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length of λ = 10Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Log-scaled intensity diffracted from a homogeneous sphere of radius
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ABSTRACT

Small Angle X-Ray Scattering (SAXS) is a rapidly developing technique for de-

termining the structures of proteins in solution. This thesis presents new solution

structures of two proteins: cold denatured equine cytochrome-c, and mitochondrial

rho (miro). Cytochrome-c is a model system for protein folding and stability stud-

ies; this work demonstrates the interplay of thermodynamic forces in determining

the global shape of unfolded proteins. Whereas denatured cytochrome-c is not able

to form crystals in principle, miro is a newly purified protein of which no crystal

structure is available in any conditions. We have used our SAXS data to verify

conjectures for miro’s structure based solely on protein sequence analysis.
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CHAPTER 1

Introduction

This experiment concerns itself with two proteins. The first of these is equine

cytochrome-c, a well-documented and widely studied protein. The second protein

is mitochondrial-rho (miro), a protein involved in the movement of mitochondria in

human cells. Experimentation on the miro protein is in collaboration with the Rice

Lab at Northwestern University. While both proteins are studied via small-angle x-

ray scattering (SAXS), the motivations for such studies are separate. Building from

previous work (Elmer, 2010), our purpose for using cytochrome-c is to gain further

understanding of the process of protein folding. The purpose for using miro is to

learn more about its size, shape, and structure. Eventually, we also hope to be able

to study protein conformational change in miro using similar techniques for studying

protein folding in cytochrome-c. SAXS measurements are performed at Argonne

National Laboratory, where one dimensional scattering patterns are obtained. Data

analysis involves reconstructing from these 1D patterns three dimensional structures

of the proteins.

1.1 Protein Folding

Proteins are a vital component of any organism. Inside the cell, DNA indirectly

encodes amino acid sequences, from which ribosomes construct proteins (Nelson,

2005). How these amino acid sequences fold into stable, functional components of

an organism is the core of the protein folding problem. In this thesis, we observe

protein unfolding as a result of several parameter variations, and examine the macro-

molecular structure of the protein in its stable, folded state, and its unfolded state.
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Examination of this data requires comparison to a theoretical model that accounts

for the parameters varied.

Folding and unfolding of proteins in the cell occurs spontaneously and begins during

construction by the ribosomes. This is a result of the environment in which the pro-

teins are contained and the electrostatic forces of the amino acids themselves. The

amino acids reach a final state; should this state be a stable, functional conforma-

tion, the protein is said to be in the native state. If the requirements of stability and

functionality are not met, the protein is said to be in the denatured state. In this

experiment, proteins are studied in terms of their distribution between these two

states, i.e. a greater proportion of proteins in the unfolded state indicates denatura-

tion. Measurement of the average size of a protein distribution allows determination

of the proportion of folded to unfolded protein. Protein folding is accomplished here

using several experimental parameters.

1.2 Prior Studies

Previous studies of protein folding and structure have been carried out using a

variety of techniques. These studies may fall into categories of experimental and

computational.

Experimental techniques involving nuclear magnetic resonance (NMR) have been

used to study the structure of folded and unfolded proteins. This technique can

also be used to study different sections of the same protein, thereby providing in-

formation on secondary structure. As a drawback, protein folding occurs over a

much smaller timescale than that of a NMR measurement process. Fluorescence

studies or more specifically Forster resonance energy transfer has also been used

to characterize the local structure of proteins. This form of fluorescence exposure

testing provides fluorescence absorption information for different areas of a protein.

Another established technique for protein folding study is circular dichroism (CD).
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Alpha helices and beta sheets show different absorption patterns when exposed to

circularly polarized UV light, thus providing secondary structural information. CD

studies may also give information on global structure, of significance since protein

folding depends on both local and long range bonding.

Computational research in protein folding has attempted to begin with an amino

acid sequence and explain how it eventually results in its conformation of lowest

free energy. It has been theorized (Dobson, 1998) that a sequence of 100 amino

acids may have up to 1018 possible final conformations. Modern computer programs

are capable of calculating this final state of lowest free energy within two days, but

proteins find this state in less than a second on average. Through studies of pro-

tein fragments, it has been shown that there are certain amino acid sequences that

invariably result in three dimensional structures. Results of such studies have been

used with the Protein Data Bank (PDB) to give faster conformational calculations

(Pain, 2000). One way by which the number of calculations is reduced is the assump-

tion that the amino acid sequence undergoes hydrophobic collapse upon leaving the

ribosome. Calculation time may be reduced further by noting that specific amino

acid sequences are associated with several secondary structures, and by considering

certain tertiary structures for given sequences. The study of protein folding may

provide answers as to how a protein finds its lowest free energy state in such a short

time, and may also help in validating algorithms as described above and increasing

their efficiencies.

1.3 Equine Cytochrome-C

Cytochrome-c is a protein found in numerous organisms and plays an important

role in the transportation of electrons in mitochondria. Equine cytochrome-c is

chosen for study as its size is well known and its genomic sequence has previously

been documented (Bilsel, 2006). Further, the folding of cytochrome-c has been
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previously studied using a variety of techniques, and it is also inexpensive. Full

details of this protein may be found in the Protein Data Bank (ID: 1HRC). The

amino acid sequence for equine cytochrome-c is shown in figure 1.1 (Margoliash,

1961), and the corresponding structure in figure 1.2, determined by crystallography.

In this experiment, SAXS measurements are performed on cytochrome-c over a

range of temperatures, such that the protein may be observed in its native and

denatured states, and information regarding size and shape are obtained. The use

of SAXS as an experimental technique is necessary since denatured proteins cannot

be crystallized.

Figure 1.1: Amino acid sequence for equine cytochrome-c (PDB ID: 1HRC).

1.4 Mitochondrial-Rho

Mitochondria take up sources of energy (glucose, fats) in the cell and convert them

to usable energy, or adenosine triphosphate (ATP). ATP is used to carry out almost

all cell operations. In order to deliver ATP to areas of the cell in most need of

it, mitochondria are transported throughout the cell by molecular motors called

kinesin. Kinesin transports the mitochondria throughout the cell by moving along

microtubules, which are hollow tubes made from long chains of tubulin protein.

This is an important function in the cell, since an inability to properly distribute

ATP can lead to dysfunctional cells. Kinesin connects to mitochondria through the

mitochondrial rho (miro) protein. The structure of miro is a hypothesis based on
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Figure 1.2: Equine cytochrome-c crystal structure. Taken from the RCSB Protein
Data Bank (ID: 1HRC) and viewed using the application PyMOL. For the purpose
of scale, this structure has a maximum diameter of ∼ 34Å.

amino acid sequence only, and may be described as follows. The mitochondrion

connects to miro which is then connected to kinesin via an adapter protein, milton

(Glater, 2006). The miro protein consists of a GTPase domain, followed by two

ef hands, followed by a second GTPase domain. The GTPase domain is so called

as it belongs to a family of enzymes that can bind guanosine triphosphate (GTP).

Ef hands are calcium binding proteins. It is suggested that miro is involved in the

regulation of the kinesin motor by its ability to bind GTP and Ca2+, and is thereby

integral in regulating mitochondrial movement in the cell. Low levels of Ca2+ are

consistent with freely moving mitochondria, whereas high levels of Ca2+ cause the

transport of mitochondria to cease. An outline of the miro protein and this process

can be seen in figure 1.3.

In this experiment two variations of the miro protein, provided by the Rice Lab of
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Figure 1.3: On the left, miro in a low-calcium environment allowing ample transport
of mitochondria. On the right, a calcium-rich environment signifying a halt in
mitochondrial transportation (MacAskill, 2009)

Northwestern University, are examined. One of these is the protein as described

above, with 2 GTPase domains connected by two ef hands. The other is the same

protein but without a second GTPase domain. The former we refer to as miro-L (as

it is longer), and the latter (and shorter of the two) we refer to as miro-S. The Rice

Lab is currently processing crystallography results for the miro-S protein and it is

hoped these and our own SAXS experiments on miro-S will compliment one another

and provide further information and insight into the structure of these proteins.

1.5 Small Angle X-Ray Scattering

A technique first developed in the 1940s, small angle x-ray scattering (SAXS) can be

used to determine the size and shape of small objects (less that 2 microns across).

SAXS measures electron density, and since the electron density of a protein should

decrease as it unfolds, it follows that SAXS may be used to measure the size and

shape of proteins that change shape, and thus determine in which state, native or

denatured, the proteins reside. The use of SAXS for determining complex structures

such as proteins, however, has required three more recent developments: bright 3rd
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generation synchrotron sources such as Argonne’s Advanced Photon Source, new

era x-ray detectors and high-speed computers, and new computational algorithms.

1.6 Data Analysis Process

A significant portion of this thesis is devoted to the process of analyzing the data.

SAXS measurements are reduced to one dimensional scattering patterns in inverse

space, where Guinier analysis is carried out. By performing a special, under-

sampled, indirect Fourier transform, this data is then analyzed in real space using

the pair-distance distribution function, a measure of the amount of pairs of elec-

trons separated by a given distance. The next step in the analysis is obtaining a

low-resolution three dimensional reconstruction of the protein, by using a simulated

annealing algorithm on a dummy atom model. The quality of the reconstruction

can then be checked by carrying out a Fourier transform back to inverse space;

should this unique solution match the SAXS measurements, the reconstruction may

be deemed successful. In this sense the data analysis follows a pattern: SAXS data

analysis in inverse space→ analysis in real space→ 3D reconstruction→ reconstruc-

tion analysis in inverse space. This cycle of analysis allows a measure of consistency

in results through the use of several analytical methods.
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CHAPTER 2

Cytochrome-C Protein Stability Theory

2.1 Enthalpy, Entropy, and the Gibbs Free Energy

In this chapter we outline a theory to predict the average size of a distribution of

proteins, based on the population levels of the protein in two states, the native

(folded) and denatured (unfolded). This theory was developed by Dill (Dill, 2009)

and applied to cytochrome-c by Elmer (Elmer, 2010). There are three components

to this theory. Firstly, denaturation of the protein may be achieved by varying

the thermodynamic conditions of our protein solution. Changing the temperature

can induce structural change, which indicates a change in state. The Gibbs and

Helmholtz free energies of the system may be used to describe such a state change.

In order to do this we must begin by considering the entropy and enthalpy of the

system.

Enthalpy is defined as the heat transfer of a closed system under constant pressure,

and may be expressed as

∆H = CP∆T (2.1)

where CP is the specific heat at constant pressure, defined as

CP =
(∂H
∂T

)
P

=
(∂U + p∂V

∂T

)
P

(2.2)

and U is the internal energy of the system, V is the volume, and H is the enthalpy.

With ∆T = T − T0, we have a relationship between enthalpy and temperature,

H(T ) = CP (T − T0) +H(T0) (2.3)
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The temperature at which enthalpy is zero, and has no effect on the system’s ability

to change, we denote Th. For his ideal thermal protein model for cytochrome-c,

Robertson (Robertson, 1997) measured this temperature Th as 373K. For T > Th,

positive enthalpy resists change in the system, and for T < Th, negative enthalpy

makes system change more likely.

Entropy provides a description of the order of a system on the microscopic level, i.e.

as a system becomes more disordered, entropy increases. By holding constant the

number density, N and volume, V we may define entropy in terms of temperature

and internal energy, thus also providing a definition for temperature,

∆S =
∆U

T
(2.4)

Any variable prefixed by a ∆ indicates a transition at constant temperature from an

unfolded to folded state. By incorporating the definition of specific heat at constant

volume, we integrate equation 2.4 to obtain

S(T ) = S(T0) + CP ln
( T
T0

)
(2.5)

The temperature at which entropy is zero, and has dependance only the system’s

chemical structure, we denote TS. For cytochrome-c, TS is 385K (Robertson, 1997).

As is the case for enthalpy, for T < TS the system resists change, and for T > TS

positive entropy encourages system change, i.e. favors increasing disorganization.

In a closed system, the Gibbs free energy, G, is the amount of energy available for

use without a change in system pressure. Enthalpy and entropy may be related

through the Gibbs equation (Dill, 2003),

G = H − TS (2.6)

Although the Gibbs free energy is defined for a given temperature, the enthalpy and

entropy components have their own dependencies on temperature. Thus the Gibbs
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free energy has an indirect temperature dependence,

(∆G)T = ∆H(T )− T∆S(T ) (2.7)

Substituting in equations 2.3 and 2.5 to equation 2.7 gives,

(∆G)T = ∆CP (T − Th)− T∆CP ln
( T
T0

)
(2.8)

where an arbitrary initial temperature T0 has been chosen to simplify the expression.

Folded protein has a smaller specific heat than unfolded protein; therefore ∆CP has

a negative value. A graphical representation of equation 2.8 is given in figure 2.1.
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Figure 2.1: Gibbs free energy in Joules per mole as a function of temperature
in Kelvin. This graph has been extended down to 250K to match experimental
conditions, and extended up to 500K to show the location of the higher Tg.

Over the range of temperatures from 250K to 500K the change in Gibbs free energy is

zero at two points, denoted Tg, at which it has no effect on the likelihood of system
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change. The system is most stable at postitive values for the Gibbs free energy,

specifically at the apex of the (∆G)T curve. At this temperature we would expect

the protein to be in its native state. Deviation from this temperature toward less

positive (∆G)T values indicates a propensity toward instability and protein folding.

Further deviations to regions of negative (∆G)T values indicates instability and an

inclination to protein unfolding. It follows that we should observe both cold and

warm unfolding of the protein. Previously, we chose an arbitrary value for T0 to

simplify our expression for (∆G)T . As we approach (∆G)T = 0 we must take into

account Tg in the terms for enthalpy and entropy. Replacing T0 with Tg in equations

2.3 and 2.5 and substituting into equation 2.7 we get

∆H(Tg) = Tg∆S(Tg) (2.9)

We can now rewrite the changes in enthalpy and entropy as

∆H(T ) = ∆H(Tg)−∆CP (Tg − T ) (2.10)

and

∆S(T ) =
∆H(Tg)

Tg
−∆CP ln

(Tg
T

)
(2.11)

Graphing these expressions (see figure 2.2), we can infer that it is likely to find

the protein in its native state at temperatures within the envelope defined by the

intersections of the enthalpy and temperature-scaled entropy curves. Outside this

envelope, i.e. at temperatures at which the Gibbs free energy is negative, we would

expect the protein to be undergoing phase change to its unfolded state.

We may relate the quantities Th, TS, and Tg by incorporating the limits of the native

and denatured states of the protein. When enthalpy and entropy are zero, equations

2.10 and 2.11 give expressions for Th and TS respectively. The expression for TS is

TS =
Tg

exp(∆H(Tg)

Tg∆CP
)

(2.12)
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Figure 2.2: Temperature-scaled entropy and enthalpy in Joules per mole, graphed
against temperature in Kelvin. Th is 373K and TS is 385K.

The denominator above may be eliminated by assuming ∆H << Tg∆CP and ex-

panding the exponent (Robertson, 1997), giving

TS ∼=
Tg

1 + ∆H(Tg)

Tg∆CP

(2.13)

To simplify, we substitute equation 2.10 (with enthalpy equal to zero) into the

denominator, to get

TS ∼=
T 2
g

2Tg − Th
(2.14)

We have now defined a relationship between the temperatures at which enthalpy,

entropy, and the Gibbs free energy vanish. Graphically, we may observe these

variables by combining figures 2.1 and 2.2.

Figure 2.3 demonstrates the relationship of enthalpy, entropy and the Gibbs free

energy to temperature. Recall that the system is most stable for positive Gibbs

free energy, with peak stability occurring at the apex of the curve. For negative
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Figure 2.3: Gibbs free energy and its components (enthalpy and temperature-scaled
entropy) in Joules per mole, graphed against temperature in Kelvin.

Gibbs free energy the system is unstable and we would expect a protein at these

temperatures to be unfolded. For enthalpy, the system favors change for T < Th,

i.e. we would expect to find the protein in its folded state at such temperatures,

whereas for positive enthalpy, system change is resisted and we would expect to

find the protein in its unfolded state. The opposite is true for entropy, with respect

to temperature. Figure 2.2 portrays these properties quite clearly. Temperatures

at T < (Tg)cold, i.e. T < 299K, and T > (Tg)warm, i.e. T > 475K, correspond

to temperatures lying outside the envelope defined by the enthalpy and entropy

curves. Outside this range of temperatures we would expect the system to tend

toward instability, i.e. we would expect the protein to be unfolded.
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2.2 Neutral Folding Free Energy

For a closed system at constant volume, the Helmholtz free energy, F, is the amount

of energy available for use. The change in Helmholtz free energy will be used to

characterize the energy required to change a protein from its denatured to native

state, i.e.

∆Ffold = Fnative − Fdenatured (2.15)

Henceforth, this change in Helmholtz free energy, ∆F , will be referred to as the

folding free energy. The Gibbs and Helmholtz free energies are closely related;

respectively, they describe isobaric and isometric systems, the relationship given by,

(Dill, 2003)

F = G+ PV (2.16)

In this experiment, the product of the changes in pressure and volume is ∆P∆V ∼=
1Jmol-1. However, based on the accepted value for the specific heat of cytochrome-c

(5.3kJK -1mol-1) (Robertson, 1997), the energy required for a temperature change

of 1K is 5300Jmol-1. Since this is far greater than the product of the changes in

pressure and volume, the folding free energy may be approximated as the Gibbs free

energy, allowing us to express the folding free energy in familiar terms, i.e.

∆F = ∆H − T∆S (2.17)

for a static temperature measurement. It should be noted that this is the neutral

folding free energy of our system, i.e. since our system is macromolecular in nature,

there is a considerable charge distribution we must account for. This contribution

will be addressed later. This macromolecular structure also has effects on enthalpy

and entropy which are now considered.

Our expression for enthalpy is subject to change from the effects of molecular packing

and denaturant concentration. From the ideal thermal protein model (Dill, 2009)
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our expression for enthalpy becomes

∆H(T ) = ∆H + g(c)N = ∆CP (T − T0) + (g0 +m1c)N (2.18)

Here, the term g0 represents an average packing energy dependent on the denaturant

concentration, m1c is a product of concentration c and a denaturant-specific folding

parameter m1, and N is the number of amino acids in the protein. Note that

equation 2.18 contains conflicting terms with regard to total enthalpy. Since g0N

is always negative it decreases total enthalpy, thereby encouraging folding of the

protein. The term m1c is always positive however and therefore acts to increase

enthalpy. Equation 2.18 demonstrates the balance between the concentration and

packing energy; they will cancel each other out at Th. Should the change in enthalpy

at Th not be exactly zero, it may be be incorporated into the change in entropy.

Our expression for entropy, equation 2.5, must now also be modified to account or

structural interactions. The total change in entropy becomes (Dill, 2009)

∆S = −kNln(z) + ∆CP ln
( T
TS

)
(2.19)

where we have again chosen an arbitrary T0 in equation 2.5 such that our expression

is simplified. In equation 2.19 z is the number of rotational isomers possible around

the carbon backbone per amino acid of the protein, and k is Boltzmann’s constant.

Having defined new terms for the enthalpy and entropy we may now form a full

expression for the folding free energy. By substituting equations 2.18 and 2.19 into

equation 2.17 we obtain the desired expression for neutral folding free energy:

∆F (T )neutral = gN + TkNln(z) + ∆CP (T − Th)− T∆CP ln
( T
TS

)
(2.20)

Graphing equation 2.20 we find that the neutral folding free energy causes unfolding

of the protein, albeit only at extreme temperatures; ∼ 290K for cold denturation,

∼ 850K for warm denaturation.
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Figure 2.4: Neutral folding free energy in Joules per mole for cytochrome-c with a
2M guanidine HCl denaturant, as a function of temperature in Kelvin. In equation
2.20, ∆CP = 5kJmol−1K−1, N = 104, z = 7.54, and g = −4.81kJmol−1

As previously mentioned, equation 2.20 does not account for the charge distribution

present in our system. The folding free energy may now be adapted to include this

contribution.

2.3 Electrostatic Folding Free Energy

The macromolecular nature of our protein results in charge interactions between

the protein and solution, and also affects the charge distribution throughout the

solution. The charge interactions contribute to the free energy that causes protein

folding, and along with the solution’s charge distribution, makes up the electrostatic

component of the folding free energy, ∆Felectrostatic. The total folding free energy now

becomes

∆Ftotal + ∆Felectrostatic (2.21)

In order to successfully add these components, they must contribute on the same
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scale. The distance at which the charge interactions are comparable in scale to the

contributions from thermal energy is the Bjurrem length, lb. This is given by (Dill,

2009)

lb =
4πε0e

2

εkT
(2.22)

∆Felectrostatic contains contributions from pH level and salt concentration, cs. Salt

concentration is incorporated with the Bjurrem length through the linearized

Poisson-Boltzmann constant, κ,

κ2 = 2cslb (2.23)

The contribution from pH level is given by the net charge resulting from charge

contributions of basic and acidic amino acids. These contributions are given by

Qb =
b∑
i

10pki − pH

1 + 10pki − pH
(2.24)

and

Qa =
a∑
i

10pH − pki

1 + 10pH − pki
(2.25)

where b and a are the amounts of basic and acidic amino acids, respectively, and pki

are the proton dissociation constants for the amino acids. Specific pki can be found

in the appendix of Elmer (Elmer, 2010). Net charge is then

Q = Qb −Qa (2.26)

This treatment is necessary for both native and denatured states, giving a net charge

contribution of Qn and Qd, respectively. Following a Born and Debye-Huckel treat-

ment of electrostatics (Dill, 2009, and Elmer, 2010), the electrostatic energy is given

by

∆Felectrostatic = kT

(
Q2
nlb

2Rn(1 + κRn)
− Q2

dlb
2Rd(1 + κRd)

)
(2.27)

where Rn and Rd represent the radius of gyration for the native state and denatured

state. The neutral and electrostatic components of the folding free energy may now
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be combined to obtain a full expression. From equations 2.21, 2.20, and 2.27 we

obtain

∆Ftotal = gN + TkNln(z) + ∆CP (T − Th)− T∆CP ln

(
T

TS

)
+ kT

(
Q2
nlb

2Rn(1 + κRn)
− Q2

dlb
2Rd(1 + κRd)

) (2.28)

We now have a complete model for the folding free energy of our protein which can

be used to model populations in the two states and predict the radius of gyration

of the protein at given conditions.
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CHAPTER 3

Small Angle X-Ray Scattering Theory

We outline here the theory of small angle x-ray scattering. This theory begins by

calculating the scattering from a single electron and extending this to a continuous

charge distribution by considering the phase difference between numerous scattered

waves. The scattering intensity is obtained via Fourier transform, and the Guinier

approximation, i.e. the dependence of intensity on the radius of a spherical particle

at low angles, is shown. Following this, further theory relating to three-dimensional

reconstruction from one-dimensional scattering patterns via indirect Fourier trans-

form, simulated annealing, and the Debye formula is presented.

3.1 Scattering Angle

We first evaluate the case of a single x-ray photon scattering from a single electron.

Consider the photon propagating along the x-axis toward an electron at the origin,

O. The photon, denoted by the unit vector
~Si
λ

is deviated from its original path by

angle 2θ; the scattered photon is denoted by the unit vector
~So
λ

. Note the vectors

are normalized by the x-ray wavelength. The initial photon and scattered photon

are related through the vector

~Q =
~Si − ~So
λ

(3.1)

This relationship may be seen in figure 3.1. By considering the midpoint of ~Q, we

may express its magnitude as

Q =
2 sin θ

λ
(3.2)

The angular deviation in the intensity of the incident photon is described by the

vector ~Q. We now consider multiple scattering centers and scattered intensities from
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which interference arises.

Figure 3.1: X-ray scattering for a single electron (Elmer, 2010).

3.2 Phase Shift and Interference

Let us consider the case of a two electron system in which the electrons are separated

by a distance x. Supposing two identical, parallel x-rays are incident on each elec-

tron, the resulting scattered x-rays should also be identical. Whether these x-rays

are in phase depends on the distance, x, between them (see figure 3.2). This figure

describes how the phase shift may be defined;

ϕ = | ~PB| − | ~AO| = ~−x · ~−So + ~−x · ~So = −2π~x · ~Q (3.3)

Euler angles are used to express the amplitude of a scattered x-ray in terms of the

phase shift,

A = A0e
iϕ (3.4)

This expression may then be extended to the case of multiple x-rays incident on an

electron density, ρ(~x), causing multiple interference events, j,

A = A0

∑
j

ρ(~x)eiϕj (3.5)
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Figure 3.2: X-ray scattering for a pair of electrons. Directional inversion has been
used on the vector ~x so that it and the vector ~Q point in the same general direction.

The assumption that multiple interference patterns add holds true for small-angle

scattering, where observations are made in the far field. Considering a continuous,

homogenous distribution of scattering centers, the amplitude becomes

A = A0

∫
ρ(~x)e−2πi~x · ~Qdv (3.6)

3.3 Scattering Intensity

Intensity is defined as the modulus of the amplitude squared, i.e.

I = |A|2 (3.7)

In this experiment our protein is suspended in solution, and so we can express the

density, ρ(~x) as ρ−ρ0, where ρ0 is the density of the medium. Intensity now becomes

I =

∣∣∣∣∣(ρ− ρ0)

∫
e−2πi~x · ~Qdv

∣∣∣∣∣
2

(3.8)

We now make the substitution

Σ( ~Q) =

∫
e−2πi~x · ~Qdv (3.9)

which we refer to as the form function. Note that equation 3.9 closely resembles a

Fourier transform. The intensity may be expressed as

I( ~Q) = (ρ− ρ0)2|Σ( ~Q)|2 (3.10)



35

As an example of such a scattering relationship we consider the specific case of a

radially symmetric sphere. To find the form function Σ( ~Q) we must integrate

Σ( ~Q) =

∫
σ(~x)e−2πi~x · ~Qdv (3.11)

where σ(~x) is the form factor for the sphere, i.e. for |~x| ≤ a, σ(~x) = 1, and for

|~x| > a, σ(~x) = 0, where a is the radius of the sphere. Equation 3.11 evaluates to,

(Guinier 1994)

Σ( ~Q) =
4

3
πa3

[
3

sin(2πaQ)− 2πaQ cos(2πaQ)

(2πaQ)3

]
(3.12)

From equation 3.10 the scattering intensity is now given by

I( ~Q) = (ρ− ρ0)2V 2

[
3

sin(2πaQ)− 2πaQ cos(2πaQ)

(2πaQ)3

]2

(3.13)

where V is the volume of the sphere. Figure 3.3 shows a plot of equation 3.13. A

further way to view this relationship is through a log-scaled plot, which can be seen

in in figure 3.4. Since the analysis of experimental data will involve log-scaled plots,

it is prudent to include an example of the relationship here.

We now have an expression for scattering intensity on a global scale. Since in this

experiment we studied two different proteins, which may exhibit varying form under

denaturation, it is necessary to extend this expression to objects of any shape. To

begin, we note that for very small angles, the vector ~Q is perpendicular to the

direction of the incident photon beam, ~Si. Let us denote this direction of ~Q as ~D.

We now suppose ~x to be any vector in our object space. If we take the projection

of ~x onto ~D to be xD then the dot product ~Q · ~x = QxD. We also define a term

σ(xD) as a cross-section of our object at a distance xD from the origin; σ(xD) lies

on a plane normal to both ~Si and ~D, with the origin chosen as the object’s center

of mass. Equation 3.9 may now be written as

Σ( ~Q) =

∫
e−2πiQxDσ(xD)dxD (3.14)
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Figure 3.3: Intensity diffracted from a homogeneous sphere of radius a = 16Å,
density 4 times that of the surrounding solution, with an x-ray wavelength of λ =
10Å.

From our definition of σ(xD), the object volume is given by∫
σ(xD)dxD = V (3.15)

and from our choice of origin we also note that∫
xDσ(xD)dxD = 0 (3.16)

We now expand the exponential in equation 3.14 to the Q2 order,

Σ( ~Q) =

∫
σ(xD)dxD + 2πiQ

∫
xdσ(xD)dxD − 2π2Q2

∫
x2
Dσ(xD)dxD (3.17)

From equations 3.15 and 3.16, equation 3.17 becomes

Σ( ~Q) = V − 2π2Q2V

∫
1

V
x2
Dρ(xD)dxD (3.18)

We denote the remaining integral in equation 3.18 by R2
D, where RD is the average

inertial distance along ~D (Guinier 1994). Using this substitution and approximating



37

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

LogLog−Scale Intensity

In
te

n
s
it
y

Q(Angstroms
−1

)

Figure 3.4: Log-scaled intensity diffracted from a homogeneous sphere of radius
a = 16Å, density 4 times that of the surrounding solution, with an x-ray wavelength
of λ = 10Å.

back to exponential form, 3.18 may be expressed as

Σ( ~Q) = V e−2π2Q2R2
D (3.19)

We may now substitute equation 3.19 into equation 3.10 to obtain a corresponding

scattering intensity equation

I( ~Q) = n2e−4π2Q2R2
D (3.20)

where n = (ρ − ρ0)V 2. This expression is now expanded to three dimensions by

considering two other axes, ~U and ~V , both orthogonal to ~D. In such a system, a point

is now described by the coordinates xD, xU , xV , at a distance of r2 = x2
D + x2

U + x2
V

from the origin. From equation 3.18 we can express this as the sum of the squares

of the average inertial distances along each axes, i.e by defining a value Rg as

R2
g = R2

D +R2
U +R2

V =

∫
r2dv

V
(3.21)
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This value Rg is the radius of gyration of the object. Furthermore, it is noted that

under rotation about the origin, R2
g is unchanged, implying equality between R2

D,

R2
U , and R2

V . Thus, the radius of gyration is given by R2
g = 3R2

D. From equation

3.20 we obtain a final expression for scattering intensity,

I( ~Q) = n2e
4π2Q2R2

g

3 (3.22)

We now have an expression for scattering intensity that applies to an object of any

shape, and from which we can extract valuable information. Note that up to this

point we have assumed our object, or particle, to be homogeneous. While this is

often the case with the proteins under consideration, it is necessary to extend our

treatment to the case of heterogenous particles. Supposing these particles are made

up of atoms of atomic number fk at distances rk from the origin, and are oriented

at random, the average scattering power per particle may be given by the Debye

formula,

I(Q) =
∑∑

fkfj
sin(2πQrkj)

2πQrkj
(3.23)

We may now perform a power series expansion in Q,

I(Q) =
∑∑

fkfj −
∑∑

fkfj
4π2Q2r2

kj

6
+ ... (3.24)

The first term is n2, the total number of electrons in the particle. To evaluate the

second term we expand r2
kj,

r2
jk = (~rj − ~rk)2 = r2

k + r2
j − 2~rj · ~rk (3.25)

and∑∑
fkfjr

2
kj =

∑∑
fkfjr

2
k +

∑∑
fkfjr

2
j − 2

∑
fk~rk ·

∑
fj~rj (3.26)

From the first two terms of equation 3.26,∑
fj
∑

fkr
2
k = n

∑
fkr

2
k (3.27)
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and furthermore, if we choose the origin such that
∑
fk~rk = 0, then the third term of

equation 3.26 is zero. For this to remain consistent with our expression for intensity

in equation 3.22, we see that the radius of gyration is given by

R2
g =

∑
fkr

2
k∑

fk
(3.28)

In the case of homogeneous particles, this more general form of the radius of gyration

reverts to the form given previously.

3.4 Population Modeling an Protein Size Distribution

Before describing the analysis of the intensity patterns outlined above, we return

momentarily to the case of our ideal thermal model for cytochrome-c, as described

in Chapter 2. Although there are known intermediate states of equine cytochrome-

c, the two state model outlined here is sufficient for describing denaturation of the

protein. This model makes the assumption that at any condition, the total protein

population is comprised of native and denatured protein, i.e.

pn + pd = 1 (3.29)

where the populations of native (pn) and denatured (pd) protein change based on

temperature and denaturant concentration. As a sum to unity, equation 3.29 may

be expressed using Boltzmann factors

e−x

1 + e−x
+

1

1 + e−x
= 1 (3.30)

By using the Boltzmann factors, we express the variable in terms of its probability of

being in one state or the other. The dependence of temperature and concentration

now come from a substitution for the variable x. The use of Boltzmann factors is

appropriate for our thermodynamic system, and so in place of x we use the folding

free energy (equation 2.28) divided by energy per mole, i.e. x = ∆F (T )
RT

, so that our
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populations becomes

pn(T ) =
e

−∆F (T )
RT

1 + e
−∆F (T )
RT

(3.31)

and

pd(T ) =
1

1 + e
−∆F (T )
RT

(3.32)

We have now obtained an expression for the population levels of our protein in the

folded and unfolded states. We now incorporate the expression for radius of gyration

from equation 3.28. In the case of our protein distribution consisting of two states

which sum to unity, equation 3.28 becomes

R2
g(T ) = R2

npn(T ) +R2
dpd(T ) (3.33)

Figure 3.5 shows plotted radii of gyration for a range of temperatures and denaturant

concentrations.

Figure 3.5: Theoretical calculation of radius of gyration (nm) versus temperature
(oC) for cytochrome-c in guanidine HCl solutions of concentration 0M , 2M , 2.5M
and 4M (Elmer 2010).

.
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3.5 Guinier Analysis

Following the description by Guinier (Guinier, 1994) we can analyze further the

expression for scattering intensity. Since in this experiment we are interested in

determining protein size and the change thereof under different conditions, we use

our data with equation 3.22 to extract a value for the radius of gyration of our

protein. Taking the natural log of both sides of equation 3.22 gives us

ln (I) = ln (n2)− 4

3
π2Q2R2

g (3.34)

From equation 3.34 we can see that by plotting ln (I) against Q2, we should obtain

a linear relationship, the slope of which provides a value for Rg, i.e.

Rg =
3m

4π2
(3.35)

where m is the slope. As an example of this, we use the intensity curve from figure

3.3. Since this curve represents a sphere of radius a = 16Å, we may use equation 3.21

to obtain its radius of gyration. By expressing the volume element as dv = 4πr2dr,

equation 3.21 evaluates to

Rg =

√
3

5
a (3.36)

Thus from a plot of equation 3.34 we should obtain a Rg close to 12.39Å. A plot of

ln (I) against Q2 can be seen in figure 3.6. Such a plot is referred to as a Guinier

plot.

Since the larger scattering angles will determine the size of the object, the region

of the Guinier Plot we are interested in is that close to the y-axis, i.e. the low-Q

region. In this region the curve exhibits a linear relationship up toQ2 ≈ 0.5x10-3Å−2.

By performing a best fit line on this region of the curve, specifically up to Q2 =

0.4x10-3Å−2, the radius of the gyration was found to be Rg = 12.74Å. This is

reasonably close to 12.39Åand may be improved by limiting the extent of the linear

fit to lower values of Q2.
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Figure 3.6: Guinier plot for the intensity diffracted from a homogeneous sphere of
radius a = 16Å, density 4 times that of the surrounding solution, with an x-ray
wavelength of λ = 10Å

.

We may also determine object shape from what is referred to as a Kratky plot. This

is a plot of Q2I against Q and provides insight into the degree of compactness of an

object. Since the shapes of the proteins studied in this experiment are somewhat

known, the Krakty plot serves as a useful tool for checking the quality of data

throughout. A sample of various Kratky plot behaviour can be seen in figure 3.7.

Kratky plots that exhibit a clear peak and then decay are indicative of compact

objects. Decreasing rate of decay following an initial peak indicates a decrease in

compactness of the object. In figure 3.7 random walk (worm-like chain) behaviour

is shown between q1 and q2. In the context of this experiment, one might expect

a combination of the rod and worm-like chain curves from Kratky analysis of an

unfolded protein, as opposed to the green curve which is more characteristic of a
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Figure 3.7: Kratky Plot with Q2I on the y-axis and Q on the x-axis. This fig-
ure shows four curves. The green curve is typical of a compact object, charac-
terized by the clear peak and decay. A quicker rate of decay indicates a more
compact object. Thin rod-like behavior is characterized by steady increase and
worm-like chain behaviour is characterized by a plateau prior to q2. Courtesy of
http : //www.softmatterresources.com/small−angle−neutron−scatter/small−
angle− scattering/kratky − plot.html

.

compact, folded protein. As for the thin rod-like behaviour at high-Q, this for ex-

ample may be indicative of protein structure over distances less than the persistence

length, i.e. very low-degree of compactness. The persistence length may be thought

of as the distance a polymer must travel in a straight line before turning, thereby

quantifying the flexibility of the polymer. Persistence length can be extracted from

the Kratky plot by performing a linear fit to the high-Q region (Brulet, 1996). The

high-Q region (Qp > 4; p = persistence length) behaves as:

I(Q) =
π

QL
+

2

3Q2pL
(3.37)

where L is contour length (i.e. the maximum length of the polymer chain). Phrasing

equation 3.37 in terms of the Kratky plot gives

Q2I(Q) =
Qπ

L
+

2

3pL
(3.38)
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thereby providing the desired linear relationship. By dividing the intercept by the

slope, one may obtain a value for the inverse persistence length, Qp(∼ 2
3πp

). The

Kratky plot corresponding to the scattering intensity in figure 3.3 is shown in figure

3.8. This is what we would expect from a perfect sphere.
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Figure 3.8: Kratky plot for the intensity diffracted from a homogeneous sphere of
radius a = 16Å, density 4 times that of the surrounding solution, with an x-ray
wavelength of λ = 10Å.

.

Up until now, we have made interpretations and extracted information by working

in inverse space, i.e. by observing intensity as a function of ~Q. In order to obtain a

reconstruction from our scattering data, it is necessary to transfer back to real space.

The first step in this process is obtaining the pair-distance distribution function.

3.6 The Pair-Distance Distribution Function

The pair-distance distribution function, which we denote p(r), may be generally

defined as the distribution of scatterers (electrons) a distance r apart. More specifi-
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cally, if γ0(r) is the probability of finding a pair of electrons a distance r apart, then

the number of pairs a distance r apart is proportional to r2V γ0(r) (Vachette, 2010).

From this we may define the pair-distance distribution function as

p(r) = ρ2γ0(r)V r2 (3.39)

One can histogram all pairs of scatterers for each separation, r, to obtain the p(r)

function. In terms of scattering intensity I(Q), p(r) may be given in the general

form of a Fourier transform (Vachette, 2010),

p(r) =
r2

2π2

∫ ∞
0

Q2I(Q)
sin(Qr)

Qr
dQ (3.40)

Solving p(r) in this manner is impractical however, since we only know I(Q) for

a small range of Q; truncated data means greater effect from experimental errors.

The solution to this is the indirect Fourier transform (Glatter, 1997),

I(Q) = 4π

∫ Rmax

0

p(r)
sin(Qr)

Qr
dr (3.41)

where Rmax is the maximum diameter of the object under investigation, and must

be estimated a priori. A sample of some p(r) functions are shown in figure 3.9.

In this experiment the program GNOM (Svergun, 1992) was used to calculate p(r)

functions from I(Q) datasets. GNOM uses the regularization technique to find a

stable solution while minimizing the effect from experimental errors. GNOM also

chooses an optimal sampling rate at which to solve the Fourier transform, so as to

avoid under/oversampling. The pair-distance distribution function can also be used

as an alternative to calculate the radius of gyration of the object under investigation.

As a general definition, the radius of gyration is given by the root mean square of

the distance between pairs of scatterers (Vachette, 2010)

R2
g =

∫ Rmax

0
r2p(r)dr

2
∫ Rmax

0
p(r)dr

(3.42)
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Figure 3.9: An example of pair-distance distribution functions for several shapes.
The maximum particle diameter, Rmax is represented by D, L, and DL for the
Globular, Cylindrical, and Lamellar examples respectively (Schnablegger, 2011).

.

Obtaining the radius of gyration using the p(r) function is preferable to performing

Guinier analysis, as it uses the full set of data, i.e. the entire Q-range, in its

calculation.

At this point in the theory we have sufficient information to begin a three-

dimensional reconstruction.

3.7 Reconstruction via Simulated Annealing

The program DAMMIN (Svergun, 1999) is used to obtain a reconstruction of the

protein shape in this experiment. DAMMIN is specifically designed to develop low-

resolution shapes of biological macromolecules in solution from SAXS measurements.

The program initiates a user defined search volume (radius RV > 1
2
Rmax), filled
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with N densely packed spheres (dummy atoms) of radius r0 (r0 << RV ), with

fixed spatial positions. This model can now be described by a vector X with N

components. Since this model is designed for proteins in solution, it is multiphase;

each dummy atom is assigned an index Xj indicating to which phase it belongs

(Xj = 0 for solution, Xj = k for protein, where 0 < k < K). The scattered

intensity from such a model is given by (Svergun, 1999)

I(Q) = 2π2

inf∑
l=0

l∑
m=−1

[
K∑
k=1

[∆ρkA
(k)
lm (Q)]2 + 2

∑
n>k

∆ρkA
(k)
lm (Q)∆ρn[A

(n)
lm (Q)]∗

]
(3.43)

where ∆ρk is the contrast of a dummy atom of the kth phase, and A
(k)
lm (Q) are

the representations through spherical harmonics of the scattering amplitude Ak(Q),

with A
(k)
lm (Q) given by

A
(k)
lm (Q) = il

√
2

π
f(Q)

Nk∑
j=1

jl(Qrj)Y
∗
l m(ωj) (3.44)

where rj and ωj are the polar coordinates of the dummy atoms, jl is the spherical

Bessel function and f(s) is the scattering from a single atom. For a given dummy

atom model, equations 3.43 and 3.44 give the corresponding scattering intensity

curve. After this initial step, the problem becomes finding a vector X so as to

minimize a target function f(X) which describes the difference between scatter-

ing calculated from the dummy atom model and that of experimental data. This

difference is given by

χ2 =
1

M

M∑
i=1

N(i)∑
j=1

[(
I(i)
exp

(
Q(j)−

I(i)(Qj)

σ(Qj)

))]2

(3.45)

so that the target function is given by

f(X) = χ2 + αP (X) (3.46)

where P (X) is a looseness penalty (user-defined or automatic) and α(> 0) is the

weight of this penalty. This target function is minimized using simulated annealing.
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Simulated annealing is a global optimization method, the classic example of which

is the travelling salesman problem. If a salesman must visit a number of cities

in a region, and the cost of travel is directly related to the distance between the

cities, a simulated annealing algorithm can be used to compute the order in which

cities should be visited such that cost is minimized. A description of this method,

which encompasses the context of this experiment, can be found in Kirkpatrick et

al. (Kirkpatrick, 1983). The simulated annealing algorithm mimics the process of

atomic displacement through change in temperature of a metal. For DAMMIN, it

is as follows:

1: Initially DAMMIN begins with a random configuration X0 at a high temperature

T0, so that T0 = f(X0).

2: Next, a new configuration f(X ′) is obtained by randomly changing the phase of

a random dummy atom, and the difference, ∆ = f(X ′)− f(X) is calculated.

3: If ∆ < 0, the new configuration f(X ′) is accepted. If ∆ > 0, f(X ′) is ac-

cepted based on the probability e
−∆
T . Should the probability dictate that f(X ′) be

unacceptable, step 2 is repeated until f(X ′) is accepted.

4: Temperature, T is now held constant for either 10N successful reconfigurations,

or 100N reconfigurations. The system is then cooled to T ′ = 0.9T . This process is

repeated until f(X) is minimized.

Note that due to the random and probabilistic nature of this algorithm, the eventual

solution produced is not unique. In practice, it is prudent to run the process several

times to ensure consistency of the solution.

Furthermore, since the simulated annealing algorithm does not give a unique solu-

tion, it must be checked against the original scattering intensity.



49

3.8 Reconstructed Scattering Intensity

There are two options available for comparing the experimental scattering intensity

to the scattering intensity from our DAMMIN reconstruction. The first option, con-

veniently, is to study one of the DAMMIN output files, which contains 4 columns

of data: values of Q, experimental scattering and the error therein, and simulated

scattering from the DAMMIN reconstruction. The simulated scattering is calculated

from equations 3.43 and 3.44 for the case when f(X) is minimized. The second op-

tion is to make use of the Debye formula for spherical scatterers (Debye, 1915). We

use this formula through the online program FoXS (Fast X-ray Scattering), a method

for computing theoretical scattering profiles from protein structures. FoXS is avail-

able freely from the University of California San Francisco (Schneidman-Duhovny,

2010). This uses the Debye formula (essentially equation 3.41) to calculate a scatter-

ing pattern from the measurable p(r) function of the DAMMIN reconstruction. In

carrying out this step the theory has now come full circle. The process of obtaining

a 3D reconstruction from 1D scattering data is referred to as the inverse problem.

The reverse of this, calculating scattering from the reconstructed object, we refer

to as the forward problem. Note that the forward problem has a unique solution,

whereas the inverse is an optimization technique, based on initial user estimates.

A full walkthrough of the analysis procedure, particularly that of the GNOM-

DAMMIN-FoXS steps can be found in the Data Analysis chapter, where a control

data set of equine cytochrome-c is used to validate the choice of method of analysis.
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CHAPTER 4

Experimental Setup

This chapter will describe the physical setup used to perform SAXS experiments

on our proteins. An overview of the x-ray generation will be presented, followed

by a description of the protein sample preparations. Following this, the loading of

protein samples and absorption of scattered x-rays will be discussed.

4.1 X-Ray Source and Apparatus

The x-ray radiation used in this experiment is generated at the Advanced Photon

Source (APS) at Argonne National Laboratory (ANL). An overview of the APS

synchrotron system can be seen in figure 4.1.

Electron production takes place in the linear accelerator (LINAC) seen inside the

ring of figure 4.1. A cathode heated to ∼ 1100oC emits electrons which are accel-

erated through alternating electric fields to 450MeV , i.e. travelling at > 99.999%

the speed of light. From here, the electrons are injected into the booster/injector

synchrotron, where in a ring of electromagnets they are accelerated to 7GeV , or a

velocity > 99.999999% the speed of light. The electrons are then injected to the

storage ring where they are focused into a narrow beam by an electromagnetic field.

The storage ring contains 40 sectors, 35 at which a variety of scientific experiments

are carried out. At each sector, a system of alternating magnets (undulator), oscil-

lates the electron beam to produce radiation which is Doppler shifted and collimated

to obtain the desirable photon energy.

This experiment took place at BioCAT 18-ID-D, the Biophysics Collaborative Ac-

cess Team sector. Sector 18 utilizes x-ray radiation over a range of energies, from
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Figure 4.1: Overview of the Advanced Photon Source at Argonne National Labora-
tory. Courtesy of the U.S. Department of Energy, Office of Science.

.

3.5keV to 35keV . In this experiment, the x-ray energy was in the range of 10keV .

Experiments at Sector 18 take place in a hutch, an overview of which can be seen

in figure 4.2.

The x-ray beam propagates in vacuum through two silicon monochromators so that
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Figure 4.2: Overview of the BioCAT 18-ID-D experimental hutch as of October 3rd,
2011. Courtesy of http : //www.bio.aps.anl.gov/igor/bag.html.

.

it is almost monoenergetic. From here the beam is focused using a toroidal mirror

to an area no less than ∼ 60µm2. Collimator and guard slits can be used to further

focus the beam prior to interaction with the experimental sample. Samples are

held in 150µm diameter capillary held in a brass mount. Attached to this sampling

mount are a suction pump and refrigerating/heating bath. The suction pump is

used to move the sample up and down within the capillary so that no one part

of the sample is overexposed to the x-ray beam. This mechanism is controlled

by a Microlab 600 pump and computer. A Thermo Neslab RTE-740 Digital Plus

Refrigerated and Heating bath is used to control the sample temperature. This bath

is filled with antifreeze and distilled water to prevent freezing and calcium build up.

Also attached to the brass sampling mount is a temperature probe; data collection

corresponds to the temperature reported by this probe. In order to maintain sample

temperature during data collection the brass sampling mount and hose are insulated
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using styrofoam casing (see figure 4.4). At temperatures below freezing, helium is

pumped into the brass mount so that ice crystals do not form in the air. The x-ray

beam leaves the vacuum chamber before interacting with the sample and re-enters

another vacuum chamber of length 1 meter following scattering. Scattered x-rays

are detected by a MAR 165 CCD detector. The detector pixel size is 80µm2 which

make up 2048 x 2048 pixel area of diameter 1.62m. The sample-to-detector distance

was 1.539m. The focused x-ray beam has a size (prior to use of slits) of 150µm x

50µm (horizontal x vertical), and a flux of 2 x 1013photons/sec at 10keV . The x-ray

energy used in this experiment was 12keV . An outline of this experimental setup

can be seen in figure 4.3.

Figure 4.3: The experimental setup for x-ray focusing and data collection (Fischetti,
2004).
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Figure 4.4: The insulated brass sampling mount.

4.2 Sample Preparations

Cytochrome-c is prepared in solution that allows examination of the protein over the

chosen temperature range, and that reflects the naturally occurring environment of

the protein. The solution consists of a number of components in order to achieve the

goals above. Firstly, it contains a mixture of water and ethylene glycol (MEG) so

that the solution will not freeze. Also, ethylene glycol does not affect the scattering

of x-rays, and does not react with the protein. 100ml of this mixture is prepared,

55ml of which is H20, 45ml of which is MEG. Next, a buffer is needed to control

the pH level of the solution. Consistent pH level is necessary so that any changes
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in the protein are a result of temperature only. The buffer consists of 0.5844g of

NaCl at 0.15M concentration and 10ml of Tris buffer at 0.1M concentration. These

amounts result in a pH level of ∼ 3.5 so that radius of gyration measurements can

be compared to literature values (Akiyama, 2002, Pollack, 1999). This mixture of

H20, MEG, NaCl, and Tris acts as the backbone to the eventual solution which

contains the protein and denaturant. In preparing the denaturant solution, 31.5g of

crystalline guanidine HCl (GuHCl) is added to a 50ml conical, which is then filled

to the meniscus with the H20/MEG/NaCl/Tris backbone solution. This results in

a bulk 6.6M guanidine HCl solution which is used throughout the experiment to

denature the protein. The protein solution is made in a similar manner. For per-

forming SAXS measurements, protein concentration should be at least 2 milligrams

of protein per milliliter of solution. With this in mind a solution of 4mg/ml is ideal

for taking data. To achieve such concentrations, a bulk solution of 40mg/ml is pre-

pared which is then diluted to 4mg/ml for experimentation. 50mg of cytochrome-c,

in cyrstalline form, is added to a 2ml conical which is then filled to the meniscus

with the buffered H20/MEG/NaCl/Tris backbone, thereby providing ample protein

solution for experimentation. A more detailed treatment of the sample preparation

process has been carried out by by Elmer (Elmer, 2010). Bulk preparation of the

protein and denaturant solutions ensures a coherent data collection process. With

separate protein and denaturant solutions, SAXS measurements may be performed

at various levels of denaturant concentration. In performing such measurements,

both background (with denaturant) and sample (with protein and denaturant) data

collections are carried out. For this reason, a different background solution is re-

quired depending on the level of denaturant concentration. In this experiment, three

levels of denaturant are of interest. These are the 0M , 2.5M , and 4M cases. The

0M and 4M solutions allow us to observe the protein in its native and denatured

states respectively, while the 2.5M solution allows us to observe change in protein

conformation by varying the temperature of the solution. For each data run, be it
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4mg/ml Protein in Dentaurant
Volume of Solution

Solution 0M GuHCl 2.5M GuHCl 4M GuHCl
40mg/ml Cytochrome-C 10µl 10µl 10µl

6.6M GuHCl 0µl 37.5µl 60µl
H20/MEG Buffered Mix 90µl 52.5µl 30µl

Table 4.1: Volumes of solutions for cytochrome-c measurements at various denatu-
rant concentrations.

Background Denaturant Solution
Volume of Solution

Solution 0M GuHCl 2.5M GuHCl 4M GuHCl
6.6M GuHCl 0µl 37.5µl 60µl

H20/MEG Buffered Mix 100µl 62.5µl 40µl

Table 4.2: Volumes of solutions for background measurements at various denaturant
concentrations.

background or sample, 100µl of solution are required. The protein and background

recipes for each level of denaturant are shown in tables 4.1 and 4.2 respectively.

The buffer solution for performing SAXS measurements on miro is more complicated.

While a concise version is outlined here, a full description of the recipe is given

by Northwestern University’s Rice Lab (manuscript in preparation). It consists of

25mM HEPES buffer, 0.5mM of the reducing agent TCEP, 5% sucrose, 100mM of

potassium chloride (KCl), 1mM of the chelating agent EGTA, and 2µM of guanosine

triphosphate (GTP). This acts as the background solution to which miro is added

during experimentation.

4.3 Sample Loading and Cleaning

In each experimental run, data collection is first performed on the background solu-

tion. Prior to this however, the sample mount is cleaned using a five-step process.
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For this process, five 50ml conicals are prepared; three of H20/MEG mix, one of

isopropyl alcohol, and one of a 20% bleach solution. Each 50ml conical is loaded

into the sample mount and using the MicroLab 600 pump system, 3ml of each so-

lution are pumped through a hose attached to the capillary in the following order:

H20/MEG - isopropyl alcohol - H20/MEG - 20% bleach - H20/MEG. Following the

final H20/MEG cleaning and removal of its conical, the pump is allowed to continue

until the system is evacuated. Once this cleaning process is finished, the background

solution is loaded, by inserting the 2ml conical of 100µl solution into the brass sam-

pling mount. The capillary hose is placed in the conical such that it reaches the

bottom and the sample is pumped into the capillary by selecting the GL-Protein

option on the MicroLab 600 interface. Before beginning the pumping sequence that

takes place throughout each data collection, the MAR 165 detector is triggered by

exposing the sample to the beam. This cleaning process is performed after each col-

lection of protein data. It is not necessary to clean the system after each background

run since the background data will be subtracted from the protein data during the

data analysis.

4.4 Data Acquisition

After cleaning and sample loading the hutch is evacuated according to safety pro-

cedure, the lead doors are closed, and the x-ray shutter is opened. On the user

computers outside the hutch, a filename is chosen corresponding to the protein

conditions. The filename should reflect the level of denaturant and temperature

conditions. For each set of temperature/denaturant conditions, 15 background and

15 sample scattering images are recorded (20 and 20 for miro). For background

data collection, the filename is numbered 1. Successive filenames are updated by

the software to reflect each image acquisition. Similarly for protein sample data

collection, the file is numbered 16 (21 for miro). This identifies background images

as numbered 1 through 15 (20 for miro) and protein sample images as numbered 16
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through 30 (21 through 40 for miro). Two computers are used in data collection.

One to acquire detector images and another to process and save the data. After

choosing the filename, a baseline signal is acquired using the processing computer.

This computer is now ready for data collection. The imaging computer is now used

to trigger the detector. At this point, the externally controlled pumping process

should also begin. Data can now be acquired. The GL-Protein setting in the Micro-

Lab 600 pump is designed such that the sample is pumped continuously throughout

the data collection process, and deposited back into the conical upon completion.

Once the collection run is finished the x-ray shutter is closed and the sample can

be removed, with cleaning carried out if necessary. A quick preliminary analysis

of the data is carried out on-site to ensure quality of data collected. Should the

data be problematic (e.g. presence of air bubbles, ice deposits) another run may

be performed. Otherwise, the next desired conditions are achieved, and collection

continues.

The process outlined above is repeated until all desired variations in protein condi-

tions are met and data acquired is of acceptable quality. Following this the data is

ready to be analyzed.
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CHAPTER 5

Data Analysis

5.1 Introduction

The following chapter describes the analysis of data acquired at Sector 18 of Ar-

gonne National Laboratory’s Advanced Photon Source between December 16th and

December 21st of 2009. This procedure could also be adopted to other samples of

protein in solution. There are several steps in the analysis procedure. First, the raw

data is reduced to obtain a one dimensional scattering curve. Guinier analysis is

then performed on the dataset. These first two steps were performed on-site at the

APS and were carried out again at a later date. The third step is using an indirect

Fourier transform to obtain the pair-distance distribution function for the dataset.

Following this, a simulated annealing procedure is performed on the data to obtain a

three dimensional reconstruction of the protein. The previous two steps are carried

out using the ATSAS software package, from the EMBL Hamburg Biological Small

Angle Scattering group. Once a 3D structure has been obtained, its corresponding

scattering curve may be calculated and compared to the original scattering input

data using the FoXS server, courtesy of the University of California San Francisco.

This analysis procedure can be seen in the flowchart of figure 5.1. As a final step

in the analysis, we view our 3D structure in the application PyMol, where it may

be compared to the known crystallographic structure for the protein, if applicable.

In describing the analysis procedure, a sample dataset for cytochrome-c in the na-

tive state will be used throughout. Since this protein has a known, well-studied

structure, it will act as our control data.
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Figure 5.1: Flowchart of the data analysis process. Consistency between the Guinier
and p(r) analyses refers to production of a well-behaved p(r) curve which has an
Rg as close as achievable to that of Guinier analysis. Consistency in the DAMMIN
reconstruction refers to multiple, identical DAMMIN runs, each producing a similar
I(Q) curve which is as close as achievable to that of the original data.

5.2 Data Reduction

For each data acquisition, 15 background images and 15 images with the protein

included are recorded by the detector. Each image is the result of a 1 second

exposure to the full intensity beam. The images are of the form shown in figure 5.2.

This data is analyzed in the program IgorPro using a Macro created by Liang Guo,

at Sector 18 of the APS. Seen in the lower half of figure 5.2 is the beam stop, which is

in place to protect the detector from damage by unscattered x-rays. The 2D radially

symmetric intensity images are azimuthally averaged at each radial distance, to give

an intensity at each radial distance. The beam stop in figure 5.2 is automatically

subtracted from the data at this point. Plotting this reduced data using IgorPro
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Figure 5.2: Raw data as acquired by the MAR 165 CCD detector.

gives figure 5.3.

The upper curve in figure 5.3 is comprised of the 15 images taken with the protein

present in the solution. The lower curve consists of the 15 images without the

protein, i.e. the background data. In some cases, the curve will contain outliers to

the data. The primary cause of outliers in the data are major inhomogeneities in

the sample, such as air bubbles. Outliers may also be caused by dust and in the

case of temperatures at or below freezing, ice. These may be removed in IgorPro

prior to proceeding. In the case of the cytochrome-c data in figure 5.3 this step is

not necessary. An example of scattering data in which outliers should be removed

is shown in figure 5.4.

One can see in figure 5.4 that the individual curves do not form a cohesive bunch

as in the case of figure 5.3. In this situation the data is trimmed by removing

individual curves. Once the outliers have been removed, the background and protein

data must be averaged, with the average background data then subtracted from the
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Figure 5.3: Log-log plot of raw reduced scattering data for cytochrome-c in a 0M
guanidine HCl solution at 0oC. Error bars due to x-ray counting statistics have
been omitted.

average protein data. This background subtracted curve is the final result of this

step of the data reduction process. Figure 5.5 shows a background subtracted curve

corresponding to figure 5.3.

5.3 Guinier Analysis

The scattering pattern in figure 5.5 shows similar characteristics to the pattern of

a homogeneous sphere, as seen in figure 3.4. Before performing Guinier analysis,

protein shape may be investigated by utilizing a Kratky plot. In the case of our

sample cytochrome-c, figure 5.6 gives further information on the protein shape.

Figure 5.6 clearly shows the globular nature of the protein in this solution. Since a

Kratky plot is very sensitive to the behaviour of polymer chains, it will be performed

for each dataset to ensure consistency and check for deviations from expected be-

haviour. In this way, the Kratky plots are also useful in deciding if a dataset is
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Figure 5.4: Log-log plot of raw reduced scattering data for cytochrome-c in a 2.5M
guanidine HCl solution at 50oC. Error bars due to x-ray counting statistics have
been omitted.

considered bad or faulty. The size of the protein may be calculated by obtaining its

radius of gyration from a Guinier plot, as outlined in Chapter 3. For our sample

cytochrome-c, the Guinier plot takes the form of figure 5.7.

As described in chapter 3, the initial portion of this plot is of interest when obtaining

the radius of gyration, Rg. An IgorPro macro is used to perform a line of best fit

and calculate a value for Rg. For our sample cytochrome-c the radius of gyration

is Rg = 13.47± 0.01Å, which agrees with literature value (Hsu, 2007). This radius

of gyration is recorded and is used to ensure consistency during later steps of the

analysis.

5.4 The Pair-Distance Distribution Function

Evaluation of the pair-distance distribution function, p(r) is a necessary step in

obtaining a 3D reconstruction from our 1D dataset. However, the result of this
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Figure 5.5: Log-log plot of averaged background subtracted data for cytochrome-c
in a 0M guanidine HCl solution at 0oC. Error bars due to x-ray counting statistics
and standard deviation from averaging have been omitted.

step is valuable in and of itself. Prior to this section, analysis has been carried

out in IgorPro macros available from Sector 18 of the APS. To acquire the pair-

distance distribution function, we utilize the ATSAS software package from the

EMBL Hamburg Biological Small Angle Scattering group. Specifically, we use the

program GNOM. GNOM reads in one dimensional scattering curves and evaluates

the pair-distance distribution function by carrying out an indirect Fourier transform.

Several input parameters are required of the user by GNOM. After choosing the

input and assigning an output file name, the user has the choice to omit a number

of initial and final data points. Based on the quality of the scattering curve, these

parameters may or may not have to be adjusted from the default (zero). The most

significant parameter the user must define is the Rmax input, i.e. the maximum

particle diameter. This will effect the radius of gyration which GNOM calculates

from the p(r) function. In the case of our sample dataset, we saw previously that
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Figure 5.6: Kratky plot of background subtracted data for cytochrome-c in a 0M
guanidine HCl solution at 0oC. This plot indicates a compact structure.

the protein has a somewhat spherical shape. In order to decide a value for Rmax we

calculate the radius from our value of Rg obtained during Guinier analysis, using

the formula (see chapter 3)

R =

√
5

3
Rg (5.1)

and doubling the result. All other other parameters may be left as their default

values. For a detailed description of the GNOM analysis, and a sample of its output,

one should see the Appendix. For a detailed description of the GNOM program in

general, the manual is available on the EMBL Hamburg website. Should the input

parameters be satisfactory, GNOM outputs a p(r) curve for the dataset. For our

sample cytochrome-c, this is shown in figure 5.8

The p(r) curve in figure 5.8 has a radius of gyration of Rg = 13.00 ± 0.02Å, which

is also consistent with literature values (Hsu, 2007). This value is calculated using

equation 3.42. It is immediately noticeable that this value is significantly different
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Figure 5.7: Guinier plot for cytochrome-c in a 0M guanidine HCl solution at 0oC.
Error bars from counting statistics have been omitted. The slope of the low-Q region
is used to calculate the radius of gyration.

than that obtained via Guinier analysis (Rg = 13.47 ± 0.01Å). The reason for this

discrepancy likely lies in the fact that Guinier analysis is carried out at low-Q values

only, i.e. it is a small-angle approximation, reliable only below RgQmax ≈ 1.3. The

calculation of radius of gyration from the p(r) curve uses the entire Q-region. Given

that for SAXS measurements greater error occurs at high-Q, it is unsurprising that

the two values differ. While both values fall within accepted literature range, the

p(r)-calculated value is likely more accurate since it uses the entire I(Q) curve.

The output p(r) curve should be smooth, continuous, decaying to zero, with low

error, and no oscillations. If the output curve does not display these characteristics,

or the resulting radius of gyration disagrees drastically with the Guinier analysis,

the GNOM procedure should be repeated using a different input for Rmax until a

satisfactory result is obtained.
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Figure 5.8: Pair-distance distribution function plot for cytochrome-c in a 0M guani-
dine HCl solution at 0oC. Error bars are contained within the circular data point
markers.

5.5 Three Dimensional Reconstruction

Reconstruction of the protein shape is carried out in the program DAMMIN (Sver-

gun, 1999), a part of the ATSAS software package. DAMMIN uses a simulated

annealing algorithm to determine protein shape from a dummy atom model. The

input data for DAMMIN is the output from GNOM, i.e. the p(r) data and asso-

ciated parameters. As with GNOM, several input criteria must be defined by the

user. The most important of these is choosing an initial shape (i.e. dummy atom

model) for the protein. Based on the analysis of our sample cytochrome-c dataset, it

is sensible in this case to choose a spherical starting model. The maximum diameter

of this sphere is dictated by the parameters of the input p(r) data (another reason

why choosing an appropriate Rmax input is important in GNOM). In the case of our

sample dataset, all other parameters may remain as their default values. For greater

detail regarding this procedure and for a sample output, please see the Appendix.
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For greater detail on the DAMMIN program itself, one should see the DAMMIN

manual online at the EMBL Hamburg website. DAMMIN begins its reconstruction

from the user defined dummy atom model. A scattering intensity curve is calculated

for this model and compared to the actual scattering data as described in Chapter

3. The simulated annealing algorithm relocates dummy atoms within the model

and modifies the temperature, all while making further comparisons to the experi-

mental data. This process is repeated by DAMMIN until the discrepancy between

the dummy atom model’s scattering curve and the original data is minimized. The

output of DAMMIN is a PDB file which contains coordinates for the locations of

the dummy atoms in the final reconstructed model, along with the associated pa-

rameters for the model. Since this solution is not unique, i.e. there may be more

than one reconstruction which gives a scattering curve in agreement with the input

data, the DAMMIN process is repeated several times. A snapshot of the DAMMIN

graphics window when it has finished its reconstruction can be found in figure 5.9.

Since the DAMMIN algorithm has converged on a solution in this case, the red line

in figure 5.9 corresponding to the scattering curve of the final dummy atom model

is obscuring visibility of the line of best fit of the input scattering data. The output

PDB file gives a radius of gyration for this solution as Rg = 13.44Å, in very close

agreement with that of the GNOM output, and in good agreement with the Guinier

Analysis. Using the application PyMOL, the PDB file may be viewed in its 3D form

(see figure 5.10).

5.6 Comparison of Scattering Intensities

In this section we make use of the FoXS (Fast X-Ray Scattering) server, a freely

available online application from the University of California San Francisco. The

FoXS server allows the user to select a PDB file from the RCSB Protein Data Bank
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Figure 5.9: The graphics window displayed by DAMMIN during each step of the
simulated annealing process. This image is of the final reconstruction, showing the
final dummy atom model with its corresponding scattering curve (red line), and the
input scattering data (blue) with best fit line (green).

or upload a PDB file of their own, and compare the corresponding scattering inten-

sity to a SAXS experimental data file, also uploaded by the user. The FoXS server

uses the Debye formula for spherical scatterers in computing a scattering profile

from the input PDB file. The server outputs a text file for this scattering pattern

and also plots this pattern with the uploaded SAXS data, providing a chi-squared

value to quantify the level of agreement between the two. In the case of our sample

cytochrome-c, both the results from x-ray crystallography and our DAMMIN recon-

struction are compared to the original SAXS data. The x-ray crystallography data

are found on the Protein Data Bank website under the identifier 1HRC (Bushnell,

1990). The output text files from the FoXS server are loaded into MATLAB where
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Figure 5.10: Three dimensional reconstruction of cytochrome-c in a 0M GuHCl
solution at 4oC by the program DAMMIN. For scale, this object has a maximum
diameter of 34.69Å.

scattering curves are constructed.

Figure 5.11 shows good agreement between the three sets of data, with some dis-

crepancy occurring at high and low ranges of Q. While the original SAXS data

appears to differ at very low Q, it is the agreement between our reconstruction and

crystallography results that is of more interest in this range. At high Q, we may

expect some disagreement since the resolution of our SAXS measurements is not as

fine as that of crystallography. The area of high Q may be observed in greater detail

by comparing the Kratky plots corresponding to each of the three datasets. This

may be seen in figure 5.12.

In quantifying the level of agreement between each dataset, FoXS reports a chi-
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Figure 5.11: Comparison of intensity scattering curves for SAXS measurements,
DAMMIN reconstruction, and x-ray crystallography (PDB ID: 1HRC) for native
cytochrome-c.

squared value of 1.37 for the SAXS data and DAMMIN reconstruction, and a chi-

squared of 1.5 for the SAXS data and crystallography results. A value of 1.5 or

better is considered in literature to be a sign of sufficient agreement with crystal

structure. Investigation of figure 5.12 provides evidence as to where the disagreement

may occur. The difference in data points at higher values of Q, particularly for

Q > 0.2Å−1 is a likely cause of a high chi-squared value. As previously mentioned,

the nature of the SAXS experiment is not favorable to determining great detail,

and as such it is more important that our results be in good agreement at low

to mid-Q values. What we may take from this section of the analysis is that the

overall procedure is a reliable method for determining protein shape and size. To

further bolster this conclusion we may use PyMOL to compare our data to accepted

structures.
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Figure 5.12: Comparison of Kratky plots for SAXS measurements (with error bars),
DAMMIN reconstruction, and x-ray crystallography (1HRC) for native cytochrome-
c.

5.7 Comparison of Three Dimensional Structure

While there are many ways to view a reconstruction in PyMOL, it is most useful

in this case to compare the reconstruction to the known crystallographic structure,

1HRC, used in the previous section. Figures 5.13 and 5.14 show the x-ray crys-

tallography results for equine cytochrome-c, and those results “docked” with our

reconstruction of the protein shape, respectively.

As can be seen in figure 5.14 our reconstructed shape for cytochrome-c in the native

state is consistent with the accepted structure based on x-ray crystallography. We do

not expect the structure of 1HRC to fit exactly with our native-state ctytochrome-c

reconstruction, since we are comparing a crystallized protein with one in solution.

Even though thermodynamic conditions are such that the protein in solution is as

close as possible to its native state, the details are not expected to be an exact match.
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Figure 5.13: 3D structure of equine cytochrome-c, a result of x-ray diffraction on
the crystallized protein. Available from the RCSB Protein Data Bank (ID: 1HRC).
For scale, the above object has a maximum diameter of ∼ 34Å.

What is expected is that the two structures have a similar size (both in maximum

diameter and radius of gyration), and produce a similar scattering intensity. While

not a quantifiable method of measuring agreement, the PyMOL comparison ensures

that our structure agrees with accepted results. The above procedure has now been

shown to be a viable method for determining a 3D structure of our protein based

on 1D scattering intensity measurements. This method has been carried out over

numerous sets of data for cytochrome-c, with results of similar quality. These results

may be found in the Appendix. We may now use this method to analyze the warm
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Figure 5.14: Structure from figure 5.14 docked with our reconstructed cytochrome-c
model. (5.10)

and cold denatured states of cytochrome-c and the miro-S and miro-L proteins.

Results for these measurements are outlined in succeeding chapters.
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CHAPTER 6

Cytochrome-C Results

In this chapter we review the results for cytochrome-c, at denaturant concentrations

of 0M , 2.5M , and 4M over a temperature range of −24oC to 50oC. The 0M and

4M measurements, representing the native and denatured states respectively, each

give consistent values for the radius of gyration over the the temperature range.

The 2.5M measurements allow observation of cold and warm denaturation over

the given temperature range. Expectations for values of radius of gyration can be

seen in figure 3.5. The radius of gyration is determined in two ways. Firstly via

Guinier analysis, and secondly via analysis of the pair-distance distribution function.

Consistency in these values indicates a successful Fourier transform into real space.

Following this, reconstructions of the proteins are presented. For the 0M and 4M

cases, one reconstruction of each is presented, as their consistency makes multiple

presentations redundant. A reconstruction will be presented at each temperature

for the 2.5M concentration. Reconstructions are deemed successful on two criteria.

Firstly, their radius of gyration should be consistent with that of the Guinier and p(r)

analysis. Secondly, the program FoXS is used to calculate the scattering pattern

for each reconstruction and ensure these patterns are consistent with the SAXS

measurements at the corresponding conditions.

6.1 Inverse Space Guinier Analysis

We begin this chapter by presenting results for Guinier analysis in inverse space.

These results are obtained from SAXS intensity measurements. Scattering intensity

for all three denaturant concentrations of cytochrome-c can be seen in figures 6.1,



76

6.2, and 6.3.

−5 −4 −3 −2 −1 0
−6

−4

−2

0

2

4

6
Log−Log Scaled Intensity 0M GuHCl

Q (Angstroms
−1

)

I(
Q

)

 

 

−20

−15

−10

 −5

  0

  5

 10

 15

 20

 30

 35

 40

 45

 50

Figure 6.1: Log-scaled scattering intensity curves for cytochrome-c at 0M denatu-
rant concentration over a temperature range of −20oC to 50oC.

.

As expected, the scattering curves for different temperatures have similar shapes

for the 0M and 4M cases. In both cases, the curves that differ most significantly

from those at other temperatures are the extreme high and low temperature curves.

Furthermore, for each of the three concentrations, a greater difference between scat-

tering curves is seen in the high-Q range. These discrepancies at high-Q do not

affect the results of Guinier analysis, since such analysis is confined to the low-Q

region, i.e. in the range of 1.0 < RgQmax < 1.3. Results of pair-distance distribution

function analysis, however, incorporate the entire Q-range and as such a difference

from Guinier analysis results is expected. While the intensity curves are useful when

compared to each other, corresponding Kratky plots are far more useful for inves-

tigating the shape of the protein, and for checking whether the data is of adequate

quality or not. For instance, since we know that cytochrome-c in the native state
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Figure 6.2: Log-scaled scattering intensity curves for cytochrome-c at 2.5M denat-
urant concentration over a temperature range of −22oC to 50oC.

.

is globular in nature, Kratky plots for the 0M data should exhibit with increasing

Q an initial peak followed by a decay and subsequent increase, indicating the over-

all shape, random walk behavour, and thin rod-like behavour (characterized by the

persistence length). In the 4M case however, the Kratky plot should not exhibit

such a pronounced initial peak, since the protein is denatured and less globular in

shape, i.e. unfolded. Kratky plots for all temperatures at each concentration can

be seen in figures 6.4, 6.5, and 6.6.

The shapes of the Kratky plots are consistent with our expectations. For the 0M

data, an initial peak is clearly present across all temperatures, indicative of the

protein in its native, folded state. The large differences between curves of various

temperature in figure 6.4 are expected due to the high sensitivity of the Kratky plot

at high-Q values. This graph confirms the presence of cytochrome-c in the native

state. In figure 6.6 the opposite situation is apparent for the 4M data. Kratky plots
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Figure 6.3: Log-scaled scattering intensity curves for cytochrome-c at 4M denatu-
rant concentration over a temperature range of −20oC to 50oC.

.

for all temperatures show no initial peak, instead increasing gradually with Q, and

exhibiting random walk characteristics followed by thin rod-like behavior at high-Q.

Again, this is as expected, with persistence length characterizing the Kratky plot

at high-Q (shorter real-space length scale). With the exception of the 45oC data,

the difference at high-Q between plots of various temperatures is relatively small,

indicating a consistency in structure across all temperatures.

The case of most interest however, is the 2.5M data, seen in figure 6.5. From

this figure we can infer that at different temperatures, the protein has significantly

different shape. At high temperature, for example, there is clear lack of evidence for a

globular structure, indicating the protein in its denatured state. The temperatures

at which the most globular behavior is exhibited are those in the lower-middle

section of our range. Specifically, protein in the −10oC to 5oC range shows the

most pronounced initial peaks. Structures with the least globular shape appear
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Figure 6.4: Kratky plots of Q2I(Q) against Q for cytochrome-c at 0M denaturant
concentration over a temperature range of −20oC to 50oC.

.

at T > 25oC, evidenced by a lack of initial peak. Between these two structural

extremes, several plots (−20oC to−12oC and 10oC to 15oC) are present. These plots

indicate a globular nature, albeit smaller than that of the low-middle temperature

range.

Investigating the Kratky plots in this qualitative manner provides one with a good

expectation for the results of subsequent Guinier analysis. Guinier analysis of the

data takes place at low-Q. Figures 6.4 and 6.6 show little variation in shape at low-

Q, particularly when compared to figure 6.5. Thus, we would expect little change

in the size of our protein distribution at the 0M and 4M concentrations. For the

2.5M concentration, the variation at low-Q indicates a change in protein size across

the temperature range. The values for the radius of gyration from Guinier analysis

at each concentration can be seen in figure 6.7.

Figure 6.7 contains values resulting from repeated analysis by Elmer (Elmer, 2010)
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Figure 6.5: Kratky plots of Q2I(Q) against Q for cytochrome-c at 2.5M denaturant
concentration over a temperature range of −22oC to 50oC.

.

and the author. These results are consistent with expectations stemming from

observations of the Kratky plots, with the low-middle temperature range of the

2.5M data having smaller radii of gyration than the data from lower and higher

temperature. Expected consistency is also evident for the 4M and, in particular,

the 0M data. Even with the significant error associated with several of the 4M

values, these results are consistent with literature values (Pollack, 1999, Hsu, 2007).

Errors on data points of figure 6.7 arise from performing a low-Q linear fit to the

Guinier plots of the data in IgorPro, as described in Chapter 5. With the Guinier

analysis results now complete, results of the data in real space using the pair-distance

distribution function are now be presented.
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Figure 6.6: Kratky plots of Q2I(Q) against Q for cytochrome-c at 4M denaturant
concentration over a temperature range of −20oC to 50oC.

.

6.2 Real Space p(r) Analysis

Following the Fourier transform procedure described in Chapter 3, a pair-distance

distribution function is produced for each dataset, as described in the example in

Chapter 5. Given that the p(r) function is obtained from the scattering intensity

I(Q), we should see a consistency in the radii of gyration obtained from the p(r)

curves and Guinier analysis. Furthermore, calculation of the radius of gyration from

the p(r) curve uses the entire Q-range, and thus one would expect the result to be

more reliable than that of Guinier analysis, as previously mentioned. For the 2.5M

case, p(r) curves can be seen in figure 6.8.

The p(r) curves in figure 6.8 are those that have met the criteria for an acceptable

pair-distance distribution function as outlined in Chapter 5, i.e. no oscillations,

smooth decay to zero, low error. Error bars, on the order of 10−3, have been omitted
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Figure 6.7: Radius of Gyration from Guinier Analysis for Cytochrome-C at 0M ,
2.5M , and 4M denaturant concentrations over a temperature range of −22oC to
50oC

.

from figure 6.8 for the sake of presentation. We can expect a folded protein to

have a greater peak on its p(r) curve since a greater number of pairs of particles

will be separated by a shorter distance, r, apart. With this in mind, the shape

of the p(r) curves is consistent with results thus far. As with the Kratky plots

in figure 6.5, protein samples in the low-middle temperature range of figure 6.8

correspond to proteins that are more globular in structure, while samples at the

highest temperatures have lower peaks on their p(r) curves, indicating the same

protein is now less globular, i.e. unfolded. Missing from figure 6.8 are the protein

samples at −7oC and 50oC. Using the GNOM application on the 7oC sample

produced a p(r) curve that never exceeded 7x10−3 on its y-axis and thus this data

was considered erroneous. The protein sample at 50oC presented a different problem

in the GNOM process. In this case, the indirect Fourier transform procedure could

not adequately sample the scattering pattern without producing oscillations in the
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Figure 6.8: Pair-distance distribution curves for cytochrome-c in a 2.5M denaturant
solution over a temperature range of −22oC to 45oC.

.

p(r) curve. This is likely an example of oversampling, which occurs when the original

dataset is being sampled at a frequency higher than that of the Nyquist frequency.

This example of oversampling can be seen in figure 6.9. Despite numerous attempts

to modify the sampling rate in the indirect Fourier transform using GNOM, the

2.5M 50oC data consistently resulted in p(r) curves with high amounts of oscillation,

i.e. an ideal sampling frequency could not be obtained. Data such as this was not

considered for further analysis.

As described in Chapter 3, the p(r) function can be used to calculate a radius of

gyration for the protein by integrating over the entire r-range (see equation 3.42).

Applying equation 3.42 to the entire set of pair-distance distribution functions, i.e.

for each molarity and at each temperature, gives the results seen in figure 6.10.

There are several notable aspects to the values in figure 6.10. Although the −7oC

and 50oC data from the 2.5M dataset did not produce an acceptable p(r) curve,
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Figure 6.9: Pair-distance distribution curve for cytochrome-c in a 2.5M denaturant
solution at a temperature of 50oC. This is an example of oversampling in the indirect
Fourier transform.

.

GNOM still gives values for the radius of gyration in these cases, and these values

are consistent with those of Guinier analysis. Also notable from figure 6.10 is the

lower error, particularly at for 4M calculations, when compared to radii of gyration

calculated from Guinier analysis. A comparison of values from Guinier and p(r)

analysis may be seen in figure 6.11. Errors have been omitted from figure 6.11 for

the sake of presentation. A comparison of errors from both methods of calculation

can be seen in figure 6.12, each presented as a percentage of the respective calculated

radius of gyration.

As can be seen from figure 6.11, results from Guinier and p(r) analysis are quite

consistent with each other at 0M denaturant concentration. At the 2.5M concentra-

tion, the p(r) analysis gives a lower value for radius of gyration for all temperatures

except the −7oC data. It should be noted that this was a dataset which previ-
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Figure 6.10: Radius of Gyration from p(r) analysis for cytochrome-c at 0M , 2.5M ,
and 4M denaturant concentrations over a temperature range of −22oC to 50oC.

.

ously gave an unacceptable p(r) curve. Interestingly, the converse is true for the

4M concentration, where the p(r) analysis gives consistently higher values. At this

concentration, the results from p(r) analysis are more consistent with results from

wide angle x-ray scattering (WAXS) experiments (Pollack, 1999), than with pre-

vious results from SAXS experiments (Hsu, 2007). Figure 6.12 also reveals some

interesting insights. For the majority of radius of gyration calculations, the percent

error is low (< 1%). Highest errors occur most notably for the 4M Guinier results,

while the p(r) results show significantly less error at this concentration. Only three

calculations from the p(r) analysis show a percent error greater than 1%; 50oC at

0M , and 35oC and 40oC at 4M . Error is also low across the majority of results

from the 2.5M data from both methods of calculation.

With acceptable results obtained for the radius of gyration of cytochrome-c at var-

ious denaturant conditions, reconstructions based on this data are now presented.
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Figure 6.11: Radius of Gyration from Guinier and p(r) analysis for Cytochrome-
C at 0M , 2.5M , and 4M denaturant concentrations over a temperature range of
−22oC to 50oC. Error bars ommited for clarity (see previous plots).

.

6.3 Protein Reconstruction

All reconstructions presented in this section are produced according to the example

given in Chapter 5. The bulk of the reconstructions are from the 2.5M dataset, since

at this denaturant concentration change in the protein’s conformation is observed.

Reconstructions of this dataset will include a reconstruction from each of the 0M

and 4M datasets, thereby providing a full spectrum of cytochrome-c as it changes

from native to denatured state.

DAMMIN produces a value for the radius of gyration from its reconstruction by

calculating a unique scattering pattern, finding the p(r) function from equation

3.40, and calculating Rg via equation 3.42. Results of this calculation for the 2.5M

dataset corresponding to the images in figures 6.13 to 6.18 is shown in figure 6.19

along with results for the radius of gyration from Guinier and p(r) analysis.
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Figure 6.12: Percent errors from radius of gyration calculation from Guinier and
p(r) analysis for cytochrome-c at 0M , 2.5M , and 4M denaturant concentrations
over a temperature range of −22oC to 50oC.

.

Figures 6.13 to 6.18 provide visual evidence of the thermodynamically and chemi-

cally induced folding/unfolding of equine cytochrome-c. For the 2.5M reconstruc-

tions, the proteins are clearly more elongated and spread out at the extreme high

and low temperatures. The notable outlier is again the −7oC trial, which did not

produce an acceptable p(r) curve previously. The reconstruction of this data (figure

6.15, protein 3a) does not fit visually with surrounding reconstructions. As with the

calculation of Rg from p(r) analysis of this dataset, the Rg reported by DAMMIN

nevertheless meets expectations, as seen in figure 6.19. In figure 6.19 we see that

the Rg values from DAMMIN are reasonably similar to those resulting from p(r)

analysis, but differ slightly with results from Guinier analysis.
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Figure 6.13: From left to right: Cytochrome-c in 1a: 4M denaturant concentra-
tion at 0oC, 1b: 2.5M denaturant concentration at −22oC, 1c: 2.5M denaturant
concentration at −20oC. For scale, the maximum diameter of protein 1a is 85.94Å.

.

Figure 6.14: From left to right: Cytochrome-c in 2.5M denaturant concentration at
2a: −17oC, 2b: −15oC, 2c: −12oC, 2d: −10oC. For scale, the maximum diameter
of protein 2a is 56.53Å.

.

6.4 Reconstruction Quality

Figure 6.19 provides us with some evidence of successful reconstructions based on

the similarities from separately calculated values for the radii of gyration. This

alone is not sufficient to say that these reconstructions are correct, or useful for
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Figure 6.15: From left to right: Cytochrome-c in 2.5M denaturant concentration
at 3a: −7oC, 3b: −5oC, 3c: −2oC, 3d: 0oC. For scale, the maximum diameter of
protein 3a is 54.55Å.

.

Figure 6.16: From left to right: Cytochrome-c in 4a: 0M denaturant concentration
at 0oC, 4b: 2.5M denaturant concentration at 2oC, 4c: 2.5M denaturant concentra-
tion at 5oC, 4d: 2.5M denaturant concentration at 10oC. For scale, the maximum
diameter of protein 4a is 34.69Å.

.

that matter, since two different scattering curves may produce a similar Rg. Since

the scattering pattern from a reconstruction is unique, it is then compared to the

experimental scattering pattern at the corresponding conditions. Agreement of the

scattering patterns indicates an acceptable reconstruction. Using the process out-

lined in Chapter 5, the program FoXS is used to calculate the scattering pattern

from each reconstruction and compare it to its experimental partner. A chi-function
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Figure 6.17: From left to right: Cytochrome-c in 2.5M denaturant concentration
at 5a: 15oC, 5b: 20oC, 5c: 25oC, 5d: 30oC. For scale, the maximum diameter of
protein 5a is 58.70Å.

.

Figure 6.18: From left to right: Cytochrome-c in 2.5M denaturant concentration at
6a: 35oC, 6b: 40oC, 6c: 45oC. For scale, the maximum diameter of protein 6a is
81.38Å.

.

is used by FoXS to quantify agreement between the two curves, by the formula

χ2 =

Q∑
k

(
Iexp(Qk)− cIDAM(Qk)

σexp(Qk)

)2

(6.1)

where Iexp are the experimental data points, IDAM are the corresponding points on
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Figure 6.19: Radius of gyration from Guinier, p(r), and DAMMIN analysis for
cytochrome-c in a 2.5M denaturant concentration over a temperature range of
−22oC to 50oC.

.

the DAMMIN reconstructed scattering curve, c is a scaling parameter, and σexp are

the experimental errors.

In surveying figures 6.20 to 6.25, the notable outlier is again the 2.5M −7oC data.

The disparity between the reconstructed scattering intensity and the experimental

data for this temperature is obvious in figure 6.22, subplot 3a, and is made quan-

tifiably clear by its disagreement of χ = 21.5. All other DAMMIN-reconstructed

intensities show varying levels of agreement with their experimental counterparts,

ranging from χ = 1.02 to χ = 5.31. It is evident from the figures that most dis-

agreement arises from either the high-Q or low-Q regions, or both. Disagreement at

low-Q is reflected in figure 6.19 as the difference between Rg calculated from Guinier

analysis and from DAMMIN reconstructions, since Guinier analysis uses only this

region to determine Rg. Disagreement at high-Q is to be somewhat expected since
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Figure 6.20: Scattering curves from SAXS experimentation and DAMMIN recon-
structions for cytochrome-c in 1a: 4M denaturant concentration at 0oC, 1b: 2.5M
denaturant concentration at −22oC, 1c: 2.5M denaturant concentration at −20oC.
χ = 1.24, 5.31, 1.62 respectively.

.

resolution at such small angles can be difficult to achieve using the SAXS method.

6.5 Cold and Warm Denaturation

Observed in the previous section were both cold and warm denatured states of

cytochrome-c. At both extremes, i.e. −22oC and 45oC, the proteins are the same

size; we know this not only from the maximum diameter of each, but also from

their similar radii of gyration (24.64Åand 25.48Årespectively, from p(r) analysis).
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Figure 6.21: Scattering curves from SAXS experimentation and DAMMIN recon-
structions for cytochrome-c in a 2.5M denaturant concentration at 2a: −17oC, 2b:
−15oC, 2c: −12oC, 2d: −10oC. χ = 1.63, 3.89, 3.67, 1.56 respectively.

.

However, it is important to note that the driving force behind denaturation in each

case is not the same. As discussed in Chapter 2, at low temperature enthalpy dom-

inates the process of denaturation, whereas at high temperature the same is true of

entropy. Since entropy is the driving force at warm temperature, one would expect

more possible configurations of the warm denatured protein. In the case enthalpy-

driven cold denaturation there are less possible configurations the protein may take.

Furthermore, the hydrophobic effect is not present in the case of cold denaturation

and thus the protein backbone is prone to stiffening, thereby imposing a lower limit
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Figure 6.22: Scattering curves from SAXS experimentation and DAMMIN recon-
structions for cytochrome-c in a 2.5M denaturant concentration at 3a: −7oC, 3b:
−5oC, 3c: −2oC, 3d: 0oC. χ = 21.5, 3.93, 5.15, 2.72 respectively.

.

on the total possible configurations the protein may assume in this case. This differ-

ence in driving force can be seen in figure 6.26 from the two state protein stability

theory outlined in Chapter 2. This is a plot of the various components of the total

neutral folding free energy (equation 2.20). One can see the decrease in enthalpy

and increase in entropy (solvation entropy) as temperature increases. The amount

of possible configurations the protein may assume in each denatured state is also

reflected by the persistence length. The persistence length may be thought of as the

minimum distance the protein chain must travel in a straight line due to limitations
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Figure 6.23: Scattering curves from SAXS experimentation and DAMMIN recon-
structions for cytochrome-c in 4a: 0M denaturant concentration at 0oC, 4b: 2.5M
denaturant concentration at 2oC, 4c: 2.5M denaturant concentration at 5oC, 4d:
2.5M denaturant concentration at 10oC. χ = 1.37, 4.96, 1.49, 3.27 respectively.

.

on its flexibility. One would expect that if more configurations of the protein are

possible in the case of entropy-driven warm denaturation, then the protein should

also exhibit a shorter persistence length to allow for such configurations. These

expectations are also reflected in the two-state stability theory and can be seen as

the “chain entropy” component of the neutral folding free energies in figure 6.26,

i.e. with more chain entropy free energy, more configurations are possible. As men-

tioned in Chapter 3, the high-Q region of the Kratky plot is characterized by the
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Figure 6.24: Scattering curves from SAXS experimentation and DAMMIN recon-
structions for cytochrome-c in a 2.5M denaturant concentration at 5a: 15oC, 5b:
20oC, 5c: 25oC, 5d: 30oC. χ = 3.42, 5.19, 2.17, 1.41 respectively.

.

persistence length of the protein. Using Porod’s law, the persistence length may

be obatined by performing a linear fit to this high-Q region (see figure 6.27). Re-

sults for the persistence length of our protein in 2.5M solution at each temperature

can be seen in figure 6.28. In this figure, the persistence length is represented as

persistence Q(Å−1); its tendency to increase with increasing temperature reflects a

decrease in persistence length with increasing temperature. Lastly, this effect may

be seen visually by comparing side by side the DAMMIN reconstructions of both

cold and warm denatured ctyochrome-c (figure 6.29). Here one can see the longer
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Figure 6.25: Scattering curves from SAXS experimentation and DAMMIN recon-
structions for cytochrome-c in a 2.5M denaturant concentration at 6a: 35oC, 6b:
40oC, 6c: 45oC. χ = 1.44, 2.89, 1.6 respectively.

.

persistence length in the cold denatured protein on the left hand side. As a crude

form of measurement, one can count the amount of straight line sections and find

that there are a lesser amount in the cold denatured protein. One can also use in

PyMOL the measurement, wizard which allows measurement of distances between

two atomic locations, to verify this.
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Figure 6.26: Individual components of the total neutral folding free energy. From
the two state protein stability theory described in Chapter 2 (Landahl et al. 2013).

.
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Figure 6.27: Kratky plot demonstrating Porod’s law for cytochrome-c in a 2.5M
GuHCl solution over a temperature range of −22oC (dark blue) to 45oC (dark red).
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Figure 6.28: Persistence Q(Å−1) for cytochrome-c in a 2.5M GuHCl solution at
various temperatures (Landahl et al. 2013)
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Figure 6.29: Left hand side: Cold denatured cytochrome-c at −22oC. Right hand
side: Warm denatured cytochrome-c at 45oC. Both in a 2.5M GuHCl solution.

.
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CHAPTER 7

Mitochondrial Rho Results

In this chapter we present the results for SAXS experiments on the mitochondrial

rho (miro) protein. This chapter is divided into two parts, for the short (miro-S)

and long (miro-L) versions of miro. Analysis is carried out on the raw data in the

same manner as that of cytochrome-c, with some minor exceptions. Hence, results

are presented in a similar manner to Chapter 6. Miro was studied under a variety of

chemical conditions, and since this is the first experiment of its kind to be performed

on this protein, results were not obtained as easily as with cytochrome-c. For both

miro-S and miro-L we present here a single dataset and reconstruction. These

two were part of the select few datasets that resulted in satisfactory pair-distance

distribution functions and DAMMIN reconstructions. It is known from amino acid

sequence analysis that miro consists of two GTPase domains and an ef hand motif.

Unlike cytochrome-c, we do not have a crystal structure with which to compare our

experimental reconstructions. In order to check that our reconstructions are correct

we construct a somewhat crude estimation of miro using two different proteins for

which we have accepted crystal structures. In place of the GTPase domain(s) of our

miro, we use human rac1, a GTP binding molecule (PDB ID: 1MH1). Taking the

place of the ef hand in our miro is one half of the crystal structure of human centrin

2 (HsCen2), an ef hand calcium binding protein (PDB ID: 2OBH). This protein

consists of 2 ef hand domains which are easily separated using PyMOL. Apart from

using 1MH1 and 2OBH to check the quality of our reconstructions, we also compare

the amino acid sequence of these proteins to the amino acid seqeunce for miro-S and

miro-L, provided by the Rice Lab. By doing this we can ensure that any structural

inconsistencies evident in our reconstructions are reflected in the differences between
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the amino acid sequences. Before presenting results for miro-S and miro-L we first

show the structure of 1MH1, 2OBH, and the combinations of both which will be

used for comaparison to our results. Also presented prior to experimental results

are the amino acid sequence comparisons.

Shown in figure 7.1 and figure 7.2 are the crystal structures of 1MH1 (Hirshberg,

1997) and 2OBH (Charbonnier, 2007) respectively.

Figure 7.1: Crystal structure from x-ray diffraction for the human rac1 protein
(PDB ID: 1MH1). For the purpose of scale, this structure has a maximum diameter
of ∼ 55Å.

.

In figure 7.2, one can see two of the same structure, each defined by a long helix with

several small helices at each end. These are the two ef hand domains. By removing

one of these domains in PyMOL and importing the other into our 1MH1 figure we

make a mock construction of miro-S, seen in figure 7.3. In order to construct a mock
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Figure 7.2: Crystal structure from x-ray diffraction for the human centrin 2 protein
(PDB ID: 2OBH). For the purpose of scale, this protein has a maximum diameter
of ∼ 115Å.

.

miro-L we make a copy of 1MH1 and import it into our mock miro-S structure. This

can be seen in figure 7.4.

Figure 7.3: Mock miro-S structure built from crystal structures of the 1MH1 protein
and an ef hand domain from the 2OBH protein.

.

When reconstructions for miro-S and miro-L are obtained they are ”docked”, i.e.

imported and overlayed with the crystal structures in figures 7.3 and 7.4 respectively.

In building these mock structures it should be noted that the alignment of 1MH1
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Figure 7.4: Mock miro-L structure built from crystal structures of two 1MH1 pro-
teins and an ef hand domain from the 2OBH protein.

.

with respect to the ef hand domain of 2OBH is arbitrary, since in solution the ef

hand and GTPase domain(s) of miro are not joined together in a rigid manner. As

such, the 1MH1 structure(s) may be rotated and realigned in PyMOL when docking

the miro reconstructions.

To compare the amino acid sequence of miro with those of 1MH1 and 2OBH, the

sequences are separated. In figure 7.5, the amino acid sequence for 1MH1 is aligned

with the amino acid sequences for both GTPase domains in miro-L. In figure 7.6 the

amino acid sequence for one ef hand domain of 2OBH is aligned with the amino acid

sequence of the miro ef hand domain. These sequences and alignments are courtesy

of the Rice Lab at Northwestern University.

Figures 7.5 and 7.6 list the amino acid sequence for the relevant structures with a

running total count of amino acids at the end of each line. While not of concern

in this experiment it should be noted that the dots and asterisks included in these

figures are representative of various levels of agreement between the compared amino

acid sequences. The most notable aspect of these figures is the variation in sequence

length between 1MH1 and GTPase/GTPase2 and particularly between 2OBH and

MiroEF. The difference between the sequence length of 2OBH and the miro ef hand
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Figure 7.5: Amino acid sequence alignment for 1MH1 and both GTPase domains of
miro-L.

.

Figure 7.6: Amino acid sequence alignment for 2OBH and the ef hand domain of
miro.

.

domain represents an 82 amino acid linker about which nothing is currently known.

Thus when we obtain reconstructions for miro-S and miro-L, we expect to see excess

volume in the ef hand region when compared to our mock protein models.

7.1 Miro-S

The miro-S presented here is in a solution as described in Chapter 3, but with an

additional 3mg/ml Ca2+, since this protein was more stable under these conditions.
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The protein sample is at a temperature of 4oC. The scattering pattern for this

protein can be seen in figure 7.7.
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Figure 7.7: Scattering intensity curve from SAXS for miro-S in a 3mg/ml Ca2+

solution at 4oC.

The flatness in the low-Q region of the log-log scaled intensity plot of figure 7.7

indicates some globular structure to the protein, while its steady decrease going

toward high-Q is an indicator of elongated behavior for scattering at smaller angles.

The size of this protein is estimated, as before, by calculating its radius of gyration

from a Guinier plot of ln(I) against Q2 (see figure 7.8).

Taking the slope of the low-Q region (i.e. QmaxRg < 1.3) gives a radius of gyration

for this protein sample of 27.55±0.18Å. As in Chapter 5, we investigate the structure

of the protein using a Kratky plot of Q2I against Q (see figure 7.9).

The Kratky plot of figure 7.9 is consistent with our observations of the Guinier plot

in figure 7.8, in that the initial peak followed by an increase at high-Q indicates
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Figure 7.8: Guinier plot for miro-S in a 3mg/ml Ca2+ solution at 4oC. Rg =
27.55± 0.18Å.
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Figure 7.9: Kratky plot for miro-S in a 3mg/ml Ca2+ solution at 4oC.
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a globular overall structure with thin rod-like behavior on the smaller scale. We

now evaluate for this miro-S sample the pair-distance distribution function (p(r)

curve) using the program GNOM. Initially, a satisfactory p(r) curve could only be

obtained using a maximum particle diameter of 85Å, giving an Rg = 27.95± 0.08Å.

This curve smoothly decayed to zero and had low error; however, based on our

knowledge of the ef hand and GTPase domain makeup of miro-S, we expected a

larger maximum diameter to be necessary for carrying out a reconstruction. Per-

forming a reconstruction based on this p(r) function revealed the problem. The

DAMMIN result did not resemble a structure that contains this GTPase domain,

i.e. there was no evidence of a globular structure. Instead, our reconstruction re-

sembled something more akin to the denatured cytochrome-c reconstructions seen in

Chapter 6. Numerous attempts were made at reconstructing the protein by varying

parameters in DAMMIN. Eventually, we realized that the high-Q region of our data

was having a dominant effect on our attempts to reconstruct. This may have been

due to contaminants in the protein, a feature which would be evident at high-Q.

To fix this problem, we returned to the Krakty plot of figure 7.9 and eliminated

the high-Q data. Specifically, of the 98 data points in the Kratky plot, the final 18

were omitted. The Kratky plot is an appropriate point in our analysis to do this

since it is very sensitive at high-Q. Since we are primarily interested in obtaining an

estimate of the overall shape of the miro-S protein, this sacrifice of data was deemed

a necessary step. The essential effect of this data omission is that the resulting

reconstruction is now of lower resolution. In choosing an appropriate cut-off point

in the Kratky plot, it was decided that the minimum of the post-peak region was

suitable, since the initial peak is what describes the object shape. In short, greater

detail was sacrificed for more accurate estimation of overall shape. In figure 7.10,

the low-resolution Kratky plot is shown.

Using only the first 80 of the 98 points from our I(Q) data, a satisfactory p(r) curve

was obtained, which consisted of low error, no oscillations, and slow decay to zero.
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Figure 7.10: Low-resolution (using 80 of 98 data points) Kratky plot for miro-S in
a 3mg/ml Ca2+ solution at 4oC.

This was the largest number of data points that still allowed production of satisfac-

tory curve. Evaluating the p(r) function on this low-resolution data also allowed us

to push the maximum diameter for our reconstruction to a more appropriate 100Å.

The p(r) curve for this data can be seen in figure 7.11 and has a corresponding

radius of gyration of Rg = 28.67± 0.12Å.

With a satisfactory p(r) function now evaluated, a low-resolution reconstruction can

now be obtained. This DAMMIN reconstruction can be seen in figure 7.12 and has

a radius of gyration of 28.45Å.

In an effort to check the quality of this reconstruction, two tasks are now carried

out. Firstly, the reconstruction is docked in PyMOL with the mock miro-S structure

in figure 7.3. The reconstruction is expected to have a larger volume in the ef hand

region than the mock structure, due to the presence of an excess 82 amino acid

linker in the ef hand region of miro. This docked reconstruction, a combination of
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Figure 7.11: Low-resolution pair-distance distribution function for miro-S in a
3mg/ml Ca2+ solution at 4oC. Rg = 28.67± 0.12Å.

Figure 7.12: Low-resolution DAMMIN reconstruction of miro-S in a 3mg/ml Ca2+

solution at 4oC. Radius of gyration Rg = 28.45Å. For the purpose of scale this
reconstruction has a maximum diameter of 93.53Å.

figures 7.12 and 7.3, can be seen in figure 7.13.

Evident from figure 7.13 is the expected excess volume of the DAMMIN recon-

struction in the ef hand region. Also noticeable is the slightly larger size of 1MH1
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Figure 7.13: Low-resolution DAMMIN reconstruction of miro-S in a 3mg/ml Ca2+

solution at 4oC, docked with the mock miro-S structure consisting of 1MH1 and an
ef hand domain from 2OBH.

compared to the volume of this region in the DAMMIN reconstruction. This vol-

ume can be better estimated by performing an even lower resolution reconstruction;

while a reconstruction using 60 of 98 data points produces a GTPase region volume

large enough to fully encompass the 1MH1, significant detail and volume is lost

outside of this region, and the reconstruction does not resemble at all the mock

structure. Regarding figure 7.13, an estimate was made of the total excess vol-

ume of the DAMMIN structure. Using the online application VADAR (Willard,

2003), volumes were calculated for 1MH1 (V1MH1 = 23, 571Å3) and one half of

2OBH (Vefhands = 21, 513Å3). The volume of our miro-S SAXS reconstruction is

Vmiro−S = 59, 488Å3. The excess volume of our SAXS structure compared to the

mock structure is then Vesaxs = 14, 403Å3. Knowing the volume and chain length of

one half of 2OBH allows calculation of the average volume per amino acid in this

structure,

Vaa =
Vefhands

143
= 150.4Å3 (7.1)

From figure 7.6 we can then estimate the total excess volume of our SAXS structure

based on the extra 82 amino acids evident from sequence analysis. This excess
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volume is Veaa = 82x150.4 = 12, 336Å3. This is slightly less than Vesaxs, with the

difference being 2, 067Å3 or, based on Vaa, about 14 amino acids. Since nothing

is known about the 82 amino acid linker in miro, it may be the case that these

amino acids have an average volume greater than Vaa. Indeed, if the excess volume

is involved in Ca2+-binding, the amino acids here may be larger, since 4 of the 5

and 7 of the 10 strongest Ca2+-binding amino acids have a volume greater than Vaa

(Ho, 2007). Most importantly however, this excess volume is certainly enough to

hold an additional 82 amino acids.

Next, the quality of this reconstruction is checked using the online application FoXS,

by comparing the unique scattering pattern from the reconstruction to the scattering

pattern obtained via SAXS. The FoXS scattering comparison can be seen in figure

7.14.
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Figure 7.14: FoXS comparison of log-scaled scattering curves from low-resolution
DAMMIN reconstruction and SAXS experiment for miro-S in a 3mg/ml Ca2+ so-
lution at 4oC. χ = 0.95.
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The FoXS comparison in figure 7.14 reports an excellent agreement between the

scattering pattern from the low-resolution DAMMIN reconstruction and the exper-

imental data from SAXS. This, along with visual inspection of figure 7.13, is an

indicator of an acceptable reconstruction.

7.2 Miro-L

Similarly to miro-S, miro-L is examined in a solution as described in Chapter 4, but

with an additional 30mg/ml of Ca2+. The scattering pattern from SAXS experi-

mentation on this protein sample is shown in figure 7.15.
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Figure 7.15: Scattering intensity curve from SAXS for miro-L in a 30mg/ml Ca2+

solution at 4oC.

The size of this protein is estimated as usual by calculating the slope of the low-Q

region of a Guinier plot (see figure 7.16).

The data in figure 7.16 gives a radius of gyration for this protein of Rg = 44.3±0.3Å.
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Figure 7.16: Guinier plot for miro-L in a 30mg/ml Ca2+ solution at 4oC. Rg =
44.3± 0.3Å.

The overall structure of this miro-L sample is again investigated using a Kratky plot,

seen in figure 7.17.

When comparing the Kratky plots for miro-L and miro-S, the most obvious difference

is the lack of high-Q data for miro-L. This serves as evidence that the miro-S sample

may have been contaminated, although several trials of miro-L also had Kratky plots

dominated by high-Q data. Another possible reason for the lack of high-Q data is

that due to the large size of the miro-L protein, our technique is simply not capable

of resolving at such a small length scale. Again, our primary goal in this experiment

is an estimation of overall shape, and so a lack of detail at high-Q is not a major

concern. More significantly, a clear and clean peak is seen on the Kratky plot,

indicating a large, globular structure. Since the high-Q data is not dominating in

this case, it is possible to perform a reconstruction using the full dataset, and not

have to reduce the resolution any further. The size of this protein is further clarified

by evaluating as usual its p(r) function. This can be seen in figure 7.18.
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Figure 7.17: Kratky plot for miro-L in a 30mg/ml Ca2+ solution at 4oC.
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Figure 7.18: Pair-distance distribution function for Miro-L in a 30mg/ml Ca2+

solution at 4oC. Rg = 44.42± 0.18Å.
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The low error and lack of oscillations in figure 7.18 are indicators of a successful

p(r) function evaluation. The radius of gyration calculated from figure 7.18, Rg =

44.42± 0.18Åis also a close match to that obtained via Guinier analysis. This p(r)

curve was one of the few successful attempts carried out on the miro-L data. In

most cases, the p(r) curves oscillated wildly and had significant error. This was

likely due to the greater size of miro-L, e.g. a maximum diameter of 140Åin figure

7.18, which caused sampling problems with the indirect Fourier transform used by

GNOM. The DAMMIN reconstruction for this miro-L data can be seen in figure

7.19. This reconstruction reports a radius of gyration of Rg = 44.19Åand has a

maximum diameter of 140Å. In order to check the accuracy of this reconstructed

shape we dock it in PyMOL with the structure seen in figure 7.4. As in the case

of miro-S, we expect the reconstruction from SAXS to cover a larger volume than

that of our mock structure, due to the missing 82 amino acid linker in the ef hand

domain. The docked structure can be seen in figure 7.20.

Figure 7.19: DAMMIN reconstruction of miro-L in a 30mg/ml Ca2+ solution at
4oC. Radius of gyration Rg = 44.19Å. For the purpose of scale this reconstruction
has a maximum diameter of 140Å.

It is once again worth noting that the orientation of the GTPase domains with
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Figure 7.20: DAMMIN reconstruction of miro-L in a 30mg/ml Ca2+ solution at
4oC, docked with the mock miro-L structure consisting of two 1MH1 structures and
an ef hand from 2OBH.

respect to the ef hand region of miro-L is not specific. Therefore when docking

the 2OBH and 1MH1 structures with our DAMMIN reconstruction, the 1MH1 and

2OBH are rotated and shifted in such a way that they best fit the DAMMIN re-

construction. Also, figure 7.20 confirms our expectations of excess volume of the

DAMMIN reconstruction when compared to the mock structure. Attempts to quan-

tify the excess volume in miro-L were not successful. The volume of the structure

in figure 7.19 is reported by DAMMIN as 267, 000Å3. This is significantly greater

than expected and corresponds to an excess volume of 198, 345Å3 when compared

to the mock miro-L structure. This excess volume alone corresponds to the volume

of almost 3 mock miro-L structures. It does not take much investigation of figure

7.20 to see that the SAXS reconstruction does not cover almost 4 times the volume

of the mock structure. In this situation, DAMMIN has clearly overestimated the

volume of the reconstruction.

The quality of this reconstruction is now checked by carrying out the FoXS compar-

ison. In figure 7.21 the comparison between the experimental scattering intensity
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and the scattering pattern from the DAMMIN reconstruction is shown.
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Figure 7.21: FoXS comparison of log-scaled scattering curves from DAMMIN re-
construction and SAXS experiment for miro-L in a 30mg/ml Ca2+ solution at 4oC.
χ = 0.95.

The FoXS comparison in figure 7.21 reports a remarkably similar agreement to that

seen in the comparison for miro-S, with a fit of χ = 0.95. This level of agreement

combined with the visual match offered by figure 7.21 is indicative of a successful

reconstruction of miro-L. As mentioned earlier, several other attempts were made

at reconstructing other datasets of miro-L but in many cases, problems were en-

countered with the indirect Fourier transform used by GNOM when calculating the

p(r) function. In other cases the data was dominated by high-Q data, most evident

in the Kratky plots, possibly due to contamination of the protein sample. In the

case of both miro-S and miro-L, the best reconstructions were obtained from data

that was taken earlier in the acquisition timeline, with the quality of data generally

declining as more and more data was taken.
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7.3 Calcium Ion Levels in the Miro Solution

As mentioned in Chapter 1, Ca2+ is suspected to play a key role in the movement

of mitochondria throughout the cell (Rice, 2006). Transport of mitochondria is

expected to cease in the presence of high Ca2+ levels. One of the possibilities in

this situation is that miro undergoes a conformational change in the presence of

high Ca2+ concentration. In this experiment, miro-S was studied in both Ca2+-rich

environments (as seen in figure 7.12) and in Ca2+-free environments. The results of

the Ca2+-free SAXS studies can be seen in figures 7.22, 7.23, 7.24, 7.25, 7.26, 7.27,

7.28, and 7.29. The Ca2+-rich results are also included in these figures for the sake

of comparison.

In figure 7.22, the absence of Ca2+ results in a lower scattering intensity, but suggests

a similar overall shape. The Guinier plots for both miro-S samples are very similar

at low-Q, with the Ca2+-free sample resulting in a radius of gyration calculation of

Rg = 27.01±0.28Å. This is similar to the Ca2+-rich sample in figure 7.8, suggesting a

comparable size. Examining the Kratky plots for both samples (figure 7.24) suggests

a slightly less globular structure for miro-S in the Ca2+-free solution. The p(r) curves

for both samples, in figure 7.25, also show results one would expect.

The Ca2+-rich sample has a greater scattering intensity and consequently has a

greater peak on the p(r) curve. Despite the much higher peak of this sample, the

shapes of the p(r) curves suggests the overall conformation of both structures is

not dissimilar. Furthermore, the radius of gyration calculated from the Ca2+-free

p(r) curve is Rg = 27.24 ± 0.3Å, again comparable to the calculation from the

Ca2+-rich solution from figure 7.11. As with the Ca2+-rich sample, the possible

contamination of the Ca2+-free protein solution caused the initial attempt at a

DAMMIN reconstruction to be dominated by high-Q data. For this reason, the

Ca2+-free p(r) curve is a low-resolution dataset, obtained by using only the first 70

of 98 data points available from the initial I(Q) data. This is a significant amount
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Figure 7.22: Log-scaled scattering intensity curves for miro-S in both 3mg/ml and
0mg/ml Ca2+ solutions at 4oC.
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Figure 7.23: Guinier plots for miro-S in both 3mg/ml and 0mg/ml Ca2+ solutions
at 4oC.
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Figure 7.24: Kratky plots for miro-S in both 3mg/ml and 0mg/ml Ca2+ solutions
at 4oC.
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Figure 7.25: Pair-distance distribution functions for miro-S in both 3mg/ml and
0mg/ml Ca2+ solutions at 4oC.
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of data to omit, but it is necessary to obtain an estimation of the overall shape of

the protein. The reconstruction of this protein and its comparison with the mock

miro-S structure can be seen in figures 7.26 and 7.27.

Figure 7.26: Low-resolution (70 of 98 data points from Kratky plot) DAMMIN
reconstruction for miro-S in a 0mg/ml Ca2+ solution at 4oC. For the purpose of
scale, this structure has a maximum radius of 93.22Å.

Figure 7.27: Low-resolution DAMMIN reconstruction for miro-S in a 0mg/ml Ca2+

solution at 4oC docked with the 1MH1 and 2OBH structures.

It is quite significant that we do not see any major structural difference on the

macromolecular level in miro-S when it is in a Ca2+-rich environment. Although at
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Figure 7.28: Low-resolution FoXS comparison of log-scaled scattering curves from
DAMMIN reconstruction and SAXS experiment for miro-S in a 0mg/ml Ca2+ so-
lution at 4oC. χ = 0.86

first glance the reconstructions from both Ca2+-free and Ca2+-rich solutions appear

markedly different, one must recall that in solution, the GTPase domain acts as

though hinged to the ef hand motif. In this sense, the orientation of the GTPase

domain relative to the ef hand region is not specific. This is evidenced by the

similar maximum diameter of both structures, 93.53Åand 93.22Åfor the Ca2+-rich

and Ca2+-free samples, respectively. The two reconstructions can be seen docked

together in figure 7.29. Although producing similar structures, we are inclined to

favor results associated with the Ca2+-rich data, since less data points were sacrificed

in obtaining a reconstruction.

The same anlaysis is now presented for the case of miro-L in a Ca2+-free solution.

In figure 7.30 one can see a comparison of scattering intensities for miro-L in both

Ca2+-rich and Ca2+-free solutions. This result differs from the results for miro-S, in

that both samples of miro-L have similar intensity at low-Q. Similarly to the case
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Figure 7.29: Low-resolution DAMMIN reconstructions for Miro-S in solutions with
(yellow) and without (green) 3mg/ml Ca2+.

of miro-S however, we do see greater intensity at high-Q for the Ca2+-free dataset.

Once again this is an indicator of similar size and shape, with details differing on a

shorter (high-Q) scale.

Figure 7.31 also indicates similar size of both miro-L structures, with the low-Q

regions of the Guinier plots exhibiting similar behavior. Guinier analysis of the

Ca2+-free data gives a radius of gyration Rg = 42.35 ± 0.28Å. This is slightly less

than the 44.3±0.3Åobtained for the Ca2+-rich solution of miro-L, indicating a slight

difference in size between the two protein samples.

The Kratky plots in figure 7.32 indicate proteins of a similar shape, with the Ca2+-

free protein offset due the greater intensity detected at high-Q.

Examining both p(r) curves in figure 7.33 further reinforces the claim of similar

shape. The radius of gyration calculated from the p(r) curve of the Ca2+-free protein

is 42.47±0.12Å, again lower than its Ca2+-rich counterpart (44.42±0.18Å). Despite

this difference, it is consistent with results of Guinier analysis for both protein
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Figure 7.30: Log-scaled scattering intensity curves for miro-L in both 3mg/ml and
0mg/ml Ca2+ solutions at 4oC.
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Figure 7.31: Guinier plots for miro- in both 3mg/ml and 0mg/ml Ca2+ solutions
at 4oC.
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Figure 7.32: Kratky plots for miro-L in both 3mg/ml and 0mg/ml Ca2+ solutions
at 4oC.

samples. The higher p(r)-calculated Rg for the Ca2+-rich sample may be due to

the choice of a greater maximum diameter (Rmax) for that sample. One will recall,

Rmax is chosen such that the p(r) curve contains the desired characteristics outlined

in Chapter 5, and thus it is not always possible to choose the same Rmax for two

samples of the same protein.

The DAMMIN reconstruction for our Ca2+-free sample of miro-L can be seen in

figure 7.34. The radius of gyration reported by DAMMIN for this object is identical

to that caluclated from its p(r) curve, Rg = 42.47.

Furthermore, its structure, while seemingly dissimilar on a high-Q scale, retains the

overall shape observed in the reconstruction of our Ca2+-rich sample. This variation

at high-Q reflects the differences observed in the Guinier and Kratky plots of both

miro-L samples. The reconstruction from the Ca2+-free sample can be seen docked

with our mock miro-L object in figure 7.35.
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Figure 7.33: Pair-distance distribution functions for miro-L in both 3mg/ml and
0mg/ml Ca2+ solutions at 4oC.

Figure 7.34: DAMMIN reconstruction for miro-L in a 0mg/ml Ca2+ solution at
4oC. For the purposes of scale, this structure has a maximum radius of 93.22Å.
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Figure 7.35: DAMMIN reconstruction for miro-L in a 0mg/ml Ca2+ solution at 4oC
docked with the 1MH1 and 2OBH structures.

One can again see that the reconstruction fits the expected form of miro-L, with

excess volume appearing in the ef hand region of the SAXS data. The similarity in

overall shape when compared to the Ca2+-rich sample can be seen in figure 7.37.

As with the case of miro-S, the amount of structural change on the macromolecular

level is not significant. Rather, the addition of Ca2+ to our miro protein solution

appears, if anything, to affect the protein on the high-Q scale, indicating small scale

change within the protein. Change such as this is not easily detectable by SAXS

since its observation requires a higher resolution.
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Figure 7.36: FoXS comparison of log-scaled scattering curves from DAMMIN re-
construction and SAXS experiment for miro-L in a 0mg/ml Ca2+ solution at 4oC.
χ = 0.94

Figure 7.37: DAMMIN reconstructions for miro-L in both 0mg/ml Ca2+ (green
spheres) and 3mg/ml Ca2+ (blue spheres) solutions at 4oC.
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CHAPTER 8

Conclusion

8.1 Cytochrome-c

Cytochrome-c is an ideal protein for demonstrating the roles of various thermo-

dynamic forces in protein denaturation. In this experiment we have obtained for

the first time direct visualization of cold denatured equine cytochrome-c through

the use of SAXS. In doing so we have confirmed the adequacy of the two state

protein stability theory (Dill, 2009) extended to the case of cytochrome-c (Elmer,

2010) by verifying data collected by Elmer in 2009. In verifying this data we have

shown the indirect Fourier transform and simulated annealing process of obtaining

a 3D reconstruction to be appropriate in the case of cytochrome-c. Reconstruction

of SAXS data for the protein in its native state shows a global shape consistent

with that of x-ray crystallography studies. Reconstructing the denatured protein,

both at warm and cold temperatures, sometimes proved problematic due to issues

in carrying out the indirect Fourier transform on the scattering data. The roles of

various thermodynamic forces are evident when comparing the cases of warm and

cold denaturation. Both denatured proteins were shown to have the same size, but

the forces driving denaturation in each case we suggest to be different. In the case of

warm denaturation the thermodynamic process is entropy driven. Theory suggests

the protein has more possible configurations in this case, and experimental evidence

in the form of shorter persistence length is consistent with this expectation. The

converse is expected in the case of cold denaturation. Here, the thermodynamic pro-

cess is enthalpy driven and less possible configurations are suggested. The longer

persistence length calculated in this case suggests the same. For this reason, warm
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and cold denaturation of cytochrome-c, despite being described by the same total

free folding energy, result in different unfolded structures of similar size.

Future work on this topic includes time-resolved studies of the protein folding pro-

cess. Since conformational changes occur over nanoseconds or microseconds, it is

desirable to capture images of the protein at a corresponding frequency, so that

the unfolding process may be observed directly. In this method, a high power laser

is used to cause a temperature jump in the protein solution, thereby inducing the

folding/unfolding process. Work such as this, if successful, may also aid in verifying

computational models of the protein folding process. As a more direct result of this

project, implications may be important in future protein folding experiments where

different thermodynamic conditions are altered to induce protein unfolding.

8.2 Mitochondrial-Rho

This experiment has also provided for the first time an observation of the global

structure of the miro protein. Prior to these SAXS studies of miro, suggestions of

the protein’s structure came from analysis of the amino acid sequence. The results

of this experiment have verified inferences based on such analysis, specifically with

regard to an unknown 82 amino acid chain within the ef hand region of the protein.

Sequence analysis suggested two GTPase domains connected by an ef hand motif,

a structure verified by SAXS analysis and protein reconstruction. The size of the

miro protein (particularly miro-L) unfortunately caused problems when implement-

ing the indirect Fourier transform during the analysis process. It is also possible

that contamination of the protein sample led to corrupt data which could not be

reconstructed. SAXS studies of the miro protein also showed no change in its global

structure when additional calcium ions were added to the protein solution. Since

miro is a calcium binding protein it has been suggested that Ca2+ may be involved

in stopping mitochondrial movement within the cell by altering miro’s structure.



132

This experiment has shown that should this be true, the change to miro’s structure

is likely on the local scale, since the addition of Ca2+ to both miro-S and miro-L did

not show any significant change to the global structure.

Future work is already underway in further determining the structure of miro. The

Rice Lab at Northwestern University is currently in the process of developing a

crystallized miro-S sample and further SAXS experiments on the protein are also

upcoming. Experiments in the immediate future will be focused on using SAXS

results to complement results from x-ray crystallography on miro-S.
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APPENDIX A - MATLAB CODES

GRAPHS FOR CHAPTER 2:

% Thesis chapter 2 graphs. Anthony Banks, 8/29/12

clear all

close all

% Parameters

Cp = 5000; % Specific Heat (J/mol*K)

T = 225:1:925; % Temp (K)

Th = 373; % Temp for H=0 (K)

Ts = 385; % Temp for S=0 (K)

% y = -0.8e6:1e4:8e6;

% ys = -4e3:10:2e3;

% yg = -2.5e5:1e3:1e5;

g0 = -1200*4.184; % Avg Packing Energy (J/mol)

m1 = 25*4.184; % Concentration-Energy Factor (J/mol)

N = 104; % Number of Amino Acids

z= 7.54; % Number of Rotational Isomers

c = 2; % Denaturant Concentration (molar)

R = 8.314; % Universal Gas Constant (J/mol*K)

kb = 1.38e-23; % Boltzmann Constant (J/K)

% Functions

HT = Cp.*(T-Th); % Enthalpy (assuming H(Th) is zero)

ST = Cp.*log(T./Ts); % Entropy (assuming S(Ts) is zero)

G = HT - T.*ST; % Gibbs free energy, (J/mol)

g = g0 + m1*c; % Packing Energy (cal/mol)

% Neutral Folding Free Energy

F = g*N + T.*R*N*log(z) + Cp.*(T-Th) - T.*Cp.*log(T./Ts);

% Electrostatics

pH = 0.0214.*T + 9.89; % pH level of solution

eps = 7e-4.*(T.^2) - 0.79.*T + 251; % Dielectric Constant of Water

lb = 1.39e-4./(eps.*R.*T); % Bjerrum Length

kp = sqrt(2*c.*lb); % Poisson-Boltzmann Constant

pKb = [11,9];

pKa = [2.4,2.9,6.4]; % Protein Dissociation Constants

% Basic and Acidic Charge Contributions
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for i = length(pKb)

for j = length(T)

Qb(i,j) = (log10(pKb(i)-pH(j)))/(1+log10(pKb(i)-pH(j)));

end

end

for i = length(pKa)

for j = length(T)

Qa(i,j) = (log10(pH(j)-pKa(i)))/(1+log10(pH(j)-pKa(i)));

end

end

Qn = sum(Qb) - sum(Qa); % Net Charge

% Gibbs Free Energy Curve

figure (1)

plot(T,G,T,0)

title(’Gibbs Free Energy’)

xlabel(’Temperature (K)’)

ylabel(’Gibbs Free Energy (J/mol)’)

zero = 0*T;

% Enthalpy and Temperature-Scaled Entropy

figure (2)

plot(T,T.*ST,T,HT)

title(’Enthalpy and Temperature-Scaled Entropy’)

xlabel(’Temperature (K)’)

ylabel(’Enthalpy, Temperature-Scaled Entropy (J/mol)’)

% Plotting the above graphs together

figure (3)

plot(T,T.*ST,T,HT,T,G)

title(’Gibbs Free Energy, Enthalpy, and Temperature-Scaled Entropy’)

xlabel(’Temperature (K)’)

ylabel(’Energy (J/mol)’)

% Neutral Folding Free Energy Curve

figure (4)

plot(T,F,T,0)

title(’Neutral Folding Free Energy’)

xlabel(’Temperature (K)’)

ylabel(’Energy (J/mol)’)
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GRAPHS FOR CHAPTER 3:

close all

clear all

%% Small Angle X-Ray Scattering

% Plotting the intensity of scattered x-rays from a homogeneous sphere

% Anthony Banks, 2/7/12. Revised 10/30/12

%% Fixed Parameters

p = 4; % density of sphere (kg/m^3)

p0 = 1; % density of water (kg/m^3)

% Rg = 13; % radius of gyration of sphere (A)

a = 16; % radius of sphere

Rg = sqrt(3/5)*a; % radius of gyration of sphere (A)

L = 10; % x-ray wavelength (A)

maxth = 0.006*180/pi; % max angle

%% Optional Inputs

%a = input(’sphere radius = ’); % radius

%maxth = input(’max angle = ’); % max angle

%L = input(’x-ray wavelength = ’); % wavelength

%% Variables

j = maxth/100; % step size

th = 0:j:maxth; % angle (rad)

Q = 2.*sin(th)./L; % distance from center

f = 2*pi*a.*Q; % variable such that PHI = PHI(f)

PHI = 3.*((sin(f)-f.*cos(f))./(f.^3)); % variable such that I = I(PHI)

I = (((p-p0)*((4/3)*pi*(a^3)))^2).*((PHI).^2); % intensity

I = I./(((p-p0)*((4/3)*pi*(a^3)))^2); % normalized intensity

rmax = 200;

r = rmax/length(Q):rmax/length(Q):rmax;

int = (Q.^2).*I.*sin(Q.*r)./(Q.*r);

pr = ((r(2:length(r)).^2)./(2*pi^2)).*trapz(Q(2:length(Q)),int(2:length(int)));

%% Graphs
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% Scattering

figure (1)

plot(Q,I)

title ’Intensity v Q’

xlabel ’Q (1/A)’

ylabel ’Intensity (Normalized)’

Q2 = Q.^2;

gQ2 = Q2(2:(0.3*(length(th)-1)));

lnI = log(I);

glnI = lnI(2:(0.3*(length(th)-1)));

% Gunier

figure (2)

plot(Q2,lnI)

title ’Guinier Plot’

xlabel ’Q^2 (1/A^2)’

ylabel ’Natural Log of Intensity’

% Guinier Region

figure (3)

plot(gQ2,glnI)

title ’Low-Q Region of Guinier Plot’

xlabel ’Q^2 (1/A^2)’

ylabel ’Natural Log of Intensity’

p2 = polyfit(gQ2,glnI,1);

Rg2 = sqrt((-p2(1)*3)/(4*(pi^2))); % Rg from Guinier Plot

% Kratky

figure (4)

plot(Q,I.*(Q.^2))

title ’Kratky Plot’

xlabel ’Q (1/A)’

ylabel ’IQ^2’

% LogScale

figure (5)

loglog(Q,I)

title ’LogLog-Scale Intensity’

ylabel ’Intensity’

xlabel ’Q’
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CHAPTER 5 GRAPHS:

clear all

close all

% Program to take input data and generate p(r) curve for analysis section

% of thesis. Data is of folded Cytochrome-C. Anthony Banks 9/13/12

% Load Data

rawdata = ’/Users/anthonybanks/Desktop/Research/Thesis/thch5prdata.txt’;

fid = fopen(rawdata);

dat = textscan(fid, ’%f %f %f’);

r = dat{1};

p = dat{2};

err = dat{3}.*ones(size(r));

% Plot p(r) Curve

figure (1)

errorbar(r,p,err,err,’o’)

title(’Pair-Distance Distribution Function’)

xlabel(’Distance, r (Angstroms)’)

ylabel(’p(r)’)

Rg = sqrt(trapz(r,p.*(r.^2))/(2*trapz(r,p)));

% Program to take input scattering data from SAXS measurements, x-ray

% crystallography, and reconstructed protein and compare for analysis

% section of thesis. Data is for folded Cytochrome-C

% Load XRD data and SAXS data

rawdata2 = ’/Users/anthonybanks/Desktop/Research/Thesis/cytcXRDwithSAXSdata.txt’;

fid2 = fopen(rawdata2);

dat2 = textscan(fid2, ’%f %f %f’);

q2 = dat2{1};

expI2 = dat2{2};

xrdI2 = dat2{3};

q2b = q2;

% (1:length(q2)-1);

expI2b = expI2;

% (1:length(expI2)-1);
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% Load DAMMIN reconstrcuted data and SAXS data

rawdata3 = ’/Users/anthonybanks/Desktop/Research/Thesis/cytcDAMwithSAXSdata.txt’;

fid3 = fopen(rawdata3);

dat3 = textscan(fid3, ’%f %f %f’);

q3 = dat3{1};

expI3 = dat3{2};

damI3 = dat3{3};

% Plot scattering curves for the three datasets

figure (2)

loglog(q2,expI2,’b’,q2,damI3,’r--’,q2,xrdI2,’g-.’)

title(’Comparison of Scattering Curves’)

ylabel(’Scattering Intensity, I(Q)’)

xlabel(’Radial Distance, Q(1/A)’)

rawdata4 = ’/Users/anthonybanks/Desktop/Research/Thesis/M00C2.dat’;

fid4 = fopen(rawdata4);

dat4 = textscan(fid4, ’%f %f %f’);

q4 = dat4{1};

I4 = dat4{2};

q4 = q4(1:length(q4)-4);

I4 = I4(1:length(I4)-4);

errxp = dat4{3};

errxp = errxp(1:length(errxp)-4).*(q4.^2);

% Kratky plot for three datasets

figure (3)

hold on

errorbar(q4,(q4.^2).*I4,errxp,errxp,’o’)

plot(q2,(q2.^2).*damI3,’-r’,q2,(q2.^2).*xrdI2,’-g’)

hold off

title(’Kratky Plots for Scattering Data’)

xlabel(’Radial Distance, Q(1/A)’)

ylabel(’I*Q^2’)

CHAPTER 6 GRAPHS:

% SAXS_data_Rg_lb.m

% Import, process, and plot reduced SAXS and calculate Radius of Gyration, Rg

% By Eric Landahl, 11/9/10 revised to make better plots 11/18/10

% Modified to import all data at 0, 2, 2.5, and 4 M 1/10/11

% Modified to calculate P(r) and persistance length lb 6/7/11
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% Porod’s Law calculation of lb commented out 6/7/11

%% Import Data

clear all;

fconc = ’25’; % concentration for filename

if fconc == ’0’

numtemps = 14; % for 4.0 M % number of temperature runs

ffront=’/Nanosecond T-Jump Small Angle X-Ray Scattering/Text/Data/’;

ftemp1 = -[20 15 10 5]; % for 2.5 M

ftemp2 = [0 5]; % for 2.5 M

ftemp3 = [10 15 20 30 35 40 45 50]; % for 2.5 and 2.0 M

fopt = ’M’; % optional filename adddition for ftemp3

foptT = ’’; % optional filename addition

end

if fconc == ’2’

numtemps = 15; % for 2.0 M

ffront=’/Nanosecond T-Jump Small Angle X-Ray Scattering/Text/Data/M’;

ftemp1 = -[24 20 15 10 5]; % for 2.0 M

ftemp2 = [0 5]; % for 2.0 M

ftemp3 = [10 15 25 30 35 40 45 50]; % for 2.5 and 2.0 M

fopt = ’M’; % optional filename adddition for ftemp3

foptT = ’T’; % optional filename addition

end

if fconc == ’25’ % for 2.5 M

numtemps = 17; % for 2.5 M % number of temperature runs

ffront=’/Nanosecond T-Jump Small Angle X-Ray Scattering/Text/Data/M’;

ftemp1 = -[22 20 17 12 10 7 2]; % for 2.5 M

ftemp2 = [2 5]; % for 2.5 M

ftemp3 = [10 15 25 30 35 40 45 50]; % for 2.5 and 2.0 M

fopt = ’’; % optional filename adddition for ftemp3

foptT = ’T’; % optional filename addition

end

if fconc == ’4’

numtemps = 14; % for 4.0 M % number of temperature runs

ffront=’/Nanosecond T-Jump Small Angle X-Ray Scattering/Text/Data/’;

ftemp1 = -[20 15 10 5]; % for 2.5 M

ftemp2 = [0 5]; % for 2.5 M
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ftemp3 = [10 15 20 30 35 40 45 50]; % for 2.5 and 2.0 M

fopt = ’M’; % optional filename adddition for ftemp3

foptT = ’’; % optional filename addition

end

fend=’C1.txt’;

x_0 = 0; % first data point (normally zero)

x_f = 118; % last data point (normally 100)

for t = 1:length(ftemp1);

fname = [ffront ’M’ fconc foptT ’_’ num2str(-ftemp1(t)) fend];

fid = fopen(fname, ’r’);

jnk = textscan(fid, ’%f %f %f’,1,’headerlines’,2);

data = textscan(fid, ’%f %f %f’);

x(:,t)=data{1};

% error(:,t)=data{3};

q = data{2};

end

for t = length(ftemp1)+1:length(ftemp1)+length(ftemp2);

fname = [ffront ’M’ fconc foptT num2str(ftemp2(t-length(ftemp1))) fend];

fid = fopen(fname, ’r’);

jnk = textscan(fid, ’%f %f %f’,1,’headerlines’,2);

data = textscan(fid, ’%f %f %f’);

x(:,t)=data{1};

% error(:,t)=data{3};

% q = data{2};

end

for t = length(ftemp1)+length(ftemp2)+1:numtemps;

fname = [ffront fopt fconc foptT num2str(ftemp3(t-(length(ftemp1)+length(ftemp2)))) fend];

fid = fopen(fname, ’r’);

jnk = textscan(fid, ’%f %f %f’,1,’headerlines’,2);

data = textscan(fid, ’%f %f %f’);

x(:,t)=data{1};

% error(:,t)=data{3};

end

ftemp = [ftemp1 ftemp2 ftemp3];

%% Remove highest q points (data is useless due to noise)

x_old = x;
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q_old = q;

clear x;

clear q;

for i = 1:(x_f-1)

x(i,:) = x_old(i,:);

q(i) = q_old(i);

end

q = q’;

%% Normalize

%for j = 1:numtemps

% x(:,j)=x(:,j)/max(x(:,j));

%end

%% Kratky Plots

figure(1);clf;hold on;

colr = colormap(jet(numtemps));

for t=1:numtemps

plot(q,(q.^2).*x(:,t),’Color’,colr(t,:),’LineWidth’,1)

end

title(’Kratky Plot 2.5M GuHCl’)

xlabel(’Q (1/Angstrom)’)

ylabel(’Intensity * Q^2’)

legend(num2str(ftemp’))

hold off

%% Intensity Plots

figure(31)

hold on

for t=1:numtemps

plot(log(q),log(x(:,t)),’Color’,colr(t,:),’LineWidth’,1)

end

title(’Log-Log Scaled Intensity 2.5M GuHCl’)

xlabel(’Q (1/Angstrom)’)

ylabel(’Intensity’)

legend(num2str(ftemp’))

hold off

%% Calculate Rg

minpt = 15; % lowest q index for Gunier plot nom. 15

maxpt = 60; % highest q index for Gunier plot nom. 60

xg = x(minpt:maxpt,:);
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qg = q(minpt:maxpt);

figure(2);clf;hold on;

for t = 1:numtemps

plot(qg.^2,log(xg(:,t)),’.’,’Color’,colr(t,:))

fit = polyfit(qg.^2,log(xg(:,t)),1);

m(t)=fit(1); % Slope (related to radius of gyration)

b(t)=fit(2); % Intercept (related to particle volume)

end

Rg = sqrt(-3*m)/10; % Radius of gyration in nm

title(’Gunier Plot 2.5M GuHCl’)

xlabel(’Q^2 (1/Angstrom^2)’)

ylabel(’log(Intensity)’)

legend(num2str(ftemp’))

for t = 1:numtemps

plot(qg.^2,m(t)*qg.^2+b(t),’Color’,colr(t,:))

end

hold off

figure(3);clf;hold on;

plot(ftemp,Rg,’o’)

xlabel(’Temperature (deg C)’)

ylabel(’Rg (nm)’)

title(’Protein Size vs. Temperature at 2.5M GuHCl’)

%% Plot Kratky with similar Rg

figure(4);clf;hold on;

colr = colormap(jet(numtemps));

t1=4;

plot(q,(q.^2).*x(:,t1),’Color’,colr(t1,:),’LineWidth’,2)

t2=11;

plot(q,(q.^2).*x(:,t2),’Color’,colr(t2,:),’LineWidth’,2)

title([num2str(Rg(t1)) ’A at ’ num2str(ftemp(t1)) ’C and ’ num2str(Rg(t2)) ’A at ’ num2str(ftemp

(t2)) ’C’])

xlabel(’Q (1/Angstrom)’)

ylabel(’Intensity * Q^2’)

%legend(num2str(ftemp’))

hold off

figure(5);clf;hold on;

colr = colormap(jet(numtemps));

t1=3;

plot(q,(q.^2).*x(:,t1),’Color’,colr(t1,:),’LineWidth’,2)

t2=12;
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plot(q,(q.^2).*x(:,t2),’Color’,colr(t2,:),’LineWidth’,2)

title([num2str(Rg(t1)) ’A at ’ num2str(ftemp(t1)) ’C and ’ num2str(Rg(t2)) ’A at ’ num2str(ftemp

(t2)) ’C’])

xlabel(’Q (1/Angstrom)’)

ylabel(’Intensity * Q^2’)

%legend(num2str(ftemp’))

hold off

figure(6);clf;hold on;

colr = colormap(jet(numtemps));

t1=6;

plot(q,(q.^2).*x(:,t1),’Color’,colr(t1,:),’LineWidth’,2)

t2=10;

plot(q,(q.^2).*x(:,t2),’Color’,colr(t2,:),’LineWidth’,2)

title([num2str(Rg(t1)) ’A at ’ num2str(ftemp(t1)) ’C and ’ num2str(Rg(t2)) ’A at ’ num2str(ftemp

(t2)) ’C’])

xlabel(’Q (1/Angstrom)’)

ylabel(’Intensity * Q^2’)

%legend(num2str(ftemp’))

hold off

%% Porod’s Law

minpt = 102; % lowest q index for Porod’s Law

maxpt = 117; % highest q index for Porod’s Law

xp = x(minpt:maxpt,:);

qp = q(minpt:maxpt);

figure(7);clf;hold on;

for t = 1:numtemps

plot(qp,xp(:,t).*qp.^2,’.’,’Color’,colr(t,:))

fit = polyfit(qp,xp(:,t).*qp.^2,1);

a(t)=fit(2); % offset

b(t)=fit(1); % 1/q

% c(t)=fit(1); % 1/q^2

end

title(’Porods Law’)

xlabel(’Q (1/Angstrom)’)

ylabel(’Intensity*Q^2’)

%legend(num2str(ftemp’))

for t = 1:numtemps

plot(qp,a(t)+b(t).*qp ,’Color’,colr(t,:))

end

% hold off

% figure(8);clf;hold on;
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% for t = 1:numtemps

% plot(ftemp(t),a(t),’o’,’MarkerEdgeColor’,colr(t,:))

% end

% ylabel(’Dimensionality’)

% xlabel(’Temperature (deg C)’)

% title(’Porod Analysis at 2.5M GuHCl’)

persist=-a./b; % persistance q

figure(8);clf;

t = 1:numtemps;

plot(ftemp(t),persist(t),’o’)

xlabel(’Temperature (deg C)’)

ylabel(’Persistance Q (1/Angstrom)’)

% %% Distance Distribution function P(r)

% figure(9);clf;

% for t = 1:numtemps

% rpts=100;

% dmax=70;

% for rnum = 1:rpts

% r = dmax*rnum/rpts; % Was 50

% ptemp=(r/(2*pi^2))*(q(1)*x(1,t).*sin(q(1)*r))*q(1);

% ptemp=0;

% for qnum = 15:80 % Was 40:100

% dq = q(qnum)-q(qnum-1);

% ptemp = ptemp+(r/(2*pi^2))*(q(qnum)*x(qnum,t).*sin(q(qnum)*r))*dq; % radial dist

func.

% end

% p(rnum,t)=ptemp;

% rr(rnum)=r;

% end

% end

% figure(9);hold on;

% plot(rr,p)

% ylim([0 max(max(p))])

% xlabel(’r (Angstrom)’);

% ylabel(’p(r)’);

% title(’Distance Distribution Function’);

% for t = 1:numtemps

% rgtemp1=0;

% rgtemp2=0;

% for rnum = 1:rpts

% if p(rnum,t) > 0 % only positive values of p(r) contribute to Rg

% rgtemp1=rgtemp1+p(rnum,t)*rr(rnum)^2;
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% rgtemp2=rgtemp2+2*p(rnum,t);

% end

% end

% rg(t)=sqrt(rgtemp1/rgtemp2);

% end

% figure(10);clf;hold on;

% plot(ftemp,rg,’o’)

% xlabel(’Temperature (deg C)’)

% ylabel(’Rg (Angstrom)’)

% %% Calculate lb using curve fit to p(r)

% figure(12);clf(12); % Clear figure showing fits

% for t = 1:numtemps

% [po(t) lb(t) p_fit r_fit]=WLC_Fit(p(:,t),rr,rg(t));

% end

% figure(11);clf;hold on;

% plot(ftemp,lb,’o’)

% xlabel(’Temperature (deg C)’)

% ylabel(’Persistance Length (Angstrom)’)

%

clear all

close all

% Program to read in radii of gyration from cytochrome-C p(r) curves and

% plot for varying molarity and temperature. Also contains Rg values from

% IgorPro and from MATLAB analysis. Anthony Banks, 12/10/12

%% Import p(r) Data

rawdata = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/GNOMRgvals.txt’;

fid = fopen(rawdata);

dat = textscan(fid, ’%f %f %f’);

t = dat{1};

prrg = dat{2};

err = dat{3};

%% Sort p(r) data

prt0 = t(1:15);

prt2 = t(16:28);

prt25 = t(29:49);

prt4 = t(50:63);

prrg0 = prrg(1:15);

prrg2 = prrg(16:28);
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prrg25 = prrg(29:49);

prrg4 = prrg(50:63);

err0 = err(1:15);

err2 = err(16:28);

err25 = err(29:49);

err4 = err(50:63);

prpct0 = 100*err0./prrg0;

prpct25 = 100*err25./prrg25;

prpct4 = 100*err4./prrg4;

%% Results from MATLAB analysis (SAXS_data_Rg_lb.m)

Rg0 = [1.37506077630418,1.35709391066313,1.45614379848387,1.29461257698835,1.3662574

9672085,1.36423217170344,1.69609348568154,1.38957499914510,1.35533910803646,1.

43538811383953,1.35477087688931,1.39652672045133,1.56870709952835,1.55905997

170966];

t0 = [-20,-15,-10,-5,0,5,10,15,20,30,35,40,45,50];

Rg25 = [2.12816569327235,2.05818532930598,2.01523819142115,1.94402827023630,1.9117183

7852353,1.86170973371064,1.84122299550482,1.81203048758621,1.87578767178838,1.

97012340621021,2.04802378239003,2.26906271329393,2.31415044090789,2.36767554

631922,2.44174320564040,2.48782097794133,2.47419020505677];

t25 = [-22,-20,-17,-12,-10,-7,-2,2,5,10,15,25,30,35,40,45,50];

Rg4 = [2.65050639049563,2.64546749338987,2.60272884428079,2.57759493866481,2.5933746

1306441,2.58502639490038,2.62689185940457,2.51837829693407,2.57376658665074,2.

57947808578814,2.58022687473143,2.56147756603217,2.57992933669984,2.60640941

440917];

t4 = [-20,-15,-10,-5,0,5,10,15,20,30,35,40,45,50];

%% Results from IgorPro analysis

iprg0 = [13.5890000000000,13.4480000000000,13.7630000000000,13.3700000000000,13.377000

0000000,13.4720000000000,13.6930000000000,13.4920000000000,13.8480000000000,1

3.6190000000000,13.3830000000000,13.6570000000000,14.1020000000000,14.0560000

000000];

ipt0 = [-20,-15,-10,-5,0,5,10,15,25,30,35,40,45,50];

iperr0 = [0.0514790000000000,0.0833520000000000,0.0805660000000000,0.0343460000000000,

0.0361910000000000,0.0492840000000000,0.0432250000000000,0.0587980000000000,

0.140690000000000,0.0672320000000000,0.0449690000000000,0.0777510000000000,0

.0574710000000000,0.0580460000000000];

iprg25 = [25.1580000000000,24.5420000000000,22.4240000000000,23.1660000000000,20.984000

0000000,19.1170000000000,18.9680000000000,17.3510000000000,17.1010000000000,1
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8.5340000000000,17.0680000000000,18.1840000000000,19.7840000000000,22.0070000

000000,22.8500000000000,24.8800000000000,25.7320000000000,26.2040000000000,26

.5920000000000,27.0480000000000,27.3070000000000];

ipt25 = [-22,-20,-17,-15,-12,-10,-7,-5,-2,0,2,5,10,15,20,25,30,35,40,45,50];

iperr25 = [0.0134050000000000,0.0117110000000000,0.0106620000000000,0.0090211000000000

0,0.0112600000000000,0.00946470000000000,0.00851170000000000,0.0070144000000

0000,0.00498300000000000,0.0134020000000000,0.231970000000000,0.208460000000

000,0.0215020000000000,0.00806270000000000,0.0120430000000000,0.016069000000

0000,0.0141530000000000,0.0181810000000000,0.00786960000000000,0.02198400000

00000,0.0265180000000000];

iprg4 = [29.8620000000000,30.3900000000000,31.0320000000000,30.5660000000000,28.657000

0000000,29.9350000000000,28.7850000000000,29.3610000000000,30.6110000000000,2

9.5870000000000,29.1230000000000,30.0330000000000,30.0330000000000,30.6570000

000000];

ipt4 = [-20,-15,-10,-5,0,5,10,15,20,30,35,40,45,50];

iperr4 = [0.820940000000000,0.870399900000000,0.0613330000000000,0.925420000000000,1.00

750000000000,0.687680000000000,0.0174390000000000,0.538790000000000,0.714590

000000000,0.548631000000000,0.614500000000000,0.489920000000000,0.4541800000

00000,0.723060000000000];

ippct0 = 100*iperr0./iprg0;

ippct25 = 100*iperr25./iprg25;

ippct4 = 100*iperr4./iprg4;

%% Rgs from DAMMIN Reconstructions

tD = [-22,-20,-17,-15,-12,-10,-7,-5,-2,0,2,5,10,15,20,25,30,35,40,45];

rgD = [24.18,22.39,17.73,20.05,18.8,18.3,20.77,17.68,16.47,16.54,17.47,17.5,17.93,19.13,20.02,22

.32,23.93,25.71,24.35,25.24];

%% Plot Data

figure (1)

title ’Radius of Gyration from p(r) curves’

xlabel ’Temperature (C^o)’

ylabel ’Radius of Gyration (Angstroms)’

hold on

errorbar(prt0,prrg0,err0,’ko’)

% errorbar(prt2,prrg2,err2,’bo’)

errorbar(prt25,prrg25,err25,’ro’)

errorbar(prt4,prrg4,err4,’go’)

hold off

figure (2)
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hold on

plot(t0,10.*Rg0,’bo’)

plot(t25,10.*Rg25,’ko’)

plot(t4,10.*Rg4,’ro’)

title ’Radius of gyration from MATLAB analysis’

xlabel ’Temperature (^oC)’

ylabel ’Radius of Gyration (Angstroms)’

hold off

figure (3)

hold on

errorbar(ipt0,iprg0,iperr0,’k*’)

errorbar(ipt25,iprg25,iperr25,’r*’)

errorbar(ipt4,iprg4,iperr4,’g*’)

title ’Radius of gyration from Guinier analysis’

xlabel ’Temperature (^oC)’

ylabel ’Radius of Gyration (Angstroms)’

hold off

figure (4)

hold on

plot(prt0,prrg0,’ko’)

% plot(prt2,prrg2,err2,’bo’)

plot(prt25,prrg25,’ro’)

plot(prt4,prrg4,’go’)

plot(ipt0,iprg0,’k*’)

plot(ipt25,iprg25,’r*’)

plot(ipt4,iprg4,’g*’)

title ’Radius of gyration from Guinier and p(r) analysis’

xlabel ’Temperature (^oC)’

ylabel ’Radius of Gyration (Angstroms)’

hold off

figure (5)

hold on

plot(prt0,prpct0,’ko’)

plot(prt25,prpct25,’ro’)

plot(prt4,prpct4,’go’)

plot(ipt0,ippct0,’k*’)

plot(ipt25,ippct25,’r*’)

plot(ipt4,ippct4,’g*’)

title ’Percent error for Guinier and p(r) radius of gyration calculations’

xlabel ’Temperature (^oC)’
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ylabel ’% Error’

hold off

figure (6)

hold on

% plot(prt0,prrg0,’ko’)

% plot(prt2,prrg2,err2,’bo’)

plot(prt25,prrg25,’ro’)

% plot(prt4,prrg4,’go’)

% plot(ipt0,iprg0,’k*’)

plot(ipt25,iprg25,’r*’)

% plot(ipt4,iprg4,’g*’)

plot(tD,rgD,’bsq’)

title ’Radius of gyration from Guinier and p(r) analysis, and DAMMIN rconstructions’

xlabel ’Temperature (^oC)’

ylabel ’Radius of Gyration (Angstroms)’

hold off

clear all

close all

% Program to take in scattering profiles from FoXS and plot DAMMIN I(q)

% with experimental I(q). Anthony Banks, 01/03/13

%% Get Data

rawdata_22 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

MM25T_22C1/foxs_22.txt’;

fid_22 = fopen(rawdata_22);

dat_22 = textscan(fid_22, ’%f %f %f’,’headerlines’,1);

Q_22 = dat_22{1}; % Scattering vector

Iexp_22 = dat_22{2}; % Scattering from theoretical sphere

Isim_22 = dat_22{3}; % FoXS-calculated scattering from DAMMIN

rawdata_20 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T_20C1/foxs_20.txt’;

fid_20 = fopen(rawdata_20);

dat_20 = textscan(fid_20, ’%f %f %f’,’headerlines’,1);

Q_20 = dat_20{1}; % Scattering vector

Iexp_20 = dat_20{2}; % Scattering from theoretical sphere

Isim_20 = dat_20{3}; % FoXS-calculated scattering from DAMMIN

rawdata_17 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/
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MM25T_17C1/foxs_17.txt’;

fid_17 = fopen(rawdata_17);

dat_17 = textscan(fid_17, ’%f %f %f’,’headerlines’,1);

Q_17 = dat_17{1}; % Scattering vector

Iexp_17 = dat_17{2}; % Scattering from theoretical sphere

Isim_17 = dat_17{3}; % FoXS-calculated scattering from DAMMIN

rawdata_15 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T_15C1/foxs_15.txt’;

fid_15 = fopen(rawdata_15);

dat_15 = textscan(fid_15, ’%f %f %f’,’headerlines’,1);

Q_15 = dat_15{1}; % Scattering vector

Iexp_15 = dat_15{2}; % Scattering from theoretical sphere

Isim_15 = dat_15{3}; % FoXS-calculated scattering from DAMMIN

rawdata_12 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

MM25T_12C1/foxs_12.txt’;

fid_12 = fopen(rawdata_12);

dat_12 = textscan(fid_12, ’%f %f %f’,’headerlines’,1);

Q_12 = dat_12{1}; % Scattering vector

Iexp_12 = dat_12{2}; % Scattering from theoretical sphere

Isim_12 = dat_12{3}; % FoXS-calculated scattering from DAMMIN

rawdata_10 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

MM25T_10C1/foxs_10.txt’;

fid_10 = fopen(rawdata_10);

dat_10 = textscan(fid_10, ’%f %f %f’,’headerlines’,1);

Q_10 = dat_10{1}; % Scattering vector

Iexp_10 = dat_10{2}; % Scattering from theoretical sphere

Isim_10 = dat_10{3}; % FoXS-calculated scattering from DAMMIN

rawdata_7 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

MM25T_7C1/foxs_7.txt’;

fid_7 = fopen(rawdata_7);

dat_7 = textscan(fid_7, ’%f %f %f’,’headerlines’,1);

Q_7 = dat_7{1}; % Scattering vector

Iexp_7 = dat_7{2}; % Scattering from theoretical sphere

Isim_7 = dat_7{3}; % FoXS-calculated scattering from DAMMIN

rawdata_5 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T_5C1/foxs_5.txt’;

fid_5 = fopen(rawdata_5);

dat_5 = textscan(fid_5, ’%f %f %f’,’headerlines’,1);
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Q_5 = dat_5{1}; % Scattering vector

Iexp_5 = dat_5{2}; % Scattering from theoretical sphere

Isim_5 = dat_5{3}; % FoXS-calculated scattering from DAMMIN

rawdata_2 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

MM25T_2C1/foxs_2.txt’;

fid_2 = fopen(rawdata_2);

dat_2 = textscan(fid_2, ’%f %f %f’,’headerlines’,1);

Q_2 = dat_2{1}; % Scattering vector

Iexp_2 = dat_2{2}; % Scattering from theoretical sphere

Isim_2 = dat_2{3}; % FoXS-calculated scattering from DAMMIN

rawdata0 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

MM25T0C1/foxs0.txt’;

fid0 = fopen(rawdata0);

dat0 = textscan(fid0, ’%f %f %f’,’headerlines’,1);

Q0 = dat0{1}; % Scattering vector

Iexp0 = dat0{2}; % Scattering from theoretical sphere

Isim0 = dat0{3}; % FoXS-calculated scattering from DAMMIN

rawdata2 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

MM25T2C1/foxs2.txt’;

fid2 = fopen(rawdata2);

dat2 = textscan(fid2, ’%f %f %f’,’headerlines’,1);

Q2 = dat2{1}; % Scattering vector

Iexp2 = dat2{2}; % Scattering from theoretical sphere

Isim2 = dat2{3}; % FoXS-calculated scattering from DAMMIN

rawdata5 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T5C1/foxs5.txt’;

fid5 = fopen(rawdata5);

dat5 = textscan(fid5, ’%f %f %f’,’headerlines’,1);

Q5 = dat5{1}; % Scattering vector

Iexp5 = dat5{2}; % Scattering from theoretical sphere

Isim5 = dat5{3}; % FoXS-calculated scattering from DAMMIN

rawdata10 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T10C1/foxs10.txt’;

fid10 = fopen(rawdata10);

dat10 = textscan(fid10, ’%f %f %f’,’headerlines’,1);

Q10 = dat10{1}; % Scattering vector

Iexp10 = dat10{2}; % Scattering from theoretical sphere

Isim10 = dat10{3}; % FoXS-calculated scattering from DAMMIN
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rawdata15 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T15C1/foxs15.txt’;

fid15 = fopen(rawdata15);

dat15 = textscan(fid15, ’%f %f %f’,’headerlines’,1);

Q15 = dat15{1}; % Scattering vector

Iexp15 = dat15{2}; % Scattering from theoretical sphere

Isim15 = dat15{3}; % FoXS-calculated scattering from DAMMIN

rawdata20 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T20C1/foxs20.txt’;

fid20 = fopen(rawdata20);

dat20 = textscan(fid20, ’%f %f %f’,’headerlines’,1);

Q20 = dat20{1}; % Scattering vector

Iexp20 = dat20{2}; % Scattering from theoretical sphere

Isim20 = dat20{3}; % FoXS-calculated scattering from DAMMIN

rawdata25 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T25C1/foxs25.txt’;

fid25 = fopen(rawdata25);

dat25 = textscan(fid25, ’%f %f %f’,’headerlines’,1);

Q25 = dat25{1}; % Scattering vector

Iexp25 = dat25{2}; % Scattering from theoretical sphere

Isim25 = dat25{3}; % FoXS-calculated scattering from DAMMIN

rawdata30 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T30C1/foxs30.txt’;

fid30 = fopen(rawdata30);

dat30 = textscan(fid30, ’%f %f %f’,’headerlines’,1);

Q30 = dat30{1}; % Scattering vector

Iexp30 = dat30{2}; % Scattering from theoretical sphere

Isim30 = dat30{3}; % FoXS-calculated scattering from DAMMIN

rawdata35 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T35C1/foxs35.txt’;

fid35 = fopen(rawdata35);

dat35 = textscan(fid35, ’%f %f %f’,’headerlines’,1);

Q35 = dat35{1}; % Scattering vector

Iexp35 = dat35{2}; % Scattering from theoretical sphere

Isim35 = dat35{3}; % FoXS-calculated scattering from DAMMIN

rawdata40 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T40C1/foxs40.txt’;
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fid40 = fopen(rawdata40);

dat40 = textscan(fid40, ’%f %f %f’,’headerlines’,1);

Q40 = dat40{1}; % Scattering vector

Iexp40 = dat40{2}; % Scattering from theoretical sphere

Isim40 = dat40{3}; % FoXS-calculated scattering from DAMMIN

rawdata45 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/25M BSUB DATA/

M25T45C1/foxs45.txt’;

fid45 = fopen(rawdata45);

dat45 = textscan(fid45, ’%f %f %f’,’headerlines’,1);

Q45 = dat45{1}; % Scattering vector

Iexp45 = dat45{2}; % Scattering from theoretical sphere

Isim45 = dat45{3}; % FoXS-calculated scattering from DAMMIN

rawdata0M0 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/0M BSUB DATA/

M00C2 Test Runs/foxs0M0.txt’;

fid0M0 = fopen(rawdata0M0);

dat0M0 = textscan(fid0M0, ’%f %f %f’,’headerlines’,1);

Q0M0 = dat0M0{1}; % Scattering vector

Iexp0M0 = dat0M0{2}; % Scattering from theoretical sphere

Isim0M0 = dat0M0{3}; % FoXS-calculated scattering from DAMMIN

rawdata4M0 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/CYTC/4M BSUB DATA/

M40C1 Test Runs/foxs4M0.txt’;

fid4M0 = fopen(rawdata4M0);

dat4M0 = textscan(fid4M0, ’%f %f %f’,’headerlines’,1);

Q4M0 = dat4M0{1}; % Scattering vector

Iexp4M0 = dat4M0{2}; % Scattering from theoretical sphere

Isim4M0 = dat4M0{3}; % FoXS-calculated scattering from DAMMIN

chiD = ((Isim_20 - Iexp_20).^2)./Iexp_20;

chiD = sum(chiD);

%% Plots

colr = colormap(jet(22));

figure (1)

subplot(2,2,2),loglog(Q4M0,Iexp4M0,’--’,Q4M0,Isim4M0,’-’,’color’,colr(1,:))

subplot(2,2,3),loglog(Q_22,Iexp_22,’--’,Q_22,Isim_22,’-’,’color’,colr(2,:))

subplot(2,2,1),loglog(Q_20,Iexp20,’--’,Q_20,Isim_20,’-’,’color’,colr(3,:))

figure (2)
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subplot(2,2,1),loglog(Q_17,Iexp_17,’--’,Q_17,Isim_17,’-’,’color’,colr(4,:))

subplot(2,2,2),loglog(Q_15,Iexp_15,’--’,Q_15,Isim_15,’-’,’color’,colr(5,:))

subplot(2,2,3),loglog(Q_12,Iexp_12,’--’,Q_12,Isim_12,’-’,’color’,colr(6,:))

subplot(2,2,4),loglog(Q_10,Iexp_10,’--’,Q_10,Isim_10,’-’,’color’,colr(7,:))

figure (3)

subplot(2,2,1),loglog(Q_7,Iexp_7,’--’,Q_7,Isim_7,’-’,’color’,colr(8,:))

subplot(2,2,2),loglog(Q_5,Iexp_5,’--’,Q_5,Isim_5,’-’,’color’,colr(9,:))

subplot(2,2,3),loglog(Q_2,Iexp_2,’--’,Q_2,Isim_2,’-’,’color’,colr(10,:))

subplot(2,2,4),loglog(Q0,Iexp0,’--’,Q0,Isim0,’-’,’color’,colr(11,:))

figure (4)

subplot(2,2,1),loglog(Q0M0,Iexp0M0,’--’,Q0M0,Isim0M0,’-’,’color’,colr(12,:))

subplot(2,2,2),loglog(Q2,Iexp2,’--’,Q2,Isim2,’-’,’color’,colr(13,:))

subplot(2,2,3),loglog(Q5,Iexp5,’--’,Q5,Isim5,’-’,’color’,colr(14,:))

subplot(2,2,4),loglog(Q10,Iexp10,’--’,Q10,Isim10,’-’,’color’,colr(15,:))

figure (5)

subplot(2,2,1),loglog(Q15,Iexp15,’--’,Q15,Isim15,’-’,’color’,colr(16,:))

subplot(2,2,2),loglog(Q20,Iexp20,’--’,Q20,Isim20,’-’,’color’,colr(17,:))

subplot(2,2,3),loglog(Q25,Iexp25,’--’,Q25,Isim25,’-’,’color’,colr(18,:))

subplot(2,2,4),loglog(Q30,Iexp30,’--’,Q30,Isim30,’-’,’color’,colr(19,:))

figure (6)

subplot(2,2,1),loglog(Q35,Iexp35,’--’,Q35,Isim35,’-’,’color’,colr(20,:))

subplot(2,2,2),loglog(Q40,Iexp40,’--’,Q40,Isim40,’-’,’color’,colr(21,:))

subplot(2,2,3),loglog(Q45,Iexp45,’--’,Q45,Isim45,’-’,’color’,colr(22,:))

CHAPTER 7 GRAPHS

%Program for analyzing miros data from March 13th 2012 experiment at the

%APS. I(q) data comes from 2D intensity images that have been reduced to I(q)

%curves and then filtered for quality. p(r) data comes from GNOM output files

%Anthony Banks 8/18/2012

clear all

close all

%% Load I(q) data

run1 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_S/miros_03ca_04c_1_1/

miros_03ca_04c_1_1.dat’;
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fid1 = fopen(run1, ’r’);

jnk1 = textscan(fid1, ’%f %f %f’,1,’headerlines’,1);

dat1 = textscan(fid1, ’%f %f %f’);

run2 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_S/miros_00ca_04c_3_1/

miros_00ca_04c_3_1.dat’;

fid2 = fopen(run2, ’r’);

jnk2 = textscan(fid2, ’%f %f %f’,1,’headerlines’,1);

dat2 = textscan(fid2, ’%f %f %f’);

%% Data separation

Qrun1 = dat1{1};

Irun1 = dat1{2};

erun1 = dat1{3};

Qrun2 = dat2{1};

Irun2 = dat2{2};

erun2 = dat2{3};

%% Load p(r) data

load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_S/

miros_03ca_04c_1_1/80_98LR100A1pr.txt

load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_S/

miros_00ca_04c_3_1/70_98LR100Apr.txt

p1 = X80_98LR100A1pr(:,2);

p2 = X70_98LR100Apr(:,2);

r1 = X80_98LR100A1pr(:,1);

r2 = X70_98LR100Apr(:,1);

errp1 = X80_98LR100A1pr(:,3);

errp2 = X70_98LR100Apr(:,3);

%% Load FoXS data

foxs1 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_S/miros_03ca_04c_1_1/

foxs80_98LR100A1.txt’;

fid1 = fopen(foxs1, ’r’);

jnk1 = textscan(fid1, ’%f %f %f’,1,’headerlines’,1);

foxsdat1 = textscan(fid1, ’%f %f %f’);
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foxq1 = foxsdat1{1};

saxsI1 = foxsdat1{2};

damI1 = foxsdat1{3};

foxs2 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_S/miros_00ca_04c_3_1/

foxs70_98LR100A2.txt’;

fid2 = fopen(foxs2, ’r’);

jnk2 = textscan(fid2, ’%f %f %f’,1,’headerlines’,1);

foxsdat2 = textscan(fid2, ’%f %f %f’);

foxq2 = foxsdat2{1};

saxsI2 = foxsdat2{2};

damI2 = foxsdat2{3};

%% Plot data

%loglog plots

figure(1)

loglog(Qrun1,Irun1,’bo’,Qrun2,Irun2,’go’)

title (’Intensity plots for Miro-S in high/low level Ca^2^+ solutions’)

xlabel (’Q(cm^-^1)’)

ylabel (’Intensity’)

%regular I(q) plots

figure(2)

plot(Qrun1,Irun1,’b’,Qrun2,Irun2,’g’)

title (’intensity plots’)

xlabel (’q(1/A^o)’)

ylabel (’intensity’)

%guinier plots

figure(3)

plot(Qrun1.^2,log(Irun1),’bo’,Qrun2.^2,log(Irun2),’go’)

title(’Guinier plots for MiroS in high/low level Ca^2^+ solutions’)

xlabel(’Q^2(cm^-^2)’)

ylabel(’ln(I)’)

%kratky plots

figure (7)

plot(Qrun1,(Qrun1.^2).*Irun1,’bo’,Qrun2,(Qrun2.^2).*Irun2,’go’)

%plot(Qrun1(1:80),(Qrun1(1:80).^2).*Irun1(1:80),’bo’)

title(’Kratky plots for Miro-S in high/low level Ca^2^+ solutions’)

xlabel(’Q(cm^-^1)’)

ylabel(’Q^2I’)
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%p(r) curves

figure(4)

hold on

errorbar(r1,p1,errp1,’bo’)

errorbar(r2,p2,errp2,’go’)

title (’p(r) functions for Miro-S in high/low level Ca^2^+ solutions’)

xlabel (’r’)

ylabel (’p’)

hold off

%FoXS plot for 03ca Miros

figure(5)

loglog(foxq1,saxsI1,’b--’,foxq1(1:80),damI1(1:80),’b-’)

title(’FoXS Comparison for miros 03ca 04c’)

xlabel(’Q’)

ylabel(’I’)

%Foxs plot for 00ca Miros

figure(6)

loglog(foxq2,saxsI2,’b--’,foxq2,damI2,’b-’)

title(’FoXS Comparison for miros 00ca 04c’)

xlabel(’Q(cm^-^1)’)

ylabel(’Intensity’)

%Program for analyzing mirol data from March 13th 2012 experiment at the

%APS. I(q) data comes from 2D intensity images that have been reduced to I(q)

%curves and then filtered for quality. p(r) data comes from GNOM output files

%Anthony Banks 8/18/2012

clear all

close all

%% Load I(q) data

run3_1 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run3_00ca1mg_1/mirol_run3_00ca1mg_1.dat’;

fid31 = fopen(run3_1, ’r’);

jnk31 = textscan(fid31, ’%f %f %f’,1,’headerlines’,1);

dat31 = textscan(fid31, ’%f %f %f’);

%

% run3_2 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/
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mirol_run3_00ca1mg_2/mirol_run3_00ca1mg_2.dat’;

% fid32 = fopen(run3_2, ’r’);

% jnk32 = textscan(fid32, ’%f %f %f’,1,’headerlines’,1);

% dat32 = textscan(fid32, ’%f %f %f’);

run4_1 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run4_30ca1mg_1/mirol_run4_30ca1mg_1.dat’;

fid41 = fopen(run4_1, ’r’);

jnk41 = textscan(fid41, ’%f %f %f’,1,’headerlines’,1);

dat41 = textscan(fid41, ’%f %f %f’);

% run4_2 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run4_30ca1mg_2/mirol_run4_30ca1mg_2.dat’;

% fid42 = fopen(run4_2, ’r’);

% jnk42 = textscan(fid42, ’%f %f %f’,1,’headerlines’,1);

% dat42 = textscan(fid42, ’%f %f %f’);

%

% run13_1 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run13_00ca05mgalf_1/mirol_run13_00ca05mgalf_1.dat’;

% fid131 = fopen(run13_1, ’r’);

% jnk131 = textscan(fid131, ’%f %f %f’,1,’headerlines’,1);

% dat131 = textscan(fid131, ’%f %f %f’);

%

% run23_1 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run23_0ca1mg_1/mirol_run23_0ca1mg_1.dat’;

% fid231 = fopen(run23_1, ’r’);

% jnk231 = textscan(fid231, ’%f %f %f’,1,’headerlines’,1);

% dat231 = textscan(fid231, ’%f %f %f’);

%

% run24_1 = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run24_300ca1mg_1/mirol_run24_300ca1mg_1.dat’;

% fid241 = fopen(run24_1, ’r’);

% jnk241 = textscan(fid241, ’%f %f %f’,1,’headerlines’,1);

% dat241 = textscan(fid241, ’%f %f %f’);

%

%% Data separation

Qrun31 = dat31{1};

Irun31 = dat31{2};

erun31 = dat31{3};

%

% Qrun32 = dat32{1};

% Irun32 = dat32{2};
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% erun32 = dat32{3};

%

Qrun41 = dat41{1};

Irun41 = dat41{2};

erun41 = dat41{3};

%

% Qrun42 = dat42{1};

% Irun42 = dat42{2};

% erun42 = dat42{3};

%

% Qrun131 = dat131{1};

% Irun131 = dat131{2};

% erun131 = dat131{3};

%

% Qrun231 = dat231{1};

% Irun231 = dat231{2};

% erun231 = dat231{3};

%

% Qrun241 = dat241{1};

% Irun241 = dat241{2};

% erun241 = dat241{3};

%% Load p(r) data

load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/mirol_run3_00ca1mg_1/

mirol_run3_1p(r).txt

% load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run3_00ca1mg_2/mirol_run3_2p(r).txt

load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/mirol_run4_30ca1mg_1/

mirol_run4_1p(r).txt

% load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run4_30ca1mg_2/mirol_run4_2p(r).txt

% load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run13_00ca05mgalf_1/mirol_run13_1p(r).txt

% load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run23_0ca1mg_1/mirol_run23_1p(r).txt

% load /Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run24_300ca1mg_1/mirol_run24_1p(r).txt

%

p31 = mirol_run3_1p_r_(:,2);

% p32 = mirol_run3_2p_r_(:,2);

p41 = mirol_run4_1p_r_(:,2);

% p42 = mirol_run4_2p_r_(:,2);
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% p131 = mirol_run13_1p_r_(:,2);

% p231 = mirol_run23_1p_r_(:,2);

% p241 = mirol_run24_1p_r_(:,2);

%

r31 = mirol_run3_1p_r_(:,1);

% r32 = mirol_run3_2p_r_(:,1);

r41 = mirol_run4_1p_r_(:,1);

% r42 = mirol_run4_2p_r_(:,1);

% r131 = mirol_run13_1p_r_(:,1);

% r231 = mirol_run23_1p_r_(:,1);

% r241 = mirol_run24_1p_r_(:,1);

err31 = mirol_run3_1p_r_(:,3);

err41 = mirol_run4_1p_r_(:,3);

%% FoXS data

run4_1foxs = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run4_30ca1mg_1/mirol30cafoxs.txt’;

fid41foxs = fopen(run4_1foxs, ’r’);

jnk41foxs = textscan(fid41foxs, ’%f %f %f’,1,’headerlines’,1);

dat41foxs = textscan(fid41foxs, ’%f %f %f’);

q41foxs = dat41foxs{1};

I41foxsexp = dat41foxs{2};

I41foxsdam = dat41foxs{3};

run3_1foxs = ’/Users/anthonybanks/Desktop/Research/ANALYSIS/MIRO_L/

mirol_run3_00ca1mg_1/mirol0cafoxs.txt’;

fid31foxs = fopen(run3_1foxs, ’r’);

jnk31foxs = textscan(fid31foxs, ’%f %f %f’,1,’headerlines’,1);

dat31foxs = textscan(fid31foxs, ’%f %f %f’);

q31foxs = dat31foxs{1};

I31foxsexp = dat31foxs{2};

I31foxsdam = dat31foxs{3};

%% Plot data

%loglog plots

figure(1)

loglog(Qrun41,Irun41,’bo’,Qrun31,Irun31,’go’)

title (’Intensity plots for miro-L in a Ca^2^+-rich and Ca^2^+-free solutions’)

xlabel (’Q(Angstroms^-^1)’)
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ylabel (’I(Q)’)

% %regular I(q) plots

% figure(2)

% title (’intensity plots’)

% xlabel (’q(1/A^o)’)

% ylabel (’intensity’)

% plot(Qrun31,Irun31,’b’,Qrun32,Irun32,’g’,Qrun41,Irun41,’r’,Qrun42,Irun42,’y’,Qrun131,Irun131,’c’,

Qrun231,Irun231,’m’,Qrun241,Irun241,’k’)

% gunier plots

figure(3)

plot(Qrun41.^2,log(Irun41),’bo’,Qrun31.^2,log(Irun31),’go’)

title (’Guinier plots for miro-L in a Ca^2^+-rich and Ca^2^+-free solutions’)

xlabel (’Q^2(Angstroms^-^2)’)

ylabel (’ln(I(Q))’)

% kratky plot

figure (5)

plot(Qrun41, Irun41.*(Qrun41.^2),’bo’,Qrun31, Irun31.*(Qrun31.^2),’go’)

title (’Kratky plots for miro-L in Ca^2^+-rich and Ca^2^+-free solutions’)

xlabel (’Q(Angstroms^-^1)’)

ylabel (’Q^2I(Q)’)

%p(r) curves

figure(4)

title (’p(r) curves for miro-L in Ca^2^+-rich and Ca^2+-free solutions’)

xlabel (’r(Angstroms)’)

ylabel (’p(r)’)

hold on

errorbar(r31,p31,err31,’g.’)

% plot(r32,p32,’g’)

errorbar(r41,p41,err41,’b.’)

% plot(r42,p42,’y’)

% plot(r131,p131,’c’)

% plot(r231,p231,’m’)

% plot(r241,p241,’k’)

hold off

figure (6)

loglog(q41foxs,I41foxsexp,’bo’,q41foxs,I41foxsdam,’b’)

title(’FoXS comparison curve for miro-L in a Ca^2^+-rich solution’)

xlabel(’Q(Angstroms^-^1)’)
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ylabel(’I(Q)’)

figure (7)

loglog(q31foxs,I31foxsexp,’go’,q31foxs,I31foxsdam,’g’)

title(’FoXS comparison curve for miro-L in a Ca^2^+-free solution’)

xlabel(’Q(Angstroms^-^1)’)

ylabel(’I(Q)’)

%% Optional individual plots

% loglog(Qrun31,Irun31,’b’)

% loglog(Qrun32,Irun32,’r’)

% loglog(Qrun41,Irun41,’g’)

% loglog(Qrun42,Irun42,’y’)

% loglog(Qrun131,Irun131,’c’)

% plot(Qrun231,Irun231,’m’)

% plot(Qrun241,Irun241,’k’)
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APPENDIX B: DATA COLLECTION/ANALYSIS

IGORPRO ANALYSIS

This will serve as a step-by-step process for taking the raw data (2D TIF images) and

accompanying LOG files, and processing them to obtain background-subtracted scattering

intensity curves (I v Q). NOT described here is how to create a new experiment file, since this

depends on the detector and its distance from the sample, along with other parameters.

STEP 1: REDUCE THE DATA

-In IgorPro click on ‘‘BioCAT’’ in the toolbar.

-Now click ‘‘SAXS Data Reduction’’

-This will present a window describing the parameters. These should be fixed from the start

and should remain unchanged for the experiment, with the exception of ‘‘Number of data

runs to read’’; the number (X) here should correspond to the number of snapshots taken by

the camera during each data collection run. Enter this and click ‘‘Continue’’. More parameters

are presented that should again be fixed values. Just be sure that the ‘‘Q vector scale

desired’’ is set to ‘‘log scale’’. Click ‘‘Continue’’.

-Choose the log file corresponding to the data you wish to reduce.

-Now choose the TIF image corresponding to the first snapshot.

-IgorPro will reduce it and the next (X-1) files.

STEP 2: PLOT THE REDUCED DATA

-Click ‘‘Plot Fits’’ on the toolbar.

-Now go to ‘‘LogLog Plots’’ -> ‘‘LogLogPlot’’

-Enter the number X in ‘‘Number of data sets to plot’’

-In the ‘‘Select the Q data’’ drop-down menu choose the file corresponding to TIF image you

chose previously. It will have the same name as the TIF file but with a ‘q’ in front.

-Make sure to choose ‘‘yes’’ for ‘‘Log x-axis?’’ and ‘‘Log y-axis?’’

-Choose ‘‘Lines’’ for ‘‘Lines or Markers?’’

-Choose ‘‘Yes’’ for ‘‘Even Decades?’’

-Choose ‘‘Inverse Centimeters’’ for ‘‘Intensity Units’’

-Choose ‘‘Yes’’ for ‘‘Sequence of plots with same base’’

STEP 3: SUBTRACT THE BACKGROUND

-If the data collection has been successful there will be a clear distinction in the I(Q) curves

between the background and the data. Double-click on the graph legend and delete it, its not

necessary here. Then maximize the graph.

-Press CTRL-A to autoscale the graph

-Outliers can be removed by right-clicking on the lines and clicking ‘‘Remove’’

-You may also zoom in by clicking-and-dragging a selection box over an area, clicking in this

area and clicking ‘‘expand’’.



164

-Before subtracting the background, both it and the data must be averaged. Click-and-drag a

box to select the background curves, then hit CTRL-P.

-You will be prompted: ‘‘Weighting average by uncertainty?’’ (Yes), and ‘‘Name of averaged

data file:’’ (The name will be automatic, but add a ‘b’ at the end for background).

-Repeat this averaging process for the data curves, but add a ‘d’ to the ‘‘Name of averaged

data file’’

-To subtract the background hit CTRL-Q

-Again you will be prompted to choose the background and data files. Choose from

the drop down menus the files you named in the previous step.

-The scaling factor should be 1; Click ‘‘Continue’’.

-Now go back to ‘‘Plot Fits’’ -> ‘‘LogLog Plots’’ -> ‘‘LogLogPlot’’

-This time the ‘‘Number of data sets to plot’’ is 1. Other inputs should be the same as in step 2.

-Choose the appropriate Q data from the drop down menu (it will have the same name as in

previous steps but with ‘‘bsub’’ at the end)

-This will plot the background subtracted I(q) curve

STEP 4: SAVE THE DATA

-Below the graph, in a toolbar are a circle and square, next to which are the letters A and B

respectively.

-Click-and-drag the circle and place it at the beginning of the curve.

-Click-and-drag the square and place it at the end of the curve.

-In the main toolbar, do ‘‘Argonne SAXS’’ -> ‘‘Save data from plot to file’’

-Choose ‘‘Yes’’ for ‘‘Change output file name?’’

-Enter an appropriate file name (should indicate protein conditions) in the text box below (the

more abbreviated the better) and

click ‘‘Continue’’.

-Save the file to a location of your choice.

Note: It is useful to catalogue this graph for future reference. To do so, copy and paste

the graph to a word document.

STEP 5: GUINIER ANALYSIS

-Do: ‘‘Plot fits’’ -> ‘‘Special plots’’ -> ‘‘Make Gunier plot’’

-For ‘‘Enter the data you wish to plot’’ choose the ‘bsub’ file you plotted in step 3

-For ‘‘Lines?’’ choose ‘‘Markers’’

-For ‘‘Type of Guinier Plot’’ choose ‘‘Standard Compact Object’’

-For ‘‘How Many Waves?’’ choose 1

-For ‘‘Intensity Units’’ choose ‘‘Inverse Centimeters’’

-Click Continue to get your Guinier plot

-Zoom in on straight-line portion of the beginning of the Guinier plot

-The idea here is to isolate the linear relationship at the start of the curve; do this by placing

the circle and square at the beginning and end of this straight-line portion.

-Click ‘‘Plot fits’’ -> ‘‘Special plots’’ -> ‘‘Perform Guinier fit’’
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-The coefficients of the chosen line will be displayed. The thing to note here is that the

Qmax*Rg value should be between 1 and 1.3

-Record the Rg and again save a copy of the graph for future reference.

STEP 6: CREATE A FOLDER

Each individual .dat file resulting from step 4 should be placed in its own folder PRIOR to the

GNOM-DAMMIN analysis. This isnt essential, but its a good thing to do to stop files from

cluttering up later on

THE GNOM PROCEDURE

-Select data file: Input chosen .dat file from designated folder

-Name output file: Identical to input file but with .out extension instead of .dat. Also

indicate the Rmax chosen (see below). e.g. if Rmax = 64A, call output file filename_64A.out

-Rmax for evaluating p(r): Maximum diameter of particle

-Take Rg value from IgorPro analysis (slope of Gunier plot)

-Get corresponding radius by R = sqrt(5/3)Rg for sphere, or Rg = 1/5(a^2 + b^2 + c^2), for

ellipsoid, where a,b,c are the semi-axes lengths.

-Rmax = 2R for sphere, or 2a for ellipsoid (assuming a is longest axis)

-GNOM output, i.e. p(r) curve should be smooth, decaying to zero, with low error and no

oscillations.

If p(r) curve is bad, rerun GNOM procedure and choose different Rmax (perhaps less).

Do this by answering ‘‘Next Data Set?’’ as ‘‘yes’’ and renaming output file according to new

Rmax. Repeat this procedure until the output p(r) curve meets the desired characteristics, the

resulting Rg is close to that of the IgorPro analysis, and the error on this Rg is low.

NOTE: There may be datasets that incur Fourier transform sampling problems when

processed through GNOM. These are usually characterized by a significant dip near the

beginning of the p(r) curve, and large oscillations at higher Q. In such cases, reducing the

Rmax may result in a better curve, but this Rmax typically ends up being smaller than the

actual particle diameter. As one might imagine, this problem is typical of larger particles.

This can also be overcome by significantly reducing the ‘‘number of points in real space’’

input, but when this is done it usually results in a loss of detail and significant error.

Alternatively, one can omit high Q data points (also a user input in GNOM), and a low

-resolution reconstruction can be carried out instead.

-Once the p(r) curve has been produced, record the Rg and error from the .out file

-For every other input, hit enter.

THE DAMMIN PROCEDURE
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-Mode: Choose ‘‘fast’’ mode

-Log file name: Name the file such that it matches the .out filename, but also indicate the

shape and mode (e.g. for a fast spherical reconstruction, I usually add FS in front of the Rmax

value), and use a .log extension. Note: There’s a limit on how many characters the log

filename can have, you might have to get creative with abbreviations.

-Enter project description: This should include all details of the dataset, i.e. protein_

concentration_temperature_shape_Rmax_mode.

-For every other input, hit enter.

-The simulated annealing procedure will take a half hour to an hour in fast mode. Once it is

finished, there will be multiple files in the folder with the GNOM .out file. The one of most

interest is that with the -1.pdb extension. Open this with a text application, such as a Notepad,

or TextEdit. Before the columns of data there are some parameters. One of these will be

radius of gyration. Record this value. It should be close to the Rg from Guinier analysis and

the p(r) curve.

THE FOXS PROCEDURE

-Go online to the FOXS server, at http://modbase.compbio.ucsf.edu/foxs/index.html

-Here, upload the -1.pdb and original .dat file (the input for GNOM) using the ‘‘choose file’’

option. The ‘‘Experimental profile’’ is where the .dat file should be uploaded.

-Upload both and click ‘‘Submit form’’.

-This will show 2 graphs. On the left, the original experimental data and on the right, the

data with the scattering profile the .pdb gives (this is a unique solution).

-A good match and a low chi-squared is an indicator that the Fourier transform and

simulated annealing procedure has found a good solution based on the experimental data.

-Click on ‘‘Experimental profile fit file’’. This links to an html of the data, which should be

saved to a .dat file in the same folder as the other files. Identify it as the FOXS data file.

-If the graphs dont match and there is a large chi-squared, the DAMMIN portion of this

analysis should be repeated, until a satisfying fit is reached.

-Once FOXS gives a good match, you can rerun DAMMIN in slow mode (takes 6-8 hours

usually)

THE PYMOL PROCEDURE

-Open the .pdb file in PYMOL.

-There are a number of tasks one can carry out in PYMOL, but one of the easiest is

distance measurement. Click on the ‘‘Wizard’’ tab, then ‘‘Measurement’’. Now click on two

atoms to get the distance between them. At the very least this is useful for putting a scale on

the image.

-To the right of the image is a column with the filename. To the right of this one can click
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the letters A,S,H,L,C. Clicking on ‘S’ allows one to change the display. ‘‘Mesh’’ or ‘‘Surface’’

are good for studying overall structure, and ‘‘Spheres’’ is also good.

-Moving structures in PYMOL: You can double-click on a structure to bring up a list of

options, one of which is ‘‘drag object coordinates’’. Click this. Now, hold shift and click-and-

hold the left mouse button; moving the mouse now rotates the structure. You can also hold

shift and click-and-hold the right mouse key; moving the mouse up and down moves the

structure along the axis that goes into the monitor. Also, by holding ALT and the left mouse

button and moving the mouse you can move the structure with respect to the background.

This is all useful for docking reconstructions with crystal structures.
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APPENDIX C: GNOM OUTPUT

#### G N O M --- Version 4.5a revised 09/02/02 ####

02-Oct-2012 11:15:16

=== Run No 1 ===

Run title: Q_data I_data Err_data

******* Input file(s) : M00C2.dat

Condition P(rmin) = 0 is used.

Condition P(rmax) = 0 is used.

Highest ALPHA is found to be 0.5349E+02

The measure of inconsistency AN1 equals to 0.2315E+00

Alpha Discrp Oscill Stabil Sysdev Positv Valcen Total

0.5349E+05 73.4101 1.0624 0.6736 0.0336 1.0000 0.8922 0.39845

0.1070E+05 37.1732 1.0285 0.3404 0.0336 1.0000 0.9044 0.40204

0.2140E+04 15.7305 1.0117 0.1479 0.0336 1.0000 0.9215 0.46143

0.4279E+03 6.5894 1.0667 0.0676 0.0336 1.0000 0.9394 0.59723

0.8559E+02 2.1754 1.1592 0.0318 0.0336 1.0000 0.9541 0.64718

0.1712E+02 0.8809 1.2037 0.0111 0.3025 1.0000 0.9600 0.71455

0.3423E+01 0.6722 1.2267 0.0144 0.3361 1.0000 0.9629 0.73385

0.6847E+00 0.5972 1.2644 0.0107 0.4034 1.0000 0.9648 0.71943

0.1369E+00 0.5779 1.3096 0.0203 0.3697 1.0000 0.9642 0.70037

0.2739E-01 0.5656 1.4537 0.0297 0.4034 1.0000 0.9603 0.64599

0.5478E-02 0.5582 1.8135 0.0795 0.4706 0.9999 0.9551 0.45513

0.1096E-02 0.5455 3.6986 0.2728 0.4706 0.9952 0.9314 0.22992

0.2191E-03 0.5257 7.0315 0.3025 0.5042 0.9653 0.8467 0.17627

0.4382E-04 0.5181 8.3991 0.1068 0.5042 0.9316 0.6339 0.23120

0.8764E-05 0.5170 9.6876 0.2755 0.4706 0.9119 0.6015 0.10735

0.1753E-05 0.5161 12.6464 0.5124 0.4370 0.8538 0.6088 0.07616

0.3506E-06 0.5153 15.2193 0.5629 0.4370 0.7959 0.3904 0.06166

0.7011E-07 0.5143 14.7138 1.0763 0.4706 0.7550 0.3577 0.05810

0.1402E-07 0.5107 12.5461 0.8587 0.4706 0.7146 0.3544 0.05626

0.2805E-08 0.5035 12.7197 0.5003 0.5042 0.7026 0.3545 0.05444

0.5609E-09 0.4972 15.6705 0.6759 0.4874 0.6823 0.3648 0.05283

0.1122E-09 0.4827 16.5323 0.9699 0.5378 0.7330 0.3515 0.00000

*** Golden section search to maximize estimate ***
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Alpha Discrp Oscill Stabil Sysdev Positv Valcen Total

0.6331E+01 0.7234 1.2170 0.0122 0.3361 1.0000 0.9619 0.73677

0.9257E+01 0.7657 1.2120 0.0109 0.3025 1.0000 0.9612 0.73474

0.5006E+01 0.7020 1.2204 0.0132 0.3361 1.0000 0.9623 0.73627

0.7319E+01 0.7381 1.2151 0.0117 0.3697 1.0000 0.9616 0.73650

0.5788E+01 0.7149 1.2182 0.0126 0.3361 1.0000 0.9620 0.73669

0.6692E+01 0.7288 1.2162 0.0120 0.3361 1.0000 0.9618 0.73673

0.6117E+01 0.7201 1.2175 0.0124 0.3361 1.0000 0.9619 0.73676

0.6466E+01 0.7254 1.2167 0.0122 0.3361 1.0000 0.9618 0.73676

0.6248E+01 0.7221 1.2172 0.0123 0.3361 1.0000 0.9619 0.73677

0.6382E+01 0.7241 1.2169 0.0122 0.3361 1.0000 0.9618 0.73677

0.6299E+01 0.7229 1.2171 0.0123 0.3361 1.0000 0.9619 0.73677

0.6280E+01 0.7226 1.2171 0.0123 0.3361 1.0000 0.9619 0.73677

0.6311E+01 0.7231 1.2170 0.0123 0.3361 1.0000 0.9619 0.73677

0.6292E+01 0.7228 1.2171 0.0123 0.3361 1.0000 0.9619 0.73677

0.6299E+01 0.7229 1.2171 0.0123 0.3361 1.0000 0.9619 0.73677

#### Final results ####

Parameter DISCRP OSCILL STABIL SYSDEV POSITV VALCEN

Weight 1.000 3.000 3.000 3.000 1.000 1.000

Sigma 0.300 0.600 0.120 0.120 0.120 0.120

Ideal 0.700 1.100 0.000 1.000 1.000 0.950

Current 0.723 1.217 0.012 0.336 1.000 0.962

- - - - - - - - - - - - - - - - - - - - - - - - -

Estimate 0.994 0.963 0.990 0.000 1.000 0.990

Angular range : from 0.0108 to 0.5577

Real space range : from 0.00 to 35.00

Highest ALPHA (theor) : 0.535E+05 JOB = 0

Current ALPHA : 0.630E+01 Rg : 0.130E+02 I(0) : 0.122E+03

Total estimate : 0.737 which is A REASONABLE solution

S J EXP ERROR J REG I REG

0.0000E+00 0.1216E+03

0.3853E-03 0.1216E+03

0.7707E-03 0.1216E+03

0.1156E-02 0.1216E+03
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0.1541E-02 0.1216E+03

0.1927E-02 0.1216E+03

0.2312E-02 0.1216E+03

0.2697E-02 0.1216E+03

0.3083E-02 0.1216E+03

0.3468E-02 0.1215E+03

0.3853E-02 0.1215E+03

0.4239E-02 0.1215E+03

0.4624E-02 0.1215E+03

0.5010E-02 0.1215E+03

0.5395E-02 0.1214E+03

0.5780E-02 0.1214E+03

0.6166E-02 0.1214E+03

0.6551E-02 0.1213E+03

0.6936E-02 0.1213E+03

0.7322E-02 0.1213E+03

0.7707E-02 0.1212E+03

0.8092E-02 0.1212E+03

0.8478E-02 0.1211E+03

0.8863E-02 0.1211E+03

0.9248E-02 0.1210E+03

0.9634E-02 0.1210E+03

0.1002E-01 0.1209E+03

0.1040E-01 0.1209E+03

0.1079E-01 0.1348E+03 0.8943E+01 0.1208E+03 0.1208E+03

0.1115E-01 0.1345E+03 0.7727E+01 0.1208E+03 0.1208E+03

0.1153E-01 0.1316E+03 0.5832E+01 0.1207E+03 0.1207E+03

0.1192E-01 0.1310E+03 0.4670E+01 0.1207E+03 0.1207E+03

0.1232E-01 0.1294E+03 0.4076E+01 0.1206E+03 0.1206E+03

0.1274E-01 0.1286E+03 0.3531E+01 0.1205E+03 0.1205E+03

0.1317E-01 0.1276E+03 0.3460E+01 0.1204E+03 0.1204E+03

0.1361E-01 0.1261E+03 0.3146E+01 0.1204E+03 0.1204E+03

0.1407E-01 0.1255E+03 0.2816E+01 0.1203E+03 0.1203E+03

0.1454E-01 0.1259E+03 0.2857E+01 0.1202E+03 0.1202E+03

0.1504E-01 0.1257E+03 0.2467E+01 0.1201E+03 0.1201E+03

0.1554E-01 0.1247E+03 0.2353E+01 0.1200E+03 0.1200E+03

0.1607E-01 0.1240E+03 0.2304E+01 0.1199E+03 0.1199E+03

0.1661E-01 0.1235E+03 0.1994E+01 0.1197E+03 0.1197E+03

0.1717E-01 0.1241E+03 0.1998E+01 0.1196E+03 0.1196E+03

0.1775E-01 0.1235E+03 0.1850E+01 0.1195E+03 0.1195E+03

0.1835E-01 0.1222E+03 0.1727E+01 0.1193E+03 0.1193E+03

0.1897E-01 0.1213E+03 0.1629E+01 0.1192E+03 0.1192E+03

0.1961E-01 0.1209E+03 0.1579E+01 0.1190E+03 0.1190E+03
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0.2027E-01 0.1210E+03 0.1498E+01 0.1188E+03 0.1188E+03

0.2095E-01 0.1208E+03 0.1367E+01 0.1186E+03 0.1186E+03

0.2166E-01 0.1204E+03 0.1319E+01 0.1184E+03 0.1184E+03

0.2239E-01 0.1198E+03 0.1235E+01 0.1182E+03 0.1182E+03

0.2314E-01 0.1199E+03 0.1220E+01 0.1180E+03 0.1180E+03

0.2392E-01 0.1194E+03 0.1168E+01 0.1178E+03 0.1178E+03

0.2473E-01 0.1189E+03 0.1083E+01 0.1175E+03 0.1175E+03

0.2557E-01 0.1188E+03 0.1043E+01 0.1172E+03 0.1172E+03

0.2643E-01 0.1187E+03 0.1018E+01 0.1169E+03 0.1169E+03

0.2732E-01 0.1180E+03 0.9488E+00 0.1166E+03 0.1166E+03

0.2824E-01 0.1175E+03 0.9523E+00 0.1163E+03 0.1163E+03

0.2919E-01 0.1166E+03 0.8364E+00 0.1159E+03 0.1159E+03

0.3018E-01 0.1165E+03 0.8716E+00 0.1155E+03 0.1155E+03

0.3120E-01 0.1164E+03 0.8159E+00 0.1151E+03 0.1151E+03

0.3225E-01 0.1159E+03 0.7697E+00 0.1147E+03 0.1147E+03

0.3334E-01 0.1152E+03 0.7624E+00 0.1142E+03 0.1142E+03

0.3446E-01 0.1147E+03 0.7157E+00 0.1137E+03 0.1137E+03

0.3563E-01 0.1144E+03 0.7090E+00 0.1132E+03 0.1132E+03

0.3683E-01 0.1137E+03 0.6818E+00 0.1126E+03 0.1126E+03

0.3807E-01 0.1128E+03 0.6426E+00 0.1120E+03 0.1120E+03

0.3935E-01 0.1125E+03 0.6179E+00 0.1114E+03 0.1114E+03

0.4068E-01 0.1115E+03 0.6145E+00 0.1107E+03 0.1107E+03

0.4205E-01 0.1109E+03 0.5978E+00 0.1100E+03 0.1100E+03

0.4347E-01 0.1098E+03 0.5892E+00 0.1093E+03 0.1093E+03

0.4494E-01 0.1087E+03 0.5663E+00 0.1085E+03 0.1085E+03

0.4645E-01 0.1082E+03 0.5596E+00 0.1076E+03 0.1076E+03

0.4802E-01 0.1072E+03 0.5467E+00 0.1067E+03 0.1067E+03

0.4964E-01 0.1062E+03 0.5324E+00 0.1057E+03 0.1057E+03

0.5132E-01 0.1050E+03 0.5147E+00 0.1047E+03 0.1047E+03

0.5305E-01 0.1038E+03 0.5012E+00 0.1036E+03 0.1036E+03

0.5484E-01 0.1028E+03 0.4967E+00 0.1025E+03 0.1025E+03

0.5669E-01 0.1015E+03 0.4810E+00 0.1013E+03 0.1013E+03

0.5860E-01 0.9988E+02 0.4650E+00 0.1000E+03 0.1000E+03

0.6058E-01 0.9873E+02 0.4530E+00 0.9867E+02 0.9867E+02

0.6262E-01 0.9733E+02 0.4399E+00 0.9725E+02 0.9725E+02

0.6473E-01 0.9570E+02 0.4263E+00 0.9575E+02 0.9575E+02

0.6692E-01 0.9399E+02 0.4184E+00 0.9417E+02 0.9417E+02

0.6917E-01 0.9235E+02 0.4010E+00 0.9250E+02 0.9250E+02

0.7151E-01 0.9055E+02 0.3908E+00 0.9075E+02 0.9075E+02

0.7392E-01 0.8869E+02 0.3807E+00 0.8892E+02 0.8892E+02

0.7641E-01 0.8694E+02 0.3685E+00 0.8699E+02 0.8699E+02

0.7899E-01 0.8496E+02 0.3596E+00 0.8498E+02 0.8498E+02

0.8165E-01 0.8279E+02 0.3466E+00 0.8287E+02 0.8287E+02
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0.8441E-01 0.8044E+02 0.3347E+00 0.8066E+02 0.8066E+02

0.8726E-01 0.7830E+02 0.3289E+00 0.7837E+02 0.7837E+02

0.9020E-01 0.7567E+02 0.3171E+00 0.7598E+02 0.7598E+02

0.9324E-01 0.7313E+02 0.3077E+00 0.7350E+02 0.7350E+02

0.9639E-01 0.7080E+02 0.3001E+00 0.7093E+02 0.7093E+02

0.9964E-01 0.6818E+02 0.2887E+00 0.6827E+02 0.6827E+02

0.1030E+00 0.6514E+02 0.2821E+00 0.6552E+02 0.6552E+02

0.1065E+00 0.6249E+02 0.2733E+00 0.6270E+02 0.6270E+02

0.1101E+00 0.5949E+02 0.2656E+00 0.5980E+02 0.5980E+02

0.1138E+00 0.5683E+02 0.2567E+00 0.5684E+02 0.5684E+02

0.1176E+00 0.5371E+02 0.2506E+00 0.5382E+02 0.5382E+02

0.1216E+00 0.5069E+02 0.2410E+00 0.5074E+02 0.5074E+02

0.1257E+00 0.4740E+02 0.2341E+00 0.4764E+02 0.4764E+02

0.1299E+00 0.4453E+02 0.2266E+00 0.4450E+02 0.4450E+02

0.1343E+00 0.4136E+02 0.2205E+00 0.4136E+02 0.4136E+02

0.1388E+00 0.3821E+02 0.2127E+00 0.3822E+02 0.3822E+02

0.1435E+00 0.3518E+02 0.2070E+00 0.3510E+02 0.3510E+02

0.1483E+00 0.3205E+02 0.1994E+00 0.3202E+02 0.3202E+02

0.1534E+00 0.2914E+02 0.1942E+00 0.2900E+02 0.2900E+02

0.1585E+00 0.2618E+02 0.1879E+00 0.2606E+02 0.2606E+02

0.1639E+00 0.2351E+02 0.1843E+00 0.2322E+02 0.2322E+02

0.1694E+00 0.2066E+02 0.1918E+00 0.2050E+02 0.2050E+02

0.1751E+00 0.1799E+02 0.1951E+00 0.1792E+02 0.1792E+02

0.1810E+00 0.1564E+02 0.1982E+00 0.1549E+02 0.1549E+02

0.1871E+00 0.1345E+02 0.1999E+00 0.1325E+02 0.1325E+02

0.1934E+00 0.1110E+02 0.2011E+00 0.1120E+02 0.1120E+02

0.1999E+00 0.9251E+01 0.2030E+00 0.9354E+01 0.9354E+01

0.2067E+00 0.7651E+01 0.2024E+00 0.7729E+01 0.7729E+01

0.2136E+00 0.6240E+01 0.1993E+00 0.6328E+01 0.6328E+01

0.2208E+00 0.5038E+01 0.1973E+00 0.5154E+01 0.5154E+01

0.2283E+00 0.4149E+01 0.1945E+00 0.4204E+01 0.4204E+01

0.2360E+00 0.3543E+01 0.1925E+00 0.3473E+01 0.3473E+01

0.2439E+00 0.2862E+01 0.1907E+00 0.2946E+01 0.2946E+01

0.2521E+00 0.2586E+01 0.1854E+00 0.2608E+01 0.2608E+01

0.2606E+00 0.2450E+01 0.1789E+00 0.2437E+01 0.2437E+01

0.2694E+00 0.2266E+01 0.1728E+00 0.2408E+01 0.2408E+01

0.2785E+00 0.2270E+01 0.1676E+00 0.2493E+01 0.2493E+01

0.2879E+00 0.2595E+01 0.1622E+00 0.2664E+01 0.2664E+01

0.2976E+00 0.2847E+01 0.1576E+00 0.2890E+01 0.2890E+01

0.3076E+00 0.3000E+01 0.1529E+00 0.3145E+01 0.3145E+01

0.3180E+00 0.3337E+01 0.1487E+00 0.3404E+01 0.3404E+01

0.3287E+00 0.3649E+01 0.1449E+00 0.3645E+01 0.3645E+01

0.3397E+00 0.3762E+01 0.1408E+00 0.3852E+01 0.3852E+01
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0.3511E+00 0.4096E+01 0.1367E+00 0.4016E+01 0.4016E+01

0.3630E+00 0.4290E+01 0.1334E+00 0.4131E+01 0.4131E+01

0.3752E+00 0.4266E+01 0.1301E+00 0.4196E+01 0.4196E+01

0.3878E+00 0.4358E+01 0.1272E+00 0.4215E+01 0.4215E+01

0.4008E+00 0.4264E+01 0.1249E+00 0.4193E+01 0.4193E+01

0.4143E+00 0.4090E+01 0.1227E+00 0.4136E+01 0.4136E+01

0.4282E+00 0.3974E+01 0.1207E+00 0.4052E+01 0.4052E+01

0.4426E+00 0.3971E+01 0.1189E+00 0.3946E+01 0.3946E+01

0.4575E+00 0.3713E+01 0.1178E+00 0.3822E+01 0.3822E+01

0.4729E+00 0.3757E+01 0.1170E+00 0.3683E+01 0.3683E+01

0.4887E+00 0.3518E+01 0.1172E+00 0.3534E+01 0.3534E+01

0.5051E+00 0.3327E+01 0.1186E+00 0.3378E+01 0.3378E+01

0.5221E+00 0.3306E+01 0.1268E+00 0.3219E+01 0.3219E+01

0.5396E+00 0.3260E+01 0.1687E+00 0.3061E+01 0.3061E+01

0.5577E+00 0.4107E+01 0.1526E+02 0.2908E+01 0.2908E+01

Distance distribution function of particle

R P(R) ERROR

0.0000E+00 0.0000E+00 0.0000E+00

0.4375E+00 0.3027E-01 0.8502E-03

0.8750E+00 0.5620E-01 0.1415E-02

0.1312E+01 0.7794E-01 0.1711E-02

0.1750E+01 0.9575E-01 0.1763E-02

0.2188E+01 0.1100E+00 0.1608E-02

0.2625E+01 0.1210E+00 0.1292E-02

0.3062E+01 0.1294E+00 0.8838E-03

0.3500E+01 0.1357E+00 0.5496E-03

0.3938E+01 0.1403E+00 0.6841E-03

0.4375E+01 0.1440E+00 0.1146E-02

0.4812E+01 0.1473E+00 0.1635E-02

0.5250E+01 0.1506E+00 0.2060E-02

0.5688E+01 0.1546E+00 0.2378E-02

0.6125E+01 0.1597E+00 0.2567E-02

0.6562E+01 0.1662E+00 0.2614E-02

0.7000E+01 0.1745E+00 0.2520E-02

0.7438E+01 0.1847E+00 0.2298E-02

0.7875E+01 0.1970E+00 0.1975E-02

0.8312E+01 0.2115E+00 0.1602E-02

0.8750E+01 0.2281E+00 0.1278E-02

0.9188E+01 0.2466E+00 0.1168E-02
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0.9625E+01 0.2668E+00 0.1368E-02

0.1006E+02 0.2886E+00 0.1762E-02

0.1050E+02 0.3115E+00 0.2200E-02

0.1094E+02 0.3353E+00 0.2598E-02

0.1138E+02 0.3595E+00 0.2910E-02

0.1181E+02 0.3838E+00 0.3108E-02

0.1225E+02 0.4077E+00 0.3181E-02

0.1269E+02 0.4309E+00 0.3129E-02

0.1312E+02 0.4530E+00 0.2963E-02

0.1356E+02 0.4737E+00 0.2712E-02

0.1400E+02 0.4927E+00 0.2422E-02

0.1444E+02 0.5098E+00 0.2160E-02

0.1488E+02 0.5248E+00 0.2012E-02

0.1531E+02 0.5375E+00 0.2042E-02

0.1575E+02 0.5478E+00 0.2244E-02

0.1619E+02 0.5556E+00 0.2544E-02

0.1662E+02 0.5610E+00 0.2861E-02

0.1706E+02 0.5640E+00 0.3136E-02

0.1750E+02 0.5646E+00 0.3327E-02

0.1794E+02 0.5628E+00 0.3413E-02

0.1838E+02 0.5588E+00 0.3387E-02

0.1881E+02 0.5527E+00 0.3257E-02

0.1925E+02 0.5446E+00 0.3045E-02

0.1969E+02 0.5345E+00 0.2792E-02

0.2012E+02 0.5227E+00 0.2555E-02

0.2056E+02 0.5092E+00 0.2409E-02

0.2100E+02 0.4941E+00 0.2413E-02

0.2144E+02 0.4777E+00 0.2577E-02

0.2188E+02 0.4600E+00 0.2854E-02

0.2231E+02 0.4411E+00 0.3174E-02

0.2275E+02 0.4212E+00 0.3477E-02

0.2319E+02 0.4004E+00 0.3719E-02

0.2362E+02 0.3790E+00 0.3874E-02

0.2406E+02 0.3569E+00 0.3930E-02

0.2450E+02 0.3345E+00 0.3890E-02

0.2494E+02 0.3119E+00 0.3770E-02

0.2538E+02 0.2892E+00 0.3598E-02

0.2581E+02 0.2668E+00 0.3412E-02

0.2625E+02 0.2448E+00 0.3255E-02

0.2669E+02 0.2233E+00 0.3165E-02

0.2712E+02 0.2026E+00 0.3157E-02

0.2756E+02 0.1829E+00 0.3221E-02

0.2800E+02 0.1643E+00 0.3325E-02
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0.2844E+02 0.1470E+00 0.3429E-02

0.2888E+02 0.1311E+00 0.3500E-02

0.2931E+02 0.1165E+00 0.3517E-02

0.2975E+02 0.1034E+00 0.3481E-02

0.3019E+02 0.9177E-01 0.3410E-02

0.3062E+02 0.8144E-01 0.3338E-02

0.3106E+02 0.7231E-01 0.3306E-02

0.3150E+02 0.6420E-01 0.3341E-02

0.3194E+02 0.5688E-01 0.3440E-02

0.3238E+02 0.5007E-01 0.3560E-02

0.3281E+02 0.4345E-01 0.3626E-02

0.3325E+02 0.3665E-01 0.3549E-02

0.3369E+02 0.2931E-01 0.3237E-02

0.3412E+02 0.2102E-01 0.2598E-02

0.3456E+02 0.1138E-01 0.1545E-02

0.3500E+02 0.0000E+00 0.0000E+00

Reciprocal space: Rg = 13.00 , I(0) = 0.1216E+03

Real space: Rg = 13.00 +- 0.015 I(0) = 0.1216E+03 +- 0.1356E+00
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APPENDIX D: DAMMIN OUTPUT

Project description: CytC M00C2 fast sphere recon with Rmax 35A

j: 81 T: 0.254E-06 Suc: 4 Eva: 5912047 CPU: 0.844E+03 SqF: 0.0171

Rf: 0.00228 Los:0.0477 Dis:0.0000 Per: 0.5604 Sca: 0.752E-05

Computation mode ....................................... : Fast

Number of particle atoms ............................... : 323

Number of graphs ....................................... : 1

Anisometry penalty ..................................... : 0.0

Point symmetry group ................................... : P1

DAM packing radius ..................................... : 1.300

Average volume per atom ................................ : 12.44

Total excluded DAM volume .............................. : 4017.

Particle center: 1.2276 0.5514 -0.4326

Radius of gyration ..................................... : 12.98

Maximum diameter ....................................... : 34.69

DAM shape anisometry ................................... : 0.2282

DAM non-prolateness .................................... : 0.0

DAM non-oblateness ..................................... : 1.424e-2

ATOM 1 CA ASP 1 0.000 0.000 -12.869 1.00 20.00 0 2 201

ATOM 2 CA ASP 1 0.000 2.600 -12.869 1.00 20.00 0 2 201

ATOM 3 CA ASP 1 0.000 7.800 -12.869 1.00 20.00 0 2 201

ATOM 4 CA ASP 1 0.000 10.400 -12.869 1.00 20.00 0 2 201

ATOM 5 CA ASP 1 2.600 -2.600 -12.869 1.00 20.00 0 2 201

ATOM 6 CA ASP 1 2.600 0.000 -12.869 1.00 20.00 0 2 201

ATOM 7 CA ASP 1 2.600 2.600 -12.869 1.00 20.00 0 2 201

ATOM 8 CA ASP 1 5.200 -5.200 -12.869 1.00 20.00 0 2 201

ATOM 9 CA ASP 1 5.200 -2.600 -12.869 1.00 20.00 0 2 201

ATOM 10 CA ASP 2 5.200 0.000 -12.869 1.00 20.00 0 2 201

ATOM 11 CA ASP 2 -1.300 -1.300 -11.031 1.00 20.00 0 2 201

ATOM 12 CA ASP 2 -1.300 1.300 -11.031 1.00 20.00 0 2 201

ATOM 13 CA ASP 2 -1.300 3.900 -11.031 1.00 20.00 0 2 201

ATOM 14 CA ASP 2 -1.300 6.500 -11.031 1.00 20.00 0 2 201

ATOM 15 CA ASP 2 -1.300 9.100 -11.031 1.00 20.00 0 2 201

ATOM 16 CA ASP 2 -1.300 11.700 -11.031 1.00 20.00 0 2 201

ATOM 17 CA ASP 2 1.300 -3.900 -11.031 1.00 20.00 0 2 201

ATOM 18 CA ASP 2 1.300 -1.300 -11.031 1.00 20.00 1 2 201

ATOM 19 CA ASP 2 1.300 1.300 -11.031 1.00 20.00 1 2 201

ATOM 20 CA ASP 3 1.300 3.900 -11.031 1.00 20.00 0 2 201

ATOM 21 CA ASP 3 1.300 6.500 -11.031 1.00 20.00 0 2 201

ATOM 22 CA ASP 3 1.300 9.100 -11.031 1.00 20.00 0 2 201

ATOM 23 CA ASP 3 1.300 11.700 -11.031 1.00 20.00 0 2 201
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ATOM 24 CA ASP 3 3.900 -6.500 -11.031 1.00 20.00 0 2 201

ATOM 25 CA ASP 3 3.900 -3.900 -11.031 1.00 20.00 0 2 201

ATOM 26 CA ASP 3 3.900 -1.300 -11.031 1.00 20.00 1 2 201

ATOM 27 CA ASP 3 3.900 1.300 -11.031 1.00 20.00 0 2 201

ATOM 28 CA ASP 3 3.900 3.900 -11.031 1.00 20.00 0 2 201

ATOM 29 CA ASP 3 3.900 9.100 -11.031 1.00 20.00 0 2 201

ATOM 30 CA ASP 4 3.900 11.700 -11.031 1.00 20.00 0 2 201

ATOM 31 CA ASP 4 6.500 -6.500 -11.031 1.00 20.00 0 2 201

ATOM 32 CA ASP 4 6.500 -3.900 -11.031 1.00 20.00 0 2 201

ATOM 33 CA ASP 4 6.500 -1.300 -11.031 1.00 20.00 0 2 201

ATOM 34 CA ASP 4 6.500 1.300 -11.031 1.00 20.00 0 2 201

ATOM 35 CA ASP 4 -2.600 -13.000 -9.192 1.00 20.00 0 2 201

ATOM 36 CA ASP 4 -2.600 10.400 -9.192 1.00 20.00 0 2 201

ATOM 37 CA ASP 4 -2.600 13.000 -9.192 1.00 20.00 0 2 201

ATOM 38 CA ASP 4 0.000 -2.600 -9.192 1.00 20.00 0 2 201

ATOM 39 CA ASP 4 0.000 0.000 -9.192 1.00 20.00 0 2 201

ATOM 40 CA ASP 5 0.000 2.600 -9.192 1.00 20.00 0 2 201

ATOM 41 CA ASP 5 0.000 7.800 -9.192 1.00 20.00 0 2 201

ATOM 42 CA ASP 5 0.000 10.400 -9.192 1.00 20.00 1 2 201

ATOM 43 CA ASP 5 0.000 13.000 -9.192 1.00 20.00 1 2 201

ATOM 44 CA ASP 5 2.600 -5.200 -9.192 1.00 20.00 0 2 201

ATOM 45 CA ASP 5 2.600 -2.600 -9.192 1.00 20.00 0 2 201

ATOM 46 CA ASP 5 2.600 0.000 -9.192 1.00 20.00 0 2 201

ATOM 47 CA ASP 5 2.600 2.600 -9.192 1.00 20.00 0 2 201

ATOM 48 CA ASP 5 2.600 7.800 -9.192 1.00 20.00 0 2 201

ATOM 49 CA ASP 5 2.600 10.400 -9.192 1.00 20.00 1 2 201

ATOM 50 CA ASP 6 2.600 13.000 -9.192 1.00 20.00 0 2 201

ATOM 51 CA ASP 6 5.200 -10.400 -9.192 1.00 20.00 0 2 201

ATOM 52 CA ASP 6 5.200 -7.800 -9.192 1.00 20.00 0 2 201

ATOM 53 CA ASP 6 5.200 -5.200 -9.192 1.00 20.00 0 2 201

ATOM 54 CA ASP 6 5.200 -2.600 -9.192 1.00 20.00 0 2 201

ATOM 55 CA ASP 6 5.200 0.000 -9.192 1.00 20.00 0 2 201

ATOM 56 CA ASP 6 5.200 2.600 -9.192 1.00 20.00 0 2 201

ATOM 57 CA ASP 6 5.200 7.800 -9.192 1.00 20.00 0 2 201

ATOM 58 CA ASP 6 5.200 10.400 -9.192 1.00 20.00 0 2 201

ATOM 59 CA ASP 6 -3.900 -14.300 -7.354 1.00 20.00 0 2 201

ATOM 60 CA ASP 7 -3.900 -11.700 -7.354 1.00 20.00 0 2 201

ATOM 61 CA ASP 7 -3.900 11.700 -7.354 1.00 20.00 0 2 201

ATOM 62 CA ASP 7 -3.900 14.300 -7.354 1.00 20.00 0 2 201

ATOM 63 CA ASP 7 -1.300 -14.300 -7.354 1.00 20.00 1 2 201

ATOM 64 CA ASP 7 -1.300 -11.700 -7.354 1.00 20.00 0 2 201

ATOM 65 CA ASP 7 -1.300 9.100 -7.354 1.00 20.00 0 2 201

ATOM 66 CA ASP 7 -1.300 11.700 -7.354 1.00 20.00 1 2 201
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ATOM 67 CA ASP 7 -1.300 14.300 -7.354 1.00 20.00 0 2 201

ATOM 68 CA ASP 7 1.300 -14.300 -7.354 1.00 20.00 1 2 201

ATOM 69 CA ASP 7 1.300 -11.700 -7.354 1.00 20.00 0 2 201

ATOM 70 CA ASP 8 1.300 -3.900 -7.354 1.00 20.00 0 2 201

ATOM 71 CA ASP 8 1.300 -1.300 -7.354 1.00 20.00 0 2 201

ATOM 72 CA ASP 8 1.300 1.300 -7.354 1.00 20.00 0 2 201

ATOM 73 CA ASP 8 1.300 9.100 -7.354 1.00 20.00 0 2 201

ATOM 74 CA ASP 8 1.300 11.700 -7.354 1.00 20.00 1 2 201

ATOM 75 CA ASP 8 1.300 14.300 -7.354 1.00 20.00 0 2 201

ATOM 76 CA ASP 8 3.900 -14.300 -7.354 1.00 20.00 0 2 201

ATOM 77 CA ASP 8 3.900 -11.700 -7.354 1.00 20.00 0 2 201

ATOM 78 CA ASP 8 3.900 -9.100 -7.354 1.00 20.00 0 2 201

ATOM 79 CA ASP 8 3.900 -3.900 -7.354 1.00 20.00 0 2 201

ATOM 80 CA ASP 9 3.900 -1.300 -7.354 1.00 20.00 0 2 201

ATOM 81 CA ASP 9 3.900 1.300 -7.354 1.00 20.00 0 2 201

ATOM 82 CA ASP 9 3.900 9.100 -7.354 1.00 20.00 0 2 201

ATOM 83 CA ASP 9 3.900 11.700 -7.354 1.00 20.00 0 2 201

ATOM 84 CA ASP 9 6.500 -14.300 -7.354 1.00 20.00 0 2 201

ATOM 85 CA ASP 9 6.500 -11.700 -7.354 1.00 20.00 0 2 201

ATOM 86 CA ASP 9 6.500 -9.100 -7.354 1.00 20.00 0 2 201

ATOM 87 CA ASP 9 6.500 6.500 -7.354 1.00 20.00 0 2 201

ATOM 88 CA ASP 9 6.500 9.100 -7.354 1.00 20.00 0 2 201

ATOM 89 CA ASP 9 -2.600 -15.600 -5.515 1.00 20.00 0 2 201

ATOM 90 CA ASP 10 -2.600 -13.000 -5.515 1.00 20.00 0 2 201

ATOM 91 CA ASP 10 -2.600 10.400 -5.515 1.00 20.00 0 2 201

ATOM 92 CA ASP 10 -2.600 13.000 -5.515 1.00 20.00 0 2 201

ATOM 93 CA ASP 10 -2.600 15.600 -5.515 1.00 20.00 0 2 201

ATOM 94 CA ASP 10 0.000 -15.600 -5.515 1.00 20.00 1 2 201

ATOM 95 CA ASP 10 0.000 -13.000 -5.515 1.00 20.00 0 2 201

ATOM 96 CA ASP 10 0.000 -2.600 -5.515 1.00 20.00 0 2 201

ATOM 97 CA ASP 10 0.000 10.400 -5.515 1.00 20.00 0 2 201

ATOM 98 CA ASP 10 0.000 13.000 -5.515 1.00 20.00 0 2 201

ATOM 99 CA ASP 10 0.000 15.600 -5.515 1.00 20.00 0 2 201

ATOM 100 CA ASP 11 2.600 -15.600 -5.515 1.00 20.00 1 2 201

ATOM 101 CA ASP 11 2.600 -13.000 -5.515 1.00 20.00 0 2 201

ATOM 102 CA ASP 11 2.600 -2.600 -5.515 1.00 20.00 0 2 201

ATOM 103 CA ASP 11 2.600 10.400 -5.515 1.00 20.00 0 2 201

ATOM 104 CA ASP 11 2.600 13.000 -5.515 1.00 20.00 0 2 201

ATOM 105 CA ASP 11 5.200 -15.600 -5.515 1.00 20.00 0 2 201

ATOM 106 CA ASP 11 5.200 -13.000 -5.515 1.00 20.00 0 2 201

ATOM 107 CA ASP 11 5.200 -10.400 -5.515 1.00 20.00 0 2 201

ATOM 108 CA ASP 11 7.800 5.200 -5.515 1.00 20.00 0 2 201

ATOM 109 CA ASP 11 7.800 7.800 -5.515 1.00 20.00 0 2 201
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ATOM 110 CA ASP 12 -11.700 1.300 -3.677 1.00 20.00 0 2 201

ATOM 111 CA ASP 12 -11.700 3.900 -3.677 1.00 20.00 0 2 201

ATOM 112 CA ASP 12 -11.700 6.500 -3.677 1.00 20.00 0 2 201

ATOM 113 CA ASP 12 -9.100 1.300 -3.677 1.00 20.00 0 2 201

ATOM 114 CA ASP 12 -9.100 3.900 -3.677 1.00 20.00 0 2 201

ATOM 115 CA ASP 12 -9.100 6.500 -3.677 1.00 20.00 0 2 201

ATOM 116 CA ASP 12 -3.900 -14.300 -3.677 1.00 20.00 0 2 201

ATOM 117 CA ASP 12 -1.300 -16.900 -3.677 1.00 20.00 1 2 201

ATOM 118 CA ASP 12 -1.300 -14.300 -3.677 1.00 20.00 0 2 201

ATOM 119 CA ASP 12 -1.300 -1.300 -3.677 1.00 20.00 0 2 201

ATOM 120 CA ASP 13 -1.300 14.300 -3.677 1.00 20.00 0 2 201

ATOM 121 CA ASP 13 -1.300 16.900 -3.677 1.00 20.00 1 2 201

ATOM 122 CA ASP 13 1.300 -16.900 -3.677 1.00 20.00 1 2 201

ATOM 123 CA ASP 13 1.300 -14.300 -3.677 1.00 20.00 0 2 201

ATOM 124 CA ASP 13 1.300 -3.900 -3.677 1.00 20.00 0 2 201

ATOM 125 CA ASP 13 1.300 -1.300 -3.677 1.00 20.00 0 2 201

ATOM 126 CA ASP 13 1.300 11.700 -3.677 1.00 20.00 0 2 201

ATOM 127 CA ASP 13 1.300 14.300 -3.677 1.00 20.00 0 2 201

ATOM 128 CA ASP 13 1.300 16.900 -3.677 1.00 20.00 0 2 201

ATOM 129 CA ASP 13 3.900 -14.300 -3.677 1.00 20.00 0 2 201

ATOM 130 CA ASP 14 6.500 3.900 -3.677 1.00 20.00 0 2 201

ATOM 131 CA ASP 14 6.500 6.500 -3.677 1.00 20.00 0 2 201

ATOM 132 CA ASP 14 9.100 3.900 -3.677 1.00 20.00 0 2 201

ATOM 133 CA ASP 14 9.100 6.500 -3.677 1.00 20.00 0 2 201

ATOM 134 CA ASP 14 11.700 3.900 -3.677 1.00 20.00 0 2 201

ATOM 135 CA ASP 14 -10.400 0.000 -1.838 1.00 20.00 0 2 201

ATOM 136 CA ASP 14 -10.400 2.600 -1.838 1.00 20.00 0 2 201

ATOM 137 CA ASP 14 -10.400 5.200 -1.838 1.00 20.00 0 2 201

ATOM 138 CA ASP 14 -10.400 7.800 -1.838 1.00 20.00 0 2 201

ATOM 139 CA ASP 14 -7.800 0.000 -1.838 1.00 20.00 0 2 201

ATOM 140 CA ASP 15 -7.800 2.600 -1.838 1.00 20.00 0 2 201

ATOM 141 CA ASP 15 -7.800 5.200 -1.838 1.00 20.00 0 2 201

ATOM 142 CA ASP 15 -7.800 7.800 -1.838 1.00 20.00 0 2 201

ATOM 143 CA ASP 15 -5.200 -2.600 -1.838 1.00 20.00 0 2 201

ATOM 144 CA ASP 15 -5.200 0.000 -1.838 1.00 20.00 0 2 201

ATOM 145 CA ASP 15 -5.200 2.600 -1.838 1.00 20.00 0 2 201

ATOM 146 CA ASP 15 -2.600 -15.600 -1.838 1.00 20.00 0 2 201

ATOM 147 CA ASP 15 -2.600 -13.000 -1.838 1.00 20.00 0 2 201

ATOM 148 CA ASP 15 -2.600 -2.600 -1.838 1.00 20.00 0 2 201

ATOM 149 CA ASP 15 -2.600 0.000 -1.838 1.00 20.00 0 2 201

ATOM 150 CA ASP 16 -2.600 15.600 -1.838 1.00 20.00 0 2 201

ATOM 151 CA ASP 16 0.000 -15.600 -1.838 1.00 20.00 0 2 201

ATOM 152 CA ASP 16 0.000 -13.000 -1.838 1.00 20.00 0 2 201
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ATOM 153 CA ASP 16 0.000 -5.200 -1.838 1.00 20.00 0 2 201

ATOM 154 CA ASP 16 0.000 -2.600 -1.838 1.00 20.00 0 2 201

ATOM 155 CA ASP 16 0.000 0.000 -1.838 1.00 20.00 0 2 201

ATOM 156 CA ASP 16 0.000 13.000 -1.838 1.00 20.00 0 2 201

ATOM 157 CA ASP 16 0.000 15.600 -1.838 1.00 20.00 0 2 201

ATOM 158 CA ASP 16 7.800 5.200 -1.838 1.00 20.00 0 2 201

ATOM 159 CA ASP 16 10.400 2.600 -1.838 1.00 20.00 0 2 201

ATOM 160 CA ASP 17 10.400 5.200 -1.838 1.00 20.00 0 2 201

ATOM 161 CA ASP 17 13.000 0.000 -1.838 1.00 20.00 0 2 201

ATOM 162 CA ASP 17 13.000 2.600 -1.838 1.00 20.00 0 2 201

ATOM 163 CA ASP 17 13.000 5.200 -1.838 1.00 20.00 0 2 201

ATOM 164 CA ASP 17 15.600 0.000 -1.838 1.00 20.00 0 2 201

ATOM 165 CA ASP 17 -11.700 1.300 0.000 1.00 20.00 0 2 201

ATOM 166 CA ASP 17 -11.700 3.900 0.000 1.00 20.00 0 2 201

ATOM 167 CA ASP 17 -11.700 6.500 0.000 1.00 20.00 0 2 201

ATOM 168 CA ASP 17 -9.100 1.300 0.000 1.00 20.00 0 2 201

ATOM 169 CA ASP 17 -9.100 3.900 0.000 1.00 20.00 1 2 201

ATOM 170 CA ASP 18 -9.100 6.500 0.000 1.00 20.00 0 2 201

ATOM 171 CA ASP 18 -6.500 -1.300 0.000 1.00 20.00 0 2 201

ATOM 172 CA ASP 18 -6.500 1.300 0.000 1.00 20.00 0 2 201

ATOM 173 CA ASP 18 -6.500 3.900 0.000 1.00 20.00 0 2 201

ATOM 174 CA ASP 18 -6.500 6.500 0.000 1.00 20.00 0 2 201

ATOM 175 CA ASP 18 -3.900 -1.300 0.000 1.00 20.00 0 2 201

ATOM 176 CA ASP 18 -3.900 1.300 0.000 1.00 20.00 0 2 201

ATOM 177 CA ASP 18 -3.900 16.900 0.000 1.00 20.00 0 2 201

ATOM 178 CA ASP 18 -1.300 -16.900 0.000 1.00 20.00 0 2 201

ATOM 179 CA ASP 18 -1.300 -14.300 0.000 1.00 20.00 0 2 201

ATOM 180 CA ASP 19 -1.300 -3.900 0.000 1.00 20.00 0 2 201

ATOM 181 CA ASP 19 -1.300 14.300 0.000 1.00 20.00 0 2 201

ATOM 182 CA ASP 19 -1.300 16.900 0.000 1.00 20.00 0 2 201

ATOM 183 CA ASP 19 1.300 -14.300 0.000 1.00 20.00 0 2 201

ATOM 184 CA ASP 19 1.300 -3.900 0.000 1.00 20.00 0 2 201

ATOM 185 CA ASP 19 1.300 -1.300 0.000 1.00 20.00 0 2 201

ATOM 186 CA ASP 19 1.300 14.300 0.000 1.00 20.00 0 2 201

ATOM 187 CA ASP 19 1.300 16.900 0.000 1.00 20.00 0 2 201

ATOM 188 CA ASP 19 3.900 -3.900 0.000 1.00 20.00 0 2 201

ATOM 189 CA ASP 19 9.100 3.900 0.000 1.00 20.00 0 2 201

ATOM 190 CA ASP 20 9.100 6.500 0.000 1.00 20.00 0 2 201

ATOM 191 CA ASP 20 11.700 -1.300 0.000 1.00 20.00 0 2 201

ATOM 192 CA ASP 20 11.700 1.300 0.000 1.00 20.00 0 2 201

ATOM 193 CA ASP 20 11.700 3.900 0.000 1.00 20.00 1 2 201

ATOM 194 CA ASP 20 11.700 6.500 0.000 1.00 20.00 0 2 201

ATOM 195 CA ASP 20 14.300 -1.300 0.000 1.00 20.00 0 2 201
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ATOM 196 CA ASP 20 14.300 1.300 0.000 1.00 20.00 0 2 201

ATOM 197 CA ASP 20 14.300 3.900 0.000 1.00 20.00 0 2 201

ATOM 198 CA ASP 20 -10.400 2.600 1.838 1.00 20.00 0 2 201

ATOM 199 CA ASP 20 -10.400 5.200 1.838 1.00 20.00 0 2 201

ATOM 200 CA ASP 21 -7.800 0.000 1.838 1.00 20.00 0 2 201

ATOM 201 CA ASP 21 -7.800 2.600 1.838 1.00 20.00 0 2 201

ATOM 202 CA ASP 21 -7.800 5.200 1.838 1.00 20.00 0 2 201

ATOM 203 CA ASP 21 -2.600 -15.600 1.838 1.00 20.00 0 2 201

ATOM 204 CA ASP 21 -2.600 15.600 1.838 1.00 20.00 0 2 201

ATOM 205 CA ASP 21 0.000 -15.600 1.838 1.00 20.00 0 2 201

ATOM 206 CA ASP 21 0.000 -5.200 1.838 1.00 20.00 0 2 201

ATOM 207 CA ASP 21 0.000 -2.600 1.838 1.00 20.00 0 2 201

ATOM 208 CA ASP 21 0.000 0.000 1.838 1.00 20.00 0 2 201

ATOM 209 CA ASP 21 0.000 13.000 1.838 1.00 20.00 0 2 201

ATOM 210 CA ASP 22 0.000 15.600 1.838 1.00 20.00 0 2 201

ATOM 211 CA ASP 22 2.600 -5.200 1.838 1.00 20.00 0 2 201

ATOM 212 CA ASP 22 2.600 -2.600 1.838 1.00 20.00 0 2 201

ATOM 213 CA ASP 22 10.400 2.600 1.838 1.00 20.00 0 2 201

ATOM 214 CA ASP 22 10.400 5.200 1.838 1.00 20.00 0 2 201

ATOM 215 CA ASP 22 13.000 0.000 1.838 1.00 20.00 0 2 201

ATOM 216 CA ASP 22 13.000 2.600 1.838 1.00 20.00 0 2 201

ATOM 217 CA ASP 22 13.000 5.200 1.838 1.00 20.00 0 2 201

ATOM 218 CA ASP 22 15.600 0.000 1.838 1.00 20.00 0 2 201

ATOM 219 CA ASP 22 -1.300 -16.900 3.677 1.00 20.00 0 2 201

ATOM 220 CA ASP 23 -1.300 -14.300 3.677 1.00 20.00 0 2 201

ATOM 221 CA ASP 23 -1.300 11.700 3.677 1.00 20.00 0 2 201

ATOM 222 CA ASP 23 -1.300 14.300 3.677 1.00 20.00 1 2 201

ATOM 223 CA ASP 23 -1.300 16.900 3.677 1.00 20.00 1 2 201

ATOM 224 CA ASP 23 1.300 -14.300 3.677 1.00 20.00 0 2 201

ATOM 225 CA ASP 23 1.300 -3.900 3.677 1.00 20.00 0 2 201

ATOM 226 CA ASP 23 1.300 11.700 3.677 1.00 20.00 0 2 201

ATOM 227 CA ASP 23 1.300 14.300 3.677 1.00 20.00 0 2 201

ATOM 228 CA ASP 23 1.300 16.900 3.677 1.00 20.00 0 2 201

ATOM 229 CA ASP 23 11.700 3.900 3.677 1.00 20.00 0 2 201

ATOM 230 CA ASP 24 14.300 1.300 3.677 1.00 20.00 0 2 201

ATOM 231 CA ASP 24 14.300 3.900 3.677 1.00 20.00 0 2 201

ATOM 232 CA ASP 24 -2.600 -15.600 5.515 1.00 20.00 0 2 201

ATOM 233 CA ASP 24 -2.600 -13.000 5.515 1.00 20.00 0 2 201

ATOM 234 CA ASP 24 -2.600 10.400 5.515 1.00 20.00 0 2 201

ATOM 235 CA ASP 24 -2.600 13.000 5.515 1.00 20.00 0 2 201

ATOM 236 CA ASP 24 -2.600 15.600 5.515 1.00 20.00 0 2 201

ATOM 237 CA ASP 24 0.000 -15.600 5.515 1.00 20.00 0 2 201

ATOM 238 CA ASP 24 0.000 -13.000 5.515 1.00 20.00 0 2 201
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ATOM 239 CA ASP 24 0.000 10.400 5.515 1.00 20.00 0 2 201

ATOM 240 CA ASP 25 0.000 13.000 5.515 1.00 20.00 1 2 201

ATOM 241 CA ASP 25 0.000 15.600 5.515 1.00 20.00 1 2 201

ATOM 242 CA ASP 25 2.600 -15.600 5.515 1.00 20.00 0 2 201

ATOM 243 CA ASP 25 2.600 -13.000 5.515 1.00 20.00 0 2 201

ATOM 244 CA ASP 25 2.600 13.000 5.515 1.00 20.00 0 2 201

ATOM 245 CA ASP 25 2.600 15.600 5.515 1.00 20.00 0 2 201

ATOM 246 CA ASP 25 10.400 2.600 5.515 1.00 20.00 0 2 201

ATOM 247 CA ASP 25 -3.900 -14.300 7.354 1.00 20.00 0 2 201

ATOM 248 CA ASP 25 -3.900 -11.700 7.354 1.00 20.00 0 2 201

ATOM 249 CA ASP 25 -1.300 -14.300 7.354 1.00 20.00 0 2 201

ATOM 250 CA ASP 26 -1.300 -11.700 7.354 1.00 20.00 0 2 201

ATOM 251 CA ASP 26 -1.300 11.700 7.354 1.00 20.00 0 2 201

ATOM 252 CA ASP 26 -1.300 14.300 7.354 1.00 20.00 0 2 201

ATOM 253 CA ASP 26 1.300 -14.300 7.354 1.00 20.00 1 2 201

ATOM 254 CA ASP 26 1.300 -11.700 7.354 1.00 20.00 0 2 201

ATOM 255 CA ASP 26 1.300 11.700 7.354 1.00 20.00 0 2 201

ATOM 256 CA ASP 26 1.300 14.300 7.354 1.00 20.00 0 2 201

ATOM 257 CA ASP 26 3.900 -14.300 7.354 1.00 20.00 1 2 201

ATOM 258 CA ASP 26 3.900 -11.700 7.354 1.00 20.00 0 2 201

ATOM 259 CA ASP 26 6.500 -1.300 7.354 1.00 20.00 0 2 201

ATOM 260 CA ASP 27 6.500 1.300 7.354 1.00 20.00 0 2 201

ATOM 261 CA ASP 27 9.100 -1.300 7.354 1.00 20.00 0 2 201

ATOM 262 CA ASP 27 9.100 1.300 7.354 1.00 20.00 0 2 201

ATOM 263 CA ASP 27 -5.200 0.000 9.192 1.00 20.00 0 2 201

ATOM 264 CA ASP 27 -2.600 -13.000 9.192 1.00 20.00 0 2 201

ATOM 265 CA ASP 27 -2.600 -10.400 9.192 1.00 20.00 0 2 201

ATOM 266 CA ASP 27 -2.600 0.000 9.192 1.00 20.00 0 2 201

ATOM 267 CA ASP 27 -2.600 2.600 9.192 1.00 20.00 0 2 201

ATOM 268 CA ASP 27 0.000 -13.000 9.192 1.00 20.00 0 2 201

ATOM 269 CA ASP 27 0.000 -10.400 9.192 1.00 20.00 0 2 201

ATOM 270 CA ASP 28 0.000 0.000 9.192 1.00 20.00 0 2 201

ATOM 271 CA ASP 28 0.000 2.600 9.192 1.00 20.00 0 2 201

ATOM 272 CA ASP 28 2.600 -13.000 9.192 1.00 20.00 0 2 201

ATOM 273 CA ASP 28 2.600 -10.400 9.192 1.00 20.00 0 2 201

ATOM 274 CA ASP 28 2.600 0.000 9.192 1.00 20.00 0 2 201

ATOM 275 CA ASP 28 2.600 2.600 9.192 1.00 20.00 0 2 201

ATOM 276 CA ASP 28 5.200 -13.000 9.192 1.00 20.00 0 2 201

ATOM 277 CA ASP 28 5.200 -10.400 9.192 1.00 20.00 0 2 201

ATOM 278 CA ASP 28 5.200 0.000 9.192 1.00 20.00 0 2 201

ATOM 279 CA ASP 28 5.200 2.600 9.192 1.00 20.00 0 2 201

ATOM 280 CA ASP 29 7.800 -2.600 9.192 1.00 20.00 0 2 201

ATOM 281 CA ASP 29 7.800 0.000 9.192 1.00 20.00 0 2 201
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ATOM 282 CA ASP 29 7.800 2.600 9.192 1.00 20.00 0 2 201

ATOM 283 CA ASP 29 10.400 0.000 9.192 1.00 20.00 0 2 201

ATOM 284 CA ASP 29 10.400 2.600 9.192 1.00 20.00 0 2 201

ATOM 285 CA ASP 29 -6.500 -1.300 11.031 1.00 20.00 0 2 201

ATOM 286 CA ASP 29 -6.500 1.300 11.031 1.00 20.00 0 2 201

ATOM 287 CA ASP 29 -3.900 -1.300 11.031 1.00 20.00 0 2 201

ATOM 288 CA ASP 29 -3.900 1.300 11.031 1.00 20.00 1 2 201

ATOM 289 CA ASP 29 -3.900 3.900 11.031 1.00 20.00 0 2 201

ATOM 290 CA ASP 30 -1.300 -11.700 11.031 1.00 20.00 0 2 201

ATOM 291 CA ASP 30 -1.300 -1.300 11.031 1.00 20.00 0 2 201

ATOM 292 CA ASP 30 -1.300 1.300 11.031 1.00 20.00 0 2 201

ATOM 293 CA ASP 30 -1.300 3.900 11.031 1.00 20.00 0 2 201

ATOM 294 CA ASP 30 1.300 -11.700 11.031 1.00 20.00 0 2 201

ATOM 295 CA ASP 30 1.300 -1.300 11.031 1.00 20.00 0 2 201

ATOM 296 CA ASP 30 1.300 1.300 11.031 1.00 20.00 0 2 201

ATOM 297 CA ASP 30 1.300 3.900 11.031 1.00 20.00 0 2 201

ATOM 298 CA ASP 30 3.900 -11.700 11.031 1.00 20.00 0 2 201

ATOM 299 CA ASP 30 3.900 -1.300 11.031 1.00 20.00 0 2 201

ATOM 300 CA ASP 31 3.900 1.300 11.031 1.00 20.00 0 2 201

ATOM 301 CA ASP 31 6.500 -1.300 11.031 1.00 20.00 0 2 201

ATOM 302 CA ASP 31 6.500 1.300 11.031 1.00 20.00 1 2 201

ATOM 303 CA ASP 31 9.100 -1.300 11.031 1.00 20.00 0 2 201

ATOM 304 CA ASP 31 9.100 1.300 11.031 1.00 20.00 0 2 201

ATOM 305 CA ASP 31 11.700 -1.300 11.031 1.00 20.00 0 2 201

ATOM 306 CA ASP 31 11.700 1.300 11.031 1.00 20.00 0 2 201

ATOM 307 CA ASP 31 -5.200 -2.600 12.869 1.00 20.00 0 2 201

ATOM 308 CA ASP 31 -5.200 0.000 12.869 1.00 20.00 0 2 201

ATOM 309 CA ASP 31 -5.200 2.600 12.869 1.00 20.00 0 2 201

ATOM 310 CA ASP 32 -2.600 -2.600 12.869 1.00 20.00 0 2 201

ATOM 311 CA ASP 32 -2.600 0.000 12.869 1.00 20.00 1 2 201

ATOM 312 CA ASP 32 -2.600 2.600 12.869 1.00 20.00 0 2 201

ATOM 313 CA ASP 32 0.000 0.000 12.869 1.00 20.00 0 2 201

ATOM 314 CA ASP 32 0.000 2.600 12.869 1.00 20.00 0 2 201

ATOM 315 CA ASP 32 2.600 0.000 12.869 1.00 20.00 0 2 201

ATOM 316 CA ASP 32 2.600 2.600 12.869 1.00 20.00 0 2 201

ATOM 317 CA ASP 32 5.200 0.000 12.869 1.00 20.00 0 2 201

ATOM 318 CA ASP 32 7.800 0.000 12.869 1.00 20.00 0 2 201

ATOM 319 CA ASP 32 10.400 0.000 12.869 1.00 20.00 0 2 201

ATOM 320 CA ASP 33 -3.900 -1.300 14.708 1.00 20.00 0 2 201

ATOM 321 CA ASP 33 -3.900 1.300 14.708 1.00 20.00 0 2 201

ATOM 322 CA ASP 33 -1.300 -1.300 14.708 1.00 20.00 0 2 201

ATOM 323 CA ASP 33 -1.300 1.300 14.708 1.00 20.00 0 2 201
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APPENDIX E: COMPREHENSIVE RESULTS

A note on filename nomenclature:

For cytochrome the filenames are as follows:

MolarityTemperatureRun#

An underscore before the temperature indicates a negative temperature

e.g. M0_20C1 means 0 Molar GuHCl solution at -20 degrees celcius, first run

For miro the filenames are as follows:

Protein_Calcium ion concentration_Temperature_Run#_Analysis attempt

If no temperature is present, the temperature is 4 degrees celcius.

e.g. miros_00ca_04c_3_1 means miro-S in a 0mg/ml calcium ion solution, 3rd data

collection, 1st analysis attempt
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Figure 1: Results for cytochrome-c in a 0M GuHCl solution
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Figure 2: Results for cytochrome-c in a 2.5M GuHCl solution
.
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Figure 3: Results for cytochrome-c in a 4M GuHCl solution
.
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Figure 4: Results for miro-S
.
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Figure 5: Results for miro-L
.
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Figure 6: Guinier and Kratky plots for miro-S
.
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Figure 7: Guinier and Kratky plots for miro-S
.
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Figure 8: Guinier and Kratky plots for miro-S
.
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Figure 9: Guinier and Kratky plots for miro-S
.
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Figure 10: Guinier and Kratky plots for miro-S
.
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Figure 11: Guinier and Kratky plots for miro-S
.



197

Figure 12: Guinier and Kratky plots for miro-L
.
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Figure 13: Guinier and Kratky plots for miro-L
.
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Figure 14: Guinier and Kratky plots for miro-L
.
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Figure 15: Guinier and Kratky plots for miro-L
.
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Figure 16: Guinier and Kratky plots for miro-L
.
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