Computational Fluid Dynamics Study of Balloon System Tethered to a Stratosail

Jayakanth Loganathan, Kian-Meng Lim, Heow Pueh Lee, and Boo Cheong Khoo

Department of Mechanical Engineering
National University of Singapore

Outline

- Introduction of StratoSail
- Computational Modeling of Balloon-StratoSail System
- Results on Drift Velocity and Tether Length
- Conclusion and Future Work

Station-Keeping of Stratospheric Balloon

> Within 2 km horizontal radius

> Over a one-week duration
> Altitude of between 20 km and 30 km
> A minimum payload capacity of 200 kg

Wind Speed at Various Altitudes

Google loon control

The wind speed vs altitude [Cees Bil, 2014]
1.0 feet $=0.3048 \mathrm{~m}, 1.0 \mathrm{mph}=0.447 \mathrm{~m} / \mathrm{s}$
\checkmark Balloons drift with local wind.
\checkmark Wind direction changes with altitude.
\checkmark Indirect trajectory control through altitude control.

NASA StratoSail - Horizontal Motion Control

\checkmark Developed by Global Aerospace Corporation (GAC)
\checkmark Used as Balloon Guidance System (BGS) for NASA
\checkmark Wing, rudder, boom, 15 km-tether
\checkmark Generate horizontal lift or drag
$\checkmark 1 \mathrm{~m} / \mathrm{s}$ velocity correction capability
\checkmark Successful $1 / 4$ scale ground test in 1999

FIGURE 2. Trajectories of the Free-Floating Balloon and he DARE Platom at Mars.

Objectives and Scope

- To develop a computational model
- Calculate the drag force on stratosail
- Determine the drift velocity of balloon-stratosail system
- Parametric study on balloon size, angle of attack, and altitudes
- Determine the tether length
- Simplifications
- 2D analysis
- Steady-state: dynamic equilibrium
- Best case scenario of opposing winds
of Singspore

Our Numerical Model

Rudder : 8 ft by 2 ft Wing : 18 ft by 3.6 ft Aluminium boom : 20 ft
of Singapore

Atmospheric Properties

Plot of altitude (km) against Wind Speed (m/s) (Struzak, 2003)

Physical Properties of U.S Standard Atmosphere, 1976 in SI Units (Braeunig).

Height Of Stratosphere (km)	45	40	30	15
Temperature of air (K)	265.05	251.05	226.65	216.65
Air Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$1.88 \mathrm{E}-03$	$3.85 \mathrm{E}-03$	$1.80 \mathrm{E}-02$	$1.94 \mathrm{E}-01$
Wind Speed $(\mathrm{m} / \mathrm{s})$	33	26	11	15
Kinematic Viscosity $(\mathrm{N} . \mathrm{s})$	$1.69 \mathrm{E}-05$	$1.62 \mathrm{E}-05$	$1.49 \mathrm{E}-05$	$1.43 \mathrm{E}-05$

Computational Domain

Fluent Settings

Viscous Model	SST K-Omega
Stratosail Boundary Condition	No-Slip Wall Condition
Inlet Boundary Condition	Velocity-Inlet
Outlet Boundary Condition	Outflow
Surrounding Walls	Gauge Pressure=0
Inflation Option	Smooth Transition

Domain Setttings	
Dimensions of Domain	$200 \mathrm{~m} \times 100 \mathrm{~m} \times 300 \mathrm{~m}$
Volume of Stratosail	$0.267 \mathrm{~m}^{3}$
Ratio of Volume of Domian over Volume of Stratosail	$2.25 \mathrm{E}+07$

Angle of Attack	Nodes	Elements
$\mathbf{0}$ degrees	77208	403512
30 degrees	77329	403376
60 degrees	76948	401424
90 degrees	78130	406841

of Singspore

Solve for Drift Velocity by Iteration

of Singspore

Centenary Cable

Calculate the tether length to maintain steady-state drift motion at fixed altitudes.

$$
\begin{aligned}
& y=\frac{T_{0}}{w} \cosh \left(\frac{w z}{T_{0}}\right) \\
& s=\frac{T_{0}}{w} \sinh \left(\frac{w z}{T_{0}}\right)
\end{aligned}
$$

Validation of CFD simulation

- Drag force/coefficient on a sphere at various speeds (Reynold's No.)
- Fluent software simulation close to reported data
- Small differences noticed with inflation option turned on to smoothen the transition of elements

Drag Force on Stratosail

- Stratosail at 15 km altitude
- Drag force is larger at angle of attack of 90° compared to 60°
- Frontal area decreases with angle of attack

Drift velocity of Balloon-Stratosail System

- Wind speed at balloon altitude 30km: 12.5 m/s
- Drift velocity: less than $2 \mathrm{~m} / \mathrm{s}$ for various sizes of the balloon for stratosail at 15 km
- Drift velocity increases with balloon size

- Drift velocity increases to about $10 \mathrm{~m} / \mathrm{s}$ with stratosail moved to 20 km and 25 km due to lower wind speed at those altitudes.

of Singapore

Drift Velocity with Angle of Attack

Drift velocity decreases when the angle of attack is reduced from 90° to 60° due to the reduction in drag force.

Tether Length for Various Cases

－Length of tether for various cases of altitudes and angle of attack
－Length increases with size of balloon due to larger drag force（parameter T_{0} ）
－Angle of attack at 90° gives larger tether length than 60°
－Changing the tether length will change the dynamics of the system
of Singapore

Conclusion and Future Work

- Preliminary work on simulation of balloon-stratosail system
- Drift velocity: Feasibility of station-keeping
- Future work
- Full 3D and transient motion simulation
- Use of more realistic wind-speed data, especially wind directions
- Change of tether length and stratosail angle of attack as control parameters
- Evaluate control strategies for station-keeping by using the stratosail (or with other active means)

THE END

