the shift 

in the binding mode from pH 6.80 to 7.50. 
Table 3.2. Thermodynamic parameters from ITC study of tetracycline, minocycline and tigecycline with 
Zn2+ in Tris buffer pH 7.50 at 25 °C. 

AB n  
(Zn2+/AB) 

Ka  
(× 104 M-1) 

Kd  
(μM) 

ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

ΔS° 
(cal/mol⋅K) 

TΔS° 
(kcal/mol) 

TC 0.515 ± 0.007 1.490 ± 0.006 67 ± 3 -5.69 ± 0.03 -11.9 ± 0.3 -36 ± 15 -6.2 ± 0.3 
MC 0.450 ± 0.008 6.6 ± 0.1 15.1 ± 0.2 -6.580 ± 0.009 -16.00 ± 0.04 -31.7 ± 0.2 -9.45 ± 0.03 
TgC 0.44 ± 0.04 4.0 ± 0.9 26 ± 6 -6.3 ± 0.1 -15 ± 1 -29 ± 5 -9 ± 1 

*AB stands for antibiotic.  Titration of 5 mM ZnCl2 into 0.5 mM AB. 
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Figure 3.6. Raw data (top panel) and isotherm (bottom panel) for titration of 5 mM ZnCl2 into 0.5 mM 
tetracycline in Tris buffer pH 7.50 at 25 °C. 
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3.3 UV-Vis Studies of three members of the tetracycline family interacting with Zn2+  

 The binding stoichiometries of tetracycline, minocycline, and tigecycline were also 

determined using UV-Vis spectroscopy with the data analyzed by Job’s method.38 Studies were 

done in two different buffers: 50 mM Tris buffer (0.1 M NaCl, pH 7.50) and 50 mM NEM buffer 

(0.150 M NaCl, pH 6.80). Experiments were performed by combining different volumetric ratios 

of 0.6 mM ZnCl2 and 0.6 mM antibiotic to a total volume of 100 μL, always ensuring that the 

total concentration of the two interacting components and the ionic strength remained constant as 

Job’s method requires. Absorbance measurements were taken at the maximum wavelength of 

absorbance for the free antiobiotic and the antibiotic-Zn2+ complex. The molar absorptivity of 

each antibiotic was calculated for each experiment by using Beer’s Law based on the absorbance 

reading taken on a sample of pure antibiotic. The concentration of the complex formed at a given 

molar fraction has been shown to be proportional to the observed absorbance for mixture of the 

metal ion and the antibiotic (Aobs) minus the absorbance of the free antibiotic, which is the 

product of the path length (b) and molar absorptivity (ε) and concentration of the free antibiotic 

in each sample [AB]: 

                                                      complex = A!"# − AB ∗ b ∗ ε                                         (1) 

The above term proportional to the concentration of complex was plotted as a function of the 

molar fraction of Zn2+ (out of the total moles of Zn2+ and antibiotic), which yielded the Job’s plot. 

The maxima or minima in the Job’s plot correspond to the molar fraction of the two interacting 

components (Zn2+ and antibiotic) in the complex formed. A representative Job’s Plot is shown 

below for minocycline interaction with Zn2+ at pH 6.80. Once the molar fraction of Zn2+ for the 

complex is determined, it is possible to calculate the stoichiometric ratio of Zn2+ to the antibiotic 

in the complex using equation (2).   

                                      Stoichiometric  molar  ratio = !"#$  !"#$%&'(  !!!

!!!"#$  !"#$%&'(  !!!                                  (2) 
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Figure 3.7. Job’s Plot for minocycline interaction with Zn2+ at a total concentration of 0.6 mM in NEM 
bffer. Absorbance readings were taken at 330 nm for a series of ZnCl2 and minocycline mixtures of 
varying Zn2+ molar fraction. The red dotted line marks the position of the minima which corresponds to a 
Zn2+ molar fraction of 0.30. This molar fraction was then used to calculate the stoichiometric ratio of Zn2+ 
and minocycline complex, which was 0.43 Zn2+ bound per minocycline or a 2:1 MC:Zn2+ ratio. 
 
The binding stoichiometries were determined as described above for tigecycline and minocycline 

using absorbance readings at two different wavelengths for each antibiotic. Due to the weak 

affinity of tetracycline for Zn2+ and the relatively low molar absorptivity of tetracycline and its 

complex with Zn2+, the Job’s plots for tetracycline interaction with Zn2+ were plagued with 

significant data scattering to the point that a clear minimum could not be identified for 

experiments at 382 nm, but was identified for experiments at 349 nm. The Job’s method showed 

that the stoichiometry in the tetracycline and Zn2+ complex was pH dependent: at pH 6.80 the n 

value was 0.54 Zn2+ per tetracycline, corresponding to two tetracycline molecules binding to one 

Zn2+, but at pH 7.50 the n value was 0.82 Zn2+ per tetracycline. These values do not agree well 

with the results from the ITC study which showed that although binding was pH dependent, the n 

value was 0.64 ± 0.08 Zn2+ per tetracycline at pH 6.80 and 0.515 ± 0.007 Zn2+ per tetracycline at 

pH 7.50. Because tetracycline binding to Zn2+ is the weakest, the Job’s plots for this interaction 

had the greatest variance, which may have resulted in slightly inaccurate stoichiometric values. 
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A small uncertainty in the position of the minima in the Job’s plot translates into a much more 

pronounced uncertainty in the molar ratio of the two components in the complex. The 

stoichiometric ratios obtained from ITC were associated with less obvious uncertainty and 

therefore should be trusted more than those from the Job’s method. 

Similarly, the interactions of minocycline and tigecycline with Zn2+ were found to be pH 

independent. At both pH 6.80 and pH 7.50, minocycline was found by Job’s plots to bind Zn2+ at 

a stoichiometric ratio of 0.43 Zn2+ per minocycline, which corresponds approximately to 1:2 

Zn2+:minocycline. This result agrees very well with the results from ITC with which minoccline 

was found to bind Zn2+ with an n value of 0.43 ± 0.08 Zn2+ per minocycline at pH 6.80, and 0.450 

± 0.008 Zn2+ per minocycline at pH 7.50. With its highest affinity for Zn2+ out of the three 

antibiotics, minocycline yielded the highest quality UV-Vis data and therefore the most accurate 

n value. Of the four UV-Vis experiments performed for tigecycline, three yielded Job’s plots that 

gave n values of 0.54 Zn2+ per tigecycline while one gave an n value of 0.33 Zn2+ per tigecycline.  

The average of the four experiments is 0.5 ± 0.1 Zn2+ per tigecycline, which corresponds to 1:2 

Zn2+:tigecycline. These values for tigecycline from the Job’s plots did not agree as well with the 

ITC results (n of 0.44 ± 0.04 and 0.39 ± 0.03 at pH 7.50 and pH 6.80, respectively) as the 

minocycline data did. The weaker affinity of tigecycline than minocycline for Zn2+ contributed to 

a somewhat higher uncertainty in data for tigecycline from the Job’s method.  
Table 3.3. Stoichiometric Ratios for Tetracycline – Zn2+ interaction determined by Job’s Method based 
on UV-Vis absorbance values. Total concentration is 0.6 mM. 

pH Analysis 
wavelength (nm) Zn2+:(TC+Zn2+) n (Zn2+:TC) 

pH 6.8 349 0.35 0.54 
pH 7.5 349 0.45 0.82 

 
Table 3.4. Stoichiometric Ratios for Minocycline – Zn2+ interaction determined by Job’s Method based 
on UV-Vis absorbance values. Total concentration is 0.6 mM.  

pH Analysis 
wavelength (nm) Zn2+:(MC+Zn2+) n (Zn2+:MC) 

pH 6.8 330 0.30 0.43, (1:2) 
pH 7.5 330 0.30 0.43, (1:2) 
pH 6.8 349 0.30 0.43, (1:2) 
pH 7.5 349 0.30 0.43, (1:2) 
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Table 3.5. Stoichiometric Ratios for Tigecycline – Zn2+ interaction determined by Job’s Method based on 
UV-Vis absorbance values. Total concentration is 0.6 mM. 

pH Analysis wavelength 
(nm) Zn2+:(TgC+Zn2+) n 

(Zn2+:TgC) 
pH 6.8 330 0.35 0.54, (1:2) 
pH 7.5 330 0.25 0.33, (1:3) 
pH 6.8 349 0.35 0.54, (1:2) 
pH 7.5 349 0.35 0.54, (1:2) 

 
The interaction of Zn2+ with tetracycline, minocycline and tigecycline was studied using 

two different methods, ITC and Job’s method based on UV-Vis absorbance readings, to 

determine different physical parameters for the interaction. ITC results indicate that minocycline 

binds Zn2+ with n values of 0.450 ± 0.008 and 0.43 ± 0.08 at pH 7.50 and pH 6.80, respectively. 

ITC results showed tigecycline binds Zn2+ with n values of 0.4 ± 0.1 and 0.39 ± 0.03 at pH 7.50 

and pH 6.80, respectively. ITC results demonstrated that tetracycline binds Zn2+ in a pH 

dependent manner, with n values of 0.515 ± 0.007 and 0.64 ± 0.08 at pH 7.50 and pH 6.80, 

respectively. Binding of tetracycline to Zn2+ results in an entropic gain at both pH 6.80 and pH 

7.50. The n values determined for tetracycline from Job’s method did not agree well with the 

ITC data. The greatest discrepancy was for tetracycline interacting with Zn2+ at pH 7.50, for 

which the two methods gave n values with a 46% difference. This can be attributed to 

tetracycline’s weak affinity for Zn2+ thus greater uncertainty in identifying the position of the 

minima on the Job’s plots. Minocycline had the greatest affinity for Zn2+ and tetracycline had the 

weakest affinity for Zn2+. Job’s method gave more robust results when affinity was strong, as it 

makes it more straightforward to identify the maxima or minima on the plot. When affinity of the 

interaction is weaker, there is greater error in the data points, particularly the data points 

corresponding to the presence of less of the light-absorbing species (the tetracyclines) and more 

of the non-absorbing species (Zn2+). Attempts at addressing this issue included trying a greater 

total concentration, but for this project when concentration was increased above 0.6 mM the 

absorbance exceeded the maximum absorbance that the instrument is able to accurately measure.  

3.4 UV-Vis studies of three members of the tetracycline family interacting with Ca2+ 
 Isothermal titration calorimetry is a useful technique to acquire the thermodynamic and 

stoichiometric parameters of an interaction, but it is also often necessary to confirm results with a 

different method, especially when the results from one method are perplexing. A study 

performed in the Jin lab that investigated the interaction of three members of the tetracycline 
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family – tetracycline, minocycline, and tigecycline – with Ca2+ yielded perplexing stoichiometric 

ratios for the interaction.39 A UV-Vis study using Job’s Method was employed in this work to 

confirm the stoichiometric ratio determined by ITC for the Ca2+ as well as Zn2+ binding of the 

three tetracyclines. Although the ITC study for the Ca2+ interaction was motivated by the need to 

understand the bioavailability of the tetracyclines in the gastrointestinal tract where Ca2+ is 

abundant, findings from the Ca2+ binding studies are also relevant for the design of future 

chemically modified tetracyclines as potential MMP inhibitors since MMPs are inhibited by 

molecules that bind structural Ca2+ and Zn2+.  

 The ITC study revealed that the three tetracyclines do not bind Ca2+ in the same 

stoichiometric ratios (Table 3.6). Unlike for minocycline (MC) and tigecycline (TgC), the Ca2+ 

complexes for tetracycline (TC) were pH dependent. In NEM buffer the complex had a 1:3 

Ca2+:TC stoichiometric ratio, while in Tris buffer, the complex had a 1:1 Ca2+:TC stoichiometric 

ratio. The compositions of the Ca2+ complexes for minocycline and tigecycline were pH 

independent: a 1:3 Ca2+:MC stoichiometric ratio was obtained for minocycline in both NEM 

buffer and Tris buffer; a  2:3 Ca2+:TgC stoichiometric ratio was found for tigecycline at both pH 

values.  
Table 3.6. Stoichiometric Ratios for Antibiotic – Ca2+ determined by ITC at two different pH values39 

 n (Ca2+/antibiotic) n (Ca2+/antibiotic) 
Compound pH 6.80 pH 7.50 

TC 0.347 ± 0.007 0.94 ± 0.01 
MC 0.369 ± 0.002 0.38 ± 0.08 
TgC 0.69 ± 0.07 0.65 ± 0.02 

*Experiments done in NEM buffer pH 6.80 or Tris buffer pH 7.50 

 The Job’s Method involved monitoring the interactions via absorbance readings at a 

given wavelength for a series of Ca2+ and antibiotic mixtures at constant total concentration, 

ionic strength, and pH. For each experiment, three replicates of each sample were prepared and 

absorbance readings were taken using a microplate reader. The three replicate measurements 

were analyzed and averaged. A value proportional to the concentration of antibiotic-Ca2+ 

complex formed was determined using equation (1), in which AB represents free antibiotic. The 

concentration of the complex formed at a given molar fraction has been shown to be proportional 

to the observed absorbance for the mixture of metal ion and antibiotic (Aobs) minus the 

absorbance of the free antibiotic which is the product of the path length (b), molar absorptivity 

(ε) and concentration of the free antibiotic in each sample [AB]: 
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                                                  complex ∝ (A!"# − AB ∗ b ∗ ε )                                        (1) 

The above term proportional to the concentration of complex was plotted as a function of the 

molar fraction of Ca2+ (i.e. Ca!! /( Ca!! + AB )) and the position of the maxima or minima 

on the Job’s plot was used to determine the stoichiometric ratio for each interaction. A 

representative Job’s plot for the study of tigecycline and Ca2+ binding in NEM buffer is shown 

below (Figure 3.8). The molar fraction of Ca2+ corresponding to the minima was identified and 

used to calculate the stoichiometric ratio of Ca2+ to tigecycline in the complex using Equation 

(2).   

                                            Stoichiometric  molar  ratio = !"#$  !"#$%&'(  !!!

!!!"#$  !"#$%&'(  !!!                            (2)     

                                                                  

 
 
Figure 3.8. Job’s Plot for 0.6 mM tigecycline and 0.6 mM Ca2+ in NEM Buffer at 330 nm. The red dotted 
line indicates the location of the minima and corresponding molar fraction of Ca2+  for the interaction. The 
molar fraction of Ca2+ is then used to calculate the stoichiometric ratio of the two components in the 
complex. 
 
Each antibiotic-Ca2+ interaction was investigated in both NEM buffer pH 6.80 and Tris buffer pH 

7.50. Absorbance readings at the wavelengths of maximum absorbance for the free antibiotic and 

antibiotic-Ca2+ complex were analyzed using Job’s method. Results indicate that tetracycline 

demonstrated a pH-dependent binding mode just as was revealed in the ITC studies. At pH 6.8, 

tetracycline was determined to bind Ca2+ in a stoichiometric ratio of 0.33 Ca2+ per TC (1 Ca2+: 3 
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TC), which matches the stoichiometric ratio of 0.347 ± 0.007 Ca2+ per TC from ITC. At pH 7.5, 

the stoichiometric ratio was found to be close to 1:1, just as was observed in the ITC study with 

an n value of 0.94 ± 0.01. The minocycline UV-Vis results also agreed well with the ITC data. 

Minocycline was found to bind Ca2+ in a pH-independent manner with a stoichiometric ratio of 

0.43 Ca2+:MC which agrees well with the 0.369 ± 0.002 and 0.38 ± 0.08 Ca2+:MC from ITC. The 

tigecycline UV-Vis data was less consistent with the ITC results than the other two tetracyclines. 

At pH 6.8, n values from individual experiments ranging from 0.67-1 were obtained, whereas at 

pH 7.5, n values from individual experiments ranged from 0.43-0.67. In the ITC studies, 

tigecycline did not demonstrate pH dependent binding and n values were 0.69 ± 0.07 and 0.65 ± 

0.02 at pH 6.80 and pH 7.50, respectively. The stoichiometric ratios determined from the Job’s 

plots have a higher uncertainty than those from ITC. Although associated with a higher standard 

deviation, the average of the n values of 0.8 ± 0.2 at pH 6.80 and 0.6 ± 0.1 from the UV-Vis 

study using the Job’s plot, does match reasonably well with the ITC result and confirms that the 

stoichiometric ratio for tigecycline with Ca2+ differs from those of minocycline or tetracycline 

with Ca2+. Overall, the ITC data should be trusted more and the UV-Vis data is merely a 

complement to the ITC results.  
Table 3.7. Stoichiometric Ratios for Tetracycline – Ca2+ interaction determined by Job’s Method.  

Buffer, pH Analysis 
wavelength (nm) Ca2+:(TC+Ca2+) n (Ca2+:TC) 

NEM, 6.8 358 0.25 0.33, (1:3) 
NEM, 6.8 349 0.25 0.33, (1:3) 
NEM, 6.8 358 0.25 0.33, (1:3) 
NEM, 6.8 349 0.25 0.33, (1:3) 
Tris, 7.5 382 0.55 1.2, (1:1) 
Tris, 7.5 382 0.6 1.5, (1:1) 

*Total concentration is 0.6 mM for all analyses.  
 
Table 3.8. Stoichiometric Ratios for Minocycline – Ca2+ interaction determined by Job’s Method.  

Buffer, pH  [MC] (mM) [Ca2+] (mM) Ca2+:(MC+Ca2+) n (Ca2+:MC) 
NEM, pH 6.8 0.6 0.6 0.3 0.43 (1:2) 
NEM, pH 6.8 0.3 0.3 0.3 0.43 (1:2) 
Tris, pH 7.5 0.6 0.6 0.35 0.54 (1:2) 
Tris, pH 7.5 0.3 0.3 0.3 0.43 (1:2) 

* All analyses were done at a wavelength of 349 nm.   
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Table 3.9. Stoichiometric Ratios for Tigecycline – Ca2+ interaction determined by Job’s Method  

Buffer, pH [TgC] (mM) [Ca2+] (mM) Analysis 
wavelength (nm) Ca2+:(TgC+Ca2+) n (Ca2+:TgC) 

NEM, pH 6.8 0.6 0.6 330 0.5 1.0 (1:1) 
NEM, pH 6.8 0.6 0.6 349 0.45 0.82 (1:1) 
NEM, pH 6.8 0.3 0.3 349 0.4 0.67 (2:3) 
Tris, pH 7.5 0.6 0.6 330 0.4 0.67 (2:3) 
Tris, pH 7.5 0.6 0.6 349 0.40 0.67 (2:3) 
Tris, pH 7.5 0.3 0.3 349 0.3 0.43 (1:2) 
 

The Job’s plots of Ca2+ interacting with tetracycline, minocycline, and tigecycline were 

performed as a means of confirming the stoichiometric ratios obtained from the ITC studies. 

Though the Job’s method provides a less precise stoichiometric ratio, it is a valuable complement 

to the ITC results. It did confirm that the 2 Ca2+ per 3 TgC stoichiometric ratio, though puzzling, 

was occurring. The stoichiometric ratio for the interaction of tetracycline with Ca2+ was found to 

be pH-dependent using both methods with a ratio of 0.33 Ca2+:TC at pH 6.80 and essentially 1 

Ca2+: 1 TC at pH 7.50. The interaction of minocycline with Ca2+ was determined to be pH-

independent using both methods with a ratio of 0.43 Ca2+:TC. The interaction of tigecycline with 

Ca2+ was also determined as pH-independent using both methods, but the data varied more for 

tigecycline than the other two antibiotics. For pH 7.50, the ratio average was slightly below 0.67 

and for pH 6.80 the ratio was slightly above 0.67; however, overall the interaction between 

tigeycline and Ca2+ was found to be 0.67 Ca2+:TC regardless of pH. Job’s method proves to be a 

good complement to the stoichiometric data obtained from ITC for this study.  
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Chapter 4. Experimental Methods 

4.1 Synthesis of (N-(2-(1-methylimidazolyl)methyl)iminodiacetic acid) DA2Im 

 Synthesis of N-(2-(1-methylimidazolyl)methyl)iminodiacetic acid (DA2Im) was 

accomplished in two steps.26 Diethyl iminodiacetate (1.80 mL, 10.3 mmol) and 1-methyl-2-

imidazolecarboaldehyde (1.031 g, 9.4 mmol) were combined in DCE (30 mL). A reductive 

amination was achieved with sodium triacetoxyborohydride (2.976 g, 14.0 mmol) under N2.
40

 The 

reaction was allowed to proceed overnight under stirring. The reaction was quenched with 

saturated sodium bicarbonate, extracted three times with ethyl acetate (40 mL), and dried with 

magnesium sulfate. The product was purified by column chromatography (silica gel, 100% ethyl 

acetate) to yield a light yellow oil. The oil was dissolved in 25 mL of 2 N HCl and refluxed 

overnight. The product was concentrated in vacuo and dried in a vacuum oven to remove any 

residual water. Removal of solvent yielded 1.172 g of a flaky, off-white solid (38% yield). 1H 

NMR (300 MHz, D2O) δ = 7.25-7.32 (d, 2H), 4.2-4.4 (s, 2H), 3.8-3.9 (s, 3H), 3.6-3.8 (s, 4H). 

 In an effort to avoid generation of chlorinated waste, the synthesis was attempted using 

ethyl acetate as the solvent rather than DCE. This synthesis was unsuccessful as various side 

products were generated. 

4.2 Synthesis of 2-benzyl-amino-naphthoquinone (NQN-1) 

 NQN-1 (2-benzyl-amino-napthoquinone) was synthesized in two steps based on the 

synthesis by Inks et al.41  Sodium azide (0.6825 g, 10.5 mmol) was dissolved in water to form a 6 

M solution, and then acidified with glacial acetic acid to obtain a 5 M sodium azide solution 

(Caution: azides are toxic and explosive). The sodium azide solution was added to a solution of 

0.3 M 1,4-napthoquinone (0.5230 g, 3.31 mmol) in 4:1 THF:H2O and stirred at room temperature 

for one week. The reaction was concentrated, dissolved in ethyl acetate and washed sequentially 

with 1 M NaOH and brine. The organic phase was dried with Na2SO4 and concentrated in vacuo 

to yield the reddish brown 2-amino-1,4-napthoquinone product (0.3348 g, 58% yield). The 1H 

NMR matched the literature data and showed that the product from step one was relatively pure 

thus no column chromatography was performed.41  

The 2-amino-1,4-napthoquinone product (0.2485 g, 1.43 mmol) and sodium hydride 

(0.1155 g, 4.8) were dissolved in dry THF under N2 to form a 1 M solution. Benzoyl chloride 

(0.167 mL, 1.44 mmol) was added and the reaction was stirred for nine days. The reaction was 

quenched with water and extracted three times with DCM. The organic extracts were combined 
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and washed sequentially with 1 M NaOH, 1 M HCl, and brine. The organic phase was dried with 

Na2SO4 and concentrated in vacuo. The resulting powder was purified by column 

chromatography (silica gel, 10/50% v/v ethyl acetate/hexane) to yield an orange powder of N-

(1,4-dioxo-1,4-dihydronapthalen-2-yl)benzamide (0.1198 g, 30% yield). 1H NMR (300 MHz, 

CDCl3) δ = 9.2 (s, 1H), 8.14-8.22 (m, 2 H), 8.06 (s, 1H), 7.93-8.01 (m, 2 H), 7.73-7.88 (m, 2 H), 

7.62-7.69 (m, 1H), 7.53-7.62 (m, 2H).  

4.3 Isothermal Titration Calorimetry 
ITC experiments were performed on a MicroCal VP-ITC unit (GE Healthcare) at 25 °C. 

Prior to setting up each experiment, the injection syringe and calorimeter reaction cell were 

allowed to soak in detergent (10% Contrad detergent, 0.1 M EDTA). Milli-Q water was then 

used to rinse the syringe (30 mL) and the reaction and reference cells exhaustively, and the 

syringe was dried with air. Before sample loading, sample solutions prepared in buffer were 

degassed using a ThermoVac degassing station (Malvern Instruments). Samples in the 60:40 

methanol:buffer mixture or acetonitrile were not degassed to prevent differential evaporation of 

organic versus aqueous solvent, thus significantly changed solution composition. The reference 

cell of the calorimeter was always filled with the same solvent system that was used to prepare 

the samples. 

Analysis of calorimetric data was performed using Origin 7.2 software (OriginLab, 

Northhampton, MA) that was packaged with the instrument. The baseline for the raw data 

(μWatt versus second) was manually corrected. The integration of the area under each peak 

yields the heat associated with each injection, which is automatically normalized per mole of 

titrant. This normalized heat as a function of titrant:titrate molar ratio gives rise to the binding 

isotherm. The heat generated or absorbed during the binding interaction is directly related to the 

fraction of ligand bound. If a significant control heat for the dilution of the titrant was observed, 

it was subtracted from the binding isotherm. The binding isotherm was then fit to either a one-

set-of-sites or two-sets-of-sites binding model provided by the manufacturer in the Origin 7.2 

software (OriginLab, Northhampton, MA). The fit was iterated to achieve the lowest Chi-

squared value. In some instances it was necessary to subtract a constant value corresponding to 

the plateau heat of a binding isotherm which is conventionally thought to be a better control than 

a control experiment of injecting the titrant into a solution minus the titrate (often the buffer). A 

nonlinear least square approach (Levenberg-Marquardt algorithm) is then used to determine the 
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thermodynamic parameters for the interaction studied: n, Ka, ΔH°, and ΔS°. The equilibrium 

association constant was used to calculate ΔG° for the reaction (Equation 3). 

                                                             Δ𝐺∘ = −RT ∗ ln(𝐾!)                                                        (3) 

The ΔH° determined from curve fitting and the calculated ΔG° values were used to calculate 

TΔS° using Equation (4). 

                                                           △ 𝐺∘ =△ 𝐻∘ − T △ 𝑆∘	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4) 

The dissociation constant (Kd) was calculated from the Ka using Equation (5). 

                                                                         𝐾! =
!
!!

                                                                 (5) 

The parameters obtained from replicate runs were averaged and error propagation was performed 

for the parameters of each interaction studied. 

4.3.1 Zn2+ with N-(2-(1-methylimidazolyl)methyl)iminodiacetic acid (DA2Im), 
nitrilotriacetic acid (NTA), bis(2-picolyl)amine (BPA), tris(2-pyridylmethyl)amine (TPA), 
and tris(2-aminoethyl)amine (Tren)  
 

DA2Im, NTA, BPA, TPA, TREN titration experiments with Zn2+ were performed in two 

different solvent conditions: 50 mM NEM buffer (0.150 M NaCl, pH 6.80) or 60:40 (by volume) 

mixture of MeOH: 50 mM NEM buffer (0.150 M NaCl) at pH 6.80, which will from here on out 

be referred to as NEM buffer or MeOH:buffer mixture, respectively. Some ligands were only 

soluble in one solvent system and thus were not able to be studied in both solvent systems; 

specifically, NTA was insoluble in the MeOH:buffer mixture and TPA was insoluble in NEM 

buffer. The NEM buffer was prepared in a 1 L Nalgene bottle using Milli-Q water (≥18 MΩ, 

Milli-Q integral water purification system, Millipore) with 0.150 M NaCl and adjusted to pH 

6.80.  The MeOH:buffer mixture was prepared by combining 30 mL of MeOH with 20 mL of 50 

mM NEM buffer (0.15 M NaCl, pH 6.80) in a 50 mL conical tube and the pH was readjusted to 

within ± 0.02 of pH 6.80 by adding approximately 90 μL of 1 M NaOH. Solutions of NTA, 

DA2Im, BPA, TPA, TREN and zinc chloride were prepared gravimetrically and the final 

solution was adjusted to within ± 0.02 units of the desired pH. 

NTA and DA2Im both contain multiple carboxyl groups that could lead to dimerization 

in the syringe; thus, studies with these ligands were conducted by titrating Zn2+ into the ligand 

solution. Studies with TREN, TPA and BPA are performed with ligand as the titrant and Zn2+ as 

the titrate contained in the reaction cell. The reference cell was filled with the corresponding 

solvent system used to prepare the Zn2+ and ligand solutions. The titrant was titrated into the 
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reaction cell in 10 μL aliquots over 20 seconds for a total of 28 injections. The syringe was set to 

stir at 307 rpm for the duration of the experiment. Between each injection, 360 seconds elapse to 

ensure adequate time for the signal to return to the baseline. A minimum of two experiments was 

conducted for each ligand to ensure reproducibility. 
Table 4.1. Concentrations of Titrant and Titrate for Ligand-Zn2+ Studies  

*Buffer corresponds to 50 mM NEM Buffer (0.150 M NaCl, pH 6.80). MeOH:Buffer corresponds to 60:40 (by 
volume) MeOH: 50 mM NEM Buffer (0.15 M NaCl) mixture at pH 6.80 
 

Data analysis was performed using Origin 7.2 software (OriginLab, Northhampton, MA) 

as described above. The resulting binding isotherms for studies of DA2Im, NTA, TPA, and 

TREN with Zn2+ were fit to an iterative, one-set-of-site binding model (MicroCal, LLC). The 

isotherms for the BPA interaction with Zn2+ were fit with an iterative, two-sets-of-sites binding 

model (MicroCal LLC). The binding parameters of the replicate experiments were averaged and 

error propagation was performed.  

4.3.2 Potential HDAC structural Mimetics with suberoylanilide hydroxamic acid (SAHA), 
acetohydroxamic acid (AHA), 8-Hydroxyquinoline, and 2-benzyl-amino-naphthoquinone 
(NQN-1) 
 
 AHA experiments were performed in two different solvent conditions: 50 mM NEM 

buffer (0.1 M NaCl, pH 6.80) or 60% MeOH, 40% 50 mM NEM buffer (0.1 M NaCl, pH 6.80). 

8-hydroxyquinoline was insoluble in NEM Buffer thus was only studied in the MeOH:buffer 

mixture. Experiments with SAHA were unsuccessful, as its weak affinity with the structural 

mimetics required higher concentrations of SAHA for the ITC study than allowed by its 

solubility. NQN-1 interaction with the HDAC structural mimetic could not be studied using ITC 

as NQN-1 was not soluble at concentrations necessary for ITC. AHA and 8-hydroxyquinoline 

solutions were prepared gravimetrically and the final pH was adjusted to within ± 0.02 units of 

the desired pH. Solutions of BPA, Tren, TPA and ZnCl2 were prepared gravimetrically at 

Titrant Titrant Concentration 
(mM) 

Titrate Titrate Concentration (mM) Solvent System 

Zn2+ 0.15 DA2Im 0.03 Buffer 
Zn2+ 0.3 NTA 0.06 Buffer 
Zn2+ 0.3 TPA 0.03 MeOH:Buffer 
TPA 3 Zn2+ 0.3 MeOH:Buffer 
BPA 3 Zn2+ 0.3 Buffer 
BPA 3 Zn2+ 0.3 MeOH:Buffer 

TREN 10 Zn2+ 1 Buffer 
TREN 10 Zn2+ 1 MeOH:Buffer 
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concentrations greater than what is desired for the final concentration of ligand-Zn2+ complex. 

The solution of ligand and Zn2+ were mixed in the appropriate volumes to yield the desired final 

concentration and the solution was also adjusted to within ± 0.02 units of the desired pH. For 

example, to make 3 mL solution of a BPA-Zn2+ complex at a final concentration of 1 mM for 

both Zn2+ and BPA, 1.5 mL of a 2 mM ZnCl2 solution was mixed with 1.5 mL of a 2 mM BPA 

solution.  

Experiments were performed by titrating a solution of inhibitor into a solution of the 

ligand-Zn2+ complex as an HDAC structural mimetic. Experiments with 8-hydroxyquinoline as 

an inhibitor were done in 60:40 (by volume) mixture of MeOH: 50 mM NEM buffer (0.150 M 

NaCl) at pH 6.80 by injecting 10 mM 8-hydroxyquinoline into the following ligand and ZnCl2 

mixtures in their specific molar ratios indicated: 1 BPA: 1 Zn2+, 1.11 BPA: 1 Zn2+, 1.5 BPA: 1 

Zn2+, 2 BPA: 1 Zn2+, 1.11 TPA: 1 Zn2+, and 1.11 TREN: 1 Zn2+. Experiments with AHA as 

inhibitor were performed in both solvent systems by injecting 50 mM AHA into a solution 

containing 5 mM ZnCl2 and 5 mM BPA (at 1:1 BPA:Zn2+ molar ratio). Due to large heat for the 

early injections, the titrant was titrated into the reaction cell in 8 μL aliquots over 20 seconds for 

a total of 35 injections. Between each injection, 240 seconds elapse to ensure adequate time for 

the signal to return to the baseline. A minimum of two experiments was conducted for each 

ligand to ensure reproducibility. 
Table 4.2. Concentrations of Titrant and Titrate for Ligand-Zn2+ Studies  

*Buffer corresponds to 50 mM NEM Buffer (0.150 M NaCl, pH 6.80). MeOH:Buffer corresponds to 60:40 (by 
volume) MeOH: 50 mM NEM Buffer (0.15 M NaCl) mixture at pH 6.80 
 

Data analysis was performed using Origin 7.2 software (OriginLab, Northhampton, MA) 

as described above. The resulting binding isotherms were fitted with an iterative, one-set-of-site 

binding model (MicroCal, LLC). The binding parameters of the replicate experiments were 

averaged and error propagation was performed.  

Titrant Titrant Concentration 
(mM) 

Titrate Titrate Concentration 
(mM) 

Solvent System 

AHA 50 BPA:Zn2+ 5:5 Buffer 
AHA 50 BPA:Zn2+ 5:5 MeOH:Buffer 
8-HQ 10 BPA:Zn2+ 1:1 MeOH:Buffer 
8-HQ 10 BPA:Zn2+ 1.11:1 MeOH:Buffer 
8-HQ 10 BPA:Zn2+ 1.5:1 Buffer 
8-HQ 10 BPA:Zn2+ 2:1 MeOH:Buffer 
8-HQ 10 Tren:Zn2+ 1.11:1 Buffer 
8-HQ 10 TPA:Zn2+ 1.11:1 MeOH:Buffer 
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4.3.3 Zn2+ with tetracycline, minocycline, and tigecycline 

Tetracycline hydrochloride (TC), minocycline hydrochloride (MC), tigecycline (TgC), 

and anhydrous zinc chloride were purchased from commercial sources and used as received. All 

TC, MC, TgC titration experiments with Zn2+ were conducted in either 50 mM NEM buffer (0.15 

M NaCl, pH 6.80) or 50 mM Tris Buffer (0.10 M NaCl, pH 7.50). The buffers were prepared in 

1 L Nalgene bottles using Milli-Q water (≥18 MΩ, Milli-Q integral water purification system, 

Millipore). TC, MC, and TgC stock solutions were made fresh for each use as they are prone to 

oxidation and degradation in aqueous solution. Solutions of TC, MC, TgC, and zinc chloride 

were prepared gravimetrically and the final pH was adjusted to within ± 0.02 units of the desired 

pH.  

In all experiments, a 5.0 mM zinc chloride solution was loaded into the syringe as the 

titrant to be injected into a 0.5 mM solution of antibiotic (as a titrate) contained in the reaction 

cell (Table 4.1). The reference cell was filled with buffer. The zinc solution was titrated into the 

reaction cell in 10 μL aliquots over 20 seconds for a total of 28 injections. The syringe was set to 

stir at 307 rpm for the duration of the experiment. Injections were spaced 360 seconds apart to 

allow time for the signal to return to the baseline. A minimum of two experiments were 

conducted for each antibiotic to ensure reproducibility.  

Data analysis was performed using Origin 7.2 software (OriginLab, Northhampton, MA) 

as described above. The isotherm from a control experiment – which consisted of injection of 

zinc chloride into NEM buffer – was subtracted from each experimental zinc-antibiotic isotherm 

to eliminate heat associated with processes not involved in the zinc-antibiotic interaction. The 

resulting isotherm was then fitted with a one-set-of-site binding model (MicroCal, LLC). The 

binding parameters of the replicate experiments were averaged and error propagation was 

performed. 

 

4.4 UV-Vis Studies of three members of the tetracyclines with Zn2+ and Ca2+ 

Tetracycline hydrochloride (TC), minocycline hydrochloride (MC), tigecycline (TgC), 

calcium chloride dihydrate, and anhydrous zinc chloride were purchased from commercial 

sources and used as received. Tetracycline, minocycline, and tigecycline stock solutions were 

made fresh for each use. All measurements were performed in a 96 well plate in either 50 mM 

NEM buffer (0.150 M NaCl, pH 6.8) or 50 mM Tris buffer (0.100 M NaCl, pH 7.5) on a 
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Synergy H1 Hybrid microplate reader (BioTek). Buffers were prepared using Milli-Q water (≥18 

MΩ, Milli-Q integral water purification system, Millipore). Stock solutions of the three 

tetracyclines were prepared at 3 mM or 4mM each time, then diluted to the desired 

concentration. The calcium chloride and zinc chloride stock solutions were prepared at 2 mM, 

parafilmed and stored, and dilutions were made each time from the stock solutions. The pH of 

each stock solution was adjusted to within ± 0.02 units of the desired pH before samples were 

prepared for measurement.  

The UV-Vis studies were done using Job’s Method; thus it was critical that the total 

concentration of the two interacting species – antibiotic and metal ion – remain constant for all 

samples in the experiment while each species’ mole fraction was varied. The details of sample 

preparation for a typical experiment are presented in Table 4.3. The pH and ionic strength were 

kept constant by doing the experiments in buffer. For each experiment, a 5 mL stock solution of 

each species was prepared. Each sample was pipetted into the 96 well plate in varying volumetric 

ratios, always totaling 100 μL. Three replicates were prepared of each sample and the microplate 

reader was set to take and average eight measurements of each sample. After both species were 

added, each sample was mixed well by pipetting the solution up and re-dispensing it a minimum 

of three times.  
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Table 4.3. Sample preparation for a typical UV-Vis study using Job’s Method 

Sample 
Number Replicate Wells Volume of M2+ 

(μL) 
Volume of 

antibiotic (μL) 
1 A1, A2, A3 0 0 
2 A4, A5, A6 2.5 97.5 
3 A7, A8, A9 5 95 
4 A10, A11, A12 10 90 
5 B1, B2, B3 15 85 
6 B4, B5, B6 20 80 
7 B7, B8, B9 25 75 
8 B10, B11, B12 30 70 
9 C1, C2, C3 35 65 
10 C4, C5, C6 40 60 
11 C7, C8, C9 45 55 
12 C10, C11, C12 50 50 
13 D1, D2, D3 55 45 
14 D4, D5, D6 60 40 
15 D7, D8, D9 65 35 
16 D10, D11, D12 70 30 
17 E1, E2, E3 75 25 
18 E4, E5, E6 80 20 
19 E7, E8, E9 85 15 
20 E10, E11, E12 90 10 
21 F1, F2, F3 95 5 
22 F4, F5, F6 100 0 

 

The absorbance measurements were taken at a pre-determined ideal wavelength to follow 

the complex formation. The proper wavelength for the absorbance measurement was determined 

by taking an absorption scan spectrum of pure antibiotic solution and also a fully complexed 

antibiotic-metal ion mixture (achieved by pipetting 10 μL of 0.5 M metal ion solution into 1 mL 

of antibiotic) on a Nanodrop 1000 spectrophotometer (ThermoScientific). The λmax for the free 

antibiotic species and the fully formed complex were the wavelengths selected for the UV-Vis 

measurements for Job’s method.  

Analysis of the data was performed using Origin (OriginLab, Northhampton, MA).  The 

absorbance measurement of the calcium solution was considered the blank and subtracted from 

all absorbance measurements. The molar absorptivity for the antibiotic studied was calculated at 

the wavelength used for analysis for each experiment based on the absorbance measurement 

recorded and concentration of the antibiotic sample using Beer’s law in which absorbance (A) is 
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the product of pathlength (b), concentration (c) and the molar absorptivity of the light absorbing 

species (ε) (Equation 6). 

                                                                           A = b ∗ c ∗ ε                                                      (6) 

The molar absorptivity (ε), concentration of antibiotic in each sample [AB], absorbance 

measurement (Aobs
) and path length (b) were used to determine a value proportional to the 

amount of antibiotic-M2+ complex formed (where antibiotic stands for TC, MC, or TgC and M2+ 

indicates Ca2+ or Zn2+) using equation (1): 

                                          complex ∝ A!"# − AB ∗ b ∗ ε                                         (1) 

Each experiment yielded three replicate measurements for each sample. These three 

replicates were analyzed using equation (1) and the determined concentrations of complex for 

the replicates were averaged for each sample and the standard deviation was calculated. The 

average concentration was plotted as a function of the molar fraction of the divalent metal ion 

studied. This plot yielded the typical Job’s plot in which the maximum or minimum on the plot 

(Molar fraction of metal ion, Equation 7) correlates to the stoichiometry of the interaction.  

                                                       Molar  Fraction  M!! = !!!

!!! ! !"
                                       (7) 

The data points corresponding to lower molar fractions of Ca2+ in the Job’s plot typically were 

associated with larger uncertainty and the data trend was therefore less robust. The molar 

fractions corresponding to the maximum or minimum were used to calculate the stoichiometric 

molar ratio of the interaction between antibiotic and metal ion using Equation (2). 

                                      Stoichiometric  molar  ratio = !"#$  !"#$%&'(  !!!

!!!"#$  !"#$%&'(  !!!                                   (2)                      

Value of the molar fraction of metal determined from the maxima or minima and the calculated 

stoichiometric ratios are the values presented in Chapter 3.  
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4.5 Attempts to Crystallize SAHA with Zinc(II) 

Obtaining a crystal structure of the HDAC inhibitor, SAHA, with Zn(II) can offer 

additional information about the inhibitor-Zn2+ interaction. SAHA has been crystallized with 

various metals, but a crystal structure of SAHA with Zn2+, though attempted numerous times, has 

never been achieved. Attempts at crystallizing SAHA with Zn(II) are summarized in the table 

below, none of which yielded crystals suitable to be sent off for analysis. All crystallization was 

attempted on a 100 mg SAHA scale with zinc acetylacetonate. 
Table 4.4. Summary of attempted approaches for crystallizing SAHA with Zn(II) 

Ratio of SAHA:Zn(II) Solvent Method 

2:1 DCM Slow evaporation of solvent 

2:1 2:1 MeOH:H2O Slow evaporation of solvent 

2:1 DMSO Vapor diffuse in THF 

2:1 DMSO Vapor diffuse in acetone 

2:1 DMSO Vapor diffuse in acetonitrile 

2:1 DMSO Vapor diffuse in DCM 
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Appendices: Job’s Plots 
A. Job’s Plots for Tetracycline and Ca2+ Interaction 

 
Figure A1. Job’s Plot for 0.6 mM TC and 0.6 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
 

 
Figure A2. Job’s Plot for 0.6 mM TC and 0.6 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
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Figure A3. Job’s Plot for 0.6 mM TC and 0.6 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 358 
nm and 25 °C 
 

 
Figure A4. Job’s Plot for 0.6 mM TC and 0.6 mM Ca2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 382 nm 
and 25 °C 
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Figure A5. Job’s Plot for 0.6 mM TC and 0.6 mM Ca2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 382 nm 
and 25 °C 
 
B. Job’s Plots for Minocycline and Ca2+ Interaction 

 
Figure B1. Job’s Plot for 0.6 mM MC and 0.6 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
 



	  

	   106	  

 
Figure B2. Job’s Plot for 0.6 mM MC and 0.6 mM Ca2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 349 nm 
and 25 °C 
 

 
Figure B3. Job’s Plot for 0.3 mM MC and 0.3 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
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Figure B4. Job’s Plot for 0.3 mM MC and 0.3 mM Ca2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 349 nm 
and 25 °C 
 
C. Job’s Plots for Tigecycline and Ca2+ Interaction 
 

 
Figure C1. Job’s Plot for 0.6 mM TgC and 0.6 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
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Figure C2. Job’s Plot for 0.6 mM TgC and 0.6 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 330 
nm and 25 °C 
 

 
Figure C3. Job’s Plot for 0.6 mM TgC and 0.6 mM Ca2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 349 nm 
and 25 °C 
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Figure C4. Job’s Plot for 0.6 mM TgC and 0.6 mM Ca2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 330 nm 
and 25 °C 
 

 
Figure C5. Job’s Plot for 0.3 mM TgC and 0.3 mM Ca2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
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Figure C6. Job’s Plot for 0.3 mM TgC and 0.3 mM Ca2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 349 nm 
and 25 °C 
 
D. Job’s Plots for Tetracycline and Zn2+ Interaction 

 
Figure D1. Job’s Plot for 0.6 mM TC and 0.6 mM Zn2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
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Figure D2. Job’s Plot for 0.6 mM TC and 0.6 mM Zn2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 349 nm 
and 25 °C 
 
E. Job’s Plots for Minocycline and Zn2+ Interaction 

 
Figure E1. Job’s Plot for 0.6 mM MC and 0.6 mM Zn2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 330 
nm and 25 °C 
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Figure E2. Job’s Plot for 0.6 mM MC and 0.6 mM Zn2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 330 nm 
and 25 °C 
 

 
Figure E3. Job’s Plot for 0.6 mM MC and 0.6 mM Zn2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C  
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Figure E4. Job’s Plot for 0.6 mM MC and 0.6 mM Zn2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 349 nm 
and 25 °C 
 
F. Job’s Plots for Tigecycline and Zn2+ Interaction 

 
Figure F1. Job’s Plot for 0.6 mM TgC and 0.6 mM Zn2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 330 
nm and 25 °C 
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Figure F2. Job’s Plot for 0.6 mM TgC and 0.6 mM Zn2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 330 nm 
and 25 °C 
 

 
Figure F3. Job’s Plot for 0.6 mM TgC and 0.6 mM Zn2+, 50 mM NEM Buffer (0.15 M, pH 6.80), at 349 
nm and 25 °C 
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Figure F4. Job’s Plot for 0.6 mM TgC and 0.6 mM Zn2+, 50 mM Tris Buffer (0.1 M, pH 7.50), at 349 nm 
and 25 °C 
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